CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;17 of 17 results for author: <span class="mathjax">Weckesser, P</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Weckesser%2C+P">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Weckesser, P"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Weckesser%2C+P&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Weckesser, P"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.16017">arXiv:2406.16017</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.16017">pdf</a>, <a href="https://arxiv.org/format/2406.16017">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Competing excitation quenching and charge exchange in ultracold Li-Ba$^+$ collisions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xing%2C+X">Xiaodong Xing</a>, <a href="/search/physics?searchtype=author&amp;query=Weckesser%2C+P">Pascal Weckesser</a>, <a href="/search/physics?searchtype=author&amp;query=Thielemann%2C+F">Fabian Thielemann</a>, <a href="/search/physics?searchtype=author&amp;query=J%C3%B3n%C3%A1s%2C+T">Tibor J贸n谩s</a>, <a href="/search/physics?searchtype=author&amp;query=Vexiau%2C+R">Romain Vexiau</a>, <a href="/search/physics?searchtype=author&amp;query=Bouloufa-Maafa%2C+N">Nadia Bouloufa-Maafa</a>, <a href="/search/physics?searchtype=author&amp;query=Luc-Koenig%2C+E">Eliane Luc-Koenig</a>, <a href="/search/physics?searchtype=author&amp;query=Madison%2C+K+W">Kirk W. Madison</a>, <a href="/search/physics?searchtype=author&amp;query=Orb%C3%A1n%2C+A">Andrea Orb谩n</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+T">Ting Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Schaetz%2C+T">Tobias Schaetz</a>, <a href="/search/physics?searchtype=author&amp;query=Dulieu%2C+O">Olivier Dulieu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.16017v1-abstract-short" style="display: inline;"> Hybrid atom-ion systems are a rich and powerful platform for studying chemical reactions, as they feature both excellent control over the electronic state preparation and readout as well as a versatile tunability over the scattering energy, ranging from the few-partial wave regime to the quantum regime. In this work, we make use of these excellent control knobs, and present a joint experimental an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16017v1-abstract-full').style.display = 'inline'; document.getElementById('2406.16017v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.16017v1-abstract-full" style="display: none;"> Hybrid atom-ion systems are a rich and powerful platform for studying chemical reactions, as they feature both excellent control over the electronic state preparation and readout as well as a versatile tunability over the scattering energy, ranging from the few-partial wave regime to the quantum regime. In this work, we make use of these excellent control knobs, and present a joint experimental and theoretical study of the collisions of a single $^{138}$Ba$^+$ ion prepared in the $5d\,^2D_{3/2,5/2}$ metastable states with a ground state $^6$Li gas near quantum degeneracy. We show that in contrast to previously reported atom-ion mixtures, several non-radiative processes, including charge exchange, excitation exchange and quenching, compete with each other due to the inherent complexity of the ion-atom molecular structure. We present a full quantum model based on high-level electronic structure calculations involving spin-orbit couplings. Results are in excellent agreement with observations, highlighting the strong coupling between the internal angular momenta and the mechanical rotation of the colliding pair, which is relevant in any other hybrid system composed of an alkali-metal atom and an alkaline-earth ion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16017v1-abstract-full').style.display = 'none'; document.getElementById('2406.16017v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 15 figures, 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.13410">arXiv:2406.13410</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.13410">pdf</a>, <a href="https://arxiv.org/format/2406.13410">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Exploring atom-ion Feshbach resonances below the s-wave limit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Thielemann%2C+F">Fabian Thielemann</a>, <a href="/search/physics?searchtype=author&amp;query=Siemund%2C+J">Joachim Siemund</a>, <a href="/search/physics?searchtype=author&amp;query=von+Schoenfeld%2C+D">Daniel von Schoenfeld</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+W">Wei Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Weckesser%2C+P">Pascal Weckesser</a>, <a href="/search/physics?searchtype=author&amp;query=Jachymski%2C+K">Krzysztof Jachymski</a>, <a href="/search/physics?searchtype=author&amp;query=Walker%2C+T">Thomas Walker</a>, <a href="/search/physics?searchtype=author&amp;query=Schaetz%2C+T">Tobias Schaetz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.13410v1-abstract-short" style="display: inline;"> Revealing the quantum properties of matter requires a high degree of experimental control accompanied by a profound theoretical understanding. At ultracold temperatures, quantities that appear continuous in everyday life, such as the motional angular momentum of two colliding particles, become quantized, leaving a measurable imprint on experimental results. Embedding a single particle within a lar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13410v1-abstract-full').style.display = 'inline'; document.getElementById('2406.13410v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.13410v1-abstract-full" style="display: none;"> Revealing the quantum properties of matter requires a high degree of experimental control accompanied by a profound theoretical understanding. At ultracold temperatures, quantities that appear continuous in everyday life, such as the motional angular momentum of two colliding particles, become quantized, leaving a measurable imprint on experimental results. Embedding a single particle within a larger quantum bath at lowest temperatures can result in resonant partial-wave dependent interaction, whose strength near zero energy is dictated by universal threshold scaling laws. Hybrid atom-ion systems have emerged as a novel platform in which a single charged atom in an ultracold bath serves as a well-controlled impurity of variable energy. However, entering the low-energy s-wave regime and exploring the role of higher-partial-wave scattering within has remained an open challenge. Here, we immerse a Barium ion in a cloud of ultracold spin-polarized Lithium atoms, realize tunable collision energies below the s-wave limit and explore resonant higher-partial-wave scattering by studying the energy dependence of Feshbach resonances. Utilizing precise electric field control, we tune the collision energy over four orders of magnitude, reaching from the many-parital-wave to the s-wave regime. At the lowest energies, we probe the energy dependence of an isolated s-wave Feshbach resonance and introduce a theoretical model that allows to distinguish it from higher-partial-wave resonances. Additionally, at energies around the p-wave barrier, we find and identify an open-channel f-wave resonance, consistent with threshold laws. Our findings highlight and benchmark the importance of higher-partial-wave scattering well within the s-wave regime and offer control over chemical reactions and complex many-body dynamics in atom-ion ensembles - on the level of individual angular momentum quanta. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13410v1-abstract-full').style.display = 'none'; document.getElementById('2406.13410v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.20128">arXiv:2405.20128</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.20128">pdf</a>, <a href="https://arxiv.org/format/2405.20128">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Realization of a Rydberg-dressed extended Bose Hubbard model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Weckesser%2C+P">Pascal Weckesser</a>, <a href="/search/physics?searchtype=author&amp;query=Srakaew%2C+K">Kritsana Srakaew</a>, <a href="/search/physics?searchtype=author&amp;query=Blatz%2C+T">Tizian Blatz</a>, <a href="/search/physics?searchtype=author&amp;query=Wei%2C+D">David Wei</a>, <a href="/search/physics?searchtype=author&amp;query=Adler%2C+D">Daniel Adler</a>, <a href="/search/physics?searchtype=author&amp;query=Agrawal%2C+S">Suchita Agrawal</a>, <a href="/search/physics?searchtype=author&amp;query=Bohrdt%2C+A">Annabelle Bohrdt</a>, <a href="/search/physics?searchtype=author&amp;query=Bloch%2C+I">Immanuel Bloch</a>, <a href="/search/physics?searchtype=author&amp;query=Zeiher%2C+J">Johannes Zeiher</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.20128v1-abstract-short" style="display: inline;"> The competition of different length scales in quantum many-body systems leads to various novel phenomena, including the emergence of correlated dynamics or non-local order. To access and investigate such effects in an itinerant lattice-based quantum simulator, it has been proposed to introduce tunable extended-range interactions using off-resonant optical coupling to Rydberg states. However, exper&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.20128v1-abstract-full').style.display = 'inline'; document.getElementById('2405.20128v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.20128v1-abstract-full" style="display: none;"> The competition of different length scales in quantum many-body systems leads to various novel phenomena, including the emergence of correlated dynamics or non-local order. To access and investigate such effects in an itinerant lattice-based quantum simulator, it has been proposed to introduce tunable extended-range interactions using off-resonant optical coupling to Rydberg states. However, experimental realizations of such &#34;Rydberg dressing&#34; have so far mostly concentrated on spin systems without motion. Here, we overcome a number of experimental challenges limiting previous work and realize an effective one-dimensional extended Bose-Hubbard model (eBHM). Harnessing our quantum gas microscope, we probe the correlated out-of-equilibrium dynamics of extended-range repulsively-bound pairs at low filling, and kinetically-constrained &#34;hard rods&#34; at half filling. Near equilibrium, we observe density ordering when adiabatically turning on the extended-range interactions. Our results demonstrate the versatility of Rydberg dressing in engineering itinerant optical lattice-based quantum simulators and pave the way to realizing novel light-controlled extended-range interacting quantum many-body systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.20128v1-abstract-full').style.display = 'none'; document.getElementById('2405.20128v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.14896">arXiv:2404.14896</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.14896">pdf</a>, <a href="https://arxiv.org/format/2404.14896">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Observation of Hilbert-space fragmentation and fractonic excitations in two-dimensional Hubbard systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Adler%2C+D">Daniel Adler</a>, <a href="/search/physics?searchtype=author&amp;query=Wei%2C+D">David Wei</a>, <a href="/search/physics?searchtype=author&amp;query=Will%2C+M">Melissa Will</a>, <a href="/search/physics?searchtype=author&amp;query=Srakaew%2C+K">Kritsana Srakaew</a>, <a href="/search/physics?searchtype=author&amp;query=Agrawal%2C+S">Suchita Agrawal</a>, <a href="/search/physics?searchtype=author&amp;query=Weckesser%2C+P">Pascal Weckesser</a>, <a href="/search/physics?searchtype=author&amp;query=Moessner%2C+R">Roderich Moessner</a>, <a href="/search/physics?searchtype=author&amp;query=Pollmann%2C+F">Frank Pollmann</a>, <a href="/search/physics?searchtype=author&amp;query=Bloch%2C+I">Immanuel Bloch</a>, <a href="/search/physics?searchtype=author&amp;query=Zeiher%2C+J">Johannes Zeiher</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.14896v1-abstract-short" style="display: inline;"> The relaxation behaviour of isolated quantum systems taken out of equilibrium is among the most intriguing questions in many-body physics. Quantum systems out of equilibrium typically relax to thermal equilibrium states by scrambling local information and building up entanglement entropy. However, kinetic constraints in the Hamiltonian can lead to a breakdown of this fundamental paradigm due to a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.14896v1-abstract-full').style.display = 'inline'; document.getElementById('2404.14896v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.14896v1-abstract-full" style="display: none;"> The relaxation behaviour of isolated quantum systems taken out of equilibrium is among the most intriguing questions in many-body physics. Quantum systems out of equilibrium typically relax to thermal equilibrium states by scrambling local information and building up entanglement entropy. However, kinetic constraints in the Hamiltonian can lead to a breakdown of this fundamental