CINXE.COM
K. KANNAN | SASTRA University - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>K. KANNAN | SASTRA University - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="fzC5d7vRKvd0qldzTKhnH39An9SXLaGDEb4NxrfKsVrvUEMVFfz5arXGcaJf40YwYmlVxItLQUsA6jRYNC2PYQ" /> <link rel="stylesheet" href="//a.academia-assets.com/assets/wow-3d36c19b4875b226bfed0fcba1dcea3f2fe61148383d97c0465c016b8c969290.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/social/home-79e78ce59bef0a338eb6540ec3d93b4a7952115b56c57f1760943128f4544d42.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/single_work_page/figure_carousel-2004283e0948681916eefa74772df54f56cb5c7413d82b160212231c2f474bb3.css" media="all" /><script type="application/ld+json">{"@context":"https://schema.org","@type":"ProfilePage","mainEntity":{"@context":"https://schema.org","@type":"Person","name":"K. KANNAN","url":"https://sastra.academia.edu/KKANNAN","image":"https://0.academia-photos.com/4524623/1868032/2218285/s200_k..kannan.jpg","sameAs":[]},"dateCreated":"2013-06-12T19:45:45-07:00","dateModified":"2023-12-03T05:54:20-08:00","name":"K. KANNAN","description":"","image":"https://0.academia-photos.com/4524623/1868032/2218285/s200_k..kannan.jpg","thumbnailUrl":"https://0.academia-photos.com/4524623/1868032/2218285/s65_k..kannan.jpg","primaryImageOfPage":{"@type":"ImageObject","url":"https://0.academia-photos.com/4524623/1868032/2218285/s200_k..kannan.jpg","width":200},"sameAs":[],"relatedLink":"https://www.academia.edu/115145853/Soft_Generalized_Closed_Sets_in_Soft_Topological_Spaces"}</script><link rel="stylesheet" href="//a.academia-assets.com/assets/design_system/heading-95367dc03b794f6737f30123738a886cf53b7a65cdef98a922a98591d60063e3.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/design_system/button-8c9ae4b5c8a2531640c354d92a1f3579c8ff103277ef74913e34c8a76d4e6c00.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/design_system/body-170d1319f0e354621e81ca17054bb147da2856ec0702fe440a99af314a6338c5.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/single_work_page/figure_carousel-2004283e0948681916eefa74772df54f56cb5c7413d82b160212231c2f474bb3.css" media="all" /><style type="text/css">@media(max-width: 567px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 32px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 30px;--type-sans-serif-lg-line-height: 36px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 30px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 24px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 24px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 18px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 32px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 20px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 32px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 40px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 24px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 26px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 48px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 52px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 48px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 58px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 80px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 64px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}@media(min-width: 568px)and (max-width: 1279px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 42px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 32px;--type-sans-serif-lg-line-height: 36px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 34px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 28px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 25px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 20px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 30px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 24px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 40px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 48px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 28px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 32px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 58px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 68px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 74px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 82px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 104px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 80px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}@media(min-width: 1280px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 42px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 32px;--type-sans-serif-lg-line-height: 38px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 34px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 28px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 25px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 20px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 30px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 24px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 40px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 48px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 28px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 32px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 58px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 68px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 74px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 82px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 152px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 80px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}</style><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" href="//a.academia-assets.com/assets/design_system/common-57f9da13cef3fd4e2a8b655342c6488eded3e557e823fe67571f2ac77acd7b6f.css" media="all" /> <meta name="author" content="k. kannan" /> <meta name="description" content="K. KANNAN, SASTRA University: 38 Followers, 3 Following, 15 Research papers. Research interests: Bitopological Spaces, General Topology, and Mathematics." /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '96b2434373b3f00cb5f70e21558f98ff585722bd'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":13915,"monthly_visitors":"139 million","monthly_visitor_count":139296536,"monthly_visitor_count_in_millions":139,"user_count":286115267,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1743484189000); window.Aedu.timeDifference = new Date().getTime() - 1743484189000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link rel="preload" href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" as="style" onload="this.rel='stylesheet'"> <link rel="stylesheet" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" media="all" /> <link rel="stylesheet" href="//a.academia-assets.com/assets/academia-9982828ed1de4777566441c35ccf7157c55ca779141fce69380d727ebdbbb926.css" media="all" /> <link rel="stylesheet" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" media="all" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-d4c85e621b8bf4de9d00992b6e343550022a135eb512ccf66e7b5d8a67a65f0d.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-e94cf4c6a5cc17bae92cd463c6a27ba854937d08345e4010eca69ba0053b7599.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://sastra.academia.edu/KKANNAN" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-6f7b34948ff8bae142425d04a5080634d3d6bb001f584488f23ed7dbbf59ef0f.js" defer="defer"></script><script>$viewedUser = Aedu.User.set_viewed( {"id":4524623,"first_name":"K.","middle_initials":null,"last_name":"KANNAN","page_name":"KKANNAN","domain_name":"sastra","created_at":"2013-06-12T19:45:45.890-07:00","display_name":"K. KANNAN","url":"https://sastra.academia.edu/KKANNAN","photo":"https://0.academia-photos.com/4524623/1868032/2218285/s65_k..kannan.jpg","has_photo":true,"department":{"id":553272,"name":"Mathematics","url":"https://sastra.academia.edu/Departments/Mathematics/Documents","university":{"id":3590,"name":"SASTRA University","url":"https://sastra.academia.edu/"}},"position":"Faculty Member","position_id":1,"is_analytics_public":true,"interests":[{"id":378278,"name":"Bitopological Spaces","url":"https://www.academia.edu/Documents/in/Bitopological_Spaces"},{"id":2341,"name":"General Topology","url":"https://www.academia.edu/Documents/in/General_Topology"},{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":858386,"name":"Generalized Closed Sets","url":"https://www.academia.edu/Documents/in/Generalized_Closed_Sets"},{"id":348,"name":"Geometry And Topology","url":"https://www.academia.edu/Documents/in/Geometry_And_Topology"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://sastra.academia.edu/KKANNAN","location":"/KKANNAN","scheme":"https","host":"sastra.academia.edu","port":null,"pathname":"/KKANNAN","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-da26614d-e2d6-49ff-ab2d-c3be6cd905ec"></div> <div id="ProfileCheckPaperUpdate-react-component-da26614d-e2d6-49ff-ab2d-c3be6cd905ec"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="K. KANNAN" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/4524623/1868032/2218285/s200_k..kannan.jpg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">K. KANNAN</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://sastra.academia.edu/">SASTRA University</a>, <a class="u-tcGrayDarker" href="https://sastra.academia.edu/Departments/Mathematics/Documents">Mathematics</a>, <span class="u-tcGrayDarker">Faculty Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="K." data-follow-user-id="4524623" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="4524623"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">38</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">3</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-author</p><p class="data">1</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="user-bio-container"><div class="profile-bio fake-truncate js-profile-about" style="margin: 0px;"><b>Address: </b>Department of Mathematics, Srinivasa Ramanujan Centre, SASTRA University, Kumbakonam - 612 001<br /><div class="js-profile-less-about u-linkUnstyled u-tcGrayDarker u-textDecorationUnderline u-displayNone">less</div></div></div><div class="suggested-academics-container"><div class="suggested-academics--header"><h3 class="ds2-5-heading-sans-serif-xs">Related Authors</h3></div><ul class="suggested-user-card-list" data-nosnippet="true"><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://valdosta.academia.edu/ShaunAult"><img class="profile-avatar u-positionAbsolute" alt="Shaun V Ault related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/27428/8957/3424372/s200_shaun.ault.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://valdosta.academia.edu/ShaunAult">Shaun V Ault</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Valdosta State University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://unizg.academia.edu/AndrejDujella"><img class="profile-avatar u-positionAbsolute" alt="Andrej Dujella related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/29857/9709/9189/s200_andrej.dujella.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://unizg.academia.edu/AndrejDujella">Andrej Dujella</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Zagreb</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://ksu.academia.edu/DavidSeamon"><img class="profile-avatar u-positionAbsolute" alt="David Seamon related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/93547/25922/29662134/s200_david.seamon.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://ksu.academia.edu/DavidSeamon">David Seamon</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Kansas State University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://cria.academia.edu/ArmandoMarquesGuedes"><img class="profile-avatar u-positionAbsolute" alt="Armando Marques-Guedes related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/134181/3401094/148494125/s200_armando.marques-guedes.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://cria.academia.edu/ArmandoMarquesGuedes">Armando Marques-Guedes</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">UNL - New University of Lisbon</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://knust.academia.edu/WilliamObengDenteh"><img class="profile-avatar u-positionAbsolute" alt="William Obeng-Denteh related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://knust.academia.edu/WilliamObengDenteh">William Obeng-Denteh</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Kwame Nkrumah University of Science and Technology</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://metode.academia.edu/JosepGuia"><img class="profile-avatar u-positionAbsolute" alt="Josep Guia related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/3136110/1030833/1288008/s200_josep.guia.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://metode.academia.edu/JosepGuia">Josep Guia</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Valencia</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://djasljsa.academia.edu/AdnanAwad"><img class="profile-avatar u-positionAbsolute" alt="Adnan Awad related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/17255937/5084286/5829848/s200_adnan.awad.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://djasljsa.academia.edu/AdnanAwad">Adnan Awad</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">The University Of Jordan</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://shams.academia.edu/MRaafat"><img class="profile-avatar u-positionAbsolute" alt="Mahmoud Raafat related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/18702462/5202094/5954101/s200_mahmoud.raafat.jpg_oh_444a0f1e56b8ee38c98f115b90bb8788_oe_54b3ef6f___gda___1421966701_496e89d5627cea3471875c2d2b8dd1a8" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://shams.academia.edu/MRaafat">Mahmoud Raafat</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Ain Shams University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://yildiz.academia.edu/NasreenKausar"><img class="profile-avatar u-positionAbsolute" alt="Nasreen Kausar related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/29298824/8376101/32886878/s200_nasreen.kausar.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://yildiz.academia.edu/NasreenKausar">Nasreen Kausar</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Yildiz Technical University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://bub.academia.edu/MedhaHuilgol"><img class="profile-avatar u-positionAbsolute" alt="Medha Huilgol related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://bub.academia.edu/MedhaHuilgol">Medha Huilgol</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Bangalore University</p></div></div></ul></div><style type="text/css">.suggested-academics--header h3{font-size:16px;font-weight:500;line-height:20px}</style><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="4524623" href="https://www.academia.edu/Documents/in/Bitopological_Spaces"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://sastra.academia.edu/KKANNAN","location":"/KKANNAN","scheme":"https","host":"sastra.academia.edu","port":null,"pathname":"/KKANNAN","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Bitopological Spaces"]}" data-trace="false" data-dom-id="Pill-react-component-48ec7ead-5286-452f-89fc-33937b99bd7d"></div> <div id="Pill-react-component-48ec7ead-5286-452f-89fc-33937b99bd7d"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="4524623" href="https://www.academia.edu/Documents/in/General_Topology"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["General Topology"]}" data-trace="false" data-dom-id="Pill-react-component-0f433fd6-a5df-40ce-a74c-1bc537a14273"></div> <div id="Pill-react-component-0f433fd6-a5df-40ce-a74c-1bc537a14273"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="4524623" href="https://www.academia.edu/Documents/in/Mathematics"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Mathematics"]}" data-trace="false" data-dom-id="Pill-react-component-e1b5215b-43aa-4ee5-8b8a-915ae5ea76a6"></div> <div id="Pill-react-component-e1b5215b-43aa-4ee5-8b8a-915ae5ea76a6"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="4524623" href="https://www.academia.edu/Documents/in/Generalized_Closed_Sets"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Generalized Closed Sets"]}" data-trace="false" data-dom-id="Pill-react-component-a8e9b566-a38b-4990-aa2b-b5f983eaa3f0"></div> <div id="Pill-react-component-a8e9b566-a38b-4990-aa2b-b5f983eaa3f0"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="4524623" href="https://www.academia.edu/Documents/in/Geometry_And_Topology"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Geometry And Topology"]}" data-trace="false" data-dom-id="Pill-react-component-bcc31e96-dbec-428f-be4e-4a753d72e173"></div> <div id="Pill-react-component-bcc31e96-dbec-428f-be4e-4a753d72e173"></div> </a></div></div><div