CINXE.COM
Optical terms and conventions
<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns="http://www.w3.org/TR/REC-html40"> <head><meta name="viewport" content="width=device-width, initial-scale=1"> <meta http-equiv="Content-Type" content="text/html; charset=windows-1252"> <meta http-equiv="Content-Language" content="en-us"> <title>Optical terms and conventions</title> <meta name="keywords" content="optical terms and conventions, sign convention, Cartesian coordiante system"> <meta name="description" content="Terms and conventions for presenting and calculating optical aberrations in a telescope."> <style fprolloverstyle>A:hover {color: #FF8204} </style> </head> <body link="#0000FF" vlink="#993399" alink="#FF0000" style="font-family: Verdana; font-size: 10px" bgcolor="#F4F4DF"> <div align="center"> <table border="0" cellpadding="0" cellspacing="0" width="800" height="770" bgcolor="#FFE066"> <!-- MSTableType="layout" --> <tr> <td valign="top" height="704" style="text-indent: 21; padding-left:21px; padding-right:21px; padding-top:21px; padding-bottom:3px; border-left-style:solid; border-left-width:0px; border-right-style:solid; border-right-width:0px; border-top-style:solid; border-top-width:0px"> <!-- MSCellType="ContentBody" --> <p align="center" style="text-indent: 0"> <b><font size="3" color="#518FBD" face="Verdana">telescope</font></b><font face="Microsoft Sans Serif" size="5" color="#518FBD">Ѳ</font><b><font size="3" face="Verdana" color="#518FBD">ptics.net</font><font face="Verdana" color="#95AAA6" size="3"> </font></b> <font size="1" color="#95AAA6">▪</font><font color="#95AAA6"><b> </b> </font><b><font face="Verdana" color="#95AAA6" size="3"> </font></b> <font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font> <font size="1" color="#95AAA6">▪</font><font face="Verdana" color="#95AAA6"><b><font size="2"> </font></b><font size="1"> </font></font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪▪▪▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font face="Verdana" color="#518FBD"><b><font size="2"> </font></b></font><font face="Verdana"><span style="font-weight: 400"><font size="2"><a href="index.htm#TABLE_OF_CONTENTS">CONTENTS</a></font></span></font><font size="2"><span style="font-weight: 400"><font size="2" face="Arial"><br> </font></span></p> <p align="center" style="text-indent: 0"> <span style="font-weight: 400"> <font size="2" face="Arial" color="#336699">◄</font></span><font face="Verdana" size="2"> <a href="conic_surface_aberrations.htm">3.3.2. Aberrations of the conic surface</a> </font><font size="2" face="Arial"><font color="#C0C0C0"> ▐</font> <a href="aberration_function.htm"> </a> </font><font face="Verdana" size="2"> <a href="aberration_function.htm">3.5. Aberration function</a> </font> <font face="Arial" size="2" color="#336699">►</font><br> </p> </font> <h1 align="center" style="text-indent: 0"> <font face="Trebuchet MS" size="3" color="#336699"> <span style="text-transform: uppercase"><b>3.4. Terms and conventions</b></span></font></h1> <font size="2"><p align="justify" style="line-height: 150%"> For understanding text related to optical aberrations, it is necessary to know the meaning of terms used in their description and calculation. Part of the latter is sign convention, the purpose of which is to assign to every parameter related to a final determination of the optical path length for any point in the pupil its appropriate numerical value. This ensures that all the contributions to the path length will be properly combined, to result in an accurate description of the wavefront form and directly related to it orientation of individual rays.<p align="justify" style="line-height: 150%"> <font face="Verdana" size="2">Basic terms and parameters used in calculation and description of primary aberrations, including sign convention, are given in <b>FIG. 25-26</b>.</font><div style="padding-left:3px; padding-right:3px; background-color:#FFFFFF"> <p align="center" style="text-indent: 0"> <b> <font face="Verdana" size="2"> <img border="0" src="images/exp.PNG" width="627" height="244" hspace="55" vspace="3"></font></b> <b> <font face="Arial" size="2">FIGURE </font><font face="Arial">25</font></b><font face="Arial" size="2">: Telescope's<font color="#000080"> <b>aperture stop</b></font> is<font color="#000080"> </font>either an opening, or a surface that sets physical boundaries determining the amount of light reaching the image. The image of the aperture stop formed by a system element preceding it in the optical train is <font color="#000080"> <b>entrance pupil</b></font>, and the image of the aperture stop formed by the element or surface fallowing it in the optical train is <font color="#000080"><b>exit