CINXE.COM

Pure Mathematics Research Papers - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Pure Mathematics Research Papers - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "by_tag", 'action': "show_one", 'controller_action': 'by_tag#show_one', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="V2fmCUOLzG68k5xj4iMCXv6wFm//de1g3uNzCShBmEothzCoKlxKG3Umoetd83Chv0FBnW4BUMAXMtxz2VBTvQ==" /> <link href="/Documents/in/Pure_Mathematics?after=50%2C45290060" rel="next" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="description" content="View Pure Mathematics Research Papers on Academia.edu for free." /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'by_tag'; var $action_name = "show_one"; var $rails_env = 'production'; var $app_rev = '49879c2402910372f4abc62630a427bbe033d190'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15275,"monthly_visitors":"113 million","monthly_visitor_count":113468711,"monthly_visitor_count_in_millions":113,"user_count":277129052,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732416069000); window.Aedu.timeDifference = new Date().getTime() - 1732416069000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-296162c7af6fd81dcdd76f1a94f1fad04fb5f647401337d136fe8b68742170b1.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-8d53a22151f33ab413d88fa1c02f979c3f8706d470fc1bced09852c72a9f3454.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-f8fe82512740391f81c9e8cc48220144024b425b359b08194e316f4de070b9e8.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://www.academia.edu/Documents/in/Pure_Mathematics" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-by_tag a-show_one logged_out u-bgColorWhite'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-by_tag a-show_one logged_out u-bgColorWhite'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav no-sm no-md"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <div class="DesignSystem" style="margin-top:-40px"><div class="PageHeader"><div class="container"><div class="row"><style type="text/css">.sor-abstract { display: -webkit-box; overflow: hidden; text-overflow: ellipsis; -webkit-line-clamp: 3; -webkit-box-orient: vertical; }</style><div class="col-xs-12 clearfix"><div class="u-floatLeft"><h1 class="PageHeader-title u-m0x u-fs30">Pure Mathematics</h1><div class="u-tcGrayDark">43,233&nbsp;Followers</div><div class="u-tcGrayDark u-mt2x">Recent papers in&nbsp;<b>Pure Mathematics</b></div></div></div></div></div></div><div class="TabbedNavigation"><div class="container"><div class="row"><div class="col-xs-12 clearfix"><ul class="nav u-m0x u-p0x list-inline u-displayFlex"><li class="active"><a href="https://www.academia.edu/Documents/in/Pure_Mathematics">Top Papers</a></li><li><a href="https://www.academia.edu/Documents/in/Pure_Mathematics/MostCited">Most Cited Papers</a></li><li><a href="https://www.academia.edu/Documents/in/Pure_Mathematics/MostDownloaded">Most Downloaded Papers</a></li><li><a href="https://www.academia.edu/Documents/in/Pure_Mathematics/MostRecent">Newest Papers</a></li><li><a class="" href="https://www.academia.edu/People/Pure_Mathematics">People</a></li></ul></div><style type="text/css">ul.nav{flex-direction:row}@media(max-width: 567px){ul.nav{flex-direction:column}.TabbedNavigation li{max-width:100%}.TabbedNavigation li.active{background-color:var(--background-grey, #dddde2)}.TabbedNavigation li.active:before,.TabbedNavigation li.active:after{display:none}}</style></div></div></div><div class="container"><div class="row"><div class="col-xs-12"><div class="u-displayFlex"><div class="u-flexGrow1"><div class="works"><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_55614042" data-work_id="55614042" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/55614042/The_Schur_l1_Theorem_for_filters">The Schur l1 Theorem for filters</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Every theorem of Classical Analysis, Functional Analysis or of the Measure Theory that states a property of sequences leads to a class of filters for which this theorem is valid. Sometimes such class of filters is trivial (say, all... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_55614042" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Every theorem of Classical Analysis, Functional Analysis or of the Measure Theory that states a property of sequences leads to a class of filters for which this theorem is valid. Sometimes such class of filters is trivial (say, all filters or the filters with countable base), but in several ...</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/55614042" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="2acdd81668958027d1cdc017ef9baaef" rel="nofollow" data-download="{&quot;attachment_id&quot;:71404009,&quot;asset_id&quot;:55614042,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/71404009/download_file?st=MTczMjQxNjA2Nyw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="45413321" href="https://independent.academia.edu/AlexanderLeonov1">Alexander Leonov</a><script data-card-contents-for-user="45413321" type="text/json">{"id":45413321,"first_name":"Alexander","last_name":"Leonov","domain_name":"independent","page_name":"AlexanderLeonov1","display_name":"Alexander Leonov","profile_url":"https://independent.academia.edu/AlexanderLeonov1?f_ri=19997","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_55614042 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="55614042"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 55614042, container: ".js-paper-rank-work_55614042", }); });</script></li><li class="js-percentile-work_55614042 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 55614042; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_55614042"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_55614042 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="55614042"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 55614042; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=55614042]").text(description); $(".js-view-count-work_55614042").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_55614042").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="55614042"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">2</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="371" href="https://www.academia.edu/Documents/in/Functional_Analysis">Functional Analysis</a>,&nbsp;<script data-card-contents-for-ri="371" type="text/json">{"id":371,"name":"Functional Analysis","url":"https://www.academia.edu/Documents/in/Functional_Analysis?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a><script data-card-contents-for-ri="19997" type="text/json">{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=55614042]'), work: {"id":55614042,"title":"The Schur l1 Theorem for filters","created_at":"2021-10-05T06:17:42.727-07:00","url":"https://www.academia.edu/55614042/The_Schur_l1_Theorem_for_filters?f_ri=19997","dom_id":"work_55614042","summary":"Every theorem of Classical Analysis, Functional Analysis or of the Measure Theory that states a property of sequences leads to a class of filters for which this theorem is valid. Sometimes such class of filters is trivial (say, all filters or the filters with countable base), but in several ...","downloadable_attachments":[{"id":71404009,"asset_id":55614042,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":45413321,"first_name":"Alexander","last_name":"Leonov","domain_name":"independent","page_name":"AlexanderLeonov1","display_name":"Alexander Leonov","profile_url":"https://independent.academia.edu/AlexanderLeonov1?f_ri=19997","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":371,"name":"Functional Analysis","url":"https://www.academia.edu/Documents/in/Functional_Analysis?f_ri=19997","nofollow":false},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_30639699" data-work_id="30639699" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/30639699/The_Eckmann_Hilton_argument_and_higher_operads">The Eckmann–Hilton argument and higher operads</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/30639699" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="a4ba83d00ecfa901d7add502ffdc5a79" rel="nofollow" data-download="{&quot;attachment_id&quot;:51083357,&quot;asset_id&quot;:30639699,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/51083357/download_file?st=MTczMjQxNjA2Nyw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="58340721" href="https://independent.academia.edu/MichaelBatanin">Michael Batanin</a><script data-card-contents-for-user="58340721" type="text/json">{"id":58340721,"first_name":"Michael","last_name":"Batanin","domain_name":"independent","page_name":"MichaelBatanin","display_name":"Michael Batanin","profile_url":"https://independent.academia.edu/MichaelBatanin?f_ri=19997","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_30639699 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="30639699"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 30639699, container: ".js-paper-rank-work_30639699", }); });</script></li><li class="js-percentile-work_30639699 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30639699; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_30639699"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_30639699 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="30639699"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30639699; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30639699]").text(description); $(".js-view-count-work_30639699").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_30639699").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="30639699"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">2</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="300" href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a>,&nbsp;<script data-card-contents-for-ri="300" type="text/json">{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a><script data-card-contents-for-ri="19997" type="text/json">{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=30639699]'), work: {"id":30639699,"title":"The Eckmann–Hilton argument and higher operads","created_at":"2016-12-27T17:18:13.342-08:00","url":"https://www.academia.edu/30639699/The_Eckmann_Hilton_argument_and_higher_operads?f_ri=19997","dom_id":"work_30639699","summary":null,"downloadable_attachments":[{"id":51083357,"asset_id":30639699,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":58340721,"first_name":"Michael","last_name":"Batanin","domain_name":"independent","page_name":"MichaelBatanin","display_name":"Michael Batanin","profile_url":"https://independent.academia.edu/MichaelBatanin?f_ri=19997","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics?f_ri=19997","nofollow":false},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_71409482" data-work_id="71409482" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/71409482/Internal_Diagrams_and_Archetypal_Reasoning_in_Category_Theory">Internal Diagrams and Archetypal Reasoning in Category Theory</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">We can regard operations that discard information, like specializing to a particular case or dropping the intermediate steps of a proof, as projections, and operations that reconstruct information as liftings. By working with several... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_71409482" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">We can regard operations that discard information, like specializing to a particular case or dropping the intermediate steps of a proof, as projections, and operations that reconstruct information as liftings. By working with several projections in parallel we can make sense of statements like “Set is the archetypal Cartesian Closed Category”, which means that proofs about CCCs can be done in the “archetypal language” and then lifted to proofs in the general setting. The method works even when our archetypal language is diagrammatical, has potential ambiguities, is not completely formalized, and does not have semantics for all terms. We illustrate the method with an example from hyperdoctrines and another from synthetic differential geometry.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/71409482" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="07e26a5c21ff6361220f1346f19c472e" rel="nofollow" data-download="{&quot;attachment_id&quot;:80764740,&quot;asset_id&quot;:71409482,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/80764740/download_file?st=MTczMjQxNjA2Nyw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="1019392" href="https://uff.academia.edu/EduardoNahumOchs">Eduardo Nahum N Ochs</a><script data-card-contents-for-user="1019392" type="text/json">{"id":1019392,"first_name":"Eduardo Nahum","last_name":"Ochs","domain_name":"uff","page_name":"EduardoNahumOchs","display_name":"Eduardo Nahum N Ochs","profile_url":"https://uff.academia.edu/EduardoNahumOchs?f_ri=19997","photo":"https://gravatar.com/avatar/c024e1b07d81571b89d78abf376ebc8c?s=65"}</script></span></span></li><li class="js-paper-rank-work_71409482 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="71409482"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 71409482, container: ".js-paper-rank-work_71409482", }); });</script></li><li class="js-percentile-work_71409482 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 71409482; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_71409482"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_71409482 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="71409482"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 71409482; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=71409482]").text(description); $(".js-view-count-work_71409482").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_71409482").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="71409482"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">2</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="10850" href="https://www.academia.edu/Documents/in/Diagrammatic_Reasoning">Diagrammatic Reasoning</a>,&nbsp;<script data-card-contents-for-ri="10850" type="text/json">{"id":10850,"name":"Diagrammatic Reasoning","url":"https://www.academia.edu/Documents/in/Diagrammatic_Reasoning?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a><script data-card-contents-for-ri="19997" type="text/json">{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=71409482]'), work: {"id":71409482,"title":"Internal Diagrams and Archetypal Reasoning in Category Theory","created_at":"2022-02-13T19:38:20.669-08:00","url":"https://www.academia.edu/71409482/Internal_Diagrams_and_Archetypal_Reasoning_in_Category_Theory?f_ri=19997","dom_id":"work_71409482","summary":"We can regard operations that discard information, like specializing to a particular case or dropping the intermediate steps of a proof, as projections, and operations that reconstruct information as liftings. By working with several projections in parallel we can make sense of statements like “Set is the archetypal Cartesian Closed Category”, which means that proofs about CCCs can be done in the “archetypal language” and then lifted to proofs in the general setting. The method works even when our archetypal language is diagrammatical, has potential ambiguities, is not completely formalized, and does not have semantics for all terms. We illustrate the method with an example from hyperdoctrines and another from synthetic differential geometry.","downloadable_attachments":[{"id":80764740,"asset_id":71409482,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":1019392,"first_name":"Eduardo Nahum","last_name":"Ochs","domain_name":"uff","page_name":"EduardoNahumOchs","display_name":"Eduardo Nahum N Ochs","profile_url":"https://uff.academia.edu/EduardoNahumOchs?f_ri=19997","photo":"https://gravatar.com/avatar/c024e1b07d81571b89d78abf376ebc8c?s=65"}],"research_interests":[{"id":10850,"name":"Diagrammatic Reasoning","url":"https://www.academia.edu/Documents/in/Diagrammatic_Reasoning?f_ri=19997","nofollow":false},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_3231426" data-work_id="3231426" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/3231426/Indivisible_plexes_in_latin_squares">Indivisible plexes in latin squares</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/3231426" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="96ae92befbbff96b820342061370b977" rel="nofollow" data-download="{&quot;attachment_id&quot;:31095645,&quot;asset_id&quot;:3231426,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/31095645/download_file?st=MTczMjQxNjA2Nyw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="3698287" href="https://independent.academia.edu/JudithEgan">Judith Egan</a><script data-card-contents-for-user="3698287" type="text/json">{"id":3698287,"first_name":"Judith","last_name":"Egan","domain_name":"independent","page_name":"JudithEgan","display_name":"Judith Egan","profile_url":"https://independent.academia.edu/JudithEgan?f_ri=19997","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_3231426 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="3231426"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 3231426, container: ".js-paper-rank-work_3231426", }); });</script></li><li class="js-percentile-work_3231426 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 3231426; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_3231426"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_3231426 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="3231426"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 3231426; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=3231426]").text(description); $(".js-view-count-work_3231426").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_3231426").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="3231426"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">2</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a>,&nbsp;<script data-card-contents-for-ri="19997" type="text/json">{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="1237788" href="https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering">Electrical And Electronic Engineering</a><script data-card-contents-for-ri="1237788" type="text/json">{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering?f_ri=19997","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=3231426]'), work: {"id":3231426,"title":"Indivisible plexes in latin squares","created_at":"2013-04-06T22:45:03.574-07:00","url":"https://www.academia.edu/3231426/Indivisible_plexes_in_latin_squares?f_ri=19997","dom_id":"work_3231426","summary":null,"downloadable_attachments":[{"id":31095645,"asset_id":3231426,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":3698287,"first_name":"Judith","last_name":"Egan","domain_name":"independent","page_name":"JudithEgan","display_name":"Judith Egan","profile_url":"https://independent.academia.edu/JudithEgan?f_ri=19997","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering?f_ri=19997","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_5590445" data-work_id="5590445" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/5590445/The_Schwarz_Christoffel_Conformal_Mapping_for_Polygons_with_Infinitely_Many_Sides">The Schwarz-Christoffel Conformal Mapping for &quot;Polygons&quot; with Infinitely Many Sides</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/5590445" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="1677b2867db06a881cabad5a05ebf8b9" rel="nofollow" data-download="{&quot;attachment_id&quot;:49227022,&quot;asset_id&quot;:5590445,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/49227022/download_file?st=MTczMjQxNjA2Nyw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="7975069" href="https://usach.academia.edu/HernanCarrasco">Hernan Carrasco</a><script data-card-contents-for-user="7975069" type="text/json">{"id":7975069,"first_name":"Hernan","last_name":"Carrasco","domain_name":"usach","page_name":"HernanCarrasco","display_name":"Hernan Carrasco","profile_url":"https://usach.academia.edu/HernanCarrasco?f_ri=19997","photo":"https://0.academia-photos.com/7975069/3439835/4044141/s65_hernan.carrasco.jpg"}</script></span></span></li><li class="js-paper-rank-work_5590445 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="5590445"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 5590445, container: ".js-paper-rank-work_5590445", }); });</script></li><li class="js-percentile-work_5590445 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 5590445; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_5590445"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_5590445 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="5590445"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 5590445; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=5590445]").text(description); $(".js-view-count-work_5590445").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_5590445").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="5590445"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">4</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="300" href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a>,&nbsp;<script data-card-contents-for-ri="300" type="text/json">{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="305" href="https://www.academia.edu/Documents/in/Applied_Mathematics">Applied Mathematics</a>,&nbsp;<script data-card-contents-for-ri="305" type="text/json">{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="318" href="https://www.academia.edu/Documents/in/Mathematical_Physics">Mathematical Physics</a>,&nbsp;<script data-card-contents-for-ri="318" type="text/json">{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a><script data-card-contents-for-ri="19997" type="text/json">{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=5590445]'), work: {"id":5590445,"title":"The Schwarz-Christoffel Conformal Mapping for \"Polygons\" with Infinitely Many Sides","created_at":"2014-01-02T23:57:22.760-08:00","url":"https://www.academia.edu/5590445/The_Schwarz_Christoffel_Conformal_Mapping_for_Polygons_with_Infinitely_Many_Sides?f_ri=19997","dom_id":"work_5590445","summary":null,"downloadable_attachments":[{"id":49227022,"asset_id":5590445,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":7975069,"first_name":"Hernan","last_name":"Carrasco","domain_name":"usach","page_name":"HernanCarrasco","display_name":"Hernan Carrasco","profile_url":"https://usach.academia.edu/HernanCarrasco?f_ri=19997","photo":"https://0.academia-photos.com/7975069/3439835/4044141/s65_hernan.carrasco.jpg"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics?f_ri=19997","nofollow":false},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics?f_ri=19997","nofollow":false},{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics?f_ri=19997","nofollow":false},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_32994502" data-work_id="32994502" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/32994502/Independence_preservation_in_expert_judgment_synthesis">Independence preservation in expert judgment synthesis</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/32994502" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="bdfe6baefe3237448f44c63917b4cbe1" rel="nofollow" data-download="{&quot;attachment_id&quot;:53111050,&quot;asset_id&quot;:32994502,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/53111050/download_file?st=MTczMjQxNjA2Nyw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="34263357" href="https://independent.academia.edu/MarkShattuck">Mark Shattuck</a><script data-card-contents-for-user="34263357" type="text/json">{"id":34263357,"first_name":"Mark","last_name":"Shattuck","domain_name":"independent","page_name":"MarkShattuck","display_name":"Mark Shattuck","profile_url":"https://independent.academia.edu/MarkShattuck?f_ri=19997","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_32994502 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="32994502"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 32994502, container: ".js-paper-rank-work_32994502", }); });</script></li><li class="js-percentile-work_32994502 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 32994502; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_32994502"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_32994502 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="32994502"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 32994502; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=32994502]").text(description); $(".js-view-count-work_32994502").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_32994502").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="32994502"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">3</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a>,&nbsp;<script data-card-contents-for-ri="19997" type="text/json">{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="25660" href="https://www.academia.edu/Documents/in/Decision_Theory">Decision Theory</a>,&nbsp;<script data-card-contents-for-ri="25660" type="text/json">{"id":25660,"name":"Decision Theory","url":"https://www.academia.edu/Documents/in/Decision_Theory?