CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 50 results for author: <span class="mathjax">Wei, C</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Wei%2C+C">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Wei, C"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Wei%2C+C&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Wei, C"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Wei%2C+C&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Wei%2C+C&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wei%2C+C&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08121">arXiv:2411.08121</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.08121">pdf</a>, <a href="https://arxiv.org/format/2411.08121">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Cavity-Vacuum-Induced Chiral Spin Liquids in Kagome Lattices: Tuning and Probing Topological Quantum Phases via Cavity Quantum Electrodynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+C">Chenan Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Liu Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Q">Qing-Dong Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08121v1-abstract-short" style="display: inline;"> Topological phases in frustrated quantum magnetic systems have captivated researchers for decades, with the chiral spin liquid (CSL) standing out as one of the most compelling examples. Featured by long-range entanglement, topological order, and exotic fractional excitations, the CSL has inspired extensive exploration for practical realizations. In this work, we demonstrate that CSLs can emerge in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08121v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08121v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08121v1-abstract-full" style="display: none;"> Topological phases in frustrated quantum magnetic systems have captivated researchers for decades, with the chiral spin liquid (CSL) standing out as one of the most compelling examples. Featured by long-range entanglement, topological order, and exotic fractional excitations, the CSL has inspired extensive exploration for practical realizations. In this work, we demonstrate that CSLs can emerge in a kagome lattice driven by vacuum quantum fluctuations within a single-mode chiral cavity. The chiral cavity imprints quantum fluctuations with time-reversal symmetry breaking, fostering chiral interactions among electrons and stabilizing a robust CSL phase without external laser excitation. Moreover, we identify experimentally accessible observables -- such as average photon number and transport properties -- that reveal connections between photon dynamics and the emergent chiral order. Our findings establish a novel pathway for creating, controlling, and probing topological and symmetry-breaking quantum phases in strongly correlated systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08121v1-abstract-full').style.display = 'none'; document.getElementById('2411.08121v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06801">arXiv:2411.06801</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.06801">pdf</a>, <a href="https://arxiv.org/format/2411.06801">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Time-Varying Strong Coupling and It Induced Time Diffraction of Magnon Modes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rao%2C+J">Jinwei Rao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yi-Pu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zhijian Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+B">Bimu Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+K">Kaixin Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+C">Chunke Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C">Congyi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+R">Runze Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bai%2C+L">Li-Hui Bai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+W">Wei Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06801v2-abstract-short" style="display: inline;"> Time-varying media break the temporal translation symmetry of wave propagation in materials, enabling advanced wave manipulations. However, this novel phenomenon has been rarely explored in magnonic systems due to the significant challenge of achieving a sudden and prominent change in magnon dispersion within materials. Here, we drive a ferrimagnet with periodic pump pulses to construct time-varyi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06801v2-abstract-full').style.display = 'inline'; document.getElementById('2411.06801v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06801v2-abstract-full" style="display: none;"> Time-varying media break the temporal translation symmetry of wave propagation in materials, enabling advanced wave manipulations. However, this novel phenomenon has been rarely explored in magnonic systems due to the significant challenge of achieving a sudden and prominent change in magnon dispersion within materials. Here, we drive a ferrimagnet with periodic pump pulses to construct time-varying strong coupling between two magnon modes. We observe a change in the beats of Rabi-like oscillations near the pulse edges, indicating the time-varying strong magnon coupling and the formation of time interfaces. Using a frequency comb spectroscopy technique developed in this work, we characterize the frequency conversion of magnon modes induced by the time-varying strong coupling effect. Moreover, we construct time slits with adjacent time interfaces and demonstrate, for the first time, the double-slit time diffraction of magnon modes. The frequency spacing of the multiplied magnon modes inversely correlates with the separation between two time slits, analogous to the well-known Yang&#39;s double-slit experiment. These findings rely solely on the time-varying strong magnon coupling, independent of device reconfiguration. Our results open avenues for applications such as all-magnetic mixers or on-chip GHz sources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06801v2-abstract-full').style.display = 'none'; document.getElementById('2411.06801v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.03339">arXiv:2411.03339</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.03339">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> A Printed Microscopic Universal Gradient Interface for Super Stretchable Strain-Insensitive Bioelectronics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+K">Kaidong Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J">Jingyuan Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+C">Chen Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ponnuchamy%2C+A">Ashok Ponnuchamy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bappy%2C+M+O">Md Omarsany Bappy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liao%2C+Y">Yuxuan Liao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Q">Qiang Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+Y">Yipu Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Evans%2C+C+J">Connor J. Evans</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wyatt%2C+B+C">Brian C. Wyatt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=O%27Sullivan%2C+T">Thomas O&#39;Sullivan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roeder%2C+R+K">Ryan K. Roeder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Anasori%2C+B">Babak Anasori</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoffman%2C+A+J">Anthony J. Hoffman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+L">Lihua Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duan%2C+X">Xiangfeng Duan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yanliang Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.03339v1-abstract-short" style="display: inline;"> Stretchable electronics capable of conforming to nonplanar and dynamic human body surfaces are central for creating implantable and on-skin devices for high-fidelity monitoring of diverse physiological signals. While various strategies have been developed to produce stretchable devices, the signals collected from such devices are often highly sensitive to local strain, resulting in inevitable conv&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03339v1-abstract-full').style.display = 'inline'; document.getElementById('2411.03339v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.03339v1-abstract-full" style="display: none;"> Stretchable electronics capable of conforming to nonplanar and dynamic human body surfaces are central for creating implantable and on-skin devices for high-fidelity monitoring of diverse physiological signals. While various strategies have been developed to produce stretchable devices, the signals collected from such devices are often highly sensitive to local strain, resulting in inevitable convolution with surface strain-induced motion artifacts that are difficult to distinguish from intrinsic physiological signals. Here we report all-printed super stretchable strain-insensitive bioelectronics using a unique universal gradient interface (UGI) to bridge the gap between soft biomaterials and stiff electronic materials. Leveraging a versatile aerosol-based multi-materials printing technique that allows precise spatial control over the local stiffnesses with submicron resolution, the UGI enables strain-insensitive electronic devices with negligible resistivity changes under a 180% stretch ratio. We demonstrate various stretchable devices directly printed on the UGI for on-skin health monitoring with high signal quality and near perfect immunity to motion artifacts, including semiconductor-based photodetectors for sensing blood oxygen saturation levels and metal-based temperature sensors. The concept in this work will significantly simplify the fabrication and accelerate the development of a broad range of wearable and implantable bioelectronics for real-time health monitoring and personalized therapeutics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03339v1-abstract-full').style.display = 'none'; document.getElementById('2411.03339v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.14542">arXiv:2410.14542</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.14542">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> La$_2$O$_3$Mn$_2$Se$_2$: a correlated insulating layered d-wave altermagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+C">Chao-Chun Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiaoyin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatt%2C+S">Sabrina Hatt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huai%2C+X">Xudong Huai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jue Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+B">Birender Singh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+K">Kyung-Mo Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fernandes%2C+R+M">Rafael M. Fernandes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cardon%2C+P">Paul Cardon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Liuyan Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tran%2C+T+T">Thao T. Tran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Frandsen%2C+B+M">Benjamin M. Frandsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Burch%2C+K+S">Kenneth S. Burch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+F">Feng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+H">Huiwen Ji</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.14542v1-abstract-short" style="display: inline;"> Altermagnets represent a new class of magnetic phases without net magnetization that are invariant under a combination of rotation and time reversal. Unlike conventional collinear antiferromagnets (AFM), altermagnets could lead to new correlated states and important material properties deriving from their non-relativistic spin-split band structure. Indeed, they are the magnetic analogue of unconve&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14542v1-abstract-full').style.display = 'inline'; document.getElementById('2410.14542v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.14542v1-abstract-full" style="display: none;"> Altermagnets represent a new class of magnetic phases without net magnetization that are invariant under a combination of rotation and time reversal. Unlike conventional collinear antiferromagnets (AFM), altermagnets could lead to new correlated states and important material properties deriving from their non-relativistic spin-split band structure. Indeed, they are the magnetic analogue of unconventional superconductors and can yield spin polarized electrical currents in the absence of external magnetic fields, making them promising candidates for next-generation spintronics. Here, we report altermagnetism in the correlated insulator, magnetically-ordered tetragonal oxychalcogenide, La$_2$O$_3$Mn$_2$Se$_2$. Symmetry analysis reveals a $\mathit{d}_{x^2 - y^2}$-wave type spin momentum locking, which is supported by density functional theory (DFT) calculations. Magnetic measurements confirm the AFM transition below $\sim$166 K while neutron pair distribution function analysis reveals a 2D short-range magnetic order that persists above the N茅el temperature. Single crystals are grown and characterized using X-ray diffraction, optical and electron microscopy, and microRaman spectroscopy to confirm the crystal structure, stoichiometry, and uniformity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14542v1-abstract-full').style.display = 'none'; document.getElementById('2410.14542v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.09576">arXiv:2409.09576</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.09576">pdf</a>, <a href="https://arxiv.org/format/2409.09576">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Concurrence and entanglement on a 16-site spin-1/2 pyrochlore cluster </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+C">C. Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Curnoe%2C+S+H">S. H. Curnoe</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.09576v1-abstract-short" style="display: inline;"> We examine the entanglement of the ground state of a 16-site spin-1/2 pyrochlore cluster in the quantum spin ice regime via various calculations of ${\cal I}$-concurrence. Exact ground state solutions to a quantum spin Hamiltonian with four nearest-neighbour exchange parameters were obtained using exact diagonalization. We present results for the ground state ${\cal I}$-concurrence in a region wit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09576v1-abstract-full').style.display = 'inline'; document.getElementById('2409.09576v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.09576v1-abstract-full" style="display: none;"> We examine the entanglement of the ground state of a 16-site spin-1/2 pyrochlore cluster in the quantum spin ice regime via various calculations of ${\cal I}$-concurrence. Exact ground state solutions to a quantum spin Hamiltonian with four nearest-neighbour exchange parameters were obtained using exact diagonalization. We present results for the ground state ${\cal I}$-concurrence in a region within the parameter space of the model where the ground state is a singlet. We discuss variations in the ${\cal I}$-concurrence in the context of the composition of the ground state and we demonstrate how a lattice distortion disentangles the state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09576v1-abstract-full').style.display = 'none'; document.getElementById('2409.09576v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.09608">arXiv:2408.09608</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.09608">pdf</a>, <a href="https://arxiv.org/ps/2408.09608">ps</a>, <a href="https://arxiv.org/format/2408.09608">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Imaging ferroelectric domains with soft X-ray ptychography at the oxygen K-edge </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Butcher%2C+T+A">Tim A. Butcher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Phillips%2C+N+W">Nicholas W. Phillips</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+C">Chia-Chun Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+S">Shih-Chao Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beinik%2C+I">Igor Beinik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Th%C3%A5nell%2C+K">Karina Th氓nell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jan-Chi Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Shih-Wen Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Raabe%2C+J">J枚rg Raabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Finizio%2C+S">Simone Finizio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.09608v1-abstract-short" style="display: inline;"> The ferroelectric domain structure of a freestanding BiFeO$_3$ film was visualized by ptychographic dichroic imaging with linearly polarized X-rays at the O K-edge around 530 eV. The dichroic contrast is maximized at the energy of the hybridization of the O 2p state and the Fe 3d orbitals, which is split by the octahedral crystal field of the perovskite structure. The thus obtained microscopy imag&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09608v1-abstract-full').style.display = 'inline'; document.getElementById('2408.09608v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.09608v1-abstract-full" style="display: none;"> The ferroelectric domain structure of a freestanding BiFeO$_3$ film was visualized by ptychographic dichroic imaging with linearly polarized X-rays at the O K-edge around 530 eV. The dichroic contrast is maximized at the energy of the hybridization of the O 2p state and the Fe 3d orbitals, which is split by the octahedral crystal field of the perovskite structure. The thus obtained microscopy images compliment the ptychographic imaging of the antiferromagnetic contribution at the Fe L$_3$-edge. The approach is extendible to the separation of different ferroic contributions in other multiferroic oxides. