CINXE.COM

Turbofan - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Turbofan - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"fdf1d824-8f60-49d5-b41d-7ea6286e2efb","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Turbofan","wgTitle":"Turbofan","wgCurRevisionId":1274974373,"wgRevisionId":1274974373,"wgArticleId":103077,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 maint: location","Webarchive template wayback links","Articles with short description","Short description matches Wikidata","Wikipedia articles needing clarification from May 2021","All articles with unsourced statements","Articles with unsourced statements from August 2020","Articles needing additional references from December 2024","All articles needing additional references","Articles with unsourced statements from September 2018","Commons category link is on Wikidata","Gas turbines", "Jet engines","Turbofan engines"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Turbofan","wgRelevantArticleId":103077,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":100000,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q654051", "wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","mediawiki.page.gallery.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.tablesorter.styles":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.gallery" ,"mediawiki.page.media","site","mediawiki.page.ready","jquery.tablesorter","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cjquery.tablesorter.styles%7Cmediawiki.page.gallery.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.15"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/e/e5/Turbofan3_Labelled.gif"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="900"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/e/e5/Turbofan3_Labelled.gif"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="600"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Turbofan3_Labelled.gif/640px-Turbofan3_Labelled.gif"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="480"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Turbofan - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Turbofan"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Turbofan&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Turbofan"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Turbofan rootpage-Turbofan skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" title="Main menu" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Turbofan" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Turbofan" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Turbofan" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Turbofan" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Principles" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Principles"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Principles</span> </div> </a> <button aria-controls="toc-Principles-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Principles subsection</span> </button> <ul id="toc-Principles-sublist" class="vector-toc-list"> <li id="toc-Bypass_ratio" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Bypass_ratio"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Bypass ratio</span> </div> </a> <ul id="toc-Bypass_ratio-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Efficiency" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Efficiency"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Efficiency</span> </div> </a> <ul id="toc-Efficiency-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Thrust" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Thrust"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3</span> <span>Thrust</span> </div> </a> <ul id="toc-Thrust-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Nozzles" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Nozzles"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.4</span> <span>Nozzles</span> </div> </a> <ul id="toc-Nozzles-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Noise" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Noise"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.5</span> <span>Noise</span> </div> </a> <ul id="toc-Noise-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Common_types" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Common_types"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Common types</span> </div> </a> <button aria-controls="toc-Common_types-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Common types subsection</span> </button> <ul id="toc-Common_types-sublist" class="vector-toc-list"> <li id="toc-Low-bypass_turbofan" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Low-bypass_turbofan"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Low-bypass turbofan</span> </div> </a> <ul id="toc-Low-bypass_turbofan-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Afterburning_turbofan" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Afterburning_turbofan"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Afterburning turbofan</span> </div> </a> <ul id="toc-Afterburning_turbofan-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-High-bypass_turbofan" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#High-bypass_turbofan"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>High-bypass turbofan</span> </div> </a> <ul id="toc-High-bypass_turbofan-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Turbofan_configurations" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Turbofan_configurations"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Turbofan configurations</span> </div> </a> <button aria-controls="toc-Turbofan_configurations-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Turbofan configurations subsection</span> </button> <ul id="toc-Turbofan_configurations-sublist" class="vector-toc-list"> <li id="toc-Single-shaft_turbofan" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Single-shaft_turbofan"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Single-shaft turbofan</span> </div> </a> <ul id="toc-Single-shaft_turbofan-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Aft-fan_turbofan" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Aft-fan_turbofan"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Aft-fan turbofan</span> </div> </a> <ul id="toc-Aft-fan_turbofan-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Basic_two-spool" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Basic_two-spool"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Basic two-spool</span> </div> </a> <ul id="toc-Basic_two-spool-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Boosted_two-spool" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Boosted_two-spool"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Boosted two-spool</span> </div> </a> <ul id="toc-Boosted_two-spool-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Three-spool" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Three-spool"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.5</span> <span>Three-spool</span> </div> </a> <ul id="toc-Three-spool-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Geared_fan" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Geared_fan"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.6</span> <span>Geared fan</span> </div> </a> <ul id="toc-Geared_fan-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Military_turbofans" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Military_turbofans"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.7</span> <span>Military turbofans</span> </div> </a> <ul id="toc-Military_turbofans-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-High-pressure_turbine" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#High-pressure_turbine"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.8</span> <span>High-pressure turbine</span> </div> </a> <ul id="toc-High-pressure_turbine-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Low-pressure_turbine" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Low-pressure_turbine"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.9</span> <span>Low-pressure turbine</span> </div> </a> <ul id="toc-Low-pressure_turbine-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Overall_performance" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Overall_performance"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Overall performance</span> </div> </a> <button aria-controls="toc-Overall_performance-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Overall performance subsection</span> </button> <ul id="toc-Overall_performance-sublist" class="vector-toc-list"> <li id="toc-Cycle_improvements" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Cycle_improvements"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Cycle improvements</span> </div> </a> <ul id="toc-Cycle_improvements-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Thrust_growth" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Thrust_growth"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Thrust growth</span> </div> </a> <ul id="toc-Thrust_growth-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Technical_discussion" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Technical_discussion"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Technical discussion</span> </div> </a> <ul id="toc-Technical_discussion-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Improvements" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Improvements"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Improvements</span> </div> </a> <button aria-controls="toc-Improvements-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Improvements subsection</span> </button> <ul id="toc-Improvements-sublist" class="vector-toc-list"> <li id="toc-Aerodynamic_modelling" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Aerodynamic_modelling"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Aerodynamic modelling</span> </div> </a> <ul id="toc-Aerodynamic_modelling-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Blade_technology" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Blade_technology"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Blade technology</span> </div> </a> <ul id="toc-Blade_technology-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Fan_blades" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Fan_blades"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>Fan blades</span> </div> </a> <ul id="toc-Fan_blades-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Future_progress" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Future_progress"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.4</span> <span>Future progress</span> </div> </a> <ul id="toc-Future_progress-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Manufacturers" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Manufacturers"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Manufacturers</span> </div> </a> <button aria-controls="toc-Manufacturers-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Manufacturers subsection</span> </button> <ul id="toc-Manufacturers-sublist" class="vector-toc-list"> <li id="toc-Commercial_turbofans_in_production" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Commercial_turbofans_in_production"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>Commercial turbofans in production</span> </div> </a> <ul id="toc-Commercial_turbofans_in_production-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Extreme_bypass_jet_engines" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Extreme_bypass_jet_engines"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Extreme bypass jet engines</span> </div> </a> <ul id="toc-Extreme_bypass_jet_engines-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Terminology" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Terminology"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Terminology</span> </div> </a> <ul id="toc-Terminology-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" title="Table of Contents" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Turbofan</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 39 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-39" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">39 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Turbowaaiermotor" title="Turbowaaiermotor – Afrikaans" lang="af" hreflang="af" data-title="Turbowaaiermotor" data-language-autonym="Afrikaans" data-language-local-name="Afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%85%D8%AD%D8%B1%D9%83_%D8%B9%D9%86%D9%81%D9%8A_%D9%85%D8%B1%D9%88%D8%AD%D9%8A" title="محرك عنفي مروحي – Arabic" lang="ar" hreflang="ar" data-title="محرك عنفي مروحي" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Turbofan" title="Turbofan – Asturian" lang="ast" hreflang="ast" data-title="Turbofan" data-language-autonym="Asturianu" data-language-local-name="Asturian" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-av mw-list-item"><a href="https://av.wikipedia.org/wiki/%D0%A2%D1%83%D1%80%D0%B1%D0%BE%D0%B2%D0%B5%D0%BD%D1%82%D0%B8%D0%BB%D1%8F%D1%82%D0%BE%D1%80%D0%B8%D1%8F%D0%B1_%D0%B4%D0%B2%D0%B8%D0%B3%D0%B0%D1%82%D0%B5%D0%BB%D1%8C" title="Турбовентиляторияб двигатель – Avaric" lang="av" hreflang="av" data-title="Турбовентиляторияб двигатель" data-language-autonym="Авар" data-language-local-name="Avaric" class="interlanguage-link-target"><span>Авар</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Turbofan" title="Turbofan – Azerbaijani" lang="az" hreflang="az" data-title="Turbofan" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-azb mw-list-item"><a href="https://azb.wikipedia.org/wiki/%D8%AA%D9%88%D8%B1%D8%A8%D9%88%D9%81%D9%86" title="توربوفن – South Azerbaijani" lang="azb" hreflang="azb" data-title="توربوفن" data-language-autonym="تۆرکجه" data-language-local-name="South Azerbaijani" class="interlanguage-link-target"><span>تۆرکجه</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%9F%E0%A6%BE%E0%A6%B0%E0%A7%8D%E0%A6%AC%E0%A7%8B%E0%A6%AB%E0%A7%8D%E0%A6%AF%E0%A6%BE%E0%A6%A8" title="টার্বোফ্যান – Bangla" lang="bn" hreflang="bn" data-title="টার্বোফ্যান" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Turboventilador" title="Turboventilador – Catalan" lang="ca" hreflang="ca" data-title="Turboventilador" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Dvouproudov%C3%BD_motor" title="Dvouproudový motor – Czech" lang="cs" hreflang="cs" data-title="Dvouproudový motor" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Mantelstromtriebwerk" title="Mantelstromtriebwerk – German" lang="de" hreflang="de" data-title="Mantelstromtriebwerk" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Turboventilaatormootor" title="Turboventilaatormootor – Estonian" lang="et" hreflang="et" data-title="Turboventilaatormootor" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Turbof%C3%A1n" title="Turbofán – Spanish" lang="es" hreflang="es" data-title="Turbofán" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AA%D9%88%D8%B1%D8%A8%D9%88%D9%81%D9%86" title="توربوفن – Persian" lang="fa" hreflang="fa" data-title="توربوفن" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Turbor%C3%A9acteur_%C3%A0_double_flux" title="Turboréacteur à double flux – French" lang="fr" hreflang="fr" data-title="Turboréacteur à double flux" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Inneall_turba-fean" title="Inneall turba-fean – Irish" lang="ga" hreflang="ga" data-title="Inneall turba-fean" data-language-autonym="Gaeilge" data-language-local-name="Irish" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Turboventilador" title="Turboventilador – Galician" lang="gl" hreflang="gl" data-title="Turboventilador" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%ED%84%B0%EB%B3%B4%ED%8C%AC" title="터보팬 – Korean" lang="ko" hreflang="ko" data-title="터보팬" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%9F%E0%A4%B0%E0%A5%8D%E0%A4%AC%E0%A5%8B%E0%A4%AB%E0%A5%88%E0%A4%A8" title="टर्बोफैन – Hindi" lang="hi" hreflang="hi" data-title="टर्बोफैन" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Turbokipas" title="Turbokipas – Indonesian" lang="id" hreflang="id" data-title="Turbokipas" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Turboventola" title="Turboventola – Italian" lang="it" hreflang="it" data-title="Turboventola" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%9F%E0%B5%BC%E0%B4%AC%E0%B5%8A%E0%B4%AB%E0%B4%BE%E0%B5%BB" title="ടർബൊഫാൻ – Malayalam" lang="ml" hreflang="ml" data-title="ടർബൊഫാൻ" data-language-autonym="മലയാളം" data-language-local-name="Malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Turbin_kipas" title="Turbin kipas – Malay" lang="ms" hreflang="ms" data-title="Turbin kipas" data-language-autonym="Bahasa Melayu" data-language-local-name="Malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Turbofan" title="Turbofan – Dutch" lang="nl" hreflang="nl" data-title="Turbofan" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%82%BF%E3%83%BC%E3%83%9C%E3%83%95%E3%82%A1%E3%83%B3%E3%82%A8%E3%83%B3%E3%82%B8%E3%83%B3" title="ターボファンエンジン – Japanese" lang="ja" hreflang="ja" data-title="ターボファンエンジン" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Turboviftemotor" title="Turboviftemotor – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Turboviftemotor" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Silnik_turboodrzutowy_dwuprzep%C5%82ywowy" title="Silnik turboodrzutowy dwuprzepływowy – Polish" lang="pl" hreflang="pl" data-title="Silnik turboodrzutowy dwuprzepływowy" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Turbofan" title="Turbofan – Portuguese" lang="pt" hreflang="pt" data-title="Turbofan" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Turboventilator" title="Turboventilator – Romanian" lang="ro" hreflang="ro" data-title="Turboventilator" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A2%D1%83%D1%80%D0%B1%D0%BE%D0%B2%D0%B5%D0%BD%D1%82%D0%B8%D0%BB%D1%8F%D1%82%D0%BE%D1%80%D0%BD%D1%8B%D0%B9_%D0%B4%D0%B2%D0%B8%D0%B3%D0%B0%D1%82%D0%B5%D0%BB%D1%8C" title="Турбовентиляторный двигатель – Russian" lang="ru" hreflang="ru" data-title="Турбовентиляторный двигатель" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Dvojpr%C3%BAdov%C3%BD_motor" title="Dvojprúdový motor – Slovak" lang="sk" hreflang="sk" data-title="Dvojprúdový motor" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Turboventilatorski_motor" title="Turboventilatorski motor – Slovenian" lang="sl" hreflang="sl" data-title="Turboventilatorski motor" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D8%AA%DB%86%D8%B1%D8%A8%DB%86%D9%81%D8%A7%D9%86" title="تۆربۆفان – Central Kurdish" lang="ckb" hreflang="ckb" data-title="تۆربۆفان" data-language-autonym="کوردی" data-language-local-name="Central Kurdish" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%94%D0%B2%D0%BE%D0%BF%D1%80%D0%BE%D1%82%D0%BE%D1%87%D0%BD%D0%B8_%D1%82%D1%83%D1%80%D0%B1%D0%BE%D0%BC%D0%BB%D0%B0%D0%B7%D0%BD%D0%B8_%D0%BC%D0%BE%D1%82%D0%BE%D1%80" title="Двопроточни турбомлазни мотор – Serbian" lang="sr" hreflang="sr" data-title="Двопроточни турбомлазни мотор" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Ohivirtausmoottori" title="Ohivirtausmoottori – Finnish" lang="fi" hreflang="fi" data-title="Ohivirtausmoottori" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Turbofl%C3%A4ktmotor" title="Turbofläktmotor – Swedish" lang="sv" hreflang="sv" data-title="Turbofläktmotor" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Turbofan" title="Turbofan – Turkish" lang="tr" hreflang="tr" data-title="Turbofan" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A2%D1%83%D1%80%D0%B1%D0%BE%D0%B2%D0%B5%D0%BD%D1%82%D0%B8%D0%BB%D1%8F%D1%82%D0%BE%D1%80%D0%BD%D0%B8%D0%B9_%D0%B4%D0%B2%D0%B8%D0%B3%D1%83%D0%BD" title="Турбовентиляторний двигун – Ukrainian" lang="uk" hreflang="uk" data-title="Турбовентиляторний двигун" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/%C4%90%E1%BB%99ng_c%C6%A1_tu%E1%BB%91c_bin_ph%E1%BA%A3n_l%E1%BB%B1c_c%C3%A1nh_qu%E1%BA%A1t" title="Động cơ tuốc bin phản lực cánh quạt – Vietnamese" lang="vi" hreflang="vi" data-title="Động cơ tuốc bin phản lực cánh quạt" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%B8%A6%E8%BC%AA%E6%89%87%E7%99%BC%E5%8B%95%E6%A9%9F" title="渦輪扇發動機 – Chinese" lang="zh" hreflang="zh" data-title="渦輪扇發動機" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q654051#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Turbofan" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Turbofan" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Turbofan"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Turbofan&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Turbofan&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Turbofan"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Turbofan&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Turbofan&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Turbofan" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Turbofan" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Turbofan&amp;oldid=1274974373" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Turbofan&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Turbofan&amp;id=1274974373&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FTurbofan"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FTurbofan"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Turbofan&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Turbofan&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Turbofan" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q654051" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Airbreathing jet engine designed to provide thrust by driving a fan</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Not to be confused with <a href="/wiki/Propfan" title="Propfan">propfan</a> or <a href="/wiki/Turboprop" title="Turboprop">turboprop</a>.</div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">This article is about the mechanism used in jets. For the turbo like air pressure blower sometimes misnamed Turbo fan, see <a href="/wiki/Centrifugal_fan" title="Centrifugal fan">Centrifugal fan</a>.</div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Turbofan3_Labelled.gif" class="mw-file-description"><img alt="Animation of turbofan, which shows flow of air and the spinning of blades." src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Turbofan3_Labelled.gif/360px-Turbofan3_Labelled.gif" decoding="async" width="360" height="270" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Turbofan3_Labelled.gif/540px-Turbofan3_Labelled.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Turbofan3_Labelled.gif/720px-Turbofan3_Labelled.gif 2x" data-file-width="800" data-file-height="600" /></a><figcaption>Animation of a 2-spool, high-bypass turbofan <div><ol style="list-style-type:upper-alpha"><li>Low-pressure spool</li><li>High-pressure spool</li><li>Stationary components</li></ol></div><div><ol><li>Nacelle</li><li>Fan</li><li>Low-pressure compressor</li><li>High-pressure compressor</li><li>Combustion chamber</li><li>High-pressure turbine</li><li>Low-pressure turbine</li><li>Core nozzle</li><li>Fan nozzle</li></ol></div></figcaption></figure> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><table class="sidebar nomobile nowraplinks"><tbody><tr><td class="sidebar-pretitle" style="background-color: #87CEEB">Part of a series on</td></tr><tr><th class="sidebar-title-with-pretitle" style="background-color: #87CEEB"><a href="/wiki/Aircraft_engine" title="Aircraft engine">Aircraft propulsion</a></th></tr><tr><th class="sidebar-heading" style="background-color: #c9efff"> <a href="/wiki/Drive_shaft" title="Drive shaft">Shaft engines</a>:<br /> driving <a href="/wiki/Propeller_(aeronautics)" title="Propeller (aeronautics)">propellers</a>, <a href="/wiki/Helicopter_rotor" title="Helicopter rotor">rotors</a>, <a href="/wiki/Ducted_fan" title="Ducted fan">ducted fans</a> or <a href="/wiki/Propfan" title="Propfan">propfans</a></th></tr><tr><td class="sidebar-content" style="text-align:left;"> <ul><li><a href="/wiki/Internal_combustion_engine" title="Internal combustion engine">Internal thermal engines</a>: <ul><li><a href="/wiki/Reciprocating_engine" title="Reciprocating engine">Piston engine</a> <ul><li><a href="/wiki/Aircraft_diesel_engine" title="Aircraft diesel engine">Diesel engine</a></li></ul></li> <li><a href="/wiki/Wankel_engine" title="Wankel engine">Wankel engine</a></li> <li><a href="/wiki/Gas_turbine" title="Gas turbine">Turbines</a>: <ul><li><a href="/wiki/Turboprop" title="Turboprop">Turboprop</a></li> <li><a href="/wiki/Turboshaft" title="Turboshaft">Turboshaft</a></li></ul></li></ul></li> <li><a href="/wiki/External_combustion_engine" title="External combustion engine">External thermal engines</a>: <ul><li><a href="/wiki/Steam-powered_aircraft" title="Steam-powered aircraft">Steam power</a></li></ul></li> <li><a href="/wiki/Electric_motor" title="Electric motor">Electric motors</a>: <ul><li><a href="/wiki/Electric_aircraft" title="Electric aircraft">Electric aircraft</a></li></ul></li> <li><a href="/wiki/Clockwork" title="Clockwork">Clockwork</a> drives: <ul><li><a href="/wiki/Human-powered_aircraft" title="Human-powered aircraft">Human-powered</a></li></ul></li></ul></td> </tr><tr><th class="sidebar-heading" style="background-color: #c9efff"> <a href="/wiki/Reaction_engine" title="Reaction engine">Reaction engines</a></th></tr><tr><td class="sidebar-content" style="text-align:left;"> <ul><li><a href="/wiki/Gas_turbine" title="Gas turbine">Turbines</a>: <ul><li><a href="/wiki/Turbojet" title="Turbojet">Turbojet</a></li> <li><a class="mw-selflink selflink">Turbofan</a></li> <li><a href="/wiki/Propfan" title="Propfan">Propfan</a></li></ul></li> <li><a href="/wiki/Rocket-powered_aircraft" title="Rocket-powered aircraft">Rocket-powered</a> <ul><li><a href="/wiki/Air_turborocket" title="Air turborocket">Air turborocket</a></li> <li><a href="/wiki/Air-augmented_rocket" title="Air-augmented rocket">Air-augmented rocket</a></li></ul></li> <li><a href="/wiki/Motorjet" title="Motorjet">Motorjet</a></li> <li><a href="/wiki/Pulsejet" title="Pulsejet">Pulsejet</a> <ul><li><a href="/wiki/Valveless_pulsejet" title="Valveless pulsejet">Valveless pulsejet</a></li> <li><a href="/wiki/Gluhareff_Pressure_Jet" title="Gluhareff Pressure Jet">Gluhareff Pressure Jet</a></li></ul></li> <li><a href="/wiki/Aerospike_engine" title="Aerospike engine">Aerospike engine</a></li> <li><a href="/wiki/Pulse_detonation_engine" title="Pulse detonation engine">Pulse detonation engine</a></li> <li><a href="/wiki/Rotating_detonation_engine" title="Rotating detonation engine">Rotating detonation engine</a></li> <li><a href="/wiki/Ramjet" title="Ramjet">Ramjet</a> <ul><li><a href="/wiki/Scramjet" title="Scramjet">Scramjet</a></li> <li><a href="/wiki/Shcramjet" title="Shcramjet">Shcramjet</a></li></ul></li></ul></td> </tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Seriesbox_aircraft_propulsion" title="Template:Seriesbox aircraft propulsion"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Seriesbox_aircraft_propulsion" title="Template talk:Seriesbox aircraft propulsion"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Seriesbox_aircraft_propulsion" title="Special:EditPage/Template:Seriesbox aircraft propulsion"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <p>A <b>turbofan</b> or <b>fanjet</b> is a type of <a href="/wiki/Airbreathing_jet_engine" title="Airbreathing jet engine">airbreathing jet engine</a> that is widely used in <a href="/wiki/Aircraft_engine" title="Aircraft engine">aircraft propulsion</a>. The word "turbofan" is a combination of references to the preceding generation engine technology of the <a href="/wiki/Turbojet" title="Turbojet">turbojet</a> and the additional fan stage. It consists of a <a href="/wiki/Gas_turbine_engine" class="mw-redirect" title="Gas turbine engine">gas turbine engine</a> which achieves <a href="/wiki/Mechanical_energy" title="Mechanical energy">mechanical energy</a> from combustion,<sup id="cite_ref-stuffworks_1-0" class="reference"><a href="#cite_note-stuffworks-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> and a <a href="/wiki/Ducted_fan" title="Ducted fan">ducted fan</a> that uses the mechanical energy from the gas turbine to force air rearwards. Thus, whereas all the air taken in by a <a href="/wiki/Turbojet" title="Turbojet">turbojet</a> passes through the <a href="/wiki/Combustion_chamber" title="Combustion chamber">combustion chamber</a> and turbines, in a turbofan some of that air bypasses these components. A turbofan thus can be thought of as a turbojet being used to drive a ducted fan, with both of these contributing to the <a href="/wiki/Thrust" title="Thrust">thrust</a>. </p><p>The ratio of the mass-flow of air bypassing the engine core to the mass-flow of air passing through the core is referred to as the <a href="/wiki/Bypass_ratio" title="Bypass ratio">bypass ratio</a>. The engine produces thrust through a combination of these two portions working together. Engines that use more <a href="/wiki/Propelling_nozzle" title="Propelling nozzle">jet thrust</a> relative to fan thrust are known as <i>low-bypass turbofans</i>; conversely those that have considerably more fan thrust than jet thrust are known as <i>high-bypass</i>. Most commercial aviation jet engines in use are of the high-bypass type,<sup id="cite_ref-Hall_2-0" class="reference"><a href="#cite_note-Hall-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-HackerBurghardt2009_3-0" class="reference"><a href="#cite_note-HackerBurghardt2009-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> and most modern <a href="/wiki/Fighter_aircraft" title="Fighter aircraft">fighter</a> engines are low-bypass.<sup id="cite_ref-Verma2013_4-0" class="reference"><a href="#cite_note-Verma2013-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Magill_5-0" class="reference"><a href="#cite_note-Magill-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Afterburner" title="Afterburner">Afterburners</a> are used on low-bypass turbofan engines with bypass and core mixing before the afterburner. </p><p>Modern turbofans have either a large single-stage fan or a smaller fan with several stages. An early configuration combined a low-pressure turbine and fan in a single rear-mounted unit. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Principles">Principles</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Turbofan&amp;action=edit&amp;section=1" title="Edit section: Principles"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Tfan-schematic-kk-20090106.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/en/thumb/1/17/Tfan-schematic-kk-20090106.png/450px-Tfan-schematic-kk-20090106.png" decoding="async" width="450" height="318" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/1/17/Tfan-schematic-kk-20090106.png/675px-Tfan-schematic-kk-20090106.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/1/17/Tfan-schematic-kk-20090106.png/900px-Tfan-schematic-kk-20090106.png 2x" data-file-width="1263" data-file-height="893" /></a><figcaption>Schematic diagram illustrating a modern 2-spool turbofan engine installation in a nacelle. The low-pressure spool is colored blue and the high-pressure one orange.