CINXE.COM

XML data clustering Research Papers - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>XML data clustering Research Papers - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "by_tag", 'action': "show_one", 'controller_action': 'by_tag#show_one', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="xUup2ey_pZX5zdM4wa_t7FWHvEUnxoJPMLa66tLcftnIh9tLtg_zKrmvh_fUNU1swYdDfOBXe3QH-w3B7d4syQ" /> <link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-2b6f90dbd75f5941bc38f4ad716615f3ac449e7398313bb3bc225fba451cd9fa.css" /> <meta name="description" content="View XML data clustering Research Papers on Academia.edu for free." /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'by_tag'; var $action_name = "show_one"; var $rails_env = 'production'; var $app_rev = 'dc2ad41da5d7ea682babd20f90650302fb0a3a36'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":14016,"monthly_visitors":"99 million","monthly_visitor_count":99567017,"monthly_visitor_count_in_millions":99,"user_count":282999213,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1739804951000); window.Aedu.timeDifference = new Date().getTime() - 1739804951000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link rel="preload" href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" as="style" onload="this.rel='stylesheet'"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-40698df34f913bd208bb70f09d2feb7c6286046250be17a4db35bba2c08b0e2f.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-a22f75d8519394c21253dae46c8c5d60ad36ea68c7d494347ec64229d8c1cf85.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-5708a105dd66b4c7d0ef30b7c094b1048423f0042bd2a7b123f2d99ee3cf46d9.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://www.academia.edu/Documents/in/XML_data_clustering" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-by_tag a-show_one logged_out u-bgColorWhite'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-by_tag a-show_one logged_out u-bgColorWhite'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav no-sm no-md"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <div class="DesignSystem" style="margin-top:-40px"><div class="PageHeader"><div class="container"><div class="row"><style type="text/css">.sor-abstract { display: -webkit-box; overflow: hidden; text-overflow: ellipsis; -webkit-line-clamp: 3; -webkit-box-orient: vertical; }</style><div class="col-xs-12 clearfix"><div class="u-floatLeft"><h1 class="PageHeader-title u-m0x u-fs30">XML data clustering</h1><div class="u-tcGrayDark">54&nbsp;Followers</div><div class="u-tcGrayDark u-mt2x">Recent papers in&nbsp;<b>XML data clustering</b></div></div></div></div></div></div><div class="TabbedNavigation"><div class="container"><div class="row"><div class="col-xs-12 clearfix"><ul class="nav u-m0x u-p0x list-inline u-displayFlex"><li class="active"><a href="https://www.academia.edu/Documents/in/XML_data_clustering">Top Papers</a></li><li><a href="https://www.academia.edu/Documents/in/XML_data_clustering/MostCited">Most Cited Papers</a></li><li><a href="https://www.academia.edu/Documents/in/XML_data_clustering/MostDownloaded">Most Downloaded Papers</a></li><li><a href="https://www.academia.edu/Documents/in/XML_data_clustering/MostRecent">Newest Papers</a></li><li><a class="" href="https://www.academia.edu/People/XML_data_clustering">People</a></li></ul></div><style type="text/css">ul.nav{flex-direction:row}@media(max-width: 567px){ul.nav{flex-direction:column}.TabbedNavigation li{max-width:100%}.TabbedNavigation li.active{background-color:var(--background-grey, #dddde2)}.TabbedNavigation li.active:before,.TabbedNavigation li.active:after{display:none}}</style></div></div></div><div class="container"><div class="row"><div class="col-xs-12"><div class="u-displayFlex"><div class="u-flexGrow1"><div class="works"><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_32890776" data-work_id="32890776" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" rel="nofollow" href="https://www.academia.edu/32890776/CLUSTERING_ALGORITHMS_AND_THEIR_APPLICATIONS_IN_CLOUD_COMPUTING_ENVIRONMENT">CLUSTERING ALGORITHMS AND THEIR APPLICATIONS IN CLOUD COMPUTING ENVIRONMENT</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Cloud computing is Internet-based computing that provides shared computer processing resources and data to computers and other devices on demand. Cloud computing is the hottest purpose built architecture created to support computer users.... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_32890776" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Cloud computing is Internet-based computing that provides shared computer processing resources and data to computers and other devices on demand. Cloud computing is the hottest purpose built architecture created to support computer users. The cloud addresses three main areas of operation SaaS (software-as-a-service),PaaS (platform-as-a-service) and IaaS (infrastructure as a service). The large amount of data can be stored into cloud Data centers with low cost. We Integrate Data Mining and Cloud Computing to provide a quick access to this large volume amount of data on cloud. This paper aimed to study Clustering algorithm which can be applicable in cloud computing. This paper also describes the role of soft clustering in Cloud computing environment.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/32890776" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="b3d898931e94e49d3adca4aa29b3348a" rel="nofollow" data-download="{&quot;attachment_id&quot;:53031493,&quot;asset_id&quot;:32890776,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/53031493/download_file?st=MTczOTgwNDk1MSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="50335348" rel="nofollow" href="https://iiitb.academia.edu/IRJCSInternationalResearchJournalofComputerScience">IRJCS: : International Research Journal of Computer Science</a><script data-card-contents-for-user="50335348" type="text/json">{"id":50335348,"first_name":"IRJCS:","last_name":"International Research Journal of Computer Science","domain_name":"iiitb","page_name":"IRJCSInternationalResearchJournalofComputerScience","display_name":"IRJCS: : International Research Journal of Computer Science","profile_url":"https://iiitb.academia.edu/IRJCSInternationalResearchJournalofComputerScience?f_ri=103911","photo":"https://0.academia-photos.com/50335348/13242592/35131027/s65_irjcs_.international_research_journal_of_computer_science.jpg"}</script></span></span></li><li class="js-paper-rank-work_32890776 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="32890776"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 32890776, container: ".js-paper-rank-work_32890776", }); });</script></li><li class="js-percentile-work_32890776 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 32890776; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_32890776"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_32890776 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="32890776"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 32890776; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=32890776]").text(description); $(".js-view-count-work_32890776").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_32890776").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="32890776"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">23</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="5486" rel="nofollow" href="https://www.academia.edu/Documents/in/Clustering_and_Classification_Methods">Clustering and Classification Methods</a>,&nbsp;<script data-card-contents-for-ri="5486" type="text/json">{"id":5486,"name":"Clustering and Classification Methods","url":"https://www.academia.edu/Documents/in/Clustering_and_Classification_Methods?f_ri=103911","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="13143" rel="nofollow" href="https://www.academia.edu/Documents/in/Clustering_Algorithms">Clustering Algorithms</a>,&nbsp;<script data-card-contents-for-ri="13143" type="text/json">{"id":13143,"name":"Clustering Algorithms","url":"https://www.academia.edu/Documents/in/Clustering_Algorithms?f_ri=103911","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="26860" rel="nofollow" href="https://www.academia.edu/Documents/in/Cloud_Computing">Cloud Computing</a>,&nbsp;<script data-card-contents-for-ri="26860" type="text/json">{"id":26860,"name":"Cloud Computing","url":"https://www.academia.edu/Documents/in/Cloud_Computing?f_ri=103911","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="38511" rel="nofollow" href="https://www.academia.edu/Documents/in/Fuzzy_Clustering">Fuzzy Clustering</a><script data-card-contents-for-ri="38511" type="text/json">{"id":38511,"name":"Fuzzy Clustering","url":"https://www.academia.edu/Documents/in/Fuzzy_Clustering?f_ri=103911","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=32890776]'), work: {"id":32890776,"title":"CLUSTERING ALGORITHMS AND THEIR APPLICATIONS IN CLOUD COMPUTING ENVIRONMENT","created_at":"2017-05-07T09:24:47.006-07:00","url":"https://www.academia.edu/32890776/CLUSTERING_ALGORITHMS_AND_THEIR_APPLICATIONS_IN_CLOUD_COMPUTING_ENVIRONMENT?f_ri=103911","dom_id":"work_32890776","summary":"Cloud computing is Internet-based computing that provides shared computer processing resources and data to computers and other devices on demand. Cloud computing is the hottest purpose built architecture created to support computer users. The cloud addresses three main areas of operation SaaS (software-as-a-service),PaaS (platform-as-a-service) and IaaS (infrastructure as a service). The large amount of data can be stored into cloud Data centers with low cost. We Integrate Data Mining and Cloud Computing to provide a quick access to this large volume amount of data on cloud. This paper aimed to study Clustering algorithm which can be applicable in cloud computing. This paper also describes the role of soft clustering in Cloud computing environment.","downloadable_attachments":[{"id":53031493,"asset_id":32890776,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":50335348,"first_name":"IRJCS:","last_name":"International Research Journal of Computer Science","domain_name":"iiitb","page_name":"IRJCSInternationalResearchJournalofComputerScience","display_name":"IRJCS: : International Research Journal of Computer Science","profile_url":"https://iiitb.academia.edu/IRJCSInternationalResearchJournalofComputerScience?f_ri=103911","photo":"https://0.academia-photos.com/50335348/13242592/35131027/s65_irjcs_.international_research_journal_of_computer_science.jpg"}],"research_interests":[{"id":5486,"name":"Clustering and Classification Methods","url":"https://www.academia.edu/Documents/in/Clustering_and_Classification_Methods?f_ri=103911","nofollow":true},{"id":13143,"name":"Clustering Algorithms","url":"https://www.academia.edu/Documents/in/Clustering_Algorithms?f_ri=103911","nofollow":true},{"id":26860,"name":"Cloud Computing","url":"https://www.academia.edu/Documents/in/Cloud_Computing?f_ri=103911","nofollow":true},{"id":38511,"name":"Fuzzy Clustering","url":"https://www.academia.edu/Documents/in/Fuzzy_Clustering?f_ri=103911","nofollow":true},{"id":70142,"name":"Cloud Computing Economy","url":"https://www.academia.edu/Documents/in/Cloud_Computing_Economy?f_ri=103911"},{"id":84990,"name":"Clustering","url":"https://www.academia.edu/Documents/in/Clustering?f_ri=103911"},{"id":101195,"name":"Text Clustering","url":"https://www.academia.edu/Documents/in/Text_Clustering?f_ri=103911"},{"id":101534,"name":"Mobile Cloud Computing","url":"https://www.academia.edu/Documents/in/Mobile_Cloud_Computing?f_ri=103911"},{"id":103911,"name":"XML data clustering","url":"https://www.academia.edu/Documents/in/XML_data_clustering?f_ri=103911"},{"id":161545,"name":"Document Clustering","url":"https://www.academia.edu/Documents/in/Document_Clustering?f_ri=103911"},{"id":163785,"name":"Graph