CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 106 results for author: <span class="mathjax">Fan, J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Fan%2C+J">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Fan, J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Fan%2C+J&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Fan, J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Fan%2C+J&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Fan%2C+J&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Fan%2C+J&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Fan%2C+J&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.16357">arXiv:2411.16357</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.16357">pdf</a>, <a href="https://arxiv.org/format/2411.16357">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Bosonic Peierls state emerging from the one-dimensional Ising-Kondo interaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Jingtao Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xiaofan Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+S">Suotang Jia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.16357v1-abstract-short" style="display: inline;"> As an important effect induced by the particle-lattice interaction, the Peierls transition, a hot topic in condensed matter physics, is usually believed to occur in the one-dimensional fermionic systems. We here study a bosonic version of the one-dimensional Ising-Kondo lattice model, which describes itinerant bosons interact with the localized magnetic moments via only longitudinal Kondo exchange&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16357v1-abstract-full').style.display = 'inline'; document.getElementById('2411.16357v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.16357v1-abstract-full" style="display: none;"> As an important effect induced by the particle-lattice interaction, the Peierls transition, a hot topic in condensed matter physics, is usually believed to occur in the one-dimensional fermionic systems. We here study a bosonic version of the one-dimensional Ising-Kondo lattice model, which describes itinerant bosons interact with the localized magnetic moments via only longitudinal Kondo exchange.\ We show that, by means of perturbation analysis and numerical density-matrix renormalization group method, a bosonic analog of the Peierls state can occur in proper parameters regimes. The Peierls state here is characterized by the formation of a long-range spin-density-wave order, the periodicity of which is set by the density of the itinerant bosons. The ground-state phase diagram is mapped out by extrapolating the finite-size results to thermodynamic limit. Apart from the bosonic Peierls state, we also reveal the presence of some other magnetic orders, including a paramagnetic phase and a ferromagnetic phase. We finally propose a possible experimental scheme with ultracold atoms in optical lattices. Our results broaden the frontiers of the current understanding of the one-dimensional particle-lattice interaction system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16357v1-abstract-full').style.display = 'none'; document.getElementById('2411.16357v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.02916">arXiv:2411.02916</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.02916">pdf</a>, <a href="https://arxiv.org/format/2411.02916">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Gyrotropic Magnetic Effect in Black Phosphorus Irradiated with Bicircular Light </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhan%2C+F">Fangyang Zhan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xin Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+D">Da-Shuai Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Jing Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+P">Peng Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+D">Dong-Hui Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+R">Rui Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.02916v1-abstract-short" style="display: inline;"> The gyrotropic magnetic effect, manifesting as a gyropropic current under a slowly-varying magnetic field, represents a fundamental property of Bloch electrons on the Fermi surface; however, it has not been observed in experiments. Here, we theoretically propose that Floquet engineering with bicircular light (BCL), which is a superposition of two opposite chiral waves of circularly polarized light&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02916v1-abstract-full').style.display = 'inline'; document.getElementById('2411.02916v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.02916v1-abstract-full" style="display: none;"> The gyrotropic magnetic effect, manifesting as a gyropropic current under a slowly-varying magnetic field, represents a fundamental property of Bloch electrons on the Fermi surface; however, it has not been observed in experiments. Here, we theoretically propose that Floquet engineering with bicircular light (BCL), which is a superposition of two opposite chiral waves of circularly polarized light with an integer frequency ratio, presents a fascinating strategy to generate and manipulate the gyrotropic magnetic effect in nodal line semimetals. The tailoring spatial symmetry of BCL irradiation can induce a topological transition from a nodal line semimetallic phase to a Weyl semimetallic phase characterized by a minimum number of misaligned Weyl nodes, resulting in the generation of gyrotropic current when a slowly oscillating magnetic field is applied. Moreover, using first-principles calculations, we show that the compressed black phosphorus under irradiation of BCL is an ideal candidate to realize the large gyropropic current with great advantages. Our work not only broadens potential candidate materials for achieving the experimentally accessible gyropropic current, but also provides deeper insights into the interplay between topological phenomena and light manipulation of symmetries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02916v1-abstract-full').style.display = 'none'; document.getElementById('2411.02916v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.24068">arXiv:2410.24068</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.24068">pdf</a>, <a href="https://arxiv.org/ps/2410.24068">ps</a>, <a