</figcaption></figure> <p>The turbofan was invented to improve the fuel consumption of the turbojet. It achieves this by pushing more air, thus increasing the mass and lowering the speed of the propelling jet compared to that of the turbojet. This is done mechanically by adding a <a href="/wiki/Ducted_fan" title="Ducted fan">ducted fan</a> rather than using viscous forces.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> A <a href="/wiki/Vacuum_ejector" title="Vacuum ejector">vacuum ejector</a> is used in conjunction with the fan as first envisaged by inventor <a href="/wiki/Frank_Whittle" title="Frank Whittle">Frank Whittle</a>.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> </p><p>Whittle envisioned flight speeds of 500&#160;mph in his March 1936 UK patent 471,368 "Improvements relating to the propulsion of aircraft", in which he describes the principles behind the turbofan,<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> although not called as such at that time. While the turbojet uses the gas from its thermodynamic cycle as its propelling jet, for aircraft speeds below 500&#160;mph there are two penalties to this design which are addressed by the turbofan. </p><p>First, the energy required for a given thrust increases as you propel the exhaust air at ever greater speeds, so the efficiency can be improved by diverting energy to propel larger quantities of air at lower speeds than the core. A turbofan achieves this by using an additional turbine to drive a ducted fan to blow air that bypasses the high speed core. With a lower core thrust, most of the thrust now comes from the large mass of low speed bypass air, providing the same thrust with a reduced fuel burn. </p><p>The other penalty is that combustion is less efficient at lower speeds. Any action to reduce the fuel consumption of the engine by increasing its pressure ratio or turbine temperature to achieve better combustion causes a corresponding increase in pressure and temperature in the exhaust duct which in turn cause a higher gas speed from the propelling nozzle (and higher KE and wasted fuel). Although the engine would use less fuel to produce a pound of thrust, more fuel is wasted in the faster propelling jet. In other words, the independence of thermal and propulsive efficiencies, as exists with the piston engine/propeller combination which preceded the turbojet, is lost.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> In contrast, Roth<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> considers regaining this independence the single most important feature of the turbofan which allows specific thrust to be chosen independently of the gas generator cycle. </p><p>The working substance of the thermodynamic cycle is the only mass accelerated to produce thrust in a turbojet which is a serious limitation (high fuel consumption) for aircraft speeds below supersonic. For subsonic flight speeds the speed of the propelling jet has to be reduced because there is a price to be paid in producing the thrust. The energy required to accelerate the gas inside the engine (increase in kinetic energy) is expended in two ways, by producing a change in momentum ( i.e. a force), and a wake which is an unavoidable consequence of producing thrust by an airbreathing engine<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> (or propeller). The wake velocity, and fuel burned to produce it, can be reduced and the required thrust still maintained by increasing the mass accelerated. A turbofan does this by transferring energy available inside the engine, from the gas generator, to a <a href="/wiki/Ducted_fan" title="Ducted fan">ducted fan</a> which produces a second, additional mass of accelerated air. </p><p>The transfer of energy from the core to bypass air results in lower pressure and temperature gas entering the core nozzle (lower exhaust velocity), and fan-produced higher pressure and temperature bypass-air entering the fan nozzle. The amount of energy transferred depends on how much pressure rise the fan is designed to produce (fan pressure ratio). The best energy exchange (lowest fuel consumption) between the two flows, and how the jet velocities compare, depends on how efficiently the transfer takes place which depends on the losses in the fan-turbine and fan.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> </p><p>The fan flow has lower exhaust velocity, giving much more thrust per unit energy (lower <a href="/wiki/Specific_thrust" title="Specific thrust">specific thrust</a>). Both airstreams contribute to the gross thrust of the engine. The additional air for the bypass stream increases the ram drag in the air intake stream-tube, but there is still a significant increase in net thrust. The overall effective exhaust velocity of the two exhaust jets can be made closer to a normal subsonic aircraft's flight speed and gets closer to the ideal <a href="/wiki/Aquatic_locomotion#Efficiency" title="Aquatic locomotion">Froude efficiency</a>. A turbofan accelerates a larger mass of air more slowly, compared to a turbojet which accelerates a smaller amount more quickly, which is a less efficient way to generate the same thrust (see the <a href="#Efficiency">efficiency</a> section below). </p><p>The ratio of the mass-flow of air bypassing the engine core compared to the mass-flow of air passing through the core is referred to as the <a href="/wiki/Bypass_ratio" title="Bypass ratio">bypass ratio</a>. Engines with more <a href="/wiki/Propelling_nozzle" title="Propelling nozzle">jet thrust</a> relative to fan thrust are known as <i>low-bypass turbofans</i>, those that have considerably more fan thrust than jet thrust are known as <i>high-bypass</i>. Most commercial aviation jet engines in use are high-bypass,<sup id="cite_ref-Hall_2-1" class="reference"><a href="#cite_note-Hall-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-HackerBurghardt2009_3-1" class="reference"><a href="#cite_note-HackerBurghardt2009-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> and most modern fighter engines are low-bypass.<sup id="cite_ref-Verma2013_4-1" class="reference"><a href="#cite_note-Verma2013-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Magill_5-1" class="reference"><a href="#cite_note-Magill-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Afterburner" title="Afterburner">Afterburners</a> are used on low-bypass turbofans on combat aircraft. </p> <div class="mw-heading mw-heading3"><h3 id="Bypass_ratio">Bypass ratio</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Turbofan&amp;action=edit&amp;section=2" title="Edit section: Bypass ratio"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Bypass_ratio" title="Bypass ratio">Bypass ratio</a></div> <p>The <i>bypass ratio (BPR)</i> of a turbofan engine is the ratio between the mass flow rate of the bypass stream to the mass flow rate entering the core.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> A bypass ratio of 6, for example, means that 6 times more air passes through the bypass duct than the amount that passes through the combustion chamber. </p><p>Turbofan engines are usually described in terms of BPR, which together with overall pressure ratio, turbine inlet temperature and fan pressure ratio are important design parameters. In addition BPR is quoted for turboprop and unducted fan installations because their high propulsive efficiency gives them the overall efficiency characteristics of very high bypass turbofans. This allows them to be shown together with turbofans on plots which show trends of reducing <a href="/wiki/Thrust-specific_fuel_consumption" title="Thrust-specific fuel consumption">specific fuel consumption</a> (SFC) with increasing BPR.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> BPR can also be quoted for <a href="/wiki/Lift_fan" title="Lift fan">lift fan</a> installations where the fan airflow is remote from the engine and doesn't flow past the engine core. </p><p>Considering a constant core (i.e. fixed pressure ratio and turbine inlet temperature), core and bypass jet velocities equal and a particular flight condition (i.e. Mach number and altitude) the fuel consumption per lb of thrust (sfc) decreases with increase in BPR. At the same time gross and net thrusts increase, but by different amounts.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> There is considerable potential for reducing fuel consumption for the same core cycle by increasing BPR.This is achieved because of the reduction in pounds of thrust per lb/sec of airflow (specific thrust) and the resultant reduction in lost kinetic energy in the jets (increase in propulsive efficiency).<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> </p><p>If all the gas power from a gas turbine is converted to kinetic energy in a propelling nozzle, the aircraft is best suited to high supersonic speeds. If it is all transferred to a separate big mass of air with low kinetic energy, the aircraft is best suited to zero speed (hovering). For speeds in between, the gas power is shared between a separate airstream and the gas turbine's own nozzle flow in a proportion which gives the aircraft performance required. The trade off between mass flow and velocity is also seen with propellers and helicopter rotors by comparing disc loading and power loading.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> For example, the same helicopter weight can be supported by a high power engine and small diameter rotor or, for less fuel, a lower power engine and bigger rotor with lower velocity through the rotor. </p><p>Bypass usually refers to transferring gas power from a gas turbine to a bypass stream of air to reduce fuel consumption and jet noise. Alternatively, there may be a requirement for an afterburning engine where the sole requirement for bypass is to provide cooling air. This sets the lower limit for BPR and these engines have been called "leaky" or continuous bleed turbojets<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> (General Electric YJ-101 BPR 0.25) and low BPR turbojets<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> (Pratt &amp; Whitney PW1120). Low BPR (0.2) has also been used to provide <a href="/wiki/Compressor_stall#Axi-symmetric_stall_or_compressor_surge" title="Compressor stall">surge margin</a> as well as afterburner cooling for the <a href="/wiki/Pratt_%26_Whitney_J58" title="Pratt &amp; Whitney J58">Pratt &amp; Whitney J58</a>.<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Efficiency">Efficiency</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Turbofan&amp;action=edit&amp;section=3" title="Edit section: Efficiency"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Gas_turbine_efficiency.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/01/Gas_turbine_efficiency.png/220px-Gas_turbine_efficiency.png" decoding="async" width="220" height="157" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/01/Gas_turbine_efficiency.png/330px-Gas_turbine_efficiency.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/01/Gas_turbine_efficiency.png/440px-Gas_turbine_efficiency.png 2x" data-file-width="700" data-file-height="500" /></a><figcaption>Propulsive efficiency comparison for various gas turbine engine configurations</figcaption></figure> <p><a href="/wiki/Propeller_(aeronautics)" title="Propeller (aeronautics)">Propeller</a> engines are most efficient for low speeds, <a href="/wiki/Turbojet" title="Turbojet">turbojet</a> engines for high speeds, and turbofan engines between the two. Turbofans are the most efficient engines in the range of speeds from about 500 to 1,000&#160;km/h (270 to 540&#160;kn; 310 to 620&#160;mph), the speed at which most commercial aircraft operate.<sup id="cite_ref-grc_nasa_21-0" class="reference"><a href="#cite_note-grc_nasa-21"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Neumann_2004_1984_pp228-230_22-0" class="reference"><a href="#cite_note-Neumann_2004_1984_pp228-230-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> </p><p>In a turbojet (zero-bypass) engine, the high temperature and high pressure exhaust gas is accelerated when it undergoes expansion through a <a href="/wiki/Propelling_nozzle" title="Propelling nozzle">propelling nozzle</a> and produces all the thrust. The compressor absorbs the mechanical power produced by the turbine. In a bypass design, extra turbines drive a <a href="/wiki/Ducted_fan" title="Ducted fan">ducted fan</a> that accelerates air rearward from the front of the engine. In a high-bypass design, the ducted fan and nozzle produce most of the thrust. Turbofans are closely related to <a href="/wiki/Turboprop" title="Turboprop">turboprops</a> in principle because both transfer some of the gas turbine's gas power, using extra machinery, to a bypass stream leaving less for the hot nozzle to convert to kinetic energy. Turbofans represent an intermediate stage between <a href="/wiki/Turbojet" title="Turbojet">turbojets</a>, which derive all their thrust from exhaust gases, and turbo-props which derive minimal thrust from exhaust gases (typically 10% or less).<sup id="cite_ref-srm_23-0" class="reference"><a href="#cite_note-srm-23"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> Extracting shaft power and transferring it to a bypass stream introduces extra losses which are more than made up by the improved propulsive efficiency. The turboprop at its best flight speed gives significant fuel savings over a turbojet even though an extra turbine, a gearbox and a propeller are added to the turbojet's low-loss propelling nozzle.<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> The turbofan has additional losses from its greater number of compressor stages/blades, fan and bypass duct.<sup class="noprint Inline-Template" style="margin-left:0.1em; white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Please_clarify" title="Wikipedia:Please clarify"><span title="The text near this tag may need clarification or removal of jargon. (May 2021)">clarification needed</span></a></i>&#93;</sup> </p><p>Froude, or propulsive, efficiency can be defined as: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta _{f}={\frac {2}{1+{\frac {V_{j}}{V_{a}}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> </mfrac> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta _{f}={\frac {2}{1+{\frac {V_{j}}{V_{a}}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5a85d66bf54883a9283ae78bc1b4fa10b5cf41a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.338ex; width:12.894ex; height:7.676ex;" alt="{\displaystyle \eta _{f}={\frac {2}{1+{\frac {V_{j}}{V_{a}}}}}}"></span> </p><p>where: </p> <ul><li><span class="texhtml"><var style="padding-right: 1px;">V</var><sub><var style="padding-right: 1px;">j</var></sub></span> = thrust equivalent jet velocity</li> <li><span class="texhtml"><var style="padding-right: 1px;">V</var><sub><var style="padding-right: 1px;">a</var></sub></span> = aircraft velocity</li></ul> <div class="mw-heading mw-heading3"><h3 id="Thrust">Thrust</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Turbofan&amp;action=edit&amp;section=4" title="Edit section: Thrust"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>While a turbojet engine uses all of the engine's output to produce thrust in the form of a hot high-velocity exhaust gas jet, a turbofan's cool low-velocity bypass air yields between 30% and 70% of the total thrust produced by a turbofan system.<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup> </p><p>The thrust (<i><b>F<sub>N</sub></b></i>) generated by a turbofan depends on the <a href="/wiki/Effective_exhaust_velocity" class="mw-redirect" title="Effective exhaust velocity">effective exhaust velocity</a> of the total exhaust, as with any jet engine, but because two exhaust jets are present the thrust equation can be expanded as:<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{N}={\dot {m}}_{e}v_{he}-{\dot {m}}_{o}v_{o}+BPR\,({\dot {m}}_{c})v_{f}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>m</mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msub> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> <mi>e</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>m</mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>o</mi> </mrow> </msub> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>o</mi> </mrow> </msub> <mo>+</mo> <mi>B</mi> <mi>P</mi> <mi>R</mi> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>m</mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{N}={\dot {m}}_{e}v_{he}-{\dot {m}}_{o}v_{o}+BPR\,({\dot {m}}_{c})v_{f}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bfc6316239d247fd55b966876d0bae890e480277" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:36.023ex; height:3.009ex;" alt="{\displaystyle F_{N}={\dot {m}}_{e}v_{he}-{\dot {m}}_{o}v_{o}+BPR\,({\dot {m}}_{c})v_{f}}"></span> </p><p>where: </p> <ul><li><span class="texhtml"><var style="padding-right: 1px;"><span class="sfrac nowrap;"><span style="display:none; display:inline-block; text-align:center;"><span style="display:block; line-height:0.8em; font-size:70%;">•</span><span style="display:block; line-height:1em;">m</span></span></span></var><sub><var style="padding-right: 1px;">e</var></sub></span> = the mass rate of hot combustion exhaust flow from the core engine</li> <li><span class="texhtml"><var style="padding-right: 1px;"><span class="sfrac nowrap;"><span style="display:none; display:inline-block; text-align:center;"><span style="display:block; line-height:0.8em; font-size:70%;">•</span><span style="display:block; line-height:1em;">m</span></span></span></var><sub><var style="padding-right: 1px;">o</var></sub></span> = the mass rate of total air flow entering the turbofan = <span class="texhtml"><var style="padding-right: 1px;"><span class="sfrac nowrap;"><span style="display:none; display:inline-block; text-align:center;"><span style="display:block; line-height:0.8em; font-size:70%;">•</span><span style="display:block; line-height:1em;">m</span></span></span></var><sub><var style="padding-right: 1px;">c</var></sub> + <var style="padding-right: 1px;"><span class="sfrac nowrap;"><span style="display:none; display:inline-block; text-align:center;"><span style="display:block; line-height:0.8em; font-size:70%;">•</span><span style="display:block; line-height:1em;">m</span></span></span></var><sub><var style="padding-right: 1px;">f</var></sub></span></li> <li><span class="texhtml"><var style="padding-right: 1px;"><span class="sfrac nowrap;"><span style="display:none; display:inline-block; text-align:center;"><span style="display:block; line-height:0.8em; font-size:70%;">•</span><span style="display:block; line-height:1em;">m</span></span></span></var><sub><var style="padding-right: 1px;">c</var></sub></span> = the mass rate of intake air that flows to the core engine</li> <li><span class="texhtml"><var style="padding-right: 1px;"><span class="sfrac nowrap;"><span style="display:none; display:inline-block; text-align:center;"><span style="display:block; line-height:0.8em; font-size:70%;">•</span><span style="display:block; line-height:1em;">m</span></span></span></var><sub><var style="padding-right: 1px;">f</var></sub></span> = the mass rate of intake air that bypasses the core engine</li> <li><span class="texhtml"><var style="padding-right: 1px;">v</var><sub><var style="padding-right: 1px;">f</var></sub></span> = the velocity of the air flow bypassed around the core engine</li> <li><span class="texhtml"><var style="padding-right: 1px;">v</var><sub><var style="padding-right: 1px;">he</var></sub></span> = the velocity of the hot exhaust gas from the core engine</li> <li><span class="texhtml"><var style="padding-right: 1px;">v</var><sub><var style="padding-right: 1px;">o</var></sub></span> = the velocity of the total air intake = the true airspeed of the aircraft</li> <li><span class="texhtml mvar" style="font-style:italic;">BPR</span> = bypass ratio</li></ul> <div class="mw-heading mw-heading3"><h3 id="Nozzles">Nozzles</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Turbofan&amp;action=edit&amp;section=5" title="Edit section: Nozzles"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The cold duct and core duct's nozzle systems are relatively complex due to the use of two separate exhaust flows. In high bypass engines, the fan is situated in a short duct near the front of the engine and typically has a convergent cold nozzle, with the tail of the duct forming a low pressure ratio nozzle that under normal conditions will choke creating supersonic flow patterns around the core<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (August 2020)">citation needed</span></a></i>&#93;</sup>. The core nozzle is more conventional, but generates less of the thrust, and depending on design choices, such as noise considerations, may conceivably not choke.<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup> In low bypass engines the two flows may combine within the ducts, and share a common nozzle, which can be fitted with afterburner. </p> <div class="mw-heading mw-heading3"><h3 id="Noise">Noise</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Turbofan&amp;action=edit&amp;section=6" title="Edit section: Noise"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Boeing_747-8_VQ-BSK_at_LSZH_(17754867239).jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a8/Boeing_747-8_VQ-BSK_at_LSZH_%2817754867239%29.jpg/220px-Boeing_747-8_VQ-BSK_at_LSZH_%2817754867239%29.jpg" decoding="async" width="220" height="147" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a8/Boeing_747-8_VQ-BSK_at_LSZH_%2817754867239%29.jpg/330px-Boeing_747-8_VQ-BSK_at_LSZH_%2817754867239%29.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a8/Boeing_747-8_VQ-BSK_at_LSZH_%2817754867239%29.jpg/440px-Boeing_747-8_VQ-BSK_at_LSZH_%2817754867239%29.jpg 2x" data-file-width="5090" data-file-height="3393" /></a><figcaption>Chevrons on a 747-8's <a href="/wiki/General_Electric_GEnx" title="General Electric GEnx">GEnx-2B</a></figcaption></figure> <p>Most of the air flow through a high-bypass turbofan is lower-velocity bypass flow: even when combined with the much-higher-velocity engine exhaust, the average exhaust velocity is considerably lower than in a pure turbojet. Turbojet engine noise is predominately <a href="/wiki/Jet_noise" title="Jet noise">jet noise</a> from the high exhaust velocity. Therefore, turbofan engines are significantly quieter than a pure-jet of the same thrust, and jet noise is no longer the predominant source.<sup id="cite_ref-Kempton2011_28-0" class="reference"><a href="#cite_note-Kempton2011-28"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> Turbofan engine noise propagates both upstream via the inlet and downstream via the primary nozzle and the by-pass duct. Other noise sources are the fan, compressor and turbine.<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> </p><p>Modern commercial aircraft employ high-bypass-ratio (HBPR) engines with separate flow, non-mixing, short-duct exhaust systems. Their noise at takeoff is primarily from the fan and jet.<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> The primary source of jet noise is the turbulent mixing of shear layers in the engine's exhaust. These shear layers contain instabilities that lead to highly turbulent vortices that generate the pressure fluctuations responsible for sound. To reduce the noise associated with jet flow, the aerospace industry has sought to disrupt shear layer turbulence and reduce the overall noise produced.<sup id="cite_ref-chevron_technology_31-0" class="reference"><a href="#cite_note-chevron_technology-31"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup> </p><p>Fan noise may come from the interaction of the fan-blade wakes with the pressure field of the downstream fan-exit stator vanes. It may be minimized by adequate axial spacing between blade trailing edge and stator entrance.<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup> At high engine speeds, as at takeoff, shock waves from the supersonic fan tips, because of their unequal nature, produce noise of a discordant nature known as "buzz saw" noise.<sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-buzz_saw_34-0" class="reference"><a href="#cite_note-buzz_saw-34"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup> </p><p>All modern turbofan engines have <a href="/wiki/Acoustic_liner" title="Acoustic liner">acoustic liners</a> in the <a href="/wiki/Nacelle" title="Nacelle">nacelle</a> to damp their noise. They extend as much as possible to cover the largest surface area. The acoustic performance of the engine can be experimentally evaluated by means of ground tests<sup id="cite_ref-Schuster2010_35-0" class="reference"><a href="#cite_note-Schuster2010-35"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup> or in dedicated experimental test rigs.<sup id="cite_ref-Ferrante2011_36-0" class="reference"><a href="#cite_note-Ferrante2011-36"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup> </p><p>In the <a href="/wiki/Aerospace" title="Aerospace">aerospace</a> industry, <span class="anchor" id="Chevrons"></span><b>chevrons</b> are the "saw-tooth" patterns on the trailing edges of some <a href="/wiki/Jet_engine" title="Jet engine">jet engine</a> nozzles<sup id="cite_ref-NASA_37-0" class="reference"><a href="#cite_note-NASA-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> that are used for <a href="/wiki/Noise_control" title="Noise control">noise reduction</a>. The shaped edges smooth the mixing of hot air from the engine core and cooler air flowing through the engine fan, which reduces noise-creating turbulence.<sup id="cite_ref-NASA_37-1" class="reference"><a href="#cite_note-NASA-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> Chevrons were developed by GE under a <a href="/wiki/NASA" title="NASA">NASA</a> contract.<sup id="cite_ref-chevron_technology_31-1" class="reference"><a href="#cite_note-chevron_technology-31"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup> Some notable examples of such designs are <a href="/wiki/Boeing_787" class="mw-redirect" title="Boeing 787">Boeing 787</a> and <a href="/wiki/Boeing_747-8" title="Boeing 747-8">Boeing 747-8</a>&#160;&#8211;&#32; on the <a href="/wiki/Rolls-Royce_Trent_1000" title="Rolls-Royce Trent 1000">Rolls-Royce Trent 1000</a> and <a href="/wiki/General_Electric_GEnx" title="General Electric GEnx">General Electric GEnx</a> engines.<sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Turbofan&amp;action=edit&amp;section=7" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Rolls_Royce_Conway_Mk508_(1959)_used_in_Boeing_707-420_at_Flugausstellung_Hermeskeil,_pic1.JPG" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/56/Rolls_Royce_Conway_Mk508_%281959%29_used_in_Boeing_707-420_at_Flugausstellung_Hermeskeil%2C_pic1.JPG/220px-Rolls_Royce_Conway_Mk508_%281959%29_used_in_Boeing_707-420_at_Flugausstellung_Hermeskeil%2C_pic1.JPG" decoding="async" width="220" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/56/Rolls_Royce_Conway_Mk508_%281959%29_used_in_Boeing_707-420_at_Flugausstellung_Hermeskeil%2C_pic1.JPG/330px-Rolls_Royce_Conway_Mk508_%281959%29_used_in_Boeing_707-420_at_Flugausstellung_Hermeskeil%2C_pic1.JPG 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/56/Rolls_Royce_Conway_Mk508_%281959%29_used_in_Boeing_707-420_at_Flugausstellung_Hermeskeil%2C_pic1.JPG/440px-Rolls_Royce_Conway_Mk508_%281959%29_used_in_Boeing_707-420_at_Flugausstellung_Hermeskeil%2C_pic1.JPG 2x" data-file-width="4608" data-file-height="3456" /></a><figcaption><a href="/wiki/Rolls-Royce_Conway" title="Rolls-Royce Conway">Rolls-Royce Conway</a> low-bypass turbofan from a <a href="/wiki/Boeing_707" title="Boeing 707">Boeing 707</a>. The bypass air exits from the fins, while the exhaust from the core exits from the central nozzle. This fluted jetpipe design is a noise-reducing method devised by Frederick Greatorex at Rolls-Royce</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Outer_nozzle_of_GEnx-2B_turbofan_engine.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1b/Outer_nozzle_of_GEnx-2B_turbofan_engine.jpg/220px-Outer_nozzle_of_GEnx-2B_turbofan_engine.jpg" decoding="async" width="220" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1b/Outer_nozzle_of_GEnx-2B_turbofan_engine.jpg/330px-Outer_nozzle_of_GEnx-2B_turbofan_engine.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1b/Outer_nozzle_of_GEnx-2B_turbofan_engine.jpg/440px-Outer_nozzle_of_GEnx-2B_turbofan_engine.jpg 2x" data-file-width="3648" data-file-height="2736" /></a><figcaption><a href="/wiki/General_Electric_GEnx" title="General Electric GEnx">General Electric GEnx-2B</a> turbofan engine as used on a <a href="/wiki/Boeing_747" title="Boeing 747">Boeing 747–8</a>. View into the bypass duct looking forward from the bypass nozzle and showing fan exit stators/fan blades</figcaption></figure> <p>Early turbojet engines were not very fuel-efficient because their <a href="/wiki/Overall_pressure_ratio" title="Overall pressure ratio">overall pressure ratio</a> and turbine inlet temperature were severely limited by the technology and materials available at the time. </p><p>The first turbofan engine, which was only run on a test bed, was the German <a href="/wiki/Daimler-Benz_DB_007" title="Daimler-Benz DB 007">Daimler-Benz DB 670</a>, designated the 109-007 by the German RLM (<a href="/wiki/Ministry_of_Aviation_(Nazi_Germany)" title="Ministry of Aviation (Nazi Germany)">Ministry of Aviation</a>), with a first run date of 27&#160;May 1943, after the testing of the turbomachinery using an electric motor, which had been undertaken on 1&#160;April 1943.<sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup> Development of the engine was abandoned with its problems unsolved, as the war situation worsened for Germany. </p><p>Later in 1943, the British ground tested the Metrovick F.3<sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup> turbofan, which used the <a href="/wiki/Metropolitan-Vickers_F.2" title="Metropolitan-Vickers F.2">Metrovick F.2</a> turbojet as a gas generator with the exhaust discharging into a close-coupled aft-fan module comprising a contra-rotating LP turbine system driving two co-axial contra-rotating fans.<sup id="cite_ref-41" class="reference"><a href="#cite_note-41"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup> </p><p>Improved materials, and the introduction of twin compressors, such as in the <a href="/wiki/Rolls-Royce_Olympus" title="Rolls-Royce Olympus">Bristol Olympus</a>,<sup id="cite_ref-42" class="reference"><a href="#cite_note-42"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup> and <a href="/wiki/Pratt_%26_Whitney_JT3C" class="mw-redirect" title="Pratt &amp; Whitney JT3C">Pratt &amp; Whitney JT3C</a> engines, increased the overall pressure ratio and thus the <a href="/wiki/Thermodynamics" title="Thermodynamics">thermodynamic</a> efficiency of engines. They also had poor propulsive efficiency, because pure turbojets have a high specific thrust/high velocity exhaust, which is better suited to supersonic flight. </p><p>The original low-bypass turbofan engines were designed to improve propulsive efficiency by reducing the exhaust velocity to a value closer to that of the aircraft. The <a href="/wiki/Rolls-Royce_Conway" title="Rolls-Royce Conway">Rolls-Royce Conway</a>, the world's first production turbofan, had a bypass ratio of 0.3, similar to the modern <a href="/wiki/General_Electric_F404" title="General Electric F404">General Electric F404</a> fighter engine. Civilian turbofan engines of the 1960s, such as the <a href="/wiki/Pratt_%26_Whitney_JT8D" title="Pratt &amp; Whitney JT8D">Pratt &amp; Whitney JT8D</a> and the <a href="/wiki/Rolls-Royce_Spey" title="Rolls-Royce Spey">Rolls-Royce Spey</a>, had bypass ratios closer to 1 and were similar to their military equivalents. </p><p>The first Soviet airliner powered by turbofan engines was the <a href="/wiki/Tupolev_Tu-124" title="Tupolev Tu-124">Tupolev Tu-124</a> introduced in 1962. It used the <a href="/wiki/Soloviev_D-20" title="Soloviev D-20">Soloviev D-20</a>.