Clustering","url":"https://www.academia.edu/Documents/in/Graph_Clustering?f_ri=103911"},{"id":181551,"name":"Cloud Computing Security","url":"https://www.academia.edu/Documents/in/Cloud_Computing_Security-1?f_ri=103911"},{"id":184541,"name":"Ensuring data storage security in cloud computing","url":"https://www.academia.edu/Documents/in/Ensuring_data_storage_security_in_cloud_computing?f_ri=103911"},{"id":198663,"name":"Database and cloud computing","url":"https://www.academia.edu/Documents/in/Database_and_cloud_computing?f_ri=103911"},{"id":199424,"name":"Data Clustering","url":"https://www.academia.edu/Documents/in/Data_Clustering?f_ri=103911"},{"id":227504,"name":"Cloud Computing Introduction","url":"https://www.academia.edu/Documents/in/Cloud_Computing_Introduction?f_ri=103911"},{"id":231134,"name":"Security in Cloud Computing","url":"https://www.academia.edu/Documents/in/Security_in_Cloud_Computing?f_ri=103911"},{"id":247780,"name":"Hierarchical Clustering","url":"https://www.academia.edu/Documents/in/Hierarchical_Clustering?f_ri=103911"},{"id":393998,"name":"Cloud Computing and Erp","url":"https://www.academia.edu/Documents/in/Cloud_Computing_and_Erp?f_ri=103911"},{"id":853685,"name":"Cloud Computing and Virtualization","url":"https://www.academia.edu/Documents/in/Cloud_Computing_and_Virtualization?f_ri=103911"},{"id":854478,"name":"cloud computing in Iaas for higher education","url":"https://www.academia.edu/Documents/in/cloud_computing_in_Iaas_for_higher_education?f_ri=103911"},{"id":914128,"name":"Fuzzy C-Means Clustering Algorithm","url":"https://www.academia.edu/Documents/in/Fuzzy_C-Means_Clustering_Algorithm?f_ri=103911"},{"id":1032324,"name":"K means Clustering","url":"https://www.academia.edu/Documents/in/K_means_Clustering?f_ri=103911"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_9960560" data-work_id="9960560" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" rel="nofollow" href="https://www.academia.edu/9960560/What_is_Xml_Xml_Tutorial_For_Beginners_JavaTpoint">What is Xml? | Xml Tutorial For Beginners- JavaTpoint</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest">JavaTpoint Provides the Xml Tutorial for Beginners and Professionals. In This Tutorial You will be learned What is Xml, Xml file, Xml schema, features and Advantage of Xml.</div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/9960560" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="81bfbc4a90e5c13a373c80057febe217" rel="nofollow" data-download="{&quot;attachment_id&quot;:36107683,&quot;asset_id&quot;:9960560,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/36107683/download_file?st=MTczOTgwNDk1MSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="14660782" href="https://independent.academia.edu/TpointTech">Tpoint Tech</a><script data-card-contents-for-user="14660782" type="text/json">{"id":14660782,"first_name":"Tpoint","last_name":"Tech","domain_name":"independent","page_name":"TpointTech","display_name":"Tpoint Tech","profile_url":"https://independent.academia.edu/TpointTech?f_ri=103911","photo":"https://0.academia-photos.com/14660782/3988162/145758186/s65_javatpoint..com.png"}</script></span></span></li><li class="js-paper-rank-work_9960560 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="9960560"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 9960560, container: ".js-paper-rank-work_9960560", }); });</script></li><li class="js-percentile-work_9960560 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 9960560; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_9960560"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_9960560 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="9960560"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 9960560; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=9960560]").text(description); $(".js-view-count-work_9960560").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_9960560").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="9960560"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">3</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="5279" rel="nofollow" href="https://www.academia.edu/Documents/in/XML">XML</a>,&nbsp;<script data-card-contents-for-ri="5279" type="text/json">{"id":5279,"name":"XML","url":"https://www.academia.edu/Documents/in/XML?f_ri=103911","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="48713" rel="nofollow" href="https://www.academia.edu/Documents/in/XML_Schema">XML Schema</a>,&nbsp;<script data-card-contents-for-ri="48713" type="text/json">{"id":48713,"name":"XML Schema","url":"https://www.academia.edu/Documents/in/XML_Schema?f_ri=103911","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="103911" rel="nofollow" href="https://www.academia.edu/Documents/in/XML_data_clustering">XML data clustering</a><script data-card-contents-for-ri="103911" type="text/json">{"id":103911,"name":"XML data clustering","url":"https://www.academia.edu/Documents/in/XML_data_clustering?f_ri=103911","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=9960560]'), work: {"id":9960560,"title":"What is Xml? | Xml Tutorial For Beginners- JavaTpoint","created_at":"2014-12-31T00:36:44.189-08:00","url":"https://www.academia.edu/9960560/What_is_Xml_Xml_Tutorial_For_Beginners_JavaTpoint?f_ri=103911","dom_id":"work_9960560","summary":"JavaTpoint Provides the Xml Tutorial for Beginners and Professionals. In This Tutorial You will be learned What is Xml, Xml file, Xml schema, features and Advantage of Xml.","downloadable_attachments":[{"id":36107683,"asset_id":9960560,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":14660782,"first_name":"Tpoint","last_name":"Tech","domain_name":"independent","page_name":"TpointTech","display_name":"Tpoint Tech","profile_url":"https://independent.academia.edu/TpointTech?f_ri=103911","photo":"https://0.academia-photos.com/14660782/3988162/145758186/s65_javatpoint..com.png"}],"research_interests":[{"id":5279,"name":"XML","url":"https://www.academia.edu/Documents/in/XML?f_ri=103911","nofollow":true},{"id":48713,"name":"XML Schema","url":"https://www.academia.edu/Documents/in/XML_Schema?f_ri=103911","nofollow":true},{"id":103911,"name":"XML data clustering","url":"https://www.academia.edu/Documents/in/XML_data_clustering?f_ri=103911","nofollow":true}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_35838838" data-work_id="35838838" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" rel="nofollow" href="https://www.academia.edu/35838838/SURVEY_OF_DATA_MINING_TECHNIQUES_USED_IN_HEALTHCARE_DOMAIN">SURVEY OF DATA MINING TECHNIQUES USED IN HEALTHCARE DOMAIN</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Health care industry produces enormous quantity of data that clutches complex information relating to patients and their medical conditions. Data mining is gaining popularity in different research arenas due to its infinite applications... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_35838838" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Health care industry produces enormous quantity of data that clutches complex information relating to patients and their medical conditions. Data mining is gaining popularity in different research arenas due to its infinite applications and methodologies to mine the information in correct manner. Data mining techniques have the capabilities to discover hidden patterns or relationships among the objects in the medical data. In last decade, there has been increase in usage of data mining techniques on medical data for determining useful trends or patterns that are used in analysis and decision making. Data mining has an infinite potential to utilize healthcare data more efficiently and effectually to predict different kind of disease. This paper features various Data Mining techniques such as classification, clustering, association and also highlights related work to analyse and predict human disease.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/35838838" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="1e592f5436c580c5d760afcefbbfe121" rel="nofollow" data-download="{&quot;attachment_id&quot;:55716984,&quot;asset_id&quot;:35838838,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/55716984/download_file?st=MTczOTgwNDk1MSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="74068792" rel="nofollow" href="https://independent.academia.edu/Journal_IJIST">International Journal of Information Sciences and Techniques (IJIST)</a><script data-card-contents-for-user="74068792" type="text/json">{"id":74068792,"first_name":"International Journal of Information Sciences and Techniques","last_name":"(IJIST)","domain_name":"independent","page_name":"Journal_IJIST","display_name":"International Journal of Information Sciences and Techniques (IJIST)","profile_url":"https://independent.academia.edu/Journal_IJIST?f_ri=103911","photo":"https://0.academia-photos.com/74068792/18783181/162964902/s65_international_journal_of_information_sciences_and_techniques._ijist_.png"}</script></span></span></li><li class="js-paper-rank-work_35838838 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="35838838"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 35838838, container: ".js-paper-rank-work_35838838", }); });</script></li><li class="js-percentile-work_35838838 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 35838838; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_35838838"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_35838838 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="35838838"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 35838838; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=35838838]").text(description); $(".js-view-count-work_35838838").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_35838838").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="35838838"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">32</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="465" rel="nofollow" href="https://www.academia.edu/Documents/in/Artificial_Intelligence">Artificial Intelligence</a>,&nbsp;<script data-card-contents-for-ri="465" type="text/json">{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=103911","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="2009" rel="nofollow" href="https://www.academia.edu/Documents/in/Data_Mining">Data Mining</a>,&nbsp;<script data-card-contents-for-ri="2009" type="text/json">{"id":2009,"name":"Data Mining","url":"https://www.academia.edu/Documents/in/Data_Mining?f_ri=103911","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="7960" rel="nofollow" href="https://www.academia.edu/Documents/in/Temporal_Data_Mining">Temporal Data Mining</a>,&nbsp;<script data-card-contents-for-ri="7960" type="text/json">{"id":7960,"name":"Temporal Data Mining","url":"https://www.academia.edu/Documents/in/Temporal_Data_Mining?f_ri=103911","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="9447" rel="nofollow" href="https://www.academia.edu/Documents/in/Stream_Mining_Data_Mining_">Stream Mining (Data Mining)</a><script data-card-contents-for-ri="9447" type="text/json">{"id":9447,"name":"Stream Mining (Data Mining)","url":"https://www.academia.edu/Documents/in/Stream_Mining_Data_Mining_?f_ri=103911","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=35838838]'), work: {"id":35838838,"title":"SURVEY OF DATA MINING TECHNIQUES USED IN HEALTHCARE DOMAIN","created_at":"2018-02-04T22:18:27.812-08:00","url":"https://www.academia.edu/35838838/SURVEY_OF_DATA_MINING_TECHNIQUES_USED_IN_HEALTHCARE_DOMAIN?f_ri=103911","dom_id":"work_35838838","summary":"Health care industry produces enormous quantity of data that clutches complex information relating to patients and their medical conditions. Data mining is gaining popularity in different research arenas due to its infinite applications and methodologies to mine the information in correct manner. Data mining