CINXE.COM

Two-mirror telescopes: miscollimation, close focusing

<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns="http://www.w3.org/TR/REC-html40"> <head><meta name="viewport" content="width=device-width, initial-scale=1"> <meta http-equiv="Content-Type" content="text/html; charset=windows-1252"> <meta http-equiv="Content-Language" content="en-us"> <title>Two-mirror telescopes: miscollimation, close focusing</title> <meta name="keywords" content="two-mirror telescopes miscollimation sensitivity, telescope optics, aberrations"> <meta name="description" content="Miscollimation sensitivity in two-mirror telescopes, includes formulae. Also, close object focusing aberrations."> <style fprolloverstyle>A:hover {color: #FF8204} </style> </head> <body link="#0000FF" vlink="#993399" alink="#FF0000" style="font-family: Verdana; font-size: 10px" bgcolor="#F4F4DF"> <div align="center"> <table border="0" cellpadding="0" cellspacing="0" width="800" height="770" bgcolor="#FFE066"> <!-- MSTableType="layout" --> <tr> <td valign="top" height="704" style="text-indent: 21; padding-left:21px; padding-right:21px; padding-top:21px; padding-bottom:3px; border-left-style:solid; border-left-width:0px; border-right-style:solid; border-right-width:0px; border-top-style:solid; border-top-width:0px"> <!-- MSCellType="ContentBody" --> <p align="center" style="text-indent: 0"> <b><font size="3" color="#518FBD" face="Verdana">telescope</font></b><font face="Microsoft Sans Serif" size="5" color="#518FBD">&#1138;</font><b><font size="3" face="Verdana" color="#518FBD">ptics.net</font><font face="Verdana" color="#95AAA6" size="3">&nbsp;&nbsp; </font></b> <font size="1" color="#95AAA6">&#9642;</font><font color="#95AAA6"><b> </b> </font><b><font face="Verdana" color="#95AAA6" size="3">&nbsp; </font></b> <font size="1" color="#95AAA6">&#9642;</font><font size="1" face="Verdana" color="#95AAA6">&nbsp;&nbsp; </font> <font size="1" color="#95AAA6">&#9642;</font><font face="Verdana" color="#95AAA6"><b><font size="2"> </font></b><font size="1">&nbsp;</font></font><font size="1" color="#95AAA6">&#9642;</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">&#9642;&#9642;&#9642;&#9642;</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">&#9642;</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">&#9642;</font><font size="1" face="Verdana" color="#95AAA6">&nbsp; </font><font size="1" color="#95AAA6">&#9642;</font><font size="1" face="Verdana" color="#95AAA6">&nbsp;&nbsp; </font><font size="1" color="#95AAA6">&#9642;</font><font size="1" face="Verdana" color="#95AAA6">&nbsp;&nbsp;&nbsp; </font><font size="1" color="#95AAA6">&#9642;</font><font size="1" face="Verdana" color="#95AAA6">&nbsp;&nbsp;&nbsp;&nbsp; </font><font size="1" color="#95AAA6">&#9642;</font><font size="1" face="Verdana" color="#95AAA6">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </font><font size="1" color="#95AAA6">&#9642;</font><font size="1" face="Verdana" color="#95AAA6">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </font><font size="1" color="#95AAA6">&#9642;</font><font size="1" face="Verdana" color="#95AAA6">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </font><font size="1" color="#95AAA6">&#9642;</font><font size="1" face="Verdana" color="#95AAA6">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</font><font face="Verdana" color="#518FBD"><b><font size="2">&nbsp;</font></b></font><font face="Verdana"><span style="font-weight: 400"><font size="2"><a href="index.htm#TABLE_OF_CONTENTS">CONTENTS</a></font></span></font><font size="2"><span style="font-weight: 400"><font size="2" face="Arial"><br> &nbsp;</font></span></p> <p align="center" style="text-indent: 0"> <span style="font-weight: 400"> <font size="2" face="Arial" color="#336699">&#9668;</font></span><font face="Verdana" size="2"> <a href="loveday_two-mirror_telescope.htm">8.2.5. Loveday telescope</a>&nbsp;</font><font size="2" face="Arial"><font color="#C0C0C0">&nbsp; &#9616;</font>&nbsp;&nbsp;&nbsp; </font><font face="Verdana" size="2"> <a href="three-mirror.htm">8.3. Three-mirror telescopes</a> </font> <font face="Arial" size="2" color="#336699">&#9658;</font><br> &nbsp;</p> <h1 align="center" style="text-indent: 0"><b> <font face="Trebuchet MS" color="#336699" size="3">8.2.6. Two-mirror telescopes: miscollimation, close object errors</font></b></h1> <div style="background-color: #FFFFCC"> <p align="center" style="text-indent: 0">PAGE HIGHLIGHTS<br> &bull; <a href="#correction">P-V wavefront error (plots)</a>&nbsp;&nbsp; &bull; <a href="#Close_objects_error">Close object eror (spherical aberration)</a></div> </font> <p align="center" style="text-indent: 0"> <font color="#336699" face="Trebuchet MS"> Miscollimation sensitivity in two-mirror telescopes</font><font size="2"><p align="justify" style="line-height: 