<sup id="cite_ref-43" class="reference"><a href="#cite_note-43"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup> 164 aircraft were produced between 1960 and 1965 for <a href="/wiki/Aeroflot" title="Aeroflot">Aeroflot</a> and other <a href="/wiki/Eastern_Bloc" title="Eastern Bloc">Eastern Bloc</a> airlines, with some operating until the early 1990s. </p><p>The first General Electric turbofan was the aft-fan <a href="/wiki/General_Electric_CJ805" title="General Electric CJ805">CJ805-23</a>, based on the CJ805-3 turbojet. It was followed by the aft-fan <a href="/wiki/General_Electric_CF700" title="General Electric CF700">General Electric CF700</a> engine, with a 2.0 bypass ratio. This was derived from the <a href="/wiki/General_Electric_J85" title="General Electric J85">General Electric J85/CJ610</a> turbojet 2,850&#160;lbf (12,700&#160;N) to power the larger <a href="/wiki/North_American_Sabreliner" title="North American Sabreliner">Rockwell Sabreliner</a> 75/80 model aircraft, as well as the <a href="/wiki/Dassault_Falcon_20" title="Dassault Falcon 20">Dassault Falcon 20</a>, with about a 50% increase in thrust to 4,200&#160;lbf (19,000&#160;N). The CF700 was the first small turbofan to be certified by the <a href="/wiki/Federal_Aviation_Administration" title="Federal Aviation Administration">Federal Aviation Administration</a> (FAA). There were at one time over 400 CF700 aircraft in operation around the world, with an experience base of over 10&#160;million service hours. The CF700 turbofan engine was also used to train Moon-bound astronauts in <a href="/wiki/Project_Apollo" class="mw-redirect" title="Project Apollo">Project Apollo</a> as the powerplant for the <a href="/wiki/LLRV" class="mw-redirect" title="LLRV">Lunar Landing Research Vehicle</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Common_types">Common types</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Turbofan&amp;action=edit&amp;section=8" title="Edit section: Common types"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Low-bypass_turbofan">Low-bypass turbofan</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Turbofan&amp;action=edit&amp;section=9" title="Edit section: Low-bypass turbofan"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Turbofan_operation_lbp.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/77/Turbofan_operation_lbp.svg/220px-Turbofan_operation_lbp.svg.png" decoding="async" width="220" height="146" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/77/Turbofan_operation_lbp.svg/330px-Turbofan_operation_lbp.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/77/Turbofan_operation_lbp.svg/440px-Turbofan_operation_lbp.svg.png 2x" data-file-width="872" data-file-height="577" /></a><figcaption>Schematic diagram illustrating a 2-spool, low-bypass turbofan engine with a mixed exhaust, showing the low-pressure (green) and high-pressure (purple) spools. The fan (and booster stages) are driven by the low-pressure turbine, whereas the high-pressure compressor is powered by the high-pressure turbine.</figcaption></figure> <p>A high-specific-thrust/low-bypass-ratio turbofan normally has a multi-stage fan behind inlet guide vanes, developing a relatively high pressure ratio and, thus, yielding a high (mixed or cold) exhaust velocity. The core airflow needs to be large enough to ensure there is sufficient <a href="/w/index.php?title=Core_power&amp;action=edit&amp;redlink=1" class="new" title="Core power (page does not exist)">core power</a> to drive the fan. A smaller core flow/higher bypass ratio cycle can be achieved by raising the inlet temperature of the high-pressure (HP) turbine rotor. </p><p>To illustrate one aspect of how a turbofan differs from a turbojet, comparisons can be made at the same airflow (to keep a common intake for example) and the same net thrust (i.e. same specific thrust). A bypass flow can be added only if the turbine inlet temperature is not too high to compensate for the smaller core flow. Future improvements in turbine cooling/material technology can allow higher turbine inlet temperature, which is necessary because of increased cooling air temperature, resulting from an <a href="/wiki/Overall_pressure_ratio" title="Overall pressure ratio">overall pressure ratio</a> increase. </p><p>The resulting turbofan, with reasonable efficiencies and duct loss for the added components, would probably operate at a higher nozzle pressure ratio than the turbojet, but with a lower exhaust temperature to retain net thrust. Since the temperature rise across the whole engine (intake to nozzle) would be lower, the (dry power) fuel flow would also be reduced, resulting in a better <a href="/wiki/Thrust_specific_fuel_consumption" class="mw-redirect" title="Thrust specific fuel consumption">specific fuel consumption</a> (SFC). </p><p>Some low-bypass ratio military turbofans (e.g. <a href="/wiki/General_Electric_F404" title="General Electric F404">F404</a>, <a href="/wiki/Pratt_%26_Whitney_JT8D" title="Pratt &amp; Whitney JT8D">JT8D</a>) have variable inlet guide vanes to direct air onto the first fan rotor stage. This improves the fan <a href="/wiki/Compressor_stall" title="Compressor stall">surge</a> margin (see <a href="/wiki/Compressor_map" title="Compressor map">compressor map</a>). </p> <ul class="gallery mw-gallery-packed"> <li class="gallerybox" style="width: 184.66666666667px"> <div class="thumb" style="width: 182.66666666667px;"><span typeof="mw:File"><a href="/wiki/File:Pratt_%26_Whitney_JT8D-17A_1.JPG" class="mw-file-description" title="The widely produced Pratt &amp; Whitney JT8D used on many early narrowbody jetliners. The fan is located behind the inlet guide vanes."><img alt="The widely produced Pratt &amp; Whitney JT8D used on many early narrowbody jetliners. The fan is located behind the inlet guide vanes." src="//upload.wikimedia.org/wikipedia/commons/thumb/2/23/Pratt_%26_Whitney_JT8D-17A_1.JPG/274px-Pratt_%26_Whitney_JT8D-17A_1.JPG" decoding="async" width="183" height="120" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/23/Pratt_%26_Whitney_JT8D-17A_1.JPG/410px-Pratt_%26_Whitney_JT8D-17A_1.JPG 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/23/Pratt_%26_Whitney_JT8D-17A_1.JPG/547px-Pratt_%26_Whitney_JT8D-17A_1.JPG 2x" data-file-width="3648" data-file-height="2401" /></a></span></div> <div class="gallerytext">The widely produced <a href="/wiki/Pratt_%26_Whitney_JT8D" title="Pratt &amp; Whitney JT8D">Pratt &amp; Whitney JT8D</a> used on many early narrowbody <a href="/wiki/Jetliners" class="mw-redirect" title="Jetliners">jetliners</a>. The fan is located behind the inlet guide vanes.</div> </li> <li class="gallerybox" style="width: 162.66666666667px"> <div class="thumb" style="width: 160.66666666667px;"><span typeof="mw:File"><a href="/wiki/File:Solowjow_D-30_III.jpg" class="mw-file-description" title="Soloviev D-30 which powers the Ilyushin Il-76 and Il-62M; Mikoyan MiG-31; Xian H-6K and Y-20"><img alt="Soloviev D-30 which powers the Ilyushin Il-76 and Il-62M; Mikoyan MiG-31; Xian H-6K and Y-20" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8d/Solowjow_D-30_III.jpg/241px-Solowjow_D-30_III.jpg" decoding="async" width="161" height="120" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8d/Solowjow_D-30_III.jpg/361px-Solowjow_D-30_III.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8d/Solowjow_D-30_III.jpg/481px-Solowjow_D-30_III.jpg 2x" data-file-width="2580" data-file-height="1932" /></a></span></div> <div class="gallerytext"><a href="/wiki/Soloviev_D-30" title="Soloviev D-30">Soloviev D-30</a> which powers the <a href="/wiki/Ilyushin_Il-76" title="Ilyushin Il-76">Ilyushin Il-76</a> and <a href="/wiki/Ilyushin_Il-62" title="Ilyushin Il-62">Il-62M</a>; <a href="/wiki/Mikoyan_MiG-31" title="Mikoyan MiG-31">Mikoyan MiG-31</a>; <a href="/wiki/Xian_H-6" class="mw-redirect" title="Xian H-6">Xian H-6</a>K and <a href="/wiki/Xian_Y-20" class="mw-redirect" title="Xian Y-20">Y-20</a></div> </li> <li class="gallerybox" style="width: 182px"> <div class="thumb" style="width: 180px;"><span typeof="mw:File"><a href="/wiki/File:AL-31FN.jpg" class="mw-file-description" title="Saturn AL-31 which powers the Chengdu J-10 and J-20; Shenyang J-11, J-15 and J-16; Sukhoi Su-30 and Su-27"><img alt="Saturn AL-31 which powers the Chengdu J-10 and J-20; Shenyang J-11, J-15 and J-16; Sukhoi Su-30 and Su-27" src="//upload.wikimedia.org/wikipedia/commons/thumb/d/da/AL-31FN.jpg/270px-AL-31FN.jpg" decoding="async" width="180" height="120" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/da/AL-31FN.jpg/405px-AL-31FN.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/da/AL-31FN.jpg/540px-AL-31FN.jpg 2x" data-file-width="2250" data-file-height="1500" /></a></span></div> <div class="gallerytext"><a href="/wiki/Saturn_AL-31" title="Saturn AL-31">Saturn AL-31</a> which powers the <a href="/wiki/Chengdu_J-10" title="Chengdu J-10">Chengdu J-10</a> and <a href="/wiki/Chengdu_J-20" title="Chengdu J-20">J-20</a>; <a href="/wiki/Shenyang_J-11" title="Shenyang J-11">Shenyang J-11</a>, <a href="/wiki/Shenyang_J-15" title="Shenyang J-15">J-15</a> and <a href="/wiki/Shenyang_J-16" title="Shenyang J-16">J-16</a>; <a href="/wiki/Sukhoi_Su-30" title="Sukhoi Su-30">Sukhoi Su-30</a> and <a href="/wiki/Sukhoi_Su-27" title="Sukhoi Su-27">Su-27</a></div> </li> <li class="gallerybox" style="width: 176px"> <div class="thumb" style="width: 174px;"><span typeof="mw:File"><a href="/wiki/File:Williams_Research_F107.jpg" class="mw-file-description" title="Williams F107 which powers the Raytheon BGM-109 Tomahawk cruise missile"><img alt="Williams F107 which powers the Raytheon BGM-109 Tomahawk cruise missile" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/23/Williams_Research_F107.jpg/261px-Williams_Research_F107.jpg" decoding="async" width="174" height="120" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/23/Williams_Research_F107.jpg/391px-Williams_Research_F107.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/23/Williams_Research_F107.jpg/521px-Williams_Research_F107.jpg 2x" data-file-width="1015" data-file-height="701" /></a></span></div> <div class="gallerytext"><a href="/wiki/Williams_F107" title="Williams F107">Williams F107</a> which powers the <a href="/wiki/Raytheon" title="Raytheon">Raytheon</a> <a href="/wiki/Tomahawk_(missile_family)" title="Tomahawk (missile family)">BGM-109 Tomahawk</a> cruise missile</div> </li> <li class="gallerybox" style="width: 132px"> <div class="thumb" style="width: 130px;"><span typeof="mw:File"><a href="/wiki/File:AL-55_at_the_MAKS-2011_(01).jpg" class="mw-file-description" title="NPO Saturn AL-55 which powers certain HAL HJT-36 Sitara"><img alt="NPO Saturn AL-55 which powers certain HAL HJT-36 Sitara" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/35/AL-55_at_the_MAKS-2011_%2801%29.jpg/195px-AL-55_at_the_MAKS-2011_%2801%29.jpg" decoding="async" width="130" height="120" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/35/AL-55_at_the_MAKS-2011_%2801%29.jpg/293px-AL-55_at_the_MAKS-2011_%2801%29.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/35/AL-55_at_the_MAKS-2011_%2801%29.jpg/390px-AL-55_at_the_MAKS-2011_%2801%29.jpg 2x" data-file-width="2600" data-file-height="2400" /></a></span></div> <div class="gallerytext"><a href="/wiki/NPO_Saturn_AL-55" title="NPO Saturn AL-55">NPO Saturn AL-55</a> which powers certain <a href="/wiki/HAL_HJT-36_Sitara" class="mw-redirect" title="HAL HJT-36 Sitara">HAL HJT-36 Sitara</a></div> </li> <li class="gallerybox" style="width: 186.66666666667px"> <div class="thumb" style="width: 184.66666666667px;"><span typeof="mw:File"><a href="/wiki/File:Pratt_%26_Whitney_TF30_at_Oakland_Aviation_Museum,_June_2022.jpg" class="mw-file-description" title="Pratt &amp; Whitney TF-30 which powers the Grumman F-14 Tomcat"><img alt="Pratt &amp; Whitney TF-30 which powers the Grumman F-14 Tomcat" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/64/Pratt_%26_Whitney_TF30_at_Oakland_Aviation_Museum%2C_June_2022.jpg/277px-Pratt_%26_Whitney_TF30_at_Oakland_Aviation_Museum%2C_June_2022.jpg" decoding="async" width="185" height="120" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/64/Pratt_%26_Whitney_TF30_at_Oakland_Aviation_Museum%2C_June_2022.jpg/416px-Pratt_%26_Whitney_TF30_at_Oakland_Aviation_Museum%2C_June_2022.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/64/Pratt_%26_Whitney_TF30_at_Oakland_Aviation_Museum%2C_June_2022.jpg/555px-Pratt_%26_Whitney_TF30_at_Oakland_Aviation_Museum%2C_June_2022.jpg 2x" data-file-width="5662" data-file-height="3677" /></a></span></div> <div class="gallerytext"><a href="/wiki/Pratt_%26_Whitney_TF-30" class="mw-redirect" title="Pratt &amp; Whitney TF-30">Pratt &amp; Whitney TF-30</a> which powers the <a href="/wiki/Grumman_F-14_Tomcat" title="Grumman F-14 Tomcat">Grumman F-14 Tomcat</a></div> </li> <li class="gallerybox" style="width: 306px"> <div class="thumb" style="width: 304px;"><span typeof="mw:File"><a href="/wiki/File:Eurojet_EJ200_for_Eurofighter_Typhoon_PAS_2013_01_free.jpg" class="mw-file-description" title="Eurojet EJ200 which powers the Eurofighter Typhoon"><img alt="Eurojet EJ200 which powers the Eurofighter Typhoon" src="//upload.wikimedia.org/wikipedia/commons/thumb/c/ce/Eurojet_EJ200_for_Eurofighter_Typhoon_PAS_2013_01_free.jpg/456px-Eurojet_EJ200_for_Eurofighter_Typhoon_PAS_2013_01_free.jpg" decoding="async" width="304" height="120" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/ce/Eurojet_EJ200_for_Eurofighter_Typhoon_PAS_2013_01_free.jpg/683px-Eurojet_EJ200_for_Eurofighter_Typhoon_PAS_2013_01_free.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/ce/Eurojet_EJ200_for_Eurofighter_Typhoon_PAS_2013_01_free.jpg/911px-Eurojet_EJ200_for_Eurofighter_Typhoon_PAS_2013_01_free.jpg 2x" data-file-width="3400" data-file-height="1345" /></a></span></div> <div class="gallerytext"><a href="/wiki/Eurojet_EJ200" title="Eurojet EJ200">Eurojet EJ200</a> which powers the <a href="/wiki/Eurofighter_Typhoon" title="Eurofighter Typhoon">Eurofighter Typhoon</a></div> </li> <li class="gallerybox" style="width: 162px"> <div class="thumb" style="width: 160px;"><span typeof="mw:File"><a href="/wiki/File:XF3_KASM001.jpg" class="mw-file-description" title="Ishikawajima-Harima F3 which powers the Kawasaki T-4"><img alt="Ishikawajima-Harima F3 which powers the Kawasaki T-4" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/50/XF3_KASM001.jpg/240px-XF3_KASM001.jpg" decoding="async" width="160" height="120" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/50/XF3_KASM001.jpg/360px-XF3_KASM001.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/50/XF3_KASM001.jpg/480px-XF3_KASM001.jpg 2x" data-file-width="800" data-file-height="600" /></a></span></div> <div class="gallerytext"><a href="/wiki/Ishikawajima-Harima_F3" title="Ishikawajima-Harima F3">Ishikawajima-Harima F3</a> which powers the <a href="/wiki/Kawasaki_T-4" title="Kawasaki T-4">Kawasaki T-4</a></div> </li> <li class="gallerybox" style="width: 166.66666666667px"> <div class="thumb" style="width: 164.66666666667px;"><span typeof="mw:File"><a href="/wiki/File:GTX-35VS_Kaveri.jpg" class="mw-file-description" title="GTRE GTX-35VS Kaveri developed by GTRE"><img alt="GTRE GTX-35VS Kaveri developed by GTRE" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f5/GTX-35VS_Kaveri.jpg/247px-GTX-35VS_Kaveri.jpg" decoding="async" width="165" height="120" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f5/GTX-35VS_Kaveri.jpg/370px-GTX-35VS_Kaveri.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f5/GTX-35VS_Kaveri.jpg/493px-GTX-35VS_Kaveri.jpg 2x" data-file-width="800" data-file-height="584" /></a></span></div> <div class="gallerytext"><a href="/wiki/GTRE_GTX-35VS_Kaveri" title="GTRE GTX-35VS Kaveri">GTRE GTX-35VS Kaveri</a> developed by <a href="/wiki/Gas_Turbine_Research_Establishment" title="Gas Turbine Research Establishment">GTRE</a></div> </li> </ul> <div class="mw-heading mw-heading3"><h3 id="Afterburning_turbofan">Afterburning turbofan</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Turbofan&amp;action=edit&amp;section=10" title="Edit section: Afterburning turbofan"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Afterburner" title="Afterburner">Afterburner</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Pratt_%26_Whitney_F119.JPEG" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/06/Pratt_%26_Whitney_F119.JPEG/220px-Pratt_%26_Whitney_F119.JPEG" decoding="async" width="220" height="143" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/06/Pratt_%26_Whitney_F119.JPEG/330px-Pratt_%26_Whitney_F119.JPEG 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/06/Pratt_%26_Whitney_F119.JPEG/440px-Pratt_%26_Whitney_F119.JPEG 2x" data-file-width="3008" data-file-height="1960" /></a><figcaption><a href="/wiki/Pratt_%26_Whitney_F119" title="Pratt &amp; Whitney F119">Pratt &amp; Whitney F119</a> afterburning turbofan on test</figcaption></figure> <p>Since the 1970s, most <a href="/wiki/Jet_fighter" class="mw-redirect" title="Jet fighter">jet fighter</a> engines have been low/medium bypass turbofans with a mixed exhaust, <a href="/wiki/Afterburner" title="Afterburner">afterburner</a> and variable area exit nozzle. An afterburner is a combustor located downstream of the turbine blades and directly upstream of the nozzle, which burns fuel from afterburner-specific fuel injectors. When lit, large volumes of fuel are burnt in the afterburner, raising the temperature of exhaust gases by a significant degree, resulting in a higher exhaust velocity/engine specific thrust. The variable geometry nozzle must open to a larger throat area to accommodate the extra volume and increased flow rate when the afterburner is lit. Afterburning is often designed to give a significant thrust boost for take off, transonic acceleration and combat maneuvers, but is very fuel intensive. Consequently, afterburning can be used only for short portions of a mission. </p><p>Unlike in the main engine, where <a href="/wiki/Stoichiometric" class="mw-redirect" title="Stoichiometric">stoichiometric</a> temperatures in the combustor have to be reduced before they reach the turbine, an afterburner at maximum fuelling is designed to produce stoichiometric temperatures at entry to the nozzle, about 2,100&#160;K (3,800&#160;°R; 3,300&#160;°F; 1,800&#160;°C). At a fixed total applied fuel:air ratio, the total fuel flow for a given fan airflow will be the same, regardless of the dry specific thrust of the engine. However, a high specific thrust turbofan will, by definition, have a higher nozzle pressure ratio, resulting in a higher afterburning net thrust and, therefore, a lower afterburning specific fuel consumption (SFC). However, high specific thrust engines have a high dry SFC. The situation is reversed for a medium specific thrust afterburning turbofan: i.e., poor afterburning SFC/good dry SFC. The former engine is suitable for a combat aircraft which must remain in afterburning combat for a fairly long period, but has to fight only fairly close to the airfield (e.g. cross border skirmishes). The latter engine is better for an aircraft that has to fly some distance, or loiter for a long time, before going into combat. However, the pilot can afford to stay in afterburning only for a short period, before aircraft fuel reserves become dangerously low. </p><p>The first production afterburning turbofan engine was the <a href="/wiki/Pratt_%26_Whitney_TF30" title="Pratt &amp; Whitney TF30">Pratt &amp; Whitney TF30</a>, which initially powered the <a href="/wiki/General_Dynamics_F-111_Aardvark" title="General Dynamics F-111 Aardvark">F-111 Aardvark</a> and <a href="/wiki/Grumman_F-14_Tomcat" title="Grumman F-14 Tomcat">F-14 Tomcat</a>. Low-bypass military turbofans include the <a href="/wiki/Pratt_%26_Whitney_F119" title="Pratt &amp; Whitney F119">Pratt &amp; Whitney F119</a>, the <a href="/wiki/Eurojet_EJ200" title="Eurojet EJ200">Eurojet EJ200</a>, the <a href="/wiki/General_Electric_F110" title="General Electric F110">General Electric F110</a>, the <a href="/wiki/Klimov_RD-33" title="Klimov RD-33">Klimov RD-33</a>, and the <a href="/wiki/Saturn_AL-31" title="Saturn AL-31">Saturn AL-31</a>, all of which feature a mixed exhaust, afterburner and variable area propelling nozzle. </p> <div class="mw-heading mw-heading3"><h3 id="High-bypass_turbofan">High-bypass turbofan</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Turbofan&amp;action=edit&amp;section=11" title="Edit section: High-bypass turbofan"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-More_citations_needed_section plainlinks metadata ambox ambox-content ambox-Refimprove" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section <b>needs additional citations for <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">verification</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/Turbofan" title="Special:EditPage/Turbofan">improve this article</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a>&#32;in this section. Unsourced material may be challenged and removed.</span> <span class="date-container"><i>(<span class="date">December 2024</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Bypass_ratio" title="Bypass ratio">Bypass ratio</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Turbofan_operation.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/75/Turbofan_operation.svg/220px-Turbofan_operation.svg.png" decoding="async" width="220" height="146" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/75/Turbofan_operation.svg/330px-Turbofan_operation.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/75/Turbofan_operation.svg/440px-Turbofan_operation.svg.png 2x" data-file-width="872" data-file-height="577" /></a><figcaption>Schematic diagram illustrating a 2-spool, high-bypass turbofan engine with an unmixed exhaust. The low-pressure spool is coloured green and the high-pressure one purple. Again, the fan (and booster stages) are driven by the low-pressure turbine, but more stages are required. A mixed exhaust is often employed.</figcaption></figure> <p>To further improve fuel economy and reduce noise, almost all jet airliners and most military transport aircraft (e.g., the <a href="/wiki/C-17_Globemaster_III" class="mw-redirect" title="C-17 Globemaster III">C-17</a>) are powered by low-specific-thrust/high-bypass-ratio turbofans. These engines evolved from the high-specific-thrust/low-bypass-ratio turbofans used in such aircraft in the 1960s. Modern combat aircraft tend to use low-bypass ratio turbofans, and some military transport aircraft use <a href="/wiki/Turboprop" title="Turboprop">turboprops</a>. </p><p>Low specific thrust is achieved by replacing the multi-stage fan with a single-stage unit. Unlike some military engines, modern civil turbofans lack stationary inlet guide vanes in front of the fan rotor. The fan is scaled to achieve the desired net thrust. </p><p>The core (or gas generator) of the engine must generate enough power to drive the fan at its rated mass flow and pressure ratio. Improvements in turbine cooling/material technology allow for a higher (HP) turbine rotor inlet temperature, which allows a smaller (and lighter) core, potentially improving the core thermal efficiency. Reducing the core mass flow tends to increase the load on the LP turbine, so this unit may require additional stages to reduce the average <a href="/wiki/Stage_loading" title="Stage loading">stage loading</a> and to maintain LP turbine efficiency. Reducing core flow also increases bypass ratio. Bypass ratios greater than 5:1 are increasingly common; the <a href="/wiki/Pratt_%26_Whitney_PW1000G" title="Pratt &amp; Whitney PW1000G">Pratt &amp; Whitney PW1000G</a>, which entered commercial service in 2016, attains 12.5:1. </p><p>Further improvements in core thermal efficiency can be achieved by raising the <a href="/wiki/Overall_pressure_ratio" title="Overall pressure ratio">overall pressure ratio</a> of the core. Improvements in blade aerodynamics can reduce the number of extra compressor stages required, and <a href="/wiki/Axial_compressor#Bleed_air,_variable_stators" title="Axial compressor">variable geometry stators</a> enable high-pressure-ratio compressors to work surge-free at all throttle settings. </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:CF6-6_engine_cutaway.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f0/CF6-6_engine_cutaway.jpg/220px-CF6-6_engine_cutaway.jpg" decoding="async" width="220" height="163" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f0/CF6-6_engine_cutaway.jpg/330px-CF6-6_engine_cutaway.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f0/CF6-6_engine_cutaway.jpg/440px-CF6-6_engine_cutaway.jpg 2x" data-file-width="700" data-file-height="518" /></a><figcaption>Cutaway diagram of the <a href="/wiki/General_Electric_CF6" title="General Electric CF6">General Electric CF6</a>-6 engine</figcaption></figure> <p>The first (experimental) high-bypass turbofan engine was the <a href="/wiki/Lycoming_Engines" title="Lycoming Engines">AVCO-Lycoming</a> PLF1A-2, a <a href="/wiki/Honeywell_T55" title="Honeywell T55">Honeywell T55</a> turboshaft-derived engine that was first run in February 1962. The PLF1A-2 had a 40&#160;in diameter (100&#160;cm) geared fan stage, produced a static thrust of 4,320&#160;lb (1,960&#160;kg),<sup id="cite_ref-Boyne2002_44-0" class="reference"><a href="#cite_note-Boyne2002-44"><span class="cite-bracket">&#91;</span>44<span class="cite-bracket">&#93;</span></a></sup> and had a bypass ratio of 6:1.<sup id="cite_ref-NASM-PLF1A-2_45-0" class="reference"><a href="#cite_note-NASM-PLF1A-2-45"><span class="cite-bracket">&#91;</span>45<span class="cite-bracket">&#93;</span></a></sup> The <a href="/wiki/General_Electric_TF39" title="General Electric TF39">General Electric TF39</a> became the first production model, designed to power the <a href="/wiki/Lockheed_Corporation" title="Lockheed Corporation">Lockheed</a> <a href="/wiki/C-5_Galaxy" class="mw-redirect" title="C-5 Galaxy">C-5 Galaxy</a> military transport aircraft.<sup id="cite_ref-Neumann_2004_1984_pp228-230_22-1" class="reference"><a href="#cite_note-Neumann_2004_1984_pp228-230-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> The civil <a href="/wiki/General_Electric_CF6" title="General Electric CF6">General Electric CF6</a> engine used a derived design. Other high-bypass turbofans are the <a href="/wiki/Pratt_%26_Whitney_JT9D" title="Pratt &amp; Whitney JT9D">Pratt &amp; Whitney JT9D</a>, the three-shaft <a href="/wiki/Rolls-Royce_RB211" title="Rolls-Royce RB211">Rolls-Royce RB211</a> and the <a href="/wiki/CFM_International_CFM56" title="CFM International CFM56">CFM International CFM56</a>; also the smaller <a href="/wiki/TF34" class="mw-redirect" title="TF34">TF34</a>. More recent large high-bypass turbofans include the <a href="/wiki/Pratt_%26_Whitney_PW4000" title="Pratt &amp; Whitney PW4000">Pratt &amp; Whitney PW4000</a>, the three-shaft <a href="/wiki/Rolls-Royce_Trent" title="Rolls-Royce Trent">Rolls-Royce Trent</a>, the <a href="/wiki/General_Electric_GE90" title="General Electric GE90">General Electric GE90</a>/<a href="/wiki/GEnx" class="mw-redirect" title="GEnx">GEnx</a> and the <a href="/wiki/GP7000" class="mw-redirect" title="GP7000">GP7000</a>, produced jointly by GE and P&amp;W. The Pratt &amp; Whitney JT9D engine was the first high bypass ratio <a href="/wiki/Jet_engine" title="Jet engine">jet engine</a> to power a wide-body airliner.<sup id="cite_ref-46" class="reference"><a href="#cite_note-46"><span class="cite-bracket">&#91;</span>46<span class="cite-bracket">&#93;</span></a></sup> </p><p>The lower the specific thrust of a turbofan, the lower the mean jet outlet velocity, which in turn translates into a high <a href="/wiki/Thrust_lapse" class="mw-redirect" title="Thrust lapse">thrust lapse rate</a> (i.e. decreasing thrust with increasing flight speed). See technical discussion below, item 2. Consequently, an engine sized to propel an aircraft at high subsonic flight speed (e.g., Mach 0.83) generates a relatively high thrust at low flight speed, thus enhancing runway performance. Low specific thrust engines tend to have a high bypass ratio, but this is also a function of the temperature of the turbine system. </p><p>The turbofans on twin-engined transport aircraft produce enough take-off thrust to continue a take-off on one engine if the other engine shuts down after a critical point in the take-off run. From that point on the aircraft has less than half the thrust compared to two operating engines because the non-functioning engine is a source of drag. Modern twin engined airliners normally climb very steeply immediately after take-off. If one engine shuts down, the climb-out is much shallower, but sufficient to clear obstacles in the flightpath. </p><p>The Soviet Union's engine technology was less advanced than the West's, and its first wide-body aircraft, the <a href="/wiki/Ilyushin_Il-86" title="Ilyushin Il-86">Ilyushin Il-86</a>, was powered by low-bypass engines. The <a href="/wiki/Yakovlev_Yak-42" title="Yakovlev Yak-42">Yakovlev Yak-42</a>, a medium-range, rear-engined aircraft seating up to 120 passengers, introduced in 1980, was the first Soviet aircraft to use high-bypass engines. </p> <ul class="gallery mw-gallery-packed"> <li class="gallerybox" style="width: 159.33333333333px"> <div class="thumb" style="width: 157.33333333333px;"><span typeof="mw:File"><a href="/wiki/File:Sam146_1.jpg" class="mw-file-description" title="PowerJet SaM146 which powers Sukhoi Superjet 100"><img alt="PowerJet SaM146 which powers Sukhoi Superjet 100" src="//upload.wikimedia.org/wikipedia/commons/thumb/1/13/Sam146_1.jpg/236px-Sam146_1.jpg" decoding="async" width="158" height="120" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/13/Sam146_1.jpg/354px-Sam146_1.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/13/Sam146_1.jpg/472px-Sam146_1.jpg 2x" data-file-width="2265" data-file-height="1727" /></a></span></div> <div class="gallerytext"><a href="/wiki/PowerJet_SaM146" title="PowerJet SaM146">PowerJet SaM146</a> which powers <a href="/wiki/Sukhoi_Superjet_100" title="Sukhoi Superjet 100">Sukhoi Superjet 100</a></div> </li> <li class="gallerybox" style="width: 182px"> <div class="thumb" style="width: 180px;"><span typeof="mw:File"><a href="/wiki/File:Ge_cf6_turbofan.jpg" class="mw-file-description" title="General Electric CF6 which powers the Airbus A300, Boeing 747, Douglas DC-10 and other aircraft"><img alt="General Electric CF6 which powers the Airbus A300, Boeing 747, Douglas DC-10 and other aircraft" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/75/Ge_cf6_turbofan.jpg/270px-Ge_cf6_turbofan.jpg" decoding="async" width="180" height="120" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/75/Ge_cf6_turbofan.jpg/405px-Ge_cf6_turbofan.