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="67959" href="https://www.academia.edu/Documents/in/Probability_Distribution_and_Applications">Probability Distribution &amp; Applications</a><script data-card-contents-for-ri="67959" type="text/json">{"id":67959,"name":"Probability Distribution \u0026 Applications","url":"https://www.academia.edu/Documents/in/Probability_Distribution_and_Applications?f_ri=19997","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=32994502]'), work: {"id":32994502,"title":"Independence preservation in expert judgment synthesis","created_at":"2017-05-12T23:34:28.463-07:00","url":"https://www.academia.edu/32994502/Independence_preservation_in_expert_judgment_synthesis?f_ri=19997","dom_id":"work_32994502","summary":null,"downloadable_attachments":[{"id":53111050,"asset_id":32994502,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":34263357,"first_name":"Mark","last_name":"Shattuck","domain_name":"independent","page_name":"MarkShattuck","display_name":"Mark Shattuck","profile_url":"https://independent.academia.edu/MarkShattuck?f_ri=19997","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false},{"id":25660,"name":"Decision Theory","url":"https://www.academia.edu/Documents/in/Decision_Theory?f_ri=19997","nofollow":false},{"id":67959,"name":"Probability Distribution \u0026 Applications","url":"https://www.academia.edu/Documents/in/Probability_Distribution_and_Applications?f_ri=19997","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_53561929" data-work_id="53561929" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/53561929/On_the_Origin_of_Logical_Determinism_in_Babylonia">On the Origin of Logical Determinism in Babylonia</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">In this paper, I show that the idea of logical determinism can be traced back from the Old Babylonian period at least. According to this idea, there are some signs (omens) which can explain the appearance of all events. These omens... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_53561929" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">In this paper, I show that the idea of logical determinism can be traced back from the Old Babylonian period at least. According to this idea, there are some signs (omens) which can explain the appearance of all events. These omens demonstrate the will of gods and their power realized through natural forces. As a result, each event either necessarily appears or necessarily disappears. This idea can be examined as the first version of eternalism – the philosophical belief that each temporal event (including past and future events) is actual. In divination lists in Akkadian presented as codes we can reconstruct Boolean matrices showing that the Babylonians used some logical-algebraic structures in their reasoning. The idea of logical contingency was introduced within a new mood of thinking presented by the Greek prose – historical as well as philosophical narrations. In the Jewish genre ’aggādōt, the logical determinism is supposed to be in opposition to the Greek prose.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/53561929" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="fcb6b7cebe5c92db5dc1392c6eb89928" rel="nofollow" data-download="{&quot;attachment_id&quot;:70348140,&quot;asset_id&quot;:53561929,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/70348140/download_file?st=MTczMjQxNjA2Nyw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="47698432" href="https://independent.academia.edu/AndrewSchumann">Andrew Schumann</a><script data-card-contents-for-user="47698432" type="text/json">{"id":47698432,"first_name":"Andrew","last_name":"Schumann","domain_name":"independent","page_name":"AndrewSchumann","display_name":"Andrew Schumann","profile_url":"https://independent.academia.edu/AndrewSchumann?f_ri=19997","photo":"https://0.academia-photos.com/47698432/12733470/14162734/s65_andrew.schumann.jpg"}</script></span></span></li><li class="js-paper-rank-work_53561929 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="53561929"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 53561929, container: ".js-paper-rank-work_53561929", }); });</script></li><li class="js-percentile-work_53561929 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 53561929; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_53561929"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_53561929 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="53561929"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 53561929; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=53561929]").text(description); $(".js-view-count-work_53561929").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_53561929").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="53561929"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i></div><span class="InlineList-item-text u-textTruncate u-pl6x"><a class="InlineList-item-text" data-has-card-for-ri="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a><script data-card-contents-for-ri="19997" type="text/json">{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}</script></span></li><script>(function(){ if (false) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=53561929]'), work: {"id":53561929,"title":"On the Origin of Logical Determinism in Babylonia","created_at":"2021-09-27T13:14:39.095-07:00","url":"https://www.academia.edu/53561929/On_the_Origin_of_Logical_Determinism_in_Babylonia?f_ri=19997","dom_id":"work_53561929","summary":"In this paper, I show that the idea of logical determinism can be traced back from the Old Babylonian period at least. According to this idea, there are some signs (omens) which can explain the appearance of all events. These omens demonstrate the will of gods and their power realized through natural forces. As a result, each event either necessarily appears or necessarily disappears. This idea can be examined as the first version of eternalism – the philosophical belief that each temporal event (including past and future events) is actual. In divination lists in Akkadian presented as codes we can reconstruct Boolean matrices showing that the Babylonians used some logical-algebraic structures in their reasoning. The idea of logical contingency was introduced within a new mood of thinking presented by the Greek prose – historical as well as philosophical narrations. In the Jewish genre ’aggādōt, the logical determinism is supposed to be in opposition to the Greek prose.","downloadable_attachments":[{"id":70348140,"asset_id":53561929,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":47698432,"first_name":"Andrew","last_name":"Schumann","domain_name":"independent","page_name":"AndrewSchumann","display_name":"Andrew Schumann","profile_url":"https://independent.academia.edu/AndrewSchumann?f_ri=19997","photo":"https://0.academia-photos.com/47698432/12733470/14162734/s65_andrew.schumann.jpg"}],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_14779694 coauthored" data-work_id="14779694" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/14779694/Developmental_social_work_in_South_Africa_Translating_policy_into_practice">Developmental social work in South Africa: Translating policy into practice</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/14779694" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="3d7a3554623c68ee77cfa04b359ec789" rel="nofollow" data-download="{&quot;attachment_id&quot;:43901856,&quot;asset_id&quot;:14779694,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/43901856/download_file?st=MTczMjQxNjA2Nyw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="103379" href="https://johannesburg.academia.edu/TessaHochfeld">Tessa Hochfeld</a><script data-card-contents-for-user="103379" type="text/json">{"id":103379,"first_name":"Tessa","last_name":"Hochfeld","domain_name":"johannesburg","page_name":"TessaHochfeld","display_name":"Tessa Hochfeld","profile_url":"https://johannesburg.academia.edu/TessaHochfeld?f_ri=19997","photo":"https://0.academia-photos.com/103379/3591768/14695253/s65_tessa.hochfeld.jpg"}</script></span></span><span class="u-displayInlineBlock InlineList-item-text">&nbsp;and&nbsp;<span class="u-textDecorationUnderline u-clickable InlineList-item-text js-work-more-authors-14779694">+1</span><div class="hidden js-additional-users-14779694"><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://johannesburg.academia.edu/LeilaPatel">Leila Patel</a></span></div></div></span><script>(function(){ var popoverSettings = { el: $('.js-work-more-authors-14779694'), placement: 'bottom', hide_delay: 200, html: true, content: function(){ return $('.js-additional-users-14779694').html(); } } new HoverPopover(popoverSettings); })();</script></li><li class="js-paper-rank-work_14779694 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="14779694"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 14779694, container: ".js-paper-rank-work_14779694", }); });</script></li><li class="js-percentile-work_14779694 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 14779694; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_14779694"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_14779694 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="14779694"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 14779694; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=14779694]").text(description); $(".js-view-count-work_14779694").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_14779694").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="14779694"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">2</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="940" href="https://www.academia.edu/Documents/in/Social_Work">Social Work</a>,&nbsp;<script data-card-contents-for-ri="940" type="text/json">{"id":940,"name":"Social Work","url":"https://www.academia.edu/Documents/in/Social_Work?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a><script data-card-contents-for-ri="19997" type="text/json">{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=14779694]'), work: {"id":14779694,"title":"Developmental social work in South Africa: Translating policy into practice","created_at":"2015-08-09T00:32:03.190-07:00","url":"https://www.academia.edu/14779694/Developmental_social_work_in_South_Africa_Translating_policy_into_practice?f_ri=19997","dom_id":"work_14779694","summary":null,"downloadable_attachments":[{"id":43901856,"asset_id":14779694,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":103379,"first_name":"Tessa","last_name":"Hochfeld","domain_name":"johannesburg","page_name":"TessaHochfeld","display_name":"Tessa Hochfeld","profile_url":"https://johannesburg.academia.edu/TessaHochfeld?f_ri=19997","photo":"https://0.academia-photos.com/103379/3591768/14695253/s65_tessa.hochfeld.jpg"},{"id":33742633,"first_name":"Leila","last_name":"Patel","domain_name":"johannesburg","page_name":"LeilaPatel","display_name":"Leila Patel","profile_url":"https://johannesburg.academia.edu/LeilaPatel?f_ri=19997","photo":"https://0.academia-photos.com/33742633/12763657/14194421/s65_leila.patel.jpg"}],"research_interests":[{"id":940,"name":"Social Work","url":"https://www.academia.edu/Documents/in/Social_Work?f_ri=19997","nofollow":false},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_15538658 coauthored" data-work_id="15538658" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/15538658/Wavelet_and_Multiscale_Methods">Wavelet and Multiscale Methods</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/15538658" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="54f8599a4f64209af756e17191d899da" rel="nofollow" data-download="{&quot;attachment_id&quot;:43108794,&quot;asset_id&quot;:15538658,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/43108794/download_file?st=MTczMjQxNjA2Nyw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="34693620" href="https://independent.academia.edu/AngelaKunoth">Angela Kunoth</a><script data-card-contents-for-user="34693620" type="text/json">{"id":34693620,"first_name":"Angela","last_name":"Kunoth","domain_name":"independent","page_name":"AngelaKunoth","display_name":"Angela Kunoth","profile_url":"https://independent.academia.edu/AngelaKunoth?f_ri=19997","photo":"/images/s65_no_pic.png"}</script></span></span><span class="u-displayInlineBlock InlineList-item-text">&nbsp;and&nbsp;<span class="u-textDecorationUnderline u-clickable InlineList-item-text js-work-more-authors-15538658">+1</span><div class="hidden js-additional-users-15538658"><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://independent.academia.edu/WolfgangDahmen">Wolfgang Dahmen</a></span></div></div></span><script>(function(){ var popoverSettings = { el: $('.js-work-more-authors-15538658'), placement: 'bottom', hide_delay: 200, html: true, content: function(){ return $('.js-additional-users-15538658').html(); } } new HoverPopover(popoverSettings); })();</script></li><li class="js-paper-rank-work_15538658 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="15538658"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 15538658, container: ".js-paper-rank-work_15538658", }); });</script></li><li class="js-percentile-work_15538658 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 15538658; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_15538658"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_15538658 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="15538658"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 15538658; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=15538658]").text(description); $(".js-view-count-work_15538658").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_15538658").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="15538658"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i></div><span class="InlineList-item-text u-textTruncate u-pl6x"><a class="InlineList-item-text" data-has-card-for-ri="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a><script data-card-contents-for-ri="19997" type="text/json">{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}</script></span></li><script>(function(){ if (false) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=15538658]'), work: {"id":15538658,"title":"Wavelet and Multiscale Methods","created_at":"2015-09-09T03:13:29.909-07:00","url":"https://www.academia.edu/15538658/Wavelet_and_Multiscale_Methods?f_ri=19997","dom_id":"work_15538658","summary":null,"downloadable_attachments":[{"id":43108794,"asset_id":15538658,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":34693620,"first_name":"Angela","last_name":"Kunoth","domain_name":"independent","page_name":"AngelaKunoth","display_name":"Angela Kunoth","profile_url":"https://independent.academia.edu/AngelaKunoth?f_ri=19997","photo":"/images/s65_no_pic.png"},{"id":37742357,"first_name":"Wolfgang","last_name":"Dahmen","domain_name":"independent","page_name":"WolfgangDahmen","display_name":"Wolfgang Dahmen","profile_url":"https://independent.academia.edu/WolfgangDahmen?f_ri=19997","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_10111976" data-work_id="10111976" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/10111976/Formal_concept_analysis_via_multi_adjoint_concept_lattices">Formal concept analysis via multi-adjoint concept lattices</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/10111976" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="e9c2861357819e62ca460a1f1c79ccbe" rel="nofollow" data-download="{&quot;attachment_id&quot;:47525844,&quot;asset_id&quot;:10111976,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/47525844/download_file?st=MTczMjQxNjA2Nyw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="24659922" href="https://trilce.academia.edu/JesusSMedina">Jesus S. Medina</a><script data-card-contents-for-user="24659922" type="text/json">{"id":24659922,"first_name":"Jesus","last_name":"S. Medina","domain_name":"trilce","page_name":"JesusSMedina","display_name":"Jesus S. Medina","profile_url":"https://trilce.academia.edu/JesusSMedina?f_ri=19997","photo":"https://0.academia-photos.com/24659922/9939560/11082922/s65_jesus.s._medina.jpg_oh_109fc048186bf148d1ec6d99bd8bc85b_oe_564b7fb8___gda___1451143796_9e7182a00181d02b0492fbbb7fd68493"}</script></span></span></li><li class="js-paper-rank-work_10111976 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="10111976"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 10111976, container: ".js-paper-rank-work_10111976", }); });</script></li><li class="js-percentile-work_10111976 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10111976; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_10111976"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_10111976 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="10111976"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10111976; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10111976]").text(description); $(".js-view-count-work_10111976").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_10111976").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="10111976"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">10</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="48" href="https://www.academia.edu/Documents/in/Engineering">Engineering</a>,&nbsp;<script data-card-contents-for-ri="48" type="text/json">{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a>,&nbsp;<script data-card-contents-for-ri="19997" type="text/json">{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="36837" href="https://www.academia.edu/Documents/in/Information_Processing">Information Processing</a>,&nbsp;<script data-card-contents-for-ri="36837" type="text/json">{"id":36837,"name":"Information Processing","url":"https://www.academia.edu/Documents/in/Information_Processing?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="73574" href="https://www.academia.edu/Documents/in/Formal_Concept_Analysis">Formal Concept Analysis</a><script data-card-contents-for-ri="73574" type="text/json">{"id":73574,"name":"Formal Concept Analysis","url":"https://www.academia.edu/Documents/in/Formal_Concept_Analysis?f_ri=19997","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=10111976]'), work: {"id":10111976,"title":"Formal concept analysis via multi-adjoint concept lattices","created_at":"2015-01-11T08:50:10.930-08:00","url":"https://www.academia.edu/10111976/Formal_concept_analysis_via_multi_adjoint_concept_lattices?f_ri=19997","dom_id":"work_10111976","summary":null,"downloadable_attachments":[{"id":47525844,"asset_id":10111976,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":24659922,"first_name":"Jesus","last_name":"S. Medina","domain_name":"trilce","page_name":"JesusSMedina","display_name":"Jesus S. Medina","profile_url":"https://trilce.academia.edu/JesusSMedina?f_ri=19997","photo":"https://0.academia-photos.com/24659922/9939560/11082922/s65_jesus.s._medina.jpg_oh_109fc048186bf148d1ec6d99bd8bc85b_oe_564b7fb8___gda___1451143796_9e7182a00181d02b0492fbbb7fd68493"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering?f_ri=19997","nofollow":false},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false},{"id":36837,"name":"Information Processing","url":"https://www.academia.edu/Documents/in/Information_Processing?f_ri=19997","nofollow":false},{"id":73574,"name":"Formal Concept Analysis","url":"https://www.academia.edu/Documents/in/Formal_Concept_Analysis?f_ri=19997","nofollow":false},{"id":147516,"name":"Concept lattice","url":"https://www.academia.edu/Documents/in/Concept_lattice?f_ri=19997"},{"id":246636,"name":"Embedding","url":"https://www.academia.edu/Documents/in/Embedding?f_ri=19997"},{"id":314271,"name":"Fuzzy System","url":"https://www.academia.edu/Documents/in/Fuzzy_System?f_ri=19997"},{"id":642996,"name":"Fuzzy Set","url":"https://www.academia.edu/Documents/in/Fuzzy_Set?f_ri=19997"},{"id":652157,"name":"Fuzzy Sets and Systems","url":"https://www.academia.edu/Documents/in/Fuzzy_Sets_and_Systems?f_ri=19997"},{"id":1208187,"name":"Representation Theorem","url":"https://www.academia.edu/Documents/in/Representation_Theorem?f_ri=19997"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_15251703" data-work_id="15251703" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/15251703/Packing_Graphs_The_packing_problem_solved">Packing Graphs: The packing problem solved</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/15251703" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="74ff8266a189cdb1db5d5332ed3df726" rel="nofollow" data-download="{&quot;attachment_id&quot;:43399046,&quot;asset_id&quot;:15251703,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/43399046/download_file?st=MTczMjQxNjA2Nyw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="34323221" href="https://independent.academia.edu/YairCaro">Yair Caro</a><script data-card-contents-for-user="34323221" type="text/json">{"id":34323221,"first_name":"Yair","last_name":"Caro","domain_name":"independent","page_name":"YairCaro","display_name":"Yair Caro","profile_url":"https://independent.academia.edu/YairCaro?f_ri=19997","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_15251703 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="15251703"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 15251703, container: ".js-paper-rank-work_15251703", }); });</script></li><li class="js-percentile-work_15251703 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 15251703; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_15251703"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_15251703 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="15251703"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 15251703; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=15251703]").text(description); $(".js-view-count-work_15251703").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_15251703").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="15251703"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">3</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a>,&nbsp;<script data-card-contents-for-ri="19997" type="text/json">{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="49419" href="https://www.academia.edu/Documents/in/Problem_Solving">Problem Solving</a>,&nbsp;<script data-card-contents-for-ri="49419" type="text/json">{"id":49419,"name":"Problem Solving","url":"https://www.academia.edu/Documents/in/Problem_Solving?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="1882997" href="https://www.academia.edu/Documents/in/Greatest_common_divisor">Greatest common divisor</a><script data-card-contents-for-ri="1882997" type="text/json">{"id":1882997,"name":"Greatest common divisor","url":"https://www.academia.edu/Documents/in/Greatest_common_divisor?f_ri=19997","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=15251703]'), work: {"id":15251703,"title":"Packing Graphs: The packing problem solved","created_at":"2015-08-28T08:52:59.340-07:00","url":"https://www.academia.edu/15251703/Packing_Graphs_The_packing_problem_solved?f_ri=19997","dom_id":"work_15251703","summary":null,"downloadable_attachments":[{"id":43399046,"asset_id":15251703,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":34323221,"first_name":"Yair","last_name":"Caro","domain_name":"independent","page_name":"YairCaro","display_name":"Yair Caro","profile_url":"https://independent.academia.edu/YairCaro?f_ri=19997","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false},{"id":49419,"name":"Problem Solving","url":"https://www.academia.edu/Documents/in/Problem_Solving?f_ri=19997","nofollow":false},{"id":1882997,"name":"Greatest common divisor","url":"https://www.academia.edu/Documents/in/Greatest_common_divisor?f_ri=19997","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_10255366" data-work_id="10255366" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/10255366/Contractive_Mapping_Theorems_in_Partially_Ordered_Sets_and_Applications_to_Ordinary_Differential_Equations">Contractive Mapping Theorems in Partially Ordered Sets and Applications to Ordinary Differential Equations</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">We prove the existence and uniqueness of solution for a first-order ordinary differential equation with periodic boundary conditions admitting only the existence of a lower solution. To this aim, we prove an appropriate fixed point... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_10255366" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">We prove the existence and uniqueness of solution for a first-order ordinary differential equation with periodic boundary conditions admitting only the existence of a lower solution. To this aim, we prove an appropriate fixed point theorem in partially ordered sets.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/10255366" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="0967cbee0480bbb6552dbf95a12da901" rel="nofollow" data-download="{&quot;attachment_id&quot;:47466523,&quot;asset_id&quot;:10255366,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/47466523/download_file?st=MTczMjQxNjA2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="25106527" href="https://independent.academia.edu/JuanNieto12">Juan Nieto</a><script data-card-contents-for-user="25106527" type="text/json">{"id":25106527,"first_name":"Juan","last_name":"Nieto","domain_name":"independent","page_name":"JuanNieto12","display_name":"Juan Nieto","profile_url":"https://independent.academia.edu/JuanNieto12?f_ri=19997","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_10255366 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="10255366"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 10255366, container: ".js-paper-rank-work_10255366", }); });</script></li><li class="js-percentile-work_10255366 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10255366; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_10255366"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_10255366 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="10255366"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10255366; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10255366]").text(description); $(".js-view-count-work_10255366").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_10255366").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="10255366"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">5</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a>,&nbsp;<script data-card-contents-for-ri="19997" type="text/json">{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="181847" href="https://www.academia.edu/Documents/in/First-Order_Logic">First-Order Logic</a>,&nbsp;<script data-card-contents-for-ri="181847" type="text/json">{"id":181847,"name":"First-Order Logic","url":"https://www.academia.edu/Documents/in/First-Order_Logic?