paradigm due to a fragmentation of the underlying Hilbert space into dynamically decoupled subsectors in which thermalisation can be strongly suppressed. Here, we experimentally observe Hilbert space fragmentation (HSF) in a two-dimensional tilted Bose-Hubbard model. Using quantum gas microscopy, we engineer a wide variety of initial states and find a rich set of manifestations of HSF involving bulk states, interfaces and defects, i.e., d = 2, 1 and 0 dimensional objects. Specifically, uniform initial states with equal particle number and energy differ strikingly in their relaxation dynamics. Inserting controlled defects on top of a global, non-thermalising chequerboard state, we observe highly anisotropic, sub-dimensional dynamics, an immediate signature of their fractonic nature. An interface between localized and thermalising states in turn displays dynamics depending on its orientation. Our results mark the first observation of HSF beyond one dimension, as well as the concomitant direct observation of fractons, and pave the way for in-depth studies of microscopic transport phenomena in constrained systems <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.14896v1-abstract-full').style.display = 'none'; document.getElementById('2404.14896v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.05129">arXiv:2401.05129</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.05129">pdf</a>, <a href="https://arxiv.org/format/2401.05129">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Rydberg molecules bound by strong light fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hollerith%2C+S">Simon Hollerith</a>, <a href="/search/physics?searchtype=author&amp;query=Walther%2C+V">Valentin Walther</a>, <a href="/search/physics?searchtype=author&amp;query=Srakaew%2C+K">Kritsana Srakaew</a>, <a href="/search/physics?searchtype=author&amp;query=Wei%2C+D">David Wei</a>, <a href="/search/physics?searchtype=author&amp;query=Adler%2C+D">Daniel Adler</a>, <a href="/search/physics?searchtype=author&amp;query=Agrawal%2C+S">Suchita Agrawal</a>, <a href="/search/physics?searchtype=author&amp;query=Weckesser%2C+P">Pascal Weckesser</a>, <a href="/search/physics?searchtype=author&amp;query=Bloch%2C+I">Immanuel Bloch</a>, <a href="/search/physics?searchtype=author&amp;query=Zeiher%2C+J">Johannes Zeiher</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.05129v1-abstract-short" style="display: inline;"> The coupling of an isolated quantum state to a continuum is typically associated with decoherence and decreased lifetime. Here, we demonstrate that Rydberg macrodimers, weakly bound pairs of Rydberg atoms, can overcome this dissipative mechanism and instead form bound states with the continuum of free motional states. This is enabled by the unique combination of extraordinarily slow vibrational mo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.05129v1-abstract-full').style.display = 'inline'; document.getElementById('2401.05129v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.05129v1-abstract-full" style="display: none;"> The coupling of an isolated quantum state to a continuum is typically associated with decoherence and decreased lifetime. Here, we demonstrate that Rydberg macrodimers, weakly bound pairs of Rydberg atoms, can overcome this dissipative mechanism and instead form bound states with the continuum of free motional states. This is enabled by the unique combination of extraordinarily slow vibrational motion in the molecular state and the optical coupling to a non-interacting continuum. Under conditions of strong coupling, we observe the emergence of distinct resonances and explain them within a Fano model. For atoms arranged on a lattice, we predict the strong continuum coupling to even stabilize molecules consisting of more than two atoms and find first signatures of these by observing atom loss correlations using a quantum gas microscope. Our results present an intriguing mechanism to control decoherence and bind multiatomic molecules using strong light-matter interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.05129v1-abstract-full').style.display = 'none'; document.getElementById('2401.05129v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.11869">arXiv:2301.11869</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.11869">pdf</a>, <a href="https://arxiv.org/format/2301.11869">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.13.021042">10.1103/PhysRevX.13.021042 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of brane parity order in programmable optical lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wei%2C+D">David Wei</a>, <a href="/search/physics?searchtype=author&amp;query=Adler%2C+D">Daniel Adler</a>, <a href="/search/physics?searchtype=author&amp;query=Srakaew%2C+K">Kritsana Srakaew</a>, <a href="/search/physics?searchtype=author&amp;query=Agrawal%2C+S">Suchita Agrawal</a>, <a href="/search/physics?searchtype=author&amp;query=Weckesser%2C+P">Pascal Weckesser</a>, <a href="/search/physics?searchtype=author&amp;query=Bloch%2C+I">Immanuel Bloch</a>, <a href="/search/physics?searchtype=author&amp;query=Zeiher%2C+J">Johannes Zeiher</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.11869v2-abstract-short" style="display: inline;"> The Mott-insulating phase of the two-dimensional (2d) Bose-Hubbard model is expected to be characterized by a non-local brane parity order. Parity order captures the presence of microscopic particle-hole fluctuations and entanglement, whose properties depend on the underlying lattice geometry. We realize 2d Bose-Hubbard models in dynamically tunable lattice geometries, using neutral atoms in a nov&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.11869v2-abstract-full').style.display = 'inline'; document.getElementById('2301.11869v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.11869v2-abstract-full" style="display: none;"> The Mott-insulating phase of the two-dimensional (2d) Bose-Hubbard model is expected to be characterized by a non-local brane parity order. Parity order captures the presence of microscopic particle-hole fluctuations and entanglement, whose properties depend on the underlying lattice geometry. We realize 2d Bose-Hubbard models in dynamically tunable lattice geometries, using neutral atoms in a novel passively phase-stable tunable optical lattice in combination with programmable site-blocking potentials. We benchmark the performance of our system by single-particle quantum walks in the square, triangular, kagome and Lieb lattice. In the strongly correlated regime, we microscopically