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09608v1-abstract-full').style.display = 'none'; document.getElementById('2408.09608v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.16532">arXiv:2407.16532</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.16532">pdf</a>, <a href="https://arxiv.org/format/2407.16532">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Propulsion Contribution from Individual Filament in Flagellar Bundle </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+J">Jin Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiao%2C+Y">Yateng Qiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+L">Lingchun Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+Y">Yan Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yibo Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bian%2C+H">Hongyi Bian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Yidi Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+Y">Yuxin Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Yingyue Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+R+H+C">Russell Hii Ching Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Teng%2C+Y">Yinuo Teng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Y">Yunlong Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+G">Gaojin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+Z">Zijie Qu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.16532v1-abstract-short" style="display: inline;"> Flagellated microorganisms overcome the low-Reynolds-number time reversibility by rotating helical flagella. For peritrichous bacteria, such as Escherichia coli, the randomly distributed flagellar filaments align along the same direction to form a bundle, facilitating complex locomotive strategies. To understand the process of flagella bundling, especially the propulsion force, we develop a multi-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16532v1-abstract-full').style.display = 'inline'; document.getElementById('2407.16532v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.16532v1-abstract-full" style="display: none;"> Flagellated microorganisms overcome the low-Reynolds-number time reversibility by rotating helical flagella. For peritrichous bacteria, such as Escherichia coli, the randomly distributed flagellar filaments align along the same direction to form a bundle, facilitating complex locomotive strategies. To understand the process of flagella bundling, especially the propulsion force, we develop a multi-functional macroscopic experimental system and employ advanced numerical simulations for verification. Flagella arrangements and phase differences between helices are investigated, revealing the variation in propulsion contribution from the individual helix. Numerically, we build a time-dependent model to match the bundling process and study the influence of hydrodynamic interactions. Surprisingly, it is found that the total propulsion generated by a bundle of two filaments is constant at various phase differences between the helices. However, the difference between the propulsion from each helix is significantly affected by the phase difference, and only one of the helices is responsible for the total propulsion at a phase difference equals to pi. Through our experimental and computational results, we provide a new model considering the propulsion contribution of each filament to better understand microbial locomotion mechanisms, especially on the wobbling behavior of the cell. Our work also sheds light on the design and control of artificial microswimmers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16532v1-abstract-full').style.display = 'none'; document.getElementById('2407.16532v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.06389">arXiv:2403.06389</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.06389">pdf</a>, <a href="https://arxiv.org/format/2403.06389">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Suppression of flux jumps in high-$J_c$ Nb$_3$Sn conductors by ferromagnetic layer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+C">Cun Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+K">Kai-Wei Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+T">Tian He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+C">Chong Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+W">Wei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+J">Jun-Yi Ge</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.06389v2-abstract-short" style="display: inline;"> Flux jumps observed in high-$J_c$ Nb$_3$Sn conductors are urgent problems to construct high field superconducting magnets. The low-field instabilities usually reduce the current-carrying capability and thus cause the premature quench of Nb$_3$Sn coils at low magnetic field. In this paper, we explore suppressing the flux jumps by ferromagnetic (FM) layer. Firstly, we experimentally and theoreticall&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.06389v2-abstract-full').style.display = 'inline'; document.getElementById('2403.06389v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.06389v2-abstract-full" style="display: none;"> Flux jumps observed in high-$J_c$ Nb$_3$Sn conductors are urgent problems to construct high field superconducting magnets. The low-field instabilities usually reduce the current-carrying capability and thus cause the premature quench of Nb$_3$Sn coils at low magnetic field. In this paper, we explore suppressing the flux jumps by ferromagnetic (FM) layer. Firstly, we experimentally and theoretically investigate the flux jumps of Nb$_3$Sn/FM hybrid wires exposed to a magnetic field loop with constant sweeping rate. Comparing with bare Nb$_3$Sn and Nb$_3$Sn/Cu wires, we reveal two underlying mechanisms that the suppression of flux jumps is mainly attributed to the thermal effect of FM layer for the case of lower sweeping rate, whereas both thermal and electromagnetic effects play a crucial role for the case of higher sweeping rate. Furthermore, we explore the flux jumps of Nb$_3$Sn/FM hybrid wires exposed to AC magnetic fields with amplitude $B_{a0}$ and frequency $\rm蠅$. We build up the phase diagrams of flux jumps in the plane $\rm蠅$-$B_{a0}$ for bare Nb$_{3}$Sn wire, Nb$_{3}$Sn/Cu wire and Nb$_{3}$Sn/FM wire, respectively. We stress that the region of flux jumps of Nb$_{3}$Sn/FM wire is much smaller than the other two wires, which indicates that the Nb$_{3}$Sn/FM wire has significant advantage over merely increasing the heat capacity. The findings shed light on suppression of the flux jumps by utilizing FM materials, which is useful for developing new type of high-$J_c$ Nb$_{3}$Sn conductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.06389v2-abstract-full').style.display = 'none'; document.getElementById('2403.06389v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.15418">arXiv:2401.15418</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.15418">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41699-024-00467-8">10.1038/s41699-024-00467-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hometronics: Accessible production of graphene suspensions for health sensing applications using only household items </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Aljarid%2C+A+K+A">Adel K. A. Aljarid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Winder%2C+J">Jasper Winder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+C">Cencen Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Venkatraman%2C+A">Arvind Venkatraman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tomes%2C+O">Oliver Tomes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Soul%2C+A">Aaron Soul</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Papageorgiou%2C+D+G">Dimitrios G. Papageorgiou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=M%C3%B6bius%2C+M+E">Matthias E. M枚bius</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boland%2C+C+S">Conor S. Boland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.15418v1-abstract-short" style="display: inline;"> Nanoscience at times can seem out of reach to the developing world and the general public, with much of the equipment expensive and knowledge seemingly esoteric to nonexperts. Using only cheap, everyday household items, accessible research with real applications can be shown. Here, graphene suspensions were produced using pencil lead, tap water, kitchen appliances, soaps and coffee filters, with a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.15418v1-abstract-full').style.display = 'inline'; document.getElementById('2401.15418v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.15418v1-abstract-full" style="display: none;"> Nanoscience at times can seem out of reach to the developing world and the general public, with much of the equipment expensive and knowledge seemingly esoteric to nonexperts. Using only cheap, everyday household items, accessible research with real applications can be shown. Here, graphene suspensions were produced using pencil lead, tap water, kitchen appliances, soaps and coffee filters, with a childrens glue based graphene nanocomposite for highly sensitive pulse measurements demonstrated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.15418v1-abstract-full').style.display = 'none'; document.getElementById('2401.15418v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.16660">arXiv:2312.16660</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.16660">pdf</a>, <a href="https://arxiv.org/format/2312.16660">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Exactly Solvable and Integrable Systems">nlin.SI</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP06(2024)125">10.1007/JHEP06(2024)125 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unveiling chiral states in the XXZ chain: Finite-size scaling probing symmetry-enriched $c=1$ conformal field theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+C">Chenan Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mkhitaryan%2C+V+V">Vagharsh V. Mkhitaryan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sedrakyan%2C+T+A">Tigran A. Sedrakyan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.16660v4-abstract-short" style="display: inline;"> We study the low-energy properties of the one-dimensional spin-1/2 XXZ chain with time-reversal symmetry-breaking pseudo-scalar chiral interaction and propose a phase diagram for the model. In the integrable case of the isotropic Heisenberg model with the chiral interaction, we employ the thermodynamic Bethe ansatz to find &#34;chiralization&#34;, the response of the ground state versus the strength of th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.16660v4-abstract-full').style.display = 'inline'; document.getElementById('2312.16660v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.16660v4-abstract-full" style="display: none;"> We study the low-energy properties of the one-dimensional spin-1/2 XXZ chain with time-reversal symmetry-breaking pseudo-scalar chiral interaction and propose a phase diagram for the model. In the integrable case of the isotropic Heisenberg model with the chiral interaction, we employ the thermodynamic Bethe ansatz to find &#34;chiralization&#34;, the response of the ground state versus the strength of the pseudo-scalar chiral interaction of a chiral Heisenberg chain. Unlike the magnetization case, the chirality of the ground state remains zero until the transition point corresponding to critical coupling $伪_c=2J/蟺$ with $J$ being the antiferromagnetic spin-exchange interaction. The central-charge $c=1$ conformal field theories (CFTs) describe the two phases with zero and finite chirality. We show for this particular case and conjecture more generally for similar phase transitions that the difference between two emergent CFTs with identical central charges lies in the symmetry of their ground state (lightest weight) primary fields, i.e., the two phases are symmetry-enriched CFTs. At finite but small temperatures, the non-chiral Heisenberg phase acquires a finite chirality that scales with the temperature quadratically. We show that the finite-size effect around the transition point probes the transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.16660v4-abstract-full').style.display = 'none'; document.getElementById('2312.16660v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. High Energ. Phys. 2024, 125 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.18320">arXiv:2311.18320</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.18320">pdf</a>, <a href="https://arxiv.org/format/2311.18320">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> BN-embedded monolayer graphene with tunable electronic and topological properties </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chuu%2C+C">Chih-Piao Chuu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tseng%2C+W">Wei-En Tseng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+K">Kuan-Hung Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+C">Ching-Ming Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chou%2C+M">Mei-Yin Chou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.18320v1-abstract-short" style="display: inline;"> Finding an effective and controllable way to create a sizable energy gap in graphene-based systems has been a challenging topic of intensive research. We propose that the hybrid of boron nitride and graphene (h-BNC) at low BN doping serves as an ideal platform for band-gap engineering and valleytronic applications. We report a systematic first-principles study of the atomic configurations and band&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.18320v1-abstract-full').style.display = 'inline'; document.getElementById('2311.18320v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.18320v1-abstract-full" style="display: none;"> Finding an effective and controllable way to create a sizable energy gap in graphene-based systems has been a challenging topic of intensive research. We propose that the hybrid of boron nitride and graphene (h-BNC) at low BN doping serves as an ideal platform for band-gap engineering and valleytronic applications. We report a systematic first-principles study of the atomic configurations and band gap opening for energetically favorable BN patches embedded in graphene. Based on first-principles calculations, we construct a tight-binding model to simulate general doping configurations in large supercells. Unexpectedly, the calculations find a linear dependence of the band gap on the effective BN concentration at low doping, arising from an induced effective on-site energy difference at the two C sublattices as they are substituted by B and N dopants alternately. The significant and tunable band gap of a few hundred meVs, with preserved topological properties of graphene and feasible sample preparation in the laboratory, presents great opportunities to realize valley physics applications in graphene systems at room temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.18320v1-abstract-full').style.display = 'none'; document.getElementById('2311.18320v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.08994">arXiv:2311.08994</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.08994">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Thickness dependent mechanical properties of soft ferromagnetic two-dimensional CoTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Slathia%2C+S">Surbhi Slathia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+C">Cencen Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tripathi%2C+M">Manoj Tripathi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tromer%2C+R">Raphael Tromer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Negedu%2C+S+D">Solomon Demiss Negedu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boland%2C+C">Conor Boland</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sarkar%2C+S">Suman Sarkar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Galvao%2C+D+S">Douglas S. Galvao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dalton%2C+A">Alan Dalton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwary%2C+C+S">Chandra Sekhar Tiwary</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.08994v1-abstract-short" style="display: inline;"> Two dimensional (2D) layered transition-metal-based tellurides (chalcogens) are known to harness their surface atoms characteristics to enhance topographical activities for energy conversion, storage, and magnetic applications. High surface energy due to unsaturated dangling bonds and larger lateral size than the thickness (volume) makes them a potential candidate for emerging electronics. Neverth&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.08994v1-abstract-full').style.display = 'inline'; document.getElementById('2311.08994v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.08994v1-abstract-full" style="display: none;"> Two dimensional (2D) layered transition-metal-based tellurides (chalcogens) are known to harness their surface atoms characteristics to enhance topographical activities for energy conversion, storage, and magnetic applications. High surface energy due to unsaturated dangling bonds and larger lateral size than the thickness (volume) makes them a potential candidate for emerging electronics. Nevertheless, the gradual stacking of each sheet alters the surface atoms&#39; subtle features, such as lattice expansion, leading to several phenomena and rendering tunable properties. In the present work, we have monitored thickness-dependent properties of the 2D CoTe2 sheets from nanoscale mechanics, tribology, surface potential distributions, interfacial interaction and magnetism using atomically resolved spectroscopy and different surface probe techniques, in conjunction with theoretical investigations: density functional theory (DFT) and molecular dynamics (MD). The variation in properties observed in theoretical investigation unleashes the crucial role of crystal planes of the CoTe2. The presented results are beneficial in expanding the use of 2D telluride family in flexible electronics, piezo sensors, tribo-generator, and next-generation memory devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.08994v1-abstract-full').style.display = 'none'; document.getElementById('2311.08994v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.10670">arXiv:2309.10670</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.10670">pdf</a>, <a href="https://arxiv.org/format/2309.10670">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Symmetry considerations in exact diagonalization: spin-1/2 pyrochlore magnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+C">C. Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Curnoe%2C+S+H">S. H. Curnoe</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.10670v1-abstract-short" style="display: inline;"> We describe how the methods of group theory (symmetry) are used to optimize the problem of exact diagonalization of a quantum system on a 16-site pyrochlore lattice. By analytically constructing a complete set of symmetrized states, we completely block-diagonalize the Hamiltonian. As an example, we consider a spin-1/2 system with nearest neighbour exchange interactions. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.10670v1-abstract-full" style="display: none;"> We describe how the methods of group theory (symmetry) are used to optimize the problem of exact diagonalization of a quantum system on a 16-site pyrochlore lattice. By analytically constructing a complete set of symmetrized states, we completely block-diagonalize the Hamiltonian. As an example, we consider a spin-1/2 system with nearest neighbour exchange interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.10670v1-abstract-full').style.display = 'none'; document.getElementById('2309.10670v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.01560">arXiv:2309.01560</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.01560">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Quasi 1D Nanobelts from the Sustainable Liquid Exfoliation of Terrestrial Minerals for Future Martian based Electronics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+C">Cencen Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roy%2C+A">Abhijit Roy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aljarid%2C+A+K+A">Adel K. A. Aljarid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Y">Yi Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roe%2C+S+M">S. Mark Roe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Papageorgiou%2C+D+G">Dimitrios G. Papageorgiou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arenal%2C+R">Raul Arenal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boland%2C+C+S">Conor S. Boland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.01560v1-abstract-short" style="display: inline;"> The sky is the limit with regards to the societal impact nanomaterials can have on our lives. However, in this study we show that their potential is out of this world. The planet Mars has an abundant source of calcium sulfate minerals and in our work, we show that these deposits can be the basis of transformative nanomaterials to potentially support future space endeavors. Through a scalable eco-f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.01560v1-abstract-full').style.display = 'inline'; document.getElementById('2309.01560v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.01560v1-abstract-full" style="display: none;"> The sky is the limit with regards to the societal impact nanomaterials can have on our lives. However, in this study we show that their potential is out of this world. The planet Mars has an abundant source of calcium sulfate minerals and in our work, we show that these deposits can be the basis of transformative nanomaterials to potentially support future space endeavors. Through a scalable eco-friendly liquid processing technique performed on two common terrestrial gypsum, our simple method presented a cost-efficient procedure to yield the commercially valuable intermediate phase of gypsum, known as bassanite. Through the liquid exfoliation of bassanite powders, suspensions of large aspect ratio anhydrite nanobelts with long-term stability were characterized through scanning electron microscopy and Raman spectroscopy. Transmission electron microscopy showed nanobelts to have a mesocrystal structure, with distinct nanoparticle constituents making up the lattice. Unexpectedly, anhydrite nanobelts had remarkable electronic properties, namely a bandgap that was easily tuned between semiconducting (~2.2 eV) and insulating (~4 eV) behaviors through dimensional control measured via atomic force microscopy. To demonstrate the application potential of our nanobelts; optoelectronic, electrochemical and nanocomposite measurements were made. For the hydrogen evolution reaction and mechanical reinforcement, selenite-based anhydrite nanobelts displayed superlative performances. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.01560v1-abstract-full').style.display = 'none'; document.getElementById('2309.01560v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.13465">arXiv:2308.13465</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.13465">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adma.202311157">10.1002/adma.202311157 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ptychographic nanoscale imaging of the magnetoelectric coupling in freestanding BiFeO$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Butcher%2C+T+A">Tim A. Butcher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Phillips%2C+N+W">Nicholas W. Phillips</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chiu%2C+C">Chun-Chien Chiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+C">Chia-Chun Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+S">Sheng-Zhu Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yi-Chun Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fr%C3%B6jdh%2C+E">Erik Fr枚jdh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baruffaldi%2C+F">Filippo Baruffaldi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carulla%2C+M">Maria Carulla</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jiaguo Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bergamaschi%2C+A">Anna Bergamaschi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vaz%2C+C+A+F">Carlos A. F. Vaz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kleibert%2C+A">Armin Kleibert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Finizio%2C+S">Simone Finizio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jan-Chi Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Shih-Wen Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Raabe%2C+J">J枚rg Raabe</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.13465v2-abstract-short" style="display: inline;"> Understanding the magnetic and ferroelectric ordering of magnetoelectric multiferroic materials at the nanoscale necessitates a versatile imaging method with high spatial resolution. Here, soft X-ray ptychography is employed to simultaneously image the ferroelectric and antiferromagnetic domains in an 80 nm thin freestanding film of the room-temperature multiferroic BiFeO$_3$ (BFO). The antiferrom&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.13465v2-abstract-full').style.display = 'inline'; document.getElementById('2308.13465v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.13465v2-abstract-full" style="display: none;"> Understanding the magnetic and ferroelectric ordering of magnetoelectric multiferroic materials at the nanoscale necessitates a versatile imaging method with high spatial resolution. Here, soft X-ray ptychography is employed to simultaneously image the ferroelectric and antiferromagnetic domains in an 80 nm thin freestanding film of the room-temperature multiferroic BiFeO$_3$ (BFO). The antiferromagnetic spin cycloid of period 64 nm is resolved by reconstructing the corresponding resonant elastic X-ray scattering in real space and visualized together with mosaic-like ferroelectric domains in a linear dichroic contrast image at the Fe L$_3$ edge. The measurements reveal a near perfect coupling between the antiferromagnetic and ferroelectric ordering by which the propagation direction of the spin cycloid is locked orthogonally to the ferroelectric polarization. In addition, the study evinces both a preference for in-plane propagation of the spin cycloid and changes of the ferroelectric polarization by 71掳 between multiferroic domains in the epitaxial strain-free, freestanding BFO film. The results provide a direct visualization of the strong magnetoelectric coupling in BFO and of its fine multiferroic domain structure, emphasizing the potential of ptychographic imaging for the study of multiferroics and non-collinear magnetic materials with soft X-rays. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.13465v2-abstract-full').style.display = 'none'; document.getElementById('2308.13465v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Supporting information available with published version: https://doi.org/10.1002/adma.202311157</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Adv. Mater. 2024, 36, 2311157 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.06659">arXiv:2306.06659</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.06659">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Ferromagnetic Superconductivity in Two-dimensional Niobium Diselenide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+T">Tingyu Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+S">Shangjian Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hou%2C+F">Fuchen Hou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+D">Deyi Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+J">Junye Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+D+F+C">Darryl Foo Chuan Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+X">Xiao Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+J">Junhao Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Adam%2C+S">Shaffique Adam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C3%96zyilmaz%2C+B">Barbaros 脰zyilmaz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.06659v1-abstract-short" style="display: inline;"> The co-existence of ferromagnetism and superconductivity becomes possible through unconventional pairing in the superconducting state. Such materials are exceedingly rare in solid-state systems but are promising platforms to explore topological phases, such as Majorana bound states. Theoretical investigations date back to the late 1950s, but only a few systems have so far been experimentally ident&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06659v1-abstract-full').style.display = 'inline'; document.getElementById('2306.06659v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.06659v1-abstract-full" style="display: none;"> The co-existence of ferromagnetism and superconductivity becomes possible through unconventional pairing in the superconducting state. Such materials are exceedingly rare in solid-state systems but are promising platforms to explore topological phases, such as Majorana bound states. Theoretical investigations date back to the late 1950s, but only a few systems have so far been experimentally identified as potential hosts. Here, we show that atomically-thin niobium diselenide (NbSe$_2$) intercalated with dilute cobalt atoms spontaneously displays ferromagnetism below the superconducting transition temperature ($T_c$). We elucidate the origin of this phase by constructing a magnetic tunnel junction that consists of cobalt and cobalt-doped niobium diselenide (Co-NbSe$_2$) as the two ferromagnetic electrodes, with an ultra-thin boron nitride as the tunnelling barrier. At a temperature well below $T_c$, the tunnelling magnetoresistance shows a bistable state, suggesting a ferromagnetic order in Co-NbSe$_2$. We propose a RKKY exchange coupling mechanism based on the spin-triplet superconducting order parameter to mediate such ferromagnetism. We further perform non-local lateral spin valve measurements to confirm the origin of the ferromagnetism. The observation of Hanle precession signals show spin diffusion length up to micrometres below Tc, demonstrating an intrinsic spin-triplet nature in superconducting NbSe$_2$. Our discovery of superconductivity-mediated ferromagnetism opens the door to an alternative design of ferromagnetic superconductors <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06659v1-abstract-full').style.display = 'none'; document.getElementById('2306.06659v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.12988">arXiv:2212.12988</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.12988">pdf</a>, <a href="https://arxiv.org/format/2212.12988">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.aop.2023.169354">10.1016/j.aop.2023.169354 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chiral spin liquid state of strongly interacting bosons with a moat dispersion: a Monte Carlo simulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+C">Chenan Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sedrakyan%2C+T+A">Tigran A. Sedrakyan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.12988v2-abstract-short" style="display: inline;"> We consider a system of strongly interacting bosons in two dimensions with moat band dispersion which supports an infinitely degenerate energy minimum along a closed contour in the Brillouin zone. The system has been theoretically predicted to stabilize a chiral spin liquid (CSL) ground state. In the thermodynamic limit and vanishing densities, $n\rightarrow 0$, chemical potential, $渭$, of the uni&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.12988v2-abstract-full').style.display = 'inline'; document.getElementById('2212.12988v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.12988v2-abstract-full" style="display: none;"> We consider a system of strongly interacting bosons in two dimensions with moat band dispersion which supports an infinitely degenerate energy minimum along a closed contour in the Brillouin zone. The system has been theoretically predicted to stabilize a chiral spin liquid (CSL) ground state. In the thermodynamic limit and vanishing densities, $n\rightarrow 0$, chemical potential, $渭$, of the uniform CSL state was shown to scale with $n$ as $渭\sim n^2\log ^2n$. Here we perform a Monte Carlo simulation to find the parametric window for particle density, $n \lesssim \frac{k^2_0}{82 蟺}$, where $k_0$ is the linear size of the moat (the radius for a circular moat), for which the scaling $\sim n^2\log ^2n$ in the equation of state of the homogeneous CSL is preserved. We variationally show that the uniform CSL state is favorable in an interval beyond the obtained scale and present a schematic phase diagram for the system. Our results offer some density estimates for observing the low-density behavior of CSL in time-of-flight experiments with a recently Floquet-engineered moat band system of ultracold atoms in Phys. Rev. Lett. 128, 213401 (2022), and for the recent experiments on emergent excitonic topological order in imbalanced electron-hole bilayers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.12988v2-abstract-full').style.display = 'none'; document.getElementById('2212.12988v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 5 figures. Dedicated to the memory of Konstantin B. Efetov</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Annals of Physics, 169354(2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.06937">arXiv:2208.06937</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.06937">pdf</a>, <a href="https://arxiv.org/format/2208.06937">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-648X/acccc8">10.1088/1361-648X/acccc8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exact diagonalization for spin-1/2 spin ice pyrochlores </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+C">C. Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Curnoe%2C+S+H">S. H. Curnoe</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.06937v2-abstract-short" style="display: inline;"> We find exact solutions to the Hamiltonian of a 16-site spin-1/2 pyrochlore crystal with nearest neighbour exchange interactions. The methods of group theory (symmetry) are used to completely block-diagonalize the Hamiltonian, yielding precise details about symmetry of the eigenstates, in particular those components which are {\em spin ice} states, in order to evaluate the spin ice density at fini&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.06937v2-abstract-full').style.display = 'inline'; document.getElementById('2208.06937v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.06937v2-abstract-full" style="display: none;"> We find exact solutions to the Hamiltonian of a 16-site spin-1/2 pyrochlore crystal with nearest neighbour exchange interactions. The methods of group theory (symmetry) are used to completely block-diagonalize the Hamiltonian, yielding precise details about symmetry of the eigenstates, in particular those components which are {\em spin ice} states, in order to evaluate the spin ice density at finite temperature. At low enough temperatures, a `perturbed&#39; spin ice phase is clearly outlined within the four parameter space of the general model of exchange interactions. The quantum spin ice phase is expected to exist outside these boundaries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.06937v2-abstract-full').style.display = 'none'; document.getElementById('2208.06937v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.09766">arXiv:2205.09766</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.09766">pdf</a>, <a href="https://arxiv.org/format/2205.09766">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.064202">10.1103/PhysRevB.108.064202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strange metal phase of disordered magic-angle twisted bilayer graphene at low temperatures: from flatbands to weakly coupled Sachdev-Ye-Kitaev bundles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+C">Chenan Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sedrakyan%2C+T+A">Tigran A. Sedrakyan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.09766v3-abstract-short" style="display: inline;"> We use stochastic expansion and exact diagonalization to study the magic-angle twisted bilayer graphene (TBG) on a disordered substrate. We show that the substrate-induced strong Coulomb disorder in TBG with the chemical potential at the level of the flatbands drives the system to a network of weakly coupled Sachdev-Ye-Kitaev (SYK) bundles, stabilizing an emergent quantum chaotic strange metal (SM&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.09766v3-abstract-full').style.display = 'inline'; document.getElementById('2205.09766v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.09766v3-abstract-full" style="display: none;"> We use stochastic expansion and exact diagonalization to study the magic-angle twisted bilayer graphene (TBG) on a disordered substrate. We show that the substrate-induced strong Coulomb disorder in TBG with the chemical potential at the level of the flatbands drives the system to a network of weakly coupled Sachdev-Ye-Kitaev (SYK) bundles, stabilizing an emergent quantum chaotic strange metal (SM) phase of TBG that exhibits the absence of quasiparticles. The Gaussian orthogonal ensemble dominates TBG&#39;s long-time chaotic dynamics at strong disorder, whereas fast quantum scrambling appears in the short-time dynamics. In weak disorder, gapped phases of TBG exhibit exponentially decaying specific heat capacity and exponential decay in out-of-time-ordered correlators (OTOC). This is the system behavior in correlated insulator and superconducting phases, in agreement with the corresponding Larkin-Ovchinnikov result for correlators. The result suggests a low-temperature transition from the superconducting and correlated insulating phases into the strange metal upon increasing the disorder strength. We propose a finite-temperature phase diagram for Coulomb-disordered TBG and discuss the experimental consequences of the emergent SM phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.09766v3-abstract-full').style.display = 'none'; document.getElementById('2205.09766v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108, 064202 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.12721">arXiv:2201.12721</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.12721">pdf</a>, <a href="https://arxiv.org/format/2201.12721">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.064507">10.1103/PhysRevB.105.064507 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superconductivity near the saddle point in the two-dimensional Rashba system Si(111)-$\sqrt{3}\times\sqrt{3}$-(Tl,Pb) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Machida%2C+T">T. Machida</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yoshimura%2C+Y">Y. Yoshimura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nakamura%2C+T">T. Nakamura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kohsaka%2C+Y">Y. Kohsaka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hanaguri%2C+T">T. Hanaguri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hsing%2C+C+-">C. -R. Hsing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+C+-">C. -M. Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasegawa%2C+Y">Y. Hasegawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasegawa%2C+S">S. Hasegawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takayama%2C+A">A. Takayama</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.12721v1-abstract-short" style="display: inline;"> Two-dimensional Rashba superconductor Si(111)-$\sqrt{3}\times\sqrt{3}$-(Tl,Pb) is a candidate platform of mixed spin-singlet and -triplet superconductivity. A recent scanning tunneling microscope (STM) experiment revealed a pseudogap at the vortex core, suggesting the finite triplet component [T. Nakamura $\textit{et al.}$, Phys. Rev. B $\bf{ 98}$, 134505 (2018)]. Detailed spectroscopic informatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.12721v1-abstract-full').style.display = 'inline'; document.getElementById('2201.12721v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.12721v1-abstract-full" style="display: none;"> Two-dimensional Rashba superconductor Si(111)-$\sqrt{3}\times\sqrt{3}$-(Tl,Pb) is a candidate platform of mixed spin-singlet and -triplet superconductivity. A recent scanning tunneling microscope (STM) experiment revealed a pseudogap at the vortex core, suggesting the finite triplet component [T. Nakamura $\textit{et al.}$, Phys. Rev. B $\bf{ 98}$, 134505 (2018)]. Detailed spectroscopic information of the superconducting gap and the low-energy band structure is necessary to establish the putative triplet superconductivity. Here, we performed high-energy-resolution spectroscopic imaging experiments on Si(111)-$\sqrt{3}\times\sqrt{3}$-(Tl,Pb) using an ultra-low temperature STM. We found that various spectroscopic features, including the vortex-core spectrum, are consistent with spin-singlet $s$-wave superconductivity, having no sign of the triplet component. The apparent contradiction with the previous STM result suggests that the nature of superconductivity changes within the same system. From the analysis of the quasiparticle interference patterns, we found that the Fermi energy is in the close vicinity of the saddle point near the $\overline{\rm{M}}$ point. We speculate that the nature of superconductivity varies depending on the saddle-point energy with respect to the Fermi energy, which is sample-dependent due to different band filling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.12721v1-abstract-full').style.display = 'none'; document.getElementById('2201.12721v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.09427">arXiv:2103.09427</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.09427">pdf</a>, <a href="https://arxiv.org/ps/2103.09427">ps</a>, <a href="https://arxiv.org/format/2103.09427">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Tissues and Organs">q-bio.TO</span> </div> </div> <p class="title is-5 mathjax"> An Eulerian nonlinear elastic model for compressible and fluidic tissue with radially symmetric growth </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+C">Chaozhen Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+M">Min Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.09427v2-abstract-short" style="display: inline;"> Cell proliferation, apoptosis, and myosin-dependent contraction can generate elastic stress and strain in living tissues, which may be dissipated by internal rearrangement through cell topological transition and cytoskeletal reorganization. Moreover, cells and tissues can change their sizes in response to mechanical cues. The present work demonstrates the role of tissue compressibility and interna&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.09427v2-abstract-full').style.display = 'inline'; document.getElementById('2103.09427v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.09427v2-abstract-full" style="display: none;"> Cell proliferation, apoptosis, and myosin-dependent contraction can generate elastic stress and strain in living tissues, which may be dissipated by internal rearrangement through cell topological transition and cytoskeletal reorganization. Moreover, cells and tissues can change their sizes in response to mechanical cues. The present work demonstrates the role of tissue compressibility and internal rearranging activities on its size and mechanics regulation in the context of differential growth induced by a field of growth-promoting chemical factors. We develop a mathematical model based on finite elasticity and growth theory and the reference map techniques to describe the coupled tissue growth and mechanics in the Eulerian frame. We incorporate the tissue rearrangement by introducing a rearranging rate to the reference map evolution, leading to elastic-energy dissipation when tissue growth and deformation are in radial symmetry. By linearizing the model, we show that the stress follows the Maxwell-type viscoelastic relaxation. The rearrangement rate, which we call tissue fluidity, sets the stress relaxation time, and the ratio between the shear modulus and the fluidity sets the tissue viscosity. By nonlinear simulation of growing tissue spheroids and discs with graded growth rates along the radius, we find that the tissue compressibility and fluidity influence their equilibrium size. By comparing the nonlinear simulations with the linear analytical solutions, we show the size change as a nonlinear effect due to the advection of the tissue density flow, which only occurs when both tissue compressibility and fluidity are small. We apply the model to study tumor spheroid growth and epithelial disc growth when a reaction-diffusion process determines the growth-promoting factor field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.09427v2-abstract-full').style.display = 'none'; document.getElementById('2103.09427v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 7 figures, Supplement</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 92Cxx; 74L15; 74Bxx; 35Qxx </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.07640">arXiv:2005.07640</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.07640">pdf</a>, <a href="https://arxiv.org/ps/2005.07640">ps</a>, <a href="https://arxiv.org/format/2005.07640">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.103.013323">10.1103/PhysRevA.103.013323 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optical lattice platform for the SYK model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+C">Chenan Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sedrakyan%2C+T+A">Tigran A. Sedrakyan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.07640v3-abstract-short" style="display: inline;"> The tractability of the Sachdev-Ye-Kitaev (SYK) model at large $N$ limit makes it ideal to theoretically study its chaotic non-Fermi liquid behavior and holographic duality properties. We show that the complex SYK Hamiltonian emerges from a system of spinless itinerant fermions in an optical Kagome lattice with a strong disorder. We discuss the regimes supporting flat band spectra in a Kagome latt&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.07640v3-abstract-full').style.display = 'inline'; document.getElementById('2005.07640v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.07640v3-abstract-full" style="display: none;"> The tractability of the Sachdev-Ye-Kitaev (SYK) model at large $N$ limit makes it ideal to theoretically study its chaotic non-Fermi liquid behavior and holographic duality properties. We show that the complex SYK Hamiltonian emerges from a system of spinless itinerant fermions in an optical Kagome lattice with a strong disorder. We discuss the regimes supporting flat band spectra in a Kagome lattice, where the system can be non-dispersive. Random interaction between non-dispersive fermions is induced due to randomly distributed immobile impurities in the optical lattice, that exclude the presence of itinerant fermions at their locations. We show that the proposed setup is a reliable experimental platform to realize the SYK model and study its exotic behavior. We show that the velocity distribution of the released fermions is a sensitive probe of the many-body Wigner-Dyson spectral density of states while the averaged many-body Loschmidt echo scheme can measure two-point out-of-time-ordered correlation functions of the SYK system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.07640v3-abstract-full').style.display = 'none'; document.getElementById('2005.07640v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 103, 013323 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.00669">arXiv:2002.00669</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.00669">pdf</a>, <a href="https://arxiv.org/format/2002.00669">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Double lattice potential for molecular dynamics simulation of silicon with demonstrated validity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hui Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+C">Chongyang Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhongwu Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+X">Xichun Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiao%2C+D">Dongling Jiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+W">Wanqi Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+H">Hongya Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.00669v2-abstract-short" style="display: inline;"> To reproduce the diamond structure of silicon, double lattice (DL) potential constructed from two interatomic potentials for face centered cubic (fcc) lattice, is proposed for molecular dynamics (MD) simulations. For the validity test of MD simulation, the Tersoff potential, the Stillinger and Weber (SW) potential, the environment-dependent interatomic (EDI) potential, the charge optimized many-bo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.00669v2-abstract-full').style.display = 'inline'; document.getElementById('2002.00669v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.00669v2-abstract-full" style="display: none;"> To reproduce the diamond structure of silicon, double lattice (DL) potential constructed from two interatomic potentials for face centered cubic (fcc) lattice, is proposed for molecular dynamics (MD) simulations. For the validity test of MD simulation, the Tersoff potential, the Stillinger and Weber (SW) potential, the environment-dependent interatomic (EDI) potential, the charge optimized many-body (COMB) potential, and the modified embedded-atom (MEAM) potential have been also employed for comparison. The crystal lattice of simulated silicon system is identified by calculating the distribution functions of the distances between the atoms and the angles between the lines linking an atom with its nearest neighbors. The results are also compared with the perfect silicon crystal. The crystal lattice, the crystallization temperature, and elastic constants have been calculated from MD simulations using above potentials. The results show that the systems with modified Tersoff, SW, EDI, COMB, and MEAM potentials could not exhibit the diamond structure and only the DL potential gives diamond lattice. The ground state for DL potential is the wurtzite structure, and the metastable state formed during rapid cooling is the cubic diamond structure. The physical parameters obtained from the simulation with DL potential are in agreement with the experiment results. This work indicated that only DL potential is valid for MD simulation of silicon crystal among above various potentials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.00669v2-abstract-full').style.display = 'none'; document.getElementById('2002.00669v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages,7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.13469">arXiv:1907.13469</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.13469">pdf</a>, <a href="https://arxiv.org/ps/1907.13469">ps</a>, <a href="https://arxiv.org/format/1907.13469">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Dynamical Systems">math.DS</span> </div> </div> <p class="title is-5 mathjax"> Grain boundary triple junction dynamics: a continuum disconnection model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+C">Chaozhen Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+L">Luchan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+J">Jian Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Srolovitz%2C+D+J">David J. Srolovitz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+Y">Yang Xiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.13469v1-abstract-short" style="display: inline;"> The microstructure of polycrystalline materials consists of networks of grain boundaries (GBs) and triple junctions (TJs), along which three GBs meet. The evolution of such microstructures may be driven by surface tension (capillarity), applied stresses, or other means that lead to a jump in chemical potential across the GBs. Here, we develop a model for the concurrent evolution of the GB/TJ netwo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.13469v1-abstract-full').style.display = 'inline'; document.getElementById('1907.13469v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.13469v1-abstract-full" style="display: none;"> The microstructure of polycrystalline materials consists of networks of grain boundaries (GBs) and triple junctions (TJs), along which three GBs meet. The evolution of such microstructures may be driven by surface tension (capillarity), applied stresses, or other means that lead to a jump in chemical potential across the GBs. Here, we develop a model for the concurrent evolution of the GB/TJ network based upon the microscopic mechanism of motion; the motion of line defects (disconnections) in the GB that have both dislocation and step character. The evolution involves thermally-activated disconnection formation/annihilation and migration of multiple disconnections modes/types. We propose this crystallography-respecting continuum model for the disconnection mechanism of GB/TJ dynamics derived with a variational approach based on the principle of maximum energy dissipation. The resultant TJ dynamics is reduced to an optimization problem with constraints that account for local microstructure geometry, conservation of Burgers vectors, and thermal-kinetic limitations on disconnection fluxes. We present analysis of and numerical simulations based upon our model to demonstrate the dependence of the GB and TJ mobilities and the TJ drag effect on the disconnection properties, and compare the predictions with molecular dynamics and experimental observations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.13469v1-abstract-full').style.display = 'none'; document.getElementById('1907.13469v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 35Q74; 74K30; 