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/75/Ge_cf6_turbofan.jpg/540px-Ge_cf6_turbofan.jpg 2x" data-file-width="3504" data-file-height="2336" /></a></span></div> <div class="gallerytext"><a href="/wiki/General_Electric_CF6" title="General Electric CF6">General Electric CF6</a> which powers the <a href="/wiki/Airbus_A300" title="Airbus A300">Airbus A300</a>, <a href="/wiki/Boeing_747" title="Boeing 747">Boeing 747</a>, <a href="/wiki/Douglas_DC-10" class="mw-redirect" title="Douglas DC-10">Douglas DC-10</a> and other aircraft</div> </li> <li class="gallerybox" style="width: 162.66666666667px"> <div class="thumb" style="width: 160.66666666667px;"><span typeof="mw:File"><a href="/wiki/File:Airbus_Lagard%C3%A8re_-_Trent_900_engine_MSN100_(6).JPG" class="mw-file-description" title="Rolls-Royce Trent 900, powering the Airbus A380"><img alt="Rolls-Royce Trent 900, powering the Airbus A380" src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d2/Airbus_Lagard%C3%A8re_-_Trent_900_engine_MSN100_%286%29.JPG/241px-Airbus_Lagard%C3%A8re_-_Trent_900_engine_MSN100_%286%29.JPG" decoding="async" width="161" height="120" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d2/Airbus_Lagard%C3%A8re_-_Trent_900_engine_MSN100_%286%29.JPG/361px-Airbus_Lagard%C3%A8re_-_Trent_900_engine_MSN100_%286%29.JPG 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d2/Airbus_Lagard%C3%A8re_-_Trent_900_engine_MSN100_%286%29.JPG/481px-Airbus_Lagard%C3%A8re_-_Trent_900_engine_MSN100_%286%29.JPG 2x" data-file-width="2288" data-file-height="1712" /></a></span></div> <div class="gallerytext"><a href="/wiki/Rolls-Royce_Trent_900" title="Rolls-Royce Trent 900">Rolls-Royce Trent 900</a>, powering the <a href="/wiki/Airbus_A380" title="Airbus A380">Airbus A380</a></div> </li> <li class="gallerybox" style="width: 182px"> <div class="thumb" style="width: 180px;"><span typeof="mw:File"><a href="/wiki/File:PW4000-112_(cropped).jpg" class="mw-file-description" title="Pratt &amp; Whitney PW4000, powering the Boeing 777, MD-11 and Airbus A330"><img alt="Pratt &amp; Whitney PW4000, powering the Boeing 777, MD-11 and Airbus A330" src="//upload.wikimedia.org/wikipedia/commons/thumb/1/12/PW4000-112_%28cropped%29.jpg/270px-PW4000-112_%28cropped%29.jpg" decoding="async" width="180" height="120" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/12/PW4000-112_%28cropped%29.jpg/405px-PW4000-112_%28cropped%29.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/12/PW4000-112_%28cropped%29.jpg/540px-PW4000-112_%28cropped%29.jpg 2x" data-file-width="2880" data-file-height="1920" /></a></span></div> <div class="gallerytext"><a href="/wiki/Pratt_%26_Whitney_PW4000" title="Pratt &amp; Whitney PW4000">Pratt &amp; Whitney PW4000</a>, powering the <a href="/wiki/Boeing_777" title="Boeing 777">Boeing 777</a>, <a href="/wiki/MD-11" class="mw-redirect" title="MD-11">MD-11</a> and <a href="/wiki/Airbus_A330" title="Airbus A330">Airbus A330</a></div> </li> <li class="gallerybox" style="width: 162px"> <div class="thumb" style="width: 160px;"><span typeof="mw:File"><a href="/wiki/File:CFM56_P1220759.jpg" class="mw-file-description" title="The CFM56 which powers the Boeing 737, the Airbus A320 and other aircraft"><img alt="The CFM56 which powers the Boeing 737, the Airbus A320 and other aircraft" src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e9/CFM56_P1220759.jpg/240px-CFM56_P1220759.jpg" decoding="async" width="160" height="120" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e9/CFM56_P1220759.jpg/360px-CFM56_P1220759.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e9/CFM56_P1220759.jpg/480px-CFM56_P1220759.jpg 2x" data-file-width="2560" data-file-height="1920" /></a></span></div> <div class="gallerytext">The <a href="/wiki/CFM_International_CFM56" title="CFM International CFM56">CFM56</a> which powers the <a href="/wiki/Boeing_737" title="Boeing 737">Boeing 737</a>, the <a href="/wiki/Airbus_A320" class="mw-redirect" title="Airbus A320">Airbus A320</a> and other aircraft</div> </li> <li class="gallerybox" style="width: 162.66666666667px"> <div class="thumb" style="width: 160.66666666667px;"><span typeof="mw:File"><a href="/wiki/File:Airbus_Lagard%C3%A8re_-_GP7200_engine_MSN108_(1).JPG" class="mw-file-description" title="Engine Alliance GP7000 turbofan for the Airbus A380"><img alt="Engine Alliance GP7000 turbofan for the Airbus A380" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Airbus_Lagard%C3%A8re_-_GP7200_engine_MSN108_%281%29.JPG/241px-Airbus_Lagard%C3%A8re_-_GP7200_engine_MSN108_%281%29.JPG" decoding="async" width="161" height="120" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Airbus_Lagard%C3%A8re_-_GP7200_engine_MSN108_%281%29.JPG/361px-Airbus_Lagard%C3%A8re_-_GP7200_engine_MSN108_%281%29.JPG 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Airbus_Lagard%C3%A8re_-_GP7200_engine_MSN108_%281%29.JPG/481px-Airbus_Lagard%C3%A8re_-_GP7200_engine_MSN108_%281%29.JPG 2x" data-file-width="2288" data-file-height="1712" /></a></span></div> <div class="gallerytext"><a href="/wiki/Engine_Alliance_GP7000" title="Engine Alliance GP7000">Engine Alliance GP7000</a> turbofan for the <a href="/wiki/Airbus_A380" title="Airbus A380">Airbus A380</a></div> </li> <li class="gallerybox" style="width: 175.33333333333px"> <div class="thumb" style="width: 173.33333333333px;"><span typeof="mw:File"><a href="/wiki/File:Engine_Il-96_%22Aeroflot%22_(3447358279).jpg" class="mw-file-description" title="Aviadvigatel PS-90 which powers the Ilyushin Il-96, Tupolev Tu-204, Ilyushin Il-76"><img alt="Aviadvigatel PS-90 which powers the Ilyushin Il-96, Tupolev Tu-204, Ilyushin Il-76" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Engine_Il-96_%22Aeroflot%22_%283447358279%29.jpg/260px-Engine_Il-96_%22Aeroflot%22_%283447358279%29.jpg" decoding="async" width="174" height="120" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Engine_Il-96_%22Aeroflot%22_%283447358279%29.jpg/389px-Engine_Il-96_%22Aeroflot%22_%283447358279%29.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Engine_Il-96_%22Aeroflot%22_%283447358279%29.jpg/519px-Engine_Il-96_%22Aeroflot%22_%283447358279%29.jpg 2x" data-file-width="1200" data-file-height="833" /></a></span></div> <div class="gallerytext"><a href="/wiki/Aviadvigatel_PS-90" title="Aviadvigatel PS-90">Aviadvigatel PS-90</a> which powers the <a href="/wiki/Ilyushin_Il-96" title="Ilyushin Il-96">Ilyushin Il-96</a>, <a href="/wiki/Tupolev_Tu-204" title="Tupolev Tu-204">Tupolev Tu-204</a>, <a href="/wiki/Ilyushin_Il-76" title="Ilyushin Il-76">Ilyushin Il-76</a></div> </li> <li class="gallerybox" style="width: 162px"> <div class="thumb" style="width: 160px;"><span typeof="mw:File"><a href="/wiki/File:ALF502.JPG" class="mw-file-description" title="Lycoming ALF 502 which powers the British Aerospace 146"><img alt="Lycoming ALF 502 which powers the British Aerospace 146" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/36/ALF502.JPG/240px-ALF502.JPG" decoding="async" width="160" height="120" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/36/ALF502.JPG/360px-ALF502.JPG 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/36/ALF502.JPG/480px-ALF502.JPG 2x" data-file-width="2048" data-file-height="1536" /></a></span></div> <div class="gallerytext"><a href="/wiki/Lycoming_ALF_502" title="Lycoming ALF 502">Lycoming ALF 502</a> which powers the <a href="/wiki/British_Aerospace_146" title="British Aerospace 146">British Aerospace 146</a></div> </li> <li class="gallerybox" style="width: 187.33333333333px"> <div class="thumb" style="width: 185.33333333333px;"><span typeof="mw:File"><a href="/wiki/File:MAKS_Airshow_2013_(Ramenskoye_Airport,_Russia)_(524-34).jpg" class="mw-file-description" title="Aviadvigatel PD-14 which will be used on the Irkut MC-21"><img alt="Aviadvigatel PD-14 which will be used on the Irkut MC-21" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/09/MAKS_Airshow_2013_%28Ramenskoye_Airport%2C_Russia%29_%28524-34%29.jpg/278px-MAKS_Airshow_2013_%28Ramenskoye_Airport%2C_Russia%29_%28524-34%29.jpg" decoding="async" width="186" height="120" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/09/MAKS_Airshow_2013_%28Ramenskoye_Airport%2C_Russia%29_%28524-34%29.jpg/416px-MAKS_Airshow_2013_%28Ramenskoye_Airport%2C_Russia%29_%28524-34%29.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/09/MAKS_Airshow_2013_%28Ramenskoye_Airport%2C_Russia%29_%28524-34%29.jpg/555px-MAKS_Airshow_2013_%28Ramenskoye_Airport%2C_Russia%29_%28524-34%29.jpg 2x" data-file-width="2250" data-file-height="1460" /></a></span></div> <div class="gallerytext"><a href="/wiki/Aviadvigatel_PD-14" title="Aviadvigatel PD-14">Aviadvigatel PD-14</a> which will be used on the <a href="/wiki/Irkut_MC-21" class="mw-redirect" title="Irkut MC-21">Irkut MC-21</a></div> </li> <li class="gallerybox" style="width: 192.66666666667px"> <div class="thumb" style="width: 190.66666666667px;"><span typeof="mw:File"><a href="/wiki/File:D-436-148_MAKS-2009.jpg" class="mw-file-description" title="Three shaft Progress D-436"><img alt="Three shaft Progress D-436" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a1/D-436-148_MAKS-2009.jpg/286px-D-436-148_MAKS-2009.jpg" decoding="async" width="191" height="120" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a1/D-436-148_MAKS-2009.jpg/428px-D-436-148_MAKS-2009.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a1/D-436-148_MAKS-2009.jpg/571px-D-436-148_MAKS-2009.jpg 2x" data-file-width="2250" data-file-height="1420" /></a></span></div> <div class="gallerytext">Three shaft <a href="/wiki/Progress_D-436" title="Progress D-436">Progress D-436</a></div> </li> <li class="gallerybox" style="width: 122px"> <div class="thumb" style="width: 120px;"><span typeof="mw:File"><a href="/wiki/File:Trent_1000_GoodwinHall_VirginiaTech.jpg" class="mw-file-description" title="Trent 1000 powering the Boeing 787"><img alt="Trent 1000 powering the Boeing 787" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/54/Trent_1000_GoodwinHall_VirginiaTech.jpg/180px-Trent_1000_GoodwinHall_VirginiaTech.jpg" decoding="async" width="120" height="120" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/54/Trent_1000_GoodwinHall_VirginiaTech.jpg/270px-Trent_1000_GoodwinHall_VirginiaTech.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/54/Trent_1000_GoodwinHall_VirginiaTech.jpg/360px-Trent_1000_GoodwinHall_VirginiaTech.jpg 2x" data-file-width="1750" data-file-height="1750" /></a></span></div> <div class="gallerytext"><a href="/wiki/Trent_1000" class="mw-redirect" title="Trent 1000">Trent 1000</a> powering the <a href="/wiki/Boeing_787" class="mw-redirect" title="Boeing 787">Boeing 787</a></div> </li> <li class="gallerybox" style="width: 145.33333333333px"> <div class="thumb" style="width: 143.33333333333px;"><span typeof="mw:File"><a href="/wiki/File:General_Electric_GE90_displayed_at_Farnborough_Air_Show_2008.jpg" class="mw-file-description" title="GE90 powering the Boeing 777, the most powerful aircraft engine"><img alt="GE90 powering the Boeing 777, the most powerful aircraft engine" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5f/General_Electric_GE90_displayed_at_Farnborough_Air_Show_2008.jpg/215px-General_Electric_GE90_displayed_at_Farnborough_Air_Show_2008.jpg" decoding="async" width="144" height="120" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5f/General_Electric_GE90_displayed_at_Farnborough_Air_Show_2008.jpg/323px-General_Electric_GE90_displayed_at_Farnborough_Air_Show_2008.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5f/General_Electric_GE90_displayed_at_Farnborough_Air_Show_2008.jpg/431px-General_Electric_GE90_displayed_at_Farnborough_Air_Show_2008.jpg 2x" data-file-width="2928" data-file-height="2448" /></a></span></div> <div class="gallerytext"><a href="/wiki/GE90" class="mw-redirect" title="GE90">GE90</a> powering the <a href="/wiki/Boeing_777" title="Boeing 777">Boeing 777</a>, the most powerful aircraft engine</div> </li> </ul> <div class="mw-heading mw-heading2"><h2 id="Turbofan_configurations">Turbofan configurations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Turbofan&amp;action=edit&amp;section=12" title="Edit section: Turbofan configurations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Turbofan engines come in a variety of engine configurations. For a given engine cycle (i.e., same airflow, bypass ratio, fan pressure ratio, overall pressure ratio and HP turbine rotor inlet temperature), the choice of turbofan configuration has little impact upon the design point performance (e.g., net thrust, SFC), as long as overall component performance is maintained. Off-design performance and stability is, however, affected by engine configuration. </p><p>The basic element of a turbofan is a <b>spool</b>, a single combination of fan/compressor, turbine and shaft rotating at a single speed. For a given pressure ratio, the surge margin can be increased by two different design paths: </p> <ol><li>Splitting the compressor into two smaller spools rotating at different speeds, as with the <a href="/wiki/Pratt_%26_Whitney_J57" title="Pratt &amp; Whitney J57">Pratt &amp; Whitney J57</a>; or</li> <li>Making the stator vane pitch adjustable, typically in the front stages, as with the <a href="/wiki/J79" class="mw-redirect" title="J79">J79</a>.</li></ol> <p>Most modern western civil turbofans employ a relatively high-pressure-ratio high-pressure (HP) compressor, with many rows of variable stators to control surge margin at low rpm. In the three-spool <a href="/wiki/Rolls-Royce_RB211" title="Rolls-Royce RB211">RB211</a>/<a href="/wiki/Rolls-Royce_Trent" title="Rolls-Royce Trent">Trent</a> the core compression system is split into two, with the IP compressor, which supercharges the HP compressor, being on a different coaxial shaft and driven by a separate (IP) turbine. As the HP compressor has a modest pressure ratio its speed can be reduced surge-free, without employing variable geometry. However, because a shallow IP compressor working line is inevitable, the IPC has one stage of variable geometry on all variants except the −535, which has none.<sup id="cite_ref-47" class="reference"><a href="#cite_note-47"><span class="cite-bracket">&#91;</span>47<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Single-shaft_turbofan">Single-shaft turbofan</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Turbofan&amp;action=edit&amp;section=13" title="Edit section: Single-shaft turbofan"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Although far from common, the single-shaft turbofan is probably the simplest configuration, comprising a fan and high-pressure compressor driven by a single turbine unit, all on the same spool. The <a href="/wiki/Snecma_M53" title="Snecma M53">Snecma M53</a>, which powers <a href="/wiki/Dassault_Mirage_2000" title="Dassault Mirage 2000">Dassault Mirage 2000</a> fighter aircraft, is an example of a single-shaft turbofan. Despite the simplicity of the turbomachinery configuration, the M53 requires a variable area mixer to facilitate part-throttle operation. </p> <div class="mw-heading mw-heading3"><h3 id="Aft-fan_turbofan">Aft-fan turbofan</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Turbofan&amp;action=edit&amp;section=14" title="Edit section: Aft-fan turbofan"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>One of the earliest turbofans was a derivative of the <a href="/wiki/General_Electric_J79" title="General Electric J79">General Electric J79</a> turbojet, known as the <a href="/wiki/General_Electric_CJ805" title="General Electric CJ805">CJ805-23</a>, which featured an integrated aft fan/low-pressure (LP) turbine unit located in the turbojet exhaust jetpipe. Hot gas from the turbojet turbine exhaust expanded through the LP turbine, the fan blades being a radial extension of the turbine blades. This arrangement introduces an additional gas leakage path compared to a front-fan configuration and was a problem with this engine with higher-pressure turbine gas leaking into the fan airflow.<sup id="cite_ref-48" class="reference"><a href="#cite_note-48"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup> An aft-fan configuration was later used for the <a href="/wiki/General_Electric_GE36" title="General Electric GE36">General Electric GE36</a> UDF (propfan) demonstrator of the early 1980s. </p><p>In 1971 a concept was put forward by the NASA Lewis Research Center for a supersonic transport engine which operated as an aft-fan turbofan at take-off and subsonic speeds and a turbojet at higher speeds. This would give the low noise and high thrust characteristics of a turbofan at take-off, together with turbofan high propulsive efficiency at subsonic flight speeds. It would have the high propulsive efficiency of a turbojet at supersonic cruise speeds.<sup id="cite_ref-49" class="reference"><a href="#cite_note-49"><span class="cite-bracket">&#91;</span>49<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Basic_two-spool">Basic two-spool</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Turbofan&amp;action=edit&amp;section=15" title="Edit section: Basic two-spool"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Dual-spool_axial-flow_compressor.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e9/Dual-spool_axial-flow_compressor.png/220px-Dual-spool_axial-flow_compressor.png" decoding="async" width="220" height="171" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e9/Dual-spool_axial-flow_compressor.png/330px-Dual-spool_axial-flow_compressor.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e9/Dual-spool_axial-flow_compressor.png/440px-Dual-spool_axial-flow_compressor.png 2x" data-file-width="2638" data-file-height="2048" /></a><figcaption>A dual-spool <a href="/wiki/Axial_compressor" title="Axial compressor">axial-flow compressor</a>.</figcaption></figure> <p>Many turbofans have at least basic two-spool configuration where the fan is on a separate low pressure (LP) spool, running concentrically with the compressor or high pressure (HP) spool; the LP spool runs at a lower <a href="/wiki/Angular_velocity" title="Angular velocity">angular velocity</a>, while the HP spool turns faster and its compressor further compresses part of the air for combustion.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (September 2018)">citation needed</span></a></i>&#93;</sup> The <a href="/wiki/Rolls-Royce_BR700" title="Rolls-Royce BR700">BR710</a> is typical of this configuration. At the smaller thrust sizes, instead of all-axial blading, the HP compressor configuration may be axial-centrifugal (e.g., <a href="/wiki/CFE_CFE738" title="CFE CFE738">CFE CFE738</a>), double-centrifugal or even <a href="/wiki/Mixed_flow_compressor" title="Mixed flow compressor">diagonal/centrifugal</a> (e.g. <a href="/wiki/Pratt_%26_Whitney_Canada_PW600" title="Pratt &amp; Whitney Canada PW600">Pratt &amp; Whitney Canada PW600</a>). </p> <div class="mw-heading mw-heading3"><h3 id="Boosted_two-spool">Boosted two-spool</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Turbofan&amp;action=edit&amp;section=16" title="Edit section: Boosted two-spool"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Higher overall pressure ratios can be achieved by either raising the HP compressor pressure ratio or adding compressor (non-bypass) stages to the LP spool, between the fan and the HP compressor, to boost the latter. All of the large American turbofans (e.g. <a href="/wiki/General_Electric_CF6" title="General Electric CF6">General Electric CF6</a>, <a href="/wiki/GE90" class="mw-redirect" title="GE90">GE90</a>, <a href="/wiki/General_Electric_GE9X" title="General Electric GE9X">GE9X</a> and <a href="/wiki/GEnx" class="mw-redirect" title="GEnx">GEnx</a> plus <a href="/wiki/Pratt_%26_Whitney_JT9D" title="Pratt &amp; Whitney JT9D">Pratt &amp; Whitney JT9D</a> and <a href="/wiki/Pratt_%26_Whitney_PW4000" title="Pratt &amp; Whitney PW4000">PW4000</a>) use booster stages. The Rolls-Royce BR715 is another example. The high bypass ratios used in modern civil turbofans tend to reduce the relative diameter of the booster stages, reducing their mean tip speed. Consequently, more booster stages are required to develop the necessary pressure rise. </p> <div class="mw-heading mw-heading3"><h3 id="Three-spool">Three-spool</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Turbofan&amp;action=edit&amp;section=17" title="Edit section: Three-spool"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Rolls-Royce chose a three-spool configuration for their large civil turbofans (i.e. the <a href="/wiki/Rolls-Royce_RB211" title="Rolls-Royce RB211">RB211</a> and <a href="/wiki/Rolls-Royce_Trent" title="Rolls-Royce Trent">Trent</a> families), where the booster stages of a boosted two-spool configuration are separated into an intermediate pressure (IP) spool, driven by its own turbine. The first three-spool engine was the earlier <a href="/wiki/Rolls-Royce_RB.203_Trent" title="Rolls-Royce RB.203 Trent">Rolls-Royce RB.203 Trent</a> of 1967. </p><p>The <a href="/wiki/Garrett_ATF3" title="Garrett ATF3">Garrett ATF3</a>, powering the <a href="/wiki/Dassault_Falcon_20" title="Dassault Falcon 20">Dassault Falcon 20</a> business jet, has an unusual three spool layout with an aft spool not concentric with the two others. </p><p><a href="/wiki/Ivchenko-Progress" title="Ivchenko-Progress">Ivchenko Design Bureau</a> chose the same configuration as Rolls-Royce for their <a href="/wiki/Lotarev_D-36" title="Lotarev D-36">Lotarev D-36</a> engine, followed by <a href="/wiki/Progress_D-18T" title="Progress D-18T">Lotarev/Progress D-18T</a> and <a href="/wiki/Progress_D-436" title="Progress D-436">Progress D-436</a>. </p><p>The <a href="/wiki/Turbo-Union_RB199" title="Turbo-Union RB199">Turbo-Union RB199</a> military turbofan also has a three-spool configuration, as do the military <a href="/wiki/Kuznetsov_NK-25" title="Kuznetsov NK-25">Kuznetsov NK-25</a> and <a href="/wiki/Kuznetsov_NK-32" title="Kuznetsov NK-32">NK-321</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Geared_fan">Geared fan</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Turbofan&amp;action=edit&amp;section=18" title="Edit section: Geared fan"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Geared_turbofan" title="Geared turbofan">Geared turbofan</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Geared_Turbofan_NT.PNG" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9f/Geared_Turbofan_NT.PNG/220px-Geared_Turbofan_NT.PNG" decoding="async" width="220" height="119" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9f/Geared_Turbofan_NT.PNG/330px-Geared_Turbofan_NT.PNG 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9f/Geared_Turbofan_NT.PNG/440px-Geared_Turbofan_NT.PNG 2x" data-file-width="1055" data-file-height="570" /></a><figcaption>Geared turbofan. The gearbox is labeled 2.</figcaption></figure> <p>As bypass ratio increases, the fan blade tip speed increases relative to the LPT blade speed. This will reduce the LPT blade speed, requiring more turbine stages to extract enough energy to drive the fan. Introducing a <a href="/wiki/Epicyclic_gearing" title="Epicyclic gearing">(planetary) reduction gearbox</a>, with a suitable gear ratio, between the LP shaft and the fan enables both the fan and LP turbine to operate at their optimum speeds. Examples of this configuration are the long-established <a href="/wiki/Garrett_TFE731" title="Garrett TFE731">Garrett TFE731</a>, the <a href="/wiki/Honeywell_ALF_502" class="mw-redirect" title="Honeywell ALF 502">Honeywell ALF 502</a>/507, and the recent <a href="/wiki/Pratt_%26_Whitney_PW1000G" title="Pratt &amp; Whitney PW1000G">Pratt &amp; Whitney PW1000G</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Military_turbofans">Military turbofans</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Turbofan&amp;action=edit&amp;section=19" title="Edit section: Military turbofans"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Most of the configurations discussed above are used in civilian turbofans, while modern military turbofans (e.g., <a href="/wiki/Snecma_M88" title="Snecma M88">Snecma M88</a>) are usually basic two-spool. </p> <div class="mw-heading mw-heading3"><h3 id="High-pressure_turbine">High-pressure turbine</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Turbofan&amp;action=edit&amp;section=20" title="Edit section: High-pressure turbine"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Most civil turbofans use a high-efficiency, 2-stage HP turbine to drive the HP compressor. The <a href="/wiki/CFM_International_CFM56" title="CFM International CFM56">CFM International CFM56</a> uses an alternative approach: a single-stage, high-work unit. While this approach is probably less efficient, there are savings on cooling air, weight and cost. </p><p>In the <a href="/wiki/Rolls-Royce_RB211" title="Rolls-Royce RB211">RB211</a> and <a href="/wiki/Rolls-Royce_Trent" title="Rolls-Royce Trent">Trent</a> 3-spool engine series, the HP compressor pressure ratio is modest so only a single HP turbine stage is required. Modern military turbofans also tend to use a single HP turbine stage and a modest HP compressor. </p> <div class="mw-heading mw-heading3"><h3 id="Low-pressure_turbine">Low-pressure turbine</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Turbofan&amp;action=edit&amp;section=21" title="Edit section: Low-pressure turbine"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Modern civil turbofans have multi-stage LP turbines (anywhere from 3 to 7). The number of stages required depends on the engine cycle bypass ratio and the boost (on boosted two-spools). A geared fan may reduce the number of required LPT stages in some applications.<sup id="cite_ref-:0_50-0" class="reference"><a href="#cite_note-:0-50"><span class="cite-bracket">&#91;</span>50<span class="cite-bracket">&#93;</span></a></sup> Because of the much lower bypass ratios employed, military turbofans require only one or two LP turbine stages. </p> <div class="mw-heading mw-heading2"><h2 id="Overall_performance">Overall performance</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Turbofan&amp;action=edit&amp;section=22" title="Edit section: Overall performance"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Cycle_improvements">Cycle improvements</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Turbofan&amp;action=edit&amp;section=23" title="Edit section: Cycle improvements"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Consider a mixed turbofan with a fixed bypass ratio and airflow. Increasing the <a href="/wiki/Overall_pressure_ratio" title="Overall pressure ratio">overall pressure ratio</a> of the compression system raises the combustor entry temperature. Therefore, at a fixed fuel flow there is an increase in (HP) turbine rotor inlet temperature. Although the higher temperature rise across the compression system implies a larger temperature drop over the turbine system, the mixed nozzle temperature is unaffected, because the same amount of heat is being added to the system. There is, however, a rise in nozzle pressure, because overall pressure ratio increases faster than the turbine expansion ratio, causing an increase in the hot mixer entry pressure. Consequently, net thrust increases, whilst specific fuel consumption (fuel flow/net thrust) decreases. A similar trend occurs with unmixed turbofans. </p><p>Turbofan engines can be made more fuel efficient by raising overall pressure ratio and turbine rotor inlet temperature in unison. However, better turbine materials or improved vane/blade cooling are required to cope with increases in both turbine rotor inlet temperature and compressor delivery temperature. Increasing the latter may require better compressor materials. </p><p>The overall pressure ratio can be increased by improving fan (or) LP compressor pressure ratio or HP compressor pressure ratio. If the latter is held constant, the increase in (HP) compressor delivery temperature (from raising overall pressure ratio) implies an increase in HP mechanical speed. However, stressing considerations might limit this parameter, implying, despite an increase in overall pressure ratio, a reduction in HP compressor pressure ratio. </p><p>According to simple theory, if the ratio of turbine rotor inlet temperature/(HP) compressor delivery temperature is maintained, the HP turbine throat area can be retained. However, this assumes that cycle improvements are obtained, while retaining the datum (HP) compressor exit flow function (non-dimensional flow). In practice, changes to the non-dimensional speed of the (HP) compressor and cooling bleed extraction would probably make this assumption invalid, making some adjustment to HP turbine throat area unavoidable. This means the HP turbine nozzle guide vanes would have to be different from the original. In all probability, the downstream LP turbine nozzle guide vanes would have to be changed anyway. </p> <div class="mw-heading mw-heading3"><h3 id="Thrust_growth">Thrust growth</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Turbofan&amp;action=edit&amp;section=24" title="Edit section: Thrust growth"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Thrust growth is obtained by increasing <a href="/w/index.php?title=Core_power&amp;action=edit&amp;redlink=1" class="new" title="Core power (page does not exist)">core power</a>. There are two basic routes available: </p> <ol><li>hot route: increase HP turbine rotor inlet temperature</li> <li>cold route: increase core mass flow</li></ol> <p>Both routes require an increase in the combustor fuel flow and, therefore, the heat energy added to the core stream. </p><p>The hot route may require changes in turbine blade/vane materials or better blade/vane cooling. The cold route can be obtained by one of the following: </p> <ol><li>adding booster stages to the LP/IP compression</li> <li>adding a <a href="/wiki/Zero-stage" title="Zero-stage">zero-stage</a> to the HP compression</li> <li>improving the compression process, without adding stages (e.g. higher fan hub pressure ratio)</li></ol> <p>all of which increase both overall pressure ratio and core airflow. </p><p>Alternatively, the <a href="/w/index.php?title=Core_size&amp;action=edit&amp;redlink=1" class="new" title="Core size (page does not exist)">core size</a> can be increased, to raise core airflow, without changing overall pressure ratio. This route is expensive, since a new (upflowed) turbine system (and possibly a larger IP compressor) is also required. </p><p>Changes must also be made to the fan to absorb the extra core power. On a civil engine, jet noise considerations mean that any significant increase in take-off thrust must be accompanied by a corresponding increase in fan mass flow (to maintain a T/O specific thrust of about 30&#160;lbf/lb/s). </p> <div class="mw-heading mw-heading3"><h3 id="Technical_discussion">Technical discussion</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Turbofan&amp;action=edit&amp;section=25" title="Edit section: Technical discussion"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ol><li>Specific thrust (net thrust/intake airflow) is an important parameter for turbofans and jet engines in general. Imagine a fan (driven by an appropriately sized electric motor) operating within a pipe, which is connected to a propelling nozzle. It is fairly obvious, the higher the fan pressure ratio (fan discharge pressure/fan inlet pressure), the higher the jet velocity and the corresponding specific thrust. Now imagine we replace this set-up with an equivalent turbofan – same airflow and same fan pressure ratio. Obviously, the core of the turbofan must produce sufficient power to drive the fan via the low-pressure (LP) turbine. If we choose a low (HP) turbine inlet temperature for the gas generator, the core airflow needs to be relatively high to compensate. The corresponding bypass ratio is therefore relatively low. If we raise the turbine inlet temperature, the core airflow can be smaller, thus increasing bypass ratio. Raising turbine inlet temperature tends to increase thermal efficiency and, therefore, improve <a href="/wiki/Fuel_efficiency" title="Fuel efficiency">fuel efficiency</a>.