CINXE.COM

(PDF) Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering | Stephan Irsen - Academia.edu

<!DOCTYPE html> <html > <head> <meta charset="utf-8"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <meta content="width=device-width, initial-scale=1" name="viewport"> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs"> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="YQLU8rGBlzqTsLpYZfQhQLkebe6QXsUrJt04++CboFwGMlJZ3PnYEiDJgCzlMjO6/PkVUyaGkz/Chl70l028dA==" /> <meta name="citation_title" content="Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering" /> <meta name="citation_publication_date" content="2005/01/01" /> <meta name="citation_journal_title" content="Journal of Biomedical Materials Research Part B: Applied Biomaterials" /> <meta name="citation_author" content="Stephan Irsen" /> <meta name="twitter:card" content="summary" /> <meta name="twitter:url" content="https://www.academia.edu/22862240/Three_dimensional_printing_of_porous_ceramic_scaffolds_for_bone_tissue_engineering" /> <meta name="twitter:title" content="Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering" /> <meta name="twitter:description" content="This article reports a new process chain for custom-made three-dimensional (3D) porous ceramic scaffolds for bone replacement with fully interconnected channel network for the repair of osseous defects from trauma or disease. Rapid prototyping and" /> <meta name="twitter:image" content="https://gravatar.com/avatar/ca1de3d337a3ba378c361b1662d7b29b?s=200" /> <meta property="fb:app_id" content="2369844204" /> <meta property="og:type" content="article" /> <meta property="og:url" content="https://www.academia.edu/22862240/Three_dimensional_printing_of_porous_ceramic_scaffolds_for_bone_tissue_engineering" /> <meta property="og:title" content="Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering" /> <meta property="og:image" content="http://a.academia-assets.com/images/open-graph-icons/fb-paper.gif" /> <meta property="og:description" content="This article reports a new process chain for custom-made three-dimensional (3D) porous ceramic scaffolds for bone replacement with fully interconnected channel network for the repair of osseous defects from trauma or disease. Rapid prototyping and" /> <meta property="article:author" content="https://independent.academia.edu/StephanIrsen" /> <meta name="description" content="This article reports a new process chain for custom-made three-dimensional (3D) porous ceramic scaffolds for bone replacement with fully interconnected channel network for the repair of osseous defects from trauma or disease. Rapid prototyping and" /> <title>(PDF) Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering | Stephan Irsen - Academia.edu</title> <link rel="canonical" href="https://www.academia.edu/22862240/Three_dimensional_printing_of_porous_ceramic_scaffolds_for_bone_tissue_engineering" /> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "single_work", 'action': "show", 'controller_action': 'single_work#show', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script> var $controller_name = 'single_work'; var $action_name = "show"; var $rails_env = 'production'; var $app_rev = '03094e3aebd7beb721b6517c076bbcdbc72fc020'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.require = { config: function() { return function() {} } } </script> <script> window.Aedu = window.Aedu || {}; window.Aedu.hit_data = null; window.Aedu.serverRenderTime = new Date(1734136483000); window.Aedu.timeDifference = new Date().getTime() - 1734136483000; </script> <script type="application/ld+json">{"@context":"https://schema.org","@type":"ScholarlyArticle","author":[{"@context":"https://schema.org","@type":"Person","name":"Stephan Irsen"}],"contributor":[],"dateCreated":"2016-03-05","datePublished":"2005-01-01","headline":"Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering","image":"https://attachments.academia-assets.com/43402305/thumbnails/1.jpg","inLanguage":"en","keywords":["Biomedical Engineering","Tissue Engineering","Scanning Electron Microscopy","Biomedical","Ceramics","Porosity","Bone Tissue Engineering","Three Dimensional","Bone Substitutes"],"publication":"Journal of Biomedical Materials Research Part B: Applied Biomaterials","publisher":{"@context":"https://schema.org","@type":"Organization","name":null},"sourceOrganization":[{"@context":"https://schema.org","@type":"EducationalOrganization","name":null}],"thumbnailUrl":"https://attachments.academia-assets.com/43402305/thumbnails/1.jpg","url":"https://www.academia.edu/22862240/Three_dimensional_printing_of_porous_ceramic_scaffolds_for_bone_tissue_engineering"}</script><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/single_work_page/loswp-102fa537001ba4d8dcd921ad9bd56c474abc201906ea4843e7e7efe9dfbf561d.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-8d679e925718b5e8e4b18e9a4fab37f7eaa99e43386459376559080ac8f2856a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/text_button-73590134e40cdb49f9abdc8e796cc00dc362693f3f0f6137d6cf9bb78c318ce7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> </head> <body> <div id='react-modal'></div> <div class="js-upgrade-ie-banner" style="display: none; text-align: center; padding: 8px 0; background-color: #ebe480;"><p style="color: #000; font-size: 12px; margin: 0 0 4px;">Academia.edu no longer supports Internet Explorer.</p><p style="color: #000; font-size: 12px; margin: 0;">To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.querySelector('.js-upgrade-ie-banner').style.display = 'block'; }</script> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "f960b82669ea4e23e47d7cc44f7df60ba199001cb512b0daa39276eae7a88746", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="HakyvlCJP8LFf+JMDxT/OqV2+2Lc6WZ8UbzcuCxL4n16mbQVPfFw6nYG2DiP0u3A4JGD32oxMGi157q3W53+VQ==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://www.academia.edu/22862240/Three_dimensional_printing_of_porous_ceramic_scaffolds_for_bone_tissue_engineering" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="/mnjCpLY3/D14F3isX00xq9ZhhjCTb9o0c00969ob/2ZWWWh/6CQ2EaZZ5YxuyY86r7+pXSV6Xw1llL42L5z1Q==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><input class="btn btn-primary btn-block g-recaptcha js-password-reset-submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" type="submit" value="Email me a link" /></form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script> <div class="header--container" id="main-header-container"><div class="header--inner-container header--inner-container-ds2"><div class="header-ds2--left-wrapper"><div class="header-ds2--left-wrapper-inner"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="hide-on-desktop-redesign" style="height: 24px; width: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hide-on-mobile-redesign" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a><div class="header--search-container header--search-container-ds2"><form class="js-SiteSearch-form select2-no-default-pills" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><svg style="width: 14px; height: 14px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="search" class="header--search-icon svg-inline--fa fa-search fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M505 442.7L405.3 