class="external-links-container"><ul class="profile-links new-profile js-UserInfo-social"><li class="profile-profiles js-social-profiles-container"><i class="fa fa-spin fa-spinner"></i></li></ul></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by K. KANNAN</h3></div><div class="js-work-strip profile--work_container" data-work-id="115145853"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/115145853/Soft_Generalized_Closed_Sets_in_Soft_Topological_Spaces"><img alt="Research paper thumbnail of Soft Generalized Closed Sets in Soft Topological Spaces" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Soft Generalized Closed Sets in Soft Topological Spaces</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115145853"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115145853"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115145853; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115145853]").text(description); $(".js-view-count[data-work-id=115145853]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115145853; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115145853']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=115145853]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115145853,"title":"Soft Generalized Closed Sets in Soft Topological Spaces","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/115145853/Soft_Generalized_Closed_Sets_in_Soft_Topological_Spaces","translated_internal_url":"","created_at":"2024-02-19T21:54:30.562-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4524623,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Soft_Generalized_Closed_Sets_in_Soft_Topological_Spaces","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":4524623,"first_name":"K.","middle_initials":null,"last_name":"KANNAN","page_name":"KKANNAN","domain_name":"sastra","created_at":"2013-06-12T19:45:45.890-07:00","display_name":"K. KANNAN","url":"https://sastra.academia.edu/KKANNAN"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":143596,"name":"Soft Set","url":"https://www.academia.edu/Documents/in/Soft_Set"},{"id":782638,"name":"Topological Space","url":"https://www.academia.edu/Documents/in/Topological_Space"},{"id":2254216,"name":"Closed Set","url":"https://www.academia.edu/Documents/in/Closed_Set"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-115145853-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="2941107"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/2941107/Some_types_of_separation_axioms_in_topological_spaces"><img alt="Research paper thumbnail of Some types of separation axioms in topological spaces " class="work-thumbnail" src="https://attachments.academia-assets.com/30899381/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/2941107/Some_types_of_separation_axioms_in_topological_spaces">Some types of separation axioms in topological spaces </a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://oud.academia.edu/AliasBKhalaf">Alias B. Khalaf</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://sastra.academia.edu/KKANNAN">K. KANNAN</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper, we introduce some types of separation axioms via ω-open sets, namely ω-regular, co...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper, we introduce some types of separation axioms via ω-open sets, namely ω-regular, completely ω-regular and ω-normal space and investigate their fundamental properties, relationships and characterizations. The well-known Urysohn's Lemma and Tietze Extension Theorem are generalized to ω-normal spaces. We improve some known results. Also, some other concepts are generalized and studied via ω-open sets.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f925aee8cb14edd466204dec4c93cb00" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":30899381,"asset_id":2941107,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/30899381/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="2941107"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="2941107"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 2941107; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=2941107]").text(description); $(".js-view-count[data-work-id=2941107]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 2941107; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='2941107']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f925aee8cb14edd466204dec4c93cb00" } } $('.js-work-strip[data-work-id=2941107]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":2941107,"title":"Some types of separation axioms in topological spaces ","translated_title":"","metadata":{"grobid_abstract":"In this paper, we introduce some types of separation axioms via ω-open sets, namely ω-regular, completely ω-regular and ω-normal space and investigate their fundamental properties, relationships and characterizations. The well-known Urysohn's Lemma and Tietze Extension Theorem are generalized to ω-normal spaces. We improve some known results. Also, some other concepts are generalized and studied via ω-open sets.","grobid_abstract_attachment_id":30899381},"translated_abstract":null,"internal_url":"https://www.academia.edu/2941107/Some_types_of_separation_axioms_in_topological_spaces","translated_internal_url":"","created_at":"2013-03-09T02:38:22.338-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":817447,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":20391846,"work_id":2941107,"tagging_user_id":817447,"tagged_user_id":null,"co_author_invite_id":4597624,"email":"d***h@yahoo.com","display_order":0,"name":"Halgwrd Mohammed","title":"Some types of separation axioms in topological spaces "},{"id":20391847,"work_id":2941107,"tagging_user_id":817447,"tagged_user_id":4524623,"co_author_invite_id":null,"email":"A***N@REDIFFMAIL.COM","affiliation":"SASTRA University","display_order":4194304,"name":"K. KANNAN","title":"Some types of separation axioms in topological spaces "},{"id":20391848,"work_id":2941107,"tagging_user_id":817447,"tagged_user_id":40630373,"co_author_invite_id":null,"email":"s***h@yahoo.com","affiliation":"University of Sulaimani","display_order":6291456,"name":"halgwrd darwesh","title":"Some types of separation axioms in topological spaces "},{"id":20391849,"work_id":2941107,"tagging_user_id":817447,"tagged_user_id":12246470,"co_author_invite_id":null,"email":"k***h@gmail.com","display_order":7340032,"name":"Kamal AR","title":"Some types of separation axioms in topological spaces "}],"downloadable_attachments":[{"id":30899381,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/30899381/thumbnails/1.jpg","file_name":"Some_ypes_of_Separaion_Axioms.pdf","download_url":"https://www.academia.edu/attachments/30899381/download_file","bulk_download_file_name":"Some_types_of_separation_axioms_in_topol.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/30899381/Some_ypes_of_Separaion_Axioms-libre.pdf?1392063546=\u0026response-content-disposition=attachment%3B+filename%3DSome_types_of_separation_axioms_in_topol.pdf\u0026Expires=1743487789\u0026Signature=PgLhyeJoR9en27J5B2J7a~kGCLfDFhmfOAw94idA0TM7okiS-F3orsJieZyb9cW0lsHq8FKaU8NelpTnOXk509kXUfKr4h9CeMc8kOu56HOkh34Q98XSIyEiBdzMOoX8oMhclOxI0fNkppu4W7ixusjOB2rgaWlDKxVgcgRzZ0u-890KKqQfVo0cneZX3I5xkmSO78vFl3KN-8-uJUjgNnVbDlrupsafHQRyXEFlekBPnUTmaYVfIOY5yCXrM4SuV4Ci7QdJ6tV2mKDdycepnLRBxRqAB3mNZqiPbh6tDASCn~xbhVMa2l7YNficIawZGNM5fSiyYUkxWKEqZA2xJA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Some_types_of_separation_axioms_in_topological_spaces","translated_slug":"","page_count":24,"language":"en","content_type":"Work","summary":"In this paper, we introduce some types of separation axioms via ω-open sets, namely ω-regular, completely ω-regular and ω-normal space and investigate their fundamental properties, relationships and characterizations. The well-known Urysohn's Lemma and Tietze Extension Theorem are generalized to ω-normal spaces. We improve some known results. Also, some other concepts are generalized and studied via ω-open sets.","owner":{"id":817447,"first_name":"Alias B.","middle_initials":null,"last_name":"Khalaf","page_name":"AliasBKhalaf","domain_name":"oud","created_at":"2011-10-06T00:15:49.372-07:00","display_name":"Alias B. Khalaf","url":"https://oud.academia.edu/AliasBKhalaf"},"attachments":[{"id":30899381,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/30899381/thumbnails/1.jpg","file_name":"Some_ypes_of_Separaion_Axioms.pdf","download_url":"https://www.academia.edu/attachments/30899381/download_file","bulk_download_file_name":"Some_types_of_separation_axioms_in_topol.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/30899381/Some_ypes_of_Separaion_Axioms-libre.pdf?1392063546=\u0026response-content-disposition=attachment%3B+filename%3DSome_types_of_separation_axioms_in_topol.pdf\u0026Expires=1743487789\u0026Signature=PgLhyeJoR9en27J5B2J7a~kGCLfDFhmfOAw94idA0TM7okiS-F3orsJieZyb9cW0lsHq8FKaU8NelpTnOXk509kXUfKr4h9CeMc8kOu56HOkh34Q98XSIyEiBdzMOoX8oMhclOxI0fNkppu4W7ixusjOB2rgaWlDKxVgcgRzZ0u-890KKqQfVo0cneZX3I5xkmSO78vFl3KN-8-uJUjgNnVbDlrupsafHQRyXEFlekBPnUTmaYVfIOY5yCXrM4SuV4Ci7QdJ6tV2mKDdycepnLRBxRqAB3mNZqiPbh6tDASCn~xbhVMa2l7YNficIawZGNM5fSiyYUkxWKEqZA2xJA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":805164,"url":"http://www1.au.edu.tw/ox_view/edu/tojms/j_paper/Full_text/Vol-28/No-3/28(3)8-7(303-326).pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-2941107-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="6714569"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/6714569/Some_properties_of_s_g_locally_closed_sets"><img alt="Research paper thumbnail of Some properties of s * g -locally closed sets" class="work-thumbnail" src="https://attachments.academia-assets.com/33435398/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/6714569/Some_properties_of_s_g_locally_closed_sets">Some properties of s * g -locally closed sets</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper we continue the study of s * g -locally closed sets and s * gsubmaximal spaces in g...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper we continue the study of s * g -locally closed sets and s * gsubmaximal spaces in general topology. In particular it is proved that s * g -locally closed sets are closed under finite intersections. Also some implications of s * g -locally closed sets are given and we establish that some implications are not reversible, which are justified with suitable examples. Further some distinct notions of s * glc -continuity are introduced and we discuss some of their consequences like the composition of two s * glc -continuous functions and the restriction maps of s * glc -continuity.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="498e9ff77a58f4b46e6b2ec36a1c3051" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":33435398,"asset_id":6714569,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/33435398/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="6714569"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="6714569"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 6714569; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=6714569]").text(description); $(".js-view-count[data-work-id=6714569]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 6714569; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='6714569']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "498e9ff77a58f4b46e6b2ec36a1c3051" } } $('.js-work-strip[data-work-id=6714569]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":6714569,"title":"Some properties of s * g -locally closed sets","translated_title":"","metadata":{"grobid_abstract":"In this paper we continue the study of s * g -locally closed sets and s * gsubmaximal spaces in general topology. In particular it is proved that s * g -locally closed sets are closed under finite intersections. Also some implications of s * g -locally closed sets are given and we establish that some implications are not reversible, which are justified with suitable examples. Further some distinct notions of s * glc -continuity are introduced and we discuss some of their consequences like the composition of two s * glc -continuous functions and the restriction maps of s * glc -continuity.","grobid_abstract_attachment_id":33435398},"translated_abstract":null,"internal_url":"https://www.academia.edu/6714569/Some_properties_of_s_g_locally_closed_sets","translated_internal_url":"","created_at":"2014-04-10T01:29:01.784-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4524623,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":33435398,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/33435398/thumbnails/1.jpg","file_name":"08_JARPM_SOME_PROPERTIES_OF_S_STAR_G_LOACALLY_CLOSED_SETS.pdf","download_url":"https://www.academia.edu/attachments/33435398/download_file","bulk_download_file_name":"Some_properties_of_s_g_locally_closed_se.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33435398/08_JARPM_SOME_PROPERTIES_OF_S_STAR_G_LOACALLY_CLOSED_SETS-libre.pdf?1397118426=\u0026response-content-disposition=attachment%3B+filename%3DSome_properties_of_s_g_locally_closed_se.pdf\u0026Expires=1743487789\u0026Signature=fCWzlXpIgNeSCyaXDj59hjMj4I9b3mlnko7cC6l5m~NaIFe7xQukdBeFtmtXjC4e39SpGZE9NTiNHJEuxWiRhP7u3v0iAqpIm1OHnJvmLP1pIG1HfQ8KOrugfVzURYdGzt8x5akiugTN4KfbXM92~xv5N1Bt4ry7wzKJ2zHglaHULqgjq3AwRPcNHNfGosc8QjwFaJrpJTUD5WjeVNOfjf7~K~yGEXRyfeakvbJilaiBrcVTQku~isOB~LTvbAY2Lg2zOJBXpkpudAzvV8N9uDLWzB8VBcX1AVJHlRUU2rm6-yA3760oCvnTIBuEEAVetW1FnuDSXPvdRxTybOU8HA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Some_properties_of_s_g_locally_closed_sets","translated_slug":"","page_count":9,"language":"en","content_type":"Work","summary":"In this paper we continue the study of s * g -locally closed sets and s * gsubmaximal spaces in general topology. In particular it is proved that s * g -locally closed sets are closed under finite intersections. Also some implications of s * g -locally closed sets are given and we establish that some implications are not reversible, which are justified with suitable examples. Further some distinct notions of s * glc -continuity are introduced and we discuss some of their consequences like the composition of two s * glc -continuous functions and the restriction maps of s * glc -continuity.","owner":{"id":4524623,"first_name":"K.","middle_initials":null,"last_name":"KANNAN","page_name":"KKANNAN","domain_name":"sastra","created_at":"2013-06-12T19:45:45.890-07:00","display_name":"K. KANNAN","url":"https://sastra.academia.edu/KKANNAN"},"attachments":[{"id":33435398,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/33435398/thumbnails/1.jpg","file_name":"08_JARPM_SOME_PROPERTIES_OF_S_STAR_G_LOACALLY_CLOSED_SETS.pdf","download_url":"https://www.academia.edu/attachments/33435398/download_file","bulk_download_file_name":"Some_properties_of_s_g_locally_closed_se.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33435398/08_JARPM_SOME_PROPERTIES_OF_S_STAR_G_LOACALLY_CLOSED_SETS-libre.pdf?1397118426=\u0026response-content-disposition=attachment%3B+filename%3DSome_properties_of_s_g_locally_closed_se.pdf\u0026Expires=1743487789\u0026Signature=fCWzlXpIgNeSCyaXDj59hjMj4I9b3mlnko7cC6l5m~NaIFe7xQukdBeFtmtXjC4e39SpGZE9NTiNHJEuxWiRhP7u3v0iAqpIm1OHnJvmLP1pIG1HfQ8KOrugfVzURYdGzt8x5akiugTN4KfbXM92~xv5N1Bt4ry7wzKJ2zHglaHULqgjq3AwRPcNHNfGosc8QjwFaJrpJTUD5WjeVNOfjf7~K~yGEXRyfeakvbJilaiBrcVTQku~isOB~LTvbAY2Lg2zOJBXpkpudAzvV8N9uDLWzB8VBcX1AVJHlRUU2rm6-yA3760oCvnTIBuEEAVetW1FnuDSXPvdRxTybOU8HA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":596,"name":"Dentistry","url":"https://www.academia.edu/Documents/in/Dentistry"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-6714569-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="6714567"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/6714567/10_ICMS_SPEECH_PROCESSING_LPC"><img alt="Research paper thumbnail of 10 ICMS SPEECH PROCESSING LPC" class="work-thumbnail" src="https://attachments.academia-assets.com/33435390/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/6714567/10_ICMS_SPEECH_PROCESSING_LPC">10 ICMS SPEECH PROCESSING LPC</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Wideband speech signals of the letter 'zha' in Tamil language of 3 males and 3 females were coded...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Wideband speech signals of the letter 'zha' in Tamil language of 3 males and 3 females were coded using an improved version of Linear Predictive Coding (LPC). The sampling frequency was at 16 kHz and the bit rate was at 15450 bits per second, where the original bit rate was at 128000 bits per second with the help of wave surfer audio tool. The quality of the performance is exhibited through the block diagram voice coder. In the last section, the tradeoffs between the bit rate for a plain LPC vocoder and the bit rate for a voice-excited LPC vocoder with DCT is analyzed.