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="183513" href="https://www.academia.edu/Documents/in/Order">Order</a>,&nbsp;<script data-card-contents-for-ri="183513" type="text/json">{"id":183513,"name":"Order","url":"https://www.academia.edu/Documents/in/Order?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="287143" href="https://www.academia.edu/Documents/in/Fixed_Point_Theorem">Fixed Point Theorem</a><script data-card-contents-for-ri="287143" type="text/json">{"id":287143,"name":"Fixed Point Theorem","url":"https://www.academia.edu/Documents/in/Fixed_Point_Theorem?f_ri=19997","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=10255366]'), work: {"id":10255366,"title":"Contractive Mapping Theorems in Partially Ordered Sets and Applications to Ordinary Differential Equations","created_at":"2015-01-20T19:48:51.861-08:00","url":"https://www.academia.edu/10255366/Contractive_Mapping_Theorems_in_Partially_Ordered_Sets_and_Applications_to_Ordinary_Differential_Equations?f_ri=19997","dom_id":"work_10255366","summary":"We prove the existence and uniqueness of solution for a first-order ordinary differential equation with periodic boundary conditions admitting only the existence of a lower solution. To this aim, we prove an appropriate fixed point theorem in partially ordered sets.","downloadable_attachments":[{"id":47466523,"asset_id":10255366,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":25106527,"first_name":"Juan","last_name":"Nieto","domain_name":"independent","page_name":"JuanNieto12","display_name":"Juan Nieto","profile_url":"https://independent.academia.edu/JuanNieto12?f_ri=19997","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false},{"id":181847,"name":"First-Order Logic","url":"https://www.academia.edu/Documents/in/First-Order_Logic?f_ri=19997","nofollow":false},{"id":183513,"name":"Order","url":"https://www.academia.edu/Documents/in/Order?f_ri=19997","nofollow":false},{"id":287143,"name":"Fixed Point Theorem","url":"https://www.academia.edu/Documents/in/Fixed_Point_Theorem?f_ri=19997","nofollow":false},{"id":1770555,"name":"Ordinary Differential Equation","url":"https://www.academia.edu/Documents/in/Ordinary_Differential_Equation?f_ri=19997"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_46372910 coauthored" data-work_id="46372910" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/46372910/Rings_of_Idempotent_Stable_Range_One">Rings of Idempotent Stable Range One</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/46372910" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="214463182" href="https://independent.academia.edu/ZhouWang14">Zhou Wang</a><script data-card-contents-for-user="214463182" type="text/json">{"id":214463182,"first_name":"Zhou","last_name":"Wang","domain_name":"independent","page_name":"ZhouWang14","display_name":"Zhou Wang","profile_url":"https://independent.academia.edu/ZhouWang14?f_ri=19997","photo":"/images/s65_no_pic.png"}</script></span></span><span class="u-displayInlineBlock InlineList-item-text">&nbsp;and&nbsp;<span class="u-textDecorationUnderline u-clickable InlineList-item-text js-work-more-authors-46372910">+2</span><div class="hidden js-additional-users-46372910"><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://independent.academia.edu/LamTsityuen">Lam Tsit-yuen</a></span></div><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://independent.academia.edu/ChenJiannliang">Jiann-liang Chen</a></span></div></div></span><script>(function(){ var popoverSettings = { el: $('.js-work-more-authors-46372910'), placement: 'bottom', hide_delay: 200, html: true, content: function(){ return $('.js-additional-users-46372910').html(); } } new HoverPopover(popoverSettings); })();</script></li><li class="js-paper-rank-work_46372910 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="46372910"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 46372910, container: ".js-paper-rank-work_46372910", }); });</script></li><li class="js-percentile-work_46372910 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 46372910; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_46372910"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_46372910 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="46372910"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 46372910; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=46372910]").text(description); $(".js-view-count-work_46372910").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_46372910").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="46372910"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i></div><span class="InlineList-item-text u-textTruncate u-pl6x"><a class="InlineList-item-text" data-has-card-for-ri="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a><script data-card-contents-for-ri="19997" type="text/json">{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}</script></span></li><script>(function(){ if (false) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=46372910]'), work: {"id":46372910,"title":"Rings of Idempotent Stable Range One","created_at":"2021-04-09T14:39:29.886-07:00","url":"https://www.academia.edu/46372910/Rings_of_Idempotent_Stable_Range_One?f_ri=19997","dom_id":"work_46372910","summary":null,"downloadable_attachments":[],"ordered_authors":[{"id":214463182,"first_name":"Zhou","last_name":"Wang","domain_name":"independent","page_name":"ZhouWang14","display_name":"Zhou Wang","profile_url":"https://independent.academia.edu/ZhouWang14?f_ri=19997","photo":"/images/s65_no_pic.png"},{"id":58002132,"first_name":"Lam","last_name":"Tsit-yuen","domain_name":"independent","page_name":"LamTsityuen","display_name":"Lam Tsit-yuen","profile_url":"https://independent.academia.edu/LamTsityuen?f_ri=19997","photo":"/images/s65_no_pic.png"},{"id":214489112,"first_name":"Jiann-liang","last_name":"Chen","domain_name":"independent","page_name":"ChenJiannliang","display_name":"Jiann-liang Chen","profile_url":"https://independent.academia.edu/ChenJiannliang?f_ri=19997","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_81043844" data-work_id="81043844" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/81043844/Inclusion_and_neighborhood_properties_of_certain_subclasses_of_p_valent_functions_of_complex_order_defined_by_convolution">Inclusion and neighborhood properties of certain subclasses of p-valent functions of complex order defined by convolution</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/81043844" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="456188475746f222f575ece76e0df99e" rel="nofollow" data-download="{&quot;attachment_id&quot;:87224854,&quot;asset_id&quot;:81043844,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/87224854/download_file?st=MTczMjQxNjA2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="50750555" href="https://independent.academia.edu/JagannathPatel">Jagannath Patel</a><script data-card-contents-for-user="50750555" type="text/json">{"id":50750555,"first_name":"Jagannath","last_name":"Patel","domain_name":"independent","page_name":"JagannathPatel","display_name":"Jagannath Patel","profile_url":"https://independent.academia.edu/JagannathPatel?f_ri=19997","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_81043844 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="81043844"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 81043844, container: ".js-paper-rank-work_81043844", }); });</script></li><li class="js-percentile-work_81043844 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 81043844; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_81043844"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_81043844 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="81043844"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 81043844; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=81043844]").text(description); $(".js-view-count-work_81043844").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_81043844").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="81043844"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">2</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="300" href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a>,&nbsp;<script data-card-contents-for-ri="300" type="text/json">{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a><script data-card-contents-for-ri="19997" type="text/json">{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=81043844]'), work: {"id":81043844,"title":"Inclusion and neighborhood properties of certain subclasses of p-valent functions of complex order defined by convolution","created_at":"2022-06-08T16:30:38.328-07:00","url":"https://www.academia.edu/81043844/Inclusion_and_neighborhood_properties_of_certain_subclasses_of_p_valent_functions_of_complex_order_defined_by_convolution?f_ri=19997","dom_id":"work_81043844","summary":null,"downloadable_attachments":[{"id":87224854,"asset_id":81043844,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":50750555,"first_name":"Jagannath","last_name":"Patel","domain_name":"independent","page_name":"JagannathPatel","display_name":"Jagannath Patel","profile_url":"https://independent.academia.edu/JagannathPatel?f_ri=19997","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics?f_ri=19997","nofollow":false},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_50198293" data-work_id="50198293" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/50198293/Introduction_to_Probability_and_Random_Variables">Introduction to Probability and Random Variables</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/50198293" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="e517a3b395079a7ccdc7fdd95d519324" rel="nofollow" data-download="{&quot;attachment_id&quot;:68273726,&quot;asset_id&quot;:50198293,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/68273726/download_file?st=MTczMjQxNjA2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="43703786" href="https://independent.academia.edu/RobertRiffenburgh">Robert Riffenburgh</a><script data-card-contents-for-user="43703786" type="text/json">{"id":43703786,"first_name":"Robert","last_name":"Riffenburgh","domain_name":"independent","page_name":"RobertRiffenburgh","display_name":"Robert Riffenburgh","profile_url":"https://independent.academia.edu/RobertRiffenburgh?f_ri=19997","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_50198293 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="50198293"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 50198293, container: ".js-paper-rank-work_50198293", }); });</script></li><li class="js-percentile-work_50198293 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 50198293; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_50198293"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_50198293 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="50198293"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 50198293; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=50198293]").text(description); $(".js-view-count-work_50198293").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_50198293").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="50198293"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i></div><span class="InlineList-item-text u-textTruncate u-pl6x"><a class="InlineList-item-text" data-has-card-for-ri="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a><script data-card-contents-for-ri="19997" type="text/json">{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}</script></span></li><script>(function(){ if (false) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=50198293]'), work: {"id":50198293,"title":"Introduction to Probability and Random Variables","created_at":"2021-07-23T10:08:58.216-07:00","url":"https://www.academia.edu/50198293/Introduction_to_Probability_and_Random_Variables?f_ri=19997","dom_id":"work_50198293","summary":null,"downloadable_attachments":[{"id":68273726,"asset_id":50198293,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":43703786,"first_name":"Robert","last_name":"Riffenburgh","domain_name":"independent","page_name":"RobertRiffenburgh","display_name":"Robert Riffenburgh","profile_url":"https://independent.academia.edu/RobertRiffenburgh?f_ri=19997","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_29369179" data-work_id="29369179" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/29369179/A_foliation_of_geodesics_is_characterized_by_having_no_tangent_homologies_">A foliation of geodesics is characterized by having no “tangent homologies”</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/29369179" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="233c48c9ffe3c4ca6c330ab028921bc2" rel="nofollow" data-download="{&quot;attachment_id&quot;:49811621,&quot;asset_id&quot;:29369179,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/49811621/download_file?st=MTczMjQxNjA2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="22784614" href="https://sbsuny.academia.edu/DennisSullivan">Dennis Sullivan</a><script data-card-contents-for-user="22784614" type="text/json">{"id":22784614,"first_name":"Dennis","last_name":"Sullivan","domain_name":"sbsuny","page_name":"DennisSullivan","display_name":"Dennis Sullivan","profile_url":"https://sbsuny.academia.edu/DennisSullivan?f_ri=19997","photo":"https://0.academia-photos.com/22784614/150263360/139841116/s65_dennis.sullivan.png"}</script></span></span></li><li class="js-paper-rank-work_29369179 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="29369179"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 29369179, container: ".js-paper-rank-work_29369179", }); });</script></li><li class="js-percentile-work_29369179 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 29369179; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_29369179"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_29369179 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="29369179"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 29369179; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=29369179]").text(description); $(".js-view-count-work_29369179").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_29369179").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="29369179"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i></div><span class="InlineList-item-text u-textTruncate u-pl6x"><a class="InlineList-item-text" data-has-card-for-ri="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a><script data-card-contents-for-ri="19997" type="text/json">{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}</script></span></li><script>(function(){ if (false) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=29369179]'), work: {"id":29369179,"title":"A foliation of geodesics is characterized by having no “tangent homologies”","created_at":"2016-10-23T10:16:09.459-07:00","url":"https://www.academia.edu/29369179/A_foliation_of_geodesics_is_characterized_by_having_no_tangent_homologies_?f_ri=19997","dom_id":"work_29369179","summary":null,"downloadable_attachments":[{"id":49811621,"asset_id":29369179,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":22784614,"first_name":"Dennis","last_name":"Sullivan","domain_name":"sbsuny","page_name":"DennisSullivan","display_name":"Dennis Sullivan","profile_url":"https://sbsuny.academia.edu/DennisSullivan?f_ri=19997","photo":"https://0.academia-photos.com/22784614/150263360/139841116/s65_dennis.sullivan.png"}],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_82189782 coauthored" data-work_id="82189782" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/82189782/Smooth_factorial_affine_surfaces_of_logarithmic_Kodaira_dimension_zero_with_trivial_units">Smooth factorial affine surfaces of logarithmic Kodaira dimension zero with trivial units</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">This paper considers the family $\\mathscr{S}_0$ of smooth affine factorial surfaces of logarithmic Kodaira dimension 0 with trivial units over an algebraically closed field $k$. Our main result (Theorem 4.1) is that the number of... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_82189782" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">This paper considers the family $\\mathscr{S}_0$ of smooth affine factorial surfaces of logarithmic Kodaira dimension 0 with trivial units over an algebraically closed field $k$. Our main result (Theorem 4.1) is that the number of isomorphism classes represented in $\\mathscr{S}_0$ is at least countably infinite. This contradicts the earlier classification of Gurjar and Miyanishi [5] which asserted that $\\mathscr{S}_0$ has at most two elements up to isomorphism when $k=\\mathbb{C}$. Thus, the classification of surfaces in $\\mathscr{S}_0$ for the field $\\mathbb{C}$, long thought to have been settled, is an open problem.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/82189782" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="d4c60bbec0eb0fe0bcd43be7c566999a" rel="nofollow" data-download="{&quot;attachment_id&quot;:87974615,&quot;asset_id&quot;:82189782,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/87974615/download_file?st=MTczMjQxNjA2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="97773558" href="https://independent.academia.edu/%E5%AD%9D%E5%85%B8%E9%95%B7%E5%B3%B0">Takanori Nagamine</a><script data-card-contents-for-user="97773558" type="text/json">{"id":97773558,"first_name":"Takanori","last_name":"Nagamine","domain_name":"independent","page_name":"孝典長峰","display_name":"Takanori Nagamine","profile_url":"https://independent.academia.edu/%E5%AD%9D%E5%85%B8%E9%95%B7%E5%B3%B0?f_ri=19997","photo":"https://0.academia-photos.com/97773558/38148223/32022965/s65__._.jpg"}</script></span></span><span class="u-displayInlineBlock InlineList-item-text">&nbsp;and&nbsp;<span class="u-textDecorationUnderline u-clickable InlineList-item-text js-work-more-authors-82189782">+1</span><div class="hidden js-additional-users-82189782"><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://independent.academia.edu/%E7%A7%80%E9%9B%84%E5%BA%AD%E5%B1%B1">秀雄 庭山</a></span></div></div></span><script>(function(){ var popoverSettings = { el: $('.js-work-more-authors-82189782'), placement: 'bottom', hide_delay: 200, html: true, content: function(){ return $('.js-additional-users-82189782').html(); } } new HoverPopover(popoverSettings); })();</script></li><li class="js-paper-rank-work_82189782 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="82189782"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 82189782, container: ".js-paper-rank-work_82189782", }); });</script></li><li class="js-percentile-work_82189782 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 82189782; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_82189782"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_82189782 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="82189782"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 82189782; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=82189782]").text(description); $(".js-view-count-work_82189782").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_82189782").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="82189782"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">2</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="300" href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a>,&nbsp;<script data-card-contents-for-ri="300" type="text/json">{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a><script data-card-contents-for-ri="19997" type="text/json">{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=82189782]'), work: {"id":82189782,"title":"Smooth factorial affine surfaces of logarithmic Kodaira dimension zero with trivial units","created_at":"2022-06-24T22:24:33.941-07:00","url":"https://www.academia.edu/82189782/Smooth_factorial_affine_surfaces_of_logarithmic_Kodaira_dimension_zero_with_trivial_units?f_ri=19997","dom_id":"work_82189782","summary":"This paper considers the family $\\\\mathscr{S}_0$ of smooth affine factorial surfaces of logarithmic Kodaira dimension 0 with trivial units over an algebraically closed field $k$. Our main result (Theorem 4.1) is that the number of isomorphism classes represented in $\\\\mathscr{S}_0$ is at least countably infinite. This contradicts the earlier classification of Gurjar and Miyanishi [5] which asserted that $\\\\mathscr{S}_0$ has at most two elements up to isomorphism when $k=\\\\mathbb{C}$. Thus, the classification of surfaces in $\\\\mathscr{S}_0$ for the field $\\\\mathbb{C}$, long thought to have been settled, is an open problem.","downloadable_attachments":[{"id":87974615,"asset_id":82189782,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":97773558,"first_name":"Takanori","last_name":"Nagamine","domain_name":"independent","page_name":"孝典長峰","display_name":"Takanori Nagamine","profile_url":"https://independent.academia.edu/%E5%AD%9D%E5%85%B8%E9%95%B7%E5%B3%B0?f_ri=19997","photo":"https://0.academia-photos.com/97773558/38148223/32022965/s65__._.jpg"},{"id":228469891,"first_name":"秀雄","last_name":"庭山","domain_name":"independent","page_name":"秀雄庭山","display_name":"秀雄 庭山","profile_url":"https://independent.academia.edu/%E7%A7%80%E9%9B%84%E5%BA%AD%E5%B1%B1?f_ri=19997","photo":"https://0.academia-photos.com/228469891/85251648/73896842/s65__._.png"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics?f_ri=19997","nofollow":false},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_80440141" data-work_id="80440141" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/80440141/Anti_automorphisms_satisfying_an_Engel_condition">Anti-automorphisms satisfying an Engel condition</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/80440141" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="9ff4fa4483883732f253c4f993cba0aa" rel="nofollow" data-download="{&quot;attachment_id&quot;:86821139,&quot;asset_id&quot;:80440141,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/86821139/download_file?st=MTczMjQxNjA2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="50788300" href="https://independent.academia.edu/TsiukwenLee">Tsiu-kwen Lee</a><script data-card-contents-for-user="50788300" type="text/json">{"id":50788300,"first_name":"Tsiu-kwen","last_name":"Lee","domain_name":"independent","page_name":"TsiukwenLee","display_name":"Tsiu-kwen Lee","profile_url":"https://independent.academia.edu/TsiukwenLee?f_ri=19997","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_80440141 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="80440141"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 80440141, container: ".js-paper-rank-work_80440141", }); });</script></li><li class="js-percentile-work_80440141 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 80440141; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_80440141"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_80440141 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="80440141"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 80440141; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=80440141]").text(description); $(".js-view-count-work_80440141").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_80440141").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="80440141"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">3</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="300" href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a>,&nbsp;<script data-card-contents-for-ri="300" type="text/json">{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a>,&nbsp;<script data-card-contents-for-ri="19997" type="text/json">{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2756583" href="https://www.academia.edu/Documents/in/Automorphism">Automorphism</a><script data-card-contents-for-ri="2756583" type="text/json">{"id":2756583,"name":"Automorphism","url":"https://www.academia.edu/Documents/in/Automorphism?f_ri=19997","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=80440141]'), work: {"id":80440141,"title":"Anti-automorphisms satisfying an Engel condition","created_at":"2022-06-01T03:18:58.274-07:00","url":"https://www.academia.edu/80440141/Anti_automorphisms_satisfying_an_Engel_condition?f_ri=19997","dom_id":"work_80440141","summary":null,"downloadable_attachments":[{"id":86821139,"asset_id":80440141,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":50788300,"first_name":"Tsiu-kwen","last_name":"Lee","domain_name":"independent","page_name":"TsiukwenLee","display_name":"Tsiu-kwen Lee","profile_url":"https://independent.academia.edu/TsiukwenLee?f_ri=19997","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics?f_ri=19997","nofollow":false},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false},{"id":2756583,"name":"Automorphism","url":"https://www.academia.edu/Documents/in/Automorphism?f_ri=19997","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_77951581" data-work_id="77951581" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/77951581/On_the_solution_of_differential_equations_with_fuzzy_spline_wavelets">On the solution of differential equations with fuzzy spline wavelets</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/77951581" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="81c814659f7b110df3976ffb5f27c18c" rel="nofollow" data-download="{&quot;attachment_id&quot;:85167824,&quot;asset_id&quot;:77951581,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/85167824/download_file?st=MTczMjQxNjA2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="9466686" href="https://independent.academia.edu/ArminShmilovici">Armin Shmilovici</a><script data-card-contents-for-user="9466686" type="text/json">{"id":9466686,"first_name":"Armin","last_name":"Shmilovici","domain_name":"independent","page_name":"ArminShmilovici","display_name":"Armin Shmilovici","profile_url":"https://independent.academia.edu/ArminShmilovici?f_ri=19997","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_77951581 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="77951581"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 77951581, container: ".js-paper-rank-work_77951581", }); });</script></li><li class="js-percentile-work_77951581 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 77951581; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_77951581"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_77951581 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="77951581"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 77951581; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=77951581]").text(description); $(".js-view-count-work_77951581").