href="https://arxiv.org/format/2410.24068">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Universal Scaling of Gap Dynamics in Percolation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+S">Sheng Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Q">Qing Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+J">Jun Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+B">Bingsheng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nagler%2C+J">Jan Nagler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+Y">Youjin Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Jingfang Fan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.24068v1-abstract-short" style="display: inline;"> Percolation is a cornerstone concept in physics, providing crucial insights into critical phenomena and phase transitions. In this study, we adopt a kinetic perspective to reveal the scaling behaviors of higher-order gaps in the largest cluster across various percolation models, spanning from latticebased to network systems, encompassing both continuous and discontinuous percolation. Our results u&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.24068v1-abstract-full').style.display = 'inline'; document.getElementById('2410.24068v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.24068v1-abstract-full" style="display: none;"> Percolation is a cornerstone concept in physics, providing crucial insights into critical phenomena and phase transitions. In this study, we adopt a kinetic perspective to reveal the scaling behaviors of higher-order gaps in the largest cluster across various percolation models, spanning from latticebased to network systems, encompassing both continuous and discontinuous percolation. Our results uncover an inherent self-similarity in the dynamical process both for critical and supercritical phase, characterized by two independent Fisher exponents, respectively. Utilizing a scaling ansatz, we propose a novel scaling relation that links the discovered Fisher exponents with other known critical exponents. Additionally, we demonstrate the application of our theory to real systems, showing its practical utility in extracting the corresponding Fisher exponents. These findings enrich our understanding of percolation dynamics and highlight the robust and universal scaling laws that transcend individual models and extend to broader classes of complex systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.24068v1-abstract-full').style.display = 'none'; document.getElementById('2410.24068v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4.5 + 6 pages ; 4 + 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.10275">arXiv:2410.10275</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.10275">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Probing the Meissner effect in pressurized bilayer nickelate superconductors using diamond quantum sensors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+J">Junyan Wen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yue Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+G">Gang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Z">Ze-Xu He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Ningning Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+T">Tenglong Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+X">Xiaoli Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feng Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L">Liucheng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+M">Miao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Jing-Wei Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaobing Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+X">Xin-Yu Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+G">Gang-Qin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+J">Jinguang Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+X">Xiaohui Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.10275v1-abstract-short" style="display: inline;"> Recent reports on the signatures of high-temperature superconductivity with a critical temperature Tc close to 80 K have triggered great research interest and extensive follow-up studies. Although zero-resistance state has been successfully achieved under improved hydrostatic pressure conditions, there is no clear evidence of superconducting diamagnetism in pressurized&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10275v1-abstract-full').style.display = 'inline'; document.getElementById('2410.10275v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.10275v1-abstract-full" style="display: none;"> Recent reports on the signatures of high-temperature superconductivity with a critical temperature Tc close to 80 K have triggered great research interest and extensive follow-up studies. Although zero-resistance state has been successfully achieved under improved hydrostatic pressure conditions, there is no clear evidence of superconducting diamagnetism in pressurized $\mathrm{La_{3}Ni_{2}O_{7-未}}$ due to the low superconducting volume fraction and limited magnetic measurement techniques under high pressure conditions. Here, using shallow nitrogen-vacancy centers implanted on the culet of diamond anvils as in-situ quantum sensors, we observe convincing evidence for the Meissner effect in polycrystalline samples $\mathrm{La_{3}Ni_{2}O_{7-未}}$ and $\mathrm{La_{2}PrNi_{2}O_{7}}$: the magnetic field expulsion during both field cooling and field warming processes. The correlated measurements of Raman spectra and NV-based magnetic imaging indicate an incomplete structural transformation related to the displacement of oxygen ions emerging in the non-superconducting region. Furthermore, comparative experiments on different pressure transmitting media (silicone oil and KBr) and nickelates ($\mathrm{La_{3}Ni_{2}O_{7-未}}$ and $\mathrm{La_{2}PrNi_{2}O_{7}}$) reveal that an improved hydrostatic pressure conditions and the substitution of La by Pr in $\mathrm{La_{3}Ni_{2}O_{7-未}}$ can dramatically increase the superconductivity. Our work clarifies the controversy about the Meissner effect of bilayer nickelate and contributes to a deeper understanding of the mechanism of nickelate high-temperature superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10275v1-abstract-full').style.display = 