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="fe6fc11ed322b8e5d3d8dd122ccfeca7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":33435390,"asset_id":6714567,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/33435390/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="6714567"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="6714567"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 6714567; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=6714567]").text(description); $(".js-view-count[data-work-id=6714567]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 6714567; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='6714567']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "fe6fc11ed322b8e5d3d8dd122ccfeca7" } } $('.js-work-strip[data-work-id=6714567]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":6714567,"title":"10 ICMS SPEECH PROCESSING LPC","translated_title":"","metadata":{"ai_title_tag":"Improved LPC for Tamil Speech Coding","grobid_abstract":"Wideband speech signals of the letter 'zha' in Tamil language of 3 males and 3 females were coded using an improved version of Linear Predictive Coding (LPC). The sampling frequency was at 16 kHz and the bit rate was at 15450 bits per second, where the original bit rate was at 128000 bits per second with the help of wave surfer audio tool. The quality of the performance is exhibited through the block diagram voice coder. In the last section, the tradeoffs between the bit rate for a plain LPC vocoder and the bit rate for a voice-excited LPC vocoder with DCT is analyzed.","grobid_abstract_attachment_id":33435390},"translated_abstract":null,"internal_url":"https://www.academia.edu/6714567/10_ICMS_SPEECH_PROCESSING_LPC","translated_internal_url":"","created_at":"2014-04-10T01:29:01.641-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4524623,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":33435390,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/33435390/thumbnails/1.jpg","file_name":"10_ICMS_SPEECH_PROCESSING_LPC.pdf","download_url":"https://www.academia.edu/attachments/33435390/download_file","bulk_download_file_name":"10_ICMS_SPEECH_PROCESSING_LPC.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33435390/10_ICMS_SPEECH_PROCESSING_LPC-libre.pdf?1397118376=\u0026response-content-disposition=attachment%3B+filename%3D10_ICMS_SPEECH_PROCESSING_LPC.pdf\u0026Expires=1743487789\u0026Signature=HxGWryULYD90wTRKdagxIiug6XPe~Bm0rHPXvNI2xQxI-~0QFPNgDZ7OlqcvSVENZjIPMdyOqCU51hLDbHFjYnIT4oqz8jluLbMVBUTNqUweExLPjNOc8v0HwzoIU~qW-YsUEiMPYAaJ1jQphb6LXH5xI19z2DsW7Behaq~fLVw40kcsP~5CF5FJ7X6kFB6ulEsZo6CBKR2GbzKleTwSemGRaVqRAHlv83UkAi-y-ezOe33pcCF-eQQ2HjqUX7u09SRcBVpKeQYF7uWA7aQQHXuArsfY4g0~xzTG3zCay3S8PanH1d8iSTsXiC8J5E6tjivXgCxhvZT3xJQrzfdfog__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"10_ICMS_SPEECH_PROCESSING_LPC","translated_slug":"","page_count":9,"language":"en","content_type":"Work","summary":"Wideband speech signals of the letter 'zha' in Tamil language of 3 males and 3 females were coded using an improved version of Linear Predictive Coding (LPC). The sampling frequency was at 16 kHz and the bit rate was at 15450 bits per second, where the original bit rate was at 128000 bits per second with the help of wave surfer audio tool. The quality of the performance is exhibited through the block diagram voice coder. In the last section, the tradeoffs between the bit rate for a plain LPC vocoder and the bit rate for a voice-excited LPC vocoder with DCT is analyzed.","owner":{"id":4524623,"first_name":"K.","middle_initials":null,"last_name":"KANNAN","page_name":"KKANNAN","domain_name":"sastra","created_at":"2013-06-12T19:45:45.890-07:00","display_name":"K. KANNAN","url":"https://sastra.academia.edu/KKANNAN"},"attachments":[{"id":33435390,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/33435390/thumbnails/1.jpg","file_name":"10_ICMS_SPEECH_PROCESSING_LPC.pdf","download_url":"https://www.academia.edu/attachments/33435390/download_file","bulk_download_file_name":"10_ICMS_SPEECH_PROCESSING_LPC.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33435390/10_ICMS_SPEECH_PROCESSING_LPC-libre.pdf?1397118376=\u0026response-content-disposition=attachment%3B+filename%3D10_ICMS_SPEECH_PROCESSING_LPC.pdf\u0026Expires=1743487789\u0026Signature=HxGWryULYD90wTRKdagxIiug6XPe~Bm0rHPXvNI2xQxI-~0QFPNgDZ7OlqcvSVENZjIPMdyOqCU51hLDbHFjYnIT4oqz8jluLbMVBUTNqUweExLPjNOc8v0HwzoIU~qW-YsUEiMPYAaJ1jQphb6LXH5xI19z2DsW7Behaq~fLVw40kcsP~5CF5FJ7X6kFB6ulEsZo6CBKR2GbzKleTwSemGRaVqRAHlv83UkAi-y-ezOe33pcCF-eQQ2HjqUX7u09SRcBVpKeQYF7uWA7aQQHXuArsfY4g0~xzTG3zCay3S8PanH1d8iSTsXiC8J5E6tjivXgCxhvZT3xJQrzfdfog__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-6714567-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="6714566"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/6714566/09_IJCMS_S_STR_G_LOACLLY_CLOSED_SETS_BTS"><img alt="Research paper thumbnail of 09 IJCMS S STR G LOACLLY CLOSED SETS BTS" class="work-thumbnail" src="https://attachments.academia-assets.com/33435387/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/6714566/09_IJCMS_S_STR_G_LOACLLY_CLOSED_SETS_BTS">09 IJCMS S STR G LOACLLY CLOSED SETS BTS</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The aim of this paper is to introduce the concepts of semi star generalized locally closed sets, ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The aim of this paper is to introduce the concepts of semi star generalized locally closed sets, s * g submaximal spaces and study their basic properties in bitopological spaces.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="df00187c2084706b6c03ebe0c22a9c9f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":33435387,"asset_id":6714566,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/33435387/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="6714566"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="6714566"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 6714566; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=6714566]").text(description); $(".js-view-count[data-work-id=6714566]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 6714566; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='6714566']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "df00187c2084706b6c03ebe0c22a9c9f" } } $('.js-work-strip[data-work-id=6714566]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":6714566,"title":"09 IJCMS S STR G LOACLLY CLOSED SETS BTS","translated_title":"","metadata":{"grobid_abstract":"The aim of this paper is to introduce the concepts of semi star generalized locally closed sets, s * g submaximal spaces and study their basic properties in bitopological spaces.","grobid_abstract_attachment_id":33435387},"translated_abstract":null,"internal_url":"https://www.academia.edu/6714566/09_IJCMS_S_STR_G_LOACLLY_CLOSED_SETS_BTS","translated_internal_url":"","created_at":"2014-04-10T01:29:01.620-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4524623,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":33435387,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/33435387/thumbnails/1.jpg","file_name":"09_IJCMS_S_STR_G_LOACLLY_CLOSED_SETS_BTS.pdf","download_url":"https://www.academia.edu/attachments/33435387/download_file","bulk_download_file_name":"09_IJCMS_S_STR_G_LOACLLY_CLOSED_SETS_BTS.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33435387/09_IJCMS_S_STR_G_LOACLLY_CLOSED_SETS_BTS-libre.pdf?1397118355=\u0026response-content-disposition=attachment%3B+filename%3D09_IJCMS_S_STR_G_LOACLLY_CLOSED_SETS_BTS.pdf\u0026Expires=1743487789\u0026Signature=U~WLwkvq5~jMoP~SzJQG9TU~GHzOrXrQ~Lh1ivF19EfYI7QpbUH~CckPe1XWGK5yTKASrkHL82tG1j5t4wEkswsjSd43OBBhP2TCdG2EBf596u0rJ8flNuHFczL-n0BXwSMHU0u8dubKaN4mcgi7SDIgeo4~3kCu~6Jt9MMssUo22pznwgik937-FfrHL88FemTtbeBBzqOzdv~qdY4H1v1v--clH2rWzDUPqBqynoE8IV30wyx6D4yNWSqZlkS7lPA773Z-QPqkCGCcZ6pTcenmEv2LN1WapuvIEVzYOBdfydnb1GkmZhVoPr~MK5e1O6kAh~TBXKL6keq8nTFxhA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"09_IJCMS_S_STR_G_LOACLLY_CLOSED_SETS_BTS","translated_slug":"","page_count":11,"language":"en","content_type":"Work","summary":"The aim of this paper is to introduce the concepts of semi star generalized locally closed sets, s * g submaximal spaces and study their basic properties in bitopological spaces.","owner":{"id":4524623,"first_name":"K.","middle_initials":null,"last_name":"KANNAN","page_name":"KKANNAN","domain_name":"sastra","created_at":"2013-06-12T19:45:45.890-07:00","display_name":"K. KANNAN","url":"https://sastra.academia.edu/KKANNAN"},"attachments":[{"id":33435387,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/33435387/thumbnails/1.jpg","file_name":"09_IJCMS_S_STR_G_LOACLLY_CLOSED_SETS_BTS.pdf","download_url":"https://www.academia.edu/attachments/33435387/download_file","bulk_download_file_name":"09_IJCMS_S_STR_G_LOACLLY_CLOSED_SETS_BTS.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33435387/09_IJCMS_S_STR_G_LOACLLY_CLOSED_SETS_BTS-libre.pdf?1397118355=\u0026response-content-disposition=attachment%3B+filename%3D09_IJCMS_S_STR_G_LOACLLY_CLOSED_SETS_BTS.pdf\u0026Expires=1743487789\u0026Signature=U~WLwkvq5~jMoP~SzJQG9TU~GHzOrXrQ~Lh1ivF19EfYI7QpbUH~CckPe1XWGK5yTKASrkHL82tG1j5t4wEkswsjSd43OBBhP2TCdG2EBf596u0rJ8flNuHFczL-n0BXwSMHU0u8dubKaN4mcgi7SDIgeo4~3kCu~6Jt9MMssUo22pznwgik937-FfrHL88FemTtbeBBzqOzdv~qdY4H1v1v--clH2rWzDUPqBqynoE8IV30wyx6D4yNWSqZlkS7lPA773Z-QPqkCGCcZ6pTcenmEv2LN1WapuvIEVzYOBdfydnb1GkmZhVoPr~MK5e1O6kAh~TBXKL6keq8nTFxhA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-6714566-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="5220619"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/5220619/Soft_Generalized_Closed_Sets_in_Soft_Topological_Spaces"><img alt="Research paper thumbnail of Soft Generalized Closed Sets in Soft Topological Spaces" class="work-thumbnail" src="https://attachments.academia-assets.com/32406154/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/5220619/Soft_Generalized_Closed_Sets_in_Soft_Topological_Spaces">Soft Generalized Closed Sets in Soft Topological Spaces</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In the present paper, we introduce soft generalized closed sets in soft topological spaces which ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In the present paper, we introduce soft generalized closed sets in soft topological spaces which are defined over an initial universe with a fixed set of parameters. A sufficient condition for a soft g-closed set to be a soft closed is also presented. Moreover, the union and intersection of two soft g-closed sets are discussed. Finally, the new soft separation axiom, namely soft 1 2 T -space is introduced and its basic properties are investigated.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="486195c423c8a07537d364ae2486c408" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":32406154,"asset_id":5220619,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/32406154/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="5220619"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="5220619"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 5220619; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=5220619]").text(description); $(".js-view-count[data-work-id=5220619]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 5220619; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='5220619']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "486195c423c8a07537d364ae2486c408" } } $('.js-work-strip[data-work-id=5220619]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":5220619,"title":"Soft Generalized Closed Sets in Soft Topological Spaces","translated_title":"","metadata":{"grobid_abstract":"In the present paper, we introduce soft generalized closed sets in soft topological spaces which are defined over an initial universe with a fixed set of parameters. A sufficient condition for a soft g-closed set to be a soft closed is also presented. Moreover, the union and intersection of two soft g-closed sets are discussed. Finally, the new soft separation axiom, namely soft 1 2 T -space is introduced and its basic properties are investigated.","grobid_abstract_attachment_id":32406154},"translated_abstract":null,"internal_url":"https://www.academia.edu/5220619/Soft_Generalized_Closed_Sets_in_Soft_Topological_Spaces","translated_internal_url":"","created_at":"2013-11-25T17:38:26.512-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4524623,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":32406154,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/32406154/thumbnails/1.jpg","file_name":"19_SOFT_GENERALIZED_CLOSED_SETS_JATIT.pdf","download_url":"https://www.academia.edu/attachments/32406154/download_file","bulk_download_file_name":"Soft_Generalized_Closed_Sets_in_Soft_Top.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/32406154/19_SOFT_GENERALIZED_CLOSED_SETS_JATIT-libre.pdf?1391100945=\u0026response-content-disposition=attachment%3B+filename%3DSoft_Generalized_Closed_Sets_in_Soft_Top.pdf\u0026Expires=1743487789\u0026Signature=cNtjIg4fl-S3Bt7~Tu7wTrqOeoJUcsRAyQ31rbVrRIPPrIzpIIIiOcsjIjd3w7EXzUb7-SlHQDSqSnjeT6Mx9RahwgMWHhS94A0~-KZNGlcYxuz7iZw5Kc7eWLfEB4Un2JcSt64RpIflI2zptzZpb7aCBWMFmB-9o5Nn1ptBdVjs-ojHtKjfzMtgs34NMw6r0FJ~oXn1UQvR6e1DiS0PgVvrMuFrzC~-JCAqZ6wh26Ysr5-4doUo4jP5TzprxMP4-kK76pIi6ImseK0wTkd8mHD84Spf7QAFUDvcagZZNwx-BdtKCcxf6FPoAz7zMisNiXYkOVgHh3XAzkW2DRnaTQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Soft_Generalized_Closed_Sets_in_Soft_Topological_Spaces","translated_slug":"","page_count":5,"language":"en","content_type":"Work","summary":"In the present paper, we introduce soft generalized closed sets in soft topological spaces which are defined over an initial universe with a fixed set of parameters. A sufficient condition for a soft g-closed set to be a soft closed is also presented. Moreover, the union and intersection of two soft g-closed sets are discussed. Finally, the new soft separation axiom, namely soft 1 2 T -space is introduced and its basic properties are investigated.","owner":{"id":4524623,"first_name":"K.","middle_initials":null,"last_name":"KANNAN","page_name":"KKANNAN","domain_name":"sastra","created_at":"2013-06-12T19:45:45.890-07:00","display_name":"K. KANNAN","url":"https://sastra.academia.edu/KKANNAN"},"attachments":[{"id":32406154,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/32406154/thumbnails/1.jpg","file_name":"19_SOFT_GENERALIZED_CLOSED_SETS_JATIT.pdf","download_url":"https://www.academia.edu/attachments/32406154/download_file","bulk_download_file_name":"Soft_Generalized_Closed_Sets_in_Soft_Top.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/32406154/19_SOFT_GENERALIZED_CLOSED_SETS_JATIT-libre.pdf?1391100945=\u0026response-content-disposition=attachment%3B+filename%3DSoft_Generalized_Closed_Sets_in_Soft_Top.pdf\u0026Expires=1743487789\u0026Signature=cNtjIg4fl-S3Bt7~Tu7wTrqOeoJUcsRAyQ31rbVrRIPPrIzpIIIiOcsjIjd3w7EXzUb7-SlHQDSqSnjeT6Mx9RahwgMWHhS94A0~-KZNGlcYxuz7iZw5Kc7eWLfEB4Un2JcSt64RpIflI2zptzZpb7aCBWMFmB-9o5Nn1ptBdVjs-ojHtKjfzMtgs34NMw6r0FJ~oXn1UQvR6e1DiS0PgVvrMuFrzC~-JCAqZ6wh26Ysr5-4doUo4jP5TzprxMP4-kK76pIi6ImseK0wTkd8mHD84Spf7QAFUDvcagZZNwx-BdtKCcxf6FPoAz7zMisNiXYkOVgHh3XAzkW2DRnaTQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":1991694,"url":"http://www.jatit.org/volumes/Vol37No1/2Vol37No1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-5220619-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="3699596"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/3699596/Some_Types_of_Separation_Axioms_in_Topological_Spaces"><img alt="Research paper thumbnail of Some Types of Separation Axioms in Topological Spaces" class="work-thumbnail" src="https://attachments.academia-assets.com/32406113/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/3699596/Some_Types_of_Separation_Axioms_in_Topological_Spaces">Some Types of Separation Axioms in Topological Spaces</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper, we introduce some types of separation axioms via ω-open sets, namely ω-regular, co...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper, we introduce some types of separation axioms via ω-open sets, namely ω-regular, completely ω-regular and ω-normal space and investigate their fundamental properties, relationships and characterizations. The well-known Urysohn's Lemma and Tietze Extension Theorem are generalized to ω-normal spaces. We improve some known results. Also, some other concepts are generalized and studied via ω-open sets.