</li> <li>Naturally, as altitude increases, there is a decrease in air density and, therefore, the net thrust of an engine. There is also a flight speed effect, termed thrust lapse rate. Consider the approximate equation for net thrust again:<span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{n}=m\cdot (V_{jfe}-V_{a}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mi>m</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mi>f</mi> <mi>e</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{n}=m\cdot (V_{jfe}-V_{a}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e564e85f64f82be9af15b45dc4338c601047ea0e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:21.22ex; height:3.009ex;" alt="{\displaystyle F_{n}=m\cdot (V_{jfe}-V_{a}).}"></span> With a high specific thrust (e.g., fighter) engine, the jet velocity is relatively high, so intuitively one can see that increases in flight velocity have less of an impact upon net thrust than a medium specific thrust (e.g., trainer) engine, where the jet velocity is lower. The impact of thrust lapse rate upon a low specific thrust (e.g., civil) engine is even more severe. At high flight speeds, high-specific-thrust engines can pick up net thrust through the ram rise in the intake, but this effect tends to diminish at supersonic speeds because of shock wave losses.</li> <li>Thrust growth on civil turbofans is usually obtained by increasing fan airflow, thus preventing the jet noise becoming too high. However, the larger fan airflow requires more power from the core. This can be achieved by raising the <a href="/wiki/Overall_pressure_ratio" title="Overall pressure ratio">overall pressure ratio</a> (combustor inlet pressure/intake delivery pressure) to induce more airflow into the core and by increasing turbine inlet temperature. Together, these parameters tend to increase core thermal efficiency and improve fuel efficiency.</li> <li>Some high-bypass-ratio civil turbofans use an extremely low area ratio (less than 1.01), convergent-divergent, nozzle on the bypass (or mixed exhaust) stream, to control the fan working line. The nozzle acts as if it has variable geometry. At low flight speeds the nozzle is unchoked (less than a Mach number of unity), so the exhaust gas speeds up as it approaches the throat and then slows down slightly as it reaches the divergent section. Consequently, the nozzle exit area controls the fan match and, being larger than the throat, pulls the fan working line slightly away from surge. At higher flight speeds, the ram rise in the intake increases nozzle pressure ratio to the point where the throat becomes choked (M=1.0). Under these circumstances, the throat area dictates the fan match and, being smaller than the exit, pushes the fan working line slightly towards surge. This is not a problem, since fan surge margin is much better at high flight speeds.</li> <li>The off-design behaviour of turbofans is illustrated under <a href="/wiki/Compressor_map" title="Compressor map">compressor map</a> and <a href="/wiki/Turbine_map" title="Turbine map">turbine map</a>.</li> <li>Because modern civil turbofans operate at low specific thrust, they require only a single fan stage to develop the required fan pressure ratio. The desired overall pressure ratio for the engine cycle is usually achieved by multiple axial stages on the core compression. Rolls-Royce tend to split the core compression into two with an intermediate pressure (IP) supercharging the HP compressor, both units being driven by turbines with a single stage, mounted on separate shafts. Consequently, the HP compressor need develop only a modest pressure ratio (e.g., ~4.5:1). US civil engines use much higher HP compressor pressure ratios (e.g., ~23:1 on the <a href="/wiki/General_Electric_GE90" title="General Electric GE90">General Electric GE90</a>) and tend to be driven by a two-stage HP turbine. Even so, there are usually a few IP axial stages mounted on the LP shaft, behind the fan, to further supercharge the core compression system. Civil engines have multi-stage LP turbines, the number of stages being determined by the bypass ratio, the amount of IP compression on the LP shaft and the LP turbine blade speed.</li> <li>Because military engines usually have to be able to fly very fast at sea level, the limit on HP compressor delivery temperature is reached at a fairly modest design overall pressure ratio, compared with that of a civil engine. Also the fan pressure ratio is relatively high, to achieve a medium to high specific thrust. Consequently, modern military turbofans usually have only 5 or 6 HP compressor stages and require only a single-stage HP turbine. Low-bypass-ratio military turbofans usually have one LP turbine stage, but higher bypass ratio engines need two stages. In theory, by adding IP compressor stages, a modern military turbofan HP compressor could be used in a civil turbofan derivative, but the core would tend to be too small for high thrust applications.</li></ol> <div class="mw-heading mw-heading2"><h2 id="Improvements">Improvements</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Turbofan&amp;action=edit&amp;section=26" title="Edit section: Improvements"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Aerodynamic_modelling">Aerodynamic modelling</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Turbofan&amp;action=edit&amp;section=27" title="Edit section: Aerodynamic modelling"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Aerodynamics" title="Aerodynamics">Aerodynamics</a> is a mix of <a href="/wiki/Speed_of_sound" title="Speed of sound">subsonic</a>, <a href="/wiki/Transonic" title="Transonic">transonic</a> and <a href="/wiki/Supersonic" class="mw-redirect" title="Supersonic">supersonic</a> airflow on a single fan/<a href="/wiki/Gas_compressor" class="mw-redirect" title="Gas compressor">gas compressor</a> blade in a modern turbofan. The airflow past the blades must be maintained within close angular limits to keep the air flowing against an increasing pressure. Otherwise air will be rejected back out of the intake.<sup id="cite_ref-LN161021_51-0" class="reference"><a href="#cite_note-LN161021-51"><span class="cite-bracket">&#91;</span>51<span class="cite-bracket">&#93;</span></a></sup> </p><p>The <a href="/wiki/FADEC" title="FADEC">Full Authority Digital Engine Control</a> (FADEC) needs accurate data for controlling the engine. The critical <a href="/wiki/Turbine" title="Turbine">turbine</a> inlet temperature (TIT) is too harsh an environment, at 1,700&#160;°C (3,100&#160;°F) and 17&#160;bar (250&#160;psi), for reliable <a href="/wiki/Temperature_sensor" class="mw-redirect" title="Temperature sensor">sensors</a>. Therefore, during development of a new engine type a relation is established between a more easily measured temperature like <a href="/wiki/Exhaust_gas" title="Exhaust gas">exhaust gas</a> temperature and the TIT. Monitoring the exhaust gas temperature is then used to make sure the engine does not run too hot.<sup id="cite_ref-LN161021_51-1" class="reference"><a href="#cite_note-LN161021-51"><span class="cite-bracket">&#91;</span>51<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Blade_technology">Blade technology</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Turbofan&amp;action=edit&amp;section=28" title="Edit section: Blade technology"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A <a href="/wiki/Turbine" title="Turbine">turbine</a> blade with a weight of 100&#160;g (3.5&#160;oz) is subjected to 1,700&#160;°C (3,100&#160;°F), at 17&#160;bar (250&#160;psi) and a <a href="/wiki/Centrifugal_force" title="Centrifugal force">centrifugal force</a> of 40&#160;kN (9,000&#160;lbf), well above the point of <a href="/wiki/Plastic_deformation" class="mw-redirect" title="Plastic deformation">plastic deformation</a> and even above the <a href="/wiki/Melting_point" title="Melting point">melting point</a>. Exotic <a href="/wiki/Alloy" title="Alloy">alloys</a>, sophisticated <a href="/wiki/Air_cooling" title="Air cooling">air cooling</a> schemes and special mechanical design are needed to keep the <a href="/wiki/Physical_stress" class="mw-redirect" title="Physical stress">physical stresses</a> within the strength of the material. <a href="/wiki/Rotating_seal" class="mw-redirect" title="Rotating seal">Rotating seals</a> must withstand harsh conditions for 10&#160;years, 20,000 missions and rotating at 10 to 20,000&#160;rpm.<sup id="cite_ref-LN161021_51-2" class="reference"><a href="#cite_note-LN161021-51"><span class="cite-bracket">&#91;</span>51<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Fan_blades">Fan blades</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Turbofan&amp;action=edit&amp;section=29" title="Edit section: Fan blades"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Fan blades have been growing as jet engines have been getting bigger: each fan blade carries the equivalent of nine <a href="/wiki/Double-decker_bus" title="Double-decker bus">double-decker buses</a> and swallows air the equivalent volume of a <a href="/wiki/Squash_court" class="mw-redirect" title="Squash court">squash court</a> every second. Advances in <a href="/wiki/Computational_fluid_dynamics" title="Computational fluid dynamics">computational fluid dynamics</a> (CFD) modelling have permitted complex, 3D curved shapes with very wide <a href="/wiki/Chord_(aeronautics)" title="Chord (aeronautics)">chord</a>, keeping the fan capabilities while minimizing the blade count to lower costs. Coincidentally, the <a href="/wiki/Bypass_ratio" title="Bypass ratio">bypass ratio</a> grew to achieve higher <a href="/wiki/Propulsive_efficiency" title="Propulsive efficiency">propulsive efficiency</a> and the fan diameter increased.<sup id="cite_ref-MRO28sep2017_52-0" class="reference"><a href="#cite_note-MRO28sep2017-52"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup> </p><p>Rolls-Royce pioneered the hollow, <a href="/wiki/Titanium" title="Titanium">titanium</a> wide-chord fan blade in the 1980s for aerodynamic efficiency and <a href="/wiki/Foreign_object_damage" title="Foreign object damage">foreign object damage</a> resistance in the <a href="/wiki/RB211" class="mw-redirect" title="RB211">RB211</a> then for the <a href="/wiki/Rolls-Royce_Trent" title="Rolls-Royce Trent">Trent</a>. <a href="/wiki/GE_Aviation" class="mw-redirect" title="GE Aviation">GE Aviation</a> introduced <a href="/wiki/Carbon_fiber_composite" class="mw-redirect" title="Carbon fiber composite">carbon fiber composite</a> fan blades on the <a href="/wiki/GE90" class="mw-redirect" title="GE90">GE90</a> in 1995, manufactured since 2017 with a <a href="/wiki/Carbon-fiber_tape" title="Carbon-fiber tape">carbon-fiber tape-layer</a> process. GE partner <a href="/wiki/Safran" title="Safran">Safran</a> developed a <a href="/wiki/3D_weaving" class="mw-redirect" title="3D weaving">3D woven</a> technology with <a href="/wiki/Albany_Engineered_Composites" class="mw-redirect" title="Albany Engineered Composites">Albany Composites</a> for the <a href="/wiki/CFM56" class="mw-redirect" title="CFM56">CFM56</a> and <a href="/wiki/CFM_LEAP" class="mw-redirect" title="CFM LEAP">CFM LEAP</a> engines.<sup id="cite_ref-MRO28sep2017_52-1" class="reference"><a href="#cite_note-MRO28sep2017-52"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Future_progress">Future progress</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Turbofan&amp;action=edit&amp;section=30" title="Edit section: Future progress"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Engine cores are shrinking as they operate at higher <a href="/wiki/Overall_pressure_ratio" title="Overall pressure ratio">pressure ratios</a> and become more efficient and smaller compared to the fan as bypass ratios increase. Blade <a href="/wiki/Tip_clearance" title="Tip clearance">tip clearances</a> are more difficult to maintain at the exit of the high-pressure compressor where blades are 0.5&#160;in (13&#160;mm) high or less; <a href="/wiki/Structural_system" title="Structural system">backbone</a> bending further affects clearance control as the core is proportionately longer and thinner and the fan to low-pressure turbine driveshaft space is constrained within the core.<sup id="cite_ref-AvWeek26Mar2015_53-0" class="reference"><a href="#cite_note-AvWeek26Mar2015-53"><span class="cite-bracket">&#91;</span>53<span class="cite-bracket">&#93;</span></a></sup> </p><p><a href="/wiki/Pratt_%26_Whitney" title="Pratt &amp; Whitney">Pratt &amp; Whitney</a> VP technology and environment <a href="/wiki/Alan_H._Epstein" title="Alan H. Epstein">Alan Epstein</a> argued "Over the history of commercial aviation, we have gone from 20% to 40% [cruise efficiency], and there is a consensus among the engine community that we can probably get to 60%".<sup id="cite_ref-AvWeek8Aug2017_54-0" class="reference"><a href="#cite_note-AvWeek8Aug2017-54"><span class="cite-bracket">&#91;</span>54<span class="cite-bracket">&#93;</span></a></sup> </p><p><a href="/wiki/Geared_turbofan" title="Geared turbofan">Geared turbofans</a> and further fan <a href="/wiki/Overall_pressure_ratio" title="Overall pressure ratio">pressure ratio</a> reductions may continue to improve <a href="/wiki/Propulsive_efficiency" title="Propulsive efficiency">propulsive efficiency</a>. The second phase of the FAA's Continuous Lower Energy, Emissions and Noise (CLEEN) program is targeting for the late 2020s reductions of 33% fuel burn, 60% emissions and 32&#160;dB EPNdb noise compared with the 2000s state-of-the-art.<sup id="cite_ref-faa-cleen_55-0" class="reference"><a href="#cite_note-faa-cleen-55"><span class="cite-bracket">&#91;</span>55<span class="cite-bracket">&#93;</span></a></sup> In summer 2017 at <a href="/wiki/NASA_Glenn_Research_Center" class="mw-redirect" title="NASA Glenn Research Center">NASA Glenn Research Center</a> in <a href="/wiki/Cleveland,_Ohio" class="mw-redirect" title="Cleveland, Ohio">Cleveland, Ohio</a>, Pratt has finished testing a very-low-pressure-ratio fan on a <a href="/wiki/PW1000G" class="mw-redirect" title="PW1000G">PW1000G</a>, resembling an <a href="/wiki/Open_rotor" class="mw-redirect" title="Open rotor">open rotor</a> with fewer blades than the PW1000G's 20.<sup id="cite_ref-AvWeek8Aug2017_54-1" class="reference"><a href="#cite_note-AvWeek8Aug2017-54"><span class="cite-bracket">&#91;</span>54<span class="cite-bracket">&#93;</span></a></sup> </p><p>The weight and size of the <a href="/wiki/Nacelle" title="Nacelle">nacelle</a> would be reduced by a short duct inlet, imposing higher aerodynamic turning loads on the blades and leaving less space for soundproofing, but a lower-pressure-ratio fan is slower. <a href="/wiki/UTC_Aerospace_Systems" title="UTC Aerospace Systems">UTC Aerospace Systems</a> Aerostructures will have a full-scale ground test in 2019 of its low-drag Integrated Propulsion System with a <a href="/wiki/Thrust_reverser" class="mw-redirect" title="Thrust reverser">thrust reverser</a>, improving fuel burn by 1% and with 2.5-3 EPNdB lower noise.<sup id="cite_ref-AvWeek8Aug2017_54-2" class="reference"><a href="#cite_note-AvWeek8Aug2017-54"><span class="cite-bracket">&#91;</span>54<span class="cite-bracket">&#93;</span></a></sup> </p><p><a href="/wiki/Safran" title="Safran">Safran</a> expects to deliver another 10–15% in fuel efficiency through the mid-2020s before reaching an <a href="/wiki/Asymptote" title="Asymptote">asymptote</a>, and next will have to increase the <a href="/wiki/Bypass_ratio" title="Bypass ratio">bypass ratio</a> to 35:1 instead of 11:1 for the <a href="/wiki/CFM_LEAP" class="mw-redirect" title="CFM LEAP">CFM LEAP</a>. It is demonstrating a counterrotating <a href="/wiki/Open_rotor" class="mw-redirect" title="Open rotor">open rotor</a> unducted fan (propfan) in <a href="/wiki/Istres,_France" class="mw-redirect" title="Istres, France">Istres, France</a>, under the European <a href="/wiki/Clean_Sky" title="Clean Sky">Clean Sky</a> technology program. <a href="/wiki/Computational_fluid_dynamics" title="Computational fluid dynamics">Modeling</a> advances and high <a href="/wiki/Specific_strength" title="Specific strength">specific strength</a> materials may help it succeed where previous attempts failed. When noise levels are within existing standards and similar to the LEAP engine, 15% lower fuel burn will be available and for that Safran is testing its controls, vibration and operation, while <a href="/wiki/Airframe" title="Airframe">airframe</a> integration is still challenging.<sup id="cite_ref-AvWeek8Aug2017_54-3" class="reference"><a href="#cite_note-AvWeek8Aug2017-54"><span class="cite-bracket">&#91;</span>54<span class="cite-bracket">&#93;</span></a></sup> </p><p>For <a href="/wiki/GE_Aviation" class="mw-redirect" title="GE Aviation">GE Aviation</a>, the <a href="/wiki/Energy_density" title="Energy density">energy density</a> of jet fuel still maximises the <a href="/wiki/Breguet_range_equation" class="mw-redirect" title="Breguet range equation">Breguet range equation</a> and higher pressure ratio cores; lower pressure ratio fans, low-loss inlets and lighter structures can further improve thermal, transfer and propulsive efficiency. Under the <a href="/wiki/U.S._Air_Force" class="mw-redirect" title="U.S. Air Force">U.S. Air Force</a>'s <a href="/wiki/Adaptive_Engine_Transition_Program" class="mw-redirect" title="Adaptive Engine Transition Program">Adaptive Engine Transition Program</a>, adaptive <a href="/wiki/Thermodynamic_cycle" title="Thermodynamic cycle">thermodynamic cycles</a> will be used for the <a href="/wiki/Sixth-generation_jet_fighter" class="mw-redirect" title="Sixth-generation jet fighter">sixth-generation jet fighter</a>, based on a modified <a href="/wiki/Brayton_cycle" title="Brayton cycle">Brayton cycle</a> and <a href="/wiki/Constant_volume" class="mw-redirect" title="Constant volume">Constant volume</a> combustion. <a href="/wiki/Additive_manufacturing" class="mw-redirect" title="Additive manufacturing">Additive manufacturing</a> in the <a href="/wiki/General_Electric_Advanced_Turboprop" class="mw-redirect" title="General Electric Advanced Turboprop">advanced turboprop</a> will reduce weight by 5% and fuel burn by 20%.<sup id="cite_ref-AvWeek8Aug2017_54-4" class="reference"><a href="#cite_note-AvWeek8Aug2017-54"><span class="cite-bracket">&#91;</span>54<span class="cite-bracket">&#93;</span></a></sup> </p><p>Rotating and static <a href="/wiki/Ceramic_matrix_composite" title="Ceramic matrix composite">ceramic matrix composite</a> (CMC) parts operates 500&#160;°F (260&#160;°C) hotter than metal and are one-third its weight. With $21.9 million from the <a href="/wiki/Air_Force_Research_Laboratory" title="Air Force Research Laboratory">Air Force Research Laboratory</a>, GE is investing $200 million in a CMC facility in <a href="/wiki/Huntsville,_Alabama" title="Huntsville, Alabama">Huntsville, Alabama</a>, in addition to its <a href="/wiki/Asheville,_North_Carolina" title="Asheville, North Carolina">Asheville, North Carolina</a> site, mass-producing <a href="/wiki/Silicon_carbide" title="Silicon carbide">silicon carbide</a> matrix with silicon-carbide fibers in 2018. CMCs will be used ten times more by the mid-2020s: the CFM LEAP requires 18 CMC turbine shrouds per engine and the <a href="/wiki/GE9X" class="mw-redirect" title="GE9X">GE9X</a> will use it in the combustor and for 42 HP turbine nozzles.<sup id="cite_ref-AvWeek8Aug2017_54-5" class="reference"><a href="#cite_note-AvWeek8Aug2017-54"><span class="cite-bracket">&#91;</span>54<span class="cite-bracket">&#93;</span></a></sup> </p><p><a href="/wiki/Rolls-Royce_Plc" class="mw-redirect" title="Rolls-Royce Plc">Rolls-Royce Plc</a> aim for a 60:1 pressure ratio core for the 2020s <a href="/wiki/Ultrafan" class="mw-redirect" title="Ultrafan">Ultrafan</a> and began ground tests of its 100,000&#160;hp (75,000&#160;kW) gear for 100,000&#160;lbf (440&#160;kN) and 15:1 bypass ratios. Nearly <a href="/wiki/Stoichiometric" class="mw-redirect" title="Stoichiometric">stoichiometric</a> turbine entry temperature approaches the theoretical limit and its impact on emissions has to be balanced with environmental performance goals. Open rotors, lower pressure ratio fans and potentially <a href="/wiki/Distributed_propulsion" title="Distributed propulsion">distributed propulsion</a> offer more room for better propulsive efficiency. Exotic cycles, <a href="/wiki/Heat_exchanger" title="Heat exchanger">heat exchangers</a> and pressure gain/constant volume combustion may improve <a href="/wiki/Thermodynamic_efficiency" class="mw-redirect" title="Thermodynamic efficiency">thermodynamic efficiency</a>. Additive manufacturing could be an enabler for <a href="/wiki/Intercooler" title="Intercooler">intercooler</a> and <a href="/wiki/Recuperator" title="Recuperator">recuperators</a>. Closer airframe integration and <a href="/wiki/Hybrid_electric_vehicle#Aircraft" title="Hybrid electric vehicle">hybrid</a> or <a href="/wiki/Electric_aircraft" title="Electric aircraft">electric aircraft</a> can be combined with gas turbines.<sup id="cite_ref-AvWeek8Aug2017_54-6" class="reference"><a href="#cite_note-AvWeek8Aug2017-54"><span class="cite-bracket">&#91;</span>54<span class="cite-bracket">&#93;</span></a></sup> </p><p>Rolls-Royce engines have a 72–82% propulsive efficiency and 42–49% thermal efficiency for a 0.63–0.49&#160;lb/lbf/h (64,000–50,000&#160;g/kN/h) <a href="/wiki/Thrust_specific_fuel_consumption" class="mw-redirect" title="Thrust specific fuel consumption">TSFC</a> at Mach 0.8, and aim for theoretical limits of 95% for open rotor propulsive efficiency and 60% for thermal efficiency with stoichiometric <a href="/wiki/Turbine" title="Turbine">turbine</a> entry temperature and 80:1 <a href="/wiki/Overall_pressure_ratio" title="Overall pressure ratio">overall pressure ratio</a> for a 0.35&#160;lb/lbf/h (36,000&#160;g/kN/h) TSFC<sup id="cite_ref-56" class="reference"><a href="#cite_note-56"><span class="cite-bracket">&#91;</span>56<span class="cite-bracket">&#93;</span></a></sup> </p><p>As teething troubles may not show up until several thousand hours, the latest turbofans' technical problems disrupt <a href="/wiki/Airline" title="Airline">airlines</a> operations and <a href="/wiki/Aerospace_manufacturer" title="Aerospace manufacturer">manufacturers</a> deliveries while production rates rise sharply. <a href="/wiki/Trent_1000" class="mw-redirect" title="Trent 1000">Trent 1000</a> cracked blades <a href="/wiki/Aircraft_on_ground" title="Aircraft on ground">grounded</a> almost 50 <a href="/wiki/Boeing_787" class="mw-redirect" title="Boeing 787">Boeing 787s</a> and reduced <a href="/wiki/ETOPS" title="ETOPS">ETOPS</a> to 2.3 hours down from 5.5, costing <a href="/wiki/Rolls-Royce_plc" class="mw-redirect" title="Rolls-Royce plc">Rolls-Royce plc</a> almost $950 million. <a href="/wiki/PW1000G" class="mw-redirect" title="PW1000G">PW1000G</a> knife-edge seal fractures have caused <a href="/wiki/Pratt_%26_Whitney" title="Pratt &amp; Whitney">Pratt &amp; Whitney</a> to fall behind in deliveries, leaving about 100 engineless <a href="/wiki/A320neo" class="mw-redirect" title="A320neo">A320neos</a> waiting for their powerplants. The <a href="/wiki/CFM_LEAP" class="mw-redirect" title="CFM LEAP">CFM LEAP</a> introduction had been smoother but a <a href="/wiki/Ceramic_composite" class="mw-redirect" title="Ceramic composite">ceramic composite</a> <abbr title="High-Pressure">HP</abbr> Turbine coating was prematurely lost, necessitating a new design, causing 60 A320neo engine removals for modification and delaying deliveries by up to six weeks late.<sup id="cite_ref-SeattleTimes15jun2018_57-0" class="reference"><a href="#cite_note-SeattleTimes15jun2018-57"><span class="cite-bracket">&#91;</span>57<span class="cite-bracket">&#93;</span></a></sup> </p><p>On a widebody, <a href="/wiki/Safran" title="Safran">Safran</a> estimates 5–10% of fuel could be saved by reducing power intake for hydraulic systems, while swapping to electrical power could save 30% of weight, as initiated on the <a href="/wiki/Boeing_787" class="mw-redirect" title="Boeing 787">Boeing 787</a>, while <a href="/wiki/Rolls-Royce_plc" class="mw-redirect" title="Rolls-Royce plc">Rolls-Royce plc</a> hopes for up to 5%.<sup id="cite_ref-58" class="reference"><a href="#cite_note-58"><span class="cite-bracket">&#91;</span>58<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Manufacturers">Manufacturers</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Turbofan&amp;action=edit&amp;section=31" title="Edit section: Manufacturers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/List_of_turbofan_manufacturers" title="List of turbofan manufacturers">List of turbofan manufacturers</a></div> <p>The turbofan engine market is dominated by <a href="/wiki/GE_Aerospace" title="GE Aerospace">General Electric</a>, <a href="/wiki/Rolls-Royce_plc" class="mw-redirect" title="Rolls-Royce plc">Rolls-Royce plc</a> and <a href="/wiki/Pratt_%26_Whitney" title="Pratt &amp; Whitney">Pratt &amp; Whitney</a>, in order of market share. General Electric and <a href="/wiki/Safran_Aircraft_Engines" title="Safran Aircraft Engines">Safran</a> of France have a joint venture, <a href="/wiki/CFM_International" title="CFM International">CFM International</a>. Pratt &amp; Whitney also have a joint venture, <a href="/wiki/International_Aero_Engines" title="International Aero Engines">International Aero Engines</a> with <a href="/wiki/Japanese_Aero_Engine_Corporation" title="Japanese Aero Engine Corporation">Japanese Aero Engine Corporation</a> and <a href="/wiki/MTU_Aero_Engines" title="MTU Aero Engines">MTU Aero Engines</a> of Germany, specializing in engines for the <a href="/wiki/Airbus_A320_family" title="Airbus A320 family">Airbus A320 family</a>. Pratt &amp; Whitney and General Electric have a joint venture, <a href="/wiki/Engine_Alliance" title="Engine Alliance">Engine Alliance</a> selling a range of engines for aircraft such as the <a href="/wiki/Airbus_A380" title="Airbus A380">Airbus A380</a>. </p><p>For <a href="/wiki/Airliner" title="Airliner">airliners</a> and <a href="/wiki/Cargo_aircraft" title="Cargo aircraft">cargo aircraft</a>, the in-service fleet in 2016 is 60,000 engines and should grow to 103,000 in 2035 with 86,500 deliveries according to <a href="/wiki/Flight_Global" class="mw-redirect" title="Flight Global">Flight Global</a>. A majority will be medium-thrust engines for <a href="/wiki/Narrow-body_aircraft" title="Narrow-body aircraft">narrow-body aircraft</a> with 54,000 deliveries, for a fleet growing from 28,500 to 61,000. High-thrust engines for <a href="/wiki/Wide-body_aircraft" title="Wide-body aircraft">wide-body aircraft</a>, worth 40–45% of the market by value, will grow from 12,700 engines to over 21,000 with 18,500 deliveries. The <a href="/wiki/Regional_jet" title="Regional jet">regional jet</a> engines below 20,000&#160;lb (89&#160;kN) fleet will grow from 7,500 to 9,000 and the fleet of <a href="/wiki/Turboprop" title="Turboprop">turboprops</a> for airliners will increase from 9,400 to 10,200. The manufacturers <a href="/wiki/Market_share" title="Market share">market share</a> should be led by CFM with 44% followed by Pratt &amp; Whitney with 29% and then Rolls-Royce and General Electric with 10% each.