CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 334 results for author: <span class="mathjax">Cao, Y</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Cao%2C+Y">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Cao, Y"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Cao%2C+Y&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Cao, Y"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Cao%2C+Y&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Cao%2C+Y&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Cao%2C+Y&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Cao%2C+Y&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Cao%2C+Y&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Cao%2C+Y&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&query=Cao%2C+Y&start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> <li> <a href="/search/?searchtype=author&query=Cao%2C+Y&start=300" class="pagination-link " aria-label="Page 7" aria-current="page">7 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.02242">arXiv:2502.02242</a> <span> [<a href="https://arxiv.org/pdf/2502.02242">pdf</a>, <a href="https://arxiv.org/ps/2502.02242">ps</a>, <a href="https://arxiv.org/format/2502.02242">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> An altruistic resource-sharing mechanism for synchronization: The energy-speed-accuracy tradeoff </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+D">Dongliang Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Yuansheng Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Ouyang%2C+Q">Qi Ouyang</a>, <a href="/search/cond-mat?searchtype=author&query=Tu%2C+Y">Yuhai Tu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.02242v1-abstract-short" style="display: inline;"> Synchronization among a group of active agents is ubiquitous in nature. Although synchronization based on direct interactions between agents described by the Kuramoto model is well understood, the other general mechanism based on indirect interactions among agents sharing limited resources are less known. Here, we propose a minimal thermodynamically consistent model for the altruistic resource-sha… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02242v1-abstract-full').style.display = 'inline'; document.getElementById('2502.02242v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.02242v1-abstract-full" style="display: none;"> Synchronization among a group of active agents is ubiquitous in nature. Although synchronization based on direct interactions between agents described by the Kuramoto model is well understood, the other general mechanism based on indirect interactions among agents sharing limited resources are less known. Here, we propose a minimal thermodynamically consistent model for the altruistic resource-sharing (ARS) mechanism wherein resources are needed for individual agent to advance but a more advanced agent has a lower competence to obtain resources. We show that while differential competence in ARS mechanism provides a negative feedback leading to synchronization it also breaks detailed balance and thus requires additional energy dissipation besides the cost of driving individual agents. By solving the model analytically, our study reveals a general tradeoff relation between the total energy dissipation rate and the two key performance measures of the system: average speed and synchronization accuracy. For a fixed dissipation rate, there is a distinct speed-accuracy Pareto front traversed by the scarcity of resources: scarcer resources lead to slower speed but more accurate synchronization. Increasing energy dissipation eases this tradeoff by pushing the speed-accuracy Pareto front outwards. The connections of our work to realistic biological systems such as the KaiABC system in cyanobacterial circadian clock and other theoretical results based on thermodynamic uncertainty relation are also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02242v1-abstract-full').style.display = 'none'; document.getElementById('2502.02242v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">main text 6 pages, 3 figures; SI 10 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.09675">arXiv:2501.09675</a> <span> [<a href="https://arxiv.org/pdf/2501.09675">pdf</a>, <a href="https://arxiv.org/format/2501.09675">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Weak electronic correlations in the cobalt oxychalcogenide superconductor Na2CoSe2O </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Z">Zhenchao Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Yingying Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+H">Hong-Gang Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+Y">Yi-feng Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.09675v1-abstract-short" style="display: inline;"> Motivated by the newly discovered Co-based superconductor Na2CoSe2O, we performed systematic calculations of its electronic band structures using the density functional theory (DFT) plus the dynamical mean-field theory (DMFT) approaches. Our comparative studies reveal weakly correlated and itinerant nature of the Co-3d electrons and show no sign of fluctuating local moments as expected in many oth… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09675v1-abstract-full').style.display = 'inline'; document.getElementById('2501.09675v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.09675v1-abstract-full" style="display: none;"> Motivated by the newly discovered Co-based superconductor Na2CoSe2O, we performed systematic calculations of its electronic band structures using the density functional theory (DFT) plus the dynamical mean-field theory (DMFT) approaches. Our comparative studies reveal weakly correlated and itinerant nature of the Co-3d electrons and show no sign of fluctuating local moments as expected in many other unconventional superconductors, although the Co eg orbitals are close to half filling. These suggest that Na2CoSe2O is a normal paramagnetic metal and its superconductivity might not be of strongly correlated nature, contrary to the initial speculation. We suggest future investigations of electron-phonon interactions to clarify its pairing mechanism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09675v1-abstract-full').style.display = 'none'; document.getElementById('2501.09675v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.08697">arXiv:2501.08697</a> <span> [<a href="https://arxiv.org/pdf/2501.08697">pdf</a>, <a href="https://arxiv.org/format/2501.08697">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> ABACUS: An Electronic Structure Analysis Package for the AI Era </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+W">Weiqing Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+D">Daye Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Q">Qianrui Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+D">Denghui Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yu Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+P">Peize Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Y">Yike Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+X">Xingliang Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Bao%2C+J+J">Jie J. Bao</a>, <a href="/search/cond-mat?searchtype=author&query=Cai%2C+C">Chun Cai</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+Z">Zuxin Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+J">Jing Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+H">Haochong Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+G">Gan Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Ji%2C+Y">Yuyang Ji</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+Z">Zhenxiong Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xiaohui Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+L">Liang Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Yu Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+M">Menglin Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">Jianchuan Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+T">Tao Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+R">Renxi Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yuanbo Li</a>, <a href="/search/cond-mat?searchtype=author&query=Han%2C+H">Haozhi Han</a> , et al. (28 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.08697v2-abstract-short" style="display: inline;"> ABACUS (Atomic-orbital Based Ab-initio Computation at USTC) is an open-source software for first-principles electronic structure calculations and molecular dynamics simulations. It mainly features density functional theory (DFT) and is compatible with both plane-wave basis sets and numerical atomic orbital basis sets. ABACUS serves as a platform that facilitates the integration of various electron… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08697v2-abstract-full').style.display = 'inline'; document.getElementById('2501.08697v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.08697v2-abstract-full" style="display: none;"> ABACUS (Atomic-orbital Based Ab-initio Computation at USTC) is an open-source software for first-principles electronic structure calculations and molecular dynamics simulations. It mainly features density functional theory (DFT) and is compatible with both plane-wave basis sets and numerical atomic orbital basis sets. ABACUS serves as a platform that facilitates the integration of various electronic structure methods, such as Kohn-Sham DFT, stochastic DFT, orbital-free DFT, and real-time time-dependent DFT, etc. In addition, with the aid of high-performance computing, ABACUS is designed to perform efficiently and provide massive amounts of first-principles data for generating general-purpose machine learning potentials, such as DPA models. Furthermore, ABACUS serves as an electronic structure platform that interfaces with several AI-assisted algorithms and packages, such as DeePKS-kit, DeePMD, DP-GEN, DeepH, DeePTB, etc. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08697v2-abstract-full').style.display = 'none'; document.getElementById('2501.08697v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.18824">arXiv:2412.18824</a> <span> [<a href="https://arxiv.org/pdf/2412.18824">pdf</a>, <a href="https://arxiv.org/format/2412.18824">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11433-024-2553-3">10.1007/s11433-024-2553-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anisotropic transport properties and topological Hall effect in the annealed kagome antiferromagnet FeGe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ma%2C+J">Jiajun Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+C">Chenfei Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Yantao Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">YuWei Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yazhou Li</a>, <a href="/search/cond-mat?searchtype=author&query=Liao%2C+J">Jiaxing Liao</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+J">Jialu Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Jiao%2C+W">Wenhe Jiao</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+H">Hanjie Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+C">Chenchao Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+S">Shixun Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Dai%2C+J">Jianhui Dai</a>, <a href="/search/cond-mat?searchtype=author&query=Bao%2C+J">Jin-Ke Bao</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yuke Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.18824v1-abstract-short" style="display: inline;"> Electron correlation often gives birth to various orders in quantum materials. Recently, a strongly correlated kagome antiferromagnet FeGe is discovered to undergo a charge density wave transition inside the A-type antiferromagnetic state, providing an opportunity to explore the interplay between charge order and magnetism. Here, we reported the observation of anisotropic resistivity and Hall effe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18824v1-abstract-full').style.display = 'inline'; document.getElementById('2412.18824v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.18824v1-abstract-full" style="display: none;"> Electron correlation often gives birth to various orders in quantum materials. Recently, a strongly correlated kagome antiferromagnet FeGe is discovered to undergo a charge density wave transition inside the A-type antiferromagnetic state, providing an opportunity to explore the interplay between charge order and magnetism. Here, we reported the observation of anisotropic resistivity and Hall effect, along with a topological Hall effect, in the annealed FeGe crystals. As the current flows along the \emph{ab}-plane, the temperature dependence of $蟻_{ab}$ exhibits a distinct resistivity loop related to a first-order transition at $T_{cdw}$. The applied magnetic fields do not alter $T_{cdw}$ but can induce a spin-flop transition at $H_{sf}$. Consequently, a field-induced large topological Hall effect is observed in the canting antiferromagnetic (CAFM) state below $T_{cant}$, which is possibly attributed to the non-trivial spin texture during the spin-flop process. Whereas, as current is parallel to \emph{c}-axis, both the field-induced transitions in $蟻_{c}$ and $蠂_{c}$ disappear. Instead, the Hall resistivity in the annealed FeGe significantly exhibits a deviation from the linear field-dependent. These findings provide valuable insight into revealing the interplay among magnetism, charge order and topology in the kagome magnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18824v1-abstract-full').style.display = 'none'; document.getElementById('2412.18824v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SCIENCE CHINA Physics, Mechanics & Astronomy 68, 237412 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.17013">arXiv:2412.17013</a> <span> [<a href="https://arxiv.org/pdf/2412.17013">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Electrical Manipulation of Spin Splitting Torque in Altermagnetic RuO2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yichi Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Bai%2C+H">Hua Bai</a>, <a href="/search/cond-mat?searchtype=author&query=Han%2C+L">Lei Han</a>, <a href="/search/cond-mat?searchtype=author&query=Dai%2C+J">Jiankun Dai</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+C">Chong Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Liang%2C+S">Shixuan Liang</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Yanzhang Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yingying Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Q">Qian Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+W">Wenxuan Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Pan%2C+F">Feng Pan</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+C">Cheng Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.17013v1-abstract-short" style="display: inline;"> Due to nonrelativistic altermagnetic spin splitting effect (ASSE), altermagnets can generate time-reversal-odd spin current and spin splitting torque (SST) with spin polarization parallel to the N茅el vector. Hence the effective manipulation of SST would provide plenty of opportunities for designable spintronic devices, which remains elusive. Here, the electrical control of SST is achieved in alter… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.17013v1-abstract-full').style.display = 'inline'; document.getElementById('2412.17013v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.17013v1-abstract-full" style="display: none;"> Due to nonrelativistic altermagnetic spin splitting effect (ASSE), altermagnets can generate time-reversal-odd spin current and spin splitting torque (SST) with spin polarization parallel to the N茅el vector. Hence the effective manipulation of SST would provide plenty of opportunities for designable spintronic devices, which remains elusive. Here, the electrical control of SST is achieved in altermagnetic RuO2, based on controllable N茅el vector of RuO2 and N茅el vector-dependent generation of SST. We demonstrate the current-induced switching of N茅el vector via spin-orbit torque in RuO2 films, according to the reversible polarity of electrical transport measurements and X-ray magnetic linear dichroism (XMLD). The XMLD also unprecedentedly demonstrates that N茅el vector really exists in altermagnets. The switching of N茅el vector to the current direction and resultantly enhanced spin polarization parallel to the N茅el vector brings about stronger ASSE-induced spin current. Our findings not only enrich the properties of altermagnets but also pave the way for high speed memories and nano-oscillators with excellent controllability and efficiency. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.17013v1-abstract-full').style.display = 'none'; document.getElementById('2412.17013v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.00484">arXiv:2412.00484</a> <span> [<a href="https://arxiv.org/pdf/2412.00484">pdf</a>, <a href="https://arxiv.org/format/2412.00484">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Quantum Delocalization Enables Water Dissociation on Ru(0001) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Yu Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+J">Jiantao Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+M">Mingfeng Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yan Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+H">Hui Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Franchini%2C+C">Cesare Franchini</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+Y">Yan Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Kresse%2C+G">Georg Kresse</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+X">Xing-Qiu Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+P">Peitao Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.00484v2-abstract-short" style="display: inline;"> We revisit the long-standing question of whether water molecules dissociate on the Ru(0001) surface through nanosecond-scale path-integral molecular dynamics simulations on a sizable supercell. This is made possible through the development of an efficient and reliable machine-learning potential with near first-principles accuracy, overcoming the limitations of previous ab initio studies. We show t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.00484v2-abstract-full').style.display = 'inline'; document.getElementById('2412.00484v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.00484v2-abstract-full" style="display: none;"> We revisit the long-standing question of whether water molecules dissociate on the Ru(0001) surface through nanosecond-scale path-integral molecular dynamics simulations on a sizable supercell. This is made possible through the development of an efficient and reliable machine-learning potential with near first-principles accuracy, overcoming the limitations of previous ab initio studies. We show that the quantum delocalization associated with nuclear quantum effects enables rapid and frequent proton transfers between water molecules, thereby facilitating the water dissociation on Ru(0001). This work provides the direct theoretical evidence of water dissociation on Ru(0001), resolving the enduring issue in surface sciences and offering crucial atomistic insights into water-metal interfaces. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.00484v2-abstract-full').style.display = 'none'; document.getElementById('2412.00484v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 12 figures (include Supplemental Material)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.21122">arXiv:2410.21122</a> <span> [<a href="https://arxiv.org/pdf/2410.21122">pdf</a>, <a href="https://arxiv.org/format/2410.21122">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum entanglement and Einstein-Podolsky-Rosen steering in magnon frequency comb </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+Q">Qianjun Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+H+Y">H. Y. Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Yunshan Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+P">Peng Yan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.21122v1-abstract-short" style="display: inline;"> Significant progress has been made for the emerging concept of magnon frequency comb (MFC) but mainly in the classical region. The quantum property of the comb structure is yet to be explored. Here we theoretically investigate the quantum fluctuations of frequency combs and demonstrate the continuous-variable quantum entanglement and Einstein-Podolsky-Rosen (EPR) steering between different teeth o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21122v1-abstract-full').style.display = 'inline'; document.getElementById('2410.21122v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.21122v1-abstract-full" style="display: none;"> Significant progress has been made for the emerging concept of magnon frequency comb (MFC) but mainly in the classical region. The quantum property of the comb structure is yet to be explored. Here we theoretically investigate the quantum fluctuations of frequency combs and demonstrate the continuous-variable quantum entanglement and Einstein-Podolsky-Rosen (EPR) steering between different teeth of MFC. Without loss of generality, we address this issue in a hybrid magnon-skyrmion system. We observe a strong two-mode squeezed entanglement and asymmetric steering between the sum- and difference-frequency magnon teeth mediated by the skyrmion that acts as an effective reservoir to cool the Bogoliubov mode delocalized over the first-order magnon pair in MFC. Our findings show the prominent quantum nature of MFC, which has the potential to be utilized in ultrafast quantum metrology and multi-task quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21122v1-abstract-full').style.display = 'none'; document.getElementById('2410.21122v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.19598">arXiv:2410.19598</a> <span> [<a href="https://arxiv.org/pdf/2410.19598">pdf</a>, <a href="https://arxiv.org/format/2410.19598">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Simulating Thiele's Equation and Collective Skyrmion Dynamics in Circuit Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yang%2C+H">Huanhuan Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+L">Lingling Song</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Yunshan Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+P">Peng Yan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.19598v1-abstract-short" style="display: inline;"> Developed half a century ago, Thiele's equation has played a crucial role in describing the motion of magnetic textures, ranging from simple magnetic domains to exotic magnetic solitons like skyrmions and hopfions. However, it remains a challenge to fully understand the collective dynamics of magnetic texture crystals, due to the complex many-body interactions. On the other hand, electrical circui… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19598v1-abstract-full').style.display = 'inline'; document.getElementById('2410.19598v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.19598v1-abstract-full" style="display: none;"> Developed half a century ago, Thiele's equation has played a crucial role in describing the motion of magnetic textures, ranging from simple magnetic domains to exotic magnetic solitons like skyrmions and hopfions. However, it remains a challenge to fully understand the collective dynamics of magnetic texture crystals, due to the complex many-body interactions. On the other hand, electrical circuits have recently been proved to be a powerful platform to realize rich physical phenomena in solids. In this Letter, we first construct a circuit unit to simulate Thiele's equation, which enables us to experimentally observe the "skyrmion Hall effect". By coupling a pair of such circuit units, we find an emerging frequency comb under strong pumpings, a long-sought nonlinear effect in interacting skyrmion systems. By extending our strategy to circuit arrays, we experimentally observe the topological edge state, thus confirming the theoretical prediction of topological solitonic insulators years ago. Our work builds a faithful connection between electric circuits and magnetic solitons, two seemingly unrelated areas, and opens the door for exploring collective magnetization dynamics in circuit networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19598v1-abstract-full').style.display = 'none'; document.getElementById('2410.19598v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.17588">arXiv:2410.17588</a> <span> [<a href="https://arxiv.org/pdf/2410.17588">pdf</a>, <a href="https://arxiv.org/format/2410.17588">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/D4MH00959B">10.1039/D4MH00959B <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High resistance of superconducting TiN thin films against environmental attacks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Guo%2C+Z">Zhangyuan Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Ge%2C+M">Min Ge</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+Y">You-Qi Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Bi%2C+J">Jiachang Bi</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q">Qinghua Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J">Jiahui Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Ye%2C+J">Jin-Tao Ye</a>, <a href="/search/cond-mat?searchtype=author&query=Zhai%2C+R">Rongjing Zhai</a>, <a href="/search/cond-mat?searchtype=author&query=Ge%2C+F">Fangfang Ge</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Y">Yuan Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+R">Ruyi Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+X">Xiong Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+L">Liang-Feng Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Yanwei Cao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.17588v1-abstract-short" style="display: inline;"> Superconductors, an essential class of functional materials, hold a vital position in both fundamental science and practical applications. However, most superconductors, including MgB$_2$, Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$, and FeSe, are highly sensitive to environmental attacks (such as water and moist air), hindering their wide applications. More importantly, the surface physical and chemical proces… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17588v1-abstract-full').style.display = 'inline'; document.getElementById('2410.17588v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.17588v1-abstract-full" style="display: none;"> Superconductors, an essential class of functional materials, hold a vital position in both fundamental science and practical applications. However, most superconductors, including MgB$_2$, Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$, and FeSe, are highly sensitive to environmental attacks (such as water and moist air), hindering their wide applications. More importantly, the surface physical and chemical processes of most superconductors in various environments remain poorly understood. Here, we comprehensively investigate the high resistance of superconducting titanium nitride (TiN) epitaxial films against acid and alkali attacks. Unexpectedly, despite immersion in acid and alkaline solutions for over 7 days, the crystal structure and superconducting properties of TiN films remain stable, as demonstrated by high-resolution X-ray diffraction, electrical transport, atomic force microscopy, and scanning electron microscope. Furthermore, combining scanning transmission electron microscopy analysis with density functional theory calculations revealed the corrosion mechanisms: acid corrosions lead to the creation of numerous defects due to the substitution of Cl ions for N anions, whereas alkaline environments significantly reduce the film thickness through the stabilization of OH$^\ast$ adsorbates. Our results uncover the unexpected stability and durability of superconducting materials against environmental attacks, highlighting their potential for enhanced reliability and longevity in diverse applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17588v1-abstract-full').style.display = 'none'; document.getElementById('2410.17588v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Materials Horizons 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.18093">arXiv:2409.18093</a> <span> [<a href="https://arxiv.org/pdf/2409.18093">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Identifying Bridges from Asymmetric Load-Bearing Structures in Tapped Granular Packings </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+C">Chijin Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S">Shuyang Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Dai%2C+X">Xueliang Dai</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Yixin Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+Y">Ye Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=Xia%2C+C">Chengjie Xia</a>, <a href="/search/cond-mat?searchtype=author&query=Zeng%2C+Z">Zhikun Zeng</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yujie Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.18093v1-abstract-short" style="display: inline;"> Using high-resolution x-ray tomography, we experimentally investigate the bridge structures in tapped granular packings composed of particles with varying friction coefficients. We find that gravity can induce subtle structural changes on the load-bearing contacts, allowing us to identify the correct load-bearing contacts based on structural information alone. Using these identified load-bearing c… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18093v1-abstract-full').style.display = 'inline'; document.getElementById('2409.18093v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.18093v1-abstract-full" style="display: none;"> Using high-resolution x-ray tomography, we experimentally investigate the bridge structures in tapped granular packings composed of particles with varying friction coefficients. We find that gravity can induce subtle structural changes on the load-bearing contacts, allowing us to identify the correct load-bearing contacts based on structural information alone. Using these identified load-bearing contacts, we investigate the cooperative bridge structures which are mechanical backbones of the system. We characterize the geometric properties of these bridges and find that their cooperativity increases as the packing fraction decreases. The knowledge of bridges can enhance our understanding of the rheological properties of granular materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18093v1-abstract-full').style.display = 'none'; document.getElementById('2409.18093v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.17861">arXiv:2409.17861</a> <span> [<a href="https://arxiv.org/pdf/2409.17861">pdf</a>, <a href="https://arxiv.org/ps/2409.17861">ps</a>, <a href="https://arxiv.org/format/2409.17861">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.134.076001">10.1103/PhysRevLett.134.076001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Theory of Pressure Dependence of Superconductivity in Bilayer Nickelate La$_3$Ni$_2$O$_{7}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+K">Kai-Yue Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Yu-Han Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+Q">Qing-Geng Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+H">Hong-Yan Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Q">Qiang-Hua Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.17861v1-abstract-short" style="display: inline;"> The recent experiment shows the superconducting transition temperature in the Ruddlesden-Popper bilayer La$_3$Ni$_2$O$_{7}$ decreases monotonically with increasing pressure above 14 GPa. In order to unravel the underlying mechanism for this unusual dependence, we performed theoretical investigations by combining the density functional theory (DFT) and the unbiased functional renormalization group… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17861v1-abstract-full').style.display = 'inline'; document.getElementById('2409.17861v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.17861v1-abstract-full" style="display: none;"> The recent experiment shows the superconducting transition temperature in the Ruddlesden-Popper bilayer La$_3$Ni$_2$O$_{7}$ decreases monotonically with increasing pressure above 14 GPa. In order to unravel the underlying mechanism for this unusual dependence, we performed theoretical investigations by combining the density functional theory (DFT) and the unbiased functional renormalization group (FRG). Our DFT calculations show that the Fermi pockets are essentially unchanged with increasing pressure (above 14 GPa), but the bandwidth is enlarged, and particularly the interlayer hopping integral between the nickel $3d_{3z^2-r^2}$ orbitals is enhanced. From the DFT band structure, we construct the bilayer tight-binding model in terms of the nickel $3d_{3z^2-r^2}$ and $3d_{x^2-y^2}$ orbitals. On this basis, we investigate the superconductivity induced by correlation effects by FRG calculations. We find consistently $s_\pm$-wave pairing triggered by spin fluctuations, but the latter are weakened by pressure and lead to a decreasing transition temperature versus pressure, in qualitatively agreement with the experiment. We emphasize that the itinerancy of the $d$-orbitals is important and captured naturally in our FRG calculations, and we argue that the unusual pressure dependence would be unnatural, if not impossible, in the otherwise local-moment picture of the nickel $d$-orbitals. This sheds lights on the pertinent microscopic description of, and more importantly the mechanism of superconductivity in La$_3$Ni$_2$O$_{7}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17861v1-abstract-full').style.display = 'none'; document.getElementById('2409.17861v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 134, 076001 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.15474">arXiv:2409.15474</a> <span> [<a href="https://arxiv.org/pdf/2409.15474">pdf</a>, <a href="https://arxiv.org/format/2409.15474">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Nonequilibrium chemical short-range order in metallic alloys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Islam%2C+M">Mahmudul Islam</a>, <a href="/search/cond-mat?searchtype=author&query=Sheriff%2C+K">Killian Sheriff</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Yifan Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Freitas%2C+R">Rodrigo Freitas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.15474v2-abstract-short" style="display: inline;"> Metallic alloys are routinely subjected to nonequilibrium processes during manufacturing, such as rapid solidification and thermomechanical processing. It has been suggested in the high-entropy alloy literature that chemical short-range order (SRO) could offer a ''new knob'' to tailor materials properties. While evidence of the effect of SRO on materials properties accumulates, the state of SRO ev… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15474v2-abstract-full').style.display = 'inline'; document.getElementById('2409.15474v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.15474v2-abstract-full" style="display: none;"> Metallic alloys are routinely subjected to nonequilibrium processes during manufacturing, such as rapid solidification and thermomechanical processing. It has been suggested in the high-entropy alloy literature that chemical short-range order (SRO) could offer a ''new knob'' to tailor materials properties. While evidence of the effect of SRO on materials properties accumulates, the state of SRO evolution during alloy manufacturing remains obscure. Here, we employ high-fidelity atomistic simulations to track SRO evolution during the solidification and thermomechanical processing of alloys. Our investigation reveals that alloy processing can lead to nonequilibrium steady-states of SRO that are different from any equilibrium state. The mechanism behind nonequilibrium SRO formation is shown to be an inherent ordering bias present in nonequilibrium events. These results demonstrate that conventional manufacturing processes provide pathways for tuning SRO that lead to a broad nonequilibrium spectrum of SRO states beyond the equilibrium design space of alloys. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15474v2-abstract-full').style.display = 'none'; document.getElementById('2409.15474v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.14354">arXiv:2409.14354</a> <span> [<a href="https://arxiv.org/pdf/2409.14354">pdf</a>, <a href="https://arxiv.org/format/2409.14354">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> The magnetic $Z_2$ topological insulator on the AA-stacked bilayer graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yu-Bo Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Shao%2C+Z">Zhi-Yan Shao</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Ye Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+F">Fan Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.14354v1-abstract-short" style="display: inline;"> The properties displayed by graphene at van Hove singularities (VHS) have caught significant attention in recent years. The emergence of exotic quantum states at these singularities prompts investigations on their evolution within the realm of multilayer stacking structures. In our research, we delve into the study of a repulsive Hubbard model focusing on the AA-stacked bilayer graphene at VHS. Wi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14354v1-abstract-full').style.display = 'inline'; document.getElementById('2409.14354v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.14354v1-abstract-full" style="display: none;"> The properties displayed by graphene at van Hove singularities (VHS) have caught significant attention in recent years. The emergence of exotic quantum states at these singularities prompts investigations on their evolution within the realm of multilayer stacking structures. In our research, we delve into the study of a repulsive Hubbard model focusing on the AA-stacked bilayer graphene at VHS. Within the system's ground state, each of the top and bottom layers hosts a set of spin-density waves (SDWs). These SDWs each takes on three mutually perpendicular spin polarization directions. Importantly, there is noteworthy feature that their spin polarization directions in the two layers exist as elegant embodiments of antiferromagnetic arrangement, persvading the structure with a striking pattern. Referred to in prior research as the chiral SDWs, this intralayer density wave structure confers the system the characteristics of a Chern topological insulator. However, what is particularly fascinating is the pure divergence of the bilayer structure's topological traits when compared to its monolayer counterpart. The system exhibits a profound symmetry known as $Z_2$, preserving its invariance under the combined operations of time-reversal and interlayer exchange. Consequentely, the system's ground state manifests a seemingly trivial Chern number, yet harbors a profound and intricate nontrivial $Z_2$ topological invariant. These remarkable observations align our findings with the conceptual framework of the quantum spin Hall effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14354v1-abstract-full').style.display = 'none'; document.getElementById('2409.14354v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.03277">arXiv:2408.03277</a> <span> [<a href="https://arxiv.org/pdf/2408.03277">pdf</a>, <a href="https://arxiv.org/format/2408.03277">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Low-lying magnon frequency comb in skymion crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xuejuan Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+Z">Zhejunyu Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z">Zhengyi Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zeng%2C+Z">Zhaozhuo Zeng</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+M">Minghao Li</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+Y">Yuping Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Yunshan Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yinghui Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+P">Peng