techniques have the capabilities to discover hidden patterns or relationships among the objects in the medical data. In last decade, there has been increase in usage of data mining techniques on medical data for determining useful trends or patterns that are used in analysis and decision making. Data mining has an infinite potential to utilize healthcare data more efficiently and effectually to predict different kind of disease. This paper features various Data Mining techniques such as classification, clustering, association and also highlights related work to analyse and predict human disease.","downloadable_attachments":[{"id":55716984,"asset_id":35838838,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":74068792,"first_name":"International Journal of Information Sciences and Techniques","last_name":"(IJIST)","domain_name":"independent","page_name":"Journal_IJIST","display_name":"International Journal of Information Sciences and Techniques (IJIST)","profile_url":"https://independent.academia.edu/Journal_IJIST?f_ri=103911","photo":"https://0.academia-photos.com/74068792/18783181/162964902/s65_international_journal_of_information_sciences_and_techniques._ijist_.png"}],"research_interests":[{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=103911","nofollow":true},{"id":2009,"name":"Data Mining","url":"https://www.academia.edu/Documents/in/Data_Mining?f_ri=103911","nofollow":true},{"id":7960,"name":"Temporal Data Mining","url":"https://www.academia.edu/Documents/in/Temporal_Data_Mining?f_ri=103911","nofollow":true},{"id":9447,"name":"Stream Mining (Data Mining)","url":"https://www.academia.edu/Documents/in/Stream_Mining_Data_Mining_?f_ri=103911","nofollow":true},{"id":13143,"name":"Clustering Algorithms","url":"https://www.academia.edu/Documents/in/Clustering_Algorithms?f_ri=103911"},{"id":14494,"name":"Opinion Mining (Data Mining)","url":"https://www.academia.edu/Documents/in/Opinion_Mining_Data_Mining_?f_ri=103911"},{"id":23471,"name":"Genome Wide Association Studies (GWAS)","url":"https://www.academia.edu/Documents/in/Genome_Wide_Association_Studies_GWAS_?f_ri=103911"},{"id":32701,"name":"Data Mining in Bioinformatics","url":"https://www.academia.edu/Documents/in/Data_Mining_in_Bioinformatics?f_ri=103911"},{"id":34344,"name":"Data mining (Data Analysis)","url":"https://www.academia.edu/Documents/in/Data_mining_Data_Analysis_?f_ri=103911"},{"id":38511,"name":"Fuzzy Clustering","url":"https://www.academia.edu/Documents/in/Fuzzy_Clustering?f_ri=103911"},{"id":39693,"name":"Distributed Data Mining","url":"https://www.academia.edu/Documents/in/Distributed_Data_Mining?f_ri=103911"},{"id":60650,"name":"Data Warehousing and Data Mining","url":"https://www.academia.edu/Documents/in/Data_Warehousing_and_Data_Mining?f_ri=103911"},{"id":84990,"name":"Clustering","url":"https://www.academia.edu/Documents/in/Clustering?f_ri=103911"},{"id":93179,"name":"Data Stream Mining","url":"https://www.academia.edu/Documents/in/Data_Stream_Mining?f_ri=103911"},{"id":98032,"name":"Optimization for clustering","url":"https://www.academia.edu/Documents/in/Optimization_for_clustering?f_ri=103911"},{"id":99804,"name":"Privacy Preserving Data Mining","url":"https://www.academia.edu/Documents/in/Privacy_Preserving_Data_Mining?f_ri=103911"},{"id":101195,"name":"Text Clustering","url":"https://www.academia.edu/Documents/in/Text_Clustering?f_ri=103911"},{"id":103911,"name":"XML data clustering","url":"https://www.academia.edu/Documents/in/XML_data_clustering?f_ri=103911"},{"id":161545,"name":"Document Clustering","url":"https://www.academia.edu/Documents/in/Document_Clustering?f_ri=103911"},{"id":161604,"name":"Clustering Initialization and Robustness","url":"https://www.academia.edu/Documents/in/Clustering_Initialization_and_Robustness?f_ri=103911"},{"id":163785,"name":"Graph Clustering","url":"https://www.academia.edu/Documents/in/Graph_Clustering?f_ri=103911"},{"id":199424,"name":"Data Clustering","url":"https://www.academia.edu/Documents/in/Data_Clustering?f_ri=103911"},{"id":200054,"name":"Web Objects Clustering Through Aggregation for Enhanced Search Results","url":"https://www.academia.edu/Documents/in/Web_Objects_Clustering_Through_Aggregation_for_Enhanced_Search_Results?f_ri=103911"},{"id":218011,"name":"Text Mining, Document clustering, Data Mining","url":"https://www.academia.edu/Documents/in/Text_Mining_Document_clustering_Data_Mining?f_ri=103911"},{"id":247780,"name":"Hierarchical Clustering","url":"https://www.academia.edu/Documents/in/Hierarchical_Clustering?f_ri=103911"},{"id":253578,"name":"American Psychological Association","url":"https://www.academia.edu/Documents/in/American_Psychological_Association?f_ri=103911"},{"id":293560,"name":"Clustering Algorithm in Manet","url":"https://www.academia.edu/Documents/in/Clustering_Algorithm_in_Manet?f_ri=103911"},{"id":307922,"name":"Data Clustering algorithms","url":"https://www.academia.edu/Documents/in/Data_Clustering_algorithms?f_ri=103911"},{"id":311740,"name":"Clustering and routing of mobile ad hoc networks","url":"https://www.academia.edu/Documents/in/Clustering_and_routing_of_mobile_ad_hoc_networks?f_ri=103911"},{"id":343980,"name":"Association Rules","url":"https://www.academia.edu/Documents/in/Association_Rules?f_ri=103911"},{"id":381739,"name":"APELA (Association pour l'étude des littératures africaines)","url":"https://www.academia.edu/Documents/in/APELA_Association_pour_letude_des_litteratures_africaines_?f_ri=103911"},{"id":914128,"name":"Fuzzy C-Means Clustering Algorithm","url":"https://www.academia.edu/Documents/in/Fuzzy_C-Means_Clustering_Algorithm?f_ri=103911"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_2986178" data-work_id="2986178" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/2986178/XML_and_Semantic_Web_Technologies_Timeline_v1_3">XML and Semantic Web Technologies Timeline v1.3</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest">XML and Semantic Web Technologies Timeline v1.3 <br />[PDF File] <a href="http://bit.ly/TV64Jr" rel="nofollow">http://bit.ly/TV64Jr</a> <br />[SVG File] <a href="http://bitly.com/PkjzQr" rel="nofollow">http://bitly.com/PkjzQr</a> <br />[PNG File] <a href="http://bitly.com/Yl25ES" rel="nofollow">http://bitly.com/Yl25ES</a> <br /><br />(c) sparql2xquery 2016</div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/2986178" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="e9e9ea817fb95a59c6421edba85138a0" rel="nofollow" data-download="{&quot;attachment_id&quot;:48278268,&quot;asset_id&quot;:2986178,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/48278268/download_file?st=MTczOTgwNDk1MSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="248059" href="https://hmu-gr.academia.edu/NikosBikakis">Nikos Bikakis</a><script data-card-contents-for-user="248059" type="text/json">{"id":248059,"first_name":"Nikos","last_name":"Bikakis","domain_name":"hmu-gr","page_name":"NikosBikakis","display_name":"Nikos Bikakis","profile_url":"https://hmu-gr.academia.edu/NikosBikakis?f_ri=103911","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_2986178 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="2986178"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 2986178, container: ".js-paper-rank-work_2986178", }); });</script></li><li class="js-percentile-work_2986178 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 2986178; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_2986178"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_2986178 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="2986178"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 2986178; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=2986178]").text(description); $(".js-view-count-work_2986178").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_2986178").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="2986178"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">56</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="37" rel="nofollow" href="https://www.academia.edu/Documents/in/Information_Systems">Information Systems</a>,&nbsp;<script data-card-contents-for-ri="37" type="text/json">{"id":37,"name":"Information Systems","url":"https://www.academia.edu/Documents/in/Information_Systems?f_ri=103911","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="491" rel="nofollow" href="https://www.academia.edu/Documents/in/Information_Technology">Information Technology</a>,&nbsp;<script data-card-contents-for-ri="491" type="text/json">{"id":491,"name":"Information Technology","url":"https://www.academia.edu/Documents/in/Information_Technology?f_ri=103911","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="492" rel="nofollow" href="https://www.academia.edu/Documents/in/Management_Information_Systems">Management Information Systems</a>,&nbsp;<script data-card-contents-for-ri="492" type="text/json">{"id":492,"name":"Management Information Systems","url":"https://www.academia.edu/Documents/in/Management_Information_Systems?f_ri=103911","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="984" rel="nofollow" href="https://www.academia.edu/Documents/in/Web_2.0">Web 2.0</a><script data-card-contents-for-ri="984" type="text/json">{"id":984,"name":"Web 2.0","url":"https://www.academia.edu/Documents/in/Web_2.0?f_ri=103911","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=2986178]'), work: {"id":2986178,"title":"XML and Semantic Web Technologies Timeline v1.3","created_at":"2013-03-14T04:58:13.877-07:00","url":"https://www.academia.edu/2986178/XML_and_Semantic_Web_Technologies_Timeline_v1_3?f_ri=103911","dom_id":"work_2986178","summary":"XML and Semantic Web Technologies Timeline v1.3 \n[PDF File] http://bit.ly/TV64Jr \n[SVG File] http://bitly.com/PkjzQr \n[PNG File] http://bitly.com/Yl25ES \n\n(c) sparql2xquery 2016","downloadable_attachments":[{"id":48278268,"asset_id":2986178,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":248059,"first_name":"Nikos","last_name":"Bikakis","domain_name":"hmu-gr","page_name":"NikosBikakis","display_name":"Nikos Bikakis","profile_url":"https://hmu-gr.academia.edu/NikosBikakis?f_ri=103911","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":37,"name":"Information Systems","url":"https://www.academia.edu/Documents/in/Information_Systems?f_ri=103911","nofollow":true},{"id":491,"name":"Information Technology","url":"https://www.academia.edu/Documents/in/Information_Technology?f_ri=103911","nofollow":true},{"id":492,"name":"Management Information Systems","url":"https://www.academia.edu/Documents/in/Management_Information_Systems?f_ri=103911","nofollow":true},{"id":984,"name":"Web 2.0","url":"https://www.academia.edu/Documents/in/Web_2.0?f_ri=103911","nofollow":true},{"id":1033,"name":"Semantic Web Technologies","url":"https://www.academia.edu/Documents/in/Semantic_Web_Technologies?f_ri=103911"},{"id":2009,"name":"Data Mining","url":"https://www.academia.edu/Documents/in/Data_Mining?f_ri=103911"},{"id":2349,"name":"Semantics","url":"https://www.academia.edu/Documents/in/Semantics?f_ri=103911"},{"id":2482,"name":"Database Systems","url":"https://www.academia.edu/Documents/in/Database_Systems?f_ri=103911"},{"id":4205,"name":"Data Analysis","url":"https://www.academia.edu/Documents/in/Data_Analysis?f_ri=103911"},{"id":5279,"name":"XML","url":"https://www.academia.edu/Documents/in/XML?f_ri=103911"},{"id":5978,"name":"Web Technologies","url":"https://www.academia.edu/Documents/in/Web_Technologies?f_ri=103911"},{"id":8130,"name":"Web Development","url":"https://www.academia.edu/Documents/in/Web_Development?f_ri=103911"},{"id":10472,"name":"Web Applications","url":"https://www.academia.edu/Documents/in/Web_Applications?f_ri=103911"},{"id":11732,"name":"Linked Data","url":"https://www.academia.edu/Documents/in/Linked_Data?f_ri=103911"},{"id":13769,"name":"Lexical Semantics","url":"https://www.academia.edu/Documents/in/Lexical_Semantics?f_ri=103911"},{"id":14008,"name":"Knowledge