<sup id="cite_ref-59" class="reference"><a href="#cite_note-59"><span class="cite-bracket">&#91;</span>59<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Commercial_turbofans_in_production">Commercial turbofans in production</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Turbofan&amp;action=edit&amp;section=32" title="Edit section: Commercial turbofans in production"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <table class="wikitable sortable"> <caption>Commercial turbofans in production<sup id="cite_ref-60" class="reference"><a href="#cite_note-60"><span class="cite-bracket">&#91;</span>60<span class="cite-bracket">&#93;</span></a></sup> </caption> <tbody><tr> <th>Model </th> <th>Start</th> <th>Bypass</th> <th>Length</th> <th>Fan</th> <th>Weight</th> <th>Thrust </th> <th>Major applications </th></tr> <tr> <td><a href="/wiki/General_Electric_GE90" title="General Electric GE90">GE GE90</a> </td> <td>1992</td> <td>8.7–9.9</td> <td>5.18–5.40&#160;m</td> <td>3.12–3.25&#160;m</td> <td>7.56–8.62&#160;t</td> <td>330–510&#160;kN </td> <td><a href="/wiki/Boeing_777" title="Boeing 777">B777</a> </td></tr> <tr> <td><a href="/wiki/Pratt_%26_Whitney_PW4000" title="Pratt &amp; Whitney PW4000">P&amp;W PW4000</a> </td> <td>1984</td> <td>4.8–6.4</td> <td>3.37–4.95&#160;m</td> <td>2.84&#160;m</td> <td>4.18–7.48&#160;t</td> <td>222–436&#160;kN </td> <td><a href="/wiki/Airbus_A300" title="Airbus A300">A300</a>/<a href="/wiki/Airbus_A310" title="Airbus A310">A310</a>, <a href="/wiki/Airbus_A330" title="Airbus A330">A330</a>, <a href="/wiki/Boeing_747" title="Boeing 747">B747</a>, <a href="/wiki/Boeing_767" title="Boeing 767">B767</a>, <a href="/wiki/Boeing_777" title="Boeing 777">B777</a>, <a href="/wiki/McDonnell_Douglas_MD-11" title="McDonnell Douglas MD-11">MD-11</a> </td></tr> <tr> <td><a href="/wiki/Rolls-Royce_Trent_XWB" title="Rolls-Royce Trent XWB">R-R Trent XWB</a> </td> <td>2010</td> <td>9.3</td> <td>5.22&#160;m</td> <td>3.00&#160;m</td> <td>7.28&#160;t</td> <td>330–430&#160;kN </td> <td><a href="/wiki/Airbus_A350" title="Airbus A350">A350XWB</a> </td></tr> <tr> <td><a href="/wiki/Rolls-Royce_Trent_800" title="Rolls-Royce Trent 800">R-R Trent 800</a> </td> <td>1993</td> <td>5.7–5.79</td> <td>4.37&#160;m</td> <td>2.79&#160;m</td> <td>5.96–5.98&#160;t</td> <td>411–425&#160;kN </td> <td><a href="/wiki/Boeing_777" title="Boeing 777">B777</a> </td></tr> <tr> <td><a href="/wiki/Engine_Alliance_GP7000" title="Engine Alliance GP7000">EA GP7000</a> </td> <td>2004</td> <td>8.7</td> <td>4.75&#160;m</td> <td>2.95&#160;m</td> <td>6.09–6.71&#160;t</td> <td>311–363&#160;kN </td> <td><a href="/wiki/Airbus_A380" title="Airbus A380">A380</a> </td></tr> <tr> <td><a href="/wiki/Rolls-Royce_Trent_900" title="Rolls-Royce Trent 900">R-R Trent 900</a> </td> <td>2004</td> <td>8.7</td> <td>4.55&#160;m</td> <td>2.95&#160;m</td> <td>6.18–6.25&#160;t</td> <td>340–357&#160;kN </td> <td><a href="/wiki/Airbus_A380" title="Airbus A380">A380</a> </td></tr> <tr> <td><a href="/wiki/Rolls-Royce_Trent_1000" title="Rolls-Royce Trent 1000">R-R Trent 1000</a> </td> <td>2006</td> <td>10.8–11</td> <td>4.74&#160;m</td> <td>2.85&#160;m</td> <td>5.77&#160;t</td> <td>265.3–360.4&#160;kN </td> <td><a href="/wiki/Boeing_787" class="mw-redirect" title="Boeing 787">B787</a> </td></tr> <tr> <td><a href="/wiki/General_Electric_GEnx" title="General Electric GEnx">GE GEnx</a><sup id="cite_ref-61" class="reference"><a href="#cite_note-61"><span class="cite-bracket">&#91;</span>61<span class="cite-bracket">&#93;</span></a></sup> </td> <td>2006 </td> <td>8.0–9.3 </td> <td>4.31-4.69 m </td> <td>2.66-2.82 m </td> <td>5.62-5.82 t </td> <td>296-339 kN </td> <td><a href="/wiki/Boeing_747-8" title="Boeing 747-8">B747-8</a>, <a href="/wiki/Boeing_787" class="mw-redirect" title="Boeing 787">B787</a> </td></tr> <tr> <td><a href="/wiki/Rolls-Royce_Trent_700" title="Rolls-Royce Trent 700">R-R Trent 700</a> </td> <td>1990</td> <td>4.9</td> <td>3.91&#160;m</td> <td>2.47&#160;m</td> <td>4.79&#160;t</td> <td>320&#160;kN </td> <td><a href="/wiki/Airbus_A330" title="Airbus A330">A330</a> </td></tr> <tr> <td><a href="/wiki/General_Electric_CF6" title="General Electric CF6">GE CF6</a> </td> <td>1971</td> <td>4.3–5.3</td> <td>4.00–4.41&#160;m</td> <td>2.20–2.79&#160;m</td> <td>3.82–5.08&#160;t</td> <td>222–298&#160;kN </td> <td><a href="/wiki/Airbus_A300" title="Airbus A300">A300</a>/<a href="/wiki/Airbus_A310" title="Airbus A310">A310</a>, <a href="/wiki/Airbus_A330" title="Airbus A330">A330</a>, <a href="/wiki/Boeing_747" title="Boeing 747">B747</a>, <a href="/wiki/Boeing_767" title="Boeing 767">B767</a>, <a href="/wiki/McDonnell_Douglas_MD-11" title="McDonnell Douglas MD-11">MD-11</a>, <a href="/wiki/McDonnell_Douglas_DC-10" title="McDonnell Douglas DC-10">DC-10</a> </td></tr> <tr> <td><a href="/wiki/Rolls-Royce_Trent_500" title="Rolls-Royce Trent 500">R-R Trent 500</a> </td> <td>1999</td> <td>8.5</td> <td>3.91&#160;m</td> <td>2.47&#160;m</td> <td>4.72&#160;t</td> <td>252&#160;kN </td> <td><a href="/wiki/Airbus_A340" title="Airbus A340">A340</a>-500/600 </td></tr> <tr> <td><a href="/wiki/Pratt_%26_Whitney_PW1000G" title="Pratt &amp; Whitney PW1000G">P&amp;W PW1000G</a><sup id="cite_ref-62" class="reference"><a href="#cite_note-62"><span class="cite-bracket">&#91;</span>62<span class="cite-bracket">&#93;</span></a></sup> </td> <td>2008</td> <td>9.0–12.5</td> <td>3.40&#160;m</td> <td>1.42–2.06&#160;m</td> <td>2.86&#160;t</td> <td>67–160&#160;kN </td> <td><a href="/wiki/Airbus_A320neo" class="mw-redirect" title="Airbus A320neo">A320neo</a>, <a href="/wiki/Airbus_A220" title="Airbus A220">A220</a>, <a href="/wiki/E-Jets_E2" class="mw-redirect" title="E-Jets E2">E-Jets E2</a> </td></tr> <tr> <td><a href="/wiki/CFM_International_LEAP" title="CFM International LEAP">CFM LEAP</a><sup id="cite_ref-63" class="reference"><a href="#cite_note-63"><span class="cite-bracket">&#91;</span>63<span class="cite-bracket">&#93;</span></a></sup> </td> <td>2013</td> <td>9.0–11.0</td> <td>3.15–3.33&#160;m</td> <td>1.76–1.98&#160;m</td> <td>2.78–3.15&#160;t</td> <td>100–146&#160;kN </td> <td><a href="/wiki/Airbus_A320neo" class="mw-redirect" title="Airbus A320neo">A320neo</a>, <a href="/wiki/Boeing_737_Max" class="mw-redirect" title="Boeing 737 Max">B737Max</a>, C919 </td></tr> <tr> <td><a href="/wiki/CFM_International_CFM56" title="CFM International CFM56">CFM56</a> </td> <td>1974</td> <td>5.0–6.6</td> <td>2.36–2.52&#160;m</td> <td>1.52–1.84&#160;m</td> <td>1.95–2.64&#160;t</td> <td>97.9-151&#160;kN </td> <td><a href="/wiki/Airbus_A320" class="mw-redirect" title="Airbus A320">A320</a>, <a href="/wiki/Airbus_A340" title="Airbus A340">A340</a>-200/300, <a href="/wiki/Boeing_737" title="Boeing 737">B737</a>, <a href="/wiki/KC-135" class="mw-redirect" title="KC-135">KC-135</a>, <a href="/wiki/Douglas_DC-8" title="Douglas DC-8">DC-8</a> </td></tr> <tr> <td><a href="/wiki/IAE_V2500" title="IAE V2500">IAE V2500</a> </td> <td>1987</td> <td>4.4–4.9</td> <td>3.20&#160;m</td> <td>1.60&#160;m</td> <td>2.36–2.54&#160;t</td> <td>97.9-147&#160;kN </td> <td><a href="/wiki/Airbus_A320" class="mw-redirect" title="Airbus A320">A320</a>, <a href="/wiki/McDonnell_Douglas_MD-90" title="McDonnell Douglas MD-90">MD-90</a> </td></tr> <tr> <td><a href="/wiki/Pratt_%26_Whitney_PW6000" title="Pratt &amp; Whitney PW6000">P&amp;W PW6000</a> </td> <td>2000</td> <td>4.90</td> <td>2.73&#160;m</td> <td>1.44&#160;m</td> <td>2.36&#160;t</td> <td>100.2&#160;kN </td> <td><a href="/wiki/Airbus_A318" title="Airbus A318">Airbus A318</a> </td></tr> <tr> <td><a href="/wiki/Rolls-Royce_BR700" title="Rolls-Royce BR700">R-R BR700</a> </td> <td>1994</td> <td>4.2–4.5</td> <td>3.41–3.60&#160;m</td> <td>1.32–1.58&#160;m</td> <td>1.63–2.11&#160;t</td> <td>68.9–102.3&#160;kN </td> <td><a href="/wiki/Boeing_717" title="Boeing 717">B717</a>, <a href="/wiki/Bombardier_Global_Express" title="Bombardier Global Express">Global Express</a>, <a href="/wiki/Gulfstream_V" title="Gulfstream V">Gulfstream V</a> </td></tr> <tr> <td><a href="/wiki/General_Electric_Passport" title="General Electric Passport">GE Passport</a> </td> <td>2013</td> <td>5.6</td> <td>3.37&#160;m</td> <td>1.30&#160;m</td> <td>2.07&#160;t</td> <td>78.9–84.2&#160;kN </td> <td><a href="/wiki/Global_7000" class="mw-redirect" title="Global 7000">Global 7000</a>/8000 </td></tr> <tr> <td><a href="/wiki/General_Electric_CF34" title="General Electric CF34">GE CF34</a> </td> <td>1982</td> <td>5.3–6.3</td> <td>2.62–3.26&#160;m</td> <td>1.25–1.32&#160;m</td> <td>0.74–1.12&#160;t</td> <td>41–82.3&#160;kN </td> <td><a href="/wiki/Challenger_600" class="mw-redirect" title="Challenger 600">Challenger 600</a>, <a href="/wiki/Bombardier_CRJ" title="Bombardier CRJ">CRJ</a>, <a href="/wiki/E-jets" class="mw-redirect" title="E-jets">E-jets</a> </td></tr> <tr> <td><a href="/wiki/Pratt_%26_Whitney_Canada_PW800" title="Pratt &amp; Whitney Canada PW800">P&amp;WC PW800</a> </td> <td>2012</td> <td>5.5</td> <td></td> <td>1.30&#160;m</td> <td></td> <td>67.4–69.7&#160;kN </td> <td><a href="/wiki/Gulfstream_G500/G600" class="mw-redirect" title="Gulfstream G500/G600">Gulfstream G500/G600</a> </td></tr> <tr> <td><a href="/wiki/Rolls-Royce_RB.183_Tay" title="Rolls-Royce RB.183 Tay">R-R Tay</a> </td> <td>1984</td> <td>3.1–3.2</td> <td>2.41&#160;m</td> <td>1.12–1.14&#160;m</td> <td>1.42–1.53&#160;t</td> <td>61.6–68.5&#160;kN </td> <td><a href="/wiki/Gulfstream_IV" title="Gulfstream IV">Gulfstream IV</a>, <a href="/wiki/Fokker_70" title="Fokker 70">Fokker 70</a>/<a href="/wiki/Fokker_100" title="Fokker 100">100</a> </td></tr> <tr> <td><a href="/wiki/Snecma_Silvercrest" class="mw-redirect" title="Snecma Silvercrest">Silvercrest</a> </td> <td>2012</td> <td>5.9</td> <td>1.90&#160;m</td> <td>1.08&#160;m</td> <td>1.09&#160;t</td> <td>50.9&#160;kN </td> <td><a href="/wiki/Cessna_Citation_Hemisphere" title="Cessna Citation Hemisphere">Citation Hemisphere</a>, <a href="/wiki/Dassault_Falcon_5X" class="mw-redirect" title="Dassault Falcon 5X">Falcon 5X</a> </td></tr> <tr> <td><a href="/wiki/Rolls-Royce_AE_3007" title="Rolls-Royce AE 3007">R-R AE 3007</a> </td> <td>1991</td> <td>5.0</td> <td>2.71&#160;m</td> <td>1.11&#160;m</td> <td>0.72&#160;t</td> <td>33.7&#160;kN </td> <td><a href="/wiki/ERJ" class="mw-redirect" title="ERJ">ERJ</a>, <a href="/wiki/Citation_X" class="mw-redirect" title="Citation X">Citation X</a> </td></tr> <tr> <td><a href="/wiki/Pratt_%26_Whitney_Canada_PW300" title="Pratt &amp; Whitney Canada PW300">P&amp;WC PW300</a> </td> <td>1988</td> <td>3.8–4.5</td> <td>1.92–2.07&#160;m</td> <td>0.97&#160;m</td> <td>0.45–0.47&#160;t</td> <td>23.4–35.6&#160;kN </td> <td><a href="/wiki/Citation_Sovereign" class="mw-redirect" title="Citation Sovereign">Citation Sovereign</a>, <a href="/wiki/Gulfstream_G200" title="Gulfstream G200">G200</a>, <a href="/wiki/Falcon_7X" class="mw-redirect" title="Falcon 7X">Falcon 7X</a>, <a href="/wiki/Falcon_2000" class="mw-redirect" title="Falcon 2000">Falcon 2000</a> </td></tr> <tr> <td><a href="/wiki/Honeywell_HTF7000" title="Honeywell HTF7000">HW HTF7000</a> </td> <td>1999</td> <td>4.4</td> <td>2.29&#160;m</td> <td>0.87&#160;m</td> <td>0.62&#160;t</td> <td>28.9&#160;kN </td> <td><a href="/wiki/Challenger_300" class="mw-redirect" title="Challenger 300">Challenger 300</a>, <a href="/wiki/Gulfstream_G280" title="Gulfstream G280">G280</a>, <a href="/wiki/Embraer_Legacy_500" class="mw-redirect" title="Embraer Legacy 500">Legacy 500</a> </td></tr> <tr> <td><a href="/wiki/Garrett_TFE731" title="Garrett TFE731">HW TFE731</a> </td> <td>1970</td> <td>2.66–3.9</td> <td>1.52–2.08&#160;m</td> <td>0.72–0.78&#160;m</td> <td>0.34–0.45&#160;t</td> <td>15.6–22.2&#160;kN </td> <td><a href="/wiki/Learjet_70/75" title="Learjet 70/75">Learjet 70/75</a>, <a href="/wiki/G150" class="mw-redirect" title="G150">G150</a>, <a href="/wiki/Falcon_900" class="mw-redirect" title="Falcon 900">Falcon 900</a> </td></tr> <tr> <td><a href="/wiki/Williams_FJ44" title="Williams FJ44">Williams FJ44</a> </td> <td>1985</td> <td>3.3–4.1</td> <td>1.36–2.09&#160;m</td> <td>0.53–0.57&#160;m</td> <td>0.21–0.24&#160;t</td> <td>6.7–15.6&#160;kN </td> <td><a href="/wiki/Cessna_CitationJet" class="mw-redirect" title="Cessna CitationJet">CitationJet</a>, <a href="/wiki/Cessna_Citation_M2" class="mw-redirect" title="Cessna Citation M2">Citation M2</a> </td></tr> <tr> <td><a href="/wiki/Pratt_%26_Whitney_Canada_PW500" title="Pratt &amp; Whitney Canada PW500">P&amp;WC PW500</a> </td> <td>1993</td> <td>3.90</td> <td>1.52&#160;m</td> <td>0.70&#160;m</td> <td>0.28&#160;t</td> <td>13.3&#160;kN </td> <td><a href="/wiki/Citation_Excel" class="mw-redirect" title="Citation Excel">Citation Excel</a>, <a href="/wiki/Phenom_300" class="mw-redirect" title="Phenom 300">Phenom 300</a> </td></tr> <tr> <td><a href="/wiki/GE-Honda_HF120" class="mw-redirect" title="GE-Honda HF120">GE-H HF120</a> </td> <td>2009</td> <td>4.43</td> <td>1.12&#160;m</td> <td>0.54&#160;m</td> <td>0.18&#160;t</td> <td>7.4&#160;kN </td> <td><a href="/wiki/HondaJet" class="mw-redirect" title="HondaJet">HondaJet</a> </td></tr> <tr> <td><a href="/wiki/Williams_FJ33" title="Williams FJ33">Williams FJ33</a> </td> <td>1998</td> <td></td> <td>0.98&#160;m</td> <td>0.53&#160;m</td> <td>0.14&#160;t</td> <td>6.7&#160;kN </td> <td><a href="/wiki/Cirrus_SF50" class="mw-redirect" title="Cirrus SF50">Cirrus SF50</a> </td></tr> <tr> <td><a href="/wiki/Pratt_%26_Whitney_Canada_PW600" title="Pratt &amp; Whitney Canada PW600">P&amp;WC PW600</a> </td> <td>2001</td> <td>1.8–2.8</td> <td>0.67&#160;m</td> <td>0.36&#160;m</td> <td>0.15&#160;t</td> <td>6.0&#160;kN </td> <td><a href="/wiki/Citation_Mustang" class="mw-redirect" title="Citation Mustang">Citation Mustang</a>, <a href="/wiki/Eclipse_500" title="Eclipse 500">Eclipse 500</a>, <a href="/wiki/Phenom_100" class="mw-redirect" title="Phenom 100">Phenom 100</a> </td></tr> <tr> <td><a href="/wiki/Aviadvigatel_PS-90" title="Aviadvigatel PS-90">PS-90</a> </td> <td>1992</td> <td>4.4</td> <td>4.96&#160;m</td> <td>1.9&#160;m</td> <td>2.95&#160;t</td> <td>157–171&#160;kN </td> <td><a href="/wiki/Il-76" class="mw-redirect" title="Il-76">Il-76</a>, <a href="/wiki/Il-96" class="mw-redirect" title="Il-96">Il-96</a>, <a href="/wiki/Tu-204" class="mw-redirect" title="Tu-204">Tu-204</a> </td></tr> <tr> <td><a href="/wiki/PowerJet_SaM146" title="PowerJet SaM146">PowerJet SaM146</a> </td> <td>2008</td> <td>4–4.1</td> <td>3.59&#160;m</td> <td>1.22&#160;m</td> <td>2.260&#160;t</td> <td>71.6–79.2&#160;kN </td> <td><a href="/wiki/Sukhoi_Superjet_100" title="Sukhoi Superjet 100">Sukhoi Superjet 100</a> </td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="Extreme_bypass_jet_engines">Extreme bypass jet engines</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Turbofan&amp;action=edit&amp;section=33" title="Edit section: Extreme bypass jet engines"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In the 1970s, Rolls-Royce/SNECMA tested a <a href="/wiki/M45SD-02" class="mw-redirect" title="M45SD-02">M45SD-02</a> turbofan fitted with variable-pitch fan blades to improve handling at ultralow fan pressure ratios and to provide thrust reverse down to zero aircraft speed. The engine was aimed at ultraquiet <a href="/wiki/STOL" title="STOL">STOL</a> aircraft operating from city-centre airports. </p><p>In a bid for increased efficiency with speed, a development of the <i>turbofan</i> and <i>turboprop</i> known as a <a href="/wiki/Propfan" title="Propfan">propfan</a> engine was created that had an unducted fan. The fan blades are situated outside of the duct, so that it appears like a turboprop with wide scimitar-like blades. Both General Electric and Pratt &amp; Whitney/Allison demonstrated propfan engines in the 1980s. Excessive cabin noise and relatively cheap jet fuel prevented the engines being put into service. The <a href="/wiki/Progress_D-27" title="Progress D-27">Progress D-27</a> propfan, developed in the U.S.S.R., was the only propfan engine equipped on a production aircraft. </p> <div class="mw-heading mw-heading2"><h2 id="Terminology">Terminology</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Turbofan&amp;action=edit&amp;section=34" title="Edit section: Terminology"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dt><a href="/wiki/Afterburner" title="Afterburner">Afterburner</a></dt> <dd>jetpipe equipped for afterburning<sup id="cite_ref-auto_64-0" class="reference"><a href="#cite_note-auto-64"><span class="cite-bracket">&#91;</span>64<span class="cite-bracket">&#93;</span></a></sup></dd> <dt>Augmentor</dt> <dd>afterburner for turbofan with burning in hot and cold flows<sup id="cite_ref-auto_64-1" class="reference"><a href="#cite_note-auto-64"><span class="cite-bracket">&#91;</span>64<span class="cite-bracket">&#93;</span></a></sup></dd> <dt>Bypass</dt> <dd>that part of the engine as distinct from the core in terms of components and airflow, eg that part of fan blading (fan outer) and stators which pass bypass air, bypass duct, bypass nozzle</dd> <dt><a href="/wiki/Bypass_ratio" title="Bypass ratio">Bypass ratio</a></dt> <dd>bypass air mass flow /core air mass flow<sup id="cite_ref-65" class="reference"><a href="#cite_note-65"><span class="cite-bracket">&#91;</span>65<span class="cite-bracket">&#93;</span></a></sup></dd> <dt>Core</dt> <dd>that part of the engine as distinct from the bypass in terms of components and airflow, eg core cowl, core nozzle, core airflow and associated machinery, combustor and fuel system</dd> <dt>Core power</dt> <dd>also known as "available energy" or "gas horsepower". It is used to measure the theoretical (isentropic expansion) shaft work available from a gas generator or core by expanding hot, high pressure gas to ambient pressure. Since the power depends on the pressure and temperature of the gas (and the ambient pressure) a related figure of merit for thrust-producing engines is one which measures the thrust-producing potential from hot, high pressure gas and known as "stream thrust". It is obtained by calculating the velocity obtained with isentropic expansion to atmospheric pressure. The significance of the thrust obtained appears when multiplied by the aircraft velocity to give the thrust work. The thrust work which is potentially available is far less than the gas horsepower due to the increasing waste in the exhaust kinetic energy with increasing pressure and temperature before expansion to atmospheric pressure. The two are related by the propulsive efficiency,<sup id="cite_ref-66" class="reference"><a href="#cite_note-66"><span class="cite-bracket">&#91;</span>66<span class="cite-bracket">&#93;</span></a></sup> a measure of the energy wasted as a result of producing a force (ie thrust) in a fluid by increasing the speed (ie momentum) of the fluid.</dd> <dt>Dry</dt> <dd>engine ratings/ throttle lever positions below afterburning selection</dd> <dt>EGT</dt> <dd>exhaust gas temperature</dd> <dt>EPR</dt> <dd>engine pressure ratio</dd> <dt>Fan</dt> <dd>turbofan LP compressor</dd> <dt>Fanjet</dt> <dd>turbofan or aircraft powered by turbofan (colloquial)<sup id="cite_ref-67" class="reference"><a href="#cite_note-67"><span class="cite-bracket">&#91;</span>67<span class="cite-bracket">&#93;</span></a></sup></dd> <dt>Fan pressure ratio</dt> <dd>fan outlet total pressure/fan inlet total pressure</dd> <dt><a href="/wiki/Flex_temp" title="Flex temp">Flex temp</a></dt> <dd>At reduced take-off weights commercial aircraft can use reduced thrust which increases engine life and reduces maintenance costs. Flex temperature is a higher than actual outside air temperature (OAT) which is input to the engine monitoring computer to achieve the required reduced thrust (also known as "assumed temperature thrust reduction").<sup id="cite_ref-68" class="reference"><a href="#cite_note-68"><span class="cite-bracket">&#91;</span>68<span class="cite-bracket">&#93;</span></a></sup></dd> <dt>Gas generator</dt> <dd>that part of the engine core which provides the hot, high pressure gas for fan-driving turbines (turbofan), for propelling nozzles (turbojet), for propeller- and rotor-driving turbines (turboprop and turboshaft), for industrial and marine power turbines<sup id="cite_ref-69" class="reference"><a href="#cite_note-69"><span class="cite-bracket">&#91;</span>69<span class="cite-bracket">&#93;</span></a></sup></dd> <dt>HP</dt> <dd>high-pressure</dd> <dt>Intake ram drag</dt> <dd>Loss in momentum of engine stream tube from freestream to intake entrance, ie amount of energy imparted to air required to accelerate air from a stationary atmosphere to aircraft speed.</dd> <dt><a href="/wiki/IEPR" class="mw-redirect" title="IEPR">IEPR</a></dt> <dd>integrated engine pressure ratio</dd> <dt>IP</dt> <dd>intermediate pressure</dd> <dt>LP</dt> <dd>low-pressure</dd> <dt>Net thrust</dt> <dd>nozzle thrust in stationary air (gross thrust) – engine stream tube ram drag (loss in momentum from freestream to intake entrance, ie amount of energy imparted to air required to accelerate air from a stationary atmosphere to aircraft speed). This is the thrust acting on the airframe.</dd> <dt><a href="/wiki/Overall_pressure_ratio" title="Overall pressure ratio">Overall pressure ratio</a></dt> <dd>amount of times the pressure increases due to ram compression and workndone by the compressor stages</dd> <dt>Overall efficiency</dt> <dd>thermal efficiency × propulsive efficiency</dd> <dt><a href="/wiki/Propulsive_efficiency" title="Propulsive efficiency">Propulsive efficiency</a></dt> <dd>propulsive power/rate of production of propulsive kinetic energy (maximum propulsive efficiency occurs when jet velocity equals flight velocity, which implies zero net thrust!)</dd> <dt><a href="/wiki/Thrust_specific_fuel_consumption" class="mw-redirect" title="Thrust specific fuel consumption">Specific fuel consumption</a> (SFC)</dt> <dd>total fuel flow/net thrust (proportional to flight velocity/overall thermal efficiency)</dd> <dt>Spooling up</dt> <dd>increase in RPM (colloquial)</dd> <dt>Spooling down</dt> <dd>decrease in RPM (colloquial)</dd> <dt>Stage loading</dt> <dd>For a turbine, the purpose of which is to produce power, the loading is an indicator of power developed per lb/sec of gas (specific power). A turbine stage turns the gas from an axial direction and speeds it up (in the nozzle guide vanes) to turn the rotor most effectively ( rotor blades must produce high lift), the proviso being that this is done efficiently, ie with acceptable losses.<sup id="cite_ref-70" class="reference"><a href="#cite_note-70"><span class="cite-bracket">&#91;</span>70<span class="cite-bracket">&#93;</span></a></sup> For a compressor stage, the purpose of which is to produce a pressure rise, a diffusion process is used. How much diffusion may be allowed ( and pressure rise obtained) before unacceptable flow separation occurs (ie losses) may be regarded as a loading limit.<sup id="cite_ref-71" class="reference"><a href="#cite_note-71"><span class="cite-bracket">&#91;</span>71<span class="cite-bracket">&#93;</span></a></sup></dd> <dt><a href="/wiki/Stagnation_pressure" title="Stagnation pressure">Stagnation pressure</a></dt> <dd>also known as total pressure; pressure of the fluid if all the kinetic energy were to be converted into pressure isentropically; sum of static pressure and dynamic pressure</dd> <dt><a href="/wiki/Static_pressure" title="Static pressure">Static pressure</a></dt> <dd>pressure of the fluid which is associated not with its motion but with its state<sup id="cite_ref-72" class="reference"><a href="#cite_note-72"><span class="cite-bracket">&#91;</span>72<span class="cite-bracket">&#93;</span></a></sup> or, alternatively, pressure due to the random motion of the fluid molecules that would be felt or measured if moving with the flow<sup id="cite_ref-73" class="reference"><a href="#cite_note-73"><span class="cite-bracket">&#91;</span>73<span class="cite-bracket">&#93;</span></a></sup></dd> <dt><a href="/wiki/Specific_thrust" title="Specific thrust">Specific thrust</a></dt> <dd>net thrust/intake airflow</dd> <dt><a href="/wiki/Thermal_efficiency" title="Thermal efficiency">Thermal efficiency</a></dt> <dd>rate of production of propulsive kinetic energy/fuel power</dd> <dt>Total fuel flow</dt> <dd>combustor (plus any afterburner) fuel flow rate (e.g., lb/s or g/s)</dd> <dt>Total pressure</dt> <dd>also known as stagnation pressure; sum of static pressure and dynamic pressure; pressure of the fluid if all the kinetic energy were to be converted into pressure isentropically</dd> <dt>Turbine rotor inlet temperature</dt> <dd>maximum cycle temperature, ie temperature at which work transfer takes place</dd></dl> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Turbofan&amp;action=edit&amp;section=35" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Axial_fan_design" title="Axial fan design">Axial fan design</a></li> <li><a href="/wiki/Gas_turbine" title="Gas turbine">Gas turbine</a></li> <li><a href="/wiki/Turbine_engine_failure" title="Turbine engine failure">Turbine engine failure</a></li> <li><a href="/wiki/Variable_cycle_engine" title="Variable cycle engine">Variable cycle engine</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Turbofan&amp;action=edit&amp;section=36" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-stuffworks-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-stuffworks_1-0">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFMarshall_Brain2000" class="citation web cs1">Marshall Brain (April 2000). <a rel="nofollow" class="external text" href="http://science.howstuffworks.com/turbine.htm">"How Gas Turbine Engines Work"</a>. howstuffworks.com<span class="reference-accessdate">. Retrieved <span class="nowrap">2010-11-24</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=How+Gas+Turbine+Engines+Work&amp;rft.pub=howstuffworks.com&amp;rft.date=2000-04&amp;rft.au=Marshall+Brain&amp;rft_id=http%3A%2F%2Fscience.howstuffworks.com%2Fturbine.htm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-Hall-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-Hall_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Hall_2-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHall2015" class="citation web cs1">Hall, Nancy (May 5, 2015). <a rel="nofollow" class="external text" href="https://www.grc.nasa.gov/www/k-12/airplane/aturbf.html">"Turbofan Engine"</a>. <i>Glenn Research Center</i>. NASA<span class="reference-accessdate">. Retrieved <span class="nowrap">October 25,</span> 2015</span>. <q>Most modern airliners use turbofan engines because of their high thrust and good fuel efficiency.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Glenn+Research+Center&amp;rft.atitle=Turbofan+Engine&amp;rft.date=2015-05-05&amp;rft.aulast=Hall&amp;rft.aufirst=Nancy&amp;rft_id=https%3A%2F%2Fwww.grc.nasa.gov%2Fwww%2Fk-12%2Fairplane%2Faturbf.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-HackerBurghardt2009-3"><span class="mw-cite-backlink">^ <a href="#cite_ref-HackerBurghardt2009_3-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-HackerBurghardt2009_3-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMichael_HackerDavid_BurghardtLinnea_FletcherAnthony_Gordon2009" class="citation book cs1">Michael Hacker; David Burghardt; Linnea Fletcher; Anthony Gordon; William Peruzzi (March 18, 2009). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=0-xuCgAAQBAJ&amp;pg=PT336"><i>Engineering and Technology</i></a>. Cengage Learning. p.&#160;319. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-285-95643-5" title="Special:BookSources/978-1-285-95643-5"><bdi>978-1-285-95643-5</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">October 25,</span> 2015</span>. <q>All modern jet-powered commercial aircraft use high bypass turbofan engines [...]</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Engineering+and+Technology&amp;rft.pages=319&amp;rft.pub=Cengage+Learning&amp;rft.date=2009-03-18&amp;rft.isbn=978-1-285-95643-5&amp;rft.au=Michael+Hacker&amp;rft.au=David+Burghardt&amp;rft.au=Linnea+Fletcher&amp;rft.au=Anthony+Gordon&amp;rft.au=William+Peruzzi&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D0-xuCgAAQBAJ%26pg%3DPT336&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-Verma2013-4"><span class="mw-cite-backlink">^ <a href="#cite_ref-Verma2013_4-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Verma2013_4-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVerma2013" class="citation book cs1">Verma, Bharat (January 1, 2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=IvAzNhvLK6AC&amp;pg=PA18!"><i>Indian Defence Review: Apr–Jun 2012</i></a>. Lancer Publishers. p.&#160;18. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-81-7062-259-8" title="Special:BookSources/978-81-7062-259-8"><bdi>978-81-7062-259-8</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">October 25,</span> 2015</span>. <q>Military power plants may be divided into some major categories – low bypass turbofans that generally power fighter jets…</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Indian+Defence+Review%3A+Apr%E2%80%93Jun+2012&amp;rft.pages=18&amp;rft.pub=Lancer+Publishers&amp;rft.date=2013-01-01&amp;rft.isbn=978-81-7062-259-8&amp;rft.aulast=Verma&amp;rft.aufirst=Bharat&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DIvAzNhvLK6AC%26pg%3DPA18%21&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-Magill-5"><span class="mw-cite-backlink">^ <a href="#cite_ref-Magill_5-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Magill_5-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFrank_Northen_Magill1993" class="citation book cs1">Frank Northen Magill, ed. (1993). <i>Magill's Survey of Science: Applied science series, Volume 3</i>. Salem Press. p.&#160;1431. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780893567088" title="Special:BookSources/9780893567088"><bdi>9780893567088</bdi></a>. <q>Most tactical military aircraft are powered by low-bypass turbofan engines.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Magill%27s+Survey+of+Science%3A+Applied+science+series%2C+Volume+3&amp;rft.pages=1431&amp;rft.pub=Salem+Press&amp;rft.date=1993&amp;rft.isbn=9780893567088&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text">Thrust Augmentation with Mixer/Ejector systems, Presz, Reynolds, Hunter, AIAA 2002-0230, p.3</span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text">Gas Turbine Aerothermodynamics With Special Reference To Aircraft propulsion, Sir Frank Whittle 1981,<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0%2B08%2B026719%2BX" title="Special:BookSources/0+08+026719+X">0 08 026719 X</a>, p.217</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text">Gas Turbine Aerothermodynamics With Special Reference To Aircraft propulsion, Sir Frank Whittle 1981,<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0%2B08%2B026719%2BX" title="Special:BookSources/0+08+026719+X">0 08 026719 X</a>, p.218</span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRubert1945" class="citation journal cs1">Rubert, Kennedy F. (1945-02-01). <a rel="nofollow" class="external text" href="https://ntrs.nasa.gov/citations/19930093532">"An analysis of jet-propulsion systems making direct use of the working substance of a thermodynamic cycle"</a>. <i>NASA</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=NASA&amp;rft.atitle=An+analysis+of+jet-propulsion+systems+making+direct+use+of+the+working+substance+of+a+thermodynamic+cycle&amp;rft.date=1945-02-01&amp;rft.aulast=Rubert&amp;rft.aufirst=Kennedy+F.&amp;rft_id=https%3A%2F%2Fntrs.nasa.gov%2Fcitations%2F19930093532&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRoth2000" class="citation thesis cs1">Roth, Bryce Alexander (2000-09-01). <a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2000PhDT.......101R"><i>A theoretical treatment of technical risk in modern propulsion system design</i></a> (Thesis). <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2000PhDT.......101R">2000PhDT.......101R</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adissertation&amp;rft.title=A+theoretical+treatment+of+technical+risk+in+modern+propulsion+system+design&amp;rft.date=2000-09-01&amp;rft_id=info%3Abibcode%2F2000PhDT.......101R&amp;rft.aulast=Roth&amp;rft.aufirst=Bryce+Alexander&amp;rft_id=https%3A%2F%2Fui.adsabs.harvard.edu%2Fabs%2F2000PhDT.......101R&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span> p.76</span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation book cs1"><a rel="nofollow" class="external text" href="http://archive.org/details/sim_journal-of-aircraft_september-october-1966_3_5"><i>Journal of Aircraft September-October 1966: Vol 3 Iss 5</i></a>. American Institute of Aeronautics and Astronautics. September 1966. p.&#160;386.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Journal+of+Aircraft+September-October+1966%3A+Vol+3+Iss+5&amp;rft.pages=386&amp;rft.pub=American+Institute+of+Aeronautics+and+Astronautics&amp;rft.date=1966-09&amp;rft_id=http%3A%2F%2Farchive.org%2Fdetails%2Fsim_journal-of-aircraft_september-october-1966_3_5&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation book cs1"><a rel="nofollow" class="external text" href="http://archive.org/details/sim_journal-of-aircraft_september-october-1966_3_5"><i>Journal of Aircraft September-October 1966: Vol 3 Iss 5</i></a>. American Institute of Aeronautics and Astronautics. September 1966. p.&#160;387.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Journal+of+Aircraft+September-October+1966%3A+Vol+3+Iss+5&amp;rft.pages=387&amp;rft.pub=American+Institute+of+Aeronautics+and+Astronautics&amp;rft.date=1966-09&amp;rft_id=http%3A%2F%2Farchive.org%2Fdetails%2Fsim_journal-of-aircraft_september-october-1966_3_5&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://www.britannica.com/technology/bypass-ratio">"Bypass ratio"</a>, <i>Britannica</i></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Bypass+ratio&amp;rft.btitle=Britannica&amp;rft_id=https%3A%2F%2Fwww.britannica.com%2Ftechnology%2Fbypass-ratio&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20130528034153/http://web.mit.edu/16.unified/www/FALL/thermodynamics/notes/node84.html"><i>Thermodynamics</i></a>, MIT, archived from <a rel="nofollow" class="external text" href="http://web.mit.edu/16.unified/www/FALL/thermodynamics/notes/node84.html">the original</a> on 2013-05-28</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Thermodynamics&amp;rft.pub=MIT&amp;rft_id=http%3A%2F%2Fweb.mit.edu%2F16.unified%2Fwww%2FFALL%2Fthermodynamics%2Fnotes%2Fnode84.