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8692f0c02690f9a8ccb873d474383583" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":32406113,"asset_id":3699596,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/32406113/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="3699596"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="3699596"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 3699596; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=3699596]").text(description); $(".js-view-count[data-work-id=3699596]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 3699596; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='3699596']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8692f0c02690f9a8ccb873d474383583" } } $('.js-work-strip[data-work-id=3699596]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":3699596,"title":"Some Types of Separation Axioms in Topological Spaces","translated_title":"","metadata":{"ai_title_tag":"Separation Axioms via ω-open Sets in Topological Spaces","grobid_abstract":"In this paper, we introduce some types of separation axioms via ω-open sets, namely ω-regular, completely ω-regular and ω-normal space and investigate their fundamental properties, relationships and characterizations. The well-known Urysohn's Lemma and Tietze Extension Theorem are generalized to ω-normal spaces. We improve some known results. Also, some other concepts are generalized and studied via ω-open sets.","grobid_abstract_attachment_id":32406113},"translated_abstract":null,"internal_url":"https://www.academia.edu/3699596/Some_Types_of_Separation_Axioms_in_Topological_Spaces","translated_internal_url":"","created_at":"2013-06-12T20:43:02.038-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4524623,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":32406113,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/32406113/thumbnails/1.jpg","file_name":"25_SOME_SEPARATION_AXIOMS_TAMSUI.pdf","download_url":"https://www.academia.edu/attachments/32406113/download_file","bulk_download_file_name":"Some_Types_of_Separation_Axioms_in_Topol.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/32406113/25_SOME_SEPARATION_AXIOMS_TAMSUI-libre.pdf?1391117535=\u0026response-content-disposition=attachment%3B+filename%3DSome_Types_of_Separation_Axioms_in_Topol.pdf\u0026Expires=1743487789\u0026Signature=dzRKmJKfeCIxNbEp8VhpcllOO4S8-pcB-612IPBwT9TPk9Y~cYX2MKJYH7pCrLceKZ8t7~O-9alZ79fbPnMSQP8U9BpSeVM7rDQVQRw5v~OpPlefnQnuyuxBE3UE6HqnnvKqAa~gOg2UHKGO1vnogdeedIxNFfgEmdl0od3IAlj4iCx706TGumguSrJ9RowW2LSPyMg7FpCfG7BQK8sVFoTIIJMHd72grvyZrqZa~Y6Qteh8sLoP6IdftYlwhB6ztQ6AFxWTMkpGEwzUZXP30l7MGdmxZsKiXatYEkOXMj40g3pwDsiLxjhRUNN3JAvPXsCYM0~pS67JyZ7GG287tQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Some_Types_of_Separation_Axioms_in_Topological_Spaces","translated_slug":"","page_count":24,"language":"en","content_type":"Work","summary":"In this paper, we introduce some types of separation axioms via ω-open sets, namely ω-regular, completely ω-regular and ω-normal space and investigate their fundamental properties, relationships and characterizations. The well-known Urysohn's Lemma and Tietze Extension Theorem are generalized to ω-normal spaces. We improve some known results. Also, some other concepts are generalized and studied via ω-open sets.","owner":{"id":4524623,"first_name":"K.","middle_initials":null,"last_name":"KANNAN","page_name":"KKANNAN","domain_name":"sastra","created_at":"2013-06-12T19:45:45.890-07:00","display_name":"K. KANNAN","url":"https://sastra.academia.edu/KKANNAN"},"attachments":[{"id":32406113,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/32406113/thumbnails/1.jpg","file_name":"25_SOME_SEPARATION_AXIOMS_TAMSUI.pdf","download_url":"https://www.academia.edu/attachments/32406113/download_file","bulk_download_file_name":"Some_Types_of_Separation_Axioms_in_Topol.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/32406113/25_SOME_SEPARATION_AXIOMS_TAMSUI-libre.pdf?1391117535=\u0026response-content-disposition=attachment%3B+filename%3DSome_Types_of_Separation_Axioms_in_Topol.pdf\u0026Expires=1743487789\u0026Signature=dzRKmJKfeCIxNbEp8VhpcllOO4S8-pcB-612IPBwT9TPk9Y~cYX2MKJYH7pCrLceKZ8t7~O-9alZ79fbPnMSQP8U9BpSeVM7rDQVQRw5v~OpPlefnQnuyuxBE3UE6HqnnvKqAa~gOg2UHKGO1vnogdeedIxNFfgEmdl0od3IAlj4iCx706TGumguSrJ9RowW2LSPyMg7FpCfG7BQK8sVFoTIIJMHd72grvyZrqZa~Y6Qteh8sLoP6IdftYlwhB6ztQ6AFxWTMkpGEwzUZXP30l7MGdmxZsKiXatYEkOXMj40g3pwDsiLxjhRUNN3JAvPXsCYM0~pS67JyZ7GG287tQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":1991720,"url":"http://www1.au.edu.tw/ox_view/edu/tojms/j_paper/Full_text/Vol-28/No-3/28(3)8-7(303-326).pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-3699596-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="3699520"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/3699520/Speech_Recognition_of_the_letter_zha_in_Tamil_Language_using_HMM"><img alt="Research paper thumbnail of Speech Recognition of the letter 'zha' in Tamil Language using HMM" class="work-thumbnail" src="https://attachments.academia-assets.com/32406124/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/3699520/Speech_Recognition_of_the_letter_zha_in_Tamil_Language_using_HMM">Speech Recognition of the letter 'zha' in Tamil Language using HMM</a></div><div class="wp-workCard_item"><span>Computing Research Repository</span><span>, 2010</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Speech signals of the letter 'zha' in Tamil language of 3 males and 3 females were coded using an...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Speech signals of the letter 'zha' in Tamil language of 3 males and 3 females were coded using an improved version of Linear Predictive Coding (LPC). The sampling frequency was at 16 kHz and the bit rate was at 15450 bits per second, where the original bit rate was at 128000 bits per second with the help of wave surfer audio tool. The output LPC cepstrum is implemented in first order three state Hidden Markov Model(HMM) chain.</span></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-3699520-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-3699520-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/35242875/figure-1-speech-recognition-of-the-letter-zha-in-tamil"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/32406124/figure_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/35242879/figure-2-spectrogram-of-letter-zha-ip-experimental-results"><img alt="Figure 2: Spectrogram of letter ‘Zha’ (ip) . Experimental Results " class="figure-slide-image" src="https://figures.academia-assets.com/32406124/figure_002.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/35242883/figure-3-sample-spectrum-section-plot-of-letter-zha-ip"><img alt="Sample spectrum section plot of letter “Zha’ (ip) 4.1, Spectrum plot " class="figure-slide-image" src="https://figures.academia-assets.com/32406124/figure_003.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/35242887/figure-4-that-in-we-have-assumed-homogeneity-of-the-markov"><img alt="that in (1) we have assumed homogeneity of the Markov chain so that the transition probabilities do not depend on time. Assume that at t = 0 the state of the system qo is specified by an initial state probability 2;, = P (qo = i). Then, for any state sequence q = (qo, qi, q2,- - - , qr), the probability of q being generated by the Markov chain is " class="figure-slide-image" src="https://figures.academia-assets.com/32406124/figure_004.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/35242893/figure-5-trellis-structure-for-the-calculation-of-the"><img alt="Figure 5. A Trellis Structure for the Calculation of the Forward Partial Probabilities @, (i). HMM method attractive and viable for speech recognizer designs because the evaluation problem can be viewed as one of scoring how well an unknown observation sequence (corresponding to the speech to be recognized) matches a given model (or sequence of models) source, thus providing an efficient mechanism for classification. 6.2 Estimation Problem Given an observation sequence (or a set of sequences) O, the estimation problem involves finding the "right" model parameter values that specify a model most likely to produce the given sequence. In speect recognition, this is often called "training," and the given sequence, on the basis of which we obtain the mode! parameters, is called the training sequence, even though the formulation here is statistical. In solving the estimation problem, the method of maximum likelihood (ML); that is, we choose 4 such that P (OA), as defined by (8), is maximized for the given training sequence O. " class="figure-slide-image" src="https://figures.academia-assets.com/32406124/figure_005.jpg" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-3699520-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4edd55a290fdddd3361a5e1c95ac55f1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":32406124,"asset_id":3699520,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/32406124/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="3699520"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="3699520"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 3699520; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=3699520]").text(description); $(".js-view-count[data-work-id=3699520]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 3699520; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='3699520']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4edd55a290fdddd3361a5e1c95ac55f1" } } $('.js-work-strip[data-work-id=3699520]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":3699520,"title":"Speech Recognition of the letter 'zha' in Tamil Language using HMM","translated_title":"","metadata":{"abstract":"Speech signals of the letter 'zha' in Tamil language of 3 males and 3 females were coded using an improved version of Linear Predictive Coding (LPC). The sampling frequency was at 16 kHz and the bit rate was at 15450 bits per second, where the original bit rate was at 128000 bits per second with the help of wave surfer audio tool. The output LPC cepstrum is implemented in first order three state Hidden Markov Model(HMM) chain.","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"publication_name":"Computing Research Repository"},"translated_abstract":"Speech signals of the letter 'zha' in Tamil language of 3 males and 3 females were coded using an improved version of Linear Predictive Coding (LPC). The sampling frequency was at 16 kHz and the bit rate was at 15450 bits per second, where the original bit rate was at 128000 bits per second with the help of wave surfer audio tool. The output LPC cepstrum is implemented in first order three state Hidden Markov Model(HMM) chain.","internal_url":"https://www.academia.edu/3699520/Speech_Recognition_of_the_letter_zha_in_Tamil_Language_using_HMM","translated_internal_url":"","created_at":"2013-06-12T20:31:52.849-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4524623,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":32406124,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/32406124/thumbnails/1.jpg","file_name":"11_IJEST_SPEECH_PROCESSING_HMM.pdf","download_url":"https://www.academia.edu/attachments/32406124/download_file","bulk_download_file_name":"Speech_Recognition_of_the_letter_zha_in.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/32406124/11_IJEST_SPEECH_PROCESSING_HMM-libre.pdf?1391589623=\u0026response-content-disposition=attachment%3B+filename%3DSpeech_Recognition_of_the_letter_zha_in.pdf\u0026Expires=1743487789\u0026Signature=KQRoMirvR4hpHQyYps2turyJQUB2W964ZEKMuxZnD2j8o9rPFgy1HsPpntG1gj7w6tiYa1xsu5cFv9VIp01cMvl1ZS9c87C4mEXW~5NF8IIk~ifCijpRoHjZB0GEGvL3m35Cv74EA1ev7lg7MX-oOA8Xm8~0-6j7Zyg9MQ2cDjxkbBblgUZ-kjeDGFNh92E0ZBN36U9KHSreOl~nxu4vRAg6Hu-5UIFlw8Wwnfjo2m77TZb-ioQNCOT9jaclCpGNcT5LXVY7W9qBMRG5aQcSoT97SxG7jrs5uoucdtxMq7YZF7ClhqYN2ryrBmiJB2~PYCLQbPhYJlBquJvIzDMkWA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Speech_Recognition_of_the_letter_zha_in_Tamil_Language_using_HMM","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"Speech signals of the letter 'zha' in Tamil language of 3 males and 3 females were coded using an improved version of Linear Predictive Coding (LPC). The sampling frequency was at 16 kHz and the bit rate was at 15450 bits per second, where the original bit rate was at 128000 bits per second with the help of wave surfer audio tool. The output LPC cepstrum is implemented in first order three state Hidden Markov Model(HMM) chain.","owner":{"id":4524623,"first_name":"K.","middle_initials":null,"last_name":"KANNAN","page_name":"KKANNAN","domain_name":"sastra","created_at":"2013-06-12T19:45:45.890-07:00","display_name":"K. KANNAN","url":"https://sastra.academia.edu/KKANNAN"},"attachments":[{"id":32406124,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/32406124/thumbnails/1.jpg","file_name":"11_IJEST_SPEECH_PROCESSING_HMM.pdf","download_url":"https://www.academia.edu/attachments/32406124/download_file","bulk_download_file_name":"Speech_Recognition_of_the_letter_zha_in.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/32406124/11_IJEST_SPEECH_PROCESSING_HMM-libre.pdf?1391589623=\u0026response-content-disposition=attachment%3B+filename%3DSpeech_Recognition_of_the_letter_zha_in.pdf\u0026Expires=1743487789\u0026Signature=KQRoMirvR4hpHQyYps2turyJQUB2W964ZEKMuxZnD2j8o9rPFgy1HsPpntG1gj7w6tiYa1xsu5cFv9VIp01cMvl1ZS9c87C4mEXW~5NF8IIk~ifCijpRoHjZB0GEGvL3m35Cv74EA1ev7lg7MX-oOA8Xm8~0-6j7Zyg9MQ2cDjxkbBblgUZ-kjeDGFNh92E0ZBN36U9KHSreOl~nxu4vRAg6Hu-5UIFlw8Wwnfjo2m77TZb-ioQNCOT9jaclCpGNcT5LXVY7W9qBMRG5aQcSoT97SxG7jrs5uoucdtxMq7YZF7ClhqYN2ryrBmiJB2~PYCLQbPhYJlBquJvIzDMkWA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":1207108,"url":"http://arxiv.org/abs/1001.4190"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-3699520-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="3699368"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/3699368/On_semi_star_generalized_closed_sets_in_bitopological_spaces"><img alt="Research paper thumbnail of On semi star generalized closed sets in bitopological spaces" class="work-thumbnail" src="https://attachments.academia-assets.com/32406130/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/3699368/On_semi_star_generalized_closed_sets_in_bitopological_spaces">On semi star generalized closed sets in bitopological spaces</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">K. Chandrasekhara Rao and K. Joseph [5] introduced the concepts of semi star generalized open set...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">K. Chandrasekhara Rao and K. Joseph [5] introduced the concepts of semi star generalized open sets and semi star generalized closed sets in a topological space. The same concept was extended to bitopological spaces by K. Chandrasekhara Rao and K. Kannan . In this paper, we continue the study of τ 1 τ 2 -s * g closed sets in bitopology and we introduced the newly related concept of pairwise s * g-continuous mappings. Also S * GO-connectedness and S * GO-compactness are introduced in bitopological spaces and some of their properties are established.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ea5df6b1b36247290b9663dee1a075c5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":32406130,"asset_id":3699368,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/32406130/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="3699368"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="3699368"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 3699368; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=3699368]").text(description); $(".js-view-count[data-work-id=3699368]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 3699368; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='3699368']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ea5df6b1b36247290b9663dee1a075c5" } } $('.js-work-strip[data-work-id=3699368]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":3699368,"title":"On semi star generalized closed sets in bitopological spaces","translated_title":"","metadata":{"grobid_abstract":"K. Chandrasekhara Rao and K. Joseph [5] introduced the concepts of semi star generalized open sets and semi star generalized closed sets in a topological space. The same concept was extended to bitopological spaces by K. Chandrasekhara Rao and K. Kannan . In this paper, we continue the study of τ 1 τ 2 -s * g closed sets in bitopology and we introduced the newly related concept of pairwise s * g-continuous mappings. Also S * GO-connectedness and S * GO-compactness are introduced in bitopological spaces and some of their properties are established.","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"grobid_abstract_attachment_id":32406130},"translated_abstract":null,"internal_url":"https://www.academia.edu/3699368/On_semi_star_generalized_closed_sets_in_bitopological_spaces","translated_internal_url":"","created_at":"2013-06-12T19:59:57.128-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4524623,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":32406130,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/32406130/thumbnails/1.jpg","file_name":"13_ON_SEMI_STAR_GENERALIZED_CLOSED_SETS.pdf","download_url":"https://www.academia.edu/attachments/32406130/download_file","bulk_download_file_name":"On_semi_star_generalized_closed_sets_in.