Discovery in Databases","url":"https://www.academia.edu/Documents/in/Knowledge_Discovery_in_Databases?f_ri=103911"},{"id":17295,"name":"Semantic Web technology - Ontologies","url":"https://www.academia.edu/Documents/in/Semantic_Web_technology_-_Ontologies?f_ri=103911"},{"id":17711,"name":"Semantic Web","url":"https://www.academia.edu/Documents/in/Semantic_Web?f_ri=103911"},{"id":18069,"name":"Semantic Web Services","url":"https://www.academia.edu/Documents/in/Semantic_Web_Services?f_ri=103911"},{"id":24212,"name":"Open Data","url":"https://www.academia.edu/Documents/in/Open_Data?f_ri=103911"},{"id":27360,"name":"Databases","url":"https://www.academia.edu/Documents/in/Databases?f_ri=103911"},{"id":28190,"name":"Semantic Search Engine","url":"https://www.academia.edu/Documents/in/Semantic_Search_Engine?f_ri=103911"},{"id":28991,"name":"Formal Semantics","url":"https://www.academia.edu/Documents/in/Formal_Semantics?f_ri=103911"},{"id":44873,"name":"Web 3.0","url":"https://www.academia.edu/Documents/in/Web_3.0?f_ri=103911"},{"id":48713,"name":"XML Schema","url":"https://www.academia.edu/Documents/in/XML_Schema?f_ri=103911"},{"id":48717,"name":"XML data interoperability","url":"https://www.academia.edu/Documents/in/XML_data_interoperability?f_ri=103911"},{"id":52295,"name":"Interoperability","url":"https://www.academia.edu/Documents/in/Interoperability?f_ri=103911"},{"id":58384,"name":"SPARQL query processing and optimization","url":"https://www.academia.edu/Documents/in/SPARQL_query_processing_and_optimization?f_ri=103911"},{"id":58387,"name":"Distributed RDFS reasoning","url":"https://www.academia.edu/Documents/in/Distributed_RDFS_reasoning?f_ri=103911"},{"id":79948,"name":"Web Programming","url":"https://www.academia.edu/Documents/in/Web_Programming?f_ri=103911"},{"id":82657,"name":"Xml and Web Services","url":"https://www.academia.edu/Documents/in/Xml_and_Web_Services?f_ri=103911"},{"id":100652,"name":"RDF","url":"https://www.academia.edu/Documents/in/RDF?f_ri=103911"},{"id":100795,"name":"OWL","url":"https://www.academia.edu/Documents/in/OWL?f_ri=103911"},{"id":101060,"name":"XML Database","url":"https://www.academia.edu/Documents/in/XML_Database?f_ri=103911"},{"id":103911,"name":"XML data clustering","url":"https://www.academia.edu/Documents/in/XML_data_clustering?f_ri=103911"},{"id":106356,"name":"Xml Data mining","url":"https://www.academia.edu/Documents/in/Xml_Data_mining?f_ri=103911"},{"id":106725,"name":"XML Web Services","url":"https://www.academia.edu/Documents/in/XML_Web_Services?f_ri=103911"},{"id":121361,"name":"Semantic Computing","url":"https://www.academia.edu/Documents/in/Semantic_Computing?f_ri=103911"},{"id":125836,"name":"Linked Open Data","url":"https://www.academia.edu/Documents/in/Linked_Open_Data?f_ri=103911"},{"id":126300,"name":"Big Data","url":"https://www.academia.edu/Documents/in/Big_Data?f_ri=103911"},{"id":138010,"name":"RDF Databases","url":"https://www.academia.edu/Documents/in/RDF_Databases?f_ri=103911"},{"id":138013,"name":"Rdf Compression","url":"https://www.academia.edu/Documents/in/Rdf_Compression?f_ri=103911"},{"id":155394,"name":"Web 2.0 tools","url":"https://www.academia.edu/Documents/in/Web_2.0_tools?f_ri=103911"},{"id":181022,"name":"Data Structures","url":"https://www.academia.edu/Documents/in/Data_Structures?f_ri=103911"},{"id":186905,"name":"DBPedia, SPARQL","url":"https://www.academia.edu/Documents/in/DBPedia_SPARQL?f_ri=103911"},{"id":216062,"name":"Web 2","url":"https://www.academia.edu/Documents/in/Web_2?f_ri=103911"},{"id":289278,"name":"Big Data Analytics","url":"https://www.academia.edu/Documents/in/Big_Data_Analytics?f_ri=103911"},{"id":312649,"name":"RDF Streams","url":"https://www.academia.edu/Documents/in/RDF_Streams?f_ri=103911"},{"id":342382,"name":"Syntactic and Semantic Knowledge","url":"https://www.academia.edu/Documents/in/Syntactic_and_Semantic_Knowledge?f_ri=103911"},{"id":413148,"name":"Big Data / Analytics / Data Mining","url":"https://www.academia.edu/Documents/in/Big_Data_Analytics_Data_Mining?f_ri=103911"},{"id":424634,"name":"researcher development, RDF, training and development of postgraduates","url":"https://www.academia.edu/Documents/in/researcher_development_RDF_training_and_development_of_postgraduates?f_ri=103911"},{"id":487495,"name":"SPARQL","url":"https://www.academia.edu/Documents/in/SPARQL?f_ri=103911"},{"id":530696,"name":"TEI XML","url":"https://www.academia.edu/Documents/in/TEI_XML?f_ri=103911"},{"id":621015,"name":"XPath","url":"https://www.academia.edu/Documents/in/XPath?f_ri=103911"},{"id":892672,"name":"Sparql Endpoint","url":"https://www.academia.edu/Documents/in/Sparql_Endpoint?f_ri=103911"},{"id":1124686,"name":"W3C standards","url":"https://www.academia.edu/Documents/in/W3C_standards?f_ri=103911"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_42874517" data-work_id="42874517" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/42874517/APPLIANCE_RECOGNITION_USING_A_DENSITY_BASED_CLUSTERING_APPROACH_WITH_MULTIPLE_GRANULARITIES">APPLIANCE RECOGNITION USING A DENSITY- BASED CLUSTERING APPROACH WITH MULTIPLE GRANULARITIES</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Electricity may not be economically stored as other forms of energy such that it would be in short supply during the peak time. In view of this difficulty, most power suppliers encourage their customers to adopt time-of-use rate plans.... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_42874517" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Electricity may not be economically stored as other forms of energy such that it would be in short supply during the peak time. In view of this difficulty, most power suppliers encourage their customers to adopt time-of-use rate plans. Consequently, it is essential for a user to be able to perceive the real-time information of power consumption. With the advancement of Internet of Things technologies, smart sockets are becoming a commodity to manage power consumption in a household. However, current smart sockets merely present the total electricity consumption rather than the individual consumption of household appliances. In this work, we thus design the capability of appliance recognition and implement this feature into a smart socket so that we can identify the power consumption of each appliance respectively. The proposed recursive DBSCAN approach realizes the recognition task without prior knowledge of new appliances and shows a feasible result in our experimental studies.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/42874517" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="45c125bbafda022e52a2fa706071e3c2" rel="nofollow" data-download="{&quot;attachment_id&quot;:63116289,&quot;asset_id&quot;:42874517,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/63116289/download_file?st=MTczOTgwNDk1MSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="15689241" href="https://independent.academia.edu/ComputerScienceInformationTechnologyCSIT">Computer Science &amp; Information Technology (CS &amp; IT) Computer Science Conference Proceedings (CSCP)</a><script data-card-contents-for-user="15689241" type="text/json">{"id":15689241,"first_name":"Computer Science \u0026 Information Technology (CS \u0026 IT)","last_name":"Computer Science Conference Proceedings (CSCP)","domain_name":"independent","page_name":"ComputerScienceInformationTechnologyCSIT","display_name":"Computer Science \u0026 Information Technology (CS \u0026 IT) Computer Science Conference Proceedings (CSCP)","profile_url":"https://independent.academia.edu/ComputerScienceInformationTechnologyCSIT?f_ri=103911","photo":"https://0.academia-photos.com/15689241/4239141/4932687/s65_computer_science_information_technology_cs_it_.computer_science_conference_proceedings_cscp_.jpg"}</script></span></span></li><li class="js-paper-rank-work_42874517 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="42874517"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 42874517, container: ".js-paper-rank-work_42874517", }); });</script></li><li class="js-percentile-work_42874517 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 42874517; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_42874517"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_42874517 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="42874517"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 42874517; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=42874517]").text(description); $(".js-view-count-work_42874517").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_42874517").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="42874517"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">3</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="103911" rel="nofollow" href="https://www.academia.edu/Documents/in/XML_data_clustering">XML data clustering</a>,&nbsp;<script data-card-contents-for-ri="103911" type="text/json">{"id":103911,"name":"XML data clustering","url":"https://www.academia.edu/Documents/in/XML_data_clustering?f_ri=103911","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="199424" rel="nofollow" href="https://www.academia.edu/Documents/in/Data_Clustering">Data Clustering</a>,&nbsp;<script data-card-contents-for-ri="199424" type="text/json">{"id":199424,"name":"Data Clustering","url":"https://www.academia.edu/Documents/in/Data_Clustering?f_ri=103911","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="307922" rel="nofollow" href="https://www.academia.edu/Documents/in/Data_Clustering_algorithms">Data Clustering algorithms</a><script data-card-contents-for-ri="307922" type="text/json">{"id":307922,"name":"Data Clustering algorithms","url":"https://www.academia.edu/Documents/in/Data_Clustering_algorithms?f_ri=103911","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=42874517]'), work: {"id":42874517,"title":"APPLIANCE RECOGNITION USING A DENSITY- BASED CLUSTERING APPROACH WITH MULTIPLE GRANULARITIES","created_at":"2020-04-27T22:39:51.018-07:00","url":"https://www.academia.edu/42874517/APPLIANCE_RECOGNITION_USING_A_DENSITY_BASED_CLUSTERING_APPROACH_WITH_MULTIPLE_GRANULARITIES?f_ri=103911","dom_id":"work_42874517","summary":"Electricity may not be economically stored as other forms of energy such that it would be in short supply during the peak time. In view of this difficulty, most power suppliers encourage their customers to adopt time-of-use rate plans. Consequently, it is essential for a user to be able to perceive the real-time information of power consumption. With the advancement of Internet of Things technologies, smart sockets are becoming a commodity to manage power consumption in a household. However, current smart sockets merely present the total electricity consumption rather than the individual consumption of household appliances. In this work, we thus design the capability of appliance recognition and implement this feature into a smart socket so that we can identify the power consumption of each appliance respectively. The proposed recursive DBSCAN approach realizes the recognition task without prior knowledge of new appliances and shows a feasible result in our experimental studies.","downloadable_attachments":[{"id":63116289,"asset_id":42874517,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":15689241,"first_name":"Computer Science \u0026 Information Technology (CS \u0026 IT)","last_name":"Computer Science Conference Proceedings (CSCP)","domain_name":"independent","page_name":"ComputerScienceInformationTechnologyCSIT","display_name":"Computer Science \u0026 Information Technology (CS \u0026 IT) Computer Science Conference Proceedings (CSCP)","profile_url":"https://independent.academia.edu/ComputerScienceInformationTechnologyCSIT?f_ri=103911","photo":"https://0.academia-photos.com/15689241/4239141/4932687/s65_computer_science_information_technology_cs_it_.computer_science_conference_proceedings_cscp_.jpg"}],"research_interests":[{"id":103911,"name":"XML data clustering","url":"https://www.academia.edu/Documents/in/XML_data_clustering?f_ri=103911","nofollow":true},{"id":199424,"name":"Data Clustering","url":"https://www.academia.edu/Documents/in/Data_Clustering?f_ri=103911","nofollow":true},{"id":307922,"name":"Data Clustering algorithms","url":"https://www.academia.edu/Documents/in/Data_Clustering_algorithms?f_ri=103911","nofollow":true}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_27416514" data-work_id="27416514" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/27416514/Context_Based_XML_Data_and_Diversification_for_Keyword_Search_Queries">Context Based XML Data and Diversification for Keyword Search Queries</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">— In searching process user enter particular candidate searching keyword and with the help of searching algorithm respective searching query is executed on targeted dataset and result is return as an output of that algorithm. In this case... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_27416514" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">— In searching process user enter particular candidate searching keyword and with the help of searching algorithm respective searching query is executed on targeted dataset and result is return as an output of that algorithm. In this case it is expected that meaningful keyword has to be entered by user to get appropriate result set. In case of confusing bunch of keywords or ambiguity in it or short and indistinctness in it causes an irrelevant searching result. Also searching algorithms works on exact result fetching which can be irrelevant in case problem in input query and keyword. This problem statement is focused in this system. By considering the keyword and its relevant context in XML data , searching should be done using automatically diversification process of XML keyword search. In this way system may satisfy user, as user gets the analytical result set based on context of searching keywords. For more efficiency and to deal with big data, HADOOP platform is used. baseline efficient algorithms are proposed to incrementally compute top-k qualified query candidates as the diversified search intentions. Compare selection criteria are targeted: the k selected query candidates are most relevant to the given query while they have to cover maximal number of distinct results on real and synthetic data sets demonstrates the effectiveness diversification model and the efficiency of algorithms</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/27416514" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="38d84727383f9c64b901e6045a9b1804" rel="nofollow" data-download="{&quot;attachment_id&quot;:47672579,&quot;asset_id&quot;:27416514,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/47672579/download_file?st=MTczOTgwNDk1MSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="14545732" href="https://cvr.academia.edu/Ijcertpublications">IJCERT Publications</a><script data-card-contents-for-user="14545732" type="text/json">{"id":14545732,"first_name":"IJCERT","last_name":"Publications","domain_name":"cvr","page_name":"Ijcertpublications","display_name":"IJCERT Publications","profile_url":"https://cvr.academia.edu/Ijcertpublications?f_ri=103911","photo":"https://0.academia-photos.com/14545732/3964209/13239444/s65_ijcert.journal.jpg"}</script></span></span></li><li class="js-paper-rank-work_27416514 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="27416514"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 27416514, container: ".js-paper-rank-work_27416514", }); });</script></li><li class="js-percentile-work_27416514 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 27416514; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_27416514"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_27416514 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="27416514"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 27416514; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=27416514]").text(description); $(".js-view-count-work_27416514").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_27416514").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="27416514"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">5</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="2482" rel="nofollow" href="https://www.academia.edu/Documents/in/Database_Systems">Database Systems</a>,&nbsp;<script data-card-contents-for-ri="2482" type="text/json">{"id":2482,"name":"Database Systems","url":"https://www.academia.edu/Documents/in/Database_Systems?f_ri=103911","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="5279" rel="nofollow" href="https://www.academia.edu/Documents/in/XML">XML</a>,&nbsp;<script data-card-contents-for-ri="5279" type="text/json">{"id":5279,"name":"XML","url":"https://www.academia.edu/Documents/in/XML?f_ri=103911","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="94537" rel="nofollow" href="https://www.academia.edu/Documents/in/Datamining">Datamining</a>,&nbsp;<script data-card-contents-for-ri="94537" type="text/json">{"id":94537,"name":"Datamining","url":"https://www.academia.edu/Documents/in/Datamining?f_ri=103911","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="101060" rel="nofollow" href="https://www.academia.edu/Documents/in/XML_Database">XML Database</a><script data-card-contents-for-ri="101060" type="text/json">{"id":101060,"name":"XML Database","url":"https://www.academia.edu/Documents/in/XML_Database?f_ri=103911","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=27416514]'), work: {"id":27416514,"title":"Context Based XML Data and Diversification for Keyword Search Queries","created_at":"2016-07-31T09:46:28.595-07:00","url":"https://www.academia.edu/27416514/Context_Based_XML_Data_and_Diversification_for_Keyword_Search_Queries?f_ri=103911","dom_id":"work_27416514","summary":"— In searching process user enter particular candidate searching keyword and with the help of searching algorithm respective searching query is executed on targeted dataset and result is return as an output of that algorithm. In this case it is expected that meaningful keyword has to be entered by user to get appropriate result set. In case of confusing bunch of keywords or ambiguity in it or short and indistinctness in it causes an irrelevant searching result. Also searching algorithms works on exact result fetching which can be irrelevant in case problem in input query and keyword. This problem statement is focused in this system. By considering the keyword and its relevant context in XML data , searching should be done using automatically diversification process of XML keyword search. In this way system may satisfy user, as user gets the analytical result set based on context of searching keywords. For more efficiency and to deal with big data, HADOOP platform is used. baseline efficient algorithms are proposed to incrementally compute top-k qualified query candidates as the diversified search intentions. Compare selection criteria are targeted: the k selected query candidates are most relevant to the given query while they have to cover maximal number of distinct results on real and synthetic data sets demonstrates the effectiveness diversification model and the efficiency of algorithms","downloadable_attachments":[{"id":47672579,"asset_id":27416514,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":14545732,"first_name":"IJCERT","last_name":"Publications","domain_name":"cvr","page_name":"Ijcertpublications","display_name":"IJCERT Publications","profile_url":"https://cvr.academia.edu/Ijcertpublications?f_ri=103911","photo":"https://0.academia-photos.com/14545732/3964209/13239444/s65_ijcert.journal.jpg"}],"research_interests":[{"id":2482,"name":"Database Systems","url":"https://www.academia.edu/Documents/in/Database_Systems?f_ri=103911","nofollow":true},{"id":5279,"name":"XML","url":"https://www.academia.edu/Documents/in/XML?f_ri=103911","nofollow":true},{"id":94537,"name":"Datamining","url":"https://www.academia.edu/Documents/in/Datamining?f_ri=103911","nofollow":true},{"id":101060,"name":"XML Database","url":"https://www.academia.edu/Documents/in/XML_Database?f_ri=103911","nofollow":true},{"id":103911,"name":"XML data clustering","url":"https://www.academia.edu/Documents/in/XML_data_clustering?f_ri=103911"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_483263" data-work_id="483263" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/483263/On_data_mining_Tree_structured_data_represented_in_XML">On data mining Tree structured data represented in XML</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">The ubiquitous nature of XML as a data interchange format and the arrival of XMLdatabases offers new opportunities and challenges to data mining. The XML format permits the representation of data structures that cannot be easily mapped... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_483263" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">The ubiquitous nature of XML as a data interchange format and the arrival of XMLdatabases offers new opportunities and challenges to data mining. The XML format permits the <br />representation of data structures that cannot be easily mapped into a relational framework. New opportunities exist to mine relationships expressed by tree position and the presence or absence of sub trees as well as the conventional categorical and numeric data values contained at leaf nodes. Thispaper will consider why most conventional data mining algorithms are ill suited to mining tree data, <br />describe a novel XML based knowledge representation methodology called Metarule, and describe algorithms that do perform well. Two examples drawn from business will be used to demonstrate the application of these novel techniques. <br />Keywords: Data-mining, XML, Unstructured data</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/483263" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="42569f3e23ca54d1e2a8eacfe94a8d9f" rel="nofollow" data-download="{&quot;attachment_id&quot;:2178266,&quot;asset_id&quot;:483263,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/2178266/download_file?st=MTczOTgwNDk1MSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="355557" href="https://independent.academia.edu/AndrewEdmonds">Andrew Edmonds</a><script data-card-contents-for-user="355557" type="text/json">{"id":355557,"first_name":"Andrew","last_name":"Edmonds","domain_name":"independent","page_name":"AndrewEdmonds","display_name":"Andrew Edmonds","profile_url":"https://independent.academia.edu/AndrewEdmonds?f_ri=103911","photo":"https://0.academia-photos.com/355557/95211/107568/s65_andrew.edmonds.jpg"}</script></span></span></li><li class="js-paper-rank-work_483263 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="483263"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 483263, container: ".js-paper-rank-work_483263", }); });</script></li><li class="js-percentile-work_483263 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 483263; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_483263"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_483263 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="483263"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 483263; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=483263]").text(description); $(".js-view-count-work_483263").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_483263").