343c-4.5-4.5-10.6-7-17-7H372c27.6-35.3 44-79.7 44-128C416 93.1 322.9 0 208 0S0 93.1 0 208s93.1 208 208 208c48.3 0 92.7-16.4 128-44v16.3c0 6.4 2.5 12.5 7 17l99.7 99.7c9.4 9.4 24.6 9.4 33.9 0l28.3-28.3c9.4-9.4 9.4-24.6.1-34zM208 336c-70.7 0-128-57.2-128-128 0-70.7 57.2-128 128-128 70.7 0 128 57.2 128 128 0 70.7-57.2 128-128 128z"></path></svg><input class="header--search-input header--search-input-ds2 js-SiteSearch-form-input" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" /></form></div></div></div><nav class="header--nav-buttons header--nav-buttons-ds2 js-main-nav"><a class="ds2-5-button ds2-5-button--secondary js-header-login-url header-button-ds2 header-login-ds2 hide-on-mobile-redesign" href="https://www.academia.edu/login" rel="nofollow">Log In</a><a class="ds2-5-button ds2-5-button--secondary header-button-ds2 hide-on-mobile-redesign" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a><button class="header--hamburger-button header--hamburger-button-ds2 hide-on-desktop-redesign js-header-hamburger-button"><div class="icon-bar"></div><div class="icon-bar" style="margin-top: 4px;"></div><div class="icon-bar" style="margin-top: 4px;"></div></button></nav></div><ul class="header--dropdown-container js-header-dropdown"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/login" rel="nofollow">Log In</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a></li><li class="header--dropdown-row js-header-dropdown-expand-button"><button class="header--dropdown-button">more<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-down" class="header--dropdown-button-icon svg-inline--fa fa-caret-down fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M31.3 192h257.3c17.8 0 26.7 21.5 14.1 34.1L174.1 354.8c-7.8 7.8-20.5 7.8-28.3 0L17.2 226.1C4.6 213.5 13.5 192 31.3 192z"></path></svg></button></li><li><ul class="header--expanded-dropdown-container"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/about">About</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/press">Press</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/documents">Papers</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/terms">Terms</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/privacy">Privacy</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/copyright">Copyright</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/hiring"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="header--dropdown-row-icon svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>We&#39;re Hiring!</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://support.academia.edu/"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="header--dropdown-row-icon svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>Help Center</a></li><li class="header--dropdown-row js-header-dropdown-collapse-button"><button class="header--dropdown-button">less<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-up" class="header--dropdown-button-icon svg-inline--fa fa-caret-up fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M288.662 352H31.338c-17.818 0-26.741-21.543-14.142-34.142l128.662-128.662c7.81-7.81 20.474-7.81 28.284 0l128.662 128.662c12.6 12.599 3.676 34.142-14.142 34.142z"></path></svg></button></li></ul></li></ul></div> <script src="//a.academia-assets.com/assets/webpack_bundles/fast_loswp-bundle-9c3aee17884517704b99164df3bf08122e978aed622298001f4470844ed827e5.js" defer="defer"></script><script>window.loswp = {}; window.loswp.author = 44451008; window.loswp.bulkDownloadFilterCounts = {}; window.loswp.hasDownloadableAttachment = true; window.loswp.hasViewableAttachments = true; // TODO: just use routes for this window.loswp.loginUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F22862240%2FThree_dimensional_printing_of_porous_ceramic_scaffolds_for_bone_tissue_engineering%3Fauto%3Ddownload"; window.loswp.translateUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F22862240%2FThree_dimensional_printing_of_porous_ceramic_scaffolds_for_bone_tissue_engineering%3Fshow_translation%3Dtrue"; window.loswp.previewableAttachments = [{"id":43402305,"identifier":"Attachment_43402305","shouldShowBulkDownload":false}]; window.loswp.shouldDetectTimezone = true; window.loswp.shouldShowBulkDownload = true; window.loswp.showSignupCaptcha = false window.loswp.willEdgeCache = false; window.loswp.work = {"work":{"id":22862240,"created_at":"2016-03-05T14:35:24.137-08:00","from_world_paper_id":149953372,"updated_at":"2024-11-15T12:49:40.839-08:00","_data":{"grobid_abstract":"This article reports a new process chain for custom-made three-dimensional (3D) porous ceramic scaffolds for bone replacement with fully interconnected channel network for the repair of osseous defects from trauma or disease. Rapid prototyping and especially 3D printing is well suited to generate complex-shaped porous ceramic matrices directly from powder materials. Anatomical information obtained from a patient can be used to design the implant for a target defect. In the 3D printing technique, a box filled with ceramic powder is printed with a polymer-based binder solution layer by layer. Powder is bonded in wetted regions. Unglued powder can be removed and a ceramic green body remains. We use a modified hydroxyapatite (HA) powder for the fabrication of 3D printed scaffolds due to the safety of HA as biocompatible implantable material and efficacy for bone regeneration. The printed ceramic green bodies are consolidated at a temperature of 1250°C in a high temperature furnace in ambient air. The polymeric binder is pyrolysed during sintering. The resulting scaffolds can be used in tissue engineering of bone implants using patient-derived cells that are seeded onto the scaffolds.This article describes the process chain, beginning from data preparation to 3D printing tests and finally sintering of the scaffold. Prototypes were successfully manufactured and characterized. It was demonstrated that it is possible to manufacture parts with inner channels with a dimension down to 450 m and wall structures with a thickness down to 330 m. The mechanical strength of dense test parts is up to 22 MPa.","publication_date":"2005,,","publication_name":"Journal of Biomedical Materials Research Part B: Applied Biomaterials","grobid_abstract_attachment_id":"43402305"},"document_type":"paper","pre_hit_view_count_baseline":null,"quality":"high","language":"en","title":"Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering","broadcastable":true,"draft":null,"has_indexable_attachment":true,"indexable":true}}["work"]; window.loswp.workCoauthors = [44451008]; window.loswp.locale = "en"; window.loswp.countryCode = "SG"; window.loswp.cwvAbTestBucket = ""; window.loswp.designVariant = "ds_vanilla"; window.loswp.fullPageMobileSutdModalVariant = "full_page_mobile_sutd_modal"; window.loswp.useOptimizedScribd4genScript = false; window.loginModal = {}; window.loginModal.appleClientId = 'edu.academia.applesignon';</script><script defer="" src="https://accounts.google.com/gsi/client"></script><div class="ds-loswp-container"><div class="ds-work-card--grid-container"><div class="ds-work-card--container js-loswp-work-card"><div class="ds-work-card--cover"><div class="ds-work-cover--wrapper"><div class="ds-work-cover--container"><button class="ds-work-cover--clickable