characterize the geometry dependence of the quantum fluctuations and experimentally validate the brane parity as a proxy for the non-local order parameter signaling the superfluid-to-Mott insulating phase transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.11869v2-abstract-full').style.display = 'none'; document.getElementById('2301.11869v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Fixed typos and formatting</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 13, 021042 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.09383">arXiv:2207.09383</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.09383">pdf</a>, <a href="https://arxiv.org/format/2207.09383">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-023-01959-y">10.1038/s41567-023-01959-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A subwavelength atomic array switched by a single Rydberg atom </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Srakaew%2C+K">Kritsana Srakaew</a>, <a href="/search/physics?searchtype=author&amp;query=Weckesser%2C+P">Pascal Weckesser</a>, <a href="/search/physics?searchtype=author&amp;query=Hollerith%2C+S">Simon Hollerith</a>, <a href="/search/physics?searchtype=author&amp;query=Wei%2C+D">David Wei</a>, <a href="/search/physics?searchtype=author&amp;query=Adler%2C+D">Daniel Adler</a>, <a href="/search/physics?searchtype=author&amp;query=Bloch%2C+I">Immanuel Bloch</a>, <a href="/search/physics?searchtype=author&amp;query=Zeiher%2C+J">Johannes Zeiher</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.09383v2-abstract-short" style="display: inline;"> Enhancing light-matter coupling at the level of single quanta is essential for numerous applications in quantum science. The cooperative optical response of subwavelength atomic arrays has been found to open new pathways for such strong light-matter couplings, while simultaneously offering access to multiple spatial modes of the light field. Efficient single-mode free-space coupling to such arrays&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.09383v2-abstract-full').style.display = 'inline'; document.getElementById('2207.09383v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.09383v2-abstract-full" style="display: none;"> Enhancing light-matter coupling at the level of single quanta is essential for numerous applications in quantum science. The cooperative optical response of subwavelength atomic arrays has been found to open new pathways for such strong light-matter couplings, while simultaneously offering access to multiple spatial modes of the light field. Efficient single-mode free-space coupling to such arrays has been reported, but the spatial control over the modes of outgoing light fields has remained elusive. Here, we demonstrate such spatial control over the optical response of an atomically thin mirror formed by a subwavelength array of atoms in free space using a single controlled ancilla atom excited to a Rydberg state. The switching behavior is controlled by the admixture of a small Rydberg fraction to the atomic mirror, and consequently strong dipolar Rydberg interactions with the ancilla. Driving Rabi oscillations on the ancilla atom, we demonstrate coherent control of the transmission and reflection of the array. These results represent a step towards the realization of quantum coherent metasurfaces, the demonstration of controlled atom-photon entanglement and deterministic engineering of quantum states of light. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.09383v2-abstract-full').style.display = 'none'; document.getElementById('2207.09383v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures + 9 pages Supplementary Information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.10125">arXiv:2110.10125</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.10125">pdf</a>, <a href="https://arxiv.org/format/2110.10125">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.128.113602">10.1103/PhysRevLett.128.113602 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Realizing distance-selective interactions in a Rydberg-dressed atom array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hollerith%2C+S">Simon Hollerith</a>, <a href="/search/physics?searchtype=author&amp;query=Srakaew%2C+K">Kritsana Srakaew</a>, <a href="/search/physics?searchtype=author&amp;query=Wei%2C+D">David Wei</a>, <a href="/search/physics?searchtype=author&amp;query=Rubio-Abadal%2C+A">Antonio Rubio-Abadal</a>, <a href="/search/physics?searchtype=author&amp;query=Adler%2C+D">Daniel Adler</a>, <a href="/search/physics?searchtype=author&amp;query=Weckesser%2C+P">Pascal Weckesser</a>, <a href="/search/physics?searchtype=author&amp;query=Kruckenhauser%2C+A">Andreas Kruckenhauser</a>, <a href="/search/physics?searchtype=author&amp;query=Walther%2C+V">Valentin Walther</a>, <a href="/search/physics?searchtype=author&amp;query=van+Bijnen%2C+R">Rick van Bijnen</a>, <a href="/search/physics?searchtype=author&amp;query=Rui%2C+J">Jun Rui</a>, <a href="/search/physics?searchtype=author&amp;query=Gross%2C+C">Christian Gross</a>, <a href="/search/physics?searchtype=author&amp;query=Bloch%2C+I">Immanuel Bloch</a>, <a href="/search/physics?searchtype=author&amp;query=Zeiher%2C+J">Johannes Zeiher</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.10125v1-abstract-short" style="display: inline;"> Measurement-based quantum computing relies on the rapid creation of large-scale entanglement in a register of stable qubits. Atomic arrays are well suited to store quantum information, and entanglement can be created using highly-excited Rydberg states. Typically, isolating pairs during gate operation is difficult because Rydberg interactions feature long tails at large distances. Here, we enginee&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.10125v1-abstract-full').style.display = 'inline'; document.getElementById('2110.10125v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.10125v1-abstract-full" style="display: none;"> Measurement-based quantum computing relies on the rapid creation of large-scale entanglement in a register of stable qubits. Atomic arrays are well suited to store quantum information, and entanglement can be created using highly-excited Rydberg states. Typically, isolating pairs during gate operation is difficult because Rydberg interactions feature long tails at large distances. Here, we engineer distance-selective interactions that are strongly peaked in distance through off-resonant laser coupling of molecular potentials between Rydberg atom pairs. Employing quantum gas microscopy, we verify the dressed