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="483263"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">4</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="2009" rel="nofollow" href="https://www.academia.edu/Documents/in/Data_Mining">Data Mining</a>,&nbsp;<script data-card-contents-for-ri="2009" type="text/json">{"id":2009,"name":"Data Mining","url":"https://www.academia.edu/Documents/in/Data_Mining?f_ri=103911","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="103911" rel="nofollow" href="https://www.academia.edu/Documents/in/XML_data_clustering">XML data clustering</a>,&nbsp;<script data-card-contents-for-ri="103911" type="text/json">{"id":103911,"name":"XML data clustering","url":"https://www.academia.edu/Documents/in/XML_data_clustering?f_ri=103911","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="106355" rel="nofollow" href="https://www.academia.edu/Documents/in/Semi-structured_data_mining">Semi-structured data mining</a>,&nbsp;<script data-card-contents-for-ri="106355" type="text/json">{"id":106355,"name":"Semi-structured data mining","url":"https://www.academia.edu/Documents/in/Semi-structured_data_mining?f_ri=103911","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="106356" rel="nofollow" href="https://www.academia.edu/Documents/in/Xml_Data_mining">Xml Data mining</a><script data-card-contents-for-ri="106356" type="text/json">{"id":106356,"name":"Xml Data mining","url":"https://www.academia.edu/Documents/in/Xml_Data_mining?f_ri=103911","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=483263]'), work: {"id":483263,"title":"On data mining Tree structured data represented in XML","created_at":"2011-03-20T21:15:33.283-07:00","url":"https://www.academia.edu/483263/On_data_mining_Tree_structured_data_represented_in_XML?f_ri=103911","dom_id":"work_483263","summary":"The ubiquitous nature of XML as a data interchange format and the arrival of XMLdatabases offers new opportunities and challenges to data mining. The XML format permits the\r\nrepresentation of data structures that cannot be easily mapped into a relational framework. New opportunities exist to mine relationships expressed by tree position and the presence or absence of sub trees as well as the conventional categorical and numeric data values contained at leaf nodes. Thispaper will consider why most conventional data mining algorithms are ill suited to mining tree data,\r\ndescribe a novel XML based knowledge representation methodology called Metarule, and describe algorithms that do perform well. Two examples drawn from business will be used to demonstrate the application of these novel techniques.\r\nKeywords: Data-mining, XML, Unstructured data","downloadable_attachments":[{"id":2178266,"asset_id":483263,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":355557,"first_name":"Andrew","last_name":"Edmonds","domain_name":"independent","page_name":"AndrewEdmonds","display_name":"Andrew Edmonds","profile_url":"https://independent.academia.edu/AndrewEdmonds?f_ri=103911","photo":"https://0.academia-photos.com/355557/95211/107568/s65_andrew.edmonds.jpg"}],"research_interests":[{"id":2009,"name":"Data Mining","url":"https://www.academia.edu/Documents/in/Data_Mining?f_ri=103911","nofollow":true},{"id":103911,"name":"XML data clustering","url":"https://www.academia.edu/Documents/in/XML_data_clustering?f_ri=103911","nofollow":true},{"id":106355,"name":"Semi-structured data mining","url":"https://www.academia.edu/Documents/in/Semi-structured_data_mining?f_ri=103911","nofollow":true},{"id":106356,"name":"Xml Data mining","url":"https://www.academia.edu/Documents/in/Xml_Data_mining?f_ri=103911","nofollow":true}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_25017478" data-work_id="25017478" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" rel="nofollow" href="https://www.academia.edu/25017478/DYNAMIC_K_MEANS_ALGORITHM_FOR_OPTIMIZED_ROUTING_IN_MOBILE_AD_HOC_NETWORKS">DYNAMIC K-MEANS ALGORITHM FOR OPTIMIZED ROUTING IN MOBILE AD HOC NETWORKS</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">In this paper, a dynamic K-means algorithm to improve the routing process in Mobile Ad-Hoc networks (MANETs) is presented. Mobile ad-hoc networks are a collocation of mobile wireless nodes that can operate without using focal access... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_25017478" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">In this paper, a dynamic K-means algorithm to improve the routing process in Mobile Ad-Hoc networks (MANETs) is presented. Mobile ad-hoc networks are a collocation of mobile wireless nodes that can operate without using focal access points, pre-existing infrastructures, or a centralized management point. In MANETs, the quick motion of nodes modifies the topology of network. This feature of MANETS is lead to various problems in the routing process such as increase of the overhead massages and inefficient routing between nodes of network. A large variety of clustering methods have been developed for establishing an efficient routing process in MANETs. Routing is one of the crucial topics which are having significant impact on MANETs performance. The K-means algorithm is one of the effective clustering methods aimed to reduce routing difficulties related to bandwidth, throughput and power consumption. This paper proposed a new K-means clustering algorithm to find out optimal path from source node to destinations node in MANETs. The main goal of proposed approach which is called the dynamic K-means clustering methods is to solve the limitation of basic K-means method like permanent cluster head and fixed cluster members. The experimental results demonstrate that using dynamic K-means scheme enhance the performance of routing process in Mobile ad-hoc networks.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/25017478" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="a630e8b51b5d4d911378394324e034e3" rel="nofollow" data-download="{&quot;attachment_id&quot;:45341941,&quot;asset_id&quot;:25017478,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/45341941/download_file?st=MTczOTgwNDk1MSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="26099471" rel="nofollow" href="https://independent.academia.edu/JournalIJCSES">International Journal of Computer Science and Engineering Survey (IJCSES)</a><script data-card-contents-for-user="26099471" type="text/json">{"id":26099471,"first_name":"International Journal of Computer Science and Engineering Survey","last_name":"(IJCSES)","domain_name":"independent","page_name":"JournalIJCSES","display_name":"International Journal of Computer Science and Engineering Survey (IJCSES)","profile_url":"https://independent.academia.edu/JournalIJCSES?f_ri=103911","photo":"https://0.academia-photos.com/26099471/8320289/35522477/s65_international_journal_of_computer_science_and_engineering_survey._ijcses_.png"}</script></span></span></li><li class="js-paper-rank-work_25017478 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="25017478"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 25017478, container: ".js-paper-rank-work_25017478", }); });</script></li><li class="js-percentile-work_25017478 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 25017478; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_25017478"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_25017478 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="25017478"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 25017478; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=25017478]").text(description); $(".js-view-count-work_25017478").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_25017478").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="25017478"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">18</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="2339" rel="nofollow" href="https://www.academia.edu/Documents/in/Mobile_Ad_Hoc_Networks">Mobile Ad Hoc Networks</a>,&nbsp;<script data-card-contents-for-ri="2339" type="text/json">{"id":2339,"name":"Mobile Ad Hoc Networks","url":"https://www.academia.edu/Documents/in/Mobile_Ad_Hoc_Networks?f_ri=103911","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="5486" rel="nofollow" href="https://www.academia.edu/Documents/in/Clustering_and_Classification_Methods">Clustering and Classification Methods</a>,&nbsp;<script data-card-contents-for-ri="5486" type="text/json">{"id":5486,"name":"Clustering and Classification Methods","url":"https://www.academia.edu/Documents/in/Clustering_and_Classification_Methods?f_ri=103911","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="13143" rel="nofollow" href="https://www.academia.edu/Documents/in/Clustering_Algorithms">Clustering Algorithms</a>,&nbsp;<script data-card-contents-for-ri="13143" type="text/json">{"id":13143,"name":"Clustering Algorithms","url":"https://www.academia.edu/Documents/in/Clustering_Algorithms?f_ri=103911","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="14335" rel="nofollow" href="https://www.academia.edu/Documents/in/MANET_Routing_protocols">MANET Routing protocols</a><script data-card-contents-for-ri="14335" type="text/json">{"id":14335,"name":"MANET Routing protocols","url":"https://www.academia.edu/Documents/in/MANET_Routing_protocols?f_ri=103911","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=25017478]'), work: {"id":25017478,"title":"DYNAMIC K-MEANS ALGORITHM FOR OPTIMIZED ROUTING IN MOBILE AD HOC NETWORKS","created_at":"2016-05-04T04:01:22.230-07:00","url":"https://www.academia.edu/25017478/DYNAMIC_K_MEANS_ALGORITHM_FOR_OPTIMIZED_ROUTING_IN_MOBILE_AD_HOC_NETWORKS?f_ri=103911","dom_id":"work_25017478","summary":"In this paper, a dynamic K-means algorithm to improve the routing process in Mobile Ad-Hoc networks (MANETs) is presented. Mobile ad-hoc networks are a collocation of mobile wireless nodes that can operate without using focal access points, pre-existing infrastructures, or a centralized management point. In MANETs, the quick motion of nodes modifies the topology of network. This feature of MANETS is lead to various problems in the routing process such as increase of the overhead massages and inefficient routing between nodes of network. A large variety of clustering methods have been developed for establishing an efficient routing process in MANETs. Routing is one of the crucial topics which are having significant impact on MANETs performance. The K-means algorithm is one of the effective clustering methods aimed to reduce routing difficulties related to bandwidth, throughput and power consumption. This paper proposed a new K-means clustering algorithm to find out optimal path from source node to destinations node in MANETs. The main goal of proposed approach which is called the dynamic K-means clustering methods is to solve the limitation of basic K-means method like permanent cluster head and fixed cluster members. The experimental results demonstrate that using dynamic K-means scheme enhance the performance of routing process in Mobile ad-hoc networks.","downloadable_attachments":[{"id":45341941,"asset_id":25017478,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":26099471,"first_name":"International Journal of Computer Science and Engineering Survey","last_name":"(IJCSES)","domain_name":"independent","page_name":"JournalIJCSES","display_name":"International Journal of Computer Science and Engineering Survey (IJCSES)","profile_url":"https://independent.academia.edu/JournalIJCSES?f_ri=103911","photo":"https://0.academia-photos.com/26099471/8320289/35522477/s65_international_journal_of_computer_science_and_engineering_survey._ijcses_.png"}],"research_interests":[{"id":2339,"name":"Mobile Ad Hoc Networks","url":"https://www.academia.edu/Documents/in/Mobile_Ad_Hoc_Networks?f_ri=103911","nofollow":true},{"id":5486,"name":"Clustering and Classification Methods","url":"https://www.academia.edu/Documents/in/Clustering_and_Classification_Methods?f_ri=103911","nofollow":true},{"id":13143,"name":"Clustering Algorithms","url":"https://www.academia.edu/Documents/in/Clustering_Algorithms?f_ri=103911","nofollow":true},{"id":14335,"name":"MANET Routing protocols","url":"https://www.academia.edu/Documents/in/MANET_Routing_protocols?f_ri=103911","nofollow":true},{"id":16579,"name":"Route