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text">Jet Propulsion, Nicholas Cumpsty 2003,<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978%2B0%2B521%2B54144%2B2" title="Special:BookSources/978+0+521+54144+2">978 0 521 54144 2</a>, Figure 7.3 Predicted variation in thrust and sfc with bypass ratio for a constant core</span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text">"Practical considerations in designing the engine cycle", M G Philpot, AGARD LS 183, Steady and Transient Performance Prediction,<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/92%2B835%2B0674%2BX" title="Special:BookSources/92+835+0674+X">92 835 0674 X</a>, p.2-12</span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.flightglobal.com/pdfarchive/view/1964/1964%20-%202596.html">"Flight global"</a> <span class="cs1-format">(PDF)</span>. <i>Flightglobal.com</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Flightglobal.com&amp;rft.atitle=Flight+global&amp;rft_id=https%3A%2F%2Fwww.flightglobal.com%2Fpdfarchive%2Fview%2F1964%2F1964%2520-%25202596.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTaylor" class="citation cs2">Taylor, John W.R. (ed.), <i>All The World's Aircraft 1975–1976</i>, Paulton House, 8 Sheperdess Walk, London N1 7LW: Jane's, p.&#160;748</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=All+The+World%27s+Aircraft+1975%E2%80%931976&amp;rft.place=Paulton+House%2C+8+Sheperdess+Walk%2C+London+N1+7LW&amp;rft.pages=748&amp;rft.pub=Jane%27s&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Citation" title="Template:Citation">citation</a>}}</code>: CS1 maint: location (<a href="/wiki/Category:CS1_maint:_location" title="Category:CS1 maint: location">link</a>)</span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=2275853"><i>Proceedings</i></a>, ASME, 15 April 2015, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1115%2F84-GT-230">10.1115/84-GT-230</a></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Proceedings&amp;rft.pub=ASME&amp;rft.date=2015-04-15&amp;rft_id=info%3Adoi%2F10.1115%2F84-GT-230&amp;rft_id=http%3A%2F%2Fproceedings.asmedigitalcollection.asme.org%2Fproceeding.aspx%3Farticleid%3D2275853&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="http://roadrunnersinternationale.com/pw_tales.htm">"PW tales"</a>, <i>Road runners Internationale</i></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Road+runners+Internationale&amp;rft.atitle=PW+tales&amp;rft_id=http%3A%2F%2Froadrunnersinternationale.com%2Fpw_tales.htm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-grc_nasa-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-grc_nasa_21-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.grc.nasa.gov/WWW/K-12/airplane/aturbf.html">"Turbofan Engine"</a>. GRC NASA<span class="reference-accessdate">. Retrieved <span class="nowrap">2010-11-24</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Turbofan+Engine&amp;rft.pub=GRC+NASA&amp;rft_id=http%3A%2F%2Fwww.grc.nasa.gov%2FWWW%2FK-12%2Fairplane%2Faturbf.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-Neumann_2004_1984_pp228-230-22"><span class="mw-cite-backlink">^ <a href="#cite_ref-Neumann_2004_1984_pp228-230_22-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Neumann_2004_1984_pp228-230_22-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNeumann2004" class="citation book cs1"><a href="/wiki/Gerhard_Neumann" title="Gerhard Neumann">Neumann, Gerhard</a> (2004) [first published by Morrow 1984]. <i>Herman the German: Just Lucky I Guess</i>. Bloomington, Indiana, US: Authorhouse. pp.&#160;<span class="nowrap">228–</span>30. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/1-4184-7925-X" title="Special:BookSources/1-4184-7925-X"><bdi>1-4184-7925-X</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Herman+the+German%3A+Just+Lucky+I+Guess&amp;rft.place=Bloomington%2C+Indiana%2C+US&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E228-%3C%2Fspan%3E30&amp;rft.pub=Authorhouse&amp;rft.date=2004&amp;rft.isbn=1-4184-7925-X&amp;rft.aulast=Neumann&amp;rft.aufirst=Gerhard&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-srm-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-srm_23-0">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.srmuniv.ac.in/downloads/turbofan-2012.pdf">"The turbofan engine"</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20150418181832/http://www.srmuniv.ac.in/downloads/turbofan-2012.pdf">Archived</a> 2015-04-18 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>, p. 7. <a href="/wiki/SRM_Institute_of_Science_and_Technology" title="SRM Institute of Science and Technology">SRM Institute of Science and Technology</a>, Department of Aerospace Engineering.</span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCohenRogersSaravanamuttoo1972" class="citation book cs1">Cohen; Rogers; Saravanamuttoo (1972). <i>Gas Turbine Theory</i> (2nd&#160;ed.). Longmans. p.&#160;85. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-582-44927-8" title="Special:BookSources/0-582-44927-8"><bdi>0-582-44927-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Gas+Turbine+Theory&amp;rft.pages=85&amp;rft.edition=2nd&amp;rft.pub=Longmans&amp;rft.date=1972&amp;rft.isbn=0-582-44927-8&amp;rft.au=Cohen&amp;rft.au=Rogers&amp;rft.au=Saravanamuttoo&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation book cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20120921094453/http://www.faa.gov/library/manuals/aircraft/airplane_handbook/media/FAA-H-8083-3B.pdf"><i>FAA-H-8083-3B Airplane Flying Handbook Handbook</i></a> <span class="cs1-format">(PDF)</span>. Federal Aviation Administration. 2004. Archived from <a rel="nofollow" class="external text" href="http://www.faa.gov/library/manuals/aircraft/airplane_handbook/media/FAA-H-8083-3B.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2012-09-21.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=FAA-H-8083-3B+Airplane+Flying+Handbook+Handbook&amp;rft.pub=Federal+Aviation+Administration&amp;rft.date=2004&amp;rft_id=http%3A%2F%2Fwww.faa.gov%2Flibrary%2Fmanuals%2Faircraft%2Fairplane_handbook%2Fmedia%2FFAA-H-8083-3B.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.grc.nasa.gov/WWW/K-12/airplane/turbfan.html">"Turbofan Thrust"</a>. <i>Grc.nasa.gov</i><span class="reference-accessdate">. Retrieved <span class="nowrap">1 March</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Grc.nasa.gov&amp;rft.atitle=Turbofan+Thrust&amp;rft_id=https%3A%2F%2Fwww.grc.nasa.gov%2FWWW%2FK-12%2Fairplane%2Fturbfan.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGoulosStankowskiMacManusWoodrow2018" class="citation journal cs1">Goulos, Ioannis; Stankowski, Tomasz; MacManus, David; Woodrow, Philip; Sheaf, Christopher (February 2018). <a rel="nofollow" class="external text" href="https://dspace.lib.cranfield.ac.uk/bitstream/handle/1826/12476/Civil_turbofan_engine_exhaust_aerodynamics-2017.pdf">"Civil Turbofan Engine Exhaust Aerodynamics: Impact of Bypass Nozzle After-body Design"</a> <span class="cs1-format">(PDF)</span>. <i>Aerospace Science and Technology</i>. <b>73</b>: <span class="nowrap">85–</span>95. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018AeST...73...85G">2018AeST...73...85G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.ast.2017.09.002">10.1016/j.ast.2017.09.002</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<a rel="nofollow" class="external text" href="https://hdl.handle.net/1826%2F12476">1826/12476</a><span class="reference-accessdate">. Retrieved <span class="nowrap">1 March</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Aerospace+Science+and+Technology&amp;rft.atitle=Civil+Turbofan+Engine+Exhaust+Aerodynamics%3A+Impact+of+Bypass+Nozzle+After-body+Design&amp;rft.volume=73&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E85-%3C%2Fspan%3E95&amp;rft.date=2018-02&amp;rft_id=info%3Ahdl%2F1826%2F12476&amp;rft_id=info%3Adoi%2F10.1016%2Fj.ast.2017.09.002&amp;rft_id=info%3Abibcode%2F2018AeST...73...85G&amp;rft.aulast=Goulos&amp;rft.aufirst=Ioannis&amp;rft.au=Stankowski%2C+Tomasz&amp;rft.au=MacManus%2C+David&amp;rft.au=Woodrow%2C+Philip&amp;rft.au=Sheaf%2C+Christopher&amp;rft_id=https%3A%2F%2Fdspace.lib.cranfield.ac.uk%2Fbitstream%2Fhandle%2F1826%2F12476%2FCivil_turbofan_engine_exhaust_aerodynamics-2017.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-Kempton2011-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-Kempton2011_28-0">^</a></b></span> <span class="reference-text">Kempton, A., <a rel="nofollow" class="external text" href="http://www.win.tue.nl/ceas-asc/Workshop15/CEAS-ASC_XNoise-EV_K1_Kempton.pdf">"Acoustic liners for modern aero-engines"</a>, 15th CEAS-ASC Workshop and 1st Scientific Workshop of X-Noise EV, 2011. Win.tue.nl.</span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSmith1970" class="citation journal cs1">Smith, Michael J. T. (19 February 1970). "Softly, softly towards the quiet jet". <i><a href="/wiki/New_Scientist" title="New Scientist">New Scientist</a></i>. fig. 5.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=New+Scientist&amp;rft.atitle=Softly%2C+softly+towards+the+quiet+jet&amp;rft.pages=fig.+5&amp;rft.date=1970-02-19&amp;rft.aulast=Smith&amp;rft.aufirst=Michael+J.+T.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHuffEnvia2007" class="citation book cs1">Huff, Dennis; Envia, Edmane (October 2007). "Chapter 89: Jet Engine Noise Generation, Prediction, and Control". In Crocker, Malcolm (ed.). <a rel="nofollow" class="external text" href="https://www.wiley.com/en-us/Handbook+of+Noise+and+Vibration+Control-p-9780471395997"><i>Handbook of Noise and Vibration Control</i></a>. Wiley. pp.&#160;<span class="nowrap">1096–</span>1108. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-471-39599-7" title="Special:BookSources/978-0-471-39599-7"><bdi>978-0-471-39599-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Chapter+89%3A+Jet+Engine+Noise+Generation%2C+Prediction%2C+and+Control&amp;rft.btitle=Handbook+of+Noise+and+Vibration+Control&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1096-%3C%2Fspan%3E1108&amp;rft.pub=Wiley&amp;rft.date=2007-10&amp;rft.isbn=978-0-471-39599-7&amp;rft.aulast=Huff&amp;rft.aufirst=Dennis&amp;rft.au=Envia%2C+Edmane&amp;rft_id=https%3A%2F%2Fwww.wiley.com%2Fen-us%2FHandbook%2Bof%2BNoise%2Band%2BVibration%2BControl-p-9780471395997&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-chevron_technology-31"><span class="mw-cite-backlink">^ <a href="#cite_ref-chevron_technology_31-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-chevron_technology_31-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZamanBridgesHuff2010" class="citation journal cs1">Zaman, K. B. M. Q.; Bridges, J. E.; Huff, D. L. (17–21 December 2010). <a rel="nofollow" class="external text" href="https://www.researchgate.net/publication/273550214">"Evolution from 'Tabs' to 'Chevron Technology'–a Review"</a> <span class="cs1-format">(PDF)</span>. <i>Proceedings of the 13th Asian Congress of Fluid Mechanics 17–21 December 2010, Dhaka, Bangladesh</i>. Cleveland, <a href="/wiki/Ohio" title="Ohio">OH</a>: b<a href="/wiki/NASA_Glenn_Research_Center" class="mw-redirect" title="NASA Glenn Research Center">NASA Glenn Research Center</a><span class="reference-accessdate">. Retrieved <span class="nowrap">January 8,</span> 2025</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+13th+Asian+Congress+of+Fluid+Mechanics+17%E2%80%9321+December+2010%2C+Dhaka%2C+Bangladesh&amp;rft.atitle=Evolution+from+%27Tabs%27+to+%27Chevron+Technology%27%E2%80%93a+Review&amp;rft.date=2010-12-17%2F2010-12-21&amp;rft.aulast=Zaman&amp;rft.aufirst=K.+B.+M.+Q.&amp;rft.au=Bridges%2C+J.+E.&amp;rft.au=Huff%2C+D.+L.&amp;rft_id=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F273550214&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKesterSlaiby1968" class="citation journal cs1">Kester, JD; Slaiby, TG (1968). "Designing the JT-9D Engine to meet Low Noise Requirements for Future Transports". <i>SAE Transactions</i>. <b>76</b> (2): 1332. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.4271%2F670331">10.4271/670331</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/44565020">44565020</a>. paper 670331.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=SAE+Transactions&amp;rft.atitle=Designing+the+JT-9D+Engine+to+meet+Low+Noise+Requirements+for+Future+Transports&amp;rft.volume=76&amp;rft.issue=2&amp;rft.pages=1332&amp;rft.date=1968&amp;rft_id=info%3Adoi%2F10.4271%2F670331&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F44565020%23id-name%3DJSTOR&amp;rft.aulast=Kester&amp;rft.aufirst=JD&amp;rft.au=Slaiby%2C+TG&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSmith1972" class="citation magazine cs1">Smith, M.J.T. (17 August 1972). "Quiet Propulsion". <i>Flight International</i>. p.&#160;241.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Flight+International&amp;rft.atitle=Quiet+Propulsion&amp;rft.pages=241&amp;rft.date=1972-08-17&amp;rft.aulast=Smith&amp;rft.aufirst=M.J.T.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-buzz_saw-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-buzz_saw_34-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMcAlpine" class="citation cs2">McAlpine, A., <a rel="nofollow" class="external text" href="http://www.southampton.ac.uk/engineering/research/projects/buzz_saw_noise_and_non_linear_acoustics.page"><i>Research project: Buzz-saw noise and nonlinear acoustics</i></a>, University of Southampton</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Research+project%3A+Buzz-saw+noise+and+nonlinear+acoustics&amp;rft.pub=University+of+Southampton&amp;rft.aulast=McAlpine&amp;rft.aufirst=A.&amp;rft_id=http%3A%2F%2Fwww.southampton.ac.uk%2Fengineering%2Fresearch%2Fprojects%2Fbuzz_saw_noise_and_non_linear_acoustics.page&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-Schuster2010-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-Schuster2010_35-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchusterLieberVavalle2010" class="citation cs2">Schuster, B.; Lieber, L.; Vavalle, A. (2010), "Optimization of a seamless inlet liner using an empirically validated prediction method", <i>16th AIAA/CEAS Aeroacoustics Conference</i>, Stockholm, <a href="/wiki/Sweden" title="Sweden">SE</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2514%2F6.2010-3824">10.2514/6.2010-3824</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-60086-955-6" title="Special:BookSources/978-1-60086-955-6"><bdi>978-1-60086-955-6</bdi></a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:113015300">113015300</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=16th+AIAA%2FCEAS+Aeroacoustics+Conference&amp;rft.atitle=Optimization+of+a+seamless+inlet+liner+using+an+empirically+validated+prediction+method&amp;rft.date=2010&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A113015300%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.2514%2F6.2010-3824&amp;rft.isbn=978-1-60086-955-6&amp;rft.aulast=Schuster&amp;rft.aufirst=B.&amp;rft.au=Lieber%2C+L.&amp;rft.au=Vavalle%2C+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-Ferrante2011-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-Ferrante2011_36-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFerranteCopielloBeutke2011" class="citation cs2">Ferrante, P. G.; Copiello, D.; Beutke, M. (2011), "Design and experimental verification of 'true zero-splice' acoustic liners in the universal fan facility adaptation (UFFA) modular rig", <i>17h AIAA/CEAS Aeroacoustics Conference</i>, Portland, OR, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2514%2F6.2011-2728">10.2514/6.2011-2728</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-60086-943-3" title="Special:BookSources/978-1-60086-943-3"><bdi>978-1-60086-943-3</bdi></a>, AIAA-2011-2728</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=17h+AIAA%2FCEAS+Aeroacoustics+Conference&amp;rft.atitle=Design+and+experimental+verification+of+%27true+zero-splice%27+acoustic+liners+in+the+universal+fan+facility+adaptation+%28UFFA%29+modular+rig&amp;rft.date=2011&amp;rft_id=info%3Adoi%2F10.2514%2F6.2011-2728&amp;rft.isbn=978-1-60086-943-3&amp;rft.aulast=Ferrante&amp;rft.aufirst=P.+G.&amp;rft.au=Copiello%2C+D.&amp;rft.au=Beutke%2C+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-NASA-37"><span class="mw-cite-backlink">^ <a href="#cite_ref-NASA_37-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-NASA_37-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBanke2012" class="citation web cs1">Banke, Jim (2012-12-13). <a rel="nofollow" class="external text" href="https://www.nasa.gov/topics/aeronautics/features/bridges_chevron_events.html">"NASA Helps Create a More Silent Night"</a>. <a href="/wiki/NASA" title="NASA">NASA</a><span class="reference-accessdate">. Retrieved <span class="nowrap">January 12,</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=NASA+Helps+Create+a+More+Silent+Night&amp;rft.pub=NASA&amp;rft.date=2012-12-13&amp;rft.aulast=Banke&amp;rft.aufirst=Jim&amp;rft_id=http%3A%2F%2Fwww.nasa.gov%2Ftopics%2Faeronautics%2Ffeatures%2Fbridges_chevron_events.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-38">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20140325205124/http://www.afmc.org.cn/13thacfm/invited/201.pdf">"Invited"</a> <span class="cs1-format">(PDF)</span>, <i>13th ACFM</i>, <a href="/wiki/China" title="China">CN</a>: AFMC, archived from <a rel="nofollow" class="external text" href="http://www.afmc.org.cn/13thacfm/invited/201.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2014-03-25</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=13th+ACFM&amp;rft.atitle=Invited&amp;rft_id=http%3A%2F%2Fwww.afmc.org.cn%2F13thacfm%2Finvited%2F201.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text">"Turbojet History And Development 1930–1960 Volume 1", The Crowood Press Ltd. 2007, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978%2B1%2B86126%2B912%2B6" title="Special:BookSources/978+1+86126+912+6">978 1 86126 912 6</a>, p.&#160;241.</span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.flightglobal.com/airspace/media/aeroenginesjetcutaways/metrovick-f3-cutaway-5614.aspx">"Metrovick F3 Cutaway – Pictures &amp; Photos on FlightGlobal Airspace"</a>. Flightglobal.com. 2007-11-07<span class="reference-accessdate">. Retrieved <span class="nowrap">2013-04-29</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Metrovick+F3+Cutaway+%E2%80%93+Pictures+%26+Photos+on+FlightGlobal+Airspace&amp;rft.pub=Flightglobal.com&amp;rft.date=2007-11-07&amp;rft_id=http%3A%2F%2Fwww.flightglobal.com%2Fairspace%2Fmedia%2Faeroenginesjetcutaways%2Fmetrovick-f3-cutaway-5614.aspx&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-41">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.flightglobal.com/pdfarchive/view/1946/1946%20-%202270%20-%200145.html">"page 145"</a>. <i>Flight international</i>. 1946.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Flight+international&amp;rft.atitle=page+145&amp;rft.date=1946&amp;rft_id=https%3A%2F%2Fwww.flightglobal.com%2Fpdfarchive%2Fview%2F1946%2F1946%2520-%25202270%2520-%25200145.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-42">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.flightglobal.com/pdfarchive/view/1954/1954%20-%200985.html">"1954 &#124; 0985 &#124; Flight Archive"</a>. Flightglobal.com. 1954-04-09<span class="reference-accessdate">. Retrieved <span class="nowrap">2013-04-29</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=1954+%26%23124%3B+0985+%26%23124%3B+Flight+Archive&amp;rft.pub=Flightglobal.com&amp;rft.date=1954-04-09&amp;rft_id=http%3A%2F%2Fwww.flightglobal.com%2Fpdfarchive%2Fview%2F1954%2F1954%2520-%25200985.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-43">^</a></b></span> <span class="reference-text">The Development Of Jet And Turbine Aero Engines 4th edition, Bill Gunston 2006, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0%2B7509%2B4477%2B3" title="Special:BookSources/0+7509+4477+3">0 7509 4477 3</a>, p.&#160;197.</span> </li> <li id="cite_note-Boyne2002-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-Boyne2002_44-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBoyne2002" class="citation book cs1">Boyne, Walter J., ed. (2002). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=FW_50wm8VnMC&amp;pg=PA235"><i>Air warfare: An international encyclopedia: A–L</i></a>. ABC-CLIO. p.&#160;235. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-57607-345-2" title="Special:BookSources/978-1-57607-345-2"><bdi>978-1-57607-345-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Air+warfare%3A+An+international+encyclopedia%3A+A%E2%80%93L&amp;rft.pages=235&amp;rft.pub=ABC-CLIO&amp;rft.date=2002&amp;rft.isbn=978-1-57607-345-2&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DFW_50wm8VnMC%26pg%3DPA235&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-NASM-PLF1A-2-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-NASM-PLF1A-2_45-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://airandspace.si.edu/collection-objects/lycoming-plf1a-2-turbofan-engine/nasm_A19890042000">"Lycoming PLF1A-2 turbofan engine"</a>. <i><a href="/wiki/Smithsonian_National_Air_and_Space_Museum" class="mw-redirect" title="Smithsonian National Air and Space Museum">Smithsonian National Air and Space Museum</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">December 31,</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Smithsonian+National+Air+and+Space+Museum&amp;rft.atitle=Lycoming+PLF1A-2+turbofan+engine&amp;rft_id=https%3A%2F%2Fairandspace.si.edu%2Fcollection-objects%2Flycoming-plf1a-2-turbofan-engine%2Fnasm_A19890042000&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-46">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEl-Sayed2016" class="citation book cs1">El-Sayed, Ahmed F. (25 May 2016). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=kWJBDAAAQBAJ&amp;dq=first+high+bypass+turbofan&amp;pg=PA997"><i>Fundamentals of Aircraft and Rocket Propulsion</i></a>. Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4471-6796-9" title="Special:BookSources/978-1-4471-6796-9"><bdi>978-1-4471-6796-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Fundamentals+of+Aircraft+and+Rocket+Propulsion&amp;rft.pub=Springer&amp;rft.date=2016-05-25&amp;rft.isbn=978-1-4471-6796-9&amp;rft.aulast=El-Sayed&amp;rft.aufirst=Ahmed+F.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DkWJBDAAAQBAJ%26dq%3Dfirst%2Bhigh%2Bbypass%2Bturbofan%26pg%3DPA997&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-47">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20110103084411/http://www.rolls-royce.com/Images/RB211-535E4%20_tcm92-11348.pdf">"RB211-535E4"</a> <span class="cs1-format">(PDF)</span>. Archived from <a rel="nofollow" class="external text" href="http://www.rolls-royce.com/Images/RB211-535E4%20_tcm92-11348.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 3 January 2011<span class="reference-accessdate">. Retrieved <span class="nowrap">1 March</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=RB211-535E4&amp;rft_id=http%3A%2F%2Fwww.rolls-royce.com%2FImages%2FRB211-535E4%2520_tcm92-11348.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-48">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.icas.org/ICAS_ARCHIVE/ICAS2002/PAPERS/1.PDF">"p.01.7"</a> <span class="cs1-format">(PDF)</span>. <i>Icas.rg</i><span class="reference-accessdate">. Retrieved <span class="nowrap">1 March</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Icas.rg&amp;rft.atitle=p.01.7&amp;rft_id=http%3A%2F%2Fwww.icas.org%2FICAS_ARCHIVE%2FICAS2002%2FPAPERS%2F1.PDF&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-49">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWebber1971" class="citation book cs1">Webber, Richard J. (1971). <i>VARIABLE GEOMETRY AFT-FAN FORTAKEOFFQUIETINGOR THRUST AUGMENTATION OF A TURBOJET ENGINE</i>. Ohio: Lewis Research Centre, NASA.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=VARIABLE+GEOMETRY+AFT-FAN+FORTAKEOFFQUIETINGOR+THRUST+AUGMENTATION+OF+A+TURBOJET+ENGINE&amp;rft.place=Ohio&amp;rft.pub=Lewis+Research+Centre%2C+NASA&amp;rft.date=1971&amp;rft.aulast=Webber&amp;rft.aufirst=Richard+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-:0-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-:0_50-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20130520065423/http://www.mtu.de/en/technologies/engineering_news/others/Riegler_Geared_turbofan_technology.pdf">"The geared turbofan technology – Opportunities, challenges and readiness status"</a> <span class="cs1-format">(PDF)</span>. Archived from <a rel="nofollow" class="external text" href="http://www.mtu.de/en/technologies/engineering_news/others/Riegler_Geared_turbofan_technology.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2013-05-20.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=The+geared+turbofan+technology+%E2%80%93+Opportunities%2C+challenges+and+readiness+status&amp;rft_id=http%3A%2F%2Fwww.mtu.de%2Fen%2Ftechnologies%2Fengineering_news%2Fothers%2FRiegler_Geared_turbofan_technology.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span> C. Riegler, C. Bichlmaier:, 1st CEAS European Air and Space Conference, 10–13 September 2007, Berlin, Germany</span> </li> <li id="cite_note-LN161021-51"><span class="mw-cite-backlink">^ <a href="#cite_ref-LN161021_51-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-LN161021_51-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-LN161021_51-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBjorn_Fehrm2016" class="citation web cs1">Bjorn Fehrm (October 21, 2016). <a rel="nofollow" class="external text" href="https://leehamnews.com/2016/10/21/bjorns-corner-engine-challenge/">"Bjorn's Corner: The Engine challenge"</a>. <i>Leeham News</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Leeham+News&amp;rft.atitle=Bjorn%27s+Corner%3A+The+Engine+challenge&amp;rft.date=2016-10-21&amp;rft.au=Bjorn+Fehrm&amp;rft_id=https%3A%2F%2Fleehamnews.com%2F2016%2F10%2F21%2Fbjorns-corner-engine-challenge%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-MRO28sep2017-52"><span class="mw-cite-backlink">^ <a href="#cite_ref-MRO28sep2017_52-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-MRO28sep2017_52-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBen_Hargreaves2017" class="citation news cs1">Ben Hargreaves (Sep 28, 2017). <a rel="nofollow" class="external text" href="http://www.mro-network.com/engines-engine-systems/understanding-complexities-bigger-fan-blades">"Understanding Complexities Of Bigger Fan Blades"</a>. <i>Aviation Week Network</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Aviation+Week+Network&amp;rft.atitle=Understanding+Complexities+Of+Bigger+Fan+Blades&amp;rft.date=2017-09-28&amp;rft.au=Ben+Hargreaves&amp;rft_id=http%3A%2F%2Fwww.mro-network.com%2Fengines-engine-systems%2Funderstanding-complexities-bigger-fan-blades&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-AvWeek26Mar2015-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-AvWeek26Mar2015_53-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGuy_Norris_and_Graham_Warwick2015" class="citation news cs1">Guy Norris and Graham Warwick (Mar 26, 2015). <a rel="nofollow" class="external text" href="http://aviationweek.com/technology/reversed-tilted-future-pratt-s-geared-turbofan">"A Reversed, Tilted Future For Pratt's Geared Turbofan?"</a>. <i>Aviation Week &amp; Space Technology</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Aviation+Week+%26+Space+Technology&amp;rft.atitle=A+Reversed%2C+Tilted+Future+For+Pratt%27s+Geared+Turbofan%3F&amp;rft.date=2015-03-26&amp;rft.au=Guy+Norris+and+Graham+Warwick&amp;rft_id=http%3A%2F%2Faviationweek.com%2Ftechnology%2Freversed-tilted-future-pratt-s-geared-turbofan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-AvWeek8Aug2017-54"><span class="mw-cite-backlink">^ <a href="#cite_ref-AvWeek8Aug2017_54-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-AvWeek8Aug2017_54-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-AvWeek8Aug2017_54-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-AvWeek8Aug2017_54-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-AvWeek8Aug2017_54-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-AvWeek8Aug2017_54-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-AvWeek8Aug2017_54-6"><sup><i><b>g</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGuy_Norris2017" class="citation news cs1">Guy Norris (Aug 8, 2017). <a rel="nofollow" class="external text" href="http://aviationweek.com/technology/turbofans-are-not-finished-yet">"Turbofans Are Not Finished Yet"</a>. <i>Aviation Week &amp; Space Technology</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Aviation+Week+%26+Space+Technology&amp;rft.atitle=Turbofans+Are+Not+Finished+Yet&amp;rft.date=2017-08-08&amp;rft.au=Guy+Norris&amp;rft_id=http%3A%2F%2Faviationweek.com%2Ftechnology%2Fturbofans-are-not-finished-yet&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-faa-cleen-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-faa-cleen_55-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.faa.gov/about/office_org/headquarters_offices/apl/eee/technology_saf_operations/cleen">"Continuous Lower Energy, Emissions, and Noise (CLEEN) Program"</a>. <i>www.faa.gov</i>. Federal Aviation Administration<span class="reference-accessdate">. Retrieved <span class="nowrap">11 February</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=www.faa.gov&amp;rft.atitle=Continuous+Lower+Energy%2C+Emissions%2C+and+Noise+%28CLEEN%29+Program&amp;rft_id=https%3A%2F%2Fwww.faa.gov%2Fabout%2Foffice_org%2Fheadquarters_offices%2Fapl%2Feee%2Ftechnology_saf_operations%2Fcleen&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-56">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFUlrich_Wenger2014" class="citation cs2">Ulrich Wenger (March 20, 2014), <a rel="nofollow" class="external text" href="http://www.fzt.haw-hamburg.de/pers/Scholz/dglr/hh/text_2014_03_20_EnginesTechnology.pdf"><i>Rolls-Royce technology for future aircraft engines</i></a> <span class="cs1-format">(PDF)</span>, Rolls-Royce Deutschland</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Rolls-Royce+technology+for+future+aircraft+engines&amp;rft.pub=Rolls-Royce+Deutschland&amp;rft.date=2014-03-20&amp;rft.au=Ulrich+Wenger&amp;rft_id=http%3A%2F%2Fwww.fzt.haw-hamburg.de%2Fpers%2FScholz%2Fdglr%2Fhh%2Ftext_2014_03_20_EnginesTechnology.