150%"> <font face="Verdana" size="2">Whenever the primary and secondary mirror in a two-mirror system are not optimally positioned, it induces certain amount of axial and off-axis aberrations. In general, induced aberration is proportional to the linear misalignment. While either of the two, or both mirrors can be misaligned, the system sensitivity can be simply shown as misalignment of the secondary relative to the primary. It can be expressed separately for <i>tilt</i>, <i>decenter</i> and <i>despace</i>. By far the dominant aberration resulting from the first two forms of misalignment is axial (independent of the field height) coma. Depending on the sign, it can add up to the &quot;regular&quot; off-axis system coma, or subtract from it, but the most troublesome part is its presence in the field center. As the P-V wavefront error, it can be expressed separately for the <i> <span style="background-color: #FFFF99">tilt</span> as</i>:</font><p style="text-indent: 0" align="center"> <img border="0" src="images/eq111.PNG" width="377" height="44"><p style="text-indent: 0"> <font face="Verdana" size="2">and <i> <span style="background-color: #FFFF99">decenter</span>:</i></font><p style="text-indent: 0" align="center"> <img border="0" src="images/eq112.PNG" width="404" height="54"><p align="justify" style="text-indent: 0; line-height:150%"> <b> <font face="Georgia" size="2">&#964;</font></b><font face="Verdana" size="2"> being the tilt angle in radians, </font><b><font size="2" face="Verdana">&#8710;</font></b><font face="Verdana" size="2"> the linear decenter and <b>F</b> the system focal ratio (as before, <b>&#951;</b> is the back focal length in units of primary's focal length and <b>D</b> the aperture diameter). The RMS wavefront error is smaller by a factor 1/32</font><font face="Verdana" size="1"><span style="vertical-align: super">1/2</span></font><font face="Verdana" size="2">. Tilt and decenter are usually both present, so the two errors combine, with the final error given by their sum. Whether they will add or subtract depends on the sign of </font><b> <font face="Georgia" size="2">&#964;</font></b><font face="Verdana" size="2"> and <b>&#8710;</b>. Misaligned secondary doesn't induce coma when </font> <font face="Georgia" size="2">&#964;</font><font face="Verdana" size="2">=-&#8710;[1-(m-1)K</font><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font><font face="Verdana" size="2">/(m+1)]/R</font><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font><font face="Verdana" size="2">, <b>R</b></font><b><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font></b><font face="Verdana" size="2"> being the secondary radius of curvature. </font> <p align="justify" style="text-indent: 0; line-height:150%"> &nbsp;&nbsp;&nbsp; Since the secondary magnification m=<font face="Verdana" size="2">&#961;</font>/(<font face="Verdana" size="2">&#961;</font>-k), relations expressed in terms of secondary magnification <b>m</b> reflect the deviations in either secondary radius of curvature (or, for that matter, primary's radius of curvature, since <font face="Verdana" size="2"> &#961;</font>=R<b><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font></b>/R<b><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font></b>) or secondary-to-primary separation, defining the minimum relative secondary size <b>k</b>. Thus these relations can also be expressed directly in terms of <b><font face="Verdana" size="2">&#961;</font></b> and <b>k</b>, which can be more convenient for determining the tolerances for a specific system.<p align="justify" style="line-height: 150%"> <font face="Verdana" size="2"><a name="Despace_(separation)"> <span style="background-color: #FFFF99"><i>Despace</i></span> (separation)</a> error <b>s</b> in two-mirror systems - positive for larger separation, and vice versa - results in change in the relative height of the marginal ray at the secondary <b>k</b> into k'=k+(s/f</font><b><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font></b><font face="Verdana" size="2">), and secondary magnification <b>m</b> into m'=&#961;/(&#961;-k'). The most significant aberration it induces is lower-order spherical. Resulting wavefront error is obtained by substituting <b>k'</b> and <b>m'</b> for <b>k</b> and <b>m</b> in <a href="two_mirror_telescope_aberrations.htm#This_relation">Eq. 81</a><b> </b>(top), or simply <b>k'</b> for <b> k</b> (bottom). The P-V wavefront error at the best focus can be also expressed in terms of secondary magnification alone as: </font> <p align="center" style="text-indent: 0"> <img border="0" src="images/eq114.PNG" width="479" height="104"><p align="justify" style="text-indent: 0; line-height:150%"> <font face="Verdana" size="2">with </font><b> <font face="Verdana" size="2">F</font><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font></b><font