pupil</b></font>. Alternately, entrance pupil is the apparent aperture as seen from object space, and exit pupil is the apparent aperture seen from image space (when no optical element precedes aperture stop, it coincides with entrance pupil). The two pupils coincide with the aperture stop - and each other - for a single mirror with the stop at the surface (also, for all practical purposes, for a single lens objective with the stop at the front surface). The two pupils coincide for the stop at the mirror's center of curvature. Rays from the boundaries of the aperture stop coming to the final focus appear as if coming from the boundaries of the exit pupil, and the <b> <font color="#000080">chief ray</font></b> <b>CR</b> - the one passing through the center of the aperture stop - appears to be coming from the exit pupil center. These properties make the exit pupil an important element in the aberration calculation, since the cause of wavefront aberrations - optical path difference of in-phase wavefront points with respect to the central point on the chief ray - is directly determined by its location and position vs. optical axis. The above image illustrates a concave mirror with the <i>aperture stop</i> somewhat inside the mirror focus. The mirror images the aperture stop into the <i>exit pupil</i> <b>ExP</b> which appears to be the opening from which the rays converge (exit) toward the image. In two-mirror systems, secondary forms the exit pupil, as its image of the primary mirror, with the image being smaller than the aperture. The two pupils' size ratio is given by <b> <font color="#000080">pupil magnification</font></b> <b>m</b>, as ExP=mEnP. Actual size of the exit pupil may be a factor in some calculations. In principle, it is irrelevant, due to the change in the radial coordinate being offset by that in the axial coordinate. Thus, while formally the wavefront is evaluated at the exit pupil, the coordinates used hereafter are, <a name="conveniently,">conveniently,</a> those of the aperture stop, whether the two coincide, or not. </font></div> </div> <div style="padding-left:4px; padding-right:3px; background-color:#FFFFFF"> <p align="center" style="text-indent: 0"> <img border="0" src="images/7B.PNG" width="711" height="255"><br> <b> <font face="Arial" size="2">FIGURE </font><font face="Arial">26</font></b><font face="Arial" size="2">: Basic imaging terms and parameters defined in the 3-dimensional<b><font color="#000080"> </font></b>right-hand Cartesian<font color="#000080"><b> coordinate system</b></font>. All lengths, as well as the indici of reflection and refraction, are positive in the directions of the<b> z</b>, <b>x</b> and <b>y</b> coordinate axes arrows, negative in the opposite direction. Angles are positive when opening clockwise from the axis, negative when opening counterclockwise. The <b> <font color="#000080">exit pupil</font></b> <b>ExP</b> from which the wavefront, if perfect, converges to the <b><font color="#000080">Gaussian - </font></b> or<b><font color="#000080"> paraxial - focus</font></b> <b>GF</b> in the image plane, at the distance equal to the focal length <b>f</b> for axial objects at infinity. The </font> <b><font color="#000080" face="Arial" size="2">pupil radius</font></b><font face="Arial" size="2"> <b>d</b> is the unit length for the<font color="#000080"><b> normalized height in the pupil plane</b></font> <b>ρ</b>, ranging from 0 to 1. The <font color="#000080"> <b>pupil angle </b> </font> </font> <font color="#000080"> <b> <font face="Tahoma" size="2"> θ</font></b></font><font face="Arial" size="2"> ranges from 0 to 2π radians (360 degrees), measured from <b>y</b>+ axis counterclockwise; it is a factor with which optical path difference vary for asymmetrical aberrations. The <font color="#000080"><b>axis of aberration</b></font> is determined by the spatial orientation of the <b><font color="#000080">chief ray</font></b> <b>CR</b> that passes through the pupil center at an inclination angle </font> <font size="2" face="Lucida Console">α</font><b><font size="2" face="Arial"> </font></b> <font face="Arial" size="2"> - the <b><font color="#000080">field angle</font></b> - in the plane determined by the chief ray and optical axis, defined as <b> <font color="#000080">tangential plane</font></b>. <b> <font color="#000080">Sagittal plane</font></b> is orthogonal to the tangential plane, also containing the chief ray. Point of intersection of the chief ray and image surface determines <font color="#000080"> <b> Gaussian image point</b></font>, and its height <font color="#000080"> <b> h </b></font>(for simplicity, the image surface is shown coinciding with the <b>xy</b> plane; actual Gaussian image points lie on the <a href="curvature.htm">Petzval surface</a>); with the Gaussian focus point, it determines the<font color="#000080"> <b> <br> axis of aberration</b></font>.