Yan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.03277v1-abstract-short" style="display: inline;"> A stable, low-power and tunable magnon frequency comb (MFC) is crucial for magnon-based precision measurements, quantum information processing and chip integration. Original method for creating MFC utilizes the nonlinear interactions between propagating spin waves and localized oscillations of an isolated magnetic texture, e.g., skyrmion. It requires a driving frequency well above the ferromagneti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03277v1-abstract-full').style.display = 'inline'; document.getElementById('2408.03277v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.03277v1-abstract-full" style="display: none;"> A stable, low-power and tunable magnon frequency comb (MFC) is crucial for magnon-based precision measurements, quantum information processing and chip integration. Original method for creating MFC utilizes the nonlinear interactions between propagating spin waves and localized oscillations of an isolated magnetic texture, e.g., skyrmion. It requires a driving frequency well above the ferromagnetic resonance (FMR) and the spectrum frequency of MFC will quickly approach to the detection limit of conventional microwave technique after only tens of comb teeth. In addition, the detection and manipulation of a single skyrmion is challenging in experiments due to its high degree of locality. These issues hinder the applications of MFC. In this work, we report the low-lying MFC with comb frequencies below the FMR in a skyrmion crystal (SkX). We show that the MFC originates from the three-wave mixing between the collective skyrmion gyration and breathing in the SkX. Our findings significantly improve the efficiency of the nonlinear frequency conversion from a single-frequency mircowave input, and establish a synergistic relationship between the SkX and MFC, which paves the way to coherent information processing and ultra-sensitive metrology based on MFC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03277v1-abstract-full').style.display = 'none'; document.getElementById('2408.03277v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.15164">arXiv:2407.15164</a> <span> [<a href="https://arxiv.org/pdf/2407.15164">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/d4cp02037e">10.1039/d4cp02037e <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Theoretical Study on the Structural and Thermodynamic Properties of U-He compounds under High Pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Ye Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+H">Hongxing Song</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+X">Xiaozhen Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Hao Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yufeng Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+F">Fengchao Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+L">Leilei Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Q">Qiang Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Geng%2C+H+Y">Hua Y. Geng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.15164v1-abstract-short" style="display: inline;"> Uranium is considered as a very important nuclear energy material because of the huge amount of energy released. As the main products of spontaneous decay of uranium, helium is difficult to react with uranium for its chemical inertness. Therefore, bubbles will be formed inside uranium, which could greatly reduce the performance of uranium or cause the safety problems. Additionally, nuclear materia… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15164v1-abstract-full').style.display = 'inline'; document.getElementById('2407.15164v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.15164v1-abstract-full" style="display: none;"> Uranium is considered as a very important nuclear energy material because of the huge amount of energy released. As the main products of spontaneous decay of uranium, helium is difficult to react with uranium for its chemical inertness. Therefore, bubbles will be formed inside uranium, which could greatly reduce the performance of uranium or cause the safety problems. Additionally, nuclear materials are usually operated in an environment of high-temperature and high-pressure, so it is necessary to figure out the exact state of helium inside uranium at extreme conditions. Here, we explored the structural stability of U-He system under high-pressure and high-temperature by using density functional theory calculations. Two metastable phases are found between 50 and 400 GPa: U4He with space group Fmmm and U6He with space group P-1. Both are metallic and adopt layered structures. Electron localization function calculation combined with charge density difference analysis indicate that there are covalent bonds between U and U atoms in both Fmmm-U4He and P-1-U6He. Compared with the elastic modulus of $伪$-U, the addition of helium has certain influence on the mechanical properties of uranium. Besides, first-principles molecular dynamics simulations were carried out to study the dynamical behavior of Fmmm-U4He and P-1-U6He at high-temperature. It is found that Fmmm-U4He and P-1-U6He undergo one-dimensional superionic phase transitions at 150 GPa. Our study revealed exotic structure of U-He compounds beyond the form of bubble under high-pressure and high-temperature, that might be relevant to the performance and safety issue of nuclear materials at extreme conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15164v1-abstract-full').style.display = 'none'; document.getElementById('2407.15164v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures, with Supplementary Information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Chem. Chem. Phys. 26, 19228-19235 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.07501">arXiv:2407.07501</a> <span> [<a href="https://arxiv.org/pdf/2407.07501">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0256-307X/41/8/087402">10.1088/0256-307X/41/8/087402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic Correlation and Pseudogap-like Behavior of High-Temperature Superconductor La3Ni2O7 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yidian Li</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+X">Xian Du</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Yantao Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Pei%2C+C">Cuiying Pei</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+M">Mingxin Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+W">Wenxuan Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhai%2C+K">Kaiyi Zhai</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+R">Runzhe Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Z">Zhongkai Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z">Zhiwei Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+J">Jinkui Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+G">Gang Li</a>, <a href="/search/cond-mat?searchtype=author&query=Qi%2C+Y">Yanpeng Qi</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+H">Hanjie Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y">Yulin Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+L">Lexian Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.07501v1-abstract-short" style="display: inline;"> High-temperature superconductivity (HTSC) remains one of the most challenging and fascinating mysteries in condensed matter physics. Recently, superconductivity with transition temperature exceeding liquid-nitrogen temperature is discovered in La3Ni2O7 at high pressure, which provides a new platform to explore the unconventional HTSC. In this work, using high-resolution angle-resolved photoemissio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07501v1-abstract-full').style.display = 'inline'; document.getElementById('2407.07501v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.07501v1-abstract-full" style="display: none;"> High-temperature superconductivity (HTSC) remains one of the most challenging and fascinating mysteries in condensed matter physics. Recently, superconductivity with transition temperature exceeding liquid-nitrogen temperature is discovered in La3Ni2O7 at high pressure, which provides a new platform to explore the unconventional HTSC. In this work, using high-resolution angle-resolved photoemission spectroscopy and ab-initio calculation, we systematically investigate the electronic structures of La3Ni2O7 at ambient pressure. Our experiments are in nice agreement with ab-initio calculations after considering an orbital-dependent band renormalization effect. The strong electron correlation effect pushes a flat band of d_(z^2 ) orbital component below the Fermi level (EF), which is predicted to locate right at EF under high pressure. Moreover, the d_(x^2-y^2 ) band shows a pseudogap-like behavior with suppressed spectral weight and diminished quasiparticle peak near EF. Our findings provide important insights into the electronic structure of La3Ni2O7, which will shed light on the understanding of the unconventional superconductivity in nickelates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07501v1-abstract-full').style.display = 'none'; document.getElementById('2407.07501v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chinese Physical Letters 41, 087402 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.03959">arXiv:2407.03959</a> <span> [<a href="https://arxiv.org/pdf/2407.03959">pdf</a>, <a href="https://arxiv.org/format/2407.03959">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Skyrmion Hall effect in altermagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jin%2C+Z">Zhejunyu Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Zeng%2C+Z">Zhaozhuo Zeng</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Yunshan Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+P">Peng Yan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.03959v1-abstract-short" style="display: inline;"> It is widely believed that the skyrmion Hall effect is absent in antiferromagnets because of the vanishing topological charge. However, the Aharonov-Casher theory indicates the possibility of topological effects for neutral particles. In this work, we predict the skyrmion Hall effect in emerging altermagnets with zero net magnetization and zero skyrmion charge. We first show that the neutral skyrm… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03959v1-abstract-full').style.display = 'inline'; document.getElementById('2407.03959v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.03959v1-abstract-full" style="display: none;"> It is widely believed that the skyrmion Hall effect is absent in antiferromagnets because of the vanishing topological charge. However, the Aharonov-Casher theory indicates the possibility of topological effects for neutral particles. In this work, we predict the skyrmion Hall effect in emerging altermagnets with zero net magnetization and zero skyrmion charge. We first show that the neutral skyrmion manifests as a magnetic quadrupole in altermagnets. We reveal a hidden gauge field from the magnetic quadrupole, which induces the skyrmion Hall effect when driven by spin transfer torque. Interestingly, we identify a sign change of the Hall angle when one swaps the anisotropic exchange couplings in altermagnets. Furthermore, we demonstrate that both the velocity and Hall angle of altermagnetic skyrmions sensitively depend on the current direction. Our findings real the critical role of magnetic quadrupole in driving the skyrmion Hall effect with vanishing charge, and pave the way to discovering new Hall effect of neutral quasiparticles beyond magnetic skyrmions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03959v1-abstract-full').style.display = 'none'; document.getElementById('2407.03959v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages and 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.02715">arXiv:2407.02715</a> <span> [<a href="https://arxiv.org/pdf/2407.02715">pdf</a>, <a href="https://arxiv.org/format/2407.02715">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Revealing the Electronic Structure of NiPS$_3$ through Synchrotron-Based ARPES and Alkali Metal Dosing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Yifeng Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+Q">Qishuo Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+Y">Yucheng Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Vieira%2C+C+G">Cl贸vis Guerim Vieira</a>, <a href="/search/cond-mat?searchtype=author&query=Mazzon%2C+M+S+C">M谩rio S. C. Mazzon</a>, <a href="/search/cond-mat?searchtype=author&query=Laverock%2C+J">Jude Laverock</a>, <a href="/search/cond-mat?searchtype=author&query=Russo%2C+N">Nicholas Russo</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+H">Hongze Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Jozwiak%2C+C">Chris Jozwiak</a>, <a href="/search/cond-mat?searchtype=author&query=Bostwick%2C+A">Aaron Bostwick</a>, <a href="/search/cond-mat?searchtype=author&query=Rotenberg%2C+E">Eli Rotenberg</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+J">Jinghua Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Yi%2C+M">Ming Yi</a>, <a href="/search/cond-mat?searchtype=author&query=Matos%2C+M+J+S">Matheus J. S. Matos</a>, <a href="/search/cond-mat?searchtype=author&query=Ling%2C+X">Xi Ling</a>, <a href="/search/cond-mat?searchtype=author&query=Smith%2C+K+E">Kevin E. Smith</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.02715v1-abstract-short" style="display: inline;"> This study presents a comprehensive analysis of the band structure in NiPS$_3$, a van der Waals layered antiferromagnet, utilizing high-resolution synchrotron-based angle-resolved photoemission spectroscopy (ARPES) and corroborative density functional theory (DFT) calculations. By tuning the parameters of the light source, we obtained a very clear and wide energy range band structure of NiPS$_3$.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02715v1-abstract-full').style.display = 'inline'; document.getElementById('2407.02715v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.02715v1-abstract-full" style="display: none;"> This study presents a comprehensive analysis of the band structure in NiPS$_3$, a van der Waals layered antiferromagnet, utilizing high-resolution synchrotron-based angle-resolved photoemission spectroscopy (ARPES) and corroborative density functional theory (DFT) calculations. By tuning the parameters of the light source, we obtained a very clear and wide energy range band structure of NiPS$_3$. Comparison with DFT calculations allows for the identification of the orbital character of the observed bands. Our DFT calculations perfectly match the experimental results, and no adaptations were made to the calculations based on the experimental outcomes. The appearance of novel electronic structure upon alkali metal dosing (AMD) were also obtained in this ARPES study. Above valence band maximum, structure of conduction bands and bands from defect states were firstly observed in NiPS$_3$. We provide the direct determination of the band gap of NiPS$_3$ as 1.3 eV from the band structure by AMD. In addition, detailed temperature dependent ARPES spectra were obtained across a range that spans both below and above the N茅el transition temperature of NiPS$_3$. We found that the paramagnetic and antiferromagnetic states have almost identical spectra, indicating the highly localized nature of Ni $d$ states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02715v1-abstract-full').style.display = 'none'; document.getElementById('2407.02715v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.01881">arXiv:2407.01881</a> <span> [<a href="https://arxiv.org/pdf/2407.01881">pdf</a>, <a href="https://arxiv.org/format/2407.01881">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Spectral evidence for NiPS3 as a Mott-Hubbard insulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Yifeng Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Russo%2C+N">Nicholas Russo</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+Q">Qishuo Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Ling%2C+X">Xi Ling</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+J">Jinghua Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Chuang%2C+Y">Yi-de Chuang</a>, <a href="/search/cond-mat?searchtype=author&query=Smith%2C+K+E">Kevin E. Smith</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.01881v1-abstract-short" style="display: inline;"> The layered van der Waals trichalcogenide NiPS3 has attracted widespread attention due to its unique optical, magnetic, and electronic properties. The complexity of NiPS3 itself, however, has also led to ongoing debates regarding its characteristics such as the existence of self-doped ligand holes. In this study, X-ray absorption spectroscopy and resonant inelastic X-ray scattering have been appli… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01881v1-abstract-full').style.display = 'inline'; document.getElementById('2407.01881v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.01881v1-abstract-full" style="display: none;"> The layered van der Waals trichalcogenide NiPS3 has attracted widespread attention due to its unique optical, magnetic, and electronic properties. The complexity of NiPS3 itself, however, has also led to ongoing debates regarding its characteristics such as the existence of self-doped ligand holes. In this study, X-ray absorption spectroscopy and resonant inelastic X-ray scattering have been applied to investigate the electronic structure of NiPS3. With the aid of theoretical calculations using the charge-transfer multiplet model, we provide experimental evidence for NiPS3 being a Mott-Hubbard insulator rather than a charge-transfer insulator. Moreover, we explain why some previous XAS studies have concluded that NiPS3 is a charge-transfer insulator by comparing surface and bulk sensitive spectra. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01881v1-abstract-full').style.display = 'none'; document.getElementById('2407.01881v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.17067">arXiv:2406.17067</a> <span> [<a href="https://arxiv.org/pdf/2406.17067">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Optical Control of Adaptive Nanoscale Domain Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zajac%2C+M">Marc Zajac</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+T">Tao Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+T">Tiannan Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Das%2C+S">Sujit Das</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Yue Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Guzelturk%2C+B">Burak Guzelturk</a>, <a href="/search/cond-mat?searchtype=author&query=Stoica%2C+V">Vladimir Stoica</a>, <a href="/search/cond-mat?searchtype=author&query=Cherukara%2C+M">Mathew Cherukara</a>, <a href="/search/cond-mat?searchtype=author&query=Freeland%2C+J+W">John W. Freeland</a>, <a href="/search/cond-mat?searchtype=author&query=Gopalan%2C+V">Venkatraman Gopalan</a>, <a href="/search/cond-mat?searchtype=author&query=Ramesh%2C+R">Ramamoorthy Ramesh</a>, <a href="/search/cond-mat?searchtype=author&query=Martin%2C+L+W">Lane W. Martin</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+L">Long-Qing Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Holt%2C+M">Martin Holt</a>, <a href="/search/cond-mat?searchtype=author&query=Hruszkewycz%2C+S">Stephan Hruszkewycz</a>, <a href="/search/cond-mat?searchtype=author&query=Wen%2C+H">Haidan Wen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.17067v1-abstract-short" style="display: inline;"> Adaptive networks can sense and adjust to dynamic environments to optimize their performance. Understanding their nanoscale responses to external stimuli is essential for applications in nanodevices and neuromorphic computing. However, it is challenging to image such responses on the nanoscale with crystallographic sensitivity. Here, the evolution of nanodomain networks in (PbTiO3)n/(SrTiO3)n supe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17067v1-abstract-full').style.display = 'inline'; document.getElementById('2406.17067v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.17067v1-abstract-full" style="display: none;"> Adaptive networks can sense and adjust to dynamic environments to optimize their performance. Understanding their nanoscale responses to external stimuli is essential for applications in nanodevices and neuromorphic computing. However, it is challenging to image such responses on the nanoscale with crystallographic sensitivity. Here, the evolution of nanodomain networks in (PbTiO3)n/(SrTiO3)n superlattices was directly visualized in real space as the system adapts to ultrafast repetitive optical excitations that emulate controlled neural inputs. The adaptive response allows the system to explore a wealth of metastable states that were previously inaccessible. Their reconfiguration and competition were quantitatively measured by scanning x-ray nanodiffraction as a function of the number of applied pulses, in which crystallographic characteristics were quantitatively assessed by assorted diffraction patterns using unsupervised machine-learning methods. The corresponding domain boundaries and their connectivity were drastically altered by light, holding promise for light-programmable nanocircuits in analogy to neuroplasticity. Phase-field simulations elucidate that the reconfiguration of the domain networks is a result of the interplay between photocarriers and transient lattice temperature. The demonstrated optical control scheme and the uncovered nanoscopic insights open opportunities for remote control of adaptive nanoscale domain networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17067v1-abstract-full').style.display = 'none'; document.getElementById('2406.17067v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.16353">arXiv:2406.16353</a> <span> [<a href="https://arxiv.org/pdf/2406.16353">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Micropores can enhance intrinsic fracture energy of hydrogels </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cao%2C+P">Puyu Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+B">Bin Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Yi Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+H">Huajian Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.16353v1-abstract-short" style="display: inline;"> It is widely known that hydrogels, a class of soft materials made of a polymer chain network, are prone to fatigue failure. To understand the underlying mechanism, here we simulate polymer scission and fatigue initiation in the vicinity of a crack tip in a two-dimensional chain network. For a network without pores, our findings reveal that polymer scission can take place across multiple layers of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16353v1-abstract-full').style.display = 'inline'; document.getElementById('2406.16353v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.16353v1-abstract-full" style="display: none;"> It is widely known that hydrogels, a class of soft materials made of a polymer chain network, are prone to fatigue failure. To understand the underlying mechanism, here we simulate polymer scission and fatigue initiation in the vicinity of a crack tip in a two-dimensional chain network. For a network without pores, our findings reveal that polymer scission can take place across multiple layers of chains, rather than just a single layer as assumed in the classical Lake-Thomas theory, in consistency with previus studies. For a network with a high density of micropores, our results demonstrate that the pores can substantially enhance the intrinsic fracture energy of the network in direct proportion to the pore size. The underlying mechanism is attributed to pore-pore interactions which lead to a relatively uniform distribution of cohesive energy ahead of the crack tip. Our model suggests that micropores could be a promising strategy for improving the intrinsic fracture energy of hydrogels and that natural porous tissues may have evolved for enhanced fatigue resistance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16353v1-abstract-full').style.display = 'none'; document.getElementById('2406.16353v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.06112">arXiv:2406.06112</a> <span> [<a href="https://arxiv.org/pdf/2406.06112">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsami.4c05656">10.1021/acsami.4c05656 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Resilient Growth of Highly Crystalline Topological Insulator-Superconductor Heterostructure Enabled by Ex-situ Nitride Film </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Xie%2C+R">Renjie Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Ge%2C+M">Min Ge</a>, <a href="/search/cond-mat?searchtype=author&query=Xiao%2C+S">Shaozhu Xiao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J">Jiahui Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Bi%2C+J">Jiachang Bi</a>, <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+X">Xiaoyu Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=Yi%2C+H+T">Hee Taek Yi</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+B">Baomin Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Oh%2C+S">Seongshik Oh</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Yanwei Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+X">Xiong Yao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.06112v1-abstract-short" style="display: inline;"> Highly crystalline and easily feasible topological insulator-superconductor (TI-SC) heterostructures are crucial for the development of practical topological qubit devices. The optimal superconducting layer for TI-SC heterostructures should be highly resilient against external contaminations and structurally compatible with TIs. In this study, we provide a solution to this challenge by showcasing… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.06112v1-abstract-full').style.display = 'inline'; document.getElementById('2406.06112v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.06112v1-abstract-full" style="display: none;"> Highly crystalline and easily feasible topological insulator-superconductor (TI-SC) heterostructures are crucial for the development of practical topological qubit devices. The optimal superconducting layer for TI-SC heterostructures should be highly resilient against external contaminations and structurally compatible with TIs. In this study, we provide a solution to this challenge by showcasing the growth of a highly crystalline TI-SC heterostructure using refractory TiN (111) as the superconducting layer. This approach can eliminate the need for in-situ cleaving or growth. More importantly, the TiN surface shows high resilience against contaminations during air exposure, as demonstrated by the successful recyclable growth of Bi2Se3. Our findings indicate that TI-SC heterostructures based on nitride films are compatible with device fabrication techniques, paving a path to the realization of practical topological qubit devices in the future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.06112v1-abstract-full').style.display = 'none'; document.getElementById('2406.06112v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 4 figures, accepted by ACS Applied Materials & Interfaces</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.19853">arXiv:2405.19853</a> <span> [<a href="https://arxiv.org/pdf/2405.19853">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Correlated Electronic Structure and Density-Wave Gap in Trilayer Nickelate La4Ni3O10 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Du%2C+X">X. Du</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y+D">Y. D. Li</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y+T">Y. T. Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Pei%2C+C+Y">C. Y. Pei</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+M+X">M. X. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+W+X">W. X. Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhai%2C+K+Y">K. Y. Zhai</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+R+Z">R. Z. Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Z+K">Z. K. Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z+W">Z. W. Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+J+K">J. K. Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+G">G. Li</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y+L">Y. L. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Qi%2C+Y+P">Y. P. Qi</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+H+J">H. J. Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+L+X">L. X. Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.19853v1-abstract-short" style="display: inline;"> The discovery of pressurized superconductivity at 80 K in La3Ni2O7 officially brings nickelates into the family of high-temperature superconductors, which gives rise to not only new insights but also mysteries in the strongly correlated superconductivity. More recently, the sibling compound La4Ni3O10 was also shown to be superconducting below about 25 K under pressure, further boosting the popular… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.19853v1-abstract-full').style.display = 'inline'; document.getElementById('2405.19853v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.19853v1-abstract-full" style="display: none;"> The discovery of pressurized superconductivity at 80 K in La3Ni2O7 officially brings nickelates into the family of high-temperature superconductors, which gives rise to not only new insights but also mysteries in the strongly correlated superconductivity. More recently, the sibling compound La4Ni3O10 was also shown to be superconducting below about 25 K under pressure, further boosting the popularity of nickelates in the Ruddlesden-Popper phase. In this study, combining high-resolution angle-resolved photoemission spectroscopy and ab initio calculation, we systematically investigate the electronic structures of La4Ni3O10 at ambient pressure. We reveal a high resemblance of La4Ni3O10 with La3Ni2O7 in the orbital-dependent fermiology and electronic structure, suggesting a similar electronic correlation between the two compounds. The temperature-dependent measurements imply an orbital-dependent energy gap related to the density-wave transition in La4Ni3O10. By comparing the theoretical pressure-dependent electronic structure, clues about the superconducting high-pressure phase can be deduced from the ambient measurements, providing crucial information for deciphering the unconventional superconductivity in nickelates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.19853v1-abstract-full').style.display = 'none'; document.getElementById('2405.19853v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.18150">arXiv:2405.18150</a> <span> [<a href="https://arxiv.org/pdf/2405.18150">pdf</a>, <a href="https://arxiv.org/format/2405.18150">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.4c01704">10.1021/acs.nanolett.4c01704 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Momentum-resolved electronic structures and strong electronic correlations in graphene-like nitride superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Bi%2C+J">Jiachang Bi</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+Y">Yu Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q">Qinghua Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Z">Zhanfeng Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Z">Ziyun Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+R">Ruyi Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+X">Xiong Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+G">Guoxin Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+H">Haigang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Y">Yaobo Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+Y">Yuanhe Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+H">Hui Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+Z">Zhe Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Xiao%2C+S">Shaozhu Xiao</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Yanwei Cao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.18150v1-abstract-short" style="display: inline;"> Although transition-metal nitrides have been widely applied for several decades, experimental investigations of their high-resolution electronic band structures are rare due to the lack of high-quality single-crystalline samples. Here, we report on the first momentum-resolved electronic band structures of titanium nitride (TiN) films, a remarkable nitride superconductor. The measurements of crysta… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.18150v1-abstract-full').style.display = 'inline'; document.getElementById('2405.18150v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.18150v1-abstract-full" style="display: none;"> Although transition-metal nitrides have been widely applied for several decades, experimental investigations of their high-resolution electronic band structures are rare due to the lack of high-quality single-crystalline samples. Here, we report on the first momentum-resolved electronic band structures of titanium nitride (TiN) films, a remarkable nitride superconductor. The measurements of crystal structures and electrical transport properties confirmed the high quality of these films. More importantly, with a combination of high-resolution angle-resolved photoelectron spectroscopy and the first-principles calculations, the extracted Coulomb interaction strength of TiN films can be as large as 8.5 eV, whereas resonant photoemission spectroscopy yields a value of 6.26 eV. These large values of Coulomb interaction strength indicate that superconducting TiN is a strongly correlated system. Our results uncover the unexpected electronic correlations in transition-metal nitrides, potentially providing a perspective not only to understand their emergent quantum states but also to develop their applications in quantum devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.18150v1-abstract-full').style.display = 'none'; document.getElementById('2405.18150v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.14643">arXiv:2405.14643</a> <span> [<a href="https://arxiv.org/pdf/2405.14643">pdf</a>, <a href="https://arxiv.org/format/2405.14643">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Circuit realization of topological physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yang%2C+H">Huanhuan Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+L">Lingling Song</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Yunshan Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+P">Peng Yan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.14643v1-abstract-short" style="display: inline;"> Recently, topolectrical circuits (TECs) boom in studying the topological states of matter. The resemblance between circuit Laplacians and tight-binding models in condensed matter physics allows for the exploration of exotic topological phases on the circuit platform. In this review, we begin by presenting the basic equations for the circuit elements and units, along with the fundamentals and exper… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.14643v1-abstract-full').style.display = 'inline'; document.getElementById('2405.14643v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.14643v1-abstract-full" style="display: none;"> Recently, topolectrical circuits (TECs) boom in studying the topological states of matter. The resemblance between circuit Laplacians and tight-binding models in condensed matter physics allows for the exploration of exotic topological phases on the circuit platform. In this review, we begin by presenting the basic equations for the circuit elements and units, along with the fundamentals and experimental methods for TECs. Subsequently, we retrospect the main literature in this field, encompassing the circuit realization of (higher-order) topological insulators and semimetals. Due to the abundant electrical elements and flexible connections, many unconventional topological states like the non-Hermitian, nonlinear, non-Abelian, non-periodic, non-Euclidean, and higher-dimensional topological states that are challenging to observe in conventional condensed matter physics, have been observed in circuits and summarized in this review. Furthermore, we show the capability of electrical circuits for exploring the physical phenomena in other systems, such as photonic and magnetic ones. Importantly, we highlight TEC systems are convenient for manufacture and miniaturization because of their compatibility with the traditional integrated circuits. Finally, we prospect the future directions in this exciting field, and connect the emerging TECs with the development of topology physics, (meta)material designs, and device applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.14643v1-abstract-full').style.display = 'none'; document.getElementById('2405.14643v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.13213">arXiv:2405.13213</a> <span> [<a href="https://arxiv.org/pdf/2405.13213">pdf</a>, <a href="https://arxiv.org/format/2405.13213">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Low-energy pathways lead to self-healing defects in CsPbBr$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Miskin%2C+K">Kumar Miskin</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Yi Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Marland%2C+M">Madaline Marland</a>, <a href="/search/cond-mat?searchtype=author&query=Rwaka%2C+J">Jay Rwaka</a>, <a href="/search/cond-mat?searchtype=author&query=Shaikh%2C+F">Farhan Shaikh</a>, <a href="/search/cond-mat?searchtype=author&query=Moore%2C+D">David Moore</a>, <a href="/search/cond-mat?searchtype=author&query=Marohn%2C+J">John Marohn</a>, <a href="/search/cond-mat?searchtype=author&query=Clancy%2C+P">Paulette Clancy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.13213v1-abstract-short" style="display: inline;"> Self-regulation of free charge carriers in perovskites via Schottky defect formation has been posited as the origin of the well-known defect tolerance of metal halide perovskite materials that are promising candidates for photovoltaic applications, like solar cells. Understanding the mechanisms of self-regulation, here for a representative of more commercially viable all-inorganic perovskites, pro… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.13213v1-abstract-full').style.display = 'inline'; document.getElementById('2405.13213v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.13213v1-abstract-full" style="display: none;"> Self-regulation of free charge carriers in perovskites via Schottky defect formation has been posited as the origin of the well-known defect tolerance of metal halide perovskite materials that are promising candidates for photovoltaic applications, like solar cells. Understanding the mechanisms of self-regulation, here for a representative of more commercially viable all-inorganic perovskites, promises to lead to the fabrication of better-performing solar cell materials with higher efficiencies. We investigated different mechanisms and pathways of the diffusion and recombination of interstitials and vacancies (Schottky pairs) in CsPbBr$_3$. We use Nudged Elastic Band calculations and ab initio-derived pseudopotentials within Quantum ESPRESSO to determine energies of formation, migration, and activation for these defects. Our calculations uncover defect pathways capable of producing an activation energy at or below the value of 0.53~eV observed for the slow, temperature-dependent recovery of light-induced conductivity in CsPbBr$_3$. Our work reveals the existence of a low-energy diffusion pathway involving a concerted "domino effect" interstitial mechanism, with the net result that interstitials can diffuse more readily over long distances than expected. Importantly, this observation suggests that defect self-healing can be promoted if the "domino effect" strategy can be engaged. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.13213v1-abstract-full').style.display = 'none'; document.getElementById('2405.13213v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.08628">arXiv:2405.08628</a> <span> [<a href="https://arxiv.org/pdf/2405.08628">pdf</a>, <a href="https://arxiv.org/format/2405.08628">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Chemical-motif characterization of short-range order with E(3)-equivariant graph neural networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Sheriff%2C+K">Killian Sheriff</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Yifan Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Freitas%2C+R">Rodrigo Freitas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.08628v2-abstract-short" style="display: inline;"> Crystalline materials have atomic-scale fluctuations in their chemical composition that modulate various mesoscale properties. Establishing chemistry-microstructure relationships in such materials requires proper characterization of these chemical fluctuations. Yet, current characterization approaches (e.g., Warren-Cowley parameters) make only partial use of the complete chemical and structural in… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.08628v2-abstract-full').style.display = 'inline'; document.getElementById('2405.08628v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.08628v2-abstract-full" style="display: none;"> Crystalline materials have atomic-scale fluctuations in their chemical composition that modulate various mesoscale properties. Establishing chemistry-microstructure relationships in such materials requires proper characterization of these chemical fluctuations. Yet, current characterization approaches (e.g., Warren-Cowley parameters) make only partial use of the complete chemical and structural information contained in local chemical motifs. Here we introduce a framework based on E(3)-equivariant graph neural networks that is capable of completely identifying chemical motifs in arbitrary crystalline structures with any number of chemical elements. This approach naturally leads to a proper information-theoretic measure for quantifying chemical short-range order (SRO) in chemically complex materials, and a reduced - but complete - representation of the chemical space. Our framework enables the correlation of any per-atom property with their corresponding local chemical motif, thereby offering novel avenues to explore structure-property relationships in chemically-complex materials. Using the MoTaNbTi high-entropy alloy as a test system, we demonstrate the versatility of this approach by evaluating the lattice strain associated with each chemical motif, and computing the temperature dependence of chemical-fluctuations length scale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.08628v2-abstract-full').style.display = 'none'; document.getElementById('2405.08628v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.08457">arXiv:2405.08457</a> <span> [<a href="https://arxiv.org/pdf/2405.08457">pdf</a>, <a href="https://arxiv.org/ps/2405.08457">ps</a>, <a href="https://arxiv.org/format/2405.08457">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2752-5724/ad4a93">10.1088/2752-5724/ad4a93 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Synthesis, disorder and Ising anisotropy in a new spin liquid candidate PrMgAl$_{11}$O$_{19}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Yantao Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Bu%2C+H">Huanpeng Bu</a>, <a href="/search/cond-mat?searchtype=author&query=Fu%2C+Z">Zhendong Fu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+J">Jinkui Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Gardner%2C+J+S">Jason S. Gardner</a>, <a href="/search/cond-mat?searchtype=author&query=Ouyang%2C+Z">Zhongwen Ouyang</a>, <a href="/search/cond-mat?searchtype=author&query=Tian%2C+Z">Zhaoming Tian</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z">Zhiwei Li</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+H">Hanjie Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.08457v1-abstract-short" style="display: inline;"> Here we report the successful synthesis of large single crystals of triangular frustrated PrMgAl$_{11}$O$_{19}$ using the optical floating zone technique. Single crystal X-ray diffraction measurements unveiled the presence of quenched disorder within the mirror plane, specifically $\sim$7\% of Pr ions deviating from the ideal 2\textit{d} site towards the 6\textit{h} site. Magnetic susceptibility m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.08457v1-abstract-full').style.display = 'inline'; document.getElementById('2405.08457v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.08457v1-abstract-full" style="display: none;"> Here we report the successful synthesis of large single crystals of triangular frustrated PrMgAl$_{11}$O$_{19}$ using the optical floating zone technique. Single crystal X-ray diffraction measurements unveiled the presence of quenched disorder within the mirror plane, specifically $\sim$7\% of Pr ions deviating from the ideal 2\textit{d} site towards the 6\textit{h} site. Magnetic susceptibility measurements revealed an Ising anisotropy with the \textit{c}-axis being the easy axis. Despite a large spin-spin interaction that develops below $\sim$10~K and considerable site disorder, the spins do not order or freeze down to at least 50 mK. The availability of large single crystals offers a distinct opportunity to investigate the exotic magnetic state on a triangular lattice with an easy axis out of the plane. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.08457v1-abstract-full').style.display = 'none'; document.getElementById('2405.08457v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures, 14 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Materials Futures 3, 035201 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.01005">arXiv:2405.01005</a> <span> [<a href="https://arxiv.org/pdf/2405.01005">pdf</a>, <a href="https://arxiv.org/ps/2405.01005">ps</a>, <a href="https://arxiv.org/format/2405.01005">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Hundness and band renormalization in the kagome antiferromagnets Mn$_3X$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Yingying Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+Y">Yuanji Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+Y">Yi-feng Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.01005v1-abstract-short" style="display: inline;"> The interplay of topological band structures and electronic correlations may lead to novel exotic quantum phenomena with potential applications. First-principles calculations are critical for guiding the experimental discoveries and interpretations, but often fail if electronic correlations cannot be properly treated. Here we show that this issue occurs also in the antiferromagnetic kagome lattice… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01005v1-abstract-full').style.display = 'inline'; document.getElementById('2405.01005v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.01005v1-abstract-full" style="display: none;"> The interplay of topological band structures and electronic correlations may lead to novel exotic quantum phenomena with potential applications. First-principles calculations are critical for guiding the experimental discoveries and interpretations, but often fail if electronic correlations cannot be properly treated. Here we show that this issue occurs also in the antiferromagnetic kagome lattice Mn$_3X$ ($X=$ Sn, Ge), which exhibit a large anomalous Hall effect due to topological band structures with Weyl nodes near the Fermi energy. Our systematic investigations reveal a crucial role of the Hund's rule coupling on three key aspects of their magnetic, electronic, and topological properties: (1) the establishment of noncollinear antiferromagnetic orders, (2) the weakly renormalized bands in excellent agreement with ARPES, and (3) a sensitive tuning of the Weyl nodes beyond previous expectations. Our work provides a basis for understanding the topological properties of Mn$_3X$ and challenges previous experimental interpretations based on incorrect band structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01005v1-abstract-full').style.display = 'none'; document.getElementById('2405.01005v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.05234">arXiv:2404.05234</a> <span> [<a href="https://arxiv.org/pdf/2404.05234">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Bioinspired polymer-incorporating self-lubricating and antifouling hydrogels </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lin%2C+W">Weifeng Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Kluzek%2C+M">Monika Kluzek</a>, <a href="/search/cond-mat?searchtype=author&query=kampf%2C+N">Nir kampf</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Yifeng Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Klein%2C+J">Jacob Klein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.05234v1-abstract-short" style="display: inline;"> Healthy articular cartilage has excellent lubricating properties, with friction coefficients reaching extremely low values at physiological pressures. Such high-performing lubricating layer in joints is attributed to the surface hydration arising from the interplay between multiple hydrophilic biopolymers (such as hyaluronic acid, proteoglycans, and lubricin) and phospholipids in the cartilage mat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.05234v1-abstract-full').style.display = 'inline'; document.getElementById('2404.05234v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.05234v1-abstract-full" style="display: none;"> Healthy articular cartilage has excellent lubricating properties, with friction coefficients reaching extremely low values at physiological pressures. Such high-performing lubricating layer in joints is attributed to the surface hydration arising from the interplay between multiple hydrophilic biopolymers (such as hyaluronic acid, proteoglycans, and lubricin) and phospholipids in the cartilage matrix. Mimicking such molecular structure, hydrogels, composed of a hydrophilic polymer network, have the potential to replicate the lubricating feature and possibly replace natural cartilages. In this study, we have synthesized a poly(2-methacryloyloxyethyl phosphorylcholine-co-N-isopropylacrylamide) (PMPC-co-PNIPAM, PMN)random copolymer with highly-hydrated lubricious 2-methacryloyloxyethyl phosphorylcholine moieties and less hydrated N-isopropylacrylamide moieties. Incorporation of PMN copolymers within various hydrogels significantly reduces the gels sliding surface friction, resulting in low friction coefficients against different counter surfaces, including stainless steel (hard metal surface), polyethylene (hydrophobic surface), and polyHEMA (soft hydrogel surface). Additionally, hydrogels containing PMN are shown to be biocompatible and have excellent antifouling properties, making them an ideal coating for commercially available stents. With these qualities, hydrogels containing PMN stand out as a promising new material with numerous possible applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.05234v1-abstract-full').style.display = 'none'; document.getElementById('2404.05234v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.03846">arXiv:2404.03846</a> <span> [<a href="https://arxiv.org/pdf/2404.03846">pdf</a>, <a href="https://arxiv.org/format/2404.03846">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.L020503">10.1103/PhysRevB.110.L020503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin fluctuations in the ultranodal superconducting state of Fe(Se,S) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Yifu Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Setty%2C+C">Chandan Setty</a>, <a href="/search/cond-mat?searchtype=author&query=Kreisel%2C+A">Andreas Kreisel</a>, <a href="/search/cond-mat?searchtype=author&query=Fanfarillo%2C+L">Laura Fanfarillo</a>, <a href="/search/cond-mat?searchtype=author&query=Hirschfeld%2C+P+J">P. J. Hirschfeld</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.03846v2-abstract-short" style="display: inline;"> The iron-based superconductor FeSe isovalently substituted with S displays an abundance of remarkable phenomena that have not been fully understood, at the center of which are apparent zero-energy excitations in the superconducting state in the tetragonal phase. The phenomenology has been generally consistent with the proposal of the so-called ultranodal states where Bogoliubov Fermi surfaces are… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.03846v2-abstract-full').style.display = 'inline'; document.getElementById('2404.03846v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.03846v2-abstract-full" style="display: none;"> The iron-based superconductor FeSe isovalently substituted with S displays an abundance of remarkable phenomena that have not been fully understood, at the center of which are apparent zero-energy excitations in the superconducting state in the tetragonal phase. The phenomenology has been generally consistent with the proposal of the so-called ultranodal states where Bogoliubov Fermi surfaces are present. Recently, nuclear magnetic resonance measurements have seen unusually large upturns in the relaxation rate as temperature decreases to nearly zero in these systems, calling for theoretical investigations. In this paper, we calculate the spin susceptibility of an ultranodal superconductor including correlation effects within the random phase approximation. Although the non-interacting mean-field calculation rarely gives an upturn in the low temperature relaxation rate within our model, we found that correlation strongly enhances scattering between coherent parts of the Bogoliubov Fermi surface, resulting in robust upturns when the interaction is strong. Our results suggest that in addition to the presence of Bogoliubov Fermi surfaces, correlation and multiband physics also play important roles in the system's low energy excitations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.03846v2-abstract-full').style.display = 'none'; document.getElementById('2404.03846v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, L020503 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.16019">arXiv:2403.16019</a> <span> [<a href="https://arxiv.org/pdf/2403.16019">pdf</a>, <a href="https://arxiv.org/format/2403.16019">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Shaping a Surface Microdroplet by Marangoni Forces along a Moving Contact Line of Four Immiscible Phases </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yang%2C+H">Haichang Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Zeng%2C+B">Binglin Zeng</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+Q">Qiuyun Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Xing%2C+Y">Yaowen Xing</a>, <a href="/search/cond-mat?searchtype=author&query=Gui%2C+X">Xiahui Gui</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Yijun Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+B+B">Ben Bin Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xuehua Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.16019v1-abstract-short" style="display: inline;"> The ability to transfer microdroplets between fluid phases offers numerous advantages in various fields, enabling better control, manipulation, and utilization of small volumes of fluids in pharmaceutical formulations, microfluidics, and lab-on-a-chip devices, single-cell analysis or droplet-based techniques for nanomaterial synthesis. This study focuses on the stability and morphology of a sessil… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.16019v1-abstract-full').style.display = 'inline'; document.getElementById('2403.16019v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.16019v1-abstract-full" style="display: none;"> The ability to transfer microdroplets between fluid phases offers numerous advantages in various fields, enabling better control, manipulation, and utilization of small volumes of fluids in pharmaceutical formulations, microfluidics, and lab-on-a-chip devices, single-cell analysis or droplet-based techniques for nanomaterial synthesis. This study focuses on the stability and morphology of a sessile oil microdroplet at the four-phase contact line of solid-water-oil-air during the droplet transfer from underwater to air. We observed a distinct transition in microdroplet dynamics, characterized by a shift from a scenario dominated by Marangoni forces to one dominated by capillary forces. In the regime dominated by Marangoni forces, the oil microdroplets spread in response to the contact between the water-air interface and the water-oil interface and the emergence of an oil concentration gradient along the water-air interface. The spreading distance along the four-phase contact line follows a power law relationship of $t^{3/4}$, reflecting the balance between Marangoni forces and viscous forces. On the other hand, in the capillarity-dominated regime, the oil microdroplets remain stable at the contact line and after being transferred into the air. We identify the crossover between these two regimes in the parameter space defined by three factors: the approaching velocity of the solid-water-air contact line ($v_{cl}$), the radius of the oil microdroplet ($r_o$), and the radius of the water drop ($r_w$). Furthermore, we demonstrate how to use the four-phase contact line for shaping oil microdroplets using a full liquid process by the contact line lithography. The findings in this study may be also applied to materials synthesis where nanoparticles, microspheres, or nanocapsules are produced by microdroplet-based techniques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.16019v1-abstract-full').style.display = 'none'; document.getElementById('2403.16019v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.11777">arXiv:2403.11777</a> <span> [<a href="https://arxiv.org/pdf/2403.11777">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Ultralarge polarization in ferroelectric hafnia-based thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wu%2C+H">Han Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+K">Kun Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q">Qinghua Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+Q">Qian Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Fu%2C+X">Xiaoqian Fu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Q">Qiang Li</a>, <a href="/search/cond-mat?searchtype=author&query=Cheviri%2C+M">Meera Cheviri</a>, <a href="/search/cond-mat?searchtype=author&query=Dieguez%2C+O">Oswaldo Dieguez</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+S">Shuai Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+L">Lin Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Yili Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+J">Jiaou Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zhen Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y">Yu Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Huanhua Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Deng%2C+J">Jinxia Deng</a>, <a href="/search/cond-mat?searchtype=author&query=Miao%2C+J">Jun Miao</a>, <a href="/search/cond-mat?searchtype=author&query=Xing%2C+X">Xianran Xing</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.11777v1-abstract-short" style="display: inline;"> Hafnia-based ferroelectrics have become a valuable class of electronic functional materials at the nanoscale, showing great potential for next-generation memory and logic devices. However, more robust ferroelectric properties and better understanding of the polarization mechanisms are currently needed both in technology and science. Herein, we report the properties of oxygen-deficient Hf0.5Zr0.5O2… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.11777v1-abstract-full').style.display = 'inline'; document.getElementById('2403.11777v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.11777v1-abstract-full" style="display: none;"> Hafnia-based ferroelectrics have become a valuable class of electronic functional materials at the nanoscale, showing great potential for next-generation memory and logic devices. However, more robust ferroelectric properties and better understanding of the polarization mechanisms are currently needed both in technology and science. Herein, we report the properties of oxygen-deficient Hf0.5Zr0.5O2 films with ultralarge remanent polarization (Pr) of 387 uC cm-2 at room temperature (1 kHz). Structure characterizations identify a new ferroelectric monoclinic Pc phase in these Hf0.5Zr0.5O2 films. The in-situ STEM measurements evidence polar displacements of the oxygen atoms, which move up and down in the Pc structure under applied DC bias fields, showing a huge displacement (1.6 A). DFT calculations optimized the Pc structure and also predicted a large polarization. The coexistence of the ferroelectric monoclinic (Pc) phases and orthorhombic (Pca21) is responsible for this superior ferroelectric properties. These findings are promising for hafnia-based ferroelectric applications in integrated ferroelectric devices, energy harvesting and actuators, etc. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.11777v1-abstract-full').style.display = 'none'; document.getElementById('2403.11777v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.06170">arXiv:2403.06170</a> <span> [<a href="https://arxiv.org/pdf/2403.06170">pdf</a>, <a href="https://arxiv.org/format/2403.06170">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Chiral Spin-Liquid-Like State in Pyrochlore Iridate Thin Films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xiaoran Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+J">Jong-Woo Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yao Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Terilli%2C+M">Michael Terilli</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+X">Xun Jia</a>, <a href="/search/cond-mat?searchtype=author&query=Kareev%2C+M">Mikhail Kareev</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+S">Shiyu Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Wen%2C+F">Fangdi Wen</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+T">Tsung-Chi Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+H">Huyongqing Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+W">Wanzheng Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Upton%2C+M+H">Mary H. Upton</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+J">Jungho Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Choi%2C+Y">Yongseong Choi</a>, <a href="/search/cond-mat?searchtype=author&query=Haskel%2C+D">Daniel Haskel</a>, <a href="/search/cond-mat?searchtype=author&query=Weng%2C+H">Hongming Weng</a>, <a href="/search/cond-mat?searchtype=author&query=Ryan%2C+P+J">Philip J. Ryan</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Yue Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Qi%2C+Y">Yang Qi</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+J">Jiandong Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Chakhalian%2C+J">Jak Chakhalian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.06170v1-abstract-short" style="display: inline;"> The pyrochlore iridates have become ideal platforms to unravel fascinating correlated and topolog?ical phenomena that stem from the intricate interplay among strong spin-orbit coupling, electronic correlations, lattice with geometric frustration, and itinerancy of the 5d electrons. The all-in-all?out antiferromagnetic state, commonly considered as the magnetic ground state, can be dramatically alt… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.06170v1-abstract-full').style.display = 'inline'; document.getElementById('2403.06170v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.06170v1-abstract-full" style="display: none;"> The pyrochlore iridates have become ideal platforms to unravel fascinating correlated and topolog?ical phenomena that stem from the intricate interplay among strong spin-orbit coupling, electronic correlations, lattice with geometric frustration, and itinerancy of the 5d electrons. The all-in-all?out antiferromagnetic state, commonly considered as the magnetic ground state, can be dramatically altered in reduced dimensionality, leading to exotic or hidden quantum states inaccessible in bulk. Here, by means of magnetotransport, resonant elastic and inelastic x-ray scattering experiments, we discover an emergent quantum disordered state in (111) Y2Ir2O7 thin films (thickness less than 30 nm) per?sisting down to 5 K, characterized by dispersionless magnetic excitations. The anomalous Hall effect observed below an onset temperature near 135 K corroborates the presence of chiral short-range spin configurations expressed in non-zero scalar spin chirality, breaking the macroscopic time-reversal symmetry. The origin of this chiral state is ascribed to the restoration of magnetic frustration on the pyrochlore lattice in lower dimensionality, where the competing exchange interactions together with enhanced quantum fluctuations suppress any long-range order and trigger spin-liquid-like behavior with degenerate ground-state manifold. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.06170v1-abstract-full').style.display = 'none'; document.getElementById('2403.06170v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.05012">arXiv:2403.05012</a> <span> [<a href="https://arxiv.org/pdf/2403.05012">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Ultrafast Dynamics of Bilayer and Trilayer Nickelate Superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y+D">Y. D. Li</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y+T">Y. T. Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L+Y">L. Y. Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+P">P. Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+H">H. Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Pei%2C+C+Y">C. Y. Pei</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+M+X">M. X. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+H">H. Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+X">X. Du</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+W+X">W. X. Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhai%2C+K+Y">K. Y. Zhai</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+J+K">J. K. Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+M+-">M. -L. Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+P+H">P. H. Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Qi%2C+Y+P">Y. P. Qi</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+G">G. Li</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+H+J">H. J. Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+L">Luyi Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+L+X">L. X. Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.05012v1-abstract-short" style="display: inline;"> In addition to the pressurized high-temperature superconductivity, bilayer and trilayer nickelate superconductors Lan+1NinO3n+1 (n = 2 and 3) exhibit many intriguing properties at ambient pressure, such as orbital-dependent electronic correlation, non-Fermi liquid behavior, and density-wave transitions. Here, using ultrafast reflectivity measurement, we observe a drastic difference between the ult… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05012v1-abstract-full').style.display = 'inline'; document.getElementById('2403.05012v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.05012v1-abstract-full" style="display: none;"> In addition to the pressurized high-temperature superconductivity, bilayer and trilayer nickelate superconductors Lan+1NinO3n+1 (n = 2 and 3) exhibit many intriguing properties at ambient pressure, such as orbital-dependent electronic correlation, non-Fermi liquid behavior, and density-wave transitions. Here, using ultrafast reflectivity measurement, we observe a drastic difference between the ultrafast dynamics of the bilayer and trilayer nickelates at ambient pressure. Firstly, we observe a coherent phonon mode in La4Ni3O10 involving the collective vibration of La, Ni, and O atoms, which is absent in La3Ni2O7. Secondly, the temperature-dependent relaxation time diverges near the density-wave transition temperature of La4Ni3O10, in drastic contrast to kink-like changes in La3Ni2O7. Moreover, we estimate the electron-phonon coupling constants to be 0.05~0.07 and 0.12~0.16 for La3Ni2O7 and La4Ni3O10, respectively, suggesting a relatively minor role of electron-phonon coupling in the electronic properties of Lan+1NinO3n+1. Our work not only sheds light on the relevant microscopic interaction but also establishes a foundation for further studying the interplay between superconductivity and density-wave transitions in nickelate superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05012v1-abstract-full').style.display = 'none'; document.getElementById('2403.05012v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.11634">arXiv:2402.11634</a> <span> [<a href="https://arxiv.org/pdf/2402.11634">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Non-equilibrium pathways to emergent polar supertextures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Stoica%2C+V+A">Vladimir A. Stoica</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+T">Tiannan Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Das%2C+S">Sujit Das</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Yue Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Huaiyu Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Kubota%2C+Y">Yuya Kubota</a>, <a href="/search/cond-mat?searchtype=author&query=Dai%2C+C">Cheng Dai</a>, <a href="/search/cond-mat?searchtype=author&query=Padmanabhan%2C+H">Hari Padmanabhan</a>, <a href="/search/cond-mat?searchtype=author&query=Sato%2C+Y">Yusuke Sato</a>, <a href="/search/cond-mat?searchtype=author&query=Mangu%2C+A">Anudeep Mangu</a>, <a href="/search/cond-mat?searchtype=author&query=Nguyen%2C+Q+L">Quynh L. Nguyen</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Z">Zhan Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Talreja%2C+D">Disha Talreja</a>, <a href="/search/cond-mat?searchtype=author&query=Zajac%2C+M+E">Marc E. Zajac</a>, <a href="/search/cond-mat?searchtype=author&query=Walko%2C+D+A">Donald A. Walko</a>, <a href="/search/cond-mat?searchtype=author&query=DiChiara%2C+A+D">Anthony D. DiChiara</a>, <a href="/search/cond-mat?searchtype=author&query=Owada%2C+S">Shigeki Owada</a>, <a href="/search/cond-mat?searchtype=author&query=Miyanishi%2C+K">Kohei Miyanishi</a>, <a href="/search/cond-mat?searchtype=author&query=Tamasaku%2C+K">Kenji Tamasaku</a>, <a href="/search/cond-mat?searchtype=author&query=Sato%2C+T">Takahiro Sato</a>, <a href="/search/cond-mat?searchtype=author&query=Glownia%2C+J+M">James M. Glownia</a>, <a href="/search/cond-mat?searchtype=author&query=Esposito%2C+V">Vincent Esposito</a>, <a href="/search/cond-mat?searchtype=author&query=Nelson%2C+S">Silke Nelson</a>, <a href="/search/cond-mat?searchtype=author&query=Hoffmann%2C+M+C">Matthias C. Hoffmann</a>, <a href="/search/cond-mat?searchtype=author&query=Schaller%2C+R+D">Richard D. Schaller</a> , et al. (9 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.11634v1-abstract-short" style="display: inline;"> Ultrafast stimuli can stabilize metastable states of matter inaccessible by equilibrium means. Establishing the spatiotemporal link between ultrafast excitation and metastability is crucial to understanding these phenomena. Here, we use single-shot optical-pump, X-ray-probe measurements to provide snapshots of the emergence of a persistent polar vortex supercrystal in a heterostructure that hosts… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.11634v1-abstract-full').style.display = 'inline'; document.getElementById('2402.11634v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.11634v1-abstract-full" style="display: none;"> Ultrafast stimuli can stabilize metastable states of matter inaccessible by equilibrium means. Establishing the spatiotemporal link between ultrafast excitation and metastability is crucial to understanding these phenomena. Here, we use single-shot optical-pump, X-ray-probe measurements to provide snapshots of the emergence of a persistent polar vortex supercrystal in a heterostructure that hosts a fine balance between built-in electrostatic and elastic frustrations by design. By perturbing this balance with photoinduced charges, a starting heterogenous mixture of polar phases disorders within a few picoseconds, resulting in a soup state composed of disordered ferroelectric and suppressed vortex orders. On the pico-to-nanosecond timescales, transient labyrinthine fluctuations form in this soup along with a recovering vortex order. On longer timescales, these fluctuations are progressively quenched by dynamical strain modulations, which drive the collective emergence of a single supercrystal phase. Our results, corroborated by dynamical phase-field modeling, reveal how ultrafast excitation of designer systems generates pathways for persistent metastability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.11634v1-abstract-full').style.display = 'none'; document.getElementById('2402.11634v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.04962">arXiv:2402.04962</a> <span> [<a href="https://arxiv.org/pdf/2402.04962">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Hidden domain boundary dynamics towards crystalline perfection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Mangu%2C+A">A. Mangu</a>, <a href="/search/cond-mat?searchtype=author&query=Stoica%2C+V+A">V. A. Stoica</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+H">H. Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+T">T. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+M">M. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">H. Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Nguyen%2C+Q+L">Q. L. Nguyen</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+S">S. Song</a>, <a href="/search/cond-mat?searchtype=author&query=Das%2C+S">S. Das</a>, <a href="/search/cond-mat?searchtype=author&query=Meisenheimer%2C+P">P. Meisenheimer</a>, <a href="/search/cond-mat?searchtype=author&query=Donoway%2C+E">E. Donoway</a>, <a href="/search/cond-mat?searchtype=author&query=Chollet%2C+M">M. Chollet</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+Y">Y. Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Turner%2C+J+J">J. J. Turner</a>, <a href="/search/cond-mat?searchtype=author&query=Freeland%2C+J+W">J. W. Freeland</a>, <a href="/search/cond-mat?searchtype=author&query=Wen%2C+H">H. Wen</a>, <a href="/search/cond-mat?searchtype=author&query=Martin%2C+L+W">L. W. Martin</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+L+-">L. -Q. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Gopalan%2C+V">V. Gopalan</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+D">D. Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Y. Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Lindenberg%2C+A+M">A. M. Lindenberg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.04962v2-abstract-short" style="display: inline;"> A central paradigm of non-equilibrium physics concerns the dynamics of heterogeneity and disorder, impacting processes ranging from the behavior of glasses to the emergent functionality of active matter. Understanding these complex mesoscopic systems requires probing the microscopic trajectories associated with irreversible processes, the role of fluctuations and entropy growth, and the timescales… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.04962v2-abstract-full').style.display = 'inline'; document.getElementById('2402.04962v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.04962v2-abstract-full" style="display: none;"> A central paradigm of non-equilibrium physics concerns the dynamics of heterogeneity and disorder, impacting processes ranging from the behavior of glasses to the emergent functionality of active matter. Understanding these complex mesoscopic systems requires probing the microscopic trajectories associated with irreversible processes, the role of fluctuations and entropy growth, and the timescales on which non-equilibrium responses are ultimately maintained. Approaches that illuminate these processes in model systems may enable a more general understanding of other heterogeneous non-equilibrium phenomena, and potentially define ultimate speed and energy cost limits for information processing technologies. Here, we apply ultrafast single shot x-ray photon correlation spectroscopy to resolve the non-equilibrium, heterogeneous, and irreversible mesoscale dynamics during a light-induced phase transition. This approach defines a new way of capturing the nucleation of the induced phase, the formation of transient mesoscale defects at the boundaries of the nuclei, and the eventual annihilation of these defects, even in systems with complex polarization topologies. A non-equilibrium response spanning >10 orders of magnitude in timescales is observed, with multistep behavior similar to the plateaus observed in supercooled liquids and glasses. We show how the observed time-dependent long-time correlations can be understood in terms of the stochastic dynamics of domain walls, encoded in effective waiting-time distributions with power-law tails. This work defines new possibilities for probing the non-equilibrium and correlated dynamics of disordered and heterogeneous media. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.04962v2-abstract-full').style.display = 'none'; document.getElementById('2402.04962v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.14101">arXiv:2401.14101</a> <span> [<a href="https://arxiv.org/pdf/2401.14101">pdf</a>, <a href="https://arxiv.org/format/2401.14101">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.174403">10.1103/PhysRevB.109.174403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Few-magnon excitations in a frustrated spin-$S$ ferromagnetic chain with single-ion anisotropy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+J">Jiawei Li</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Ye Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+N">Ning Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.14101v3-abstract-short" style="display: inline;"> We study few-magnon excitations in a finite-size spin-$S$ chain with ferromagnetic nearest-neighbor (NN) interaction $J>0$ and antiferromagnetic next-nearest-neighbor (NNN) interaction $J'<0$, in the presence of the single-ion (SI) anisotropy $D$. We first reveal the condition for the emergence of zero-excitation-energy states. In the isotropic case with $螖=螖'=1$ ($螖$ and $螖'$ are the correspondin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.14101v3-abstract-full').style.display = 'inline'; document.getElementById('2401.14101v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.14101v3-abstract-full" style="display: none;"> We study few-magnon excitations in a finite-size spin-$S$ chain with ferromagnetic nearest-neighbor (NN) interaction $J>0$ and antiferromagnetic next-nearest-neighbor (NNN) interaction $J'<0$, in the presence of the single-ion (SI) anisotropy $D$. We first reveal the condition for the emergence of zero-excitation-energy states. In the isotropic case with $螖=螖'=1$ ($螖$ and $螖'$ are the corresponding anisotropy parameters), a threshold of $J/|J'|$ above which the ground state is ferromagnetic is determined by exact diagonalization for short chains up to $12$ sites. Using a set of exact two-magnon Bloch states, we then map the two-magnon problem to a single-particle one on an effective open chain with both NN and NNN hoppings. The whole two-magnon excitation spectrum is calculated for large systems and the commensurate-incommensurate transition in the lowest-lying mode is found to exhibit different behaviors between $S=1/2$ and higher spins due to the interplay of the SI anisotropy and the NNN interaction. For the commensurate momentum $k=-蟺$, the effective lattice is decoupled into two NN open chains that can be exactly solved via a plane-wave ansatz. Based on this, we analytically identify in the $螖'-D/|J'|$ plane the regions supporting the SI or NNN exchange two-magnon bound states near the edge of the band. In particular, we prove that there always exists a lower-lying NN exchange two-magnon bound state near the band edge for arbitrary $S\geq 1/2$. Finally, we numerically calculate the $n$-magnon spectra for $S=1/2$ with $n\leq5$ by using a spin-operator matrix element method. The corresponding $n$-magnon commensurate instability regions are determined for finite chains and consistent results with prior literature are observed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.14101v3-abstract-full').style.display = 'none'; document.getElementById('2401.14101v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 11 figures, to appear in Physical Review B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, 174403 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.06622">arXiv:2401.06622</a> <span> [<a href="https://arxiv.org/pdf/2401.06622">pdf</a>, <a href="https://arxiv.org/format/2401.06622">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Capturing short-range order in high-entropy alloys with machine learning potentials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Yifan Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Sheriff%2C+K">Killian Sheriff</a>, <a href="/search/cond-mat?searchtype=author&query=Freitas%2C+R">Rodrigo Freitas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.06622v2-abstract-short" style="display: inline;"> Chemical short-range order (SRO) affects the distribution of elements throughout the solid-solution phase of metallic alloys, thereby modifying the background against which microstructural evolution occurs. Investigating such chemistry-microstructure relationships requires atomistic models that act at the appropriate length scales while capturing the intricacies of chemical bonds leading to SRO. H… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.06622v2-abstract-full').style.display = 'inline'; document.getElementById('2401.06622v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.06622v2-abstract-full" style="display: none;"> Chemical short-range order (SRO) affects the distribution of elements throughout the solid-solution phase of metallic alloys, thereby modifying the background against which microstructural evolution occurs. Investigating such chemistry-microstructure relationships requires atomistic models that act at the appropriate length scales while capturing the intricacies of chemical bonds leading to SRO. Here we consider various approaches for the construction of training data sets for machine learning potentials (MLPs) for CrCoNi and evaluate their performance in capturing SRO and its effects on materials quantities of relevance for mechanical properties, such as stacking-fault energy and phase stability. It is demonstrated that energy accuracy on test sets often does not correlate with accuracy in capturing material properties, which is fundamental in enabling large-scale atomistic simulations of metallic alloys with high physical fidelity. Based on this analysis we systematically derive design principles for the rational construction of MLPs that capture SRO in the crystal and liquid phases of alloys. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.06622v2-abstract-full').style.display = 'none'; document.getElementById('2401.06622v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.17715">arXiv:2312.17715</a> <span> [<a href="https://arxiv.org/pdf/2312.17715">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> High-throughput combinatorial approach expedites the synthesis of a lead-free relaxor ferroelectric system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+D">Di Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Harmon%2C+K+J">Katherine J. Harmon</a>, <a href="/search/cond-mat?searchtype=author&query=Zachman%2C+M+J">Michael J. Zachman</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+P">Ping Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+D">Doyun Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Z">Zhan Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Cucciniello%2C+N">Nickolas Cucciniello</a>, <a href="/search/cond-mat?searchtype=author&query=Markland%2C+R">Reid Markland</a>, <a href="/search/cond-mat?searchtype=author&query=Ssennyimba%2C+K+W">Ken William Ssennyimba</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+H">Hua Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Yue Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Brahlek%2C+M">Matthew Brahlek</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+H">Hao Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Schneider%2C+M+M">Matthew M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&query=Mazza%2C+A+R">Alessandro R. Mazza</a>, <a href="/search/cond-mat?searchtype=author&query=Hughes%2C+Z">Zach Hughes</a>, <a href="/search/cond-mat?searchtype=author&query=Somodi%2C+C">Chase Somodi</a>, <a href="/search/cond-mat?searchtype=author&query=Freiman%2C+B">Benjamin Freiman</a>, <a href="/search/cond-mat?searchtype=author&query=Pooley%2C+S">Sarah Pooley</a>, <a href="/search/cond-mat?searchtype=author&query=Kunwar%2C+S">Sundar Kunwar</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+P">Pinku Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Tu%2C+Q">Qing Tu</a>, <a href="/search/cond-mat?searchtype=author&query=McCabe%2C+R+J">Rodney J. McCabe</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+A">Aiping Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.17715v1-abstract-short" style="display: inline;"> Developing novel lead-free ferroelectric materials is crucial for next-generation microelectronic technologies that are energy efficient and environment friendly. However, materials discovery and property optimization are typically time-consuming due to the limited throughput of traditional synthesis methods. In this work, we use a high-throughput combinatorial synthesis approach to fabricate lead… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.17715v1-abstract-full').style.display = 'inline'; document.getElementById('2312.17715v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.17715v1-abstract-full" style="display: none;"> Developing novel lead-free ferroelectric materials is crucial for next-generation microelectronic technologies that are energy efficient and environment friendly. However, materials discovery and property optimization are typically time-consuming due to the limited throughput of traditional synthesis methods. In this work, we use a high-throughput combinatorial synthesis approach to fabricate lead-free ferroelectric superlattices and solid solutions of (Ba0.7Ca0.3)TiO3 (BCT) and Ba(Zr0.2Ti0.8)O3 (BZT) phases with continuous variation of composition and layer thickness. High-resolution X-ray diffraction (XRD) and analytical scanning transmission electron microscopy (STEM) demonstrate high film quality and well-controlled compositional gradients. Ferroelectric and dielectric property measurements identify the optimal property point achieved at the morphotropic phase boundary (MPB) with a composition of 48BZT-52BCT. Displacement vector maps reveal that ferroelectric domain sizes are tunable by varying {BCT-BZT}N superlattice geometry. This high-throughput synthesis approach can be applied to many other material systems to expedite new materials discovery and properties optimization, allowing for the exploration of a large area of phase space within a single growth. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.17715v1-abstract-full').style.display = 'none'; document.getElementById('2312.17715v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.16437">arXiv:2312.16437</a> <span> [<a href="https://arxiv.org/pdf/2312.16437">pdf</a>, <a href="https://arxiv.org/ps/2312.16437">ps</a>, <a href="https://arxiv.org/format/2312.16437">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Optical probe on doping modulation of magnetic Weyl semimetal Co$_3$Sn$_2$S$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+L">L. Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S">S. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+B+B">B. B. Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+B+X">B. X. Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+L+Y">L. Y. Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X+T">X. T. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X+Y">X. Y. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+E+K">E. K. Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+R+Y">R. Y. Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.16437v3-abstract-short" style="display: inline;"> The magnetic Weyl semimetal Co$_3$Sn$_2$S$_2$ is extensively investigated due to its giant anomalous Hall effect (AHE).Recent studies demonstrate that the AHE can be effectively tuned by multi-electron Ni doping.To reveal the underlying mechanism of this significant manipulation,it is crucial to explore the band structure modification caused by Ni doping. Here,we study the electrodynamics of both… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.16437v3-abstract-full').style.display = 'inline'; document.getElementById('2312.16437v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.16437v3-abstract-full" style="display: none;"> The magnetic Weyl semimetal Co$_3$Sn$_2$S$_2$ is extensively investigated due to its giant anomalous Hall effect (AHE).Recent studies demonstrate that the AHE can be effectively tuned by multi-electron Ni doping.To reveal the underlying mechanism of this significant manipulation,it is crucial to explore the band structure modification caused by Ni doping. Here,we study the electrodynamics of both pristine and Ni-doped Co$_{3-x}$Ni$_x$Sn$_2$S$_2$ with $x=$0, 0.11 and 0.17 by infrared spectroscopy. We find that the inverted energy gap around the Fermi level($E_{F}$) gets smaller at $x=$0.11,which is supposed to enhance the Berry curvature and therefore increase the AHE.Then $E_{F}$ moves out of this gap at $x=$0.17. Additionally,the low temperature carrier density is demonstrated to increase monotonically upon doping,which is different from previous Hall measurement results. We also observe the evidences of band broadening and exotic changes of high-energy interband transitions caused by doping.Our results provide detailed information about the band structure of Co$_{3-x}$Ni$_x$Sn$_2$S$_2$ at different doping levels,which will help to guide further studies on the chemical tuning of AHE. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.16437v3-abstract-full').style.display = 'none'; document.getElementById('2312.16437v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages,4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.09089">arXiv:2312.09089</a> <span> [<a href="https://arxiv.org/pdf/2312.09089">pdf</a>, <a href="https://arxiv.org/format/2312.09089">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> On-Chip Multidimensional Dynamic Control of Twisted Moir茅 Photonic Crystal for Smart Sensing and Imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Tang%2C+H">Haoning Tang</a>, <a href="/search/cond-mat?searchtype=author&query=Lou%2C+B">Beicheng Lou</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+F">Fan Du</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+G">Guangqi Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+M">Mingjie Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Ni%2C+X">Xueqi Ni</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+E">Evelyn Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Yacoby%2C+A">Amir Yacoby</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Yuan Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Fan%2C+S">Shanhui Fan</a>, <a href="/search/cond-mat?searchtype=author&query=Mazur%2C+E">Eric Mazur</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.09089v1-abstract-short" style="display: inline;"> Reconfigurable optics, optical systems that have a dynamically tunable configuration, are emerging as a new frontier in photonics research. Recently, twisted moir茅 photonic crystal has become a competitive candidate for implementing reconfigurable optics because of its high degree of tunability. However, despite its great potential as versatile optics components, simultaneous and dynamic modulatio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.09089v1-abstract-full').style.display = 'inline'; document.getElementById('2312.09089v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.09089v1-abstract-full" style="display: none;"> Reconfigurable optics, optical systems that have a dynamically tunable configuration, are emerging as a new frontier in photonics research. Recently, twisted moir茅 photonic crystal has become a competitive candidate for implementing reconfigurable optics because of its high degree of tunability. However, despite its great potential as versatile optics components, simultaneous and dynamic modulation of multiple degrees of freedom in twisted moir茅 photonic crystal has remained out of reach, severely limiting its area of application. In this paper, we present a MEMS-integrated twisted moir茅 photonic crystal sensor that offers precise control over the interlayer gap and twist angle between two photonic crystal layers, and demonstrate an active twisted moir茅 photonic crystal-based optical sensor that can simultaneously resolve wavelength and polarization. Leveraging twist- and gap-tuned resonance modes, we achieve high-accuracy spectropolarimetric reconstruction of light using an adaptive sensing algorithm over a broad operational bandwidth in the telecom range and full Poincar茅 sphere. Our research showcases the remarkable capabilities of multidimensional control over emergent degrees of freedom in reconfigurable nanophotonics platforms and establishes a scalable pathway towards creating comprehensive flat-optics devices suitable for versatile light manipulation and information processing tasks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.09089v1-abstract-full').style.display = 'none'; document.getElementById('2312.09089v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.12030">arXiv:2311.12030</a> <span> [<a href="https://arxiv.org/pdf/2311.12030">pdf</a>, <a href="https://arxiv.org/format/2311.12030">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> On-chip multi-degree-of-freedom control of two-dimensional quantum and nonlinear materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Tang%2C+H">Haoning Tang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yiting Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Ni%2C+X">Xueqi Ni</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Jarillo-Herrero%2C+P">Pablo Jarillo-Herrero</a>, <a href="/search/cond-mat?searchtype=author&query=Fan%2C+S">Shanhui Fan</a>, <a href="/search/cond-mat?searchtype=author&query=Mazur%2C+E">Eric Mazur</a>, <a href="/search/cond-mat?searchtype=author&query=Yacoby%2C+A">Amir Yacoby</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Yuan Cao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.12030v3-abstract-short" style="display: inline;"> Two-dimensional materials (2DM) and their derived heterostructures have electrical and optical properties that are widely tunable via several approaches, most notably electrostatic gating and interfacial engineering such as twisting. While electrostatic gating is simple and has been ubiquitously employed on 2DM, being able to tailor the interfacial properties in a similar real-time manner represen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.12030v3-abstract-full').style.display = 'inline'; document.getElementById('2311.12030v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.12030v3-abstract-full" style="display: none;"> Two-dimensional materials (2DM) and their derived heterostructures have electrical and optical properties that are widely tunable via several approaches, most notably electrostatic gating and interfacial engineering such as twisting. While electrostatic gating is simple and has been ubiquitously employed on 2DM, being able to tailor the interfacial properties in a similar real-time manner represents the next leap in our ability to modulate the underlying physics and build exotic devices with 2DM. However, all existing approaches rely on external machinery such as scanning microscopes, which often limit their scope of applications, and there is currently no means of tuning a 2D interface that has the same accessibility and scalability as electrostatic gating. Here, we demonstrate the first on-chip platform designed for 2D materials with in situ tunable interfacial properties, utilizing a microelectromechanical system (MEMS). Each compact, cost-effective, and versatile device is a standalone micromachine that allows voltage-controlled approaching, twisting, and pressurizing of 2DM with high accuracy. As a demonstration, we engineer synthetic topological singularities, known as merons, in the nonlinear optical susceptibility of twisted hexagonal boron nitride (h-BN), via simultaneous control of twist angle and interlayer separation. The chirality of the resulting moire pattern further induces a strong circular dichroism in the second-harmonic generation. A potential application of this topological nonlinear susceptibility is to create integrated classical and quantum light sources that have widely and real-time tunable polarization. Our invention pushes the boundary of available technologies for manipulating low-dimensional quantum materials, which in turn opens up the gateway for designing future hybrid 2D-3D devices for condensed-matter physics, quantum optics, and beyond. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.12030v3-abstract-full').style.display = 'none'; document.getElementById('2311.12030v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.10364">arXiv:2311.10364</a> <span> [<a href="https://arxiv.org/pdf/2311.10364">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Elimination of the confrontation between theory and experiment in flexoelectric Bi2GeO5 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Yuying Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xulong Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+L">Long Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+H">Hongfei Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+H">Hua Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+F">Fu Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+Z">Zhi Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.10364v2-abstract-short" style="display: inline;"> In this paper, we have investigated the flexoelectric effect of Bi2GeO5(BGO), successfully predicted the maximum flexoelectric coefficient of BGO, and tried to explore the difference between experimental and simulated flexoelectric coefficients. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.10364v2-abstract-full" style="display: none;"> In this paper, we have investigated the flexoelectric effect of Bi2GeO5(BGO), successfully predicted the maximum flexoelectric coefficient of BGO, and tried to explore the difference between experimental and simulated flexoelectric coefficients. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.10364v2-abstract-full').style.display = 'none'; document.getElementById('2311.10364v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages,6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.07423">arXiv:2311.07423</a> <span> [<a href="https://arxiv.org/pdf/2311.07423">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Superconductivity in trilayer nickelate La4Ni3O10 under pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+M">Mingxin Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Pei%2C+C">Cuiying Pei</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+X">Xian Du</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+W">Weixiong Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Yantao Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Q">Qi Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+J">Juefei Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yidian Li</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+H">Huanyu Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Wen%2C+C">Chenhaoping Wen</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+Y">Yi Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+C">Changhua Li</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+W">Weizheng Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+S">Shihao Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q">Qing Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+N">Na Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+P">Peihong Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+L">Lili Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z">Zhiwei Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+J">Jinkui Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y">Yulin Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+H">Hanjie Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+C">Congjun Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+F">Fan Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+S">Shichao Yan</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.07423v2-abstract-short" style="display: inline;"> Nickelate superconductors have attracted a great deal of attention over the past few decades due to their similar crystal and electronic structures with high-temperature cuprate superconductors. Here, we report the superconductivity in a pressurized Ruddlesden-Popper phase single crystal, La4Ni3O10 (n = 3), and its interplay with the density wave order in the phase diagram. With increasing pressur… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.07423v2-abstract-full').style.display = 'inline'; document.getElementById('2311.07423v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.07423v2-abstract-full" style="display: none;"> Nickelate superconductors have attracted a great deal of attention over the past few decades due to their similar crystal and electronic structures with high-temperature cuprate superconductors. Here, we report the superconductivity in a pressurized Ruddlesden-Popper phase single crystal, La4Ni3O10 (n = 3), and its interplay with the density wave order in the phase diagram. With increasing pressure, the density wave order as indicated by the anomaly in the resistivity is progressively suppressed, followed by the emergence of the superconductivity around 25 K. Our angle-resolved photoemission spectroscopy measurements reveal that the electronic structure of La4Ni3O10 is very similar to that of La3Ni2O7, suggesting unified electronic properties of nickelates in Ruddlesden-Popper phases. Moreover, theoretical analysis unveils that antiferromagnetic (AFM) super-exchange interactions can serve as the effective pairing interaction for the emergence of superconductivity (SC) in pressurized La4Ni3O10. Our research provides a new platform for the investigation of the unconventional superconductivity mechanism in Ruddlesden-Popper trilayer perovskite nickelates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.07423v2-abstract-full').style.display = 'none'; document.getElementById('2311.07423v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.01545">arXiv:2311.01545</a> <span> [<a href="https://arxiv.org/pdf/2311.01545">pdf</a>, <a href="https://arxiv.org/format/2311.01545">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Quantifying chemical short-range order in metallic alloys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Sheriff%2C+K">Killian Sheriff</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Yifan Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Smidt%2C+T">Tess Smidt</a>, <a href="/search/cond-mat?searchtype=author&query=Freitas%2C+R">Rodrigo Freitas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.01545v3-abstract-short" style="display: inline;"> Metallic alloys often form phases - known as solid solutions - in which chemical elements are spread out on the same crystal lattice in an almost random manner. The tendency of certain chemical motifs to be more common than others is known as chemical short-range order (SRO) and it has received substantial consideration in alloys with multiple chemical elements present in large concentrations due… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.01545v3-abstract-full').style.display = 'inline'; document.getElementById('2311.01545v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.01545v3-abstract-full" style="display: none;"> Metallic alloys often form phases - known as solid solutions - in which chemical elements are spread out on the same crystal lattice in an almost random manner. The tendency of certain chemical motifs to be more common than others is known as chemical short-range order (SRO) and it has received substantial consideration in alloys with multiple chemical elements present in large concentrations due to their extreme configurational complexity (e.g., high-entropy alloys). Short-range order renders solid solutions "slightly less random than completely random", which is a physically intuitive picture, but not easily quantifiable due to the sheer number of possible chemical motifs and their subtle spatial distribution on the lattice. Here we present a multiscale method to predict and quantify the SRO state of an alloy with atomic resolution, incorporating machine learning techniques to bridge the gap between electronic-structure calculations and the characteristic length scale of SRO. The result is an approach capable of predicting SRO length scale in agreement with experimental measurements while comprehensively correlating SRO with fundamental quantities such as local lattice distortions. This work advances the quantitative understanding of solid-solution phases, paving the way for SRO rigorous incorporation into predictive mechanical and thermodynamic models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.01545v3-abstract-full').style.display = 'none'; document.getElementById('2311.01545v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.04745">arXiv:2310.04745</a> <span> [<a href="https://arxiv.org/pdf/2310.04745">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Incremental dynamics of prestressed viscoelastic solids and its applications in shear wave elastography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Y">Yuxuan Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+G">Guo-Yang Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Z">Zhaoyi Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+S">Shiyu Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Yanping Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Yun%2C+S">Seok-Hyun Yun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.04745v1-abstract-short" style="display: inline;"> Shear wave elastography (SWE) has emerged as a new imaging modality that brings tissue mechanical properties as biomarkers potentially useful for early and precise diagnosis. While different SWE methods have been proposed, how to relate the frequency SWE measurements to quasi-static stiffnesses of tissues sensed by cells when prestresses are involved remains challenging. Here we suggest an increme… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.04745v1-abstract-full').style.display = 'inline'; document.getElementById('2310.04745v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.04745v1-abstract-full" style="display: none;"> Shear wave elastography (SWE) has emerged as a new imaging modality that brings tissue mechanical properties as biomarkers potentially useful for early and precise diagnosis. While different SWE methods have been proposed, how to relate the frequency SWE measurements to quasi-static stiffnesses of tissues sensed by cells when prestresses are involved remains challenging. Here we suggest an incremental dynamics theory for prestressed viscoelastic solids and investigate its application in SWE across a broad frequency range. To model the power-law dispersion relation with minimal parameters, we introduce the Kelvin-Voigt fractional derivation model (KVFD) in the constitutive modeling of material viscoelasticity. To validate the usefulness of the theory, we performed experiments on prestressed soft materials and biological tissues. The results show that the theoretical solution fits the experimental dispersion curve well over a broad frequency range and accurately captures the effect of prestress. The theory also reveals the correlation of phase velocities and attenuations of shear waves with principal stresses and leads to a method for probing the prestress in a viscoelastic solid without prior knowledge of the constitutive parameters as validated by our numerical experiments. Taken together, our results show that the theory presented here enables the development of spatially resolved SWE when high-frequency shear waves get involved, and provides insights into wave motions in soft materials subject to prestresses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.04745v1-abstract-full').style.display = 'none'; document.getElementById('2310.04745v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.13825">arXiv:2308.13825</a> <span> [<a href="https://arxiv.org/pdf/2308.13825">pdf</a>, <a href="https://arxiv.org/format/2308.13825">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-023-00576-5">10.1038/s41535-023-00576-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetism and berry phase manipulation in an emergent structure of perovskite ruthenate by (111) strain engineering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ding%2C+Z">Zhaoqing Ding</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+X">Xuejiao Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zhenzhen Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q">Qinghua Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+F">Fang Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Bi%2C+J">Jiachang Bi</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+T">Ting Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zhen Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+X">Xiaofeng Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+M">Minghui Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Meng%2C+M">Meng Meng</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Yanwei Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+L">Lin Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J">Jiandi Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhong%2C+Z">Zhicheng Zhong</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xiaoran Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+J">Jiandong Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.13825v1-abstract-short" style="display: inline;"> The interplay among symmetry of lattices, electronic correlations, and Berry phase of the Bloch states in solids has led to fascinating quantum phases of matter. A prototypical system is the magnetic Weyl candidate SrRuO3, where designing and creating electronic and topological properties on artificial lattice geometry is highly demanded yet remains elusive. Here, we establish an emergent trigonal… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.13825v1-abstract-full').style.display = 'inline'; document.getElementById('2308.13825v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.13825v1-abstract-full" style="display: none;"> The interplay among symmetry of lattices, electronic correlations, and Berry phase of the Bloch states in solids has led to fascinating quantum phases of matter. A prototypical system is the magnetic Weyl candidate SrRuO3, where designing and creating electronic and topological properties on artificial lattice geometry is highly demanded yet remains elusive. Here, we establish an emergent trigonal structure of SrRuO3 by means of heteroepitaxial strain engineering along the [111] crystallographic axis. Distinctive from bulk, the trigonal SrRuO3 exhibits a peculiar XY-type ferromagnetic ground state, with the coexistence of high-mobility holes likely from linear Weyl bands and low-mobility electrons from normal quadratic bands as carriers. The presence of Weyl nodes are further corroborated by capturing intrinsic anomalous Hall effect, acting as momentum-space sources of Berry curvatures. The experimental observations are consistent with our first-principles calculations, shedding light on the detailed band topology of trigonal SrRuO3 with multiple pairs of Weyl nodes near the Fermi level. Our findings signify the essence of magnetism and Berry phase manipulation via lattice design and pave the way towards unveiling nontrivial correlated topological phenomena. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.13825v1-abstract-full').style.display = 'none'; document.getElementById('2308.13825v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.13490">arXiv:2307.13490</a> <span> [<a href="https://arxiv.org/pdf/2307.13490">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.3c01065">10.1021/acs.nanolett.3c01065 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emergent magnetism with continuous control in the ultrahigh conductivity layered oxide PdCoO2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Brahlek%2C+M">Matthew Brahlek</a>, <a href="/search/cond-mat?searchtype=author&query=Mazza%2C+A+R">Alessandro R. Mazza</a>, <a href="/search/cond-mat?searchtype=author&query=Annaberdiyev%2C+A">Abdulgani Annaberdiyev</a>, <a href="/search/cond-mat?searchtype=author&query=Chilcote%2C+M">Michael Chilcote</a>, <a href="/search/cond-mat?searchtype=author&query=Rimal%2C+G">Gaurab Rimal</a>, <a href="/search/cond-mat?searchtype=author&query=Hal%C3%A1sz%2C+G+B">G谩bor B. Hal谩sz</a>, <a href="/search/cond-mat?searchtype=author&query=Pham%2C+A">Anh Pham</a>, <a href="/search/cond-mat?searchtype=author&query=Pai%2C+Y">Yun-Yi Pai</a>, <a href="/search/cond-mat?searchtype=author&query=Krogel%2C+J+T">Jaron T. Krogel</a>, <a href="/search/cond-mat?searchtype=author&query=Lapano%2C+J">Jason Lapano</a>, <a href="/search/cond-mat?searchtype=author&query=Lawrie%2C+B+J">Benjamin J. Lawrie</a>, <a href="/search/cond-mat?searchtype=author&query=Eres%2C+G">Gyula Eres</a>, <a href="/search/cond-mat?searchtype=author&query=McChesney%2C+J">Jessica McChesney</a>, <a href="/search/cond-mat?searchtype=author&query=Prokscha%2C+T">Thomas Prokscha</a>, <a href="/search/cond-mat?searchtype=author&query=Suter%2C+A">Andreas Suter</a>, <a href="/search/cond-mat?searchtype=author&query=Oh%2C+S">Seongshik Oh</a>, <a href="/search/cond-mat?searchtype=author&query=Freeland%2C+J+W">John W. Freeland</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Yue Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Gardner%2C+J+S">Jason S. Gardner</a>, <a href="/search/cond-mat?searchtype=author&query=Salman%2C+Z">Zaher Salman</a>, <a href="/search/cond-mat?searchtype=author&query=Moore%2C+R+G">Robert G. Moore</a>, <a href="/search/cond-mat?searchtype=author&query=Ganesh%2C+P">Panchapakesan Ganesh</a>, <a href="/search/cond-mat?searchtype=author&query=Ward%2C+T+Z">T. Zac Ward</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.13490v2-abstract-short" style="display: inline;"> The current challenge to realizing continuously tunable magnetism lies in our inability to systematically change properties such as valence, spin, and orbital degrees of freedom as well as crystallographic geometry. Here, we demonstrate that ferromagnetism can be externally turned on with the application of low-energy helium implantation and subsequently erased and returned to the pristine state v… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13490v2-abstract-full').style.display = 'inline'; document.getElementById('2307.13490v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.13490v2-abstract-full" style="display: none;"> The current challenge to realizing continuously tunable magnetism lies in our inability to systematically change properties such as valence, spin, and orbital degrees of freedom as well as crystallographic geometry. Here, we demonstrate that ferromagnetism can be externally turned on with the application of low-energy helium implantation and subsequently erased and returned to the pristine state via annealing. This high level of continuous control is made possible by targeting magnetic metastability in the ultra-high conductivity, non-magnetic layered oxide PdCoO2 where local lattice distortions generated by helium implantation induce emergence of a net moment on the surrounding transition metal octahedral sites. These highly-localized moments communicate through the itinerant metal states which triggers the onset of percolated long-range ferromagnetism. The ability to continuously tune competing interactions enables tailoring precise magnetic and magnetotransport responses in an ultra-high conductivity film and will be critical to applications across spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13490v2-abstract-full').style.display = 'none'; document.getElementById('2307.13490v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.3c01065</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters 23, 16, 7279-7287 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.08437">arXiv:2307.08437</a> <span> [<a href="https://arxiv.org/pdf/2307.08437">pdf</a>, <a href="https://arxiv.org/format/2307.08437">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Synthesis of single-crystalline LuN films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Su%2C+G">Guanhua Su</a>, <a href="/search/cond-mat?searchtype=author&query=Xiang%2C+S">Shuling Xiang</a>, <a href="/search/cond-mat?searchtype=author&query=Bi%2C+J">Jiachang Bi</a>, <a href="/search/cond-mat?searchtype=author&query=Qi%2C+F">Fugang Qi</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+P">Peiyi Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S">Shunda Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Xiao%2C+S">Shaozhu Xiao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+R">Ruyi Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+Z">Zhiyang Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+Y">Yanwei Cao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.08437v1-abstract-short" style="display: inline;"> In the nitrogen-doped lutetium hydride (Lu-H-N) system, the presence of Lu-N chemical bonds plays a key role in the emergence of possible room-temperature superconductivity at near ambient pressure. However, due to the synthesis of single-crystalline LuN being a big challenge, the understanding of LuN is insufficient thus far. Here, we report on the epitaxial growth of single-crystalline LuN films… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.08437v1-abstract-full').style.display = 'inline'; document.getElementById('2307.08437v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.08437v1-abstract-full" style="display: none;"> In the nitrogen-doped lutetium hydride (Lu-H-N) system, the presence of Lu-N chemical bonds plays a key role in the emergence of possible room-temperature superconductivity at near ambient pressure. However, due to the synthesis of single-crystalline LuN being a big challenge, the understanding of LuN is insufficient thus far. Here, we report on the epitaxial growth of single-crystalline LuN films. The crystal structures of LuN films were characterized by high-resolution X-ray diffraction. The measurement of low-temperature electrical transport indicates the LuN film is semiconducting from 300 to 2 K, yielding an activation gap of $\sim$ 0.02 eV. Interestingly, negative magnetoresistances can be observed below 12 K, which can result from the defects and magnetic impurities in LuN films. Our results uncover the electronic and magnetic properties of single-crystalline LuN films. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.08437v1-abstract-full').style.display = 'none'; document.getElementById('2307.08437v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Cao%2C+Y&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Cao%2C+Y&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Cao%2C+Y&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Cao%2C+Y&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Cao%2C+Y&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Cao%2C+Y&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&query=Cao%2C+Y&start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> <li> <a href="/search/?searchtype=author&query=Cao%2C+Y&start=300" class="pagination-link " aria-label="Page 7" aria-current="page">7 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>