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-SeattleTimes15jun2018-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-SeattleTimes15jun2018_57-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDominic_Gates2018" class="citation news cs1"><a href="/wiki/Dominic_Gates" title="Dominic Gates">Dominic Gates</a> (June 15, 2018). <a rel="nofollow" class="external text" href="https://www.seattletimes.com/business/boeing-aerospace/troublesome-advanced-engines-for-boeing-and-airbus-jets-disrupt-airlines-and-production-lines/">"Troublesome advanced engines for Boeing, Airbus jets have disrupted airlines and shaken travelers"</a>. <i>The Seattle Times</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Seattle+Times&amp;rft.atitle=Troublesome+advanced+engines+for+Boeing%2C+Airbus+jets+have+disrupted+airlines+and+shaken+travelers&amp;rft.date=2018-06-15&amp;rft.au=Dominic+Gates&amp;rft_id=https%3A%2F%2Fwww.seattletimes.com%2Fbusiness%2Fboeing-aerospace%2Ftroublesome-advanced-engines-for-boeing-and-airbus-jets-disrupt-airlines-and-production-lines%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-58">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKerry_Reals2019" class="citation news cs1">Kerry Reals (6 Sep 2019). <a rel="nofollow" class="external text" href="https://www.flightglobal.com/news/articles/how-the-future-of-electric-aircraft-lies-beyond-the-460492/">"How the future of electric aircraft lies beyond the engines"</a>. <i>Flightglobal</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Flightglobal&amp;rft.atitle=How+the+future+of+electric+aircraft+lies+beyond+the+engines&amp;rft.date=2019-09-06&amp;rft.au=Kerry+Reals&amp;rft_id=https%3A%2F%2Fwww.flightglobal.com%2Fnews%2Farticles%2Fhow-the-future-of-electric-aircraft-lies-beyond-the-460492%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-59"><span class="mw-cite-backlink"><b><a href="#cite_ref-59">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.flightglobal.com/news/articles/insight-from-flightglobal-flight-fleet-forecasts-e-430071/">"Flight Fleet Forecast's engine outlook"</a>. <i>Flight Global</i>. 2 November 2016.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Flight+Global&amp;rft.atitle=Flight+Fleet+Forecast%27s+engine+outlook&amp;rft.date=2016-11-02&amp;rft_id=https%3A%2F%2Fwww.flightglobal.com%2Fnews%2Farticles%2Finsight-from-flightglobal-flight-fleet-forecasts-e-430071%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-60"><span class="mw-cite-backlink"><b><a href="#cite_ref-60">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation book cs1"><i>Jane's All the World's Aircraft</i>. 2005. pp.&#160;<span class="nowrap">850–</span>853. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0075-3017">0075-3017</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Jane%27s+All+the+World%27s+Aircraft&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E850-%3C%2Fspan%3E853&amp;rft.date=2005&amp;rft.issn=0075-3017&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-61"><span class="mw-cite-backlink"><b><a href="#cite_ref-61">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.geaviation.com/commercial/engines/genx/">"GEnx"</a>. GE.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=GEnx&amp;rft.pub=GE&amp;rft_id=http%3A%2F%2Fwww.geaviation.com%2Fcommercial%2Fengines%2Fgenx%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-62"><span class="mw-cite-backlink"><b><a href="#cite_ref-62">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20180818154807/https://www.mtu.de/engines/commercial-aircraft-engines/narrowbody-and-regional-jets/pw1000g/">"PW1000G"</a>. <a href="/wiki/MTU_Aero_Engines" title="MTU Aero Engines">MTU</a>. Archived from <a rel="nofollow" class="external text" href="http://www.mtu.de/engines/commercial-aircraft-engines/narrowbody-and-regional-jets/pw1000g/">the original</a> on 2018-08-18<span class="reference-accessdate">. Retrieved <span class="nowrap">2016-07-01</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=PW1000G&amp;rft.pub=MTU&amp;rft_id=http%3A%2F%2Fwww.mtu.de%2Fengines%2Fcommercial-aircraft-engines%2Fnarrowbody-and-regional-jets%2Fpw1000g%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-63"><span class="mw-cite-backlink"><b><a href="#cite_ref-63">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.cfmaeroengines.com/engines/leap">"The Leap Engine"</a>. CFM International.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=The+Leap+Engine&amp;rft.pub=CFM+International&amp;rft_id=http%3A%2F%2Fwww.cfmaeroengines.com%2Fengines%2Fleap&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-auto-64"><span class="mw-cite-backlink">^ <a href="#cite_ref-auto_64-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-auto_64-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">The Cambridge Aerospace Dictionary, Bill Gunston 2004,<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978%2B0%2B511%2B33833%2B5" title="Special:BookSources/978+0+511+33833+5">978 0 511 33833 5</a></span> </li> <li id="cite_note-65"><span class="mw-cite-backlink"><b><a href="#cite_ref-65">^</a></b></span> <span class="reference-text">Jet Propulsion, Nicholas Cumpsty 1997, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0%2B521%2B59674%2B2" title="Special:BookSources/0+521+59674+2">0 521 59674 2</a>, p.65</span> </li> <li id="cite_note-66"><span class="mw-cite-backlink"><b><a href="#cite_ref-66">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRothMavris2000" class="citation journal cs1">Roth, Bryce; Mavris, Dimitri (2000-07-24). <a rel="nofollow" class="external text" href="https://arc.aiaa.org/doi/10.2514/6.2000-3714">"A comparison of thermodynamic loss models suitable for gas turbine propulsion - Theory and taxonomy"</a>. <i>36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit</i>. Las Vegas, NV, U.S.A.: American Institute of Aeronautics and Astronautics: <span class="nowrap">4–</span>8. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2514%2F6.2000-3714">10.2514/6.2000-3714</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=36th+AIAA%2FASME%2FSAE%2FASEE+Joint+Propulsion+Conference+and+Exhibit&amp;rft.atitle=A+comparison+of+thermodynamic+loss+models+suitable+for+gas+turbine+propulsion+-+Theory+and+taxonomy&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E4-%3C%2Fspan%3E8&amp;rft.date=2000-07-24&amp;rft_id=info%3Adoi%2F10.2514%2F6.2000-3714&amp;rft.aulast=Roth&amp;rft.aufirst=Bryce&amp;rft.au=Mavris%2C+Dimitri&amp;rft_id=https%3A%2F%2Farc.aiaa.org%2Fdoi%2F10.2514%2F6.2000-3714&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-67"><span class="mw-cite-backlink"><b><a href="#cite_ref-67">^</a></b></span> <span class="reference-text">The Cambridge Aerospace Dictionary, Bill Gunston 2004,<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978%2B0%2B511%2B33833%2B5" title="Special:BookSources/978+0+511+33833+5">978 0 511 33833 5</a></span> </li> <li id="cite_note-68"><span class="mw-cite-backlink"><b><a href="#cite_ref-68">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://skybrary.aero/articles/reduced-thrust-takeoff">"Reduced Thrust Takeoff"</a>. 30 May 2021.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Reduced+Thrust+Takeoff&amp;rft.date=2021-05-30&amp;rft_id=https%3A%2F%2Fskybrary.aero%2Farticles%2Freduced-thrust-takeoff&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></span> </li> <li id="cite_note-69"><span class="mw-cite-backlink"><b><a href="#cite_ref-69">^</a></b></span> <span class="reference-text">Gas Turbine Performance Second Edition, Walsh and Fletcher 2004,<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0%2B632%2B06434%2BX" title="Special:BookSources/0+632+06434+X">0 632 06434 X</a>, p.5</span> </li> <li id="cite_note-70"><span class="mw-cite-backlink"><b><a href="#cite_ref-70">^</a></b></span> <span class="reference-text">Jet Engines and Propulsion Systems For Engineers, Human Resource Development, GE Aircraft Engines 1989, p.5-9</span> </li> <li id="cite_note-71"><span class="mw-cite-backlink"><b><a href="#cite_ref-71">^</a></b></span> <span class="reference-text">Aerodynamic Design Of Axial Flow Compressors, N65 23345,1965, NASA SP-36, p.68</span> </li> <li id="cite_note-72"><span class="mw-cite-backlink"><b><a href="#cite_ref-72">^</a></b></span> <span class="reference-text">Clancy, L.J., <i>Aerodynamics</i>, page 21</span> </li> <li id="cite_note-73"><span class="mw-cite-backlink"><b><a href="#cite_ref-73">^</a></b></span> <span class="reference-text">Introduction To Aerospace Engineering With A Flight Test Perspective, Stephen Corda 2017,<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9781118953389" title="Special:BookSources/9781118953389">9781118953389</a>, p.185</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Turbofan&amp;action=edit&amp;section=37" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Commons-logo.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></a></span></div> <div class="side-box-text plainlist">Wikimedia Commons has media related to <span style="font-weight: bold; font-style: italic;"><a href="https://commons.wikimedia.org/wiki/Category:Turbofan_engines" class="extiw" title="commons:Category:Turbofan engines">Turbofan engines</a></span>.</div></div> </div> <ul><li><a href="https://en.wikibooks.org/wiki/Jet_Propulsion" class="extiw" title="wikibooks:Jet Propulsion">Wikibooks: Jet propulsion</a></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMalcolm_Gibson2011" class="citation web cs1">Malcolm Gibson (Aug 2011). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20200323200035/https://www.hq.nasa.gov/office/aero/ebooks/downloads/nasa_innovation_in_aeronautics.pdf">"The Chevron Nozzle: A Novel Approach to Reducing Jet Noise"</a> <span class="cs1-format">(PDF)</span>. <i>NASA Innovation in Aeronautics NASA/TM-2011-216987</i>. Archived from <a rel="nofollow" class="external text" href="https://www.hq.nasa.gov/office/aero/ebooks/downloads/nasa_innovation_in_aeronautics.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2020-03-23<span class="reference-accessdate">. Retrieved <span class="nowrap">2017-03-24</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=NASA+Innovation+in+Aeronautics+NASA%2FTM-2011-216987&amp;rft.atitle=The+Chevron+Nozzle%3A+A+Novel+Approach+to+Reducing+Jet+Noise&amp;rft.date=2011-08&amp;rft.au=Malcolm+Gibson&amp;rft_id=https%3A%2F%2Fwww.hq.nasa.gov%2Foffice%2Faero%2Febooks%2Fdownloads%2Fnasa_innovation_in_aeronautics.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://scribd.com/doc/105381018/Engine-Yearbook">"The Engine Yearbook"</a>. <a href="/wiki/UBM_Aviation" title="UBM Aviation">UBM Aviation</a>. 2012.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=The+Engine+Yearbook&amp;rft.date=2012&amp;rft_id=https%3A%2F%2Fscribd.com%2Fdoc%2F105381018%2FEngine-Yearbook&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.flightglobal.com/asset/17069">"Commercial engines 2017"</a>. <i>Flight Global</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Flight+Global&amp;rft.atitle=Commercial+engines+2017&amp;rft_id=https%3A%2F%2Fwww.flightglobal.com%2Fasset%2F17069&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBjorn_Fehrm2017" class="citation news cs1">Bjorn Fehrm (April 14, 2017). <a rel="nofollow" class="external text" href="https://leehamnews.com/2017/04/14/bjorns-corner-aircraft-engines-sum/">"Bjorn's Corner: Aircraft engines, sum up"</a>. <i>Leeham Co</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Leeham+Co&amp;rft.atitle=Bjorn%27s+Corner%3A+Aircraft+engines%2C+sum+up&amp;rft.date=2017-04-14&amp;rft.au=Bjorn+Fehrm&amp;rft_id=https%3A%2F%2Fleehamnews.com%2F2017%2F04%2F14%2Fbjorns-corner-aircraft-engines-sum%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATurbofan" class="Z3988"></span> and previous series</li></ul> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Jet_engines_and_aircraft_gas_turbines283" style="padding:3px"><table class="nowraplinks mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Aircraft_gas_turbine_engine_components" title="Template:Aircraft gas turbine engine components"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Aircraft_gas_turbine_engine_components" title="Template talk:Aircraft gas turbine engine components"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Aircraft_gas_turbine_engine_components" title="Special:EditPage/Template:Aircraft gas turbine engine components"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Jet_engines_and_aircraft_gas_turbines283" style="font-size:114%;margin:0 4em"><a href="/wiki/Jet_engine" title="Jet engine">Jet engines</a> and <a href="/wiki/Aircraft_engine" title="Aircraft engine">aircraft</a> <a href="/wiki/Gas_turbine" title="Gas turbine">gas turbines</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Gas_turbine" title="Gas turbine">Gas turbines</a><br /> and <a href="/wiki/Jet_propulsion" title="Jet propulsion">jet propulsion</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">Types</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Air_turborocket" title="Air turborocket">Air turborocket</a></li> <li><a href="/wiki/Pulsejet" title="Pulsejet">Pulsejet</a>/<a href="/wiki/Valveless_pulsejet" title="Valveless pulsejet">Valveless pulsejet</a>/<a href="/wiki/Gluhareff_Pressure_Jet" title="Gluhareff Pressure Jet">Gluhareff Pressure Jet</a></li> <li><a href="/wiki/Pulse_detonation_engine" title="Pulse detonation engine">Pulse detonation engine</a></li> <li><a href="/wiki/Propfan" title="Propfan">Propfan</a></li> <li><a class="mw-selflink selflink">Turbofan</a></li> <li><a href="/wiki/Turbojet" title="Turbojet">Turbojet</a></li> <li><a href="/wiki/Turboprop" title="Turboprop">Turboprop</a></li> <li><a href="/wiki/Turboshaft" title="Turboshaft">Turboshaft</a></li> <li><a href="/wiki/Ramjet" title="Ramjet">Ramjet</a></li> <li><a href="/wiki/Scramjet" title="Scramjet">Scramjet</a></li> <li><a href="/wiki/Shcramjet" title="Shcramjet">Shcramjet</a></li> <li><a href="/wiki/Rocket_engine" title="Rocket engine">Rocket</a></li> <li><a href="/wiki/Rotating_detonation_engine" title="Rotating detonation engine">Rotating detonation engine</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Mechanical<br /> components</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Accessory_drive" title="Accessory drive">Accessory drive</a></li> <li><a href="/wiki/Components_of_jet_engines#Air_intakes" title="Components of jet engines">Air intake</a></li> <li><a href="/wiki/Afterburner" title="Afterburner">Afterburner (reheat)</a></li> <li><a href="/wiki/Axial_compressor" title="Axial compressor">Axial compressor</a></li> <li><a href="/wiki/Centrifugal_compressor" title="Centrifugal compressor">Centrifugal compressor</a></li> <li><a href="/wiki/Combustor" title="Combustor">Combustor</a></li> <li><a href="/wiki/Constant_speed_drive" title="Constant speed drive">Constant speed drive</a></li> <li><a href="/wiki/Impeller" title="Impeller">Impeller</a></li> <li><a href="/wiki/Nose_bullet" title="Nose bullet">Nose bullet</a></li> <li><a href="/wiki/Propelling_nozzle" title="Propelling nozzle">Propelling nozzle</a></li> <li><a href="/wiki/Turbine_blade" title="Turbine blade">Turbine blade</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Principles</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Aircraft_engine_starting" title="Aircraft engine starting">Aircraft engine starting</a></li> <li><a href="/wiki/Bleed_air" title="Bleed air">Bleed air</a></li> <li><a href="/wiki/Brayton_cycle" title="Brayton cycle">Brayton cycle</a></li> <li><a href="/wiki/Bypass_ratio" title="Bypass ratio">Bypass ratio</a></li> <li><a href="/wiki/Compressor_stall" title="Compressor stall">Compressor stall</a></li> <li><a href="/wiki/Engine_pressure_ratio" title="Engine pressure ratio">Engine pressure ratio (EPR)</a></li> <li><a href="/wiki/Flameout" title="Flameout">Flameout</a></li> <li><a href="/wiki/Jet_engine_performance" title="Jet engine performance">Jet engine performance</a></li> <li><a href="/wiki/Overall_pressure_ratio" title="Overall pressure ratio">Overall pressure ratio</a></li> <li><a href="/wiki/Propulsive_efficiency" title="Propulsive efficiency">Propulsive efficiency</a></li> <li><a href="/wiki/Specific_impulse" title="Specific impulse">Specific impulse</a></li> <li><a href="/wiki/Thrust" title="Thrust">Thrust</a></li> <li><a href="/wiki/Thrust_lapse" class="mw-redirect" title="Thrust lapse">Thrust lapse</a></li> <li><a href="/wiki/Thrust_specific_fuel_consumption" class="mw-redirect" title="Thrust specific fuel consumption">Thrust specific fuel consumption</a></li> <li><a href="/wiki/Thrust_to_weight_ratio" class="mw-redirect" title="Thrust to weight ratio">Thrust to weight ratio</a></li> <li><a href="/wiki/Variable_cycle_engine" title="Variable cycle engine">Variable cycle engine</a></li> <li><a href="/wiki/Windmill_restart" class="mw-redirect" title="Windmill restart">Windmill restart</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Propeller_(aeronautics)" title="Propeller (aeronautics)">Propellers</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">Components</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Propeller_governor" class="mw-redirect" title="Propeller governor">Propeller governor</a></li> <li><a href="/wiki/Propeller_speed_reduction_unit" title="Propeller speed reduction unit">Propeller speed reduction unit</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Principles</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Autofeather" title="Autofeather">Autofeather</a></li> <li><a href="/wiki/Blade_pitch" title="Blade pitch">Blade pitch</a></li> <li><a href="/wiki/Constant-speed_propeller" class="mw-redirect" title="Constant-speed propeller">Constant-speed</a></li> <li><a href="/wiki/Contra-rotating_propellers" title="Contra-rotating propellers">Contra-rotating</a></li> <li><a href="/wiki/Counter-rotating_propellers" title="Counter-rotating propellers">Counter-rotating</a></li> <li><a href="/wiki/Proprotor" title="Proprotor">Proprotor</a></li> <li><a href="/wiki/Scimitar_propeller" title="Scimitar propeller">Scimitar</a></li> <li><a href="/wiki/Variable-pitch_propeller_(aeronautics)" title="Variable-pitch propeller (aeronautics)">Variable-pitch</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Engine<br /> instruments</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Annunciator_panel" title="Annunciator panel">Annunciator panel</a></li> <li><a href="/wiki/Electronic_centralised_aircraft_monitor" title="Electronic centralised aircraft monitor">Electronic centralised aircraft monitor (ECAM)</a></li> <li><a href="/wiki/Electronic_flight_instrument_system" title="Electronic flight instrument system">Electronic flight instrument system (EFIS)</a></li> <li><a href="/wiki/Engine-indicating_and_crew-alerting_system" title="Engine-indicating and crew-alerting system">Engine-indicating and crew-alerting system (EICAS)</a></li> <li><a href="/wiki/Flight_data_recorder" class="mw-redirect" title="Flight data recorder">Flight data recorder</a></li> <li><a href="/wiki/Glass_cockpit" title="Glass cockpit">Glass cockpit</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Aircraft_engine_controls" title="Aircraft engine controls">Engine controls</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Autothrottle" title="Autothrottle">Autothrottle</a></li> <li><a href="/wiki/FADEC" title="FADEC">Full Authority Digital Engine/Electronics (FADEC)</a></li> <li><a href="/wiki/Thrust_lever" title="Thrust lever">Thrust lever</a></li> <li><a href="/wiki/Thrust_reversal" title="Thrust reversal">Thrust reversal</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Aircraft_fuel_system" title="Aircraft fuel system">Fuel</a> and induction<br /> systems</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Flame_holder" title="Flame holder">Flame holder</a></li> <li><a href="/wiki/Jet_fuel" title="Jet fuel">Jet fuel</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other systems</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Air-start_system" title="Air-start system">Air-start system</a></li> <li><a href="/wiki/Auxiliary_power_unit" title="Auxiliary power unit">Auxiliary power unit (APU)</a></li> <li><a href="/wiki/Bleed_air" title="Bleed air">Bleed air system</a></li> <li><a href="/wiki/Hydraulic_fluid#Aircraft_hydraulic_systems" title="Hydraulic fluid">Hydraulic system</a></li> <li><a href="/wiki/Ice_protection_system" title="Ice protection system">Ice protection system</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Heat_engines39" style="padding:3px"><table class="nowraplinks mw-collapsible uncollapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2" style="background:#F0DC82;"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Heat_engines" title="Template:Heat engines"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Heat_engines" title="Template talk:Heat engines"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Heat_engines" title="Special:EditPage/Template:Heat engines"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Heat_engines39" style="font-size:114%;margin:0 4em"><a href="/wiki/Heat_engine" title="Heat engine">Heat engines</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Carnot_heat_engine" title="Carnot heat engine">Carnot engine</a></li> <li><a href="/wiki/Fluidyne_engine" title="Fluidyne engine">Fluidyne</a></li> <li><a href="/wiki/Gas_turbine" title="Gas turbine">Gas turbine</a></li> <li><a href="/wiki/Hot_air_engine" title="Hot air engine">Hot air</a></li> <li><a href="/wiki/Jet_engine" title="Jet engine">Jet</a></li> <li><a href="/wiki/Minto_wheel" title="Minto wheel">Minto wheel</a></li> <li><a href="/wiki/Photo-Carnot_engine" title="Photo-Carnot engine">Photo-Carnot engine</a></li> <li><a href="/wiki/Reciprocating_engine" title="Reciprocating engine">Piston</a></li> <li><a href="/wiki/Pistonless_rotary_engine" title="Pistonless rotary engine">Pistonless (Rotary)</a></li> <li><a href="/wiki/Rijke_tube" title="Rijke tube">Rijke tube</a></li> <li><a href="/wiki/Rocket_engine" title="Rocket engine">Rocket</a></li> <li><a href="/wiki/Split-single_engine" title="Split-single engine">Split-single</a></li> <li><a href="/wiki/Steam_engine" title="Steam engine">Steam (reciprocating)</a></li> <li><a href="/wiki/Steam_turbine" title="Steam turbine">Steam turbine</a> <ul><li><a href="/wiki/Aeolipile" title="Aeolipile">Aeolipile</a></li></ul></li> <li><a href="/wiki/Stirling_engine" title="Stirling engine">Stirling</a></li> <li><a href="/wiki/Thermoacoustic_heat_engine" title="Thermoacoustic heat engine">Thermoacoustic</a></li> <li><a href="/wiki/Manson_engine" title="Manson engine">Manson engine</a></li></ul> </div></td></tr><tr><td colspan="2" class="navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Beale_number" title="Beale number">Beale number</a></li> <li><a href="/wiki/West_number" title="West number">West number</a></li></ul> </div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Timeline_of_heat_engine_technology" title="Timeline of heat engine technology">Timeline of heat engine technology</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2" style="background:#F0DC82;"><div><a href="/wiki/Thermodynamic_cycle" title="Thermodynamic cycle">Thermodynamic cycle</a></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐9664bf54d‐tpjxf Cached time: 20250210163956 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.065 seconds Real time usage: 1.322 seconds Preprocessor visited node count: 8127/1000000 Post‐expand include size: 165200/2097152 bytes Template argument size: 9314/2097152 bytes Highest expansion depth: 16/100 Expensive parser function count: 12/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 291047/5000000 bytes Lua time usage: 0.604/10.000 seconds Lua memory usage: 9851020/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1066.580 1 -total 43.95% 468.759 1 Template:Reflist 15.99% 170.561 20 Template:Cite_web 8.00% 85.310 1 Template:Seriesbox_aircraft_propulsion 7.81% 83.270 1 Template:Sidebar 6.75% 72.004 1 Template:Short_description 6.20% 66.129 13 Template:Cite_book 5.93% 63.258 11 Template:ISBN 4.81% 51.321 1 Template:Commons_category 4.61% 49.142 1 Template:Sister_project --> <!-- Saved in parser cache with key enwiki:pcache:103077:|#|:idhash:canonical and timestamp 20250210163956 and revision id 1274974373. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&amp;type=1x1&amp;usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Turbofan&amp;oldid=1274974373">https://en.wikipedia.org/w/index.php?title=Turbofan&amp;oldid=1274974373</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Gas_turbines" title="Category:Gas turbines">Gas turbines</a></li><li><a href="/wiki/Category:Jet_engines" title="Category:Jet engines">Jet engines</a></li><li><a href="/wiki/Category:Turbofan_engines" title="Category:Turbofan engines">Turbofan engines</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_maint:_location" title="Category:CS1 maint: location">CS1 maint: location</a></li><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li><li><a href="/wiki/Category:Wikipedia_articles_needing_clarification_from_May_2021" title="Category:Wikipedia articles needing clarification from May 2021">Wikipedia articles needing clarification from May 2021</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_August_2020" title="Category:Articles with unsourced statements from August 2020">Articles with unsourced statements from August 2020</a></li><li><a href="/wiki/Category:Articles_needing_additional_references_from_December_2024" title="Category:Articles needing additional references from December 2024">Articles needing additional references from December 2024</a></li><li><a href="/wiki/Category:All_articles_needing_additional_references" title="Category:All articles needing additional references">All articles needing additional references</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_September_2018" title="Category:Articles with unsourced statements from September 2018">Articles with unsourced statements from September 2018</a></li><li><a href="/wiki/Category:Commons_category_link_is_on_Wikidata" title="Category:Commons category link is on Wikidata">Commons category link is on Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 10 February 2025, at 10:20<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Turbofan&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" lang="en" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-header-container vector-sticky-header-container"> <div id="vector-sticky-header" class="vector-sticky-header"> <div class="vector-sticky-header-start"> <div class="vector-sticky-header-icon-start vector-button-flush-left vector-button-flush-right" aria-hidden="true"> <button class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-sticky-header-search-toggle" tabindex="-1" data-event-name="ui.vector-sticky-search-form.icon"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </button> </div> <div role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box"> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail"> <form action="/w/index.php" id="vector-sticky-search-form" class="cdx-search-input cdx-search-input--has-end-button"> <div class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia"> <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <div class="vector-sticky-header-context-bar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-sticky-header-toc" class="vector-dropdown mw-portlet mw-portlet-sticky-header-toc vector-sticky-header-toc vector-button-flush-left" > <input type="checkbox" id="vector-sticky-header-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-sticky-header-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-sticky-header-toc-label" for="vector-sticky-header-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-sticky-header-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div class="vector-sticky-header-context-bar-primary" aria-hidden="true" ><span class="mw-page-title-main">Turbofan</span></div> </div> </div> <div class="vector-sticky-header-end" aria-hidden="true"> <div class="vector-sticky-header-icons"> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-talk-sticky-header" tabindex="-1" data-event-name="talk-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbles mw-ui-icon-wikimedia-speechBubbles"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-subject-sticky-header" tabindex="-1" data-event-name="subject-sticky-header"><span class="vector-icon mw-ui-icon-article mw-ui-icon-wikimedia-article"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-history-sticky-header" tabindex="-1" data-event-name="history-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-history mw-ui-icon-wikimedia-wikimedia-history"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only mw-watchlink" id="ca-watchstar-sticky-header" tabindex="-1" data-event-name="watch-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-star mw-ui-icon-wikimedia-wikimedia-star"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-edit-sticky-header" tabindex="-1" data-event-name="wikitext-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-wikiText mw-ui-icon-wikimedia-wikimedia-wikiText"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-ve-edit-sticky-header" tabindex="-1" data-event-name="ve-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-edit mw-ui-icon-wikimedia-wikimedia-edit"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-viewsource-sticky-header" tabindex="-1" data-event-name="ve-edit-protected-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-editLock mw-ui-icon-wikimedia-wikimedia-editLock"></span> <span></span> </a> </div> <div class="vector-sticky-header-buttons"> <button class="cdx-button cdx-button--weight-quiet mw-interlanguage-selector" id="p-lang-btn-sticky-header" tabindex="-1" data-event-name="ui.dropdown-p-lang-btn-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-language mw-ui-icon-wikimedia-wikimedia-language"></span> <span>39 languages</span> </button> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive" id="ca-addsection-sticky-header" tabindex="-1" data-event-name="addsection-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbleAdd-progressive mw-ui-icon-wikimedia-speechBubbleAdd-progressive"></span> <span>Add topic</span> </a> </div> <div class="vector-sticky-header-icon-end"> <div class="vector-user-links"> </div> </div> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-5558bc8b6-sfm9h","wgBackendResponseTime":143,"wgPageParseReport":{"limitreport":{"cputime":"1.065","walltime":"1.322","ppvisitednodes":{"value":8127,"limit":1000000},"postexpandincludesize":{"value":165200,"limit":2097152},"templateargumentsize":{"value":9314,"limit":2097152},"expansiondepth":{"value":16,"limit":100},"expensivefunctioncount":{"value":12,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":291047,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 1066.580 1 -total"," 43.95% 468.759 1 Template:Reflist"," 15.99% 170.561 20 Template:Cite_web"," 8.00% 85.310 1 Template:Seriesbox_aircraft_propulsion"," 7.81% 83.270 1 Template:Sidebar"," 6.75% 72.004 1 Template:Short_description"," 6.20% 66.129 13 Template:Cite_book"," 5.93% 63.258 11 Template:ISBN"," 4.81% 51.321 1 Template:Commons_category"," 4.61% 49.142 1 Template:Sister_project"]},"scribunto":{"limitreport-timeusage":{"value":"0.604","limit":"10.000"},"limitreport-memusage":{"value":9851020,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-9664bf54d-tpjxf","timestamp":"20250210163956","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Turbofan","url":"https:\/\/en.wikipedia.org\/wiki\/Turbofan","sameAs":"http:\/\/www.wikidata.org\/entity\/Q654051","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q654051","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-10-13T06:07:31Z","dateModified":"2025-02-10T10:20:29Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/e\/e5\/Turbofan3_Labelled.gif","headline":"airbreathing jet engine designed to provide thrust by driving a fan"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10