</font></div> </div> <p align="justify" style="line-height: 150%"> A quick summary of the sign convention is as follows:<p align="justify" style="line-height: 150%"> ▪ <b><font color="#000080">optical axis</font></b> of a centered system coincides with the horizontal (<b>z</b>) axis of the coordinate system, with zero coinciding with the center of the aperture stop; <p align="justify" style="line-height: 150%"> ▪ the <b><font color="#000080">object</font></b> is to the left of the optical system so that the incident light travels from left to right; object distance is measured from the center of the aperture stop, thus numerically negative; <p align="justify" style="line-height: 150%"> ▪ distance from surface to a displaced <font color="#000080"> <b>aperture stop</b> is</font> numerically negative for the stop to the left, positive for the stop to the right of the surface (for instance, it is negative for mirror-to-stop separation in the Schmidt camera, with the stop at the corrector, and positive for stop-to-secondary separation in a two-mirror telescope, the primary being the aperture stop for the secondary);<p align="justify" style="line-height: 150%"> ▪ surface <b><font color="#000080">radius of curvature</font></b> is positive if its center lies to the right from a surface, negative if the center is to the left<p align="justify" style="line-height: 150%"> ▪ distance to the <b><font color="#000080">image</font></b> formed by the optical system is positive if it is to the right of the image forming element, and negative if it is to the left from it<p align="justify" style="line-height: 150%"> ▪ distance from the image to the <b><font color="#000080">exit pupil</font></b> is negative for exit pupil to the right, postive for exit pupil to the left of the image<p align="justify" style="line-height: 150%"> ▪ point <b><font color="#000080">height</font></b> is positive if above the optical axis, negative if below<p align="justify" style="line-height: 150%"> ▪ <b><font color="#000080">angle</font></b> is positive if opening upwards from the optical axis, negative if opening down;<p align="justify" style="line-height: 150%"> In short, the sign convention is consistent with the coordinate frame. More complex, or specialized texts often find it convenient to deviate from the sign convention consistency for one or another reason, readjusting affected parameters accordingly with respect to the sign applied. On the other hand, not a few readers find sign inconsistency to be the greatest convenience.<p align="justify" style="line-height: 150%"> <font face="Verdana" size="2">With the general parameters numerically determined, primary aberrations of an optical surface can be described either in their wavefront or ray form. The former are determined by <font color="#000080"><b>aberration coefficients</b></font> which, when multiplied with surface diameter and angle of incidence (for abaxial aberrations), specify the size of wavefront deviation. The latter are determined by their geometric size in the image plane, or <b> <font color="#000080">transverse aberration</font></b>. Just as the wavefront and the rays themselves, the two are directly related, and are expressed with similar groups of parameters. These parameters are based on object properties (distance, height), surface properties (diameter, radius of curvature, conic) and image properties, as determined by the <a href="system.htm#enough_that">Gaussian approximation</a>. </font> <p align="justify" style="line-height: 150%"> Follows more detailed overview of the usual forms of presentation of wavefront aberrations - so called aberration function. It will first present the general form of aberration coefficients for three point-image quality, their relation to wavefront and transverse aberration, and then continue to the aggregate wavefront aberration in its general form, its relation to Seidel aberration expressions and lower-order Zernike aberration form.<br> <p align="center"> <span style="font-weight: 400"> <font size="2" face="Arial" color="#336699">◄</font></span><font face="Verdana" size="2"> <a href="conic_surface_aberrations.htm">3.3.2. Aberrations of the conic surface</a> </font><font size="2" face="Arial"><font color="#C0C0C0"> ▐</font> </font><font face="Verdana" size="2"> <a href="aberration_function.htm">3.5. Aberration function</a> </font> <font face="Arial" size="2" color="#336699">►</font><br> <p align="center" style="text-indent: 0"> <a href="index.htm">Home</a> | <a href="mailto:webpub@fastmail.com">Comments</a><p> </td> </tr> </table> </div> </body> </html>