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/32406130/13_ON_SEMI_STAR_GENERALIZED_CLOSED_SETS-libre.pdf?1391095031=\u0026response-content-disposition=attachment%3B+filename%3DOn_semi_star_generalized_closed_sets_in.pdf\u0026Expires=1743487789\u0026Signature=A03uTv3wiuGZGF2RT0hOrLej7s974I7RFByIZ02c63VX1OKRzGEONrkjwI8aDfxlktlzBuTYqVi1p9fr~RRt~QBLNJoRJL6IWgQyIbpFtt~OGYS1gi~jJDg4V1eRb-HKMqyNczDImnSJEARCLsRV6WEbSYVczoULszxel2mUfMRCey7F6V3GGDXS3sKGBSYPIYTN1FPolQuFAdvPuUzEaOio0E6NNp6yawE3ftZEuduNsgaOIOBwx~EoEoHf5DqGtc1IQfPH1pu-sDsaINmf1GWT9xl~BrgmFwuQ-mzZizo-Nxg1j3jjW9QMyV-bM4LFK1iwNwxgRg0w5wDTGrcR7A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_semi_star_generalized_closed_sets_in_bitopological_spaces","translated_slug":"","page_count":12,"language":"en","content_type":"Work","summary":"K. Chandrasekhara Rao and K. Joseph [5] introduced the concepts of semi star generalized open sets and semi star generalized closed sets in a topological space. The same concept was extended to bitopological spaces by K. Chandrasekhara Rao and K. Kannan . In this paper, we continue the study of τ 1 τ 2 -s * g closed sets in bitopology and we introduced the newly related concept of pairwise s * g-continuous mappings. Also S * GO-connectedness and S * GO-compactness are introduced in bitopological spaces and some of their properties are established.","owner":{"id":4524623,"first_name":"K.","middle_initials":null,"last_name":"KANNAN","page_name":"KKANNAN","domain_name":"sastra","created_at":"2013-06-12T19:45:45.890-07:00","display_name":"K. KANNAN","url":"https://sastra.academia.edu/KKANNAN"},"attachments":[{"id":32406130,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/32406130/thumbnails/1.jpg","file_name":"13_ON_SEMI_STAR_GENERALIZED_CLOSED_SETS.pdf","download_url":"https://www.academia.edu/attachments/32406130/download_file","bulk_download_file_name":"On_semi_star_generalized_closed_sets_in.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/32406130/13_ON_SEMI_STAR_GENERALIZED_CLOSED_SETS-libre.pdf?1391095031=\u0026response-content-disposition=attachment%3B+filename%3DOn_semi_star_generalized_closed_sets_in.pdf\u0026Expires=1743487789\u0026Signature=A03uTv3wiuGZGF2RT0hOrLej7s974I7RFByIZ02c63VX1OKRzGEONrkjwI8aDfxlktlzBuTYqVi1p9fr~RRt~QBLNJoRJL6IWgQyIbpFtt~OGYS1gi~jJDg4V1eRb-HKMqyNczDImnSJEARCLsRV6WEbSYVczoULszxel2mUfMRCey7F6V3GGDXS3sKGBSYPIYTN1FPolQuFAdvPuUzEaOio0E6NNp6yawE3ftZEuduNsgaOIOBwx~EoEoHf5DqGtc1IQfPH1pu-sDsaINmf1GWT9xl~BrgmFwuQ-mzZizo-Nxg1j3jjW9QMyV-bM4LFK1iwNwxgRg0w5wDTGrcR7A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":378278,"name":"Bitopological Spaces","url":"https://www.academia.edu/Documents/in/Bitopological_Spaces"},{"id":858386,"name":"Generalized Closed Sets","url":"https://www.academia.edu/Documents/in/Generalized_Closed_Sets"}],"urls":[{"id":1207049,"url":"http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/10812"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-3699368-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="3699366"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/3699366/Regular_Generalized_Star_Closed_Sets_in_Bitopological_Spaces"><img alt="Research paper thumbnail of Regular Generalized Star Closed Sets in Bitopological Spaces" class="work-thumbnail" src="https://attachments.academia-assets.com/32406146/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/3699366/Regular_Generalized_Star_Closed_Sets_in_Bitopological_Spaces">Regular Generalized Star Closed Sets in Bitopological Spaces</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The aim of this paper is to introduce the concepts of τ 1 τ 2 -regular generalized star closed se...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The aim of this paper is to introduce the concepts of τ 1 τ 2 -regular generalized star closed sets , τ 1 τ 2 -regular generalized star open sets and study their basic properties in bitopological spaces.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c09341891888e9a3249c00fddb2ae1eb" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":32406146,"asset_id":3699366,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/32406146/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="3699366"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="3699366"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 3699366; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=3699366]").text(description); $(".js-view-count[data-work-id=3699366]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 3699366; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='3699366']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c09341891888e9a3249c00fddb2ae1eb" } } $('.js-work-strip[data-work-id=3699366]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":3699366,"title":"Regular Generalized Star Closed Sets in Bitopological Spaces","translated_title":"","metadata":{"grobid_abstract":"The aim of this paper is to introduce the concepts of τ 1 τ 2 -regular generalized star closed sets , τ 1 τ 2 -regular generalized star open sets and study their basic properties in bitopological spaces.","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"grobid_abstract_attachment_id":32406146},"translated_abstract":null,"internal_url":"https://www.academia.edu/3699366/Regular_Generalized_Star_Closed_Sets_in_Bitopological_Spaces","translated_internal_url":"","created_at":"2013-06-12T19:59:50.399-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4524623,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":32406146,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/32406146/thumbnails/1.jpg","file_name":"02_RG_STAR_CLOSED_SETS.pdf","download_url":"https://www.academia.edu/attachments/32406146/download_file","bulk_download_file_name":"Regular_Generalized_Star_Closed_Sets_in.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/32406146/02_RG_STAR_CLOSED_SETS-libre.pdf?1391107812=\u0026response-content-disposition=attachment%3B+filename%3DRegular_Generalized_Star_Closed_Sets_in.pdf\u0026Expires=1743487789\u0026Signature=fNj~P0G0jKGzl8XirvCmeJ~hifKvBOWWACGegnkBtyK3ElBorRLi3hu~0DUkH2-~bSLI5AIqTlOCeywK2VYcHlA5KsfyamnUkL1mvdyCFHk8h6dEA-9EIrszfSQBXxd~awUKHcKlrf7YaLwuCyvknQ1vhvv8LgmoV6~vDG003OEAzIRpUWmByubmARVUXIkdK99HFM8W6nK8B7-SNstTHhnu2gSBI7kxIICu0d18RreXfyvL3bdzJhbEATLDOs496JzmvWuuf-rRFIbbuf6hVc3YmGhwoLAkV8B9MuKcXygY637mt6eh23l6EJ5iaMIZ6KKvnzXOstoaXCWYPPv~ig__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Regular_Generalized_Star_Closed_Sets_in_Bitopological_Spaces","translated_slug":"","page_count":9,"language":"en","content_type":"Work","summary":"The aim of this paper is to introduce the concepts of τ 1 τ 2 -regular generalized star closed sets , τ 1 τ 2 -regular generalized star open sets and study their basic properties in bitopological spaces.","owner":{"id":4524623,"first_name":"K.","middle_initials":null,"last_name":"KANNAN","page_name":"KKANNAN","domain_name":"sastra","created_at":"2013-06-12T19:45:45.890-07:00","display_name":"K. KANNAN","url":"https://sastra.academia.edu/KKANNAN"},"attachments":[{"id":32406146,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/32406146/thumbnails/1.jpg","file_name":"02_RG_STAR_CLOSED_SETS.pdf","download_url":"https://www.academia.edu/attachments/32406146/download_file","bulk_download_file_name":"Regular_Generalized_Star_Closed_Sets_in.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/32406146/02_RG_STAR_CLOSED_SETS-libre.pdf?1391107812=\u0026response-content-disposition=attachment%3B+filename%3DRegular_Generalized_Star_Closed_Sets_in.pdf\u0026Expires=1743487789\u0026Signature=fNj~P0G0jKGzl8XirvCmeJ~hifKvBOWWACGegnkBtyK3ElBorRLi3hu~0DUkH2-~bSLI5AIqTlOCeywK2VYcHlA5KsfyamnUkL1mvdyCFHk8h6dEA-9EIrszfSQBXxd~awUKHcKlrf7YaLwuCyvknQ1vhvv8LgmoV6~vDG003OEAzIRpUWmByubmARVUXIkdK99HFM8W6nK8B7-SNstTHhnu2gSBI7kxIICu0d18RreXfyvL3bdzJhbEATLDOs496JzmvWuuf-rRFIbbuf6hVc3YmGhwoLAkV8B9MuKcXygY637mt6eh23l6EJ5iaMIZ6KKvnzXOstoaXCWYPPv~ig__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":378278,"name":"Bitopological Spaces","url":"https://www.academia.edu/Documents/in/Bitopological_Spaces"},{"id":858386,"name":"Generalized Closed Sets","url":"https://www.academia.edu/Documents/in/Generalized_Closed_Sets"}],"urls":[{"id":1207048,"url":"http://www.math.science.cmu.ac.th/thaijournal/vol%25204%2520no%25202%25202006/9_Kannan.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-3699366-figures'); } }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="566907" id="papers"><div class="js-work-strip profile--work_container" data-work-id="115145853"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/115145853/Soft_Generalized_Closed_Sets_in_Soft_Topological_Spaces"><img alt="Research paper thumbnail of Soft Generalized Closed Sets in Soft Topological Spaces" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Soft Generalized Closed Sets in Soft Topological Spaces</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115145853"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115145853"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115145853; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115145853]").text(description); $(".js-view-count[data-work-id=115145853]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115145853; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115145853']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=115145853]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115145853,"title":"Soft Generalized Closed Sets in Soft Topological Spaces","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/115145853/Soft_Generalized_Closed_Sets_in_Soft_Topological_Spaces","translated_internal_url":"","created_at":"2024-02-19T21:54:30.562-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4524623,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Soft_Generalized_Closed_Sets_in_Soft_Topological_Spaces","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":4524623,"first_name":"K.","middle_initials":null,"last_name":"KANNAN","page_name":"KKANNAN","domain_name":"sastra","created_at":"2013-06-12T19:45:45.890-07:00","display_name":"K. KANNAN","url":"https://sastra.academia.edu/KKANNAN"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":143596,"name":"Soft Set","url":"https://www.academia.edu/Documents/in/Soft_Set"},{"id":782638,"name":"Topological Space","url":"https://www.academia.edu/Documents/in/Topological_Space"},{"id":2254216,"name":"Closed Set","url":"https://www.academia.edu/Documents/in/Closed_Set"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-115145853-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="2941107"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/2941107/Some_types_of_separation_axioms_in_topological_spaces"><img alt="Research paper thumbnail of Some types of separation axioms in topological spaces " class="work-thumbnail" src="https://attachments.academia-assets.com/30899381/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/2941107/Some_types_of_separation_axioms_in_topological_spaces">Some types of separation axioms in topological spaces </a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://oud.academia.edu/AliasBKhalaf">Alias B. Khalaf</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://sastra.academia.edu/KKANNAN">K. KANNAN</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper, we introduce some types of separation axioms via ω-open sets, namely ω-regular, co...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper, we introduce some types of separation axioms via ω-open sets, namely ω-regular, completely ω-regular and ω-normal space and investigate their fundamental properties, relationships and characterizations. The well-known Urysohn's Lemma and Tietze Extension Theorem are generalized to ω-normal spaces. We improve some known results. Also, some other concepts are generalized and studied via ω-open sets.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f925aee8cb14edd466204dec4c93cb00" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":30899381,"asset_id":2941107,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/30899381/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="2941107"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="2941107"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 2941107; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=2941107]").text(description); $(".js-view-count[data-work-id=2941107]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 2941107; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='2941107']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f925aee8cb14edd466204dec4c93cb00" } } $('.js-work-strip[data-work-id=2941107]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":2941107,"title":"Some types of separation axioms in topological spaces ","translated_title":"","metadata":{"grobid_abstract":"In this paper, we introduce some types of separation axioms via ω-open sets, namely ω-regular, completely ω-regular and ω-normal space and investigate their fundamental properties, relationships and characterizations. The well-known Urysohn's Lemma and Tietze Extension Theorem are generalized to ω-normal spaces. We improve some known results. Also, some other concepts are generalized and studied via ω-open sets.","grobid_abstract_attachment_id":30899381},"translated_abstract":null,"internal_url":"https://www.academia.edu/2941107/Some_types_of_separation_axioms_in_topological_spaces","translated_internal_url":"","created_at":"2013-03-09T02:38:22.338-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":817447,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":20391846,"work_id":2941107,"tagging_user_id":817447,"tagged_user_id":null,"co_author_invite_id":4597624,"email":"d***h@yahoo.com","display_order":0,"name":"Halgwrd Mohammed","title":"Some types of separation axioms in topological spaces "},{"id":20391847,"work_id":2941107,"tagging_user_id":817447,"tagged_user_id":4524623,"co_author_invite_id":null,"email":"A***N@REDIFFMAIL.COM","affiliation":"SASTRA University","display_order":4194304,"name":"K. KANNAN","title":"Some types of separation axioms in topological spaces "},{"id":20391848,"work_id":2941107,"tagging_user_id":817447,"tagged_user_id":40630373,"co_author_invite_id":null,"email":"s***h@yahoo.com","affiliation":"University of Sulaimani","display_order":6291456,"name":"halgwrd darwesh","title":"Some types of separation axioms in topological spaces "},{"id":20391849,"work_id":2941107,"tagging_user_id":817447,"tagged_user_id":12246470,"co_author_invite_id":null,"email":"k***h@gmail.com","display_order":7340032,"name":"Kamal AR","title":"Some types of separation axioms in topological spaces "}],"downloadable_attachments":[{"id":30899381,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/30899381/thumbnails/1.jpg","file_name":"Some_ypes_of_Separaion_Axioms.pdf","download_url":"https://www.academia.edu/attachments/30899381/download_file","bulk_download_file_name":"Some_types_of_separation_axioms_in_topol.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/30899381/Some_ypes_of_Separaion_Axioms-libre.pdf?1392063546=\u0026response-content-disposition=attachment%3B+filename%3DSome_types_of_separation_axioms_in_topol.pdf\u0026Expires=1743487789\u0026Signature=PgLhyeJoR9en27J5B2J7a~kGCLfDFhmfOAw94idA0TM7okiS-F3orsJieZyb9cW0lsHq8FKaU8NelpTnOXk509kXUfKr4h9CeMc8kOu56HOkh34Q98XSIyEiBdzMOoX8oMhclOxI0fNkppu4W7ixusjOB2rgaWlDKxVgcgRzZ0u-890KKqQfVo0cneZX3I5xkmSO78vFl3KN-8-uJUjgNnVbDlrupsafHQRyXEFlekBPnUTmaYVfIOY5yCXrM4SuV4Ci7QdJ6tV2mKDdycepnLRBxRqAB3mNZqiPbh6tDASCn~xbhVMa2l7YNficIawZGNM5fSiyYUkxWKEqZA2xJA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Some_types_of_separation_axioms_in_topological_spaces","translated_slug":"","page_count":24,"language":"en","content_type":"Work","summary":"In this paper, we introduce some types of separation axioms via ω-open sets, namely ω-regular, completely ω-regular and ω-normal space and investigate their fundamental properties, relationships and characterizations. The well-known Urysohn's Lemma and Tietze Extension Theorem are generalized to ω-normal spaces. We improve some known results. Also, some other concepts are generalized and studied via ω-open sets.","owner":{"id":817447,"first_name":"Alias B.","middle_initials":null,"last_name":"Khalaf","page_name":"AliasBKhalaf","domain_name":"oud","created_at":"2011-10-06T00:15:49.372-07:00","display_name":"Alias B. Khalaf","url":"https://oud.academia.edu/AliasBKhalaf"},"attachments":[{"id":30899381,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/30899381/thumbnails/1.jpg","file_name":"Some_ypes_of_Separaion_Axioms.pdf","download_url":"https://www.academia.edu/attachments/30899381/download_file","bulk_download_file_name":"Some_types_of_separation_axioms_in_topol.