interactions by observing correlated phase evolution using many-body Ramsey interferometry. We identify atom loss and coupling to continuum modes as a limitation of our present scheme and outline paths to mitigate these effects, paving the way towards the creation of large-scale entanglement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.10125v1-abstract-full').style.display = 'none'; document.getElementById('2110.10125v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures + supplementary information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.09382">arXiv:2105.09382</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.09382">pdf</a>, <a href="https://arxiv.org/format/2105.09382">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-021-04112-y">10.1038/s41586-021-04112-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of Feshbach resonances between a single ion and ultracold atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Weckesser%2C+P">Pascal Weckesser</a>, <a href="/search/physics?searchtype=author&amp;query=Thielemann%2C+F">Fabian Thielemann</a>, <a href="/search/physics?searchtype=author&amp;query=Wiater%2C+D">Dariusz Wiater</a>, <a href="/search/physics?searchtype=author&amp;query=Wojciechowska%2C+A">Agata Wojciechowska</a>, <a href="/search/physics?searchtype=author&amp;query=Karpa%2C+L">Leon Karpa</a>, <a href="/search/physics?searchtype=author&amp;query=Jachymski%2C+K">Krzysztof Jachymski</a>, <a href="/search/physics?searchtype=author&amp;query=Tomza%2C+M">Micha艂 Tomza</a>, <a href="/search/physics?searchtype=author&amp;query=Walker%2C+T">Thomas Walker</a>, <a href="/search/physics?searchtype=author&amp;query=Schaetz%2C+T">Tobias Schaetz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.09382v1-abstract-short" style="display: inline;"> Controlling physical systems and their dynamics on the level of individual quanta propels both fundamental science and quantum technologies. Trapped atomic and molecular systems, neutral and charged, are at the forefront of quantum science. Their extraordinary level of control is evidenced by numerous applications in quantum information processing and quantum metrology. Studying the long-range int&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.09382v1-abstract-full').style.display = 'inline'; document.getElementById('2105.09382v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.09382v1-abstract-full" style="display: none;"> Controlling physical systems and their dynamics on the level of individual quanta propels both fundamental science and quantum technologies. Trapped atomic and molecular systems, neutral and charged, are at the forefront of quantum science. Their extraordinary level of control is evidenced by numerous applications in quantum information processing and quantum metrology. Studying the long-range interactions between these systems when combined in a hybrid atom-ion trap has lead to landmark results. Reaching the ultracold regime, however, where quantum mechanics dominates the interaction, e.g., giving access to controllable scattering resonances, has been elusive so far. Here we demonstrate Feshbach resonances between ions and atoms, using magnetically tunable interactions between $^{138}$Ba$^{+}$ ions and $^{6}$Li atoms. We tune the experimental parameters to probe different interaction processes - first, enhancing three-body reactions and the related losses to identify the resonances, then making two-body interactions dominant to investigate the ion&#39;s sympathetic cooling in the ultracold atomic bath. Our results provide deeper insights into atom-ion interactions, giving access to complex many-body systems and applications in experimental quantum simulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.09382v1-abstract-full').style.display = 'none'; document.getElementById('2105.09382v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 600, 429 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.13621">arXiv:2010.13621</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.13621">pdf</a>, <a href="https://arxiv.org/format/2010.13621">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.103.013112">10.1103/PhysRevA.103.013112 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Trapping, Shaping and Isolating of Ion Coulomb Crystals via State-selective Optical Potentials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Weckesser%2C+P">Pascal Weckesser</a>, <a href="/search/physics?searchtype=author&amp;query=Thielemann%2C+F">Fabian Thielemann</a>, <a href="/search/physics?searchtype=author&amp;query=Hoenig%2C+D">Daniel Hoenig</a>, <a href="/search/physics?searchtype=author&amp;query=Lambrecht%2C+A">Alexander Lambrecht</a>, <a href="/search/physics?searchtype=author&amp;query=Karpa%2C+L">Leon Karpa</a>, <a href="/search/physics?searchtype=author&amp;query=Schaetz%2C+T">Tobias Schaetz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.13621v1-abstract-short" style="display: inline;"> For conventional ion traps, the trapping potential is close to independent of the electronic state, providing confinement for ions dependent primarily on their charge-to-mass ratio $Q/m$. In contrast, storing ions within an optical dipole trap results in state-dependent confinement. Here we experimentally study optical dipole potentials for $^{138}\mathrm{Ba}^+$ ions stored within two distinctive&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.13621v1-abstract-full').style.display = 'inline'; document.getElementById('2010.13621v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.13621v1-abstract-full" style="display: none;"> For conventional ion traps, the trapping potential is close to independent of the electronic state, providing confinement for ions dependent primarily on their charge-to-mass ratio $Q/m$. In contrast, storing ions within an optical dipole trap results in state-dependent confinement. Here we experimentally study optical dipole potentials for $^{138}\mathrm{Ba}^+$ ions stored within two distinctive traps operating at 532 nm and 1064 nm. We prepare the ions in either the $6\mathrm{S}_{\mathrm{1/2}}$ electronic ground or the $5\mathrm{D}_{\mathrm{3/2}}$/ $5\mathrm{D}_{\mathrm{5/2}}$ metastable excited state and probe the relative strength and polarity of the potential. On the one hand, we apply our findings to selectively remove ions from a Coulomb crystal, despite all ions sharing the same $Q/m$. On the other hand, we deterministically purify the trapping volume from parasitic ions in higher-energy orbits, resulting in reliable isolation of Coulomb crystals down to a single ion within a radio-frequency trap. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.13621v1-abstract-full').style.display = 'none'; document.getElementById('2010.13621v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 103, 013112 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.02675">arXiv:2005.02675</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.02675">pdf</a>, <a href="https://arxiv.org/format/2005.02675">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s00340-020-07491-8">10.1007/s00340-020-07491-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mass-selective removal of ions from Paul traps using parametric excitation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+J">Julian Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=H%C3%B6nig%2C+D">Daniel H枚nig</a>, <a href="/search/physics?searchtype=author&amp;query=Weckesser%2C+P">Pascal Weckesser</a>, <a href="/search/physics?searchtype=author&amp;query=Thielemann%2C+F">Fabian Thielemann</a>, <a href="/search/physics?searchtype=author&amp;query=Schaetz%2C+T">Tobias Schaetz</a>, <a href="/search/physics?searchtype=author&amp;query=Karpa%2C+L">Leon Karpa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.02675v2-abstract-short" style="display: inline;"> We study a method for mass-selective removal of ions from a Paul trap by parametric excitation. This can be achieved by applying an oscillating electric quadrupole field at twice the secular frequency $蠅_{\text{sec}}$ using pairs of opposing electrodes. While excitation near the resonance with the frequency $蠅_{\text{sec}}$ only leads to a linear increase of the amplitude with excitation duration,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.02675v2-abstract-full').style.display = 'inline'; document.getElementById('2005.02675v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.02675v2-abstract-full" style="display: none;"> We study a method for mass-selective removal of ions from a Paul trap by parametric excitation. This can be achieved by applying an oscillating electric quadrupole field at twice the secular frequency $蠅_{\text{sec}}$ using pairs of opposing electrodes. While excitation near the resonance with the frequency $蠅_{\text{sec}}$ only leads to a linear increase of the amplitude with excitation duration, parametric excitation near $2\, 蠅_{\text{sec}}$ results in an exponential increase of the amplitude. This enables efficient removal of ions from the trap with modest excitation voltages and narrow bandwidth, therefore substantially reducing the disturbance of ions with other charge-to-mass ratios. We numerically study and compare the mass selectivity of the two methods. In addition, we experimentally show that the barium isotopes with 136 and 137 nucleons can be removed from small ion crystals and ejected out of the trap while keeping $^{138}\text{Ba}^{+}$ ions Doppler cooled, corresponding to a mass selectivity of better than $螖m / m = 1/138$. This method can be widely applied to ion trapping experiments without major modifications, since it only requires modulating the potential of the ion trap. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.02675v2-abstract-full').style.display = 'none'; document.getElementById('2005.02675v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. B 126, 176 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.08352">arXiv:1909.08352</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.08352">pdf</a>, <a href="https://arxiv.org/format/1909.08352">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.124.053402">10.1103/PhysRevLett.124.053402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optical Traps for sympathetic Cooling of Ions with ultracold neutral Atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+J">J. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Weckesser%2C+P">P. Weckesser</a>, <a href="/search/physics?searchtype=author&amp;query=Thielemann%2C+F">F. Thielemann</a>, <a href="/search/physics?searchtype=author&amp;query=Schaetz%2C+T">T. Schaetz</a>, <a href="/search/physics?searchtype=author&amp;query=Karpa%2C+L">L. Karpa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.08352v1-abstract-short" style="display: inline;"> We report the trapping of ultracold neutral $ \text{Rb}$ atoms and $ \text{Ba}^+ $ ions in a common optical potential in absence of any radiofrequency (RF) fields. We prepare $ \text{Ba}^+ $ at $ 370 ~ 渭K $ and demonstrate efficient sympathetic cooling by $100 ~ 渭K $ after one collision. Our approach is currently limited by the $ \text{Rb}$ density and related three-body losses, but it overcomes t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.08352v1-abstract-full').style.display = 'inline'; document.getElementById('1909.08352v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.08352v1-abstract-full" style="display: none;"> We report the trapping of ultracold neutral $ \text{Rb}$ atoms and $ \text{Ba}^+ $ ions in a common optical potential in absence of any radiofrequency (RF) fields. We prepare $ \text{Ba}^+ $ at $ 370 ~ 渭K $ and demonstrate efficient sympathetic cooling by $100 ~ 渭K $ after one collision. Our approach is currently limited by the $ \text{Rb}$ density and related three-body losses, but it overcomes the fundamental limitation in RF traps set by RF-driven, micromotion-induced heating. It is applicable to a wide range of ion-atom species, and may enable novel ultracold chemistry experiments and complex many-body dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.08352v1-abstract-full').style.display = 'none'; document.getElementById('1909.08352v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 124, 053402 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.08385">arXiv:1712.08385</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.08385">pdf</a>, <a href="https://arxiv.org/format/1712.08385">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.8.021028">10.1103/PhysRevX.8.021028 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optical trapping of ion Coulomb crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+J">Julian Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Lambrecht%2C+A">Alexander Lambrecht</a>, <a href="/search/physics?searchtype=author&amp;query=Weckesser%2C+P">Pascal Weckesser</a>, <a href="/search/physics?searchtype=author&amp;query=Debatin%2C+M">Markus Debatin</a>, <a href="/search/physics?searchtype=author&amp;query=Karpa%2C+L">Leon Karpa</a>, <a href="/search/physics?searchtype=author&amp;query=Schaetz%2C+T">Tobias Schaetz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.08385v1-abstract-short" style="display: inline;"> The electronic and motional degrees of freedom of trapped ions can be controlled and coherently coupled on the level of individual quanta. Assembling complex quantum systems ion by ion while keeping this unique level of control remains a challenging task. For many applications, linear chains of ions in conventional traps are ideally suited to address this problem. However, driven motion due to the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.08385v1-abstract-full').style.display = 'inline'; document.getElementById('1712.08385v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.08385v1-abstract-full" style="display: none;"> The electronic and motional degrees of freedom of trapped ions can be controlled and coherently coupled on the level of individual quanta. Assembling complex quantum systems ion by ion while keeping this unique level of control remains a challenging task. For many applications, linear chains of ions in conventional traps are ideally suited to address this problem. However, driven motion due to the magnetic or radio-frequency electric trapping fields sometimes limits the performance in one dimension and severely affects the extension to higher dimensional systems. Here, we report on the trapping of multiple Barium ions in a single-beam optical dipole trap without radio-frequency or additional magnetic fields. We study the persistence of order in ensembles of up to six ions within the optical trap, measure their temperature and conclude that the ions form a linear chain, commonly called a one-dimensional Coulomb crystal. As a proof-of-concept demonstration, we access the collective motion and perform spectrometry of the normal modes in the optical trap. Our system provides a platform which is free of driven motion and combines advantages of optical trapping, such as state-dependent confinement and nano-scale potentials, with the desirable properties of crystals of trapped ions, such as long-range interactions featuring collective motion. Starting with small numbers of ions, it has been proposed that these properties would allow the experimental study of many-body physics and the onset of structural quantum phase transitions between one- and two-dimensional crystals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.08385v1-abstract-full').style.display = 'none'; document.getElementById('1712.08385v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8+2 pages, 4+2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 8, 021028 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.06429">arXiv:1609.06429</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1609.06429">pdf</a>, <a href="https://arxiv.org/format/1609.06429">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Long lifetimes in optical ion traps </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lambrecht%2C+A">Alexander Lambrecht</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+J">Julian Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Weckesser%2C+P">Pascal Weckesser</a>, <a href="/search/physics?searchtype=author&amp;query=Debatin%2C+M">Markus Debatin</a>, <a href="/search/physics?searchtype=author&amp;query=Karpa%2C+L">Leon Karpa</a>, <a href="/search/physics?searchtype=author&amp;query=Schaetz%2C+T">Tobias Schaetz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.06429v2-abstract-short" style="display: inline;"> We report on single Barium ions confined in a near-infrared optical dipole trap for up to three seconds in absence of any radio-frequency fields. Additionally, the lifetime in a visible optical dipole trap is increased by two orders of magnitude as compared to the state-of-the-art using an efficient repumping method. We characterize the state-dependent potentials and measure an upper bound for the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.06429v2-abstract-full').style.display = 'inline'; document.getElementById('1609.06429v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.06429v2-abstract-full" style="display: none;"> We report on single Barium ions confined in a near-infrared optical dipole trap for up to three seconds in absence of any radio-frequency fields. Additionally, the lifetime in a visible optical dipole trap is increased by two orders of magnitude as compared to the state-of-the-art using an efficient repumping method. We characterize the state-dependent potentials and measure an upper bound for the heating rate in the near-infrared trap. These findings are beneficial for entering the regime of ultracold interaction in atom-ion ensembles exploiting bichromatic optical dipole traps. Long lifetimes and low scattering rates are essential to reach long coherence times for quantum simulations in optical lattices employing many ions, or ions and atoms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.06429v2-abstract-full').style.display = 'none'; document.getElementById('1609.06429v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.07120">arXiv:1608.07120</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1608.07120">pdf</a>, <a href="https://arxiv.org/format/1608.07120">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.94.062703">10.1103/PhysRevA.94.062703 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamics of a single trapped ion immersed in a buffer gas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=H%C3%B6ltkemeier%2C+B">Bastian H枚ltkemeier</a>, <a href="/search/physics?searchtype=author&amp;query=Weckesser%2C+P">Pascal Weckesser</a>, <a href="/search/physics?searchtype=author&amp;query=L%C3%B3pez-Carrera%2C+H">Henry L贸pez-Carrera</a>, <a href="/search/physics?searchtype=author&amp;query=Weidem%C3%BCller%2C+M">Matthias Weidem眉ller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.07120v1-abstract-short" style="display: inline;"> We provide a comprehensive theoretical framework for describing the dynamics of a single trapped ion interacting with a neutral buffer gas, thus extending our previous studies on buffer-gas cooling of ions beyond the critical mass ratio [B. H枚ltkemeier et al., Phys. Rev. Lett. 116, 233003 (2016)]. By transforming the collisional processes into a frame, where the ion&#39;s micromotion is assigned to th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.07120v1-abstract-full').style.display = 'inline'; document.getElementById('1608.07120v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.07120v1-abstract-full" style="display: none;"> We provide a comprehensive theoretical framework for describing the dynamics of a single trapped ion interacting with