js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;swp-splash-paper-cover&quot;,&quot;attachmentId&quot;:43402305,&quot;attachmentType&quot;:&quot;pdf&quot;}"><img alt="First page of “Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering”" class="ds-work-cover--cover-thumbnail" src="https://0.academia-photos.com/attachment_thumbnails/43402305/mini_magick20180817-24687-iydwkj.png?1534544682" /><img alt="PDF Icon" class="ds-work-cover--file-icon" src="//a.academia-assets.com/images/single_work_splash/adobe_icon.svg" /><div class="ds-work-cover--hover-container"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span><p>Download Free PDF</p></div><div class="ds-work-cover--ribbon-container">Download Free PDF</div><div class="ds-work-cover--ribbon-triangle"></div></button></div></div></div><div class="ds-work-card--work-information"><h1 class="ds-work-card--work-title">Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering</h1><div class="ds-work-card--work-authors ds-work-card--detail"><a class="ds-work-card--author js-wsj-grid-card-author ds2-5-body-md ds2-5-body-link" data-author-id="44451008" href="https://independent.academia.edu/StephanIrsen"><img alt="Profile image of Stephan Irsen" class="ds-work-card--author-avatar" src="https://gravatar.com/avatar/ca1de3d337a3ba378c361b1662d7b29b?s=65" />Stephan Irsen</a></div><div class="ds-work-card--detail"><p class="ds-work-card--detail ds2-5-body-sm">2005, Journal of Biomedical Materials Research Part B: Applied Biomaterials</p><div class="ds-work-card--work-metadata"><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">visibility</span><p class="ds2-5-body-sm" id="work-metadata-view-count">…</p></div><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">description</span><p class="ds2-5-body-sm">7 pages</p></div><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">link</span><p class="ds2-5-body-sm">1 file</p></div></div><script>(async () => { const workId = 22862240; const worksViewsPath = "/v0/works/views?subdomain_param=api&amp;work_ids%5B%5D=22862240"; const getWorkViews = async (workId) => { const response = await fetch(worksViewsPath); if (!response.ok) { throw new Error('Failed to load work views'); } const data = await response.json(); return data.views[workId]; }; // Get the view count for the work - we send this immediately rather than waiting for // the DOM to load, so it can be available as soon as possible (but without holding up // the backend or other resource requests, because it's a bit expensive and not critical). const viewCount = await getWorkViews(workId); const updateViewCount = (viewCount) => { try { const viewCountNumber = parseInt(viewCount, 10); if (viewCountNumber === 0) { // Remove the whole views element if there are zero views. document.getElementById('work-metadata-view-count')?.parentNode?.remove(); return; } const commaizedViewCount = viewCountNumber.toLocaleString(); const viewCountBody = document.getElementById('work-metadata-view-count'); if (!viewCountBody) { throw new Error('Failed to find work views element'); } viewCountBody.textContent = `${commaizedViewCount} views`; } catch (error) { // Remove the whole views element if there was some issue parsing. document.getElementById('work-metadata-view-count')?.parentNode?.remove(); throw new Error(`Failed to parse view count: ${viewCount}`, error); } }; // If the DOM is still loading, wait for it to be ready before updating the view count. if (document.readyState === "loading") { document.addEventListener('DOMContentLoaded', () => { updateViewCount(viewCount); }); // Otherwise, just update it immediately. } else { updateViewCount(viewCount); } })();</script></div><p class="ds-work-card--work-abstract ds-work-card--detail ds2-5-body-md">This article reports a new process chain for custom-made three-dimensional (3D) porous ceramic scaffolds for bone replacement with fully interconnected channel network for the repair of osseous defects from trauma or disease. Rapid prototyping and especially 3D printing is well suited to generate complex-shaped porous ceramic matrices directly from powder materials. Anatomical information obtained from a patient can be used to design the implant for a target defect. In the 3D printing technique, a box filled with ceramic powder is printed with a polymer-based binder solution layer by layer. Powder is bonded in wetted regions. Unglued powder can be removed and a ceramic green body remains. We use a modified hydroxyapatite (HA) powder for the fabrication of 3D printed scaffolds due to the safety of HA as biocompatible implantable material and efficacy for bone regeneration. The printed ceramic green bodies are consolidated at a temperature of 1250°C in a high temperature furnace in ambient air. The polymeric binder is pyrolysed during sintering. The resulting scaffolds can be used in tissue engineering of bone implants using patient-derived cells that are seeded onto the scaffolds.This article describes the process chain, beginning from data preparation to 3D printing tests and finally sintering of the scaffold. Prototypes were successfully manufactured and characterized. It was demonstrated that it is possible to manufacture parts with inner channels with a dimension down to 450 m and wall structures with a thickness down to 330 m. The mechanical strength of dense test parts is up to 22 MPa.</p><div class="ds-work-card--button-container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;continue-reading-button--work-card&quot;,&quot;attachmentId&quot;:43402305,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:&quot;https://www.academia.edu/22862240/Three_dimensional_printing_of_porous_ceramic_scaffolds_for_bone_tissue_engineering&quot;}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;download-pdf-button--work-card&quot;,&quot;attachmentId&quot;:43402305,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:&quot;https://www.academia.edu/22862240/Three_dimensional_printing_of_porous_ceramic_scaffolds_for_bone_tissue_engineering&quot;}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div></div><div data-auto_select="false" data-client_id="331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b" data-doc_id="43402305" data-landing_url="https://www.academia.edu/22862240/Three_dimensional_printing_of_porous_ceramic_scaffolds_for_bone_tissue_engineering" data-login_uri="https://www.academia.edu/registrations/google_one_tap" data-moment_callback="onGoogleOneTapEvent" id="g_id_onload"></div><div class="ds-top-related-works--grid-container"><div class="ds-related-content--container ds-top-related-works--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="0" data-entity-id="16975130" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/16975130/Porous_ceramic_bone_scaffolds_for_vascularized_bone_tissue_regeneration">Porous ceramic bone scaffolds for vascularized bone tissue regeneration</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="36494203" href="https://uni-erlangen.academia.edu/JuliaWill">Julia Will</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Materials Science: Materials in Medicine, 2008</p><p class="ds-related-work--abstract ds2-5-body-sm">Hydroxyapatite scaffolds with a multi modal porosity designed for use in tissue engineering of vascularized bone graft substitutes were prepared by three dimensional printing. Depending on the ratio of coarse (mean particle size 50 lm) to fine powder (mean particle size 4 lm) in the powder granulate and the sintering temperature total porosity was varied from 30% to 64%. While macroscopic pore channels with a diameter of 1 mm were created by CAD design, porosity structure in the sintered solid phase was governed by the granulate structure of the printing powder. Scaffolds sintered at 1,250°C were characterized by a bimodal pore structure with intragranular pores of 0.3-0.4 lm and intergranular pores of 20 lm whereas scaffolds sintered at 1,400°C exhibit a monomodal porosity with a maximum of pore size distribution at 10-20 lm. For in-vivo testing, matrices were implanted subcutaneously in four male Lewis rats. Scaffolds with 50% porosity and an average pore size of *18 lm were successfully transferred to rats and vascularized within 4 weeks.