Optimization For Waste Transportation","url":"https://www.academia.edu/Documents/in/Route_Optimization_For_Waste_Transportation?f_ri=103911"},{"id":35825,"name":"Mobility Modeling (Mobile Ad Hoc Networks)","url":"https://www.academia.edu/Documents/in/Mobility_Modeling_Mobile_Ad_Hoc_Networks_?f_ri=103911"},{"id":82137,"name":"Manet","url":"https://www.academia.edu/Documents/in/Manet?f_ri=103911"},{"id":84990,"name":"Clustering","url":"https://www.academia.edu/Documents/in/Clustering?f_ri=103911"},{"id":89055,"name":"Route Optimization","url":"https://www.academia.edu/Documents/in/Route_Optimization?f_ri=103911"},{"id":103911,"name":"XML data clustering","url":"https://www.academia.edu/Documents/in/XML_data_clustering?f_ri=103911"},{"id":128576,"name":"Mobile Ad-hoc Networks (MANETs)","url":"https://www.academia.edu/Documents/in/Mobile_Ad-hoc_Networks_MANETs_?f_ri=103911"},{"id":163785,"name":"Graph Clustering","url":"https://www.academia.edu/Documents/in/Graph_Clustering?f_ri=103911"},{"id":293560,"name":"Clustering Algorithm in Manet","url":"https://www.academia.edu/Documents/in/Clustering_Algorithm_in_Manet?f_ri=103911"},{"id":311740,"name":"Clustering and routing of mobile ad hoc networks","url":"https://www.academia.edu/Documents/in/Clustering_and_routing_of_mobile_ad_hoc_networks?f_ri=103911"},{"id":568857,"name":"Mobile Ad-hoc Networks","url":"https://www.academia.edu/Documents/in/Mobile_Ad-hoc_Networks?f_ri=103911"},{"id":742006,"name":"Optimization of Collection Route( Solid Waste Management)","url":"https://www.academia.edu/Documents/in/Optimization_of_Collection_Route_Solid_Waste_Management_?f_ri=103911"},{"id":914128,"name":"Fuzzy C-Means Clustering Algorithm","url":"https://www.academia.edu/Documents/in/Fuzzy_C-Means_Clustering_Algorithm?f_ri=103911"},{"id":1032324,"name":"K means Clustering","url":"https://www.academia.edu/Documents/in/K_means_Clustering?f_ri=103911"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_10347901" data-work_id="10347901" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" rel="nofollow" href="https://www.academia.edu/10347901/METHODOLOGICAL_STUDY_OF_OPINION_MINING_AND_SENTIMENT_ANALYSIS_TECHNIQUES">METHODOLOGICAL STUDY OF OPINION MINING AND SENTIMENT ANALYSIS TECHNIQUES</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Decision making both on individual and organizational level is always accompanied by the search of other’s opinion on the same. With tremendous establishment of opinion rich resources like, reviews, forum discussions, blogs, micro-blogs,... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_10347901" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Decision making both on individual and organizational level is always accompanied by the search of other’s opinion on the same. With tremendous establishment of opinion rich resources like, reviews, forum discussions, blogs, micro-blogs, Twitter etc provide a rich anthology of sentiments. This user generated content can serve as a benefaction to market if the semantic orientations are deliberated. Opinion mining and sentiment analysis are the formalization for studying and construing opinions and sentiments. The digital ecosystem has itself paved way for use of huge volume of opinionated data recorded. This paper is an attempt to review and evaluate the various techniques used for opinion and sentiment analysis.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/10347901" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="f171c28ba505e0cf20ca5ed370723617" rel="nofollow" data-download="{&quot;attachment_id&quot;:36412169,&quot;asset_id&quot;:10347901,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/36412169/download_file?st=MTczOTgwNDk1MSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="22251637" rel="nofollow" href="https://independent.academia.edu/IjscJournal">International Journal on Soft Computing ( IJSC )</a><script data-card-contents-for-user="22251637" type="text/json">{"id":22251637,"first_name":"International Journal on Soft Computing","last_name":"( IJSC )","domain_name":"independent","page_name":"IjscJournal","display_name":"International Journal on Soft Computing ( IJSC )","profile_url":"https://independent.academia.edu/IjscJournal?f_ri=103911","photo":"https://0.academia-photos.com/22251637/6206970/119551446/s65_international_journal_on_soft_computing._ijsc_.png"}</script></span></span></li><li class="js-paper-rank-work_10347901 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="10347901"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 10347901, container: ".js-paper-rank-work_10347901", }); });</script></li><li class="js-percentile-work_10347901 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10347901; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_10347901"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_10347901 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="10347901"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10347901; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10347901]").text(description); $(".js-view-count-work_10347901").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_10347901").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="10347901"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">35</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="5486" rel="nofollow" href="https://www.academia.edu/Documents/in/Clustering_and_Classification_Methods">Clustering and Classification Methods</a>,&nbsp;<script data-card-contents-for-ri="5486" type="text/json">{"id":5486,"name":"Clustering and Classification Methods","url":"https://www.academia.edu/Documents/in/Clustering_and_Classification_Methods?f_ri=103911","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="6132" rel="nofollow" href="https://www.academia.edu/Documents/in/Soft_Computing">Soft Computing</a>,&nbsp;<script data-card-contents-for-ri="6132" type="text/json">{"id":6132,"name":"Soft Computing","url":"https://www.academia.edu/Documents/in/Soft_Computing?f_ri=103911","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="9898" rel="nofollow" href="https://www.academia.edu/Documents/in/Soft_Computing_Image_Processing_and_Robotics">Soft Computing, Image Processing and Robotics</a>,&nbsp;<script data-card-contents-for-ri="9898" type="text/json">{"id":9898,"name":"Soft Computing, Image Processing and Robotics","url":"https://www.academia.edu/Documents/in/Soft_Computing_Image_Processing_and_Robotics?f_ri=103911","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="11598" rel="nofollow" href="https://www.academia.edu/Documents/in/Neural_Networks">Neural Networks</a><script data-card-contents-for-ri="11598" type="text/json">{"id":11598,"name":"Neural Networks","url":"https://www.academia.edu/Documents/in/Neural_Networks?f_ri=103911","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=10347901]'), work: {"id":10347901,"title":"METHODOLOGICAL STUDY OF OPINION MINING AND SENTIMENT ANALYSIS TECHNIQUES","created_at":"2015-01-27T01:07:35.889-08:00","url":"https://www.academia.edu/10347901/METHODOLOGICAL_STUDY_OF_OPINION_MINING_AND_SENTIMENT_ANALYSIS_TECHNIQUES?f_ri=103911","dom_id":"work_10347901","summary":"Decision making both on individual and organizational level is always accompanied by the search of other’s opinion on the same. With tremendous establishment of opinion rich resources like, reviews, forum discussions, blogs, micro-blogs, Twitter etc provide a rich anthology of sentiments. This user generated content can serve as a benefaction to market if the semantic orientations are deliberated. Opinion mining and sentiment analysis are the formalization for studying and construing opinions and sentiments. The digital ecosystem has itself paved way for use of huge volume of opinionated data recorded. This paper is an attempt to review and evaluate the various techniques used for opinion and sentiment analysis.","downloadable_attachments":[{"id":36412169,"asset_id":10347901,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":22251637,"first_name":"International Journal on Soft Computing","last_name":"( IJSC )","domain_name":"independent","page_name":"IjscJournal","display_name":"International Journal on Soft Computing ( IJSC )","profile_url":"https://independent.academia.edu/IjscJournal?f_ri=103911","photo":"https://0.academia-photos.com/22251637/6206970/119551446/s65_international_journal_on_soft_computing._ijsc_.png"}],"research_interests":[{"id":5486,"name":"Clustering and Classification Methods","url":"https://www.academia.edu/Documents/in/Clustering_and_Classification_Methods?f_ri=103911","nofollow":true},{"id":6132,"name":"Soft Computing","url":"https://www.academia.edu/Documents/in/Soft_Computing?f_ri=103911","nofollow":true},{"id":9898,"name":"Soft Computing, Image Processing and Robotics","url":"https://www.academia.edu/Documents/in/Soft_Computing_Image_Processing_and_Robotics?f_ri=103911","nofollow":true},{"id":11598,"name":"Neural Networks","url":"https://www.academia.edu/Documents/in/Neural_Networks?f_ri=103911","nofollow":true},{"id":13143,"name":"Clustering Algorithms","url":"https://www.academia.edu/Documents/in/Clustering_Algorithms?f_ri=103911"},{"id":14494,"name":"Opinion Mining (Data Mining)","url":"https://www.academia.edu/Documents/in/Opinion_Mining_Data_Mining_?f_ri=103911"},{"id":21066,"name":"Artficial Neural Networks","url":"https://www.academia.edu/Documents/in/Artficial_Neural_Networks?f_ri=103911"},{"id":38511,"name":"Fuzzy Clustering","url":"https://www.academia.edu/Documents/in/Fuzzy_Clustering?f_ri=103911"},{"id":44389,"name":"Artificial Neural Networks for modeling purposes","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Networks_for_modeling_purposes?f_ri=103911"},{"id":54123,"name":"Artificial Neural Networks","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Networks?f_ri=103911"},{"id":84990,"name":"Clustering","url":"https://www.academia.edu/Documents/in/Clustering?f_ri=103911"},{"id":101195,"name":"Text Clustering","url":"https://www.academia.edu/Documents/in/Text_Clustering?f_ri=103911"},{"id":103911,"name":"XML data clustering","url":"https://www.academia.edu/Documents/in/XML_data_clustering?f_ri=103911"},{"id":161545,"name":"Document Clustering","url":"https://www.academia.edu/Documents/in/Document_Clustering?f_ri=103911"},{"id":161604,"name":"Clustering Initialization and Robustness","url":"https://www.academia.edu/Documents/in/Clustering_Initialization_and_Robustness?f_ri=103911"},{"id":163785,"name":"Graph Clustering","url":"https://www.academia.edu/Documents/in/Graph_Clustering?f_ri=103911"},{"id":199424,"name":"Data Clustering","url":"https://www.academia.edu/Documents/in/Data_Clustering?f_ri=103911"},{"id":201685,"name":"Opinion Mining","url":"https://www.academia.edu/Documents/in/Opinion_Mining?f_ri=103911"},{"id":225871,"name":"Data Classification , clustering , association rule mining algoririthms in Genetic Programming","url":"https://www.academia.edu/Documents/in/Data_Classification_clustering_association_rule_mining_algoririthms_in_Genetic_Programming?f_ri=103911"},{"id":247780,"name":"Hierarchical Clustering","url":"https://www.academia.edu/Documents/in/Hierarchical_Clustering?f_ri=103911"},{"id":293560,"name":"Clustering Algorithm in Manet","url":"https://www.academia.edu/Documents/in/Clustering_Algorithm_in_Manet?f_ri=103911"},{"id":311740,"name":"Clustering and routing of mobile ad hoc networks","url":"https://www.academia.edu/Documents/in/Clustering_and_routing_of_mobile_ad_hoc_networks?f_ri=103911"},{"id":317562,"name":"Spiking Neural Networks","url":"https://www.academia.edu/Documents/in/Spiking_Neural_Networks?f_ri=103911"},{"id":342230,"name":"Artifical Neural Networks","url":"https://www.academia.edu/Documents/in/Artifical_Neural_Networks?f_ri=103911"},{"id":374074,"name":"Neural Networks and Neuro-Fuzzy