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_77951581").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="77951581"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">13</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="300" href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a>,&nbsp;<script data-card-contents-for-ri="300" type="text/json">{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="371" href="https://www.academia.edu/Documents/in/Functional_Analysis">Functional Analysis</a>,&nbsp;<script data-card-contents-for-ri="371" type="text/json">{"id":371,"name":"Functional Analysis","url":"https://www.academia.edu/Documents/in/Functional_Analysis?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="422" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a>,&nbsp;<script data-card-contents-for-ri="422" type="text/json">{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="12022" href="https://www.academia.edu/Documents/in/Numerical_Analysis">Numerical Analysis</a><script data-card-contents-for-ri="12022" type="text/json">{"id":12022,"name":"Numerical Analysis","url":"https://www.academia.edu/Documents/in/Numerical_Analysis?f_ri=19997","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=77951581]'), work: {"id":77951581,"title":"On the solution of differential equations with fuzzy spline wavelets","created_at":"2022-04-29T05:00:57.708-07:00","url":"https://www.academia.edu/77951581/On_the_solution_of_differential_equations_with_fuzzy_spline_wavelets?f_ri=19997","dom_id":"work_77951581","summary":null,"downloadable_attachments":[{"id":85167824,"asset_id":77951581,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":9466686,"first_name":"Armin","last_name":"Shmilovici","domain_name":"independent","page_name":"ArminShmilovici","display_name":"Armin Shmilovici","profile_url":"https://independent.academia.edu/ArminShmilovici?f_ri=19997","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics?f_ri=19997","nofollow":false},{"id":371,"name":"Functional Analysis","url":"https://www.academia.edu/Documents/in/Functional_Analysis?f_ri=19997","nofollow":false},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=19997","nofollow":false},{"id":12022,"name":"Numerical Analysis","url":"https://www.academia.edu/Documents/in/Numerical_Analysis?f_ri=19997","nofollow":false},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997"},{"id":91262,"name":"Wavelet Transform","url":"https://www.academia.edu/Documents/in/Wavelet_Transform?f_ri=19997"},{"id":250085,"name":"Robot Arm","url":"https://www.academia.edu/Documents/in/Robot_Arm?f_ri=19997"},{"id":314271,"name":"Fuzzy System","url":"https://www.academia.edu/Documents/in/Fuzzy_System?f_ri=19997"},{"id":652157,"name":"Fuzzy Sets and Systems","url":"https://www.academia.edu/Documents/in/Fuzzy_Sets_and_Systems?f_ri=19997"},{"id":765146,"name":"Differential equation","url":"https://www.academia.edu/Documents/in/Differential_equation?f_ri=19997"},{"id":988387,"name":"Hilbert Space","url":"https://www.academia.edu/Documents/in/Hilbert_Space?f_ri=19997"},{"id":1635421,"name":"Feedforward Control","url":"https://www.academia.edu/Documents/in/Feedforward_Control?f_ri=19997"},{"id":2250348,"name":"Fast Wavelet Transform","url":"https://www.academia.edu/Documents/in/Fast_Wavelet_Transform?f_ri=19997"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_77393378" data-work_id="77393378" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/77393378/Selections_of_Lipschitz_multifunctions_generating_a_continuous_flow">Selections of Lipschitz multifunctions generating a continuous flow</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/77393378" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="41bab8949d21d33495f0ed74a3cb8dac" rel="nofollow" data-download="{&quot;attachment_id&quot;:84771413,&quot;asset_id&quot;:77393378,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/84771413/download_file?st=MTczMjQxNjA2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="35315315" href="https://independent.academia.edu/AlbertoBressan">Alberto Bressan</a><script data-card-contents-for-user="35315315" type="text/json">{"id":35315315,"first_name":"Alberto","last_name":"Bressan","domain_name":"independent","page_name":"AlbertoBressan","display_name":"Alberto Bressan","profile_url":"https://independent.academia.edu/AlbertoBressan?f_ri=19997","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_77393378 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="77393378"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 77393378, container: ".js-paper-rank-work_77393378", }); });</script></li><li class="js-percentile-work_77393378 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 77393378; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_77393378"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_77393378 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="77393378"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 77393378; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=77393378]").text(description); $(".js-view-count-work_77393378").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_77393378").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="77393378"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">3</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="300" href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a>,&nbsp;<script data-card-contents-for-ri="300" type="text/json">{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a>,&nbsp;<script data-card-contents-for-ri="19997" type="text/json">{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="204540" href="https://www.academia.edu/Documents/in/Fuzzy_Differential_and_Integral_Equations">Fuzzy Differential and Integral Equations</a><script data-card-contents-for-ri="204540" type="text/json">{"id":204540,"name":"Fuzzy Differential and Integral Equations","url":"https://www.academia.edu/Documents/in/Fuzzy_Differential_and_Integral_Equations?f_ri=19997","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=77393378]'), work: {"id":77393378,"title":"Selections of Lipschitz multifunctions generating a continuous flow","created_at":"2022-04-23T14:18:10.476-07:00","url":"https://www.academia.edu/77393378/Selections_of_Lipschitz_multifunctions_generating_a_continuous_flow?f_ri=19997","dom_id":"work_77393378","summary":null,"downloadable_attachments":[{"id":84771413,"asset_id":77393378,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":35315315,"first_name":"Alberto","last_name":"Bressan","domain_name":"independent","page_name":"AlbertoBressan","display_name":"Alberto Bressan","profile_url":"https://independent.academia.edu/AlbertoBressan?f_ri=19997","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics?f_ri=19997","nofollow":false},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false},{"id":204540,"name":"Fuzzy Differential and Integral Equations","url":"https://www.academia.edu/Documents/in/Fuzzy_Differential_and_Integral_Equations?f_ri=19997","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_77059575" data-work_id="77059575" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/77059575/Integrable_Hamiltonian_system_with_two_degrees_of_freedom_The_topological_structure_of_saturated_neighbourhoods_of_points_of_focus_focus_and_saddle_saddle_type">Integrable Hamiltonian system with two degrees of freedom. The topological structure of saturated neighbourhoods of points of focus-focus and saddle-saddle type</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/77059575" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="203bd2090ecaed02f4f97f502e88cb04" rel="nofollow" data-download="{&quot;attachment_id&quot;:84560819,&quot;asset_id&quot;:77059575,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/84560819/download_file?st=MTczMjQxNjA2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="221349565" href="https://independent.academia.edu/VladimirMatveev5">Vladimir Matveev</a><script data-card-contents-for-user="221349565" type="text/json">{"id":221349565,"first_name":"Vladimir","last_name":"Matveev","domain_name":"independent","page_name":"VladimirMatveev5","display_name":"Vladimir Matveev","profile_url":"https://independent.academia.edu/VladimirMatveev5?f_ri=19997","photo":"https://0.academia-photos.com/221349565/79144941/67706416/s65_vladimir.matveev.jpeg"}</script></span></span></li><li class="js-paper-rank-work_77059575 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="77059575"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 77059575, container: ".js-paper-rank-work_77059575", }); });</script></li><li class="js-percentile-work_77059575 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 77059575; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_77059575"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_77059575 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="77059575"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 77059575; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=77059575]").text(description); $(".js-view-count-work_77059575").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_77059575").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="77059575"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">7</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="305" href="https://www.academia.edu/Documents/in/Applied_Mathematics">Applied Mathematics</a>,&nbsp;<script data-card-contents-for-ri="305" type="text/json">{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="318" href="https://www.academia.edu/Documents/in/Mathematical_Physics">Mathematical Physics</a>,&nbsp;<script data-card-contents-for-ri="318" type="text/json">{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="498" href="https://www.academia.edu/Documents/in/Physics">Physics</a>,&nbsp;<script data-card-contents-for-ri="498" type="text/json">{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a><script data-card-contents-for-ri="19997" type="text/json">{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=77059575]'), work: {"id":77059575,"title":"Integrable Hamiltonian system with two degrees of freedom. The topological structure of saturated neighbourhoods of points of focus-focus and saddle-saddle type","created_at":"2022-04-20T04:29:58.075-07:00","url":"https://www.academia.edu/77059575/Integrable_Hamiltonian_system_with_two_degrees_of_freedom_The_topological_structure_of_saturated_neighbourhoods_of_points_of_focus_focus_and_saddle_saddle_type?f_ri=19997","dom_id":"work_77059575","summary":null,"downloadable_attachments":[{"id":84560819,"asset_id":77059575,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":221349565,"first_name":"Vladimir","last_name":"Matveev","domain_name":"independent","page_name":"VladimirMatveev5","display_name":"Vladimir Matveev","profile_url":"https://independent.academia.edu/VladimirMatveev5?f_ri=19997","photo":"https://0.academia-photos.com/221349565/79144941/67706416/s65_vladimir.matveev.jpeg"}],"research_interests":[{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics?f_ri=19997","nofollow":false},{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics?f_ri=19997","nofollow":false},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics?f_ri=19997","nofollow":false},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences?f_ri=19997"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences?f_ri=19997"},{"id":734192,"name":"Theoretical and Mathematical Physics","url":"https://www.academia.edu/Documents/in/Theoretical_and_Mathematical_Physics?f_ri=19997"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_76440218" data-work_id="76440218" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/76440218/Positive_solutions_for_a_concave_semipositone_Dirichlet_problem">Positive solutions for a concave semipositone Dirichlet problem</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/76440218" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="8b4bccb4a9400676bb402055da120130" rel="nofollow" data-download="{&quot;attachment_id&quot;:84148040,&quot;asset_id&quot;:76440218,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/84148040/download_file?st=MTczMjQxNjA2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="37409818" href="https://independent.academia.edu/AlfonsoCastro3">Alfonso Castro</a><script data-card-contents-for-user="37409818" type="text/json">{"id":37409818,"first_name":"Alfonso","last_name":"Castro","domain_name":"independent","page_name":"AlfonsoCastro3","display_name":"Alfonso Castro","profile_url":"https://independent.academia.edu/AlfonsoCastro3?f_ri=19997","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_76440218 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="76440218"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 76440218, container: ".js-paper-rank-work_76440218", }); });</script></li><li class="js-percentile-work_76440218 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 76440218; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_76440218"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_76440218 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="76440218"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 76440218; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=76440218]").text(description); $(".js-view-count-work_76440218").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_76440218").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="76440218"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">4</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="300" href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a>,&nbsp;<script data-card-contents-for-ri="300" type="text/json">{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="305" href="https://www.academia.edu/Documents/in/Applied_Mathematics">Applied Mathematics</a>,&nbsp;<script data-card-contents-for-ri="305" type="text/json">{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a>,&nbsp;<script data-card-contents-for-ri="19997" type="text/json">{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="68432" href="https://www.academia.edu/Documents/in/Nonlinear_Analysis">Nonlinear Analysis</a><script data-card-contents-for-ri="68432" type="text/json">{"id":68432,"name":"Nonlinear Analysis","url":"https://www.academia.edu/Documents/in/Nonlinear_Analysis?f_ri=19997","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=76440218]'), work: {"id":76440218,"title":"Positive solutions for a concave semipositone Dirichlet problem","created_at":"2022-04-14T09:09:13.379-07:00","url":"https://www.academia.edu/76440218/Positive_solutions_for_a_concave_semipositone_Dirichlet_problem?f_ri=19997","dom_id":"work_76440218","summary":null,"downloadable_attachments":[{"id":84148040,"asset_id":76440218,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":37409818,"first_name":"Alfonso","last_name":"Castro","domain_name":"independent","page_name":"AlfonsoCastro3","display_name":"Alfonso Castro","profile_url":"https://independent.academia.edu/AlfonsoCastro3?f_ri=19997","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics?f_ri=19997","nofollow":false},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics?f_ri=19997","nofollow":false},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false},{"id":68432,"name":"Nonlinear Analysis","url":"https://www.academia.edu/Documents/in/Nonlinear_Analysis?f_ri=19997","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_76085226" data-work_id="76085226" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/76085226/Constructing_the_Graphs_That_Triangulate_Both_the_Torus_and_the_Klein_Bottle">Constructing the Graphs That Triangulate Both the Torus and the Klein Bottle</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/76085226" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="5f64f1dad179519174d45f2a1359c0b7" rel="nofollow" data-download="{&quot;attachment_id&quot;:83765017,&quot;asset_id&quot;:76085226,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/83765017/download_file?st=MTczMjQxNjA2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="45198817" href="https://independent.academia.edu/SergeLawrencenko">Serge Lawrence (Lawrencenko)</a><script data-card-contents-for-user="45198817" type="text/json">{"id":45198817,"first_name":"Serge","last_name":"Lawrence (Lawrencenko)","domain_name":"independent","page_name":"SergeLawrencenko","display_name":"Serge Lawrence (Lawrencenko)","profile_url":"https://independent.academia.edu/SergeLawrencenko?f_ri=19997","photo":"https://0.academia-photos.com/45198817/51167126/79015112/s65_serge.lawrencenko.jpg"}</script></span></span></li><li class="js-paper-rank-work_76085226 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="76085226"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 76085226, container: ".js-paper-rank-work_76085226", }); });</script></li><li class="js-percentile-work_76085226 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 76085226; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_76085226"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_76085226 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="76085226"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 76085226; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=76085226]").text(description); $(".js-view-count-work_76085226").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_76085226").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="76085226"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">2</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a>,&nbsp;<script data-card-contents-for-ri="19997" type="text/json">{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="1674993" href="https://www.academia.edu/Documents/in/Klein_Bottle">Klein Bottle</a><script data-card-contents-for-ri="1674993" type="text/json">{"id":1674993,"name":"Klein Bottle","url":"https://www.academia.edu/Documents/in/Klein_Bottle?f_ri=19997","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=76085226]'), work: {"id":76085226,"title":"Constructing the Graphs That Triangulate Both the Torus and the Klein Bottle","created_at":"2022-04-11T01:31:12.788-07:00","url":"https://www.academia.edu/76085226/Constructing_the_Graphs_That_Triangulate_Both_the_Torus_and_the_Klein_Bottle?f_ri=19997","dom_id":"work_76085226","summary":null,"downloadable_attachments":[{"id":83765017,"asset_id":76085226,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":45198817,"first_name":"Serge","last_name":"Lawrence (Lawrencenko)","domain_name":"independent","page_name":"SergeLawrencenko","display_name":"Serge Lawrence (Lawrencenko)","profile_url":"https://independent.academia.edu/SergeLawrencenko?f_ri=19997","photo":"https://0.academia-photos.com/45198817/51167126/79015112/s65_serge.lawrencenko.jpg"}],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false},{"id":1674993,"name":"Klein Bottle","url":"https://www.academia.edu/Documents/in/Klein_Bottle?f_ri=19997","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_75484480" data-work_id="75484480" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/75484480/On_the_integrability_of_polynomial_fields_in_the_plane_by_means_of_Picard_Vessiot_theory">On the integrability of polynomial fields in the plane by means of Picard-Vessiot theory</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">We study the integrability of polynomial vector fields using Galois theory of linear differential equations when the associated foliations is reduced to a Riccati type foliation. In particular we obtain integrability results for some... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_75484480" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">We study the integrability of polynomial vector fields using Galois theory of linear differential equations when the associated foliations is reduced to a Riccati type foliation. In particular we obtain integrability results for some families of quadratic vector fields, Li\&amp;#39;enard equations and equations related with special functions such as Hypergeometric and Heun ones. The Poincar\&amp;#39;e problem for some families is also approached.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/75484480" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="4ec531457cad6e811fdb828b82e7a54c" rel="nofollow" data-download="{&quot;attachment_id&quot;:83235128,&quot;asset_id&quot;:75484480,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/83235128/download_file?st=MTczMjQxNjA2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="37144956" href="https://independent.academia.edu/JuanMoralesruiz">Juan Morales-ruiz</a><script data-card-contents-for-user="37144956" type="text/json">{"id":37144956,"first_name":"Juan","last_name":"Morales-ruiz","domain_name":"independent","page_name":"JuanMoralesruiz","display_name":"Juan Morales-ruiz","profile_url":"https://independent.academia.edu/JuanMoralesruiz?f_ri=19997","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_75484480 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="75484480"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 75484480, container: ".js-paper-rank-work_75484480", }); });</script></li><li class="js-percentile-work_75484480 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75484480; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_75484480"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_75484480 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="75484480"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75484480; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75484480]").text(description); $(".js-view-count-work_75484480").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_75484480").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="75484480"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">7</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="300" href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a>,&nbsp;<script data-card-contents-for-ri="300" type="text/json">{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="305" href="https://www.academia.edu/Documents/in/Applied_Mathematics">Applied Mathematics</a>,&nbsp;<script data-card-contents-for-ri="305" type="text/json">{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a>,&nbsp;<script data-card-contents-for-ri="19997" type="text/json">{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="59542" href="https://www.academia.edu/Documents/in/Galois_Theory">Galois Theory</a><script data-card-contents-for-ri="59542" type="text/json">{"id":59542,"name":"Galois Theory","url":"https://www.academia.edu/Documents/in/Galois_Theory?f_ri=19997","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=75484480]'), work: {"id":75484480,"title":"On the integrability of polynomial fields in the plane by means of Picard-Vessiot theory","created_at":"2022-04-04T22:14:31.504-07:00","url":"https://www.academia.edu/75484480/On_the_integrability_of_polynomial_fields_in_the_plane_by_means_of_Picard_Vessiot_theory?f_ri=19997","dom_id":"work_75484480","summary":"We study the integrability of polynomial vector fields using Galois theory of linear differential equations when the associated foliations is reduced to a Riccati type foliation. In particular we obtain integrability results for some families of quadratic vector fields, Li\\\u0026#39;enard equations and equations related with special functions such as Hypergeometric and Heun ones. The Poincar\\\u0026#39;e problem for some families is also approached.","downloadable_attachments":[{"id":83235128,"asset_id":75484480,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":37144956,"first_name":"Juan","last_name":"Morales-ruiz","domain_name":"independent","page_name":"JuanMoralesruiz","display_name":"Juan Morales-ruiz","profile_url":"https://independent.academia.edu/JuanMoralesruiz?f_ri=19997","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics?f_ri=19997","nofollow":false},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics?f_ri=19997","nofollow":false},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false},{"id":59542,"name":"Galois Theory","url":"https://www.academia.edu/Documents/in/Galois_Theory?f_ri=19997","nofollow":false},{"id":135583,"name":"Special functions","url":"https://www.academia.edu/Documents/in/Special_functions?f_ri=19997"},{"id":868912,"name":"Dynamic System","url":"https://www.academia.edu/Documents/in/Dynamic_System?f_ri=19997"},{"id":1010090,"name":"Non linear Partial Differential Equation","url":"https://www.academia.edu/Documents/in/Non_linear_Partial_Differential_Equation?f_ri=19997"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_74992563" data-work_id="74992563" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/74992563/A_note_on_the_real_part_of_complex_chromatic_roots">A note on the real part of complex chromatic roots</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/74992563" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="d928eedf44214cbcdfbddaec0ff559b9" rel="nofollow" data-download="{&quot;attachment_id&quot;:82942681,&quot;asset_id&quot;:74992563,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/82942681/download_file?st=MTczMjQxNjA2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="160569672" href="https://independent.academia.edu/JasonBrown160">Jason Brown</a><script data-card-contents-for-user="160569672" type="text/json">{"id":160569672,"first_name":"Jason","last_name":"Brown","domain_name":"independent","page_name":"JasonBrown160","display_name":"Jason Brown","profile_url":"https://independent.academia.edu/JasonBrown160?f_ri=19997","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_74992563 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="74992563"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 74992563, container: ".js-paper-rank-work_74992563", }); });</script></li><li class="js-percentile-work_74992563 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 74992563; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_74992563"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_74992563 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="74992563"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 74992563; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=74992563]").text(description); $(".js-view-count-work_74992563").