face="Verdana" size="2"> being the primary's focal ratio. For given nominal value of <b>s</b> the wavefront error is independent of the aperture; for relative <b>s</b> value (in units of the primary's focal length), it changes in proportion to it. Despace always causes change in the back focal length; exact figure requires specific change in <b>k</b> to be known, but as a practical approximation for <b>s</b> of up to a few milimeters a simple relation &delta;BFL~-10ms/F<sub>1</sub> should suffice (the primary shift <b>s</b> is negative for the reduction in secondary to primary separation, giving a positive change - i.e. extension - in the back focal length &delta;BFL; <b>m</b> is the original secondary magnification, and F<sub>1</sub> the primary's focal ratio number f<sub>1</sub>/D). New secondary magnification is in close proportion to the length of converging beam from the secondary to its new focus vs. original length. </font> <p align="justify" style="line-height: 150%"> Despace also induces coma<font face="Verdana" size="2">, insignificant in comparison. According to Schroeder's relation for angular transverse coma created by despace (p114), its ratio to the coma of a classical Cassegrain (or a paraboloid of identical F-number) is given by -[(2m</font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2">-1)(m-&#946;)+(2m(m+1)]ms/(1+&#946;). The minus sign indicates that this coma adds to the system coma for negative, and subtracts for positive values of <b>s</b>; in aplanatic two-mirror systems it represents the amount of system coma.</font><p align="justify" style="line-height: 150%"> <font face="Verdana" size="2"><b>Eq. 91.3</b> shows that Dall-Kirkham with K</font><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font><font face="Verdana" size="2">=0 has significantly lower sensitivity to despace compared to both, classical and aplanatic Cassegrain (Ritchey-Chretien), with the latter being the most sensitive. However, despace sensitivity is lowest in the Gregorian arrangement, for which the sum in the brackets is smaller than in a comparable Dall-Kirkham, due to numerically low negative secondary conic of the former.</font> <p align="justify" style="line-height: 150%"> <font face="Verdana" size="2">Note that the separation change <b>s</b> is negative when the mirror separation decreases, resulting in larger minimum relative secondary size <b>k'</b> (primary's f.l. is numerically negative, according to the <a href="terms_and_conventions.htm">sign convention</a>). From <b>Eq. 91.4</b> it is easy to see that larger than optimum mirror separation (i.e. positive <b>s</b>) induces under-correction (positive in sign wavefront error at the best focus), and that smaller mirror separation (negative <b>s</b>) induces over-<a name="correction">correction</a>.</font><p align="justify" style="line-height: 150%"> Plots below show the P-V wavefront error (<font face="Tahoma">&#955;</font>=550nm) due to miscollimation for selected two mirror systems: <font face="Verdana" size="2">3</font>/3.33/10 and <font face="Verdana" size="2"> f</font>/4/16 each, classical Cassegrain (Cass) and Dall-Kirkham (DK), as well as for <font face="Verdana" size="2">f</font>/2.5/7.5 and <font face="Verdana" size="2"> f</font>/3.33/10 Ritchey-Chretien (RC). The <font face="Verdana" size="2"> f</font>/10 systems are for direct comparison. Tilt-induced coma (left) is independent of the secondary conic, hence it is identical for any two-mirror arrangement with given secondary magnification (<b>m</b>), aperure (<b>D</b>, 200mm here), and back focal length (<font face="Verdana" size="2"><b>&#951;</b>, 0.2 for all systems</font>). At <font face="Verdana" size="2">f</font>/10, both decenter and despace sensitivity are significantly lower in the DK than Cassegrain and RC, while RC is moderately more sensitive than Cassegrain. At the typical focal ratio, however, (~<font face="Verdana" size="2">f</font>/8 RC and ~<font face="Verdana" size="2">f</font>/15 Cassegrain) Cassegrain is significantly less sensitive. Note that, as mentioned before, decenter and despace error are independent of aperture for the deviation expressed in measuring units (if expressed in mm, the resulting wavefront error is also in mm). <p align="center" style="text-indent:0"> <font face="Verdana" size="2"> <img border="0" src="images/miscollimation.PNG" width="758" height="448"><br> &nbsp;</font></font><p align="center" style="text-indent: 0"> <font face="Trebuchet MS" color="#336699"><a name="Close_objects_error">Close objects error</a></font><font size="2"><p align="justify" style="line-height: 150%"><font face="Verdana" size="2"> For relatively close objects, when magnification of the primary - given by m</font> <b><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font></b> <font