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Porous ceramic bone scaffolds for vascularized bone tissue regeneration&quot;,&quot;attachmentId&quot;:39287337,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/16975130/Porous_ceramic_bone_scaffolds_for_vascularized_bone_tissue_regeneration&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/16975130/Porous_ceramic_bone_scaffolds_for_vascularized_bone_tissue_regeneration"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="1" data-entity-id="89392933" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/89392933/Validation_of_techniques_for_manufacturing_macro_porous_bio_ceramic_scaffolds_for_biomedical_purposes">Validation of techniques for manufacturing macro-porous bio-ceramic scaffolds for biomedical purposes</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="242553366" href="https://independent.academia.edu/CARLOSGASOTO">SIDNEY CARLOS GASOTO</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2022</p><p class="ds-related-work--abstract ds2-5-body-sm">The use of bio-materials in medicine has intensified as new treatments are emerging. Among bio-materials, bio-ceramics have attracted attention due to their applications in regeneration, generation and formation of bone tissues. Calcium phosphates, more specifically hydroxyapatite, make up a large part of the composition of human bones and teeth. The bio-material is used mainly for the production of porous scaffolds to act as a bone graft. This work reviews techniques currently used for manufacturing scaffolds, and studies parameters of a technique called direct foaming to try to adapt the process for the production of hydroxyapatite scaffolds. Suspensions were produced with the aid of mechanical stirrer and ultrasonic stirrer to compare the dispersion produced. Results show the need to improve freeze casting techniques for biomedical applications. It was observed that 3D printing to produce scaffolds is adequate but can be optimized. The direct foaming method generated promising scaffolds, and it is possible to adapt the process to make parts of hydroxyapatite.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Validation of techniques for manufacturing macro-porous bio-ceramic scaffolds for biomedical purposes&quot;,&quot;attachmentId&quot;:93205420,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/89392933/Validation_of_techniques_for_manufacturing_macro_porous_bio_ceramic_scaffolds_for_biomedical_purposes&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/89392933/Validation_of_techniques_for_manufacturing_macro_porous_bio_ceramic_scaffolds_for_biomedical_purposes"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="2" data-entity-id="18203110" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/18203110/Biocompatibility_of_ceramic_scaffolds_for_bone_replacement_made_by_3D_printing">Biocompatibility of ceramic scaffolds for bone replacement made by 3D printing</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="38008568" href="https://lmu-munich.academia.edu/StefanMilz">Stefan Milz</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Materialwissenschaft und Werkstofftechnik, 2005</p><p class="ds-related-work--abstract ds2-5-body-sm">Bone replacement materials used in tissue engineering require a high degree of safety and biological compatibility. For these reasons synthetic bone replacement materials based on calcium-phosphates are being used more widely. To mimic natural bone, rapid prototyping processes and especially 3D printing are favourable. Using 3D printing, complex 3 dimensional structures can be made easily.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Biocompatibility of ceramic scaffolds for bone replacement made by 3D printing&quot;,&quot;attachmentId&quot;:39931230,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/18203110/Biocompatibility_of_ceramic_scaffolds_for_bone_replacement_made_by_3D_printing&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/18203110/Biocompatibility_of_ceramic_scaffolds_for_bone_replacement_made_by_3D_printing"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="3" data-entity-id="103353445" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/103353445/Additive_Manufacturing_of_Novel_Ceramic_Based_Composite_Scaffolds_for_Bone_Tissue_Engineering">Additive Manufacturing of Novel Ceramic-Based Composite Scaffolds for Bone Tissue Engineering</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="42862177" href="https://utu.academia.edu/NikhilKamboj">Nikhil Kamboj</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2020</p><p class="ds-related-work--abstract ds2-5-body-sm">IV The author conducted a portion of the experimental work; optimisation of the printing parameters of the scaffolds; mechanical characterisation; and writing of some sections of the initial draft. 1.1.1 Synthetic scaffolds for BTE Critical-sized bone defects, commonly in the range of 1-4.5 cm are generally repaired by synthetic grafts known as scaffolds (Schemitsch, 2017). To overcome the shortcomings of natural bone scaffolds, a permanent, reliable, sustainable, and holistic solution is required to heal and repair critical-sized bone defects. Synthetic bone scaffolds play an imperative role in BTE and can mimic the natural bone ECM by facilitating and providing a 3D network for regenerating the bone for critical defects. The synthetic bone scaffolds can be classified into three broad categories. This classification primarily depends on the fracture sites, as illustrated in Fig. 1.2. Of late, 3D printing has emerged as an efficient solution to the fabrication of scaffolds for BTE, as it allows custom-designed scaffolds suitable to the defect. Various fabrication techniques allow superior control of parameters, such as pore size, porosity, surface roughness, and mechanical properties of the scaffolds to better suit the anatomy of the patient&#39;s defective bone. Synthetic bone grafts manufactured by AM technologies can also be integrated with active biomolecules. They can influence bone growth by acting on the antagonist of bone marker genes and enhancing its proliferation. Most synthetic grafts are natural bone matrix (ECM) or βTCP scaffolds infused with bioactive molecules. Some of these products include rh-BMP-2 [Infuse® bone