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_74992563").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="74992563"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">5</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="305" href="https://www.academia.edu/Documents/in/Applied_Mathematics">Applied Mathematics</a>,&nbsp;<script data-card-contents-for-ri="305" type="text/json">{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a>,&nbsp;<script data-card-contents-for-ri="19997" type="text/json">{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="37345" href="https://www.academia.edu/Documents/in/Discrete_Mathematics">Discrete Mathematics</a>,&nbsp;<script data-card-contents-for-ri="37345" type="text/json">{"id":37345,"name":"Discrete Mathematics","url":"https://www.academia.edu/Documents/in/Discrete_Mathematics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="525222" href="https://www.academia.edu/Documents/in/Chromatic_polynomial">Chromatic polynomial</a><script data-card-contents-for-ri="525222" type="text/json">{"id":525222,"name":"Chromatic polynomial","url":"https://www.academia.edu/Documents/in/Chromatic_polynomial?f_ri=19997","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=74992563]'), work: {"id":74992563,"title":"A note on the real part of complex chromatic roots","created_at":"2022-03-30T10:23:43.252-07:00","url":"https://www.academia.edu/74992563/A_note_on_the_real_part_of_complex_chromatic_roots?f_ri=19997","dom_id":"work_74992563","summary":null,"downloadable_attachments":[{"id":82942681,"asset_id":74992563,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":160569672,"first_name":"Jason","last_name":"Brown","domain_name":"independent","page_name":"JasonBrown160","display_name":"Jason Brown","profile_url":"https://independent.academia.edu/JasonBrown160?f_ri=19997","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics?f_ri=19997","nofollow":false},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false},{"id":37345,"name":"Discrete Mathematics","url":"https://www.academia.edu/Documents/in/Discrete_Mathematics?f_ri=19997","nofollow":false},{"id":525222,"name":"Chromatic polynomial","url":"https://www.academia.edu/Documents/in/Chromatic_polynomial?f_ri=19997","nofollow":false},{"id":2999418,"name":"Chromatic Scale","url":"https://www.academia.edu/Documents/in/Chromatic_Scale?f_ri=19997"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_74110649" data-work_id="74110649" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/74110649/The_Distance_Between_Crossing_Points_as_a_Parameter_in_Edge_Coloring_Problems_for_Cubic_Graphs">The Distance Between Crossing Points as a Parameter in Edge Coloring Problems for Cubic Graphs</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">We investigate the 3-edge coloring problem, based on the idea to give an algorithm, that attempts to minimize the use of color 4 (in a 4-edge coloring), and to study the factors that force it to fail. More specific, we introduce the... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_74110649" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">We investigate the 3-edge coloring problem, based on the idea to give an algorithm, that attempts to minimize the use of color 4 (in a 4-edge coloring), and to study the factors that force it to fail. More specific, we introduce the notion of the ”position” of crossing points (or crossing edges) and the notion of the ”connection by bicolor paths”. A first result of this approach is that we can always assign a 4-edge coloring in a connected, bridgeless and cubic graph G using the fourth color only in crossing edges. Furthermore, color 4 is needed at most in half of these pairs of crossing edges. Finally, we bound the number of times color 4 is required in terms of the distance between the crossing points in the drawing of the graph.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/74110649" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="2ec060906382f0fe71da2ceb27ed49a3" rel="nofollow" data-download="{&quot;attachment_id&quot;:82428445,&quot;asset_id&quot;:74110649,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/82428445/download_file?st=MTczMjQxNjA2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="7887836" href="https://independent.academia.edu/dkoreas">diamantis koreas</a><script data-card-contents-for-user="7887836" type="text/json">{"id":7887836,"first_name":"diamantis","last_name":"koreas","domain_name":"independent","page_name":"dkoreas","display_name":"diamantis koreas","profile_url":"https://independent.academia.edu/dkoreas?f_ri=19997","photo":"https://0.academia-photos.com/7887836/4326679/82862605/s65_diamantis.koreas.jpg"}</script></span></span></li><li class="js-paper-rank-work_74110649 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="74110649"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 74110649, container: ".js-paper-rank-work_74110649", }); });</script></li><li class="js-percentile-work_74110649 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 74110649; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_74110649"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_74110649 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="74110649"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 74110649; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=74110649]").text(description); $(".js-view-count-work_74110649").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_74110649").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="74110649"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">4</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="305" href="https://www.academia.edu/Documents/in/Applied_Mathematics">Applied Mathematics</a>,&nbsp;<script data-card-contents-for-ri="305" type="text/json">{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a>,&nbsp;<script data-card-contents-for-ri="19997" type="text/json">{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="556845" href="https://www.academia.edu/Documents/in/Numerical_Analysis_and_Computational_Mathematics">Numerical Analysis and Computational Mathematics</a>,&nbsp;<script data-card-contents-for-ri="556845" type="text/json">{"id":556845,"name":"Numerical Analysis and Computational Mathematics","url":"https://www.academia.edu/Documents/in/Numerical_Analysis_and_Computational_Mathematics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="1210260" href="https://www.academia.edu/Documents/in/Edge_Coloring">Edge Coloring</a><script data-card-contents-for-ri="1210260" type="text/json">{"id":1210260,"name":"Edge Coloring","url":"https://www.academia.edu/Documents/in/Edge_Coloring?f_ri=19997","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=74110649]'), work: {"id":74110649,"title":"The Distance Between Crossing Points as a Parameter in Edge Coloring Problems for Cubic Graphs","created_at":"2022-03-19T23:57:33.205-07:00","url":"https://www.academia.edu/74110649/The_Distance_Between_Crossing_Points_as_a_Parameter_in_Edge_Coloring_Problems_for_Cubic_Graphs?f_ri=19997","dom_id":"work_74110649","summary":"We investigate the 3-edge coloring problem, based on the idea to give an algorithm, that attempts to minimize the use of color 4 (in a 4-edge coloring), and to study the factors that force it to fail. More specific, we introduce the notion of the ”position” of crossing points (or crossing edges) and the notion of the ”connection by bicolor paths”. A first result of this approach is that we can always assign a 4-edge coloring in a connected, bridgeless and cubic graph G using the fourth color only in crossing edges. Furthermore, color 4 is needed at most in half of these pairs of crossing edges. Finally, we bound the number of times color 4 is required in terms of the distance between the crossing points in the drawing of the graph.","downloadable_attachments":[{"id":82428445,"asset_id":74110649,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":7887836,"first_name":"diamantis","last_name":"koreas","domain_name":"independent","page_name":"dkoreas","display_name":"diamantis koreas","profile_url":"https://independent.academia.edu/dkoreas?f_ri=19997","photo":"https://0.academia-photos.com/7887836/4326679/82862605/s65_diamantis.koreas.jpg"}],"research_interests":[{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics?f_ri=19997","nofollow":false},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false},{"id":556845,"name":"Numerical Analysis and Computational Mathematics","url":"https://www.academia.edu/Documents/in/Numerical_Analysis_and_Computational_Mathematics?f_ri=19997","nofollow":false},{"id":1210260,"name":"Edge Coloring","url":"https://www.academia.edu/Documents/in/Edge_Coloring?f_ri=19997","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_73644030" data-work_id="73644030" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/73644030/Visibility_queries_in_a_polygonal_region">Visibility queries in a polygonal region</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/73644030" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="c39285bbf5b57dd4d5dc255d04571644" rel="nofollow" data-download="{&quot;attachment_id&quot;:82084993,&quot;asset_id&quot;:73644030,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/82084993/download_file?st=MTczMjQxNjA2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="15132252" href="https://iit.academia.edu/SanjivKapoor">Sanjiv Kapoor</a><script data-card-contents-for-user="15132252" type="text/json">{"id":15132252,"first_name":"Sanjiv","last_name":"Kapoor","domain_name":"iit","page_name":"SanjivKapoor","display_name":"Sanjiv Kapoor","profile_url":"https://iit.academia.edu/SanjivKapoor?f_ri=19997","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_73644030 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="73644030"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 73644030, container: ".js-paper-rank-work_73644030", }); });</script></li><li class="js-percentile-work_73644030 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73644030; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_73644030"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_73644030 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="73644030"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73644030; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73644030]").text(description); $(".js-view-count-work_73644030").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_73644030").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="73644030"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">7</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="300" href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a>,&nbsp;<script data-card-contents-for-ri="300" type="text/json">{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="422" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a>,&nbsp;<script data-card-contents-for-ri="422" type="text/json">{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2424" href="https://www.academia.edu/Documents/in/Computational_Geometry">Computational Geometry</a>,&nbsp;<script data-card-contents-for-ri="2424" type="text/json">{"id":2424,"name":"Computational Geometry","url":"https://www.academia.edu/Documents/in/Computational_Geometry?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a><script data-card-contents-for-ri="19997" type="text/json">{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=73644030]'), work: {"id":73644030,"title":"Visibility queries in a polygonal region","created_at":"2022-03-13T00:32:17.542-08:00","url":"https://www.academia.edu/73644030/Visibility_queries_in_a_polygonal_region?f_ri=19997","dom_id":"work_73644030","summary":null,"downloadable_attachments":[{"id":82084993,"asset_id":73644030,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":15132252,"first_name":"Sanjiv","last_name":"Kapoor","domain_name":"iit","page_name":"SanjivKapoor","display_name":"Sanjiv Kapoor","profile_url":"https://iit.academia.edu/SanjivKapoor?f_ri=19997","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics?f_ri=19997","nofollow":false},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=19997","nofollow":false},{"id":2424,"name":"Computational Geometry","url":"https://www.academia.edu/Documents/in/Computational_Geometry?f_ri=19997","nofollow":false},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false},{"id":53994,"name":"Data Structure","url":"https://www.academia.edu/Documents/in/Data_Structure?f_ri=19997"},{"id":556845,"name":"Numerical Analysis and Computational Mathematics","url":"https://www.academia.edu/Documents/in/Numerical_Analysis_and_Computational_Mathematics?f_ri=19997"},{"id":2750160,"name":"Space Complexity","url":"https://www.academia.edu/Documents/in/Space_Complexity?f_ri=19997"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_71664276" data-work_id="71664276" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/71664276/On_a_question_of_Davenport">On a question of Davenport</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/71664276" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="9d6e3079599a93f4998da11c0060fdb7" rel="nofollow" data-download="{&quot;attachment_id&quot;:80912740,&quot;asset_id&quot;:71664276,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/80912740/download_file?st=MTczMjQxNjA2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="13689602" href="https://uni-wuerzburg.academia.edu/PeterM%C3%BCller">Peter Müller</a><script data-card-contents-for-user="13689602" type="text/json">{"id":13689602,"first_name":"Peter","last_name":"Müller","domain_name":"uni-wuerzburg","page_name":"PeterMüller","display_name":"Peter Müller","profile_url":"https://uni-wuerzburg.academia.edu/PeterM%C3%BCller?f_ri=19997","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_71664276 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="71664276"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 71664276, container: ".js-paper-rank-work_71664276", }); });</script></li><li class="js-percentile-work_71664276 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 71664276; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_71664276"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_71664276 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="71664276"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 71664276; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=71664276]").text(description); $(".js-view-count-work_71664276").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_71664276").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="71664276"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">3</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="300" href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a>,&nbsp;<script data-card-contents-for-ri="300" type="text/json">{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="301" href="https://www.academia.edu/Documents/in/Number_Theory">Number Theory</a>,&nbsp;<script data-card-contents-for-ri="301" type="text/json">{"id":301,"name":"Number Theory","url":"https://www.academia.edu/Documents/in/Number_Theory?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a><script data-card-contents-for-ri="19997" type="text/json">{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=71664276]'), work: {"id":71664276,"title":"On a question of Davenport","created_at":"2022-02-15T23:58:36.965-08:00","url":"https://www.academia.edu/71664276/On_a_question_of_Davenport?f_ri=19997","dom_id":"work_71664276","summary":null,"downloadable_attachments":[{"id":80912740,"asset_id":71664276,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":13689602,"first_name":"Peter","last_name":"Müller","domain_name":"uni-wuerzburg","page_name":"PeterMüller","display_name":"Peter Müller","profile_url":"https://uni-wuerzburg.academia.edu/PeterM%C3%BCller?f_ri=19997","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics?f_ri=19997","nofollow":false},{"id":301,"name":"Number Theory","url":"https://www.academia.edu/Documents/in/Number_Theory?f_ri=19997","nofollow":false},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_69891994" data-work_id="69891994" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/69891994/The_spectra_of_Banach_algebras_of_holomorphic_functions_on_polydisk_type_domains">The spectra of Banach algebras of holomorphic functions on polydisk type domains</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">In 2012, R.M. Aron, D. Carando, T.W. Gamelin, S. Lassalle, and M. Maestre presented that the Cluster Value Theorem in the infinite dimensional Banach space setting holds for the Banach algebra $\mathcal{H}^\infty (B_{c_0})$. On the other... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_69891994" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">In 2012, R.M. Aron, D. Carando, T.W. Gamelin, S. Lassalle, and M. Maestre presented that the Cluster Value Theorem in the infinite dimensional Banach space setting holds for the Banach algebra $\mathcal{H}^\infty (B_{c_0})$. On the other hand, B.J. Cole and T.W. Gamelin showed in 1986 that $\mathcal{H}^\infty (\ell_2 \cap B_{c_0})$ is isometrically isomorphic to $\mathcal{H}^\infty (B_{c_0})$ in the sense of an algebra. Motivated by this work, we are interested in a class of open subsets $U$ of a Banach space $X$ for which $\mathcal{H}^\infty (U)$ is isometrically isomorphic to $\mathcal{H}^\infty (B_{c_0})$. We prove that there exist polydisk type domains $U$ of any infinite dimensional Banach space $X$ with a Schauder basis such that $\mathcal{H}^\infty (U)$ is isometrically isomorphic to $\mathcal{H}^\infty (B_{c_0})$, which also generalizes the result by Cole and Gamelin. We also show that the Cluster Value Theorem is true for $\mathcal{H}^\infty (U)$. As the dual space $X^*$ is...</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/69891994" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="6442de2c6af301b7f9388ab5fdb3fc8d" rel="nofollow" data-download="{&quot;attachment_id&quot;:79815153,&quot;asset_id&quot;:69891994,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/79815153/download_file?st=MTczMjQxNjA2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="37376148" href="https://uv.academia.edu/ManuelMaestre">Manuel Maestre</a><script data-card-contents-for-user="37376148" type="text/json">{"id":37376148,"first_name":"Manuel","last_name":"Maestre","domain_name":"uv","page_name":"ManuelMaestre","display_name":"Manuel Maestre","profile_url":"https://uv.academia.edu/ManuelMaestre?f_ri=19997","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_69891994 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="69891994"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 69891994, container: ".js-paper-rank-work_69891994", }); });</script></li><li class="js-percentile-work_69891994 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69891994; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_69891994"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_69891994 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="69891994"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69891994; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69891994]").text(description); $(".js-view-count-work_69891994").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_69891994").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="69891994"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i></div><span class="InlineList-item-text u-textTruncate u-pl6x"><a class="InlineList-item-text" data-has-card-for-ri="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a><script data-card-contents-for-ri="19997" type="text/json">{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}</script></span></li><script>(function(){ if (false) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=69891994]'), work: {"id":69891994,"title":"The spectra of Banach algebras of holomorphic functions on polydisk type domains","created_at":"2022-01-29T03:09:12.160-08:00","url":"https://www.academia.edu/69891994/The_spectra_of_Banach_algebras_of_holomorphic_functions_on_polydisk_type_domains?f_ri=19997","dom_id":"work_69891994","summary":"In 2012, R.M. Aron, D. Carando, T.W. Gamelin, S. Lassalle, and M. Maestre presented that the Cluster Value Theorem in the infinite dimensional Banach space setting holds for the Banach algebra $\\mathcal{H}^\\infty (B_{c_0})$. On the other hand, B.J. Cole and T.W. Gamelin showed in 1986 that $\\mathcal{H}^\\infty (\\ell_2 \\cap B_{c_0})$ is isometrically isomorphic to $\\mathcal{H}^\\infty (B_{c_0})$ in the sense of an algebra. Motivated by this work, we are interested in a class of open subsets $U$ of a Banach space $X$ for which $\\mathcal{H}^\\infty (U)$ is isometrically isomorphic to $\\mathcal{H}^\\infty (B_{c_0})$. We prove that there exist polydisk type domains $U$ of any infinite dimensional Banach space $X$ with a Schauder basis such that $\\mathcal{H}^\\infty (U)$ is isometrically isomorphic to $\\mathcal{H}^\\infty (B_{c_0})$, which also generalizes the result by Cole and Gamelin. We also show that the Cluster Value Theorem is true for $\\mathcal{H}^\\infty (U)$. As the dual space $X^*$ is...","downloadable_attachments":[{"id":79815153,"asset_id":69891994,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":37376148,"first_name":"Manuel","last_name":"Maestre","domain_name":"uv","page_name":"ManuelMaestre","display_name":"Manuel Maestre","profile_url":"https://uv.academia.edu/ManuelMaestre?f_ri=19997","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_68924086" data-work_id="68924086" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/68924086/On_everywhere_divergence_of_the_strong_%CE%A6_means_of_Walsh_Fourier_series">On everywhere divergence of the strong Φ-means of Walsh–Fourier series</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/68924086" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="ffa297c82dab7450951ba2364fadde8f" rel="nofollow" data-download="{&quot;attachment_id&quot;:79223537,&quot;asset_id&quot;:68924086,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/79223537/download_file?st=MTczMjQxNjA2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="32476274" href="https://unideb.academia.edu/GyorgyGat">Gyorgy Gat</a><script data-card-contents-for-user="32476274" type="text/json">{"id":32476274,"first_name":"Gyorgy","last_name":"Gat","domain_name":"unideb","page_name":"GyorgyGat","display_name":"Gyorgy Gat","profile_url":"https://unideb.academia.edu/GyorgyGat?f_ri=19997","photo":"https://0.academia-photos.com/32476274/18444977/18396189/s65_gyorgy.gat.jpg"}</script></span></span></li><li class="js-paper-rank-work_68924086 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="68924086"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 68924086, container: ".js-paper-rank-work_68924086", }); });</script></li><li class="js-percentile-work_68924086 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 68924086; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_68924086"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_68924086 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="68924086"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 68924086; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=68924086]").text(description); $(".js-view-count-work_68924086").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_68924086").