face="Verdana" size="2">=-f</font><b><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font></b> <font face="Verdana" size="2">/(o-f</font><b><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font></b> <font face="Verdana" size="2">), <b>f</b></font><b><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font></b><font face="Verdana" size="2"> being the primary focal length and <b>o</b> the object distance - is appreciably greater than zero, <a href="lower_order_spherical.htm#Fortunately">Eq. 9</a> applies to both mirrors. The aberration contribution of the primary changes from (K</font><b><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font></b><font face="Verdana" size="2">+1) into [K</font><b><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font></b><font face="Verdana" size="2">+(1-2&#968;)</font> <font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2">], with &#968;=</font>f<b><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font></b><font face="Verdana" size="2">/o being the primary focal length in units of the object distance. Also, due to the extended converging cone of the primary, both, relative height of the marginal ray at the secondary <b>k</b> and secondary magnification <b>m</b> increase. The height <b>k</b> becomes k'=(1-&#968;)k+&#968;, and secondary magnification <b>m</b> becomes m'=&#961;'/(&#961;'-k'), with &#961;'=(1-&#968;)&#961;. For the secondary, the effective primary focal ratio is now F</font><b><font face="Terminal" size="1"><span style="vertical-align: sub">1</span></font></b> <font face="Verdana" size="2">/(1-&#968;). With these changes, after substituting <b>k'</b>, </font><b>&#961;<font face="Verdana" size="2">'</font></b><font face="Verdana" size="2"> and <b>m'</b> for <b>k</b>, </font><b>&#961;</b><font face="Verdana" size="2"> and <b>m</b> in <a href="two_mirror_telescope_aberrations.htm#This_relation">Eq. 81</a> (bottom) the system P-V wavefront error of spherical aberration at the best focus becomes:</font><p align="center" style="text-indent: 0"> <img border="0" src="images/eq115.PNG" width="533" height="60"><p align="justify" style="line-height:150%"> <font face="Verdana" size="2">Since the secondary conic <b>K</b></font><b><font face="Terminal" size="1"><span style="vertical-align: sub">2</span></font></b><font size="2" face="Verdana"> is a factor for the aberration contribution of the secondary, sensitivity of two-mirror telescopes to reduction in object distance varies with the system type. Plots below, based on <b>Eq. 92</b>, show spherical aberration induced by close object observing.</font><p align="center" style="text-indent:0"> <img border="0" src="images/DISTANCE.PNG" width="711" height="466"><p align="justify" style="text-indent:22px; line-height:150%"> <font size="2" face="Verdana"> With classical Cassegrain (left), both primary and secondary induce zero spherical aberration with object at infinity. As object distance diminishes, paraboloidal primary induced overcorrection, but the hyperboloidal secondary induces even more undercorrection, at a higher rate, resulting in the increase of system undercorrection. The two hyperboloidal mirrors of the Ritchey-Chretien (RC), figured to correct coma, each induces spherical aberration that exactly offsets for object at infinity. For closer objects, primary's overcorrection increases more slowly than secondary's undercorrection, resulting in system undercorrection. RC error is significantly larger than for the Cassegrain, mainly due to the faster primary.</font><p align="justify" style="text-indent:22px; line-height:150%"> <font size="2" face="Verdana"> Similarly, undercorrection of Dall-Kirkham (DK) ellipsoidal primary is offset by overcorrection of the secondary for object at infinity. For closer objects, aberration contribution by both mirrors diminishes, but more slowly for the secondary, with the system becoming increasingly overcorrected. Error induced to the DK is significantly greater than that in the Cassegrain, approaching 1/4 wave at the limit of useable focus range. </font><p align="center" style="text-indent: 0"> <br> <span style="font-weight: 400"> <font size="2" face="Arial" color="#336699">&#9668;</font></span><font face="Verdana" size="2"> <a href="loveday_two-mirror_telescope.htm">8.2.5. Loveday telescope</a>&nbsp;</font><font size="2" face="Arial"><font color="#C0C0C0">&nbsp; &#9616;</font>&nbsp;&nbsp;&nbsp; </font><font face="Verdana" size="2"> <a href="three-mirror.htm">8.3. Three-mirror telescopes</a> </font> <font face="Arial" size="2" color="#336699">&#9658;</font><p align="center" style="text-indent: 0"> <a href="index.htm">Home</a>&nbsp; |&nbsp; <a href="mailto:webpub@fastmail.com">Comments</a><p>&nbsp;</td> </tr> </table> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10