a neutral buffer gas, thus extending our previous studies on buffer-gas cooling of ions beyond the critical mass ratio [B. H枚ltkemeier et al., Phys. Rev. Lett. 116, 233003 (2016)]. By transforming the collisional processes into a frame, where the ion&#39;s micromotion is assigned to the buffer gas atoms, our model allows one to investigate the influence of non-homogeneous buffer gas configurations as well as higher multipole orders of the radio-frequency trap in great detail. Depending on the neutral-to-ion mass ratio, three regimes of sympathetic cooling are identified which are characterized by the form of the ion&#39;s energy distribution in equilibrium. We provide analytic expressions and numerical simulations of the ion&#39;s energy distribution, spatial profile and cooling rates for these different regimes. Based on these findings, a method for actively decreasing the ion&#39;s energy by reducing the spatial expansion of the buffer gas arises (Forced Sympathetic Cooling). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.07120v1-abstract-full').style.display = 'none'; document.getElementById('1608.07120v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 94, 062703 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.06575">arXiv:1507.06575</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.06575">pdf</a>, <a href="https://arxiv.org/ps/1507.06575">ps</a>, <a href="https://arxiv.org/format/1507.06575">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Sympathetic cooling of OH- ions using ultracold Rb atoms in a dark SPOT </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=L%C3%B3pez%2C+H">H. L贸pez</a>, <a href="/search/physics?searchtype=author&amp;query=H%C3%B6ltkemeier%2C+B">B. H枚ltkemeier</a>, <a href="/search/physics?searchtype=author&amp;query=Gl%C3%A4ssel%2C+J">J. Gl盲ssel</a>, <a href="/search/physics?searchtype=author&amp;query=Weckesser%2C+P">P. Weckesser</a>, <a href="/search/physics?searchtype=author&amp;query=Weidem%C3%BCller%2C+M">M. Weidem眉ller</a>, <a href="/search/physics?searchtype=author&amp;query=Best%2C+T">T. Best</a>, <a href="/search/physics?searchtype=author&amp;query=Endres%2C+E">E. Endres</a>, <a href="/search/physics?searchtype=author&amp;query=Wester%2C+R">R. Wester</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.06575v1-abstract-short" style="display: inline;"> We are developing a new hybrid atom-ion trap to study the interaction of ultracold rubidium atoms with mass-selected OH- molecules. The ions are trapped inside an octupole rf-trap made of thin wires instead of the commonly used rods. This ensures good optical access to the center of the trap where the ions can be overlapped with laser cooled rubidium atoms stored in a dark spontaneous force optica&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.06575v1-abstract-full').style.display = 'inline'; document.getElementById('1507.06575v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.06575v1-abstract-full" style="display: none;"> We are developing a new hybrid atom-ion trap to study the interaction of ultracold rubidium atoms with mass-selected OH- molecules. The ions are trapped inside an octupole rf-trap made of thin wires instead of the commonly used rods. This ensures good optical access to the center of the trap where the ions can be overlapped with laser cooled rubidium atoms stored in a dark spontaneous force optical trap (dark SPOT). This setup provides high collision rates since the density in a dark SPOT is about one order of magnitude higher than in a standard magneto-optical trap. Further, inelastic collisions with excited atoms are suppressed since almost all atoms are in the ground state. Numerical simulations of our setup using SIMION predict that cooling of the ions is feasible. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.06575v1-abstract-full').style.display = 'none'; document.getElementById('1507.06575v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1505.06909">arXiv:1505.06909</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1505.06909">pdf</a>, <a href="https://arxiv.org/format/1505.06909">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.116.233003">10.1103/PhysRevLett.116.233003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Buffer-gas cooling of a single ion in a multipole radio frequency trap beyond the critical mass ratio </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=H%C3%B6ltkemeier%2C+B">B. H枚ltkemeier</a>, <a href="/search/physics?searchtype=author&amp;query=Weckesser%2C+P">P. Weckesser</a>, <a href="/search/physics?searchtype=author&amp;query=L%C3%B3pez-Carrera%2C+H">H. L贸pez-Carrera</a>, <a href="/search/physics?searchtype=author&amp;query=Weidem%C3%BCller%2C+M">M. Weidem眉ller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1505.06909v2-abstract-short" style="display: inline;"> We theoretically investigate the dynamics of a trapped ion immersed in a spatially localized buffer gas. For a homogeneous buffer gas, the ion reaches a stable equilibrium only if the mass ratio of the buffer gas atom to the ion is below a critical value. We show how this limitation can be overcome by using multipole traps and a spatially confined buffer gas. Using a generalized model for elastic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.06909v2-abstract-full').style.display = 'inline'; document.getElementById('1505.06909v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1505.06909v2-abstract-full" style="display: none;"> We theoretically investigate the dynamics of a trapped ion immersed in a spatially localized buffer gas. For a homogeneous buffer gas, the ion reaches a stable equilibrium only if the mass ratio of the buffer gas atom to the ion is below a critical value. We show how this limitation can be overcome by using multipole traps and a spatially confined buffer gas. Using a generalized model for elastic collisions of the ion with the buffer gas atoms, the ion&#39;s energy distribution is derived for arbitrary buffer gas distributions and trap parameters. Three regimes characterized by the analytical form of the ion&#39;s energy distribution are found. Final ion temperatures down to the millikelvin regime can be achieved even for heavy buffer gases by actively controlling the size of the buffer gas or the trap voltage (forced sympathetic cooling). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.06909v2-abstract-full').style.display = 'none'; document.getElementById('1505.06909v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 116, 233003 (2016) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10