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/30899381/Some_ypes_of_Separaion_Axioms-libre.pdf?1392063546=\u0026response-content-disposition=attachment%3B+filename%3DSome_types_of_separation_axioms_in_topol.pdf\u0026Expires=1743487789\u0026Signature=PgLhyeJoR9en27J5B2J7a~kGCLfDFhmfOAw94idA0TM7okiS-F3orsJieZyb9cW0lsHq8FKaU8NelpTnOXk509kXUfKr4h9CeMc8kOu56HOkh34Q98XSIyEiBdzMOoX8oMhclOxI0fNkppu4W7ixusjOB2rgaWlDKxVgcgRzZ0u-890KKqQfVo0cneZX3I5xkmSO78vFl3KN-8-uJUjgNnVbDlrupsafHQRyXEFlekBPnUTmaYVfIOY5yCXrM4SuV4Ci7QdJ6tV2mKDdycepnLRBxRqAB3mNZqiPbh6tDASCn~xbhVMa2l7YNficIawZGNM5fSiyYUkxWKEqZA2xJA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":805164,"url":"http://www1.au.edu.tw/ox_view/edu/tojms/j_paper/Full_text/Vol-28/No-3/28(3)8-7(303-326).pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-2941107-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="6714569"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/6714569/Some_properties_of_s_g_locally_closed_sets"><img alt="Research paper thumbnail of Some properties of s * g -locally closed sets" class="work-thumbnail" src="https://attachments.academia-assets.com/33435398/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/6714569/Some_properties_of_s_g_locally_closed_sets">Some properties of s * g -locally closed sets</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper we continue the study of s * g -locally closed sets and s * gsubmaximal spaces in g...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper we continue the study of s * g -locally closed sets and s * gsubmaximal spaces in general topology. In particular it is proved that s * g -locally closed sets are closed under finite intersections. Also some implications of s * g -locally closed sets are given and we establish that some implications are not reversible, which are justified with suitable examples. Further some distinct notions of s * glc -continuity are introduced and we discuss some of their consequences like the composition of two s * glc -continuous functions and the restriction maps of s * glc -continuity.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="498e9ff77a58f4b46e6b2ec36a1c3051" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":33435398,"asset_id":6714569,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/33435398/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="6714569"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="6714569"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 6714569; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=6714569]").text(description); $(".js-view-count[data-work-id=6714569]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 6714569; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='6714569']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "498e9ff77a58f4b46e6b2ec36a1c3051" } } $('.js-work-strip[data-work-id=6714569]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":6714569,"title":"Some properties of s * g -locally closed sets","translated_title":"","metadata":{"grobid_abstract":"In this paper we continue the study of s * g -locally closed sets and s * gsubmaximal spaces in general topology. In particular it is proved that s * g -locally closed sets are closed under finite intersections. Also some implications of s * g -locally closed sets are given and we establish that some implications are not reversible, which are justified with suitable examples. Further some distinct notions of s * glc -continuity are introduced and we discuss some of their consequences like the composition of two s * glc -continuous functions and the restriction maps of s * glc -continuity.","grobid_abstract_attachment_id":33435398},"translated_abstract":null,"internal_url":"https://www.academia.edu/6714569/Some_properties_of_s_g_locally_closed_sets","translated_internal_url":"","created_at":"2014-04-10T01:29:01.784-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4524623,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":33435398,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/33435398/thumbnails/1.jpg","file_name":"08_JARPM_SOME_PROPERTIES_OF_S_STAR_G_LOACALLY_CLOSED_SETS.pdf","download_url":"https://www.academia.edu/attachments/33435398/download_file","bulk_download_file_name":"Some_properties_of_s_g_locally_closed_se.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33435398/08_JARPM_SOME_PROPERTIES_OF_S_STAR_G_LOACALLY_CLOSED_SETS-libre.pdf?1397118426=\u0026response-content-disposition=attachment%3B+filename%3DSome_properties_of_s_g_locally_closed_se.pdf\u0026Expires=1743487789\u0026Signature=fCWzlXpIgNeSCyaXDj59hjMj4I9b3mlnko7cC6l5m~NaIFe7xQukdBeFtmtXjC4e39SpGZE9NTiNHJEuxWiRhP7u3v0iAqpIm1OHnJvmLP1pIG1HfQ8KOrugfVzURYdGzt8x5akiugTN4KfbXM92~xv5N1Bt4ry7wzKJ2zHglaHULqgjq3AwRPcNHNfGosc8QjwFaJrpJTUD5WjeVNOfjf7~K~yGEXRyfeakvbJilaiBrcVTQku~isOB~LTvbAY2Lg2zOJBXpkpudAzvV8N9uDLWzB8VBcX1AVJHlRUU2rm6-yA3760oCvnTIBuEEAVetW1FnuDSXPvdRxTybOU8HA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Some_properties_of_s_g_locally_closed_sets","translated_slug":"","page_count":9,"language":"en","content_type":"Work","summary":"In this paper we continue the study of s * g -locally closed sets and s * gsubmaximal spaces in general topology. In particular it is proved that s * g -locally closed sets are closed under finite intersections. Also some implications of s * g -locally closed sets are given and we establish that some implications are not reversible, which are justified with suitable examples. Further some distinct notions of s * glc -continuity are introduced and we discuss some of their consequences like the composition of two s * glc -continuous functions and the restriction maps of s * glc -continuity.","owner":{"id":4524623,"first_name":"K.","middle_initials":null,"last_name":"KANNAN","page_name":"KKANNAN","domain_name":"sastra","created_at":"2013-06-12T19:45:45.890-07:00","display_name":"K. KANNAN","url":"https://sastra.academia.edu/KKANNAN"},"attachments":[{"id":33435398,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/33435398/thumbnails/1.jpg","file_name":"08_JARPM_SOME_PROPERTIES_OF_S_STAR_G_LOACALLY_CLOSED_SETS.pdf","download_url":"https://www.academia.edu/attachments/33435398/download_file","bulk_download_file_name":"Some_properties_of_s_g_locally_closed_se.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33435398/08_JARPM_SOME_PROPERTIES_OF_S_STAR_G_LOACALLY_CLOSED_SETS-libre.pdf?1397118426=\u0026response-content-disposition=attachment%3B+filename%3DSome_properties_of_s_g_locally_closed_se.pdf\u0026Expires=1743487789\u0026Signature=fCWzlXpIgNeSCyaXDj59hjMj4I9b3mlnko7cC6l5m~NaIFe7xQukdBeFtmtXjC4e39SpGZE9NTiNHJEuxWiRhP7u3v0iAqpIm1OHnJvmLP1pIG1HfQ8KOrugfVzURYdGzt8x5akiugTN4KfbXM92~xv5N1Bt4ry7wzKJ2zHglaHULqgjq3AwRPcNHNfGosc8QjwFaJrpJTUD5WjeVNOfjf7~K~yGEXRyfeakvbJilaiBrcVTQku~isOB~LTvbAY2Lg2zOJBXpkpudAzvV8N9uDLWzB8VBcX1AVJHlRUU2rm6-yA3760oCvnTIBuEEAVetW1FnuDSXPvdRxTybOU8HA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":596,"name":"Dentistry","url":"https://www.academia.edu/Documents/in/Dentistry"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-6714569-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="6714567"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/6714567/10_ICMS_SPEECH_PROCESSING_LPC"><img alt="Research paper thumbnail of 10 ICMS SPEECH PROCESSING LPC" class="work-thumbnail" src="https://attachments.academia-assets.com/33435390/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/6714567/10_ICMS_SPEECH_PROCESSING_LPC">10 ICMS SPEECH PROCESSING LPC</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Wideband speech signals of the letter 'zha' in Tamil language of 3 males and 3 females were coded...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Wideband speech signals of the letter 'zha' in Tamil language of 3 males and 3 females were coded using an improved version of Linear Predictive Coding (LPC). The sampling frequency was at 16 kHz and the bit rate was at 15450 bits per second, where the original bit rate was at 128000 bits per second with the help of wave surfer audio tool. The quality of the performance is exhibited through the block diagram voice coder. In the last section, the tradeoffs between the bit rate for a plain LPC vocoder and the bit rate for a voice-excited LPC vocoder with DCT is analyzed.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="fe6fc11ed322b8e5d3d8dd122ccfeca7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":33435390,"asset_id":6714567,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/33435390/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="6714567"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="6714567"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 6714567; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=6714567]").text(description); $(".js-view-count[data-work-id=6714567]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 6714567; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='6714567']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "fe6fc11ed322b8e5d3d8dd122ccfeca7" } } $('.js-work-strip[data-work-id=6714567]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":6714567,"title":"10 ICMS SPEECH PROCESSING LPC","translated_title":"","metadata":{"ai_title_tag":"Improved LPC for Tamil Speech Coding","grobid_abstract":"Wideband speech signals of the letter 'zha' in Tamil language of 3 males and 3 females were coded using an improved version of Linear Predictive Coding (LPC). The sampling frequency was at 16 kHz and the bit rate was at 15450 bits per second, where the original bit rate was at 128000 bits per second with the help of wave surfer audio tool. The quality of the performance is exhibited through the block diagram voice coder. In the last section, the tradeoffs between the bit rate for a plain LPC vocoder and the bit rate for a voice-excited LPC vocoder with DCT is analyzed.","grobid_abstract_attachment_id":33435390},"translated_abstract":null,"internal_url":"https://www.academia.edu/6714567/10_ICMS_SPEECH_PROCESSING_LPC","translated_internal_url":"","created_at":"2014-04-10T01:29:01.641-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4524623,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":33435390,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/33435390/thumbnails/1.jpg","file_name":"10_ICMS_SPEECH_PROCESSING_LPC.pdf","download_url":"https://www.academia.edu/attachments/33435390/download_file","bulk_download_file_name":"10_ICMS_SPEECH_PROCESSING_LPC.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33435390/10_ICMS_SPEECH_PROCESSING_LPC-libre.pdf?1397118376=\u0026response-content-disposition=attachment%3B+filename%3D10_ICMS_SPEECH_PROCESSING_LPC.pdf\u0026Expires=1743487789\u0026Signature=HxGWryULYD90wTRKdagxIiug6XPe~Bm0rHPXvNI2xQxI-~0QFPNgDZ7OlqcvSVENZjIPMdyOqCU51hLDbHFjYnIT4oqz8jluLbMVBUTNqUweExLPjNOc8v0HwzoIU~qW-YsUEiMPYAaJ1jQphb6LXH5xI19z2DsW7Behaq~fLVw40kcsP~5CF5FJ7X6kFB6ulEsZo6CBKR2GbzKleTwSemGRaVqRAHlv83UkAi-y-ezOe33pcCF-eQQ2HjqUX7u09SRcBVpKeQYF7uWA7aQQHXuArsfY4g0~xzTG3zCay3S8PanH1d8iSTsXiC8J5E6tjivXgCxhvZT3xJQrzfdfog__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"10_ICMS_SPEECH_PROCESSING_LPC","translated_slug":"","page_count":9,"language":"en","content_type":"Work","summary":"Wideband speech signals of the letter 'zha' in Tamil language of 3 males and 3 females were coded using an improved version of Linear Predictive Coding (LPC). The sampling frequency was at 16 kHz and the bit rate was at 15450 bits per second, where the original bit rate was at 128000 bits per second with the help of wave surfer audio tool. The quality of the performance is exhibited through the block diagram voice coder. In the last section, the tradeoffs between the bit rate for a plain LPC vocoder and the bit rate for a voice-excited LPC vocoder with DCT is analyzed.","owner":{"id":4524623,"first_name":"K.","middle_initials":null,"last_name":"KANNAN","page_name":"KKANNAN","domain_name":"sastra","created_at":"2013-06-12T19:45:45.890-07:00","display_name":"K. KANNAN","url":"https://sastra.academia.edu/KKANNAN"},"attachments":[{"id":33435390,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/33435390/thumbnails/1.jpg","file_name":"10_ICMS_SPEECH_PROCESSING_LPC.pdf","download_url":"https://www.academia.edu/attachments/33435390/download_file","bulk_download_file_name":"10_ICMS_SPEECH_PROCESSING_LPC.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33435390/10_ICMS_SPEECH_PROCESSING_LPC-libre.pdf?1397118376=\u0026response-content-disposition=attachment%3B+filename%3D10_ICMS_SPEECH_PROCESSING_LPC.pdf\u0026Expires=1743487789\u0026Signature=HxGWryULYD90wTRKdagxIiug6XPe~Bm0rHPXvNI2xQxI-~0QFPNgDZ7OlqcvSVENZjIPMdyOqCU51hLDbHFjYnIT4oqz8jluLbMVBUTNqUweExLPjNOc8v0HwzoIU~qW-YsUEiMPYAaJ1jQphb6LXH5xI19z2DsW7Behaq~fLVw40kcsP~5CF5FJ7X6kFB6ulEsZo6CBKR2GbzKleTwSemGRaVqRAHlv83UkAi-y-ezOe33pcCF-eQQ2HjqUX7u09SRcBVpKeQYF7uWA7aQQHXuArsfY4g0~xzTG3zCay3S8PanH1d8iSTsXiC8J5E6tjivXgCxhvZT3xJQrzfdfog__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-6714567-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="6714566"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/6714566/09_IJCMS_S_STR_G_LOACLLY_CLOSED_SETS_BTS"><img alt="Research paper thumbnail of 09 IJCMS S STR G LOACLLY CLOSED SETS BTS" class="work-thumbnail" src="https://attachments.academia-assets.com/33435387/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/6714566/09_IJCMS_S_STR_G_LOACLLY_CLOSED_SETS_BTS">09 IJCMS S STR G LOACLLY CLOSED SETS BTS</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The aim of this paper is to introduce the concepts of semi star generalized locally closed sets, ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The aim of this paper is to introduce the concepts of semi star generalized locally closed sets, s * g submaximal spaces and study their basic properties in bitopological spaces.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="df00187c2084706b6c03ebe0c22a9c9f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":33435387,"asset_id":6714566,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/33435387/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="6714566"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="6714566"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 6714566; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=6714566]").text(description); $(".js-view-count[data-work-id=6714566]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 6714566; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='6714566']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "df00187c2084706b6c03ebe0c22a9c9f" } } $('.js-work-strip[data-work-id=6714566]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":6714566,"title":"09 IJCMS S STR G LOACLLY CLOSED SETS BTS","translated_title":"","metadata":{"grobid_abstract":"The aim of this paper is to introduce the concepts of semi star generalized locally closed sets, s * g submaximal spaces and study their basic properties in bitopological spaces.","grobid_abstract_attachment_id":33435387},"translated_abstract":null,"internal_url":"https://www.academia.edu/6714566/09_IJCMS_S_STR_G_LOACLLY_CLOSED_SETS_BTS","translated_internal_url":"","created_at":"2014-04-10T01:29:01.620-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4524623,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":33435387,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/33435387/thumbnails/1.jpg","file_name":"09_IJCMS_S_STR_G_LOACLLY_CLOSED_SETS_BTS.pdf","download_url":"https://www.academia.edu/attachments/33435387/download_file","bulk_download_file_name":"09_IJCMS_S_STR_G_LOACLLY_CLOSED_SETS_BTS.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33435387/09_IJCMS_S_STR_G_LOACLLY_CLOSED_SETS_BTS-libre.pdf?1397118355=\u0026response-content-disposition=attachment%3B+filename%3D09_IJCMS_S_STR_G_LOACLLY_CLOSED_SETS_BTS.pdf\u0026Expires=1743487789\u0026Signature=U~WLwkvq5~jMoP~SzJQG9TU~GHzOrXrQ~Lh1ivF19EfYI7QpbUH~CckPe1XWGK5yTKASrkHL82tG1j5t4wEkswsjSd43OBBhP2TCdG2EBf596u0rJ8flNuHFczL-n0BXwSMHU0u8dubKaN4mcgi7SDIgeo4~3kCu~6Jt9MMssUo22pznwgik937-FfrHL88FemTtbeBBzqOzdv~qdY4H1v1v--clH2rWzDUPqBqynoE8IV30wyx6D4yNWSqZlkS7lPA773Z-QPqkCGCcZ6pTcenmEv2LN1WapuvIEVzYOBdfydnb1GkmZhVoPr~MK5e1O6kAh~TBXKL6keq8nTFxhA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"09_IJCMS_S_STR_G_LOACLLY_CLOSED_SETS_BTS","translated_slug":"","page_count":11,"language":"en","content_type":"Work","summary":"The aim of this paper is to introduce the concepts of semi star generalized locally closed sets, s * g submaximal spaces and study their basic properties in bitopological spaces.","owner":{"id":4524623,"first_name":"K.","middle_initials":null,"last_name":"KANNAN","page_name":"KKANNAN","domain_name":"sastra","created_at":"2013-06-12T19:45:45.890-07:00","display_name":"K. KANNAN","url":"https://sastra.academia.edu/KKANNAN"},"attachments":[{"id":33435387,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/33435387/thumbnails/1.jpg","file_name":"09_IJCMS_S_STR_G_LOACLLY_CLOSED_SETS_BTS.pdf","download_url":"https://www.academia.edu/attachments/33435387/download_file","bulk_download_file_name":"09_IJCMS_S_STR_G_LOACLLY_CLOSED_SETS_BTS.