'none'; document.getElementById('2410.10275v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.08586">arXiv:2410.08586</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.08586">pdf</a>, <a href="https://arxiv.org/format/2410.08586">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Optical modeling, solver, and design of wafer-scale single-enantiomer carbon nanotube film and reconfigurable chiral photonic device </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Jichao Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hillam%2C+B">Benjamin Hillam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+C">Cheng Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fujinami%2C+H">Hiroyuki Fujinami</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koki%2C+S">Shiba Koki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+H">Haoyu Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+R">Ruiyang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yanagi%2C+K">Kazuhiro Yanagi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+W">Weilu Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.08586v1-abstract-short" style="display: inline;"> The interaction of circularly polarized light with chiral matter and functional devices enables novel phenomena and applications. Recently, wafer-scale solid-state single-enantiomer carbon nanotube (CNT) films have become feasible and are emerging as a chiral photonic material platform thanks to their quantum-confinement-induced optical properties and facile scalable assembly. However, optical mod&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.08586v1-abstract-full').style.display = 'inline'; document.getElementById('2410.08586v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.08586v1-abstract-full" style="display: none;"> The interaction of circularly polarized light with chiral matter and functional devices enables novel phenomena and applications. Recently, wafer-scale solid-state single-enantiomer carbon nanotube (CNT) films have become feasible and are emerging as a chiral photonic material platform thanks to their quantum-confinement-induced optical properties and facile scalable assembly. However, optical modeling, solver, and device design tools for such materials are non-existent. Here, we prepare wafer-scale single-enantiomer (6,5) and (11,-5) randomly oriented CNT films and create an optical material model based on measured experimental optical spectra. We also implement a highly-parallel graphic-processing-unit accelerated transfer matrix solver for general bi-anisotropic materials and layered structures. Further, we demonstrate reconfigurable chiral photonic devices in a heterostructure with phase change materials through machine learning-enabled efficient gradient-based inverse design and optimization. Our developed full stack of a chiral photonic material and device hardware platform and a corresponding high-performance differential-programming-enabled solver opens the door for future chiral photonic devices and applications based on single-enantiomer CNT films. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.08586v1-abstract-full').style.display = 'none'; document.getElementById('2410.08586v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.14070">arXiv:2408.14070</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.14070">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> RiD-kit: Software package designed to do enhanced sampling using reinforced dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Jiahao Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yanze Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+D">Dongdong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+L">Linfeng Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.14070v1-abstract-short" style="display: inline;"> Developing an efficient method to accelerate the speed of molecular dynamics is a central theme in the field of molecular simulation. One category among the methods are collective-variable-based methods, which rely on predefined collective variables (CVs). The difficulty of selecting a few important CVs hinders the methods to be applied to large systems easily. Here we present a CV-based enhanced&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14070v1-abstract-full').style.display = 'inline'; document.getElementById('2408.14070v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.14070v1-abstract-full" style="display: none;"> Developing an efficient method to accelerate the speed of molecular dynamics is a central theme in the field of molecular simulation. One category among the methods are collective-variable-based methods, which rely on predefined collective variables (CVs). The difficulty of selecting a few important CVs hinders the methods to be applied to large systems easily. Here we present a CV-based enhanced sampling method RiD-kit, which could handle a large number of CVs and perform efficient sampling. The method could be applied to various kinds of systems, including biomolecules, chemical reactions and materials. In this protocol, we guide the users through all phases of the RiD-kit workflow, from preparing the input files, setting the simulation parameters and analyzing the results. The RiD-kit workflow provides an efficient and user-friendly command line tool which could submit jobs to various kinds of platforms including the high-performance computers (HPC), cloud server and local machines. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14070v1-abstract-full').style.display = 'none'; document.getElementById('2408.14070v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">43 pages,4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.13190">arXiv:2406.13190</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.13190">pdf</a>, <a href="https://arxiv.org/format/2406.13190">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> A programmable wafer-scale chiroptical heterostructure of twisted aligned carbon nanotubes and phase change materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Jichao Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+R">Ruiyang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lou%2C+M">Minhan Lou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+H">Haoyu Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+N">Nina Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+Y">Yingheng Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+W">Weilu Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.13190v1-abstract-short" style="display: inline;"> The ability to design and dynamically control chiroptical responses in solid-state matter at wafer scale enables new opportunities in various areas. Here we present a full stack of computer-aided designs and experimental implementations of a dynamically programmable, unified, scalable chiroptical heterostructure containing twisted aligned one-dimensional (1D) carbon nanotubes (CNTs) and non-volati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13190v1-abstract-full').style.display = 'inline'; document.getElementById('2406.13190v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.13190v1-abstract-full" style="display: none;"> The ability to design and dynamically control chiroptical responses in solid-state matter at wafer scale enables new opportunities in various areas. Here we present a full stack of computer-aided designs and experimental implementations of a dynamically programmable, unified, scalable chiroptical heterostructure containing twisted aligned one-dimensional (1D) carbon nanotubes (CNTs) and non-volatile phase change materials (PCMs). We develop a software infrastructure based on high-performance machine learning frameworks, including differentiable programming and derivative-free optimization, to efficiently optimize the tunability of both excitonic reciprocal and linear-anisotropy-induced nonreciprocal circular dichroism (CD) responses. We experimentally implement designed heterostructures with wafer-scale self-assembled aligned CNTs and deposited PCMs. We dynamically program reciprocal and nonreciprocal CD responses by inducing phase transitions of PCMs, and nonreciprocal responses display polarity reversal of CD upon sample flipping in broadband spectral ranges. All experimental results agree with simulations. Further, we demonstrate that the vertical dimension of heterostructure is scalable with the number of stacking layers and aligned CNTs play dual roles - the layer to produce CD responses and the Joule heating electrode to electrically program PCMs. This heterostructure platform is versatile and expandable to a library of 1D nanomaterials and electro-optic materials for exploring novel chiral phenomena and photonic and optoelectronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13190v1-abstract-full').style.display = 'none'; document.getElementById('2406.13190v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.07268">arXiv:2403.07268</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.07268">pdf</a>, <a href="https://arxiv.org/format/2403.07268">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Topological valley plasmons in twisted monolayer-double graphene moir茅 superlattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+W">Weiwei Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Jiang Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuzmenko%2C+A+B">Alexey B. Kuzmenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+W">Wei Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+J">Jingjun Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.07268v1-abstract-short" style="display: inline;"> In topological photonics, artificial photonic structures are constructed for realizing nontrivial unidirectional propagation of photonic information. On the other hand, moir茅 superlattices are emerging as an important avenue for engineering quantum materials with novel properties. In this paper, we combine these two aspects and demonstrate theoretically that moir茅 superlattices of small-angle twis&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.07268v1-abstract-full').style.display = 'inline'; document.getElementById('2403.07268v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.07268v1-abstract-full" style="display: none;"> In topological photonics, artificial photonic structures are constructed for realizing nontrivial unidirectional propagation of photonic information. On the other hand, moir茅 superlattices are emerging as an important avenue for engineering quantum materials with novel properties. In this paper, we combine these two aspects and demonstrate theoretically that moir茅 superlattices of small-angle twisted monolayer-bilayer graphene provide a natural platform for valley protected plasmons. Particularly, a complete plasmonic bandgap appears stemming from the distinct optical conductivities of the ABA and ABC stacked triangular domains. Moreover, the plasmonic crystals exhibit nonzero valley Chern numbers and unidirectional transport of plasmonic edge states protected from inter-valley scattering is presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.07268v1-abstract-full').style.display = 'none'; document.getElementById('2403.07268v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.08963">arXiv:2401.08963</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.08963">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> A critical review on recent progress of solution-processed monolayer assembly of nanomaterials and applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Liang Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Jichao Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gong%2C+C">Chenchi Gong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dyke%2C+A">Alexis Dyke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+W">Weilu Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bo Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.08963v1-abstract-short" style="display: inline;"> The rapid development in nanotechnology has necessitated accurate and efficient assembly strategies for nanomaterials. Monolayer assembly of nanomaterials (MAN) represents an extreme challenge in manufacturing and is critical in understanding interactions among nanomaterials, solvents, and substrates. MAN enables highly tunable performance in electronic and photonic devices. This review summarizes&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.08963v1-abstract-full').style.display = 'inline'; document.getElementById('2401.08963v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.08963v1-abstract-full" style="display: none;"> The rapid development in nanotechnology has necessitated accurate and efficient assembly strategies for nanomaterials. Monolayer