74E15; 74P10; 49N10; 49S05 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.13509">arXiv:1905.13509</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.13509">pdf</a>, <a href="https://arxiv.org/ps/1905.13509">ps</a>, <a href="https://arxiv.org/format/1905.13509">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jmps.2019.103731">10.1016/j.jmps.2019.103731 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Continuum Multi-Disconnection-Mode Model for Grain Boundary Migration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+C">Chaozhen Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thomas%2C+S+L">Spencer L. Thomas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+J">Jian Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Srolovitz%2C+D+J">David J. Srolovitz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+Y">Yang Xiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.13509v1-abstract-short" style="display: inline;"> We study the Grain Boundary (GB) migration based on the underlying disconnection structure and mechanism. Disconnections are line defects that lie solely within a GB and are characterized by both a Burgers vector and a step height, as set by the GB bicrystallography. Multiple disconnection modes can nucleate, as determined by their formation energy barriers and temperature, and move along the GB u&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.13509v1-abstract-full').style.display = 'inline'; document.getElementById('1905.13509v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.13509v1-abstract-full" style="display: none;"> We study the Grain Boundary (GB) migration based on the underlying disconnection structure and mechanism. Disconnections are line defects that lie solely within a GB and are characterized by both a Burgers vector and a step height, as set by the GB bicrystallography. Multiple disconnection modes can nucleate, as determined by their formation energy barriers and temperature, and move along the GB under different kinds of competing driving forces including shear stress and chemical potential jumps across the GBs. We present a continuum model in two dimensions for GB migration where the GB migrates via the thermally-activated nucleation and kinetically-driven motion of disconnections. We perform continuum numerical simulations for investigating the GB migration behavior in single and multi-mode disconnection limits in both a bicrystal (under two types of boundary conditions) and for a finite-length GB with pinned ends. The results clearly demonstrate the significance of including the coupling and competing between different disconnection modes and driving forces for describing the complex and diverse phenomena of GB migration within polycyrstalline microstructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.13509v1-abstract-full').style.display = 'none'; document.getElementById('1905.13509v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Keywords: Grain boundary dynamics; Disconnection mechanism; Shear-coupling</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.04315">arXiv:1903.04315</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.04315">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Pressure-controlled Structural Symmetry Transition in Layered InSe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+H">Huimin Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xuan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+C">Chengrong Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Junning Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zeyuan Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Q">Qiye Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xuefeng Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+J">Junhong Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+H">Huan Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hao%2C+Q">Qiaoyan Hao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Y">Yusheng Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shanmin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+L">Li Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+S">Shiwei Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wenjing Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+G">Guixin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+J">Jun-Feng Dai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.04315v1-abstract-short" style="display: inline;"> Structural symmetry of crystals plays important roles in physical properties of two-dimensional (2D) materials, particularly in the nonlinear optics regime. It has been a long-term exploration on the physical properties in 2D materials with various stacking structures, which correspond to different structural symmetries. Usually, the manipulation of rotational alignment between layers in 2D hetero&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.04315v1-abstract-full').style.display = 'inline'; document.getElementById('1903.04315v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.04315v1-abstract-full" style="display: none;"> Structural symmetry of crystals plays important roles in physical properties of two-dimensional (2D) materials, particularly in the nonlinear optics regime. It has been a long-term exploration on the physical properties in 2D materials with various stacking structures, which correspond to different structural symmetries. Usually, the manipulation of rotational alignment between layers in 2D heterostructures has been realized at the synthetic stage through artificial stacking like assembling Lego bricks. However, the reconfigurable control of translational symmetry of crystalline structure is still challenging. High pressure, as a powerful external control knob, provides a very promising route to circumvent this constraint. Here, we experimentally demonstrate a pressure-controlled symmetry transition in layered InSe. The continuous and reversible evolution of structural symmetries can be in-situ monitored by using the polarization-resolved second harmonic generation (SHG) spectroscopy. As pressure changes, the reconfigurable symmetry transition of the SHG pattern from three-fold rotational symmetry to mirror symmetry was experimentally observed in a layered InSe samples and was successfully explained by the proposed interlayer-translation model. This opens new routes towards potential applications of manipulating crystal symmetry of 2D materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.04315v1-abstract-full').style.display = 'none'; document.getElementById('1903.04315v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.00822">arXiv:1707.00822</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.00822">pdf</a>, <a href="https://arxiv.org/format/1707.00822">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.96.195125">10.1103/PhysRevB.96.195125 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quasiparticle Interference in ZrSiS - Strongly Band-Selective Scattering Depending on Impurity Lattice Site </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Butler%2C+C+J">Christopher J. Butler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yu-Mi Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hsing%2C+C">Cheng-Rong Hsing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tseng%2C+Y">Yi Tseng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sankar%2C+R">Raman Sankar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+C">Ching-Ming Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chou%2C+F">Fang-Cheng Chou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+M">Minn-Tsong Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.00822v2-abstract-short" style="display: inline;"> Scanning tunneling microscopy visualizations of quasiparticle interference (QPI) enable powerful insights into the k-space properties of superconducting, topological, Rashba and other exotic electronic phases, but their reliance on impurities acting as scattering centers is rarely scrutinized. Here we investigate QPI at the vacuum-cleaved (001) surface of the Dirac semimetal ZrSiS. We find that in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.00822v2-abstract-full').style.display = 'inline'; document.getElementById('1707.00822v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.00822v2-abstract-full" style="display: none;"> Scanning tunneling microscopy visualizations of quasiparticle interference (QPI) enable powerful insights into the k-space properties of superconducting, topological, Rashba and other exotic electronic phases, but their reliance on impurities acting as scattering centers is rarely scrutinized. Here we investigate QPI at the vacuum-cleaved (001) surface of the Dirac semimetal ZrSiS. We find that interference patterns around impurities located on the Zr and S lattice sites appear very different, and can be ascribed to selective scattering of different sub-sets of the predominantly Zr 4d-derived band structure, namely the m = 0 and m = +/-1 components. We show that the selectivity of scattering channels requires an explanation beyond the different bands&#39; orbital characteristics and their respective charge density distributions over Zr and S lattices sites. Importantly, this result shows that the usual assumption of generic scattering centers allowing observations of quasiparticle interference to shed light indiscriminately and isotropically upon the \textit{q}-space of scattering events does not hold, and that the scope and interpretation of QPI observations can therefore be be strongly contingent on the material defect chemistry. This finding promises to spur new investigations into the quasiparticle scattering process itself, to inform future interpretations of quasiparticle interference observations, and ultimately to aid the understanding and engineering of quantum electronic transport properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.00822v2-abstract-full').style.display = 'none'; document.getElementById('1707.00822v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This version is as accepted for PRB</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 96, 195125 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1704.03457">arXiv:1704.03457</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1704.03457">pdf</a>, <a href="https://arxiv.org/ps/1704.03457">ps</a>, <a href="https://arxiv.org/format/1704.03457">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1098/rspa.2017.0308">10.1098/rspa.2017.0308 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Fokker-Planck reaction model for the epitaxial growth and shape transition of quantum dots </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+C">Chaozhen Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Spencer%2C+B+J">Brian J. Spencer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1704.03457v1-abstract-short" style="display: inline;"> We construct a Fokker-Planck reaction model to investigate the dynamics of the coupled epitaxial growth and shape transition process of an array of quantum dots. The Fokker-Planck reaction model is based on a coupled system of Fokker-Planck equations wherein the distribution of each island type is governed by its own Fokker-Planck equation for growth, with reaction terms describing the shape trans&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.03457v1-abstract-full').style.display = 'inline'; document.getElementById('1704.03457v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1704.03457v1-abstract-full" style="display: none;"> We construct a Fokker-Planck reaction model to investigate the dynamics of the coupled epitaxial growth and shape transition process of an array of quantum dots. The Fokker-Planck reaction model is based on a coupled system of Fokker-Planck equations wherein the distribution of each island type is governed by its own Fokker-Planck equation for growth, with reaction terms describing the shape transitions between islands of different types including asymmetric shapes. The reaction terms for the shape transitions depend on the island size and are determined from explicit calculations of the lowest-barrier pathway for each shape transition. This mean-field model enables us to consider the kinetics of asymmetric shape transitions and study the evolution of island shape distributions during the coupled growth and transition process. Through numerical simulations over a range of growth parameters, we find multimodal and unimodal evolution modes of the shape distribution of island arrays, which depend on the external deposition flux rate and temperature rather than the shape transition rate. However, the shape transition rate governs the kinetics of shape transitions and determines the fraction of islands that form via asymmetric states, which has implications for the development of asymmetric composition profiles within alloy islands. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.03457v1-abstract-full').style.display = 'none'; document.getElementById('1704.03457v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.08909">arXiv:1703.08909</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1703.08909">pdf</a>, <a href="https://arxiv.org/format/1703.08909">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.95.081410">10.1103/PhysRevB.95.081410 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of surface superstructure induced by systematic vacancies in the topological Dirac semimetal Cd$_{3}$As$_{2}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Butler%2C+C+J">Christopher J. Butler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tseng%2C+Y">Yi Tseng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hsing%2C+C">Cheng-Rong Hsing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yu-Mi Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sankar%2C+R">Raman Sankar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+M">Mei-Fang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+C">Ching-Ming Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chou%2C+F">Fang-Cheng Chou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+M">Minn-Tsong Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.08909v1-abstract-short" style="display: inline;"> The Dirac semimetal phase found in Cd$_{3}$As$_{2}$ is protected by a $C_{4}$ rotational symmetry derived from a corkscrew arrangement of systematic Cd vacancies in its complicated crystal structure. It is therefore surprising that no microscopic observation, direct or indirect, of these systematic vacancies has so far been described. To this end, we revisit the cleaved (112) surface of Cd$_{3}$As&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.08909v1-abstract-full').style.display = 'inline'; document.getElementById('1703.08909v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.08909v1-abstract-full" style="display: none;"> The Dirac semimetal phase found in Cd$_{3}$As$_{2}$ is protected by a $C_{4}$ rotational symmetry derived from a corkscrew arrangement of systematic Cd vacancies in its complicated crystal structure. It is therefore surprising that no microscopic observation, direct or indirect, of these systematic vacancies has so far been described. To this end, we revisit the cleaved (112) surface of Cd$_{3}$As$_{2}$ using a combined approach of scanning tunneling microscopy and \textit{ab initio} calculations. We determine the exact position of the (112) plane at which Cd$_{3}$As$_{2}$ naturally cleaves, and describe in detail a structural periodicity found at the reconstructed surface, consistent with that expected to arise from the systematic Cd vacancies. This reconciles the current state of microscopic surface observations with those of crystallographic and theoretical models, and demonstrates that this vacancy superstructure, central to the preservation of the Dirac semimetal phase, survives the cleavage process and retains order at the surface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.08909v1-abstract-full').style.display = 'none'; document.getElementById('1703.08909v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Supplemental Material included. 16 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 95, 081410(R) (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.07502">arXiv:1703.07502</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1703.07502">pdf</a>, <a href="https://arxiv.org/format/1703.07502">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.96.041601">10.1103/PhysRevA.96.041601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of a Modulational Instability in Bose-Einstein condensates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Everitt%2C+P+J">P. J. Everitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sooriyabandara%2C+M+A">M. A. Sooriyabandara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guasoni%2C+M">M. Guasoni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wigley%2C+P+B">P. B. Wigley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+C+H">C. H. Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McDonald%2C+G+D">G. D. McDonald</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardman%2C+K+S">K. S. Hardman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manju%2C+P">P. Manju</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Close%2C+J+D">J. D. Close</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuhn%2C+C+C+N">C. C. N. Kuhn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Szigeti%2C+S+S">S. S. Szigeti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kivshar%2C+Y+S">Y. S. Kivshar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robins%2C+N+P">N. P. Robins</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.07502v2-abstract-short" style="display: inline;"> We observe the breakup dynamics of an elongated cloud of condensed $^{85}$Rb atoms placed in an optical waveguide. The number of localized spatial components observed in the breakup is compared with the number of solitons predicted by a plane-wave stability analysis of the nonpolynomial nonlinear Schr枚dinger equation, an effective one-dimensional approximation of the Gross-Pitaevskii equation for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.07502v2-abstract-full').style.display = 'inline'; document.getElementById('1703.07502v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.07502v2-abstract-full" style="display: none;"> We observe the breakup dynamics of an elongated cloud of condensed $^{85}$Rb atoms placed in an optical waveguide. The number of localized spatial components observed in the breakup is compared with the number of solitons predicted by a plane-wave stability analysis of the nonpolynomial nonlinear Schr枚dinger equation, an effective one-dimensional approximation of the Gross-Pitaevskii equation for cigar-shaped condensates. It is shown that the numbers predicted from the fastest growing sidebands are consistent with the experimental data, suggesting that modulational instability is the key underlying physical mechanism driving the breakup. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.07502v2-abstract-full').style.display = 'none'; document.getElementById('1703.07502v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 96, 041601 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.04882">arXiv:1611.04882</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1611.04882">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.apsusc.2017.01.305">10.1016/j.apsusc.2017.01.305 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anisotropic Raman Scattering and Mobility in Monolayer 1Td-ReS2 Controlled by Strain Engineering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z+H">Z. H. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+B+C">B. C. Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Min%2C+Y+M">Y. M. Min</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+L+Z">L. Z. Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.04882v1-abstract-short" style="display: inline;"> Regulation of electronic structure and mobility cut-on rate in two-dimensional transition metal dichalcogenides (TMDs) has attracted much attention because of its potential in electronic device design. The anisotropic Raman scattering and mobility cut-on rate of monolayer unique distorted-1T(1Td) ReS2 with external strain are determined theoretically based on the density function theory. The angle&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.04882v1-abstract-full').style.display = 'inline'; document.getElementById('1611.04882v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.04882v1-abstract-full" style="display: none;"> Regulation of electronic structure and mobility cut-on rate in two-dimensional transition metal dichalcogenides (TMDs) has attracted much attention because of its potential in electronic device design. The anisotropic Raman scattering and mobility cut-on rate of monolayer unique distorted-1T(1Td) ReS2 with external strain are determined theoretically based on the density function theory. The angle-dependent Raman spectrum of Ag-like, Eg-like and Cp models are used to discriminate and analysis structural anisotropy; the strain is exploited to adjust the structural symmetry and electronic structure of ReS2 so as to enhance mobility cut-on rate to almost 6 times of the original value. Our results suggest the use of the strain engineering in high-quality semiconductor switch device. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.04882v1-abstract-full').style.display = 'none'; document.getElementById('1611.04882v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages with 3 figs</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.09287">arXiv:1606.09287</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1606.09287">pdf</a>, <a href="https://arxiv.org/format/1606.09287">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Improved model for the thermal conductivity of binary metallic systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+C">Changdong Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Antolin%2C+N">Nikolas Antolin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Restrepo%2C+O+D">Oscar D. Restrepo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Windl%2C+W">Wolfgang Windl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">Ji-Cheng Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.09287v2-abstract-short" style="display: inline;"> We extended and corrected Mott&#39;s two-band model for the composition-dependence of thermal and electrical conductivity in binary metal alloys based on high-throughput time-domain thermoreflectance (TDTR) measurements on diffusion multiples and scatterer-density calculations from first principles. Examining PdAg, PtRh, AuAg, AuCu, PdCu, PdPt, and NiRh binary alloys, we found that the nature of the t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.09287v2-abstract-full').style.display = 'inline'; document.getElementById('1606.09287v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.09287v2-abstract-full" style="display: none;"> We extended and corrected Mott&#39;s two-band model for the composition-dependence of thermal and electrical conductivity in binary metal alloys based on high-throughput time-domain thermoreflectance (TDTR) measurements on diffusion multiples and scatterer-density calculations from first principles. Examining PdAg, PtRh, AuAg, AuCu, PdCu, PdPt, and NiRh binary alloys, we found that the nature of the two dominant scatterer-bands considered in the Mott model changes with the alloys, and should be interpreted as a combination of the dominant element-specific s- and/or d-orbitals. Using calculated orbital and element-resolved density-of-states values calculated with density functional theory as input, we determined the correct orbital mix that dominates electron scattering for all examined alloys and find excellent agreement between fitted models and experiments. The proposed description of the composition dependence of the resistivity can be readily implemented into the CALPHAD framework. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.09287v2-abstract-full').style.display = 'none'; document.getElementById('1606.09287v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Version 2</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.01796">arXiv:1603.01796</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1603.01796">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Bound exciton and free exciton states in GaSe thin slab </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+C">Chengrong Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xi Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+D">Dian Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+H">Huimin Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+J">Jun-Feng Dai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.01796v1-abstract-short" style="display: inline;"> The photoluminescence (PL) and absorption experiments have been performed in GaSe slab with incident light polarized perpendicular to c-axis of sample at 10K. An obvious energy difference of about 34meV between exciton absorption peak and PL peak (the highest energy peak) is observed. By studying the temperature dependence of PL spectra, we attribute it to energy difference between free exciton an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.01796v1-abstract-full').style.display = 'inline'; document.getElementById('1603.01796v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.01796v1-abstract-full" style="display: none;"> The photoluminescence (PL) and absorption experiments have been performed in GaSe slab with incident light polarized perpendicular to c-axis of sample at 10K. An obvious energy difference of about 34meV between exciton absorption peak and PL peak (the highest energy peak) is observed. By studying the temperature dependence of PL spectra, we attribute it to energy difference between free exciton and bound exciton states, where main exciton absorption peak comes from free exciton absorption, and PL peak are attributed to recombination of bound exciton at 10K. This strong bound exciton effect is stable up to 50K. Moreover, the temperature dependence of integrated PL intensity and PL lifetime reveals that a non-radiative process, with active energy extracted as 0.5meV, dominates PL emission. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.01796v1-abstract-full').style.display = 'none'; document.getElementById('1603.01796v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1601.04425">arXiv:1601.04425</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1601.04425">pdf</a>, <a href="https://arxiv.org/format/1601.04425">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OL.41.004795">10.1364/OL.41.004795 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-destructive shadowgraph imaging of ultracold atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wigley%2C+P+B">Paul B. Wigley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Everitt%2C+P+J">Patrick J. Everitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardman%2C+K+S">Kyle S. Hardman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hush%2C+M+R">Michael R. Hush</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+C">Chunhua Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sooriyabandara%2C+M+A">Mahasen A. Sooriyabandara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perumbil%2C+M">Manju Perumbil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Close%2C+J+D">John D. Close</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robins%2C+N+P">Nicholas P. Robins</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuhn%2C+C+C+N">Carlos C. N. Kuhn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1601.04425v2-abstract-short" style="display: inline;"> An imaging system is presented that is capable of far-detuned non-destructive imaging of a Bose-Einstein condensate with the signal proportional to the second spatial derivative of the density. Whilst demonstrated with application to $^{85}\text{Rb}$, the technique generalizes to other atomic species and is shown to be capable of a signal to noise of ${\sim}25$ at $1$GHz detuning with $100$ in-tra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.04425v2-abstract-full').style.display = 'inline'; document.getElementById('1601.04425v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1601.04425v2-abstract-full" style="display: none;"> An imaging system is presented that is capable of far-detuned non-destructive imaging of a Bose-Einstein condensate with the signal proportional to the second spatial derivative of the density. Whilst demonstrated with application to $^{85}\text{Rb}$, the technique generalizes to other atomic species and is shown to be capable of a signal to noise of ${\sim}25$ at $1$GHz detuning with $100$ in-trap images showing no observable heating or atom loss. The technique is also applied to the observation of individual trajectories of stochastic dynamics inaccessible to single shot imaging. Coupled with a fast optical phase lock loop, the system is capable of dynamically switching to resonant absorption imaging during the experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.04425v2-abstract-full').style.display = 'none'; document.getElementById('1601.04425v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1601.01994">arXiv:1601.01994</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1601.01994">pdf</a>, <a href="https://arxiv.org/ps/1601.01994">ps</a>, <a href="https://arxiv.org/format/1601.01994">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.116.250601">10.1103/PhysRevLett.116.250601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Majorana Positivity and the Fermion sign problem of Quantum Monte Carlo Simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+Z+C">Z. C. Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+C">Congjun Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shiwei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+T">T. Xiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1601.01994v5-abstract-short" style="display: inline;"> The sign problem is a major obstacle in quantum Monte Carlo simulations for many-body fermion systems. We examine this problem with a new perspective based on the Majorana reflection positivity and Majorana Kramers positivity. Two sufficient conditions are proven for the absence of the fermion sign problem. Our proof provides a unified description for all the interacting lattice fermion models pre&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.01994v5-abstract-full').style.display = 'inline'; document.getElementById('1601.01994v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1601.01994v5-abstract-full" style="display: none;"> The sign problem is a major obstacle in quantum Monte Carlo simulations for many-body fermion systems. We examine this problem with a new perspective based on the Majorana reflection positivity and Majorana Kramers positivity. Two sufficient conditions are proven for the absence of the fermion sign problem. Our proof provides a unified description for all the interacting lattice fermion models previously known to be free of the sign problem based on the auxiliary field quantum Monte Carlo method. It also allows us to identify a number of new sign-problem-free interacting fermion models including, but not limited to, lattice fermion models with repulsive interactions but without particle-hole symmetry and interacting topological insulators with spin-flip terms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.01994v5-abstract-full').style.display = 'none'; document.getElementById('1601.01994v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">small corrections to Supplementary Material/Appendix A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 116, 250601 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.01974">arXiv:1507.01974</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.01974">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsphotonics.6b00101">10.1021/acsphotonics.6b00101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Generation and Detection of Surface Plasmon Polaritons by Transition Metal Dichalcogenides for Chip-level Electronic-Photonic Integrated Circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zhuan Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+J">Jiangtan Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H">Haiqing Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jonathan Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jing Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+C">Chengli Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+F">Fang Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shuo Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lan%2C+Y">Yucheng Lan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yanan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Niu%2C+C">Chao Niu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+Z">Zhifeng Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lou%2C+J">Jun Lou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhiming Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+J">Jiming Bao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.01974v2-abstract-short" style="display: inline;"> The monolithic integration of electronics and photonics has attracted enormous attention due to its potential applications. However, the realization of such hybrid circuits has remained a challenge because it requires optical communication at nanometer scales. A major challenge to this integration is the identification of a suitable material. After discussing the material aspect of the challenge,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.01974v2-abstract-full').style.display = 'inline'; document.getElementById('1507.01974v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.01974v2-abstract-full" style="display: none;"> The monolithic integration of electronics and photonics has attracted enormous attention due to its potential applications. However, the realization of such hybrid circuits has remained a challenge because it requires optical communication at nanometer scales. A major challenge to this integration is the identification of a suitable material. After discussing the material aspect of the challenge, we identified atomically thin transition metal dichalcogenides (TMDs) as a perfect material platform to implement the circuit. The selection of TMDs is based on their very distinct property: monolayer TMDs are able to emit and absorb light at the same wavelength determined by direct exciton transitions. To prove the concept, we fabricated simple devices consisting of silver nanowires as plasmonic waveguides and monolayer TMDs as active optoelectronic media. Using photoexcitation, direct optical imaging and spectral analysis, we demonstrated generation and detection of surface plasmon polaritons by monolayer TMDs. Regarded as novel materials for electronics and photonics, transition metal dichalcogenides are expected to find new applications in next generation integrated circuits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.01974v2-abstract-full').style.display = 'none'; document.getElementById('1507.01974v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACS Photonics 3 (2016) 869-874 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1410.4223">arXiv:1410.4223</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1410.4223">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Manganese reduction/oxidation reaction on graphene composites as a reversible process for storing enormous energy at a fast rate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yanyi Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+C">Chengjun Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+S">Shan Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jia Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+F">Feiyu Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+C">Chunguang Wei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1410.4223v1-abstract-short" style="display: inline;"> Oxygen reduction/evolution reaction (ORR/OER) is a basic process for fuel cells or metal air batteries. However, ORR/OER generally requires noble metal catalysts and suffers from low solubility (10-3 molar per liter) of O2, low kinetics rate (10-6 cm2/s) and low reversibility. We report a manganese reduction/oxidation reaction (MRR/MOR) on graphene/MnO2 composites, delivering a high capacity (4200&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.4223v1-abstract-full').style.display = 'inline'; document.getElementById('1410.4223v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1410.4223v1-abstract-full" style="display: none;"> Oxygen reduction/evolution reaction (ORR/OER) is a basic process for fuel cells or metal air batteries. However, ORR/OER generally requires noble metal catalysts and suffers from low solubility (10-3 molar per liter) of O2, low kinetics rate (10-6 cm2/s) and low reversibility. We report a manganese reduction/oxidation reaction (MRR/MOR) on graphene/MnO2 composites, delivering a high capacity (4200 mAh/g), fast kinetics (0.0024 cm2/s, three orders higher than ORR/OER), high solubility (three orders than O2), and high reversibility (100%). We further use MRR/MOR to invent a rechargeable manganese ion battery (MIB), which delivers an energy density of 1200 Wh/Kg (several times of lithium ion battery), a fast charge ability (3 minutes), and a long cycle life (10,000 cycles). MRR/MOR renders a new class of energy conversion or storage systems with a very high energy density enabling electric vehicles run much more miles at one charge. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.4223v1-abstract-full').style.display = 'none'; document.getElementById('1410.4223v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Condensed mater, Material Science</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1312.2329">arXiv:1312.2329</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1312.2329">pdf</a>, <a href="https://arxiv.org/ps/1312.2329">ps</a>, <a href="https://arxiv.org/format/1312.2329">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.88.245408">10.1103/PhysRevB.88.245408 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Stability and electronic properties of two-dimensional silicene and germanene on graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+Y">Yongmao Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chuu%2C+C">Chih-Piao Chuu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+C+M">C. M. Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chou%2C+M+Y">M. Y. Chou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1312.2329v1-abstract-short" style="display: inline;"> We present first-principles calculations of silicene/graphene and germanene/graphene bilayers. Various supercell models are constructed in the calculations in order to reduce the strain of the lattice-mismatched bilayer systems. Our energetics analysis and electronic structure results suggest that graphene can be used as a substrate to synthesize monolayer silicene and germanene. Multiple phases o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1312.2329v1-abstract-full').style.display = 'inline'; document.getElementById('1312.2329v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1312.2329v1-abstract-full" style="display: none;"> We present first-principles calculations of silicene/graphene and germanene/graphene bilayers. Various supercell models are constructed in the calculations in order to reduce the strain of the lattice-mismatched bilayer systems. Our energetics analysis and electronic structure results suggest that graphene can be used as a substrate to synthesize monolayer silicene and germanene. Multiple phases of single crystalline silicene and germanene with different orientations relative to the substrate could coexist at room temperature. The weak interaction between the overlayer and the substrate preserves the low-buckled structure of silicene and germanene, as well as their linear energy bands. The gap induced by breaking the sublattice symmetry in silicene on graphene can be up to 57 meV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1312.2329v1-abstract-full').style.display = 'none'; document.getElementById('1312.2329v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 88, 245408 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1105.5030">arXiv:1105.5030</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1105.5030">pdf</a>, <a href="https://arxiv.org/ps/1105.5030">ps</a>, <a href="https://arxiv.org/format/1105.5030">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.107.165701">10.1103/PhysRevLett.107.165701 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Partial order and finite-temperature phase transitions in Potts models on irregular lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Q+N">Q. N. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qin%2C+M+P">M. P. Qin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">J. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+Z+C">Z. C. Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+H+H">H. H. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Normand%2C+B">B. Normand</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+T">T. Xiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1105.5030v2-abstract-short" style="display: inline;"> We evaluate the thermodynamic properties of the 4-state antiferromagnetic Potts model on the Union- Jack lattice using tensor-based numerical methods. We present strong evidence for a previously unknown, &#34;entropy-driven,&#34; finite-temperature phase transition to a partially ordered state. From the thermodynamics of Potts models on the diced and centered diced lattices, we propose that finite-tempera&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1105.5030v2-abstract-full').style.display = 'inline'; document.getElementById('1105.5030v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1105.5030v2-abstract-full" style="display: none;"> We evaluate the thermodynamic properties of the 4-state antiferromagnetic Potts model on the Union- Jack lattice using tensor-based numerical methods. We present strong evidence for a previously unknown, &#34;entropy-driven,&#34; finite-temperature phase transition to a partially ordered state. From the thermodynamics of Potts models on the diced and centered diced lattices, we propose that finite-temperature transitions and partially ordered states are ubiquitous on irregular lattices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1105.5030v2-abstract-full').style.display = 'none'; document.getElementById('1105.5030v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 May, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett 107, 165701(2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1105.2716">arXiv:1105.2716</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1105.2716">pdf</a>, <a href="https://arxiv.org/ps/1105.2716">ps</a>, <a href="https://arxiv.org/format/1105.2716">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.85.134416">10.1103/PhysRevB.85.134416 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Plaquette order and deconfined quantum critical point in the spin-1 bilinear-biquadratic Heisenberg model on the honeycomb lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+H+H">H. H. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+C">Cenke Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Q+N">Q. N. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+Z+C">Z. C. Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qin%2C+M+P">M. P. Qin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+G+M">G. M. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+T">T. Xiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1105.2716v3-abstract-short" style="display: inline;"> We have precisely determined the ground state phase diagram of the quantum spin-1 bilinear-biquadratic Heisenberg model on the honeycomb lattice using the tensor renormalization group method. We find that the ferromagnetic, ferroquadrupolar, and a large part of the antiferromagnetic phases are stable against quantum fluctuations. However, around the phase where the ground state is antiferroquadrup&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1105.2716v3-abstract-full').style.display = 'inline'; document.getElementById('1105.2716v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1105.2716v3-abstract-full" style="display: none;"> We have precisely determined the ground state phase diagram of the quantum spin-1 bilinear-biquadratic Heisenberg model on the honeycomb lattice using the tensor renormalization group method. We find that the ferromagnetic, ferroquadrupolar, and a large part of the antiferromagnetic phases are stable against quantum fluctuations. However, around the phase where the ground state is antiferroquadrupolar ordered in the classical limit, quantum fluctuations suppress completely all magnetic orders, leading to a plaquette order phase which breaks the lattice symmetry but preserves the spin SU(2) symmetry. On the evidence of our numerical results, the quantum phase transition between the antiferromagnetic phase and the plaquette phase is found to be either a direct second order or a very weak first order transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1105.2716v3-abstract-full').style.display = 'none'; document.getElementById('1105.2716v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 April, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 May, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 9 figures, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 85, 134416 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1011.2060">arXiv:1011.2060</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1011.2060">pdf</a>, <a href="https://arxiv.org/ps/1011.2060">ps</a>, <a href="https://arxiv.org/format/1011.2060">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1056/20/11/117501">10.1088/1674-1056/20/11/117501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Translation invariant tensor product states in a finite lattice system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+J+W">J. W. Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Q+N">Q. N. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+H+H">H. H. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+Z+Y">Z. Y. Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qin%2C+M+P">M. P. Qin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+Z+C">Z. C. Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+T">T. Xiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1011.2060v1-abstract-short" style="display: inline;"> We show that the matrix (or more generally tensor) product states in a finite translation invariant system can be accurately constructed from the same set of local matrices (or tensors) that are determined from an infinite lattice system in one or higher dimensions. This provides an efficient approach for studying translation invariant tensor product states in finite lattice systems. Two methods a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.2060v1-abstract-full').style.display = 'inline'; document.getElementById('1011.2060v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1011.2060v1-abstract-full" style="display: none;"> We show that the matrix (or more generally tensor) product states in a finite translation invariant system can be accurately constructed from the same set of local matrices (or tensors) that are determined from an infinite lattice system in one or higher dimensions. This provides an efficient approach for studying translation invariant tensor product states in finite lattice systems. Two methods are introduced to determine these size-independent local tensors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.2060v1-abstract-full').style.display = 'none'; document.getElementById('1011.2060v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chin. Phys. Lett. 27, 076402 (2010) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1002.1405">arXiv:1002.1405</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1002.1405">pdf</a>, <a href="https://arxiv.org/ps/1002.1405">ps</a>, <a href="https://arxiv.org/format/1002.1405">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.81.174411">10.1103/PhysRevB.81.174411 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Renormalization of tensor-network states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+H+H">H. H. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+Z+Y">Z. Y. Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Q+N">Q. N. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+Z+C">Z. C. Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+J+W">J. W. Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+T">T. Xiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1002.1405v2-abstract-short" style="display: inline;"> We have discussed the tensor-network representation of classical statistical or interacting quantum lattice models, and given a comprehensive introduction to the numerical methods we recently proposed for studying the tensor-network states/models in two dimensions. A second renormalization scheme is introduced to take into account the environment contribution in the calculation of the partition&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1002.1405v2-abstract-full').style.display = 'inline'; document.getElementById('1002.1405v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1002.1405v2-abstract-full" style="display: none;"> We have discussed the tensor-network representation of classical statistical or interacting quantum lattice models, and given a comprehensive introduction to the numerical methods we recently proposed for studying the tensor-network states/models in two dimensions. A second renormalization scheme is introduced to take into account the environment contribution in the calculation of the partition function of classical tensor network models or the expectation values of quantum tensor network states. It improves significantly the accuracy of the coarse grained tensor renormalization group method. In the study of the quantum tensor-network states, we point out that the renormalization effect of the environment can be efficiently and accurately described by the bond vector. This, combined with the imaginary time evolution of the wavefunction, provides an accurate projection method to determine the tensor-network wavfunction. It reduces significantly the truncation error and enable a tensor-network state with a large bond dimension, which is difficult to be accessed by other methods, to be accurately determined. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1002.1405v2-abstract-full').style.display = 'none'; document.getElementById('1002.1405v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2010; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 February, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages 23 figures, minor changes, references added</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 81, 174411 (2010) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0604209">arXiv:cond-mat/0604209</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0604209">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/nl0605770">10.1021/nl0605770 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Radius and chirality dependent conformation of polymer molecule at nanotube interface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+C">Chenyu Wei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0604209v1-abstract-short" style="display: inline;"> Temperature dependent conformations of linear polymer molecules adsorbed at carbon nanotube (CNT) interfaces are investigated through molecule dynamics simulations. Model polyethylene (PE) molecules are shown to have selective conformations on CNT surface, controlled by atomic structures of CNT lattice and geometric coiling energy. PE molecules form entropy driven assembly domains, and their pre&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0604209v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0604209v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0604209v1-abstract-full" style="display: none;"> Temperature dependent conformations of linear polymer molecules adsorbed at carbon nanotube (CNT) interfaces are investigated through molecule dynamics simulations. Model polyethylene (PE) molecules are shown to have selective conformations on CNT surface, controlled by atomic structures of CNT lattice and geometric coiling energy. PE molecules form entropy driven assembly domains, and their preferred wrapping angles around large radius CNT (40, 40) reflect the molecule configurations with energy minimums on a graphite plane. While PE molecules prefer wrapping on small radius armchair CNT (5, 5) predominantly at low temperatures, their configurations are shifted to larger wrapping angle ones on a similar radius zigzag CNT (10, 0). A nematic transformation around 280 K is identified through Landau-deGennes theory, with molecule aligning along tube axis in extended conformations <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0604209v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0604209v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 April, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2006. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 7 figure2, submitted to journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0501166">arXiv:cond-mat/0501166</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0501166">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0501166">ps</a>, <a href="https://arxiv.org/format/cond-mat/0501166">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> A structural path for the icosahedra &lt;-&gt; fcc structural transition in clusters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+C">Ching-Ming Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+C">Ching Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+C">Chun-Ming Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0501166v1-abstract-short" style="display: inline;"> We propose a structural path for the icosahedra &lt;-&gt; fcc transition in clusters and demonstrate the transition in Pb_13 by ab initio molecular-dynamics simulation. The proposed path can be described by using only two variables. The energy surface on this two-dimensional space for Pb_13 was calculated and a barrierless fcc-to-ico energy path was found. The atomic displacements of the proposed stru&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0501166v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0501166v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0501166v1-abstract-full" style="display: none;"> We propose a structural path for the icosahedra &lt;-&gt; fcc transition in clusters and demonstrate the transition in Pb_13 by ab initio molecular-dynamics simulation. The proposed path can be described by using only two variables. The energy surface on this two-dimensional space for Pb_13 was calculated and a barrierless fcc-to-ico energy path was found. The atomic displacements of the proposed structural transition for ico and fcc Pb_13 were identified as one of the vibrational eigenmodes of the clusters with a soft mode for fcc Pb_13. These agree with the energy curvatures around the two structures, i.e. the ico Pb_13 is at the bottom of a valley on the energy surface while the fcc Pb_13 is at a saddle point. The barriers of this transition for larger clusters of Pb_n (n=55, 147 and 309) were also calculated, by ab initio elastic-band method, and found being smaller than the room-temperature thermal energy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0501166v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0501166v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2005. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 2 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0203349">arXiv:cond-mat/0203349</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0203349">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/nl025554+">10.1021/nl025554+ <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermal Expansion and Diffusion Coefficients of Carbon Nanotube-Polymer Composites </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+C">Chenyu Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Srivastava%2C+D">Deepak Srivastava</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+K">Kyeongjae Cho</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0203349v1-abstract-short" style="display: inline;"> Classical molecular dynamics (MD) simulations employing Brenner potential for intra-nanotube interactions and Van der Waals forces for polymer-nanotube interfaces are used to invetigate the thermal expansion and diffusion characteristics of carbon nanotube-polyethylene composites. Additions of carbon nanotubes to polymer matrix are found to increase the glass transition temperature Tg, and therm&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0203349v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0203349v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0203349v1-abstract-full" style="display: none;"> Classical molecular dynamics (MD) simulations employing Brenner potential for intra-nanotube interactions and Van der Waals forces for polymer-nanotube interfaces are used to invetigate the thermal expansion and diffusion characteristics of carbon nanotube-polyethylene composites. Additions of carbon nanotubes to polymer matrix are found to increase the glass transition temperature Tg, and thermal expansion and diffusion coefficients in the composite above Tg. These findings could have implications in CNT composite processing, coating and painting applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0203349v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0203349v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2002; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2002. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures, recently submitted for publication</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0202513">arXiv:cond-mat/0202513</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0202513">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0202513">ps</a>, <a href="https://arxiv.org/format/cond-mat/0202513">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Condensed Matter">cond-mat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.67.115407">10.1103/PhysRevB.67.115407 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tensile Strength of Carbon Nanotubes under Realistic Temperature and Strain Rate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+C">Chenyu Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+K">Kyeongjae Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Srivastava%2C+D">Deepak Srivastava</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0202513v2-abstract-short" style="display: inline;"> Strain rate and temperature dependence of the tensile strength of single-walled carbon nanotubes has been investigated with molecular dynamics simulations. The tensile failure or yield strain is found to be strongly dependent on the temperature and strain rate. A transition state theory based predictive model is developed for the tensile failure of nanotubes. Based on the parameters fitted from&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0202513v2-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0202513v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0202513v2-abstract-full" style="display: none;"> Strain rate and temperature dependence of the tensile strength of single-walled carbon nanotubes has been investigated with molecular dynamics simulations. The tensile failure or yield strain is found to be strongly dependent on the temperature and strain rate. A transition state theory based predictive model is developed for the tensile failure of nanotubes. Based on the parameters fitted from high-strain rate and temperature dependent molecular dynamics simulations, the model predicts that a defect free $渭m$ long single-wall nanotub at 300K, stretched with a strain rate of $1%/hour$, fails at about $9 \pm 1%$ tensile strain. This is in good agreement with recent experimental findings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0202513v2-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0202513v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 February, 2002; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 February, 2002; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2002. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures, recently submitted for publication</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/9808257">arXiv:cond-mat/9808257</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/9808257">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/9808257">ps</a>, <a href="https://arxiv.org/format/cond-mat/9808257">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Condensed Matter">cond-mat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/S0039-6028(98)00649-9">10.1016/S0039-6028(98)00649-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Poisoning of Hydrogen Dissociation at Pd (100) by Adsorbed Sulfur Studied by ab initio Quantum Dynamics and ab initio Molecular Dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gross%2C+A">Axel Gross</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+C">Ching-Ming Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scheffler%2C+M">Matthias Scheffler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/9808257v1-abstract-short" style="display: inline;"> We report calculations of the dissociative adsorption of H_2 at Pd (100) covered with 1/4 monolayer of sulfur using quantum dynamics as well as molecular dynamics and taking all six degrees of freedom of the two H atoms fully into account. The ab initio potential-energy surface (PES) is found to be very strongly corrugated. In particular we discuss the influence of tunneling, zero-point vibratio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9808257v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/9808257v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/9808257v1-abstract-full" style="display: none;"> We report calculations of the dissociative adsorption of H_2 at Pd (100) covered with 1/4 monolayer of sulfur using quantum dynamics as well as molecular dynamics and taking all six degrees of freedom of the two H atoms fully into account. The ab initio potential-energy surface (PES) is found to be very strongly corrugated. In particular we discuss the influence of tunneling, zero-point vibrations, localization of the nuclei&#39;s wave function when narrow valleys of the PES are passed, steering of the approaching H_2 molecules towards low energy barrier configurations, and the time scales of the center of mass motion and the other degrees of freedom. Several ``established&#39;&#39; concepts, which were derived from low-dimensional dynamical studies, are shown to be not valid. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9808257v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/9808257v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 August, 1998; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 1998. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 3 figures, submitted to Surf. Sci. Lett. Other related publications can be found at http://www.rz-berlin.mpg.de/th/paper.html</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/9712071">arXiv:cond-mat/9712071</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/9712071">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/9712071">ps</a>, <a href="https://arxiv.org/format/cond-mat/9712071">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.57.10062">10.1103/PhysRevB.57.10062 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Structure and Vibrations of the Vicinal Copper (211) Surface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+C+Y">C. Y. Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lewis%2C+S+P">Steven P. Lewis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mele%2C+E+J">E. J. Mele</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rappe%2C+A+M">Andrew M. Rappe</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/9712071v1-abstract-short" style="display: inline;"> We report a first principles theoretical study of the surface relaxation and lattice dynamics of the Cu(211) surface using the plane wave pseudopotential method. We find large atomic relaxations for the first several atomic layers near the step edges on this surface, and a substantial step-induced renormalization of the surface harmonic force constants. We use the results to study the harmonic f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9712071v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/9712071v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/9712071v1-abstract-full" style="display: none;"> We report a first principles theoretical study of the surface relaxation and lattice dynamics of the Cu(211) surface using the plane wave pseudopotential method. We find large atomic relaxations for the first several atomic layers near the step edges on this surface, and a substantial step-induced renormalization of the surface harmonic force constants. We use the results to study the harmonic fluctuations around the equilibrium structure and find three new step-derived features in the zone center vibrational spectrum. Comparison of these results with previous theoretical work and weith experimental studies using inelastic He scattering are reported. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9712071v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/9712071v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 1997; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 1997. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 Pages RevTex, 7 Figures in Postscript</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/9711289">arXiv:cond-mat/9711289</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/9711289">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/9711289">ps</a>, <a href="https://arxiv.org/format/cond-mat/9711289">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Condensed Matter">cond-mat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.57.15572">10.1103/PhysRevB.57.15572 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ab initio calculation of the potential energy surface for the dissociation of H_2 on the sulfur covered Pd(100) surface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+C+M">C. M. Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gross%2C+A">A. Gross</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scheffler%2C+M">M. Scheffler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/9711289v1-abstract-short" style="display: inline;"> The presence of sulfur atoms on the Pd(100) surface is known to hinder the dissociative adsorption of hydrogen. Using density-functional theory and the full-potential linear augmented plane-wave method, we investigate the potential energy surface (PES) of the dissociative adsorption of H_2 on the sulfur covered Pd(100) surface. The PES is changed significantly compared to the dissociation on the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9711289v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/9711289v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/9711289v1-abstract-full" style="display: none;"> The presence of sulfur atoms on the Pd(100) surface is known to hinder the dissociative adsorption of hydrogen. Using density-functional theory and the full-potential linear augmented plane-wave method, we investigate the potential energy surface (PES) of the dissociative adsorption of H_2 on the sulfur covered Pd(100) surface. The PES is changed significantly compared to the dissociation on the clean Pd(100) surface, in particular for hydrogen close to the S atoms. While the hydrogen dissociation at the clean Pd(100) surface is non-activated, for the (2x2) sulfur adlayer (coverage Theta_S= 0.25) the dissociation of H_2 is inhibited by energy barriers. Their heights strongly depend on the distance between the hydrogen and sulfur atoms leading to a highly corrugated PES. The largest barriers are in the vicinity of the sulfur atoms due to the strong repulsion between sulfur and hydrogen. Still the hydrogen dissociation on the (2x2) sulfur covered Pd(100) surface is exothermic. Thus the poisoning effect of sulfur adatoms for H_2 dissociation at low sulfur coverage (Theta_S &lt;= 0.25) is mainly governed by the formation of energy barriers, not by blocking of the adsorption sites. For the c(2x2) sulfur adlayer (Theta_S= 0.5), the PES for hydrogen dissociation is purely repulsive. This is due to the fact that for all different possible adsorption geometries the hydrogen molecules come too close to the sulfur adatoms before the dissociation is completed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9711289v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/9711289v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 1997; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 1997. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 14 figures, submitted to Phys. Rev. B, November 1997. Other related publications can be found at http://www.rz-berlin.mpg.de/th/paper.html</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/mtrl-th/9608005">arXiv:mtrl-th/9608005</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/mtrl-th/9608005">pdf</a>, <a href="https://arxiv.org/ps/mtrl-th/9608005">ps</a>, <a href="https://arxiv.org/format/mtrl-th/9608005">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Reciprocity Theorems for Ab Initio Force Calculations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+C">C. Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lewis%2C+S+P">Steven P. Lewis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mele%2C+E+J">E. J. Mele</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rappe%2C+A+M">Andrew M. Rappe</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="mtrl-th/9608005v1-abstract-short" style="display: inline;"> We present a method for calculating ab initio interatomic forces which scales quadratically with the size of the system and provides a physically transparent representation of the force in terms of the spatial variation of the electronic charge density. The method is based on a reciprocity theorem for evaluating an effective potential acting on a charged ion in the core of each atom. We illustra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('mtrl-th/9608005v1-abstract-full').style.display = 'inline'; document.getElementById('mtrl-th/9608005v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="mtrl-th/9608005v1-abstract-full" style="display: none;"> We present a method for calculating ab initio interatomic forces which scales quadratically with the size of the system and provides a physically transparent representation of the force in terms of the spatial variation of the electronic charge density. The method is based on a reciprocity theorem for evaluating an effective potential acting on a charged ion in the core of each atom. We illustrate the method with calculations for diatomic molecules. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('mtrl-th/9608005v1-abstract-full').style.display = 'none'; document.getElementById('mtrl-th/9608005v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 1996; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 1996. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">LaTeX, 4 pages, 4 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Wei%2C+C&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Wei%2C+C&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wei%2C+C&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10