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="68924086"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">5</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="300" href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a>,&nbsp;<script data-card-contents-for-ri="300" type="text/json">{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="305" href="https://www.academia.edu/Documents/in/Applied_Mathematics">Applied Mathematics</a>,&nbsp;<script data-card-contents-for-ri="305" type="text/json">{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a>,&nbsp;<script data-card-contents-for-ri="19997" type="text/json">{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="518958" href="https://www.academia.edu/Documents/in/Mathematical_Analysis_and_Applications">Mathematical Analysis and Applications</a><script data-card-contents-for-ri="518958" type="text/json">{"id":518958,"name":"Mathematical Analysis and Applications","url":"https://www.academia.edu/Documents/in/Mathematical_Analysis_and_Applications?f_ri=19997","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=68924086]'), work: {"id":68924086,"title":"On everywhere divergence of the strong Φ-means of Walsh–Fourier series","created_at":"2022-01-20T22:06:05.335-08:00","url":"https://www.academia.edu/68924086/On_everywhere_divergence_of_the_strong_%CE%A6_means_of_Walsh_Fourier_series?f_ri=19997","dom_id":"work_68924086","summary":null,"downloadable_attachments":[{"id":79223537,"asset_id":68924086,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":32476274,"first_name":"Gyorgy","last_name":"Gat","domain_name":"unideb","page_name":"GyorgyGat","display_name":"Gyorgy Gat","profile_url":"https://unideb.academia.edu/GyorgyGat?f_ri=19997","photo":"https://0.academia-photos.com/32476274/18444977/18396189/s65_gyorgy.gat.jpg"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics?f_ri=19997","nofollow":false},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics?f_ri=19997","nofollow":false},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false},{"id":518958,"name":"Mathematical Analysis and Applications","url":"https://www.academia.edu/Documents/in/Mathematical_Analysis_and_Applications?f_ri=19997","nofollow":false},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering?f_ri=19997"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_66935658" data-work_id="66935658" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/66935658/Results_of_Formal_Local_Cohomology_Modules">Results of Formal Local Cohomology Modules</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/66935658" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="c562d95e04fa3f8f7563889f02377f57" rel="nofollow" data-download="{&quot;attachment_id&quot;:77943118,&quot;asset_id&quot;:66935658,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/77943118/download_file?st=MTczMjQxNjA2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="194013305" href="https://independent.academia.edu/AmirMafi2">Amir Mafi</a><script data-card-contents-for-user="194013305" type="text/json">{"id":194013305,"first_name":"Amir","last_name":"Mafi","domain_name":"independent","page_name":"AmirMafi2","display_name":"Amir Mafi","profile_url":"https://independent.academia.edu/AmirMafi2?f_ri=19997","photo":"https://0.academia-photos.com/194013305/56569830/44775088/s65_amir.mafi.jpeg"}</script></span></span></li><li class="js-paper-rank-work_66935658 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="66935658"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 66935658, container: ".js-paper-rank-work_66935658", }); });</script></li><li class="js-percentile-work_66935658 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 66935658; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_66935658"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_66935658 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="66935658"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 66935658; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=66935658]").text(description); $(".js-view-count-work_66935658").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_66935658").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="66935658"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i></div><span class="InlineList-item-text u-textTruncate u-pl6x"><a class="InlineList-item-text" data-has-card-for-ri="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a><script data-card-contents-for-ri="19997" type="text/json">{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}</script></span></li><script>(function(){ if (false) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=66935658]'), work: {"id":66935658,"title":"Results of Formal Local Cohomology Modules","created_at":"2022-01-03T04:58:30.838-08:00","url":"https://www.academia.edu/66935658/Results_of_Formal_Local_Cohomology_Modules?f_ri=19997","dom_id":"work_66935658","summary":null,"downloadable_attachments":[{"id":77943118,"asset_id":66935658,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":194013305,"first_name":"Amir","last_name":"Mafi","domain_name":"independent","page_name":"AmirMafi2","display_name":"Amir Mafi","profile_url":"https://independent.academia.edu/AmirMafi2?f_ri=19997","photo":"https://0.academia-photos.com/194013305/56569830/44775088/s65_amir.mafi.jpeg"}],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_65641397" data-work_id="65641397" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/65641397/Some_properties_of_certain_subclasses_of_analytic_functions_with_negative_coefficients_by_using_generalized_ruscheweyh_derivative_operator">Some properties of certain subclasses of analytic functions with negative coefficients by using generalized ruscheweyh derivative operator</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/65641397" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="c2b8e57e790de7b62c7bea7a34d04d30" rel="nofollow" data-download="{&quot;attachment_id&quot;:77149252,&quot;asset_id&quot;:65641397,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/77149252/download_file?st=MTczMjQxNjA2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="28413117" href="https://independent.academia.edu/HalitOrhan">Halit Orhan</a><script data-card-contents-for-user="28413117" type="text/json">{"id":28413117,"first_name":"Halit","last_name":"Orhan","domain_name":"independent","page_name":"HalitOrhan","display_name":"Halit Orhan","profile_url":"https://independent.academia.edu/HalitOrhan?f_ri=19997","photo":"https://0.academia-photos.com/28413117/50594503/38625747/s65_halit.orhan.png"}</script></span></span></li><li class="js-paper-rank-work_65641397 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="65641397"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 65641397, container: ".js-paper-rank-work_65641397", }); });</script></li><li class="js-percentile-work_65641397 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65641397; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_65641397"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_65641397 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="65641397"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65641397; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65641397]").text(description); $(".js-view-count-work_65641397").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_65641397").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="65641397"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i></div><span class="InlineList-item-text u-textTruncate u-pl6x"><a class="InlineList-item-text" data-has-card-for-ri="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a><script data-card-contents-for-ri="19997" type="text/json">{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}</script></span></li><script>(function(){ if (false) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=65641397]'), work: {"id":65641397,"title":"Some properties of certain subclasses of analytic functions with negative coefficients by using generalized ruscheweyh derivative operator","created_at":"2021-12-23T01:14:57.837-08:00","url":"https://www.academia.edu/65641397/Some_properties_of_certain_subclasses_of_analytic_functions_with_negative_coefficients_by_using_generalized_ruscheweyh_derivative_operator?f_ri=19997","dom_id":"work_65641397","summary":null,"downloadable_attachments":[{"id":77149252,"asset_id":65641397,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":28413117,"first_name":"Halit","last_name":"Orhan","domain_name":"independent","page_name":"HalitOrhan","display_name":"Halit Orhan","profile_url":"https://independent.academia.edu/HalitOrhan?f_ri=19997","photo":"https://0.academia-photos.com/28413117/50594503/38625747/s65_halit.orhan.png"}],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_65131326" data-work_id="65131326" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/65131326/Estimates_for_the_expected_lifetime_of_conditioned_Brownian_motion">Estimates for the expected lifetime of conditioned Brownian motion</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/65131326" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="889bd34946f7229196a80eb7d13ef035" rel="nofollow" data-download="{&quot;attachment_id&quot;:76856929,&quot;asset_id&quot;:65131326,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/76856929/download_file?st=MTczMjQxNjA2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="72419013" href="https://independent.academia.edu/GuidoSweers">Guido Sweers</a><script data-card-contents-for-user="72419013" type="text/json">{"id":72419013,"first_name":"Guido","last_name":"Sweers","domain_name":"independent","page_name":"GuidoSweers","display_name":"Guido Sweers","profile_url":"https://independent.academia.edu/GuidoSweers?f_ri=19997","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_65131326 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="65131326"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 65131326, container: ".js-paper-rank-work_65131326", }); });</script></li><li class="js-percentile-work_65131326 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65131326; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_65131326"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_65131326 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="65131326"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65131326; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65131326]").text(description); $(".js-view-count-work_65131326").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_65131326").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="65131326"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">4</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="305" href="https://www.academia.edu/Documents/in/Applied_Mathematics">Applied Mathematics</a>,&nbsp;<script data-card-contents-for-ri="305" type="text/json">{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="498" href="https://www.academia.edu/Documents/in/Physics">Physics</a>,&nbsp;<script data-card-contents-for-ri="498" type="text/json">{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a>,&nbsp;<script data-card-contents-for-ri="19997" type="text/json">{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="136128" href="https://www.academia.edu/Documents/in/Brownian_Motion">Brownian Motion</a><script data-card-contents-for-ri="136128" type="text/json">{"id":136128,"name":"Brownian Motion","url":"https://www.academia.edu/Documents/in/Brownian_Motion?f_ri=19997","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=65131326]'), work: {"id":65131326,"title":"Estimates for the expected lifetime of conditioned Brownian motion","created_at":"2021-12-19T13:29:04.708-08:00","url":"https://www.academia.edu/65131326/Estimates_for_the_expected_lifetime_of_conditioned_Brownian_motion?f_ri=19997","dom_id":"work_65131326","summary":null,"downloadable_attachments":[{"id":76856929,"asset_id":65131326,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":72419013,"first_name":"Guido","last_name":"Sweers","domain_name":"independent","page_name":"GuidoSweers","display_name":"Guido Sweers","profile_url":"https://independent.academia.edu/GuidoSweers?f_ri=19997","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics?f_ri=19997","nofollow":false},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics?f_ri=19997","nofollow":false},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false},{"id":136128,"name":"Brownian Motion","url":"https://www.academia.edu/Documents/in/Brownian_Motion?f_ri=19997","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_62877197" data-work_id="62877197" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/62877197/A_note_on_q_analogue_of_Hermite_poly_Bernoulli_numbers_and_polynomials">A note on q-analogue of Hermite-poly-Bernoulli numbers and polynomials</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/62877197" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="15a6d43ed23c638d7cab2bff976ac3ad" rel="nofollow" data-download="{&quot;attachment_id&quot;:75501373,&quot;asset_id&quot;:62877197,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/75501373/download_file?st=MTczMjQxNjA2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="150074056" href="https://independent.academia.edu/MusharrafAli27">Musharraf Ali</a><script data-card-contents-for-user="150074056" type="text/json">{"id":150074056,"first_name":"Musharraf","last_name":"Ali","domain_name":"independent","page_name":"MusharrafAli27","display_name":"Musharraf Ali","profile_url":"https://independent.academia.edu/MusharrafAli27?f_ri=19997","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_62877197 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="62877197"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 62877197, container: ".js-paper-rank-work_62877197", }); });</script></li><li class="js-percentile-work_62877197 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 62877197; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_62877197"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_62877197 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="62877197"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 62877197; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=62877197]").text(description); $(".js-view-count-work_62877197").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_62877197").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="62877197"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i></div><span class="InlineList-item-text u-textTruncate u-pl6x"><a class="InlineList-item-text" data-has-card-for-ri="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a><script data-card-contents-for-ri="19997" type="text/json">{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}</script></span></li><script>(function(){ if (false) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=62877197]'), work: {"id":62877197,"title":"A note on q-analogue of Hermite-poly-Bernoulli numbers and polynomials","created_at":"2021-12-01T09:29:39.689-08:00","url":"https://www.academia.edu/62877197/A_note_on_q_analogue_of_Hermite_poly_Bernoulli_numbers_and_polynomials?f_ri=19997","dom_id":"work_62877197","summary":null,"downloadable_attachments":[{"id":75501373,"asset_id":62877197,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":150074056,"first_name":"Musharraf","last_name":"Ali","domain_name":"independent","page_name":"MusharrafAli27","display_name":"Musharraf Ali","profile_url":"https://independent.academia.edu/MusharrafAli27?f_ri=19997","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_61992056" data-work_id="61992056" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/61992056/Graph_theoretic_method_for_determining_Hurwitz_equivalence_in_the_symmetric_group">Graph theoretic method for determining Hurwitz equivalence in the symmetric group</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/61992056" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="149ae14e9354b3218885e4ac68883ce3" rel="nofollow" data-download="{&quot;attachment_id&quot;:74878520,&quot;asset_id&quot;:61992056,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/74878520/download_file?st=MTczMjQxNjA2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="61747853" href="https://independent.academia.edu/TBenitzhak">T. Ben-itzhak</a><script data-card-contents-for-user="61747853" type="text/json">{"id":61747853,"first_name":"T.","last_name":"Ben-itzhak","domain_name":"independent","page_name":"TBenitzhak","display_name":"T. Ben-itzhak","profile_url":"https://independent.academia.edu/TBenitzhak?f_ri=19997","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_61992056 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="61992056"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 61992056, container: ".js-paper-rank-work_61992056", }); });</script></li><li class="js-percentile-work_61992056 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 61992056; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_61992056"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_61992056 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="61992056"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 61992056; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=61992056]").text(description); $(".js-view-count-work_61992056").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_61992056").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="61992056"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">2</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a>,&nbsp;<script data-card-contents-for-ri="19997" type="text/json">{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="150408" href="https://www.academia.edu/Documents/in/Symmetric_group">Symmetric group</a><script data-card-contents-for-ri="150408" type="text/json">{"id":150408,"name":"Symmetric group","url":"https://www.academia.edu/Documents/in/Symmetric_group?f_ri=19997","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=61992056]'), work: {"id":61992056,"title":"Graph theoretic method for determining Hurwitz equivalence in the symmetric group","created_at":"2021-11-19T01:40:46.734-08:00","url":"https://www.academia.edu/61992056/Graph_theoretic_method_for_determining_Hurwitz_equivalence_in_the_symmetric_group?f_ri=19997","dom_id":"work_61992056","summary":null,"downloadable_attachments":[{"id":74878520,"asset_id":61992056,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":61747853,"first_name":"T.","last_name":"Ben-itzhak","domain_name":"independent","page_name":"TBenitzhak","display_name":"T. Ben-itzhak","profile_url":"https://independent.academia.edu/TBenitzhak?f_ri=19997","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false},{"id":150408,"name":"Symmetric group","url":"https://www.academia.edu/Documents/in/Symmetric_group?f_ri=19997","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_61572488" data-work_id="61572488" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/61572488/Refinement_properties_and_extensions_of_filters_in_Boolean_algebras">Refinement properties and extensions of filters in Boolean algebras</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/61572488" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="fddff95b2d3a7975a7c3c592ac8a1854" rel="nofollow" data-download="{&quot;attachment_id&quot;:74564493,&quot;asset_id&quot;:61572488,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/74564493/download_file?st=MTczMjQxNjA2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="38173542" href="https://cuni.academia.edu/PeterVojtas">Peter Vojtas</a><script data-card-contents-for-user="38173542" type="text/json">{"id":38173542,"first_name":"Peter","last_name":"Vojtas","domain_name":"cuni","page_name":"PeterVojtas","display_name":"Peter Vojtas","profile_url":"https://cuni.academia.edu/PeterVojtas?f_ri=19997","photo":"https://0.academia-photos.com/38173542/47959230/36568234/s65_peter.vojtas.jpg"}</script></span></span></li><li class="js-paper-rank-work_61572488 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="61572488"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 61572488, container: ".js-paper-rank-work_61572488", }); });</script></li><li class="js-percentile-work_61572488 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 61572488; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_61572488"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_61572488 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="61572488"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 61572488; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=61572488]").text(description); $(".js-view-count-work_61572488").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_61572488").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="61572488"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">3</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a>,&nbsp;<script data-card-contents-for-ri="19997" type="text/json">{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="39020" href="https://www.academia.edu/Documents/in/Boolean_Algebra">Boolean Algebra</a>,&nbsp;<script data-card-contents-for-ri="39020" type="text/json">{"id":39020,"name":"Boolean Algebra","url":"https://www.academia.edu/Documents/in/Boolean_Algebra?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="280224" href="https://www.academia.edu/Documents/in/Distributivity">Distributivity</a><script data-card-contents-for-ri="280224" type="text/json">{"id":280224,"name":"Distributivity","url":"https://www.academia.edu/Documents/in/Distributivity?f_ri=19997","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=61572488]'), work: {"id":61572488,"title":"Refinement properties and extensions of filters in Boolean algebras","created_at":"2021-11-12T01:08:03.052-08:00","url":"https://www.academia.edu/61572488/Refinement_properties_and_extensions_of_filters_in_Boolean_algebras?f_ri=19997","dom_id":"work_61572488","summary":null,"downloadable_attachments":[{"id":74564493,"asset_id":61572488,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":38173542,"first_name":"Peter","last_name":"Vojtas","domain_name":"cuni","page_name":"PeterVojtas","display_name":"Peter Vojtas","profile_url":"https://cuni.academia.edu/PeterVojtas?f_ri=19997","photo":"https://0.academia-photos.com/38173542/47959230/36568234/s65_peter.vojtas.jpg"}],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false},{"id":39020,"name":"Boolean Algebra","url":"https://www.academia.edu/Documents/in/Boolean_Algebra?f_ri=19997","nofollow":false},{"id":280224,"name":"Distributivity","url":"https://www.academia.edu/Documents/in/Distributivity?f_ri=19997","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_61061386" data-work_id="61061386" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/61061386/Counting_labeled_claw_free_cubic_graphs_by_connectivity">Counting labeled claw-free cubic graphs by connectivity</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/61061386" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="c4d0867ce19073d63b3d654b977debda" rel="nofollow" data-download="{&quot;attachment_id&quot;:74234127,&quot;asset_id&quot;:61061386,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/74234127/download_file?st=MTczMjQxNjA2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="132061647" href="https://wonkwang.academia.edu/GabByungChae">Gab-Byung Chae</a><script data-card-contents-for-user="132061647" type="text/json">{"id":132061647,"first_name":"Gab-Byung","last_name":"Chae","domain_name":"wonkwang","page_name":"GabByungChae","display_name":"Gab-Byung Chae","profile_url":"https://wonkwang.academia.edu/GabByungChae?f_ri=19997","photo":"https://0.academia-photos.com/132061647/46147146/35752678/s65_gab-byung.chae.jpg"}</script></span></span></li><li class="js-paper-rank-work_61061386 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="61061386"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 61061386, container: ".js-paper-rank-work_61061386", }); });</script></li><li class="js-percentile-work_61061386 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 61061386; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_61061386"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_61061386 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="61061386"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 61061386; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=61061386]").text(description); $(".js-view-count-work_61061386").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_61061386").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="61061386"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">5</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="305" href="https://www.academia.edu/Documents/in/Applied_Mathematics">Applied Mathematics</a>,&nbsp;<script data-card-contents-for-ri="305" type="text/json">{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a>,&nbsp;<script data-card-contents-for-ri="19997" type="text/json">{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="37345" href="https://www.academia.edu/Documents/in/Discrete_Mathematics">Discrete Mathematics</a>,&nbsp;<script data-card-contents-for-ri="37345" type="text/json">{"id":37345,"name":"Discrete Mathematics","url":"https://www.academia.edu/Documents/in/Discrete_Mathematics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="207884" href="https://www.academia.edu/Documents/in/Recurrence_Relation">Recurrence Relation</a><script data-card-contents-for-ri="207884" type="text/json">{"id":207884,"name":"Recurrence Relation","url":"https://www.academia.edu/Documents/in/Recurrence_Relation?f_ri=19997","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=61061386]'), work: {"id":61061386,"title":"Counting labeled claw-free cubic graphs by connectivity","created_at":"2021-11-05T09:58:52.056-07:00","url":"https://www.academia.edu/61061386/Counting_labeled_claw_free_cubic_graphs_by_connectivity?f_ri=19997","dom_id":"work_61061386","summary":null,"downloadable_attachments":[{"id":74234127,"asset_id":61061386,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":132061647,"first_name":"Gab-Byung","last_name":"Chae","domain_name":"wonkwang","page_name":"GabByungChae","display_name":"Gab-Byung Chae","profile_url":"https://wonkwang.academia.edu/GabByungChae?f_ri=19997","photo":"https://0.academia-photos.com/132061647/46147146/35752678/s65_gab-byung.chae.jpg"}],"research_interests":[{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics?f_ri=19997","nofollow":false},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false},{"id":37345,"name":"Discrete Mathematics","url":"https://www.academia.edu/Documents/in/Discrete_Mathematics?f_ri=19997","nofollow":false},{"id":207884,"name":"Recurrence Relation","url":"https://www.academia.edu/Documents/in/Recurrence_Relation?f_ri=19997","nofollow":false},{"id":1374395,"name":"Recurrence Relations","url":"https://www.academia.edu/Documents/in/Recurrence_Relations?f_ri=19997"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_60499206" data-work_id="60499206" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/60499206/The_regularity_of_quotient_paratopological_groups">The regularity of quotient paratopological groups</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/60499206" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="27c02f231351f4ac80fc8090fe4700a0" rel="nofollow" data-download="{&quot;attachment_id&quot;:73917470,&quot;asset_id&quot;:60499206,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/73917470/download_file?st=MTczMjQxNjA2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="35179076" href="https://independent.academia.edu/TarasBanakh">Taras Banakh</a><script data-card-contents-for-user="35179076" type="text/json">{"id":35179076,"first_name":"Taras","last_name":"Banakh","domain_name":"independent","page_name":"TarasBanakh","display_name":"Taras Banakh","profile_url":"https://independent.academia.edu/TarasBanakh?f_ri=19997","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_60499206 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="60499206"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 60499206, container: ".js-paper-rank-work_60499206", }); });</script></li><li class="js-percentile-work_60499206 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 60499206; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_60499206"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_60499206 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="60499206"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 60499206; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=60499206]").text(description); $(".js-view-count-work_60499206").