graft] (Ho-Shui-Ling et al., 2018), rh-BMP-7 [Osigraft] (Ho-Shui-Ling et al., 2018), rh-PDGF [Augment® bone graft] (Krell et al., 2016), rhBMP-6 + whole blood coagulum [Osteogrow] (Genera Research Ltd, 2014), and allograft-derived growth factor [Osteoamp] (Ho-Shui-Ling et al., 2018). These bone grafts are mainly used for cervical and lumbar spine, wrist, ankle, and grim fractures of femur and tibia, where the fracture size is between 2 to 4 cm. The last category of scaffolds relies on the delivery of cells encapsulated on cell-based scaffolds (Bolander et al., 2017). The commonly used stem cells are PDSCs, BMSCs, and ASCs. The &quot;as-prepared&quot; construct can be further nourished and developed in a bioreactor system to reach a more advanced stage (Ho-Shui-Ling et al., 2018), in which a 3D network is established that stimulates the entrapped stem cells to develop into new tissue or heal the defect site (Ingber et al., 2006). Stem cell therapies, combined with an allogenic graft matrix or HAP matrix usually heal critical size defects greater than 4 cm by</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Additive Manufacturing of Novel Ceramic-Based Composite Scaffolds for Bone Tissue Engineering&quot;,&quot;attachmentId&quot;:103382915,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/103353445/Additive_Manufacturing_of_Novel_Ceramic_Based_Composite_Scaffolds_for_Bone_Tissue_Engineering&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/103353445/Additive_Manufacturing_of_Novel_Ceramic_Based_Composite_Scaffolds_for_Bone_Tissue_Engineering"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="4" data-entity-id="13828338" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/13828338/3D_printing_of_ceramic_implants">3D printing of ceramic implants</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="49041461" href="https://independent.academia.edu/ElkeVorndran">Elke Vorndran</a><span>, </span><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32923447" href="https://uni-wuerzburg.academia.edu/ClausMoseke">Claus Moseke</a></div><p class="ds-related-work--metadata ds2-5-body-xs">MRS Bulletin, 2015</p><p class="ds-related-work--abstract ds2-5-body-sm">Three-dimensional powder printing (3DP) is attractive for the direct fabrication of bioceramic implants and scaffolds from a computer aided design fi le for bone tissue engineering by localized deposition of a reactive binder liquid onto thin powder layers. This article reviews recent fi ndings on novel material developments for the three-dimensional (3D) printing process using either sintering regimes or cement setting reactions. Customized ceramic implants can be fabricated by 3DP using computer tomography data obtained from a patient, whereas further drug modifi cation of such implants can be achieved either in situ or post-printing. The excellent biological in vitro and in vivo behavior of 3D-printed bioceramics together with processing at ambient conditions may give the opportunity to directly produce cell-seeded patient-specifi c implants for accelerated and enhanced bone regeneration in the future.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;3D printing of ceramic implants&quot;,&quot;attachmentId&quot;:44904394,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/13828338/3D_printing_of_ceramic_implants&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/13828338/3D_printing_of_ceramic_implants"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="5" data-entity-id="18203099" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/18203099/Hydroxyapatite_scaffolds_for_bone_tissue_engineering_made_by_3D_printing">Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="38008568" href="https://lmu-munich.academia.edu/StefanMilz">Stefan Milz</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Materials Science: Materials in Medicine, 2005</p><p class="ds-related-work--abstract ds2-5-body-sm">Nowadays, there is a significant need for synthetic bone replacement materials used in bone tissue engineering (BTE). Rapid prototyping and especially 3D printing is a suitable technique to create custom implants based on medical data sets. 3D printing allows to fabricate scaffolds based on Hydroxyapatite with complex internal structures and high resolution. To determine the in vitro behaviour of cells cultivated on the scaffolds, we designed a special test-part. MC3T3-E1 cells were seeded on the scaffolds and cultivated under static and dynamic setups. Histological evaluation was carried out to characterise the cell ingrowth. In summary, the dynamic cultivation method lead to a stronger population compared to the static cultivation method. The cells proliferated deep into the structure forming close contact to Hydroxyapatite granules. C 2005 Springer Science + Business Media, Inc.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing&quot;,&quot;attachmentId&quot;:39931229,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/18203099/Hydroxyapatite_scaffolds_for_bone_tissue_engineering_made_by_3D_printing&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/18203099/Hydroxyapatite_scaffolds_for_bone_tissue_engineering_made_by_3D_printing"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="6" data-entity-id="85421276" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/85421276/Powder_3D_Printing_of_Bone_Scaffolds_with_Uniform_and_Gradient_Pore_Sizes_Using_Cuttlebone_Derived_Calcium_Phosphate_and_Glass_Ceramic">Powder 3D Printing of Bone Scaffolds with Uniform and Gradient Pore Sizes Using Cuttlebone-Derived Calcium Phosphate and Glass-Ceramic</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="13387284" href="https://unitn.academia.edu/vincenzosglavo">vincenzo sglavo</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Materials</p><p class="ds-related-work--abstract ds2-5-body-sm">The pore geometry of bone scaffolds has a major impact on their cellular response; for this reason, 3D printing is an attractive technology for bone tissue engineering, as it allows for the full control and design of the porosity. Calcium phosphate materials synthesized from natural sources have recently attracted a certain interest because of their similarity to natural bone, and they were found to show better bioactivity than synthetic compounds. Nevertheless, these materials are very challenging to be processed by 3D printing due to technological issues related to their nanometric size. In this work, bone scaffolds with different pore geometries, with a uniform size or with a size gradient, were fabricated by binder jetting 3D printing using a biphasic calcium phosphate (BCP) nanopowder derived from cuttlebones. To do so, the nanopowder was mixed with a glass-ceramic powder with a larger particle size (45–100 µm) in 1:10 weight proportions. Pure AP40mod scaffolds were also printe...