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33435387/09_IJCMS_S_STR_G_LOACLLY_CLOSED_SETS_BTS-libre.pdf?1397118355=\u0026response-content-disposition=attachment%3B+filename%3D09_IJCMS_S_STR_G_LOACLLY_CLOSED_SETS_BTS.pdf\u0026Expires=1743487789\u0026Signature=U~WLwkvq5~jMoP~SzJQG9TU~GHzOrXrQ~Lh1ivF19EfYI7QpbUH~CckPe1XWGK5yTKASrkHL82tG1j5t4wEkswsjSd43OBBhP2TCdG2EBf596u0rJ8flNuHFczL-n0BXwSMHU0u8dubKaN4mcgi7SDIgeo4~3kCu~6Jt9MMssUo22pznwgik937-FfrHL88FemTtbeBBzqOzdv~qdY4H1v1v--clH2rWzDUPqBqynoE8IV30wyx6D4yNWSqZlkS7lPA773Z-QPqkCGCcZ6pTcenmEv2LN1WapuvIEVzYOBdfydnb1GkmZhVoPr~MK5e1O6kAh~TBXKL6keq8nTFxhA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-6714566-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="5220619"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/5220619/Soft_Generalized_Closed_Sets_in_Soft_Topological_Spaces"><img alt="Research paper thumbnail of Soft Generalized Closed Sets in Soft Topological Spaces" class="work-thumbnail" src="https://attachments.academia-assets.com/32406154/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/5220619/Soft_Generalized_Closed_Sets_in_Soft_Topological_Spaces">Soft Generalized Closed Sets in Soft Topological Spaces</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In the present paper, we introduce soft generalized closed sets in soft topological spaces which ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In the present paper, we introduce soft generalized closed sets in soft topological spaces which are defined over an initial universe with a fixed set of parameters. A sufficient condition for a soft g-closed set to be a soft closed is also presented. Moreover, the union and intersection of two soft g-closed sets are discussed. Finally, the new soft separation axiom, namely soft 1 2 T -space is introduced and its basic properties are investigated.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="486195c423c8a07537d364ae2486c408" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":32406154,"asset_id":5220619,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/32406154/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="5220619"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="5220619"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 5220619; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=5220619]").text(description); $(".js-view-count[data-work-id=5220619]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 5220619; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='5220619']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "486195c423c8a07537d364ae2486c408" } } $('.js-work-strip[data-work-id=5220619]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":5220619,"title":"Soft Generalized Closed Sets in Soft Topological Spaces","translated_title":"","metadata":{"grobid_abstract":"In the present paper, we introduce soft generalized closed sets in soft topological spaces which are defined over an initial universe with a fixed set of parameters. A sufficient condition for a soft g-closed set to be a soft closed is also presented. Moreover, the union and intersection of two soft g-closed sets are discussed. Finally, the new soft separation axiom, namely soft 1 2 T -space is introduced and its basic properties are investigated.","grobid_abstract_attachment_id":32406154},"translated_abstract":null,"internal_url":"https://www.academia.edu/5220619/Soft_Generalized_Closed_Sets_in_Soft_Topological_Spaces","translated_internal_url":"","created_at":"2013-11-25T17:38:26.512-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4524623,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":32406154,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/32406154/thumbnails/1.jpg","file_name":"19_SOFT_GENERALIZED_CLOSED_SETS_JATIT.pdf","download_url":"https://www.academia.edu/attachments/32406154/download_file","bulk_download_file_name":"Soft_Generalized_Closed_Sets_in_Soft_Top.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/32406154/19_SOFT_GENERALIZED_CLOSED_SETS_JATIT-libre.pdf?1391100945=\u0026response-content-disposition=attachment%3B+filename%3DSoft_Generalized_Closed_Sets_in_Soft_Top.pdf\u0026Expires=1743487789\u0026Signature=cNtjIg4fl-S3Bt7~Tu7wTrqOeoJUcsRAyQ31rbVrRIPPrIzpIIIiOcsjIjd3w7EXzUb7-SlHQDSqSnjeT6Mx9RahwgMWHhS94A0~-KZNGlcYxuz7iZw5Kc7eWLfEB4Un2JcSt64RpIflI2zptzZpb7aCBWMFmB-9o5Nn1ptBdVjs-ojHtKjfzMtgs34NMw6r0FJ~oXn1UQvR6e1DiS0PgVvrMuFrzC~-JCAqZ6wh26Ysr5-4doUo4jP5TzprxMP4-kK76pIi6ImseK0wTkd8mHD84Spf7QAFUDvcagZZNwx-BdtKCcxf6FPoAz7zMisNiXYkOVgHh3XAzkW2DRnaTQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Soft_Generalized_Closed_Sets_in_Soft_Topological_Spaces","translated_slug":"","page_count":5,"language":"en","content_type":"Work","summary":"In the present paper, we introduce soft generalized closed sets in soft topological spaces which are defined over an initial universe with a fixed set of parameters. A sufficient condition for a soft g-closed set to be a soft closed is also presented. Moreover, the union and intersection of two soft g-closed sets are discussed. Finally, the new soft separation axiom, namely soft 1 2 T -space is introduced and its basic properties are investigated.","owner":{"id":4524623,"first_name":"K.","middle_initials":null,"last_name":"KANNAN","page_name":"KKANNAN","domain_name":"sastra","created_at":"2013-06-12T19:45:45.890-07:00","display_name":"K. KANNAN","url":"https://sastra.academia.edu/KKANNAN"},"attachments":[{"id":32406154,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/32406154/thumbnails/1.jpg","file_name":"19_SOFT_GENERALIZED_CLOSED_SETS_JATIT.pdf","download_url":"https://www.academia.edu/attachments/32406154/download_file","bulk_download_file_name":"Soft_Generalized_Closed_Sets_in_Soft_Top.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/32406154/19_SOFT_GENERALIZED_CLOSED_SETS_JATIT-libre.pdf?1391100945=\u0026response-content-disposition=attachment%3B+filename%3DSoft_Generalized_Closed_Sets_in_Soft_Top.pdf\u0026Expires=1743487789\u0026Signature=cNtjIg4fl-S3Bt7~Tu7wTrqOeoJUcsRAyQ31rbVrRIPPrIzpIIIiOcsjIjd3w7EXzUb7-SlHQDSqSnjeT6Mx9RahwgMWHhS94A0~-KZNGlcYxuz7iZw5Kc7eWLfEB4Un2JcSt64RpIflI2zptzZpb7aCBWMFmB-9o5Nn1ptBdVjs-ojHtKjfzMtgs34NMw6r0FJ~oXn1UQvR6e1DiS0PgVvrMuFrzC~-JCAqZ6wh26Ysr5-4doUo4jP5TzprxMP4-kK76pIi6ImseK0wTkd8mHD84Spf7QAFUDvcagZZNwx-BdtKCcxf6FPoAz7zMisNiXYkOVgHh3XAzkW2DRnaTQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":1991694,"url":"http://www.jatit.org/volumes/Vol37No1/2Vol37No1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-5220619-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="3699596"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/3699596/Some_Types_of_Separation_Axioms_in_Topological_Spaces"><img alt="Research paper thumbnail of Some Types of Separation Axioms in Topological Spaces" class="work-thumbnail" src="https://attachments.academia-assets.com/32406113/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/3699596/Some_Types_of_Separation_Axioms_in_Topological_Spaces">Some Types of Separation Axioms in Topological Spaces</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper, we introduce some types of separation axioms via ω-open sets, namely ω-regular, co...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper, we introduce some types of separation axioms via ω-open sets, namely ω-regular, completely ω-regular and ω-normal space and investigate their fundamental properties, relationships and characterizations. The well-known Urysohn's Lemma and Tietze Extension Theorem are generalized to ω-normal spaces. We improve some known results. Also, some other concepts are generalized and studied via ω-open sets.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8692f0c02690f9a8ccb873d474383583" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":32406113,"asset_id":3699596,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/32406113/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="3699596"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="3699596"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 3699596; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=3699596]").text(description); $(".js-view-count[data-work-id=3699596]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 3699596; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='3699596']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8692f0c02690f9a8ccb873d474383583" } } $('.js-work-strip[data-work-id=3699596]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":3699596,"title":"Some Types of Separation Axioms in Topological Spaces","translated_title":"","metadata":{"ai_title_tag":"Separation Axioms via ω-open Sets in Topological Spaces","grobid_abstract":"In this paper, we introduce some types of separation axioms via ω-open sets, namely ω-regular, completely ω-regular and ω-normal space and investigate their fundamental properties, relationships and characterizations. The well-known Urysohn's Lemma and Tietze Extension Theorem are generalized to ω-normal spaces. We improve some known results. Also, some other concepts are generalized and studied via ω-open sets.","grobid_abstract_attachment_id":32406113},"translated_abstract":null,"internal_url":"https://www.academia.edu/3699596/Some_Types_of_Separation_Axioms_in_Topological_Spaces","translated_internal_url":"","created_at":"2013-06-12T20:43:02.038-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4524623,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":32406113,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/32406113/thumbnails/1.jpg","file_name":"25_SOME_SEPARATION_AXIOMS_TAMSUI.pdf","download_url":"https://www.academia.edu/attachments/32406113/download_file","bulk_download_file_name":"Some_Types_of_Separation_Axioms_in_Topol.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/32406113/25_SOME_SEPARATION_AXIOMS_TAMSUI-libre.pdf?1391117535=\u0026response-content-disposition=attachment%3B+filename%3DSome_Types_of_Separation_Axioms_in_Topol.pdf\u0026Expires=1743487789\u0026Signature=dzRKmJKfeCIxNbEp8VhpcllOO4S8-pcB-612IPBwT9TPk9Y~cYX2MKJYH7pCrLceKZ8t7~O-9alZ79fbPnMSQP8U9BpSeVM7rDQVQRw5v~OpPlefnQnuyuxBE3UE6HqnnvKqAa~gOg2UHKGO1vnogdeedIxNFfgEmdl0od3IAlj4iCx706TGumguSrJ9RowW2LSPyMg7FpCfG7BQK8sVFoTIIJMHd72grvyZrqZa~Y6Qteh8sLoP6IdftYlwhB6ztQ6AFxWTMkpGEwzUZXP30l7MGdmxZsKiXatYEkOXMj40g3pwDsiLxjhRUNN3JAvPXsCYM0~pS67JyZ7GG287tQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Some_Types_of_Separation_Axioms_in_Topological_Spaces","translated_slug":"","page_count":24,"language":"en","content_type":"Work","summary":"In this paper, we introduce some types of separation axioms via ω-open sets, namely ω-regular, completely ω-regular and ω-normal space and investigate their fundamental properties, relationships and characterizations. The well-known Urysohn's Lemma and Tietze Extension Theorem are generalized to ω-normal spaces. We improve some known results. Also, some other concepts are generalized and studied via ω-open sets.","owner":{"id":4524623,"first_name":"K.","middle_initials":null,"last_name":"KANNAN","page_name":"KKANNAN","domain_name":"sastra","created_at":"2013-06-12T19:45:45.890-07:00","display_name":"K. KANNAN","url":"https://sastra.academia.edu/KKANNAN"},"attachments":[{"id":32406113,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/32406113/thumbnails/1.jpg","file_name":"25_SOME_SEPARATION_AXIOMS_TAMSUI.pdf","download_url":"https://www.academia.edu/attachments/32406113/download_file","bulk_download_file_name":"Some_Types_of_Separation_Axioms_in_Topol.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/32406113/25_SOME_SEPARATION_AXIOMS_TAMSUI-libre.pdf?1391117535=\u0026response-content-disposition=attachment%3B+filename%3DSome_Types_of_Separation_Axioms_in_Topol.pdf\u0026Expires=1743487789\u0026Signature=dzRKmJKfeCIxNbEp8VhpcllOO4S8-pcB-612IPBwT9TPk9Y~cYX2MKJYH7pCrLceKZ8t7~O-9alZ79fbPnMSQP8U9BpSeVM7rDQVQRw5v~OpPlefnQnuyuxBE3UE6HqnnvKqAa~gOg2UHKGO1vnogdeedIxNFfgEmdl0od3IAlj4iCx706TGumguSrJ9RowW2LSPyMg7FpCfG7BQK8sVFoTIIJMHd72grvyZrqZa~Y6Qteh8sLoP6IdftYlwhB6ztQ6AFxWTMkpGEwzUZXP30l7MGdmxZsKiXatYEkOXMj40g3pwDsiLxjhRUNN3JAvPXsCYM0~pS67JyZ7GG287tQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":1991720,"url":"http://www1.au.edu.tw/ox_view/edu/tojms/j_paper/Full_text/Vol-28/No-3/28(3)8-7(303-326).pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-3699596-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="3699520"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/3699520/Speech_Recognition_of_the_letter_zha_in_Tamil_Language_using_HMM"><img alt="Research paper thumbnail of Speech Recognition of the letter 'zha' in Tamil Language using HMM" class="work-thumbnail" src="https://attachments.academia-assets.com/32406124/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/3699520/Speech_Recognition_of_the_letter_zha_in_Tamil_Language_using_HMM">Speech Recognition of the letter 'zha' in Tamil Language using HMM</a></div><div class="wp-workCard_item"><span>Computing Research Repository</span><span>, 2010</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Speech signals of the letter 'zha' in Tamil language of 3 males and 3 females were coded using an...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Speech signals of the letter 'zha' in Tamil language of 3 males and 3 females were coded using an improved version of Linear Predictive Coding (LPC). The sampling frequency was at 16 kHz and the bit rate was at 15450 bits per second, where the original bit rate was at 128000 bits per second with the help of wave surfer audio tool. The output LPC cepstrum is implemented in first order three state Hidden Markov Model(HMM) chain.</span></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-3699520-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-3699520-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/35242875/figure-1-speech-recognition-of-the-letter-zha-in-tamil"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/32406124/figure_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/35242879/figure-2-spectrogram-of-letter-zha-ip-experimental-results"><img alt="Figure 2: Spectrogram of letter ‘Zha’ (ip) . Experimental Results " class="figure-slide-image" src="https://figures.academia-assets.com/32406124/figure_002.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/35242883/figure-3-sample-spectrum-section-plot-of-letter-zha-ip"><img alt="Sample spectrum section plot of letter “Zha’ (ip) 4.1, Spectrum plot " class="figure-slide-image" src="https://figures.academia-assets.com/32406124/figure_003.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/35242887/figure-4-that-in-we-have-assumed-homogeneity-of-the-markov"><img alt="that in (1) we have assumed homogeneity of the Markov chain so that the transition probabilities do not depend on time. Assume that at t = 0 the state of the system qo is specified by an initial state probability 2;, = P (qo = i). Then, for any state sequence q = (qo, qi, q2,- - - , qr), the probability of q being generated by the Markov chain is " class="figure-slide-image" src="https://figures.academia-assets.com/32406124/figure_004.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/35242893/figure-5-trellis-structure-for-the-calculation-of-the"><img alt="Figure 5. A Trellis Structure for the Calculation of the Forward Partial Probabilities @, (i). HMM method attractive and viable for speech recognizer designs because the evaluation problem can be viewed as one of scoring how well an unknown observation sequence (corresponding to the speech to be recognized) matches a given model (or sequence of models) source, thus providing an efficient mechanism for classification. 