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_60499206").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="60499206"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">3</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="11723" href="https://www.academia.edu/Documents/in/Group_Theory">Group Theory</a>,&nbsp;<script data-card-contents-for-ri="11723" type="text/json">{"id":11723,"name":"Group Theory","url":"https://www.academia.edu/Documents/in/Group_Theory?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a>,&nbsp;<script data-card-contents-for-ri="19997" type="text/json">{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="613709" href="https://www.academia.edu/Documents/in/Locally_Compact_Groups">Locally Compact Groups</a><script data-card-contents-for-ri="613709" type="text/json">{"id":613709,"name":"Locally Compact Groups","url":"https://www.academia.edu/Documents/in/Locally_Compact_Groups?f_ri=19997","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=60499206]'), work: {"id":60499206,"title":"The regularity of quotient paratopological groups","created_at":"2021-10-30T23:17:37.400-07:00","url":"https://www.academia.edu/60499206/The_regularity_of_quotient_paratopological_groups?f_ri=19997","dom_id":"work_60499206","summary":null,"downloadable_attachments":[{"id":73917470,"asset_id":60499206,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":35179076,"first_name":"Taras","last_name":"Banakh","domain_name":"independent","page_name":"TarasBanakh","display_name":"Taras Banakh","profile_url":"https://independent.academia.edu/TarasBanakh?f_ri=19997","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":11723,"name":"Group Theory","url":"https://www.academia.edu/Documents/in/Group_Theory?f_ri=19997","nofollow":false},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false},{"id":613709,"name":"Locally Compact Groups","url":"https://www.academia.edu/Documents/in/Locally_Compact_Groups?f_ri=19997","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_60358768" data-work_id="60358768" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/60358768/Idempotent_tree_languages">Idempotent tree languages</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/60358768" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="d0c1fe6c0b40810f56b1876474b446ba" rel="nofollow" data-download="{&quot;attachment_id&quot;:73840311,&quot;asset_id&quot;:60358768,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/73840311/download_file?st=MTczMjQxNjA2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="198154787" href="https://independent.academia.edu/ShellyWismath">Shelly Wismath</a><script data-card-contents-for-user="198154787" type="text/json">{"id":198154787,"first_name":"Shelly","last_name":"Wismath","domain_name":"independent","page_name":"ShellyWismath","display_name":"Shelly Wismath","profile_url":"https://independent.academia.edu/ShellyWismath?f_ri=19997","photo":"https://0.academia-photos.com/198154787/60111365/48366907/s65_shelly.wismath.png"}</script></span></span></li><li class="js-paper-rank-work_60358768 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="60358768"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 60358768, container: ".js-paper-rank-work_60358768", }); });</script></li><li class="js-percentile-work_60358768 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 60358768; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_60358768"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_60358768 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="60358768"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 60358768; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=60358768]").text(description); $(".js-view-count-work_60358768").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_60358768").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="60358768"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i></div><span class="InlineList-item-text u-textTruncate u-pl6x"><a class="InlineList-item-text" data-has-card-for-ri="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a><script data-card-contents-for-ri="19997" type="text/json">{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}</script></span></li><script>(function(){ if (false) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=60358768]'), work: {"id":60358768,"title":"Idempotent tree languages","created_at":"2021-10-29T15:42:51.701-07:00","url":"https://www.academia.edu/60358768/Idempotent_tree_languages?f_ri=19997","dom_id":"work_60358768","summary":null,"downloadable_attachments":[{"id":73840311,"asset_id":60358768,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":198154787,"first_name":"Shelly","last_name":"Wismath","domain_name":"independent","page_name":"ShellyWismath","display_name":"Shelly Wismath","profile_url":"https://independent.academia.edu/ShellyWismath?f_ri=19997","photo":"https://0.academia-photos.com/198154787/60111365/48366907/s65_shelly.wismath.png"}],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_59861229" data-work_id="59861229" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/59861229/%D0%9A_%D0%BF%D1%80%D0%BE%D0%B1%D0%BB%D0%B5%D0%BC%D0%B5_%D0%A0%D1%83%D0%B1%D0%B5%D0%BB%D1%8F_%D0%A2%D0%B5%D0%B9%D0%BB%D0%BE%D1%80%D0%B0_%D0%BE_%D0%BF%D1%80%D0%B5%D0%B4%D1%81%D1%82%D0%B0%D0%B2%D0%BB%D0%B5%D0%BD%D0%B8%D0%B8_%D0%BC%D0%B5%D1%80%D0%BE%D0%BC%D0%BE%D1%80%D1%84%D0%BD%D1%8B%D1%85_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%B9">К проблеме Рубеля - Тейлора о представлении мероморфных функций</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/59861229" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="74323a4ee5c8582aa081845ce6d26b96" rel="nofollow" data-download="{&quot;attachment_id&quot;:73566043,&quot;asset_id&quot;:59861229,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/73566043/download_file?st=MTczMjQxNjA2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="11926872" href="https://independent.academia.edu/BulatKhabibullin">Bulat Khabibullin</a><script data-card-contents-for-user="11926872" type="text/json">{"id":11926872,"first_name":"Bulat","last_name":"Khabibullin","domain_name":"independent","page_name":"BulatKhabibullin","display_name":"Bulat Khabibullin","profile_url":"https://independent.academia.edu/BulatKhabibullin?f_ri=19997","photo":"https://0.academia-photos.com/11926872/11220240/12519472/s65_bulat.khabibullin.jpg"}</script></span></span></li><li class="js-paper-rank-work_59861229 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="59861229"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 59861229, container: ".js-paper-rank-work_59861229", }); });</script></li><li class="js-percentile-work_59861229 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 59861229; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_59861229"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_59861229 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="59861229"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 59861229; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=59861229]").text(description); $(".js-view-count-work_59861229").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_59861229").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="59861229"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">2</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="305" href="https://www.academia.edu/Documents/in/Applied_Mathematics">Applied Mathematics</a>,&nbsp;<script data-card-contents-for-ri="305" type="text/json">{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a><script data-card-contents-for-ri="19997" type="text/json">{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=59861229]'), work: {"id":59861229,"title":"К проблеме Рубеля - Тейлора о представлении мероморфных функций","created_at":"2021-10-24T19:47:31.272-07:00","url":"https://www.academia.edu/59861229/%D0%9A_%D0%BF%D1%80%D0%BE%D0%B1%D0%BB%D0%B5%D0%BC%D0%B5_%D0%A0%D1%83%D0%B1%D0%B5%D0%BB%D1%8F_%D0%A2%D0%B5%D0%B9%D0%BB%D0%BE%D1%80%D0%B0_%D0%BE_%D0%BF%D1%80%D0%B5%D0%B4%D1%81%D1%82%D0%B0%D0%B2%D0%BB%D0%B5%D0%BD%D0%B8%D0%B8_%D0%BC%D0%B5%D1%80%D0%BE%D0%BC%D0%BE%D1%80%D1%84%D0%BD%D1%8B%D1%85_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%B9?f_ri=19997","dom_id":"work_59861229","summary":null,"downloadable_attachments":[{"id":73566043,"asset_id":59861229,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":11926872,"first_name":"Bulat","last_name":"Khabibullin","domain_name":"independent","page_name":"BulatKhabibullin","display_name":"Bulat Khabibullin","profile_url":"https://independent.academia.edu/BulatKhabibullin?f_ri=19997","photo":"https://0.academia-photos.com/11926872/11220240/12519472/s65_bulat.khabibullin.jpg"}],"research_interests":[{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics?f_ri=19997","nofollow":false},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_55428183" data-work_id="55428183" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/55428183/Solving_some_general_nonhomogeneous_recurrence_relations_of_order_r_by_a_linearization_method_and_an_application_to_polynomial_and_factorial_polynomial_cases">Solving some general nonhomogeneous recurrence relations of order r by a linearization method and an application to polynomial and factorial polynomial cases</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/55428183" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="03d95b0380682a8985179de0f20381f6" rel="nofollow" data-download="{&quot;attachment_id&quot;:71302414,&quot;asset_id&quot;:55428183,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/71302414/download_file?st=MTczMjQxNjA2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="61793440" href="https://independent.academia.edu/rajaebentaher">rajae ben taher</a><script data-card-contents-for-user="61793440" type="text/json">{"id":61793440,"first_name":"rajae","last_name":"ben taher","domain_name":"independent","page_name":"rajaebentaher","display_name":"rajae ben taher","profile_url":"https://independent.academia.edu/rajaebentaher?f_ri=19997","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_55428183 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="55428183"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 55428183, container: ".js-paper-rank-work_55428183", }); });</script></li><li class="js-percentile-work_55428183 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 55428183; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_55428183"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_55428183 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="55428183"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 55428183; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=55428183]").text(description); $(".js-view-count-work_55428183").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_55428183").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="55428183"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i></div><span class="InlineList-item-text u-textTruncate u-pl6x"><a class="InlineList-item-text" data-has-card-for-ri="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a><script data-card-contents-for-ri="19997" type="text/json">{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}</script></span></li><script>(function(){ if (false) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=55428183]'), work: {"id":55428183,"title":"Solving some general nonhomogeneous recurrence relations of order r by a linearization method and an application to polynomial and factorial polynomial cases","created_at":"2021-10-04T06:22:08.113-07:00","url":"https://www.academia.edu/55428183/Solving_some_general_nonhomogeneous_recurrence_relations_of_order_r_by_a_linearization_method_and_an_application_to_polynomial_and_factorial_polynomial_cases?f_ri=19997","dom_id":"work_55428183","summary":null,"downloadable_attachments":[{"id":71302414,"asset_id":55428183,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":61793440,"first_name":"rajae","last_name":"ben taher","domain_name":"independent","page_name":"rajaebentaher","display_name":"rajae ben taher","profile_url":"https://independent.academia.edu/rajaebentaher?f_ri=19997","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_55309097" data-work_id="55309097" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/55309097/Identification_of_2D_cracks_by_elastic_boundary_measurements">Identification of 2D cracks by elastic boundary measurements</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/55309097" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="489814b522ed9572f7328132f65dc85c" rel="nofollow" data-download="{&quot;attachment_id&quot;:71240009,&quot;asset_id&quot;:55309097,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/71240009/download_file?st=MTczMjQxNjA2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="66628602" href="https://independent.academia.edu/MJaoua">Mohamed Jaoua</a><script data-card-contents-for-user="66628602" type="text/json">{"id":66628602,"first_name":"Mohamed","last_name":"Jaoua","domain_name":"independent","page_name":"MJaoua","display_name":"Mohamed Jaoua","profile_url":"https://independent.academia.edu/MJaoua?f_ri=19997","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_55309097 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="55309097"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 55309097, container: ".js-paper-rank-work_55309097", }); });</script></li><li class="js-percentile-work_55309097 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 55309097; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_55309097"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_55309097 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="55309097"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 55309097; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=55309097]").text(description); $(".js-view-count-work_55309097").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_55309097").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="55309097"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">5</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="305" href="https://www.academia.edu/Documents/in/Applied_Mathematics">Applied Mathematics</a>,&nbsp;<script data-card-contents-for-ri="305" type="text/json">{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="318" href="https://www.academia.edu/Documents/in/Mathematical_Physics">Mathematical Physics</a>,&nbsp;<script data-card-contents-for-ri="318" type="text/json">{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a>,&nbsp;<script data-card-contents-for-ri="19997" type="text/json">{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="26241" href="https://www.academia.edu/Documents/in/Inverse_Problems">Inverse Problems</a><script data-card-contents-for-ri="26241" type="text/json">{"id":26241,"name":"Inverse Problems","url":"https://www.academia.edu/Documents/in/Inverse_Problems?f_ri=19997","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=55309097]'), work: {"id":55309097,"title":"Identification of 2D cracks by elastic boundary measurements","created_at":"2021-10-03T22:17:25.103-07:00","url":"https://www.academia.edu/55309097/Identification_of_2D_cracks_by_elastic_boundary_measurements?f_ri=19997","dom_id":"work_55309097","summary":null,"downloadable_attachments":[{"id":71240009,"asset_id":55309097,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":66628602,"first_name":"Mohamed","last_name":"Jaoua","domain_name":"independent","page_name":"MJaoua","display_name":"Mohamed Jaoua","profile_url":"https://independent.academia.edu/MJaoua?f_ri=19997","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics?f_ri=19997","nofollow":false},{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics?f_ri=19997","nofollow":false},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false},{"id":26241,"name":"Inverse Problems","url":"https://www.academia.edu/Documents/in/Inverse_Problems?f_ri=19997","nofollow":false},{"id":1957725,"name":"Fast Algorithm","url":"https://www.academia.edu/Documents/in/Fast_Algorithm?f_ri=19997"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_54616496" data-work_id="54616496" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/54616496/Homomorphisms_and_chains_of_Kripke_models">Homomorphisms and chains of Kripke models</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/54616496" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="0bc834c862a654793b7c5f3f4fccceb1" rel="nofollow" data-download="{&quot;attachment_id&quot;:70896274,&quot;asset_id&quot;:54616496,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/70896274/download_file?st=MTczMjQxNjA2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="12461242" href="https://sbu-ir.academia.edu/MortezaMoniri">Morteza Moniri</a><script data-card-contents-for-user="12461242" type="text/json">{"id":12461242,"first_name":"Morteza","last_name":"Moniri","domain_name":"sbu-ir","page_name":"MortezaMoniri","display_name":"Morteza Moniri","profile_url":"https://sbu-ir.academia.edu/MortezaMoniri?f_ri=19997","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_54616496 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="54616496"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 54616496, container: ".js-paper-rank-work_54616496", }); });</script></li><li class="js-percentile-work_54616496 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 54616496; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_54616496"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_54616496 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="54616496"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 54616496; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=54616496]").text(description); $(".js-view-count-work_54616496").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_54616496").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="54616496"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">4</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="362" href="https://www.academia.edu/Documents/in/Intuitionistic_Logic">Intuitionistic Logic</a>,&nbsp;<script data-card-contents-for-ri="362" type="text/json">{"id":362,"name":"Intuitionistic Logic","url":"https://www.academia.edu/Documents/in/Intuitionistic_Logic?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a>,&nbsp;<script data-card-contents-for-ri="19997" type="text/json">{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="181847" href="https://www.academia.edu/Documents/in/First-Order_Logic">First-Order Logic</a>,&nbsp;<script data-card-contents-for-ri="181847" type="text/json">{"id":181847,"name":"First-Order Logic","url":"https://www.academia.edu/Documents/in/First-Order_Logic?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="405178" href="https://www.academia.edu/Documents/in/First_Order_Logic">First Order Logic</a><script data-card-contents-for-ri="405178" type="text/json">{"id":405178,"name":"First Order Logic","url":"https://www.academia.edu/Documents/in/First_Order_Logic?f_ri=19997","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=54616496]'), work: {"id":54616496,"title":"Homomorphisms and chains of Kripke models","created_at":"2021-10-01T07:25:50.734-07:00","url":"https://www.academia.edu/54616496/Homomorphisms_and_chains_of_Kripke_models?f_ri=19997","dom_id":"work_54616496","summary":null,"downloadable_attachments":[{"id":70896274,"asset_id":54616496,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":12461242,"first_name":"Morteza","last_name":"Moniri","domain_name":"sbu-ir","page_name":"MortezaMoniri","display_name":"Morteza Moniri","profile_url":"https://sbu-ir.academia.edu/MortezaMoniri?f_ri=19997","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":362,"name":"Intuitionistic Logic","url":"https://www.academia.edu/Documents/in/Intuitionistic_Logic?f_ri=19997","nofollow":false},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false},{"id":181847,"name":"First-Order Logic","url":"https://www.academia.edu/Documents/in/First-Order_Logic?f_ri=19997","nofollow":false},{"id":405178,"name":"First Order Logic","url":"https://www.academia.edu/Documents/in/First_Order_Logic?f_ri=19997","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_54199079" data-work_id="54199079" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/54199079/Bounded_Partial_Quotients_of_Some_Cubic_Power_Series_with_Binary_Coefficients">Bounded Partial Quotients of Some Cubic Power Series with Binary Coefficients</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/54199079" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="688060ca328135bb80fbdf97d2b6436a" rel="nofollow" data-download="{&quot;attachment_id&quot;:70678364,&quot;asset_id&quot;:54199079,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/70678364/download_file?st=MTczMjQxNjA2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="136298588" href="https://independent.academia.edu/SalahBeldi">Salah Beldi</a><script data-card-contents-for-user="136298588" type="text/json">{"id":136298588,"first_name":"Salah","last_name":"Beldi","domain_name":"independent","page_name":"SalahBeldi","display_name":"Salah Beldi","profile_url":"https://independent.academia.edu/SalahBeldi?f_ri=19997","photo":"https://0.academia-photos.com/136298588/36156585/32836694/s65_salah.beldi.jpg"}</script></span></span></li><li class="js-paper-rank-work_54199079 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="54199079"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 54199079, container: ".js-paper-rank-work_54199079", }); });</script></li><li class="js-percentile-work_54199079 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 54199079; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_54199079"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_54199079 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="54199079"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 54199079; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=54199079]").text(description); $(".js-view-count-work_54199079").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_54199079").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="54199079"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i></div><span class="InlineList-item-text u-textTruncate u-pl6x"><a class="InlineList-item-text" data-has-card-for-ri="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a><script data-card-contents-for-ri="19997" type="text/json">{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}</script></span></li><script>(function(){ if (false) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=54199079]'), work: {"id":54199079,"title":"Bounded Partial Quotients of Some Cubic Power Series with Binary Coefficients","created_at":"2021-09-30T01:20:20.512-07:00","url":"https://www.academia.edu/54199079/Bounded_Partial_Quotients_of_Some_Cubic_Power_Series_with_Binary_Coefficients?f_ri=19997","dom_id":"work_54199079","summary":null,"downloadable_attachments":[{"id":70678364,"asset_id":54199079,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":136298588,"first_name":"Salah","last_name":"Beldi","domain_name":"independent","page_name":"SalahBeldi","display_name":"Salah Beldi","profile_url":"https://independent.academia.edu/SalahBeldi?f_ri=19997","photo":"https://0.academia-photos.com/136298588/36156585/32836694/s65_salah.beldi.jpg"}],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_53761930" data-work_id="53761930" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/53761930/_ber_das_3_n_1_Problem">�ber das 3 n + 1 Problem</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/53761930" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="a3d96f9765f73a7c54fe2d0827d287da" rel="nofollow" data-download="{&quot;attachment_id&quot;:70452409,&quot;asset_id&quot;:53761930,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/70452409/download_file?st=MTczMjQxNjA2OCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="48449662" href="https://independent.academia.edu/GuntherWirsching">Günther Wirsching</a><script data-card-contents-for-user="48449662" type="text/json">{"id":48449662,"first_name":"Günther","last_name":"Wirsching","domain_name":"independent","page_name":"GuntherWirsching","display_name":"Günther Wirsching","profile_url":"https://independent.academia.edu/GuntherWirsching?f_ri=19997","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_53761930 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="53761930"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 53761930, container: ".js-paper-rank-work_53761930", }); });</script></li><li class="js-percentile-work_53761930 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 53761930; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_53761930"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_53761930 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="53761930"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 53761930; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=53761930]").text(description); $(".js-view-count-work_53761930").