Syetems","url":"https://www.academia.edu/Documents/in/Neural_Networks_and_Neuro-Fuzzy_Syetems?f_ri=103911"},{"id":455746,"name":"OPINION MINING AND SENTIMENT ANALYSIS","url":"https://www.academia.edu/Documents/in/OPINION_MINING_AND_SENTIMENT_ANALYSIS?f_ri=103911"},{"id":525397,"name":"Opinion Mining on Socail Network","url":"https://www.academia.edu/Documents/in/Opinion_Mining_on_Socail_Network?f_ri=103911"},{"id":753695,"name":"Opinion Mining and Polarity Detection","url":"https://www.academia.edu/Documents/in/Opinion_Mining_and_Polarity_Detection?f_ri=103911"},{"id":797618,"name":"Feature Extraction Techniques for Eeg Signals","url":"https://www.academia.edu/Documents/in/Feature_Extraction_Techniques_for_Eeg_Signals?f_ri=103911"},{"id":914128,"name":"Fuzzy C-Means Clustering Algorithm","url":"https://www.academia.edu/Documents/in/Fuzzy_C-Means_Clustering_Algorithm?f_ri=103911"},{"id":1032324,"name":"K means Clustering","url":"https://www.academia.edu/Documents/in/K_means_Clustering?f_ri=103911"},{"id":1223686,"name":"Artificial Intelligent and Soft Computing Methodologies","url":"https://www.academia.edu/Documents/in/Artificial_Intelligent_and_Soft_Computing_Methodologies?f_ri=103911"},{"id":1426974,"name":"Sentiment Analysis and Opinion Mining","url":"https://www.academia.edu/Documents/in/Sentiment_Analysis_and_Opinion_Mining?f_ri=103911"},{"id":1674417,"name":"Opinion Mining of Sociopolitical Comments from Social Media","url":"https://www.academia.edu/Documents/in/Opinion_Mining_of_Sociopolitical_Comments_from_Social_Media?f_ri=103911"},{"id":1773407,"name":"Web Opinion Mining","url":"https://www.academia.edu/Documents/in/Web_Opinion_Mining?f_ri=103911"}]}, }) } })();</script></ul></li></ul></div></div></div><div class="u-taCenter Pagination"><ul class="pagination"></ul></div></div><div class="hidden-xs hidden-sm"><div class="u-pl6x"><div style="width: 300px;"><div class="panel panel-flat u-mt7x"><div class="panel-heading u-p5x"><div class="u-tcGrayDark u-taCenter u-fw700 u-textUppercase">Related Topics</div></div><ul class="list-group"><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" rel="nofollow" href="https://www.academia.edu/Documents/in/Data_Schema_Integration">Data/ Schema Integration</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="103908">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="103908">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" rel="nofollow" href="https://www.academia.edu/Documents/in/Schema_and_ontology_matching">Schema and ontology matching</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="103909">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="103909">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" rel="nofollow" href="https://www.academia.edu/Documents/in/Xml_Data_mining">Xml Data mining</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="106356">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="106356">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" rel="nofollow" href="https://www.academia.edu/Documents/in/Semi-structured_data_mining">Semi-structured data mining</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="106355">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="106355">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" rel="nofollow" href="https://www.academia.edu/Documents/in/Web_Services">Web Services</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="9545">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="9545">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" rel="nofollow" href="https://www.academia.edu/Documents/in/Semantic_Web">Semantic Web</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="17711">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="17711">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" rel="nofollow" href="https://www.academia.edu/Documents/in/Data_Mining">Data Mining</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="2009">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="2009">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" rel="nofollow" href="https://www.academia.edu/Documents/in/JSON">JSON</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="321712">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="321712">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" rel="nofollow" href="https://www.academia.edu/Documents/in/XML_Schema">XML Schema</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="48713">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="48713">Following</a></div></li></ul></div></div></div></div></div></div><script>// MIT License // Copyright © 2011 Sebastian Tschan, https://blueimp.net // Permission is hereby granted, free of charge, to any person obtaining a copy of // this software and associated documentation files (the "Software"), to deal in // the Software without restriction, including without limitation the rights to // use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of // the Software, and to permit persons to whom the Software is furnished to do so, // subject to the following conditions: // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS // FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER // IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN // CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. !function(n){"use strict";function d(n,t){var r=(65535&n)+(65535&t);return(n>>16)+(t>>16)+(r>>16)<<16|65535&r}function f(n,t,r,e,o,u){return d((c=d(d(t,n),d(e,u)))<<(f=o)|c>>>32-f,r);var c,f}function l(n,t,r,e,o,u,c){return f(t&r|~t&e,n,t,o,u,c)}function v(n,t,r,e,o,u,c){return f(t&e|r&~e,n,t,o,u,c)}function g(n,t,r,e,o,u,c){return f(t^r^e,n,t,o,u,c)}function m(n,t,r,e,o,u,c){return f(r^(t|~e),n,t,o,u,c)}function i(n,t){var r,e,o,u;n[t>>5]|=128<<t%32,n[14+(t+64>>>9<<4)]=t;for(var c=1732584193,f=-271733879,i=-1732584194,a=271733878,h=0;h<n.length;h+=16)c=l(r=c,e=f,o=i,u=a,n[h],7,-680876936),a=l(a,c,f,i,n[h+1],12,-389564586),i=l(i,a,c,f,n[h+2],17,606105819),f=l(f,i,a,c,n[h+3],22,-1044525330),c=l(c,f,i,a,n[h+4],7,-176418897),a=l(a,c,f,i,n[h+5],12,1200080426),i=l(i,a,c,f,n[h+6],17,-1473231341),f=l(f,i,a,c,n[h+7],22,-45705983),c=l(c,f,i,a,n[h+8],7,1770035416),a=l(a,c,f,i,n[h+9],12,-1958414417),i=l(i,a,c,f,n[h+10],17,-42063),f=l(f,i,a,c,n[h+11],22,-1990404162),c=l(c,f,i,a,n[h+12],7,1804603682),a=l(a,c,f,i,n[h+13],12,-40341101),i=l(i,a,c,f,n[h+14],17,-1502002290),c=v(c,f=l(f,i,a,c,n[h+15],22,1236535329),i,a,n[h+1],5,-165796510),a=v(a,c,f,i,n[h+6],9,-1069501632),i=v(i,a,c,f,n[h+11],14,643717713),f=v(f,i,a,c,n[h],20,-373897302),c=v(c,f,i,a,n[h+5],5,-701558691),a=v(a,c,f,i,n[h+10],9,38016083),i=v(i,a,c,f,n[h+15],14,-660478335),f=v(f,i,a,c,n[h+4],20,-405537848),c=v(c,f,i,a,n[h+9],5,568446438),a=v(a,c,f,i,n[h+14],9,-1019803690),i=v(i,a,c,f,n[h+3],14,-187363961),f=v(f,i,a,c,n[h+8],20,1163531501),c=v(c,f,i,a,n[h+13],5,-1444681467),a=v(a,c,f,i,n[h+2],9,-51403784),i=v(i,a,c,f,n[h+7],14,1735328473),c=g(c,f=v(f,i,a,c,n[h+12],20,-1926607734),i,a,n[h+5],4,-378558),a=g(a,c,f,i,n[h+8],11,-2022574463),i=g(i,a,c,f,n[h+11],16,1839030562),f=g(f,i,a,c,n[h+14],23,-35309556),c=g(c,f,i,a,n[h+1],4,-1530992060),a=g(a,c,f,i,n[h+4],11,1272893353),i=g(i,a,c,f,n[h+7],16,-155497632),f=g(f,i,a,c,n[h+10],23,-1094730640),c=g(c,f,i,a,n[h+13],4,681279174),a=g(a,c,f,i,n[h],11,-358537222),i=g(i,a,c,f,n[h+3],16,-722521979),f=g(f,i,a,c,n[h+6],23,76029189),c=g(c,f,i,a,n[h+9],4,-640364487),a=g(a,c,f,i,n[h+12],11,-421815835),i=g(i,a,c,f,n[h+15],16,530742520),c=m(c,f=g(f,i,a,c,n[h+2],23,-995338651),i,a,n[h],6,-198630844),a=m(a,c,f,i,n[h+7],10,1126891415),i=m(i,a,c,f,n[h+14],15,-1416354905),f=m(f,i,a,c,n[h+5],21,-57434055),c=m(c,f,i,a,n[h+12],6,1700485571),a=m(a,c,f,i,n[h+3],10,-1894986606),i=m(i,a,c,f,n[h+10],15,-1051523),f=m(f,i,a,c,n[h+1],21,-2054922799),c=m(c,f,i,a,n[h+8],6,1873313359),a=m(a,c,f,i,n[h+15],10,-30611744),i=m(i,a,c,f,n[h+6],15,-1560198380),f=m(f,i,a,c,n[h+13],21,1309151649),c=m(c,f,i,a,n[h+4],6,-145523070),a=m(a,c,f,i,n[h+11],10,-1120210379),i=m(i,a,c,f,n[h+2],15,718787259),f=m(f,i,a,c,n[h+9],21,-343485551),c=d(c,r),f=d(f,e),i=d(i,o),a=d(a,u);return[c,f,i,a]}function a(n){for(var t="",r=32*n.length,e=0;e<r;e+=8)t+=String.fromCharCode(n[e>>5]>>>e%32&255);return t}function h(n){var t=[];for(t[(n.length>>2)-1]=void 0,e=0;e<t.length;e+=1)t[e]=0;for(var r=8*n.length,e=0;e<r;e+=8)t[e>>5]|=(255&n.charCodeAt(e/8))<<e%32;return t}function e(n){for(var t,r="0123456789abcdef",e="",o=0;o<n.length;o+=1)t=n.charCodeAt(o),e+=r.charAt(t>>>4&15)+r.charAt(15&t);return e}function r(n){return unescape(encodeURIComponent(n))}function o(n){return a(i(h(t=r(n)),8*t.length));var t}function u(n,t){return function(n,t){var r,e,o=h(n),u=[],c=[];for(u[15]=c[15]=void 0,16<o.length&&(o=i(o,8*n.length)),r=0;r<16;r+=1)u[r]=909522486^o[r],c[r]=1549556828^o[r];return e=i(u.concat(h(t)),512+8*t.length),a(i(c.concat(e),640))}(r(n),r(t))}function t(n,t,r){return t?r?u(t,n):e(u(t,n)):r?o(n):e(o(n))}"function"==typeof define&&define.amd?define(function(){return t}):"object"==typeof module&&module.exports?module.exports=t:n.md5=t}(this);</script><script>window.AbTest = (function() { return { 'ab_test': (uniqueId, test_name, buckets) => { let override = new URLSearchParams(window.location.search).get(`ab_test[${test_name}]`); if ( override ) { return override; } const bucketNames = buckets.map((bucket) => { return typeof bucket === 'string' ? bucket : Object.keys(bucket)[0]; }); const weights = buckets.map((bucket) => { return typeof bucket === 'string' ? 1 : Object.values(bucket)[0]; }); const total = weights.reduce((sum, weight) => sum + weight); const hash = md5(`${uniqueId}${test_name}`); const hashNum = parseInt(hash.slice(-12), 16); let bucketPoint = total * (hashNum % 100000) / 100000; const bucket = bucketNames.find((_, i) => { if (weights[i] > bucketPoint) { return true; } bucketPoint -= weights[i]; return false; }); return bucket; } }; })();</script><div data-auto_select="false" data-client_id="331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b" data-landing_url="https://www.academia.edu/Documents/in/XML_data_clustering" data-login_uri="https://www.academia.edu/registrations/google_one_tap" data-moment_callback="onGoogleOneTapEvent" id="g_id_onload"></div><script>function onGoogleOneTapEvent(event) { var momentType = event.getMomentType(); var momentReason = null; if (event.isNotDisplayed()) { momentReason = event.getNotDisplayedReason(); } else if (event.isSkippedMoment()) { momentReason = event.getSkippedReason(); } else if (event.isDismissedMoment()) { momentReason = event.getDismissedReason(); } Aedu.arbitraryEvents.write('GoogleOneTapEvent', { moment_type: momentType, moment_reason: momentReason, }); }</script><script>(function() { var auvid = unescape( document.cookie .split(/; ?/) .find((s) => s.startsWith('auvid')) .substring(6)); var bucket = AbTest.ab_test(auvid, 'lo_ri_one_tap_google_sign_on', ['control', 'one_tap_google_sign_on']); if (bucket === 'control') return; var oneTapTag = document.createElement('script') oneTapTag.async = true oneTapTag.defer = true oneTapTag.src = 'https://accounts.google.com/gsi/client' document.body.appendChild(oneTapTag) })();</script></div></div></div> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; } .sign-in-with-apple-button > div { margin: 0 auto; / This centers the Apple-rendered button horizontally }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "8f0bb6c247dfc41de4da394e53558c6c9ba3af5f115c33f9e0f10d61ec6d5fcc", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="WASvsPKqwkkfAGNaTJIHxWIJEUXLTvjkhDqiNKn8nHpVyN0iqBqU9l9iN5VZCKdF9gnufAzfAd-zdxUflv7Oag" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://www.academia.edu/Documents/in/XML_data_clustering" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="iV-JqQFpOdXGIj_AWv7b6Z1fuqEJHFc2qCDytiglrZeEk_s7W9lvaoZAaw9PZHtpCV9FmM6Nrg2fbUWdFyf_hw" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2025</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10