</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Powder 3D Printing of Bone Scaffolds with Uniform and Gradient Pore Sizes Using Cuttlebone-Derived Calcium Phosphate and Glass-Ceramic&quot;,&quot;attachmentId&quot;:90124300,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/85421276/Powder_3D_Printing_of_Bone_Scaffolds_with_Uniform_and_Gradient_Pore_Sizes_Using_Cuttlebone_Derived_Calcium_Phosphate_and_Glass_Ceramic&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/85421276/Powder_3D_Printing_of_Bone_Scaffolds_with_Uniform_and_Gradient_Pore_Sizes_Using_Cuttlebone_Derived_Calcium_Phosphate_and_Glass_Ceramic"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="7" data-entity-id="73897824" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/73897824/Ceramic_Architectures_as_Models_for_3D_Printed_Tissue_Engineering_Applications">Ceramic Architectures as Models for 3D Printed Tissue Engineering Applications</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="48084487" href="https://stuba.academia.edu/MarianJanek">Marian Janek</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2019</p><p class="ds-related-work--abstract ds2-5-body-sm">Shrinkage of ceramic objects produced by Fused Depositon Ceramics 3D printing technology was studied as model procedure for production of biocompatible scaffolds. The formulation of ceramic composite filament tested was based on components such as aluminium and silicium oxides and thermoplastic polymer. The resulting ceramic material after sintering is approaching the chemical composition of the mullite ceramics, which has several interesting material properties. The shrinkage of the produced testing objects was studied as function of the particle content in starting composite and sintering temperature. Observed shrinkage of the ceramic bodies produced was on the level of 17% for 65 weight % and the 23% for 40 weight % of inorganic filler content at temperature 1200 °C, respectively, with well maintained shape. The tested ceramic scaffolds were produced using slice thickness of 0.50 mm and fill gap of 0.58 mm, with regular rectilinear infill pores generated by Slic3r.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Ceramic Architectures as Models for 3D Printed Tissue Engineering Applications&quot;,&quot;attachmentId&quot;:82246012,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/73897824/Ceramic_Architectures_as_Models_for_3D_Printed_Tissue_Engineering_Applications&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/73897824/Ceramic_Architectures_as_Models_for_3D_Printed_Tissue_Engineering_Applications"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="8" data-entity-id="20577000" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/20577000/Characterization_of_HA_and_x03B2_TCP_3_D_printed_scaffolds_for_custom_bone_repair_applications">Characterization of HA/&amp;#x03B2;TCP 3-D printed scaffolds for custom bone repair applications</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="41929525" href="https://independent.academia.edu/AMurriky">A. Murriky</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Proceedings of the 2010 IEEE 36th Annual Northeast Bioengineering Conference (NEBEC), 2010</p><p class="ds-related-work--abstract ds2-5-body-sm">The objective of this study was to characterize the chemical and physical properties of bioactive ceramics prepared from an aqueous paste containing hydroxyapatite (HA) and beta tri-calcium phosphate (β-TCP). Prior to formulating the paste, HA and β-TCP were calcined at 800 ℃ and 975 ℃ (11 h), milled, and blended into 15%/85% HA/β-TCP volume-mixed paste. Fabricated cylindrical rods were subsequently sintered to 900 ℃, 1100 ℃ or 1250 ℃. The sintered specimens were characterized by helium pycnometry, X-ray diffraction (XRD), Fourier transform-infrared (FT-IR), and inductively coupled plasma (ICP) spectroscopy for evaluation of porosity, crystalline phase, functional-groups, and Ca:P ratio, respectively. Mechanical properties were assessed via 3-point bending and diametral compression. Qualitative microstructural evaluation using scanning electron microscopy (SEM) showed larger pores and a broader pore size distribution (PSD) for materials sintered at 900 ℃ and 1100 ℃, whereas the 1250 ℃ samples showed more uniform PSD. Porosity quantification showed significantly higher porosity for materials sintered to 900 ℃ and 1250 ℃ (p &lt; 0.05). XRD indicated substantial deviations from the 15%/85% HA/β-TCP formulation following sintering where lower amounts of HA were observed when sintering temperature was increased. Mechanical testing demonstrated significant differences between calcination temperatures and different sintering regimes (p &lt; 0.05). Variation in chemical composition and mechanical properties of bioactive ceramics were direct consequences of calcination and sintering.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Characterization of HA/\u0026#x03B2;TCP 3-D printed scaffolds for custom bone repair applications&quot;,&quot;attachmentId&quot;:41446752,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/20577000/Characterization_of_HA_and_x03B2_TCP_3_D_printed_scaffolds_for_custom_bone_repair_applications&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/20577000/Characterization_of_HA_and_x03B2_TCP_3_D_printed_scaffolds_for_custom_bone_repair_applications"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="9" data-entity-id="52137235" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/52137235/Performance_of_hydroxyapatite_bone_repair_scaffolds_created_via_three_dimensional_fabrication_techniques">Performance of hydroxyapatite bone repair scaffolds created via three-dimensional fabrication techniques</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32872949" href="https://independent.academia.edu/ThompsonVan">Van Thompson</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Biomedical Materials Research, 2003</p><p class="ds-related-work--abstract ds2-5-body-sm">The current study analyzes the in vivo performance of porous sintered hydroxyapatite (HA) bone repair scaffolds fabricated using the TheriForm™ solid freeform fabrication process. Porous HA scaffolds with engineered macroscopic channels had a significantly higher percentage of new bone area compared with porous HA scaffolds without channels in a rabbit calvarial defect model at an 8-week time point. An unexpected finding was the unusually large amount of new bone within the base material structure, which contained pores less than 20 m in size. Compared with composite scaffolds of 80% polylactic-co-glycolic acid and 20% ␤-tricalcium phosphate with the same macroscopic architecture as evaluated in a previous study, the porous HA scaffolds with channels had a significantly higher percentage of new bone area. Therefore, the current study indicates that scaffold geometry, as determined by the fabrication process, can enhance the ability of a ceramic material to accelerate healing of calvarial defects.