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_53761930").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="53761930"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i></div><span class="InlineList-item-text u-textTruncate u-pl6x"><a class="InlineList-item-text" data-has-card-for-ri="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a><script data-card-contents-for-ri="19997" type="text/json">{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}</script></span></li><script>(function(){ if (false) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=53761930]'), work: {"id":53761930,"title":"�ber das 3 n + 1 Problem","created_at":"2021-09-28T11:07:49.746-07:00","url":"https://www.academia.edu/53761930/_ber_das_3_n_1_Problem?f_ri=19997","dom_id":"work_53761930","summary":null,"downloadable_attachments":[{"id":70452409,"asset_id":53761930,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":48449662,"first_name":"Günther","last_name":"Wirsching","domain_name":"independent","page_name":"GuntherWirsching","display_name":"Günther Wirsching","profile_url":"https://independent.academia.edu/GuntherWirsching?f_ri=19997","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_53380969" data-work_id="53380969" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/53380969/Solving_tangle_equations_arising_in_a_DNA_recombination_model">Solving tangle equations arising in a DNA recombination model</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/53380969" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="bd4fa5f74bcf17725c70c08015e3c025" rel="nofollow" data-download="{&quot;attachment_id&quot;:70252711,&quot;asset_id&quot;:53380969,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/70252711/download_file?st=MTczMjQxNjA2OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="39706328" href="https://independent.academia.edu/WittSumners">Witt Sumners</a><script data-card-contents-for-user="39706328" type="text/json">{"id":39706328,"first_name":"Witt","last_name":"Sumners","domain_name":"independent","page_name":"WittSumners","display_name":"Witt Sumners","profile_url":"https://independent.academia.edu/WittSumners?f_ri=19997","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_53380969 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="53380969"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 53380969, container: ".js-paper-rank-work_53380969", }); });</script></li><li class="js-percentile-work_53380969 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 53380969; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_53380969"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_53380969 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="53380969"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 53380969; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=53380969]").text(description); $(".js-view-count-work_53380969").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_53380969").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="53380969"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i></div><span class="InlineList-item-text u-textTruncate u-pl6x"><a class="InlineList-item-text" data-has-card-for-ri="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a><script data-card-contents-for-ri="19997" type="text/json">{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}</script></span></li><script>(function(){ if (false) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=53380969]'), work: {"id":53380969,"title":"Solving tangle equations arising in a DNA recombination model","created_at":"2021-09-26T07:15:47.374-07:00","url":"https://www.academia.edu/53380969/Solving_tangle_equations_arising_in_a_DNA_recombination_model?f_ri=19997","dom_id":"work_53380969","summary":null,"downloadable_attachments":[{"id":70252711,"asset_id":53380969,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":39706328,"first_name":"Witt","last_name":"Sumners","domain_name":"independent","page_name":"WittSumners","display_name":"Witt Sumners","profile_url":"https://independent.academia.edu/WittSumners?f_ri=19997","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_51390752" data-work_id="51390752" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/51390752/On_the_Number_of_4_Cycles_in_a_Tournament">On the Number of 4-Cycles in a Tournament</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/51390752" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="3ad857e58894759f4432fe7d2ae0c398" rel="nofollow" data-download="{&quot;attachment_id&quot;:69135673,&quot;asset_id&quot;:51390752,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/69135673/download_file?st=MTczMjQxNjA2OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="67768068" href="https://independent.academia.edu/Linial">Nati Linial</a><script data-card-contents-for-user="67768068" type="text/json">{"id":67768068,"first_name":"Nati","last_name":"Linial","domain_name":"independent","page_name":"Linial","display_name":"Nati Linial","profile_url":"https://independent.academia.edu/Linial?f_ri=19997","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_51390752 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="51390752"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 51390752, container: ".js-paper-rank-work_51390752", }); });</script></li><li class="js-percentile-work_51390752 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 51390752; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_51390752"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_51390752 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="51390752"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 51390752; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=51390752]").text(description); $(".js-view-count-work_51390752").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_51390752").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="51390752"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">2</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="2616" href="https://www.academia.edu/Documents/in/Graph_Theory">Graph Theory</a>,&nbsp;<script data-card-contents-for-ri="2616" type="text/json">{"id":2616,"name":"Graph Theory","url":"https://www.academia.edu/Documents/in/Graph_Theory?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a><script data-card-contents-for-ri="19997" type="text/json">{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=51390752]'), work: {"id":51390752,"title":"On the Number of 4-Cycles in a Tournament","created_at":"2021-09-06T20:57:12.666-07:00","url":"https://www.academia.edu/51390752/On_the_Number_of_4_Cycles_in_a_Tournament?f_ri=19997","dom_id":"work_51390752","summary":null,"downloadable_attachments":[{"id":69135673,"asset_id":51390752,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":67768068,"first_name":"Nati","last_name":"Linial","domain_name":"independent","page_name":"Linial","display_name":"Nati Linial","profile_url":"https://independent.academia.edu/Linial?f_ri=19997","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":2616,"name":"Graph Theory","url":"https://www.academia.edu/Documents/in/Graph_Theory?f_ri=19997","nofollow":false},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_51138361" data-work_id="51138361" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/51138361/Explicit_representations_of_the_Drazin_inverse_of_block_matrix_and_modified_matrix">Explicit representations of the Drazin inverse of block matrix and modified matrix</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/51138361" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="9cda2eaa22520f3ce2c1686254669e20" rel="nofollow" data-download="{&quot;attachment_id&quot;:68979236,&quot;asset_id&quot;:51138361,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/68979236/download_file?st=MTczMjQxNjA2OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="6679070" href="https://independent.academia.edu/jianbiaochen">jianbiao chen</a><script data-card-contents-for-user="6679070" type="text/json">{"id":6679070,"first_name":"jianbiao","last_name":"chen","domain_name":"independent","page_name":"jianbiaochen","display_name":"jianbiao chen","profile_url":"https://independent.academia.edu/jianbiaochen?f_ri=19997","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_51138361 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="51138361"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 51138361, container: ".js-paper-rank-work_51138361", }); });</script></li><li class="js-percentile-work_51138361 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 51138361; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_51138361"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_51138361 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="51138361"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 51138361; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=51138361]").text(description); $(".js-view-count-work_51138361").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_51138361").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="51138361"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i>&nbsp;&nbsp;<a class="InlineList-item-text u-positionRelative">4</a>&nbsp;&nbsp;</div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="305" href="https://www.academia.edu/Documents/in/Applied_Mathematics">Applied Mathematics</a>,&nbsp;<script data-card-contents-for-ri="305" type="text/json">{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a>,&nbsp;<script data-card-contents-for-ri="19997" type="text/json">{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="749302" href="https://www.academia.edu/Documents/in/Indexation">Indexation</a>,&nbsp;<script data-card-contents-for-ri="749302" type="text/json">{"id":749302,"name":"Indexation","url":"https://www.academia.edu/Documents/in/Indexation?f_ri=19997","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="1292535" href="https://www.academia.edu/Documents/in/Drazin_Inverse">Drazin Inverse</a><script data-card-contents-for-ri="1292535" type="text/json">{"id":1292535,"name":"Drazin Inverse","url":"https://www.academia.edu/Documents/in/Drazin_Inverse?f_ri=19997","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=51138361]'), work: {"id":51138361,"title":"Explicit representations of the Drazin inverse of block matrix and modified matrix","created_at":"2021-09-01T07:35:16.581-07:00","url":"https://www.academia.edu/51138361/Explicit_representations_of_the_Drazin_inverse_of_block_matrix_and_modified_matrix?f_ri=19997","dom_id":"work_51138361","summary":null,"downloadable_attachments":[{"id":68979236,"asset_id":51138361,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":6679070,"first_name":"jianbiao","last_name":"chen","domain_name":"independent","page_name":"jianbiaochen","display_name":"jianbiao chen","profile_url":"https://independent.academia.edu/jianbiaochen?f_ri=19997","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics?f_ri=19997","nofollow":false},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false},{"id":749302,"name":"Indexation","url":"https://www.academia.edu/Documents/in/Indexation?f_ri=19997","nofollow":false},{"id":1292535,"name":"Drazin Inverse","url":"https://www.academia.edu/Documents/in/Drazin_Inverse?f_ri=19997","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_49988382" data-work_id="49988382" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/49988382/On_the_Continuity_of_the_Eigenvalues_of_a_Sublaplacian">On the Continuity of the Eigenvalues of a Sublaplacian</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest">We study the behavior of the eigenvalues of a sublaplacian Δ b on a compact strictly pseudoconvex CR manifold M, as functions on the set P + of positively oriented contact forms on M by endowing P + with a natural metric topology.</div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/49988382" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="8e09aba0f54a8227b14d1966e5dd1fd8" rel="nofollow" data-download="{&quot;attachment_id&quot;:68141358,&quot;asset_id&quot;:49988382,&quot;asset_type&quot;:&quot;Work&quot;,&quot;always_allow_download&quot;:false,&quot;track&quot;:null,&quot;button_location&quot;:&quot;work_strip&quot;,&quot;source&quot;:null,&quot;hide_modal&quot;:null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/68141358/download_file?st=MTczMjQxNjA2OSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by&nbsp;<span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="41998619" href="https://univ-tours.academia.edu/AmineAribi">Amine Aribi</a><script data-card-contents-for-user="41998619" type="text/json">{"id":41998619,"first_name":"Amine","last_name":"Aribi","domain_name":"univ-tours","page_name":"AmineAribi","display_name":"Amine Aribi","profile_url":"https://univ-tours.academia.edu/AmineAribi?f_ri=19997","photo":"https://0.academia-photos.com/41998619/11853690/13210871/s65_amine.aribi.jpg"}</script></span></span></li><li class="js-paper-rank-work_49988382 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="49988382"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 49988382, container: ".js-paper-rank-work_49988382", }); });</script></li><li class="js-percentile-work_49988382 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 49988382; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_49988382"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_49988382 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="49988382"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 49988382; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=49988382]").text(description); $(".js-view-count-work_49988382").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_49988382").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="49988382"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i></div><span class="InlineList-item-text u-textTruncate u-pl6x"><a class="InlineList-item-text" data-has-card-for-ri="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a><script data-card-contents-for-ri="19997" type="text/json">{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}</script></span></li><script>(function(){ if (false) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=49988382]'), work: {"id":49988382,"title":"On the Continuity of the Eigenvalues of a Sublaplacian","created_at":"2021-07-16T10:17:42.252-07:00","url":"https://www.academia.edu/49988382/On_the_Continuity_of_the_Eigenvalues_of_a_Sublaplacian?f_ri=19997","dom_id":"work_49988382","summary":"We study the behavior of the eigenvalues of a sublaplacian Δ b on a compact strictly pseudoconvex CR manifold M, as functions on the set P + of positively oriented contact forms on M by endowing P + with a natural metric topology.","downloadable_attachments":[{"id":68141358,"asset_id":49988382,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":41998619,"first_name":"Amine","last_name":"Aribi","domain_name":"univ-tours","page_name":"AmineAribi","display_name":"Amine Aribi","profile_url":"https://univ-tours.academia.edu/AmineAribi?f_ri=19997","photo":"https://0.academia-photos.com/41998619/11853690/13210871/s65_amine.aribi.jpg"}],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics?f_ri=19997","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div></div><div class="u-taCenter Pagination"><ul class="pagination"><li class="next_page"><a href="/Documents/in/Pure_Mathematics?after=50%2C45290060" rel="next">Next</a></li><li class="last next"><a href="/Documents/in/Pure_Mathematics?page=last">Last &raquo;</a></li></ul></div></div><div class="hidden-xs hidden-sm"><div class="u-pl6x"><div style="width: 300px;"><div class="panel panel-flat u-mt7x"><div class="panel-heading u-p5x"><div class="u-tcGrayDark u-taCenter u-fw700 u-textUppercase">Related Topics</div></div><ul class="list-group"><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="300">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="300">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" href="https://www.academia.edu/Documents/in/Mathematical_Sciences">Mathematical Sciences</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="80414">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="80414">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" href="https://www.academia.edu/Documents/in/Mixture_models">Mixture models</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="314314">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="314314">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" href="https://www.academia.edu/Documents/in/Functional_Analysis">Functional Analysis</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="371">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="371">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" href="https://www.academia.edu/Documents/in/Applied_Mathematics">Applied Mathematics</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="305">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="305">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" href="https://www.academia.edu/Documents/in/Discrete_Mathematics">Discrete Mathematics</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="37345">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="37345">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" href="https://www.academia.edu/Documents/in/Differential_Equations">Differential Equations</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="30888">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="30888">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" href="https://www.academia.edu/Documents/in/Numerical_Analysis_and_Computational_Mathematics">Numerical Analysis and Computational Mathematics</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="556845">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="556845">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" href="https://www.academia.edu/Documents/in/Traffic_control">Traffic control</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="22247">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="22247">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" href="https://www.academia.edu/Documents/in/Mathematical_Physics">Mathematical Physics</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="318">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="318">Following</a></div></li></ul></div></div></div></div></div></div><script>// MIT License // Copyright © 2011 Sebastian Tschan, https://blueimp.net // Permission is hereby granted, free of charge, to any person obtaining a copy of // this software and associated documentation files (the "Software"), to deal in // the Software without restriction, including without limitation the rights to // use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of // the Software, and to permit persons to whom the Software is furnished to do so, // subject to the following conditions: // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS // FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER // IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN // CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. !function(n){"use strict";function d(n,t){var r=(65535&n)+(65535&t);return(n>>16)+(t>>16)+(r>>16)<<16|65535&r}function f(n,t,r,e,o,u){return d((c=d(d(t,n),d(e,u)))<<(f=o)|c>>>32-f,r);var c,f}function l(n,t,r,e,o,u,c){return f(t&r|~t&e,n,t,o,u,c)}function v(n,t,r,e,o,u,c){return f(t&e|r&~e,n,t,o,u,c)}function g(n,t,r,e,o,u,c){return f(t^r^e,n,t,o,u,c)}function m(n,t,r,e,o,u,c){return f(r^(t|~e),n,t,o,u,c)}function i(n,t){var r,e,o,u;n[t>>5]|=128<<t%32,n[14+(t+64>>>9<<4)]=t;for(var c=1732584193,f=-271733879,i=-1732584194,a=271733878,h=0;h<n.length;h+=16)c=l(r=c,e=f,o=i,u=a,n[h],7,-680876936),a=l(a,c,f,i,n[h+1],12,-389564586),i=l(i,a,c,f,n[h+2],17,606105819),f=l(f,i,a,c,n[h+3],22,-1044525330),c=l(c,f,i,a,n[h+4],7,-176418897),a=l(a,c,f,i,n[h+5],12,1200080426),i=l(i,a,c,f,n[h+6],17,-1473231341),f=l(f,i,a,c,n[h+7],22,-45705983),c=l(c,f,i,a,n[h+8],7,1770035416),a=l(a,c,f,i,n[h+9],12,-1958414417),i=l(i,a,c,f,n[h+10],17,-42063),f=l(f,i,a,c,n[h+11],22,-1990404162),c=l(c,f,i,a,n[h+12],7,1804603682),a=l(a,c,f,i,n[h+13],12,-40341101),i=l(i,a,c,f,n[h+14],17,-1502002290),c=v(c,f=l(f,i,a,c,n[h+15],22,1236535329),i,a,n[h+1],5,-165796510),a=v(a,c,f,i,n[h+6],9,-1069501632),i=v(i,a,c,f,n[h+11],14,643717713),f=v(f,i,a,c,n[h],20,-373897302),c=v(c,f,i,a,n[h+5],5,-701558691),a=v(a,c,f,i,n[h+10],9,38016083),i=v(i,a,c,f,n[h+15],14,-660478335),f=v(f,i,a,c,n[h+4],20,-405537848),c=v(c,f,i,a,n[h+9],5,568446438),a=v(a,c,f,i,n[h+14],9,-1019803690),i=v(i,a,c,f,n[h+3],14,-187363961),f=v(f,i,a,c,n[h+8],20,1163531501),c=v(c,f,i,a,n[h+13],5,-1444681467),a=v(a,c,f,i,n[h+2],9,-51403784),i=v(i,a,c,f,n[h+7],14,1735328473),c=g(c,f=v(f,i,a,c,n[h+12],20,-1926607734),i,a,n[h+5],4,-378558),a=g(a,c,f,i,n[h+8],11,-2022574463),i=g(i,a,c,f,n[h+11],16,1839030562),f=g(f,i,a,c,n[h+14],23,-35309556),c=g(c,f,i,a,n[h+1],4,-1530992060),a=g(a,c,f,i,n[h+4],11,1272893353),i=g(i,a,c,f,n[h+7],16,-155497632),f=g(f,i,a,c,n[h+10],23,-1094730640),c=g(c,f,i,a,n[h+13],4,681279174),a=g(a,c,f,i,n[h],11,-358537222),i=g(i,a,c,f,n[h+3],16,-722521979),f=g(f,i,a,c,n[h+6],23,76029189),c=g(c,f,i,a,n[h+9],4,-640364487),a=g(a,c,f,i,n[h+12],11,-421815835),i=g(i,a,c,f,n[h+15],16,530742520),c=m(c,f=g(f,i,a,c,n[h+2],23,-995338651),i,a,n[h],6,-198630844),a=m(a,c,f,i,n[h+7],10,1126891415),i=m(i,a,c,f,n[h+14],15,-1416354905),f=m(f,i,a,c,n[h+5],21,-57434055),c=m(c,f,i,a,n[h+12],6,1700485571),a=m(a,c,f,i,n[h+3],10,-1894986606),i=m(i,a,c,f,n[h+10],15,-1051523),f=m(f,i,a,c,n[h+1],21,-2054922799),c=m(c,f,i,a,n[h+8],6,1873313359),a=m(a,c,f,i,n[h+15],10,-30611744),i=m(i,a,c,f,n[h+6],15,-1560198380),f=m(f,i,a,c,n[h+13],21,1309151649),c=m(c,f,i,a,n[h+4],6,-145523070),a=m(a,c,f,i,n[h+11],10,-1120210379),i=m(i,a,c,f,n[h+2],15,718787259),f=m(f,i,a,c,n[h+9],21,-343485551),c=d(c,r),f=d(f,e),i=d(i,o),a=d(a,u);return[c,f,i,a]}function a(n){for(var t="",r=32*n.length,e=0;e<r;e+=8)t+=String.fromCharCode(n[e>>5]>>>e%32&255);return t}function h(n){var t=[];for(t[(n.length>>2)-1]=void 0,e=0;e<t.length;e+=1)t[e]=0;for(var r=8*n.length,e=0;e<r;e+=8)t[e>>5]|=(255&n.charCodeAt(e/8))<<e%32;return t}function e(n){for(var t,r="0123456789abcdef",e="",o=0;o<n.length;o+=1)t=n.charCodeAt(o),e+=r.charAt(t>>>4&15)+r.charAt(15&t);return e}function r(n){return unescape(encodeURIComponent(n))}function o(n){return a(i(h(t=r(n)),8*t.length));var t}function u(n,t){return function(n,t){var r,e,o=h(n),u=[],c=[];for(u[15]=c[15]=void 0,16<o.length&&(o=i(o,8*n.length)),r=0;r<16;r+=1)u[r]=909522486^o[r],c[r]=1549556828^o[r];return e=i(u.concat(h(t)),512+8*t.length),a(i(c.concat(e),640))}(r(n),r(t))}function t(n,t,r){return t?r?u(t,n):e(u(t,n)):r?o(n):e(o(n))}"function"==typeof define&&define.amd?define(function(){return t}):"object"==typeof module&&module.exports?module.exports=t:n.md5=t}(this);</script><script>window.AbTest = (function() { return { 'ab_test': (uniqueId, test_name, buckets) => { let override = new URLSearchParams(window.location.search).get(`ab_test[${test_name}]`); if ( override ) { return override; } const bucketNames = buckets.map((bucket) => { return typeof bucket === 'string' ? bucket : Object.keys(bucket)[0]; }); const weights = buckets.map((bucket) => { return typeof bucket === 'string' ? 1 : Object.values(bucket)[0]; }); const total = weights.reduce((sum, weight) => sum + weight); const hash = md5(`${uniqueId}${test_name}`); const hashNum = parseInt(hash.slice(-12), 16); let bucketPoint = total * (hashNum % 100000) / 100000; const bucket = bucketNames.find((_, i) => { if (weights[i] > bucketPoint) { return true; } bucketPoint -= weights[i]; return false; }); return bucket; } }; })();</script><div data-auto_select="false" data-client_id="331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b" data-landing_url="https://www.academia.edu/Documents/in/Pure_Mathematics" data-login_uri="https://www.academia.edu/registrations/google_one_tap" data-moment_callback="onGoogleOneTapEvent" id="g_id_onload"></div><script>function onGoogleOneTapEvent(event) { var momentType = event.getMomentType(); var momentReason = null; if (event.isNotDisplayed()) { momentReason = event.getNotDisplayedReason(); } else if (event.isSkippedMoment()) { momentReason = event.getSkippedReason(); } else if (event.isDismissedMoment()) { momentReason = event.getDismissedReason(); } Aedu.arbitraryEvents.write('GoogleOneTapEvent', { moment_type: momentType, moment_reason: momentReason, }); }</script><script>(function() { var auvid = unescape( document.cookie .split(/; ?/) .find((s) => s.startsWith('auvid')) .substring(6)); var bucket = AbTest.ab_test(auvid, 'lo_ri_one_tap_google_sign_on', ['control', 'one_tap_google_sign_on']); if (bucket === 'control') return; var oneTapTag = document.createElement('script') oneTapTag.async = true oneTapTag.defer = true oneTapTag.src = 'https://accounts.google.com/gsi/client' document.body.appendChild(oneTapTag) })();</script></div></div></div> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "9419cd61fc2d72631782ee6f0bc2448981061c1074f3f9efe6adb7f98744cd5f", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="L+PlXIHST1/JQWjvDy9Fmu/u5QFglWIaBbO1qrKNB65VAzP96AXJKgD0VWew/zdlrh+y8/Hh37rMYhrQQ5zMWQ==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://www.academia.edu/Documents/in/Pure_Mathematics" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="Xky+LKPat+RIJOBMGIzXLD6L72T+lyHC1mWyp2aE7HQkrGiNyg0xkYGR3cSnXKXTf3q4lm/jnGIftB3dl5Ungw==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10