6.2 Estimation Problem Given an observation sequence (or a set of sequences) O, the estimation problem involves finding the "right" model parameter values that specify a model most likely to produce the given sequence. In speect recognition, this is often called "training," and the given sequence, on the basis of which we obtain the mode! parameters, is called the training sequence, even though the formulation here is statistical. In solving the estimation problem, the method of maximum likelihood (ML); that is, we choose 4 such that P (OA), as defined by (8), is maximized for the given training sequence O. " class="figure-slide-image" src="https://figures.academia-assets.com/32406124/figure_005.jpg" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-3699520-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4edd55a290fdddd3361a5e1c95ac55f1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":32406124,"asset_id":3699520,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/32406124/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="3699520"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="3699520"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 3699520; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=3699520]").text(description); $(".js-view-count[data-work-id=3699520]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 3699520; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='3699520']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4edd55a290fdddd3361a5e1c95ac55f1" } } $('.js-work-strip[data-work-id=3699520]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":3699520,"title":"Speech Recognition of the letter 'zha' in Tamil Language using HMM","translated_title":"","metadata":{"abstract":"Speech signals of the letter 'zha' in Tamil language of 3 males and 3 females were coded using an improved version of Linear Predictive Coding (LPC). The sampling frequency was at 16 kHz and the bit rate was at 15450 bits per second, where the original bit rate was at 128000 bits per second with the help of wave surfer audio tool. The output LPC cepstrum is implemented in first order three state Hidden Markov Model(HMM) chain.","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"publication_name":"Computing Research Repository"},"translated_abstract":"Speech signals of the letter 'zha' in Tamil language of 3 males and 3 females were coded using an improved version of Linear Predictive Coding (LPC). The sampling frequency was at 16 kHz and the bit rate was at 15450 bits per second, where the original bit rate was at 128000 bits per second with the help of wave surfer audio tool. The output LPC cepstrum is implemented in first order three state Hidden Markov Model(HMM) chain.","internal_url":"https://www.academia.edu/3699520/Speech_Recognition_of_the_letter_zha_in_Tamil_Language_using_HMM","translated_internal_url":"","created_at":"2013-06-12T20:31:52.849-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4524623,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":32406124,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/32406124/thumbnails/1.jpg","file_name":"11_IJEST_SPEECH_PROCESSING_HMM.pdf","download_url":"https://www.academia.edu/attachments/32406124/download_file","bulk_download_file_name":"Speech_Recognition_of_the_letter_zha_in.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/32406124/11_IJEST_SPEECH_PROCESSING_HMM-libre.pdf?1391589623=\u0026response-content-disposition=attachment%3B+filename%3DSpeech_Recognition_of_the_letter_zha_in.pdf\u0026Expires=1743487789\u0026Signature=KQRoMirvR4hpHQyYps2turyJQUB2W964ZEKMuxZnD2j8o9rPFgy1HsPpntG1gj7w6tiYa1xsu5cFv9VIp01cMvl1ZS9c87C4mEXW~5NF8IIk~ifCijpRoHjZB0GEGvL3m35Cv74EA1ev7lg7MX-oOA8Xm8~0-6j7Zyg9MQ2cDjxkbBblgUZ-kjeDGFNh92E0ZBN36U9KHSreOl~nxu4vRAg6Hu-5UIFlw8Wwnfjo2m77TZb-ioQNCOT9jaclCpGNcT5LXVY7W9qBMRG5aQcSoT97SxG7jrs5uoucdtxMq7YZF7ClhqYN2ryrBmiJB2~PYCLQbPhYJlBquJvIzDMkWA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Speech_Recognition_of_the_letter_zha_in_Tamil_Language_using_HMM","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"Speech signals of the letter 'zha' in Tamil language of 3 males and 3 females were coded using an improved version of Linear Predictive Coding (LPC). The sampling frequency was at 16 kHz and the bit rate was at 15450 bits per second, where the original bit rate was at 128000 bits per second with the help of wave surfer audio tool. The output LPC cepstrum is implemented in first order three state Hidden Markov Model(HMM) chain.","owner":{"id":4524623,"first_name":"K.","middle_initials":null,"last_name":"KANNAN","page_name":"KKANNAN","domain_name":"sastra","created_at":"2013-06-12T19:45:45.890-07:00","display_name":"K. KANNAN","url":"https://sastra.academia.edu/KKANNAN"},"attachments":[{"id":32406124,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/32406124/thumbnails/1.jpg","file_name":"11_IJEST_SPEECH_PROCESSING_HMM.pdf","download_url":"https://www.academia.edu/attachments/32406124/download_file","bulk_download_file_name":"Speech_Recognition_of_the_letter_zha_in.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/32406124/11_IJEST_SPEECH_PROCESSING_HMM-libre.pdf?1391589623=\u0026response-content-disposition=attachment%3B+filename%3DSpeech_Recognition_of_the_letter_zha_in.pdf\u0026Expires=1743487789\u0026Signature=KQRoMirvR4hpHQyYps2turyJQUB2W964ZEKMuxZnD2j8o9rPFgy1HsPpntG1gj7w6tiYa1xsu5cFv9VIp01cMvl1ZS9c87C4mEXW~5NF8IIk~ifCijpRoHjZB0GEGvL3m35Cv74EA1ev7lg7MX-oOA8Xm8~0-6j7Zyg9MQ2cDjxkbBblgUZ-kjeDGFNh92E0ZBN36U9KHSreOl~nxu4vRAg6Hu-5UIFlw8Wwnfjo2m77TZb-ioQNCOT9jaclCpGNcT5LXVY7W9qBMRG5aQcSoT97SxG7jrs5uoucdtxMq7YZF7ClhqYN2ryrBmiJB2~PYCLQbPhYJlBquJvIzDMkWA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":1207108,"url":"http://arxiv.org/abs/1001.4190"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-3699520-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="3699368"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/3699368/On_semi_star_generalized_closed_sets_in_bitopological_spaces"><img alt="Research paper thumbnail of On semi star generalized closed sets in bitopological spaces" class="work-thumbnail" src="https://attachments.academia-assets.com/32406130/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/3699368/On_semi_star_generalized_closed_sets_in_bitopological_spaces">On semi star generalized closed sets in bitopological spaces</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">K. Chandrasekhara Rao and K. Joseph [5] introduced the concepts of semi star generalized open set...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">K. Chandrasekhara Rao and K. Joseph [5] introduced the concepts of semi star generalized open sets and semi star generalized closed sets in a topological space. The same concept was extended to bitopological spaces by K. Chandrasekhara Rao and K. Kannan . In this paper, we continue the study of τ 1 τ 2 -s * g closed sets in bitopology and we introduced the newly related concept of pairwise s * g-continuous mappings. Also S * GO-connectedness and S * GO-compactness are introduced in bitopological spaces and some of their properties are established.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ea5df6b1b36247290b9663dee1a075c5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":32406130,"asset_id":3699368,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/32406130/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="3699368"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="3699368"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 3699368; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=3699368]").text(description); $(".js-view-count[data-work-id=3699368]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 3699368; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='3699368']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ea5df6b1b36247290b9663dee1a075c5" } } $('.js-work-strip[data-work-id=3699368]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":3699368,"title":"On semi star generalized closed sets in bitopological spaces","translated_title":"","metadata":{"grobid_abstract":"K. Chandrasekhara Rao and K. Joseph [5] introduced the concepts of semi star generalized open sets and semi star generalized closed sets in a topological space. The same concept was extended to bitopological spaces by K. Chandrasekhara Rao and K. Kannan . In this paper, we continue the study of τ 1 τ 2 -s * g closed sets in bitopology and we introduced the newly related concept of pairwise s * g-continuous mappings. Also S * GO-connectedness and S * GO-compactness are introduced in bitopological spaces and some of their properties are established.","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"grobid_abstract_attachment_id":32406130},"translated_abstract":null,"internal_url":"https://www.academia.edu/3699368/On_semi_star_generalized_closed_sets_in_bitopological_spaces","translated_internal_url":"","created_at":"2013-06-12T19:59:57.128-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4524623,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":32406130,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/32406130/thumbnails/1.jpg","file_name":"13_ON_SEMI_STAR_GENERALIZED_CLOSED_SETS.pdf","download_url":"https://www.academia.edu/attachments/32406130/download_file","bulk_download_file_name":"On_semi_star_generalized_closed_sets_in.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/32406130/13_ON_SEMI_STAR_GENERALIZED_CLOSED_SETS-libre.pdf?1391095031=\u0026response-content-disposition=attachment%3B+filename%3DOn_semi_star_generalized_closed_sets_in.pdf\u0026Expires=1743487789\u0026Signature=A03uTv3wiuGZGF2RT0hOrLej7s974I7RFByIZ02c63VX1OKRzGEONrkjwI8aDfxlktlzBuTYqVi1p9fr~RRt~QBLNJoRJL6IWgQyIbpFtt~OGYS1gi~jJDg4V1eRb-HKMqyNczDImnSJEARCLsRV6WEbSYVczoULszxel2mUfMRCey7F6V3GGDXS3sKGBSYPIYTN1FPolQuFAdvPuUzEaOio0E6NNp6yawE3ftZEuduNsgaOIOBwx~EoEoHf5DqGtc1IQfPH1pu-sDsaINmf1GWT9xl~BrgmFwuQ-mzZizo-Nxg1j3jjW9QMyV-bM4LFK1iwNwxgRg0w5wDTGrcR7A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_semi_star_generalized_closed_sets_in_bitopological_spaces","translated_slug":"","page_count":12,"language":"en","content_type":"Work","summary":"K. Chandrasekhara Rao and K. Joseph [5] introduced the concepts of semi star generalized open sets and semi star generalized closed sets in a topological space. The same concept was extended to bitopological spaces by K. Chandrasekhara Rao and K. Kannan . In this paper, we continue the study of τ 1 τ 2 -s * g closed sets in bitopology and we introduced the newly related concept of pairwise s * g-continuous mappings. Also S * GO-connectedness and S * GO-compactness are introduced in bitopological spaces and some of their properties are established.","owner":{"id":4524623,"first_name":"K.","middle_initials":null,"last_name":"KANNAN","page_name":"KKANNAN","domain_name":"sastra","created_at":"2013-06-12T19:45:45.890-07:00","display_name":"K. KANNAN","url":"https://sastra.academia.edu/KKANNAN"},"attachments":[{"id":32406130,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/32406130/thumbnails/1.jpg","file_name":"13_ON_SEMI_STAR_GENERALIZED_CLOSED_SETS.pdf","download_url":"https://www.academia.edu/attachments/32406130/download_file","bulk_download_file_name":"On_semi_star_generalized_closed_sets_in.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/32406130/13_ON_SEMI_STAR_GENERALIZED_CLOSED_SETS-libre.pdf?1391095031=\u0026response-content-disposition=attachment%3B+filename%3DOn_semi_star_generalized_closed_sets_in.pdf\u0026Expires=1743487789\u0026Signature=A03uTv3wiuGZGF2RT0hOrLej7s974I7RFByIZ02c63VX1OKRzGEONrkjwI8aDfxlktlzBuTYqVi1p9fr~RRt~QBLNJoRJL6IWgQyIbpFtt~OGYS1gi~jJDg4V1eRb-HKMqyNczDImnSJEARCLsRV6WEbSYVczoULszxel2mUfMRCey7F6V3GGDXS3sKGBSYPIYTN1FPolQuFAdvPuUzEaOio0E6NNp6yawE3ftZEuduNsgaOIOBwx~EoEoHf5DqGtc1IQfPH1pu-sDsaINmf1GWT9xl~BrgmFwuQ-mzZizo-Nxg1j3jjW9QMyV-bM4LFK1iwNwxgRg0w5wDTGrcR7A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":378278,"name":"Bitopological Spaces","url":"https://www.academia.edu/Documents/in/Bitopological_Spaces"},{"id":858386,"name":"Generalized Closed Sets","url":"https://www.academia.edu/Documents/in/Generalized_Closed_Sets"}],"urls":[{"id":1207049,"url":"http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/10812"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-3699368-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="3699366"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/3699366/Regular_Generalized_Star_Closed_Sets_in_Bitopological_Spaces"><img alt="Research paper thumbnail of Regular Generalized Star Closed Sets in Bitopological Spaces" class="work-thumbnail" src="https://attachments.academia-assets.com/32406146/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/3699366/Regular_Generalized_Star_Closed_Sets_in_Bitopological_Spaces">Regular Generalized Star Closed Sets in Bitopological Spaces</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The aim of this paper is to introduce the concepts of τ 1 τ 2 -regular generalized star closed se...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The aim of this paper is to introduce the concepts of τ 1 τ 2 -regular generalized star closed sets , τ 1 τ 2 -regular generalized star open sets and study their basic properties in bitopological spaces.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c09341891888e9a3249c00fddb2ae1eb" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":32406146,"asset_id":3699366,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/32406146/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="3699366"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="3699366"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 3699366; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=3699366]").text(description); $(".js-view-count[data-work-id=3699366]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 3699366; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='3699366']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c09341891888e9a3249c00fddb2ae1eb" } } $('.js-work-strip[data-work-id=3699366]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":3699366,"title":"Regular Generalized Star Closed Sets in Bitopological Spaces","translated_title":"","metadata":{"grobid_abstract":"The aim of this paper is to introduce the concepts of τ 1 τ 2 -regular generalized star closed sets , τ 1 τ 2 -regular generalized star open sets and study their basic properties in bitopological spaces.","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"grobid_abstract_attachment_id":32406146},"translated_abstract":null,"internal_url":"https://www.academia.edu/3699366/Regular_Generalized_Star_Closed_Sets_in_Bitopological_Spaces","translated_internal_url":"","created_at":"2013-06-12T19:59:50.399-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":4524623,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":32406146,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/32406146/thumbnails/1.jpg","file_name":"02_RG_STAR_CLOSED_SETS.pdf","download_url":"https://www.academia.edu/attachments/32406146/download_file","bulk_download_file_name":"Regular_Generalized_Star_Closed_Sets_in.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/32406146/02_RG_STAR_CLOSED_SETS-libre.pdf?1391107812=\u0026response-content-disposition=attachment%3B+filename%3DRegular_Generalized_Star_Closed_Sets_in.pdf\u0026Expires=1743487789\u0026Signature=fNj~P0G0jKGzl8XirvCmeJ~hifKvBOWWACGegnkBtyK3ElBorRLi3hu~0DUkH2-~bSLI5AIqTlOCeywK2VYcHlA5KsfyamnUkL1mvdyCFHk8h6dEA-9EIrszfSQBXxd~awUKHcKlrf7YaLwuCyvknQ1vhvv8LgmoV6~vDG003OEAzIRpUWmByubmARVUXIkdK99HFM8W6nK8B7-SNstTHhnu2gSBI7kxIICu0d18RreXfyvL3bdzJhbEATLDOs496JzmvWuuf-rRFIbbuf6hVc3YmGhwoLAkV8B9MuKcXygY637mt6eh23l6EJ5iaMIZ6KKvnzXOstoaXCWYPPv~ig__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Regular_Generalized_Star_Closed_Sets_in_Bitopological_Spaces","translated_slug":"","page_count":9,"language":"en","content_type":"Work","summary":"The aim of this paper is to introduce the concepts of τ 1 τ 2 -regular generalized star closed sets , τ 1 τ 2 -regular generalized star open sets and study their basic properties in bitopological spaces.","owner":{"id":4524623,"first_name":"K.","middle_initials":null,"last_name":"KANNAN","page_name":"KKANNAN","domain_name":"sastra","created_at":"2013-06-12T19:45:45.890-07:00","display_name":"K. KANNAN","url":"https://sastra.academia.edu/KKANNAN"},"attachments":[{"id":32406146,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/32406146/thumbnails/1.jpg","file_name":"02_RG_STAR_CLOSED_SETS.pdf","download_url":"https://www.academia.edu/attachments/32406146/download_file","bulk_download_file_name":"Regular_Generalized_Star_Closed_Sets_in.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/32406146/02_RG_STAR_CLOSED_SETS-libre.pdf?1391107812=\u0026response-content-disposition=attachment%3B+filename%3DRegular_Generalized_Star_Closed_Sets_in.pdf\u0026Expires=1743487789\u0026Signature=fNj~P0G0jKGzl8XirvCmeJ~hifKvBOWWACGegnkBtyK3ElBorRLi3hu~0DUkH2-~bSLI5AIqTlOCeywK2VYcHlA5KsfyamnUkL1mvdyCFHk8h6dEA-9EIrszfSQBXxd~awUKHcKlrf7YaLwuCyvknQ1vhvv8LgmoV6~vDG003OEAzIRpUWmByubmARVUXIkdK99HFM8W6nK8B7-SNstTHhnu2gSBI7kxIICu0d18RreXfyvL3bdzJhbEATLDOs496JzmvWuuf-rRFIbbuf6hVc3YmGhwoLAkV8B9MuKcXygY637mt6eh23l6EJ5iaMIZ6KKvnzXOstoaXCWYPPv~ig__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":378278,"name":"Bitopological Spaces","url":"https://www.academia.edu/Documents/in/Bitopological_Spaces"},{"id":858386,"name":"Generalized Closed Sets","url":"https://www.academia.edu/Documents/in/Generalized_Closed_Sets"}],"urls":[{"id":1207048,"url":"http://www.math.science.cmu.ac.th/thaijournal/vol%25204%2520no%25202%25202006/9_Kannan.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-3699366-figures'); } }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; } .sign-in-with-apple-button > div { margin: 0 auto; / This centers the Apple-rendered button horizontally }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "3790d8948bf4231597f0085336b8d32c115f24fe2a3abba907a97de44d42533f", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="JCj2jSoNAdhIzWOnrKwdW5Nig7jZa0x71Da4xopptBe0SAzvhCDSRYmhRXa_5zx0jktJqMUNrLPFYoFYCY6KLA" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://sastra.academia.edu/KKANNAN" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="Z6tgDcKY69JYi74cC3-wP6VBUXuehckHDyvYphULOiP3y5pvbLU4T5nnmM0YNJEQuGiba4LjKc8ef-E4luwEGA" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2025</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>