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Performance of hydroxyapatite bone repair scaffolds created via three-dimensional fabrication techniques&quot;,&quot;attachmentId&quot;:69541182,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/52137235/Performance_of_hydroxyapatite_bone_repair_scaffolds_created_via_three_dimensional_fabrication_techniques&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/52137235/Performance_of_hydroxyapatite_bone_repair_scaffolds_created_via_three_dimensional_fabrication_techniques"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div></div><div class="ds-sticky-ctas--wrapper js-loswp-sticky-ctas hidden"><div class="ds-sticky-ctas--grid-container"><div class="ds-sticky-ctas--container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;continue-reading-button--sticky-ctas&quot;,&quot;attachmentId&quot;:43402305,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:null}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;download-pdf-button--sticky-ctas&quot;,&quot;attachmentId&quot;:43402305,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:null}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div><div class="ds-below-fold--grid-container"><div class="ds-work--container js-loswp-embedded-document"><div class="attachment_preview" data-attachment="Attachment_43402305" style="display: none"><div class="js-scribd-document-container"><div class="scribd--document-loading js-scribd-document-loader" style="display: block;"><img alt="Loading..." src="//a.academia-assets.com/images/loaders/paper-load.gif" /><p>Loading Preview</p></div></div><div style="text-align: center;"><div class="scribd--no-preview-alert js-preview-unavailable"><p>Sorry, preview is currently unavailable. You can download the paper by clicking the button above.</p></div></div></div></div><div class="ds-sidebar--container js-work-sidebar"><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="0" data-entity-id="35677177" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/35677177/Polycaprolactone_and_polycaprolactone_ceramic_based_3D_bioplotted_porous_scaffolds_for_bone_regeneration_A_comparative_study">Polycaprolactone-and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: A comparative study</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="33608188" href="https://unam1.academia.edu/Mar%C3%ADaCristinaPi%C3%B1aBarba">María Cristina Piña Barba</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Polycaprolactone-and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: A comparative study&quot;,&quot;attachmentId&quot;:55547690,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/35677177/Polycaprolactone_and_polycaprolactone_ceramic_based_3D_bioplotted_porous_scaffolds_for_bone_regeneration_A_comparative_study&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/35677177/Polycaprolactone_and_polycaprolactone_ceramic_based_3D_bioplotted_porous_scaffolds_for_bone_regeneration_A_comparative_study"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="1" data-entity-id="53509068" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/53509068/3D_Printed_Composite_Bone_Bricks_For_Large_Bone_Tissue_Applications">3D-Printed Composite Bone Bricks For Large Bone Tissue Applications</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="115171500" href="https://independent.academia.edu/EderaDinea">Edera Dinea</a></div><p class="ds-related-work--metadata ds2-5-body-xs">MATEC Web of Conferences</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;3D-Printed Composite Bone Bricks For Large Bone Tissue Applications&quot;,&quot;attachmentId&quot;:70320057,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/53509068/3D_Printed_Composite_Bone_Bricks_For_Large_Bone_Tissue_Applications&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/53509068/3D_Printed_Composite_Bone_Bricks_For_Large_Bone_Tissue_Applications"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="2" data-entity-id="98053349" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/98053349/Fabrication_of_a_Porous_and_Formable_Ceramic_Composite_Bone_Tissue_Scaffold_at_Ambient_Temperature">Fabrication of a Porous and Formable Ceramic Composite Bone Tissue Scaffold at Ambient Temperature</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="116585540" href="https://ualberta.academia.edu/jnychka">john nychka</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Metallurgical and Materials Transactions A, 2020</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Fabrication of a Porous and Formable Ceramic Composite Bone Tissue Scaffold at Ambient Temperature&quot;,&quot;attachmentId&quot;:99509665,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/98053349/Fabrication_of_a_Porous_and_Formable_Ceramic_Composite_Bone_Tissue_Scaffold_at_Ambient_Temperature&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/98053349/Fabrication_of_a_Porous_and_Formable_Ceramic_Composite_Bone_Tissue_Scaffold_at_Ambient_Temperature"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="3" data-entity-id="113942964" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/113942964/Translation_of_three_dimensional_printing_of_ceramics_in_bone_tissue_engineering_and_drug_delivery">Translation of three-dimensional printing of ceramics in bone tissue engineering and drug delivery</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="294651755" href="https://independent.academia.edu/ThorelEmilie">Emilie Thorel</a></div><p class="ds-related-work--metadata ds2-5-body-xs">MRS Bulletin</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Translation of three-dimensional printing of ceramics in bone tissue engineering and drug delivery&quot;,&quot;attachmentId&quot;:110772824,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/113942964/Translation_of_three_dimensional_printing_of_ceramics_in_bone_tissue_engineering_and_drug_delivery&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/113942964/Translation_of_three_dimensional_printing_of_ceramics_in_bone_tissue_engineering_and_drug_delivery"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="4" data-entity-id="10300683" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/10300683/Manufacture_and_characterization_of_a_mixture_of_Bone_Powder_and_Bio_ceramic_A_3D_printing_method_process_Manufactura_y_caracterizaci%C3%B3n_de_una_mezcla_de_polvo_de_hueso_y_biocer%C3%A1mico_procesada_por_impresi%C3%B3n_en_3D">Manufacture and characterization of a mixture of Bone Powder and Bio ceramic: A 3D-printing method process Manufactura y caracterización de una mezcla de polvo de hueso y biocerámico procesada por impresión en 3D</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="25237803" href="https://independent.academia.edu/DianaNarvaez3">Diana Narvaez</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Manufacture and characterization of a mixture of Bone Powder and Bio ceramic: A 3D-printing method process Manufactura y caracterización de una mezcla de polvo de hueso y biocerámico procesada por impresión en 3D&quot;,&quot;attachmentId&quot;:47446790,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/10300683/Manufacture_and_characterization_of_a_mixture_of_Bone_Powder_and_Bio_ceramic_A_3D_printing_method_process_Manufactura_y_caracterizaci%C3%B3n_de_una_mezcla_de_polvo_de_hueso_y_biocer%C3%A1mico_procesada_por_impresi%C3%B3n_en_3D&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/10300683/Manufacture_and_characterization_of_a_mixture_of_Bone_Powder_and_Bio_ceramic_A_3D_printing_method_process_Manufactura_y_caracterizaci%C3%B3n_de_una_mezcla_de_polvo_de_hueso_y_biocer%C3%A1mico_procesada_por_impresi%C3%B3n_en_3D"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="5" data-entity-id="21373659" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/21373659/Manufacturing_and_Characterization_of_3_D_Hydroxyapatite_Bone_Tissue_Engineering_Scaffolds">Manufacturing and Characterization of 3-D Hydroxyapatite Bone Tissue Engineering Scaffolds</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="5461291" href="https://wwwcoventry.academia.edu/JohnHalloran">John Halloran</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Annals of the New York Academy of Sciences, 2002</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Manufacturing and Characterization of 3-D Hydroxyapatite Bone Tissue Engineering Scaffolds&quot;,&quot;attachmentId&quot;:41839687,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/21373659/Manufacturing_and_Characterization_of_3_D_Hydroxyapatite_Bone_Tissue_Engineering_Scaffolds&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/21373659/Manufacturing_and_Characterization_of_3_D_Hydroxyapatite_Bone_Tissue_Engineering_Scaffolds"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="6" data-entity-id="57991630" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/57991630/Investigating_Approaches_for_Three_Dimensional_Printing_of_Hydroxyapatite_Scaffolds_for_Bone_Regeneration">Investigating Approaches for Three-Dimensional Printing of Hydroxyapatite Scaffolds for Bone Regeneration</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="115111187" href="https://independent.academia.edu/NicholasDunne3">Nicholas Dunne</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Key Engineering Materials, 2014</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Investigating Approaches for Three-Dimensional Printing of Hydroxyapatite Scaffolds for Bone Regeneration&quot;,&quot;attachmentId&quot;:72620621,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/57991630/Investigating_Approaches_for_Three_Dimensional_Printing_of_Hydroxyapatite_Scaffolds_for_Bone_Regeneration&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/57991630/Investigating_Approaches_for_Three_Dimensional_Printing_of_Hydroxyapatite_Scaffolds_for_Bone_Regeneration"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="7" data-entity-id="93281749" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/93281749/Interconnected_porous_hydroxyapatite_ceramics_for_bone_tissue_engineering">Interconnected porous hydroxyapatite ceramics for bone tissue engineering</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="96759932" href="https://osaka-u.academia.edu/TsuyoshiMurase">Tsuyoshi Murase</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of The Royal Society Interface, 2008</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Interconnected porous hydroxyapatite ceramics for bone tissue engineering&quot;,&quot;attachmentId&quot;:96061657,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/93281749/Interconnected_porous_hydroxyapatite_ceramics_for_bone_tissue_engineering&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/93281749/Interconnected_porous_hydroxyapatite_ceramics_for_bone_tissue_engineering"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="8" data-entity-id="22862237" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/22862237/The_morphology_of_anisotropic_3D_printed_hydroxyapatite_scaffolds">The morphology of anisotropic 3D-printed hydroxyapatite scaffolds</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="44451008" href="https://independent.academia.edu/StephanIrsen">Stephan Irsen</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Biomaterials, 2008</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;The morphology of anisotropic 3D-printed hydroxyapatite scaffolds&quot;,&quot;attachmentId&quot;:43402319,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/22862237/The_morphology_of_anisotropic_3D_printed_hydroxyapatite_scaffolds&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/22862237/The_morphology_of_anisotropic_3D_printed_hydroxyapatite_scaffolds"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="9" data-entity-id="59693143" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/59693143/MicroCT_analysis_of_hydroxyapatite_bone_repair_scaffolds_created_via_three_dimensional_printing_for_evaluating_the_effects_of_scaffold_architecture_on_bone_ingrowth">MicroCT analysis of hydroxyapatite bone repair scaffolds created via three-dimensional printing for evaluating the effects of scaffold architecture on bone ingrowth</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="21445500" href="https://independent.academia.edu/VanPThompson">Van P Thompson</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Biomedical Materials Research Part A, 2008</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;MicroCT analysis of hydroxyapatite bone repair scaffolds created via three-dimensional printing for evaluating the effects of scaffold architecture on bone ingrowth&quot;,&quot;attachmentId&quot;:73484328,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/59693143/MicroCT_analysis_of_hydroxyapatite_bone_repair_scaffolds_created_via_three_dimensional_printing_for_evaluating_the_effects_of_scaffold_architecture_on_bone_ingrowth&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/59693143/MicroCT_analysis_of_hydroxyapatite_bone_repair_scaffolds_created_via_three_dimensional_printing_for_evaluating_the_effects_of_scaffold_architecture_on_bone_ingrowth"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related topics</h2><div class="ds-research-interests--pills-container"><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="1131" href="https://www.academia.edu/Documents/in/Biomedical_Engineering">Biomedical Engineering</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="2699" href="https://www.academia.edu/Documents/in/Tissue_Engineering">Tissue Engineering</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="10655" href="https://www.academia.edu/Documents/in/Scanning_Electron_Microscopy">Scanning Electron Microscopy</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="36237" href="https://www.academia.edu/Documents/in/Biomedical">Biomedical</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="58128" href="https://www.academia.edu/Documents/in/Ceramics">Ceramics</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="68315" href="https://www.academia.edu/Documents/in/Porosity">Porosity</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="127505" href="https://www.academia.edu/Documents/in/Bone_Tissue_Engineering">Bone Tissue Engineering</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="504035" href="https://www.academia.edu/Documents/in/Three_Dimensional">Three Dimensional</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="891377" href="https://www.academia.edu/Documents/in/Bone_Substitutes">Bone Substitutes</a></div></div></div></div></div><div class="footer--content"><ul class="footer--main-links hide-on-mobile"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We&#39;re Hiring!</strong></a></li><li><a href="https://support.academia.edu/"><svg style="width: 12px; height: 12px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer--research-interests"><li>Find new research papers in:</li><li><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul><ul class="footer--legal-links hide-on-mobile"><li><a href="https://www.academia.edu/terms">Terms</a></li><li><a href="https://www.academia.edu/privacy">Privacy</a></li><li><a href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10