assembly of nanomaterials (MAN) represents an extreme challenge in manufacturing and is critical in understanding interactions among nanomaterials, solvents, and substrates. MAN enables highly tunable performance in electronic and photonic devices. This review summarizes the recent progress on the methods to achieve MAN and discusses important control factors. Moreover, the importance of MAN is elaborated by a broad range of applications in electronics and photonics. In the end, we outlook the opportunities as well as challenges in manufacturing and new applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.08963v1-abstract-full').style.display = 'none'; document.getElementById('2401.08963v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.00432">arXiv:2401.00432</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.00432">pdf</a>, <a href="https://arxiv.org/format/2401.00432">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> Magnetic order and strongly-correlated effects in the one-dimensional Ising-Kondo lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xiaofan Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Jingtao Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+S">Suotang Jia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.00432v1-abstract-short" style="display: inline;"> We investigate the magnetic order and related strongly-correlated effects in an one-dimensional Ising-Kondo lattice with transverse field. This model is the anisotropic limit of the conventional isotropic Kondo lattice model, in the sense that the itinerant electrons interact with the localized magnetic moments via only longitudinal Kondo exchange. Adopting the numerical density-matrix-renormaliza&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.00432v1-abstract-full').style.display = 'inline'; document.getElementById('2401.00432v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.00432v1-abstract-full" style="display: none;"> We investigate the magnetic order and related strongly-correlated effects in an one-dimensional Ising-Kondo lattice with transverse field. This model is the anisotropic limit of the conventional isotropic Kondo lattice model, in the sense that the itinerant electrons interact with the localized magnetic moments via only longitudinal Kondo exchange. Adopting the numerical density-matrix-renormalization group method, we map out the ground-state phase diagram in various parameter spaces. Depending on the Kondo coupling and filling number, three distinct phases, including a metallic paramagnetic, a metallic ferromagnetic, and a gapped spin-density wave phase, are obtained. The spin-density wave is characterized by an ordering wave vector which coincides with the nesting wave vector of the Fermi surface. This makes the corresponding magnetic transition a spin analog of the Peierls transition occurring in the one-dimensional metal. Moreover, by analyzing the momentum distribution function and charge correlation function, the conduction electrons are shown to behave like free spinless fermions in the ferromagnetic phase. We finally discuss the effect of the repulsive Hubbard interaction between conduction electrons. Our work enriches the Kondo physics and deepens the current understanding of the heavy fermion compounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.00432v1-abstract-full').style.display = 'none'; document.getElementById('2401.00432v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.09070">arXiv:2311.09070</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.09070">pdf</a>, <a href="https://arxiv.org/format/2311.09070">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Single pair of charge-two high-fold fermions with type-II van Hove singularities on the surface of ultralight chiral crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+X">Xiaoliang Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+Y">Yuanjun Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+D">Da-Shuai Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+H">Haoran Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Jing Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+R">Rui Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xiaozhi Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.09070v2-abstract-short" style="display: inline;"> The realization of single-pair chiral fermions in Weyl systems remains challenging in topology physics, especially for the systems with higher chiral charges $C$. In this work, based on the symmetry analysis, low-energy effective model, and first-principles calculations, we identify the single-pair high-fold fermions in chiral cubic lattices. We first derive the minimal lattice model that exhibits&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.09070v2-abstract-full').style.display = 'inline'; document.getElementById('2311.09070v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.09070v2-abstract-full" style="display: none;"> The realization of single-pair chiral fermions in Weyl systems remains challenging in topology physics, especially for the systems with higher chiral charges $C$. In this work, based on the symmetry analysis, low-energy effective model, and first-principles calculations, we identify the single-pair high-fold fermions in chiral cubic lattices. We first derive the minimal lattice model that exhibits a single pair of Weyl points with the opposite chiral charges of $C$ = $\pm{2}$. Furthermore, we show the ultralight chiral crystal P4$_3$32-type LiC$_2$ and its mirror enantiomer as high-quality candidate materials, which exhibit large energy windows to surmount the interruption of irrelevant bands. Since two enantiomers are connected by the mirror symmetry, we observe the opposite chiral charges $C$ and the reversal of the Fermi arc velocities, showing the correspondence of chirality in the momentum space and the real space. In addition, we also reveal type-II van Hove singularities on the helicoid surfaces, which may induce chirality-locked charge density waves on the crystal surface. Our work not only provides a promising platform for controlling the sign of topological charge through the structural chirality but also facilitates the exploration of electronic correlations on the surface of ultralight chiral crystals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.09070v2-abstract-full').style.display = 'none'; document.getElementById('2311.09070v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.03937">arXiv:2311.03937</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.03937">pdf</a>, <a href="https://arxiv.org/format/2311.03937">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> </div> </div> <p class="title is-5 mathjax"> Geometry of commutes in the universality of percolating traffic flows </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ebrahimabadi%2C+S">Sasan Ebrahimabadi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hosseiny%2C+A">Ali Hosseiny</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Jingfang Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saberi%2C+A+A">Abbas Ali Saberi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.03937v1-abstract-short" style="display: inline;"> Traffic congestion is a major problem in megacities which increases vehicle emissions and degrades ambient air quality. Various models have been developed to address the universal features of traffic jams. These models range from micro car-following models to macro collective dynamic models. Here, we study the macrostructure of congested traffic influenced by the complex geometry of the commute. O&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.03937v1-abstract-full').style.display = 'inline'; document.getElementById('2311.03937v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.03937v1-abstract-full" style="display: none;"> Traffic congestion is a major problem in megacities which increases vehicle emissions and degrades ambient air quality. Various models have been developed to address the universal features of traffic jams. These models range from micro car-following models to macro collective dynamic models. Here, we study the macrostructure of congested traffic influenced by the complex geometry of the commute. Our main focus is on the dynamics of traffic patterns in Paris, and Los Angeles each with distinct urban structures. We analyze the complexity of the giant traffic clusters based on a percolation framework during rush hours in the mornings, evenings, and holidays. We uncover that the universality described by several critical exponents of traffic patterns is highly correlated with the geometry of commute and the underlying urban structure. Our findings might have broad implications for developing a greener, healthier, and more sustainable future city. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.03937v1-abstract-full').style.display = 'none'; document.getElementById('2311.03937v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 7 Figs, 1 Table (to appear in Phys. Rev. E)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.15042">arXiv:2308.15042</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.15042">pdf</a>, <a href="https://arxiv.org/format/2308.15042">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.109.013322">10.1103/PhysRevA.109.013322 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum phases of the biased two-chain-coupled Bose-Hubbard Ladder </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Jingtao Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xiaofan Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+S">Suotang Jia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.15042v1-abstract-short" style="display: inline;"> We investigate the quantum phases of bosons in a two-chain-coupled ladder. This bosonic ladder is generally in a biased configuration, meaning that the two chains of the ladder can have dramatically different on-site interactions and potential energies. Adopting the numerical density-matrix renormalization-group method, we analyze the phase transitions in various parameter spaces. We find signatur&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.15042v1-abstract-full').style.display = 'inline'; document.getElementById('2308.15042v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.15042v1-abstract-full" style="display: none;"> We investigate the quantum phases of bosons in a two-chain-coupled ladder. This bosonic ladder is generally in a biased configuration, meaning that the two chains of the ladder can have dramatically different on-site interactions and potential energies. Adopting the numerical density-matrix renormalization-group method, we analyze the phase transitions in various parameter spaces. We find signatures of both insulating-to-superfluid and superfluid-to-insulating quantum phase transitions as the interchain tunnelling is increased. Interestingly, tunning the interaction to some intermediate values, the system can exhibit a reentrant quantum phase transition between insulating and superfluid phases. We show that for infinite interaction bias, the model is amenable to some analytical treatments, whose prediction about the phase boundary is in great agreement with the numerical results. We finally clarify some critical parameters which separate the system into regimes with distinct phase behaviours, and briefly compare typical properties of the biased and unbiased bosonic ladder systems. Our work enriches the Bose-Hubbard physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.15042v1-abstract-full').style.display = 'none'; document.getElementById('2308.15042v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.10723">arXiv:2308.10723</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.10723">pdf</a>, <a href="https://arxiv.org/format/2308.10723">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Controllable Weyl nodes and Fermi arcs in a light-irradiated carbon allotrope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+R">Ruoning Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+X">Xianyong Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhan%2C+F">Fangyang Zhan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+X">Xiaoliang Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Jing Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ning%2C+Z">Zhen Ning</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+R">Rui Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.10723v1-abstract-short" style="display: inline;"> The precise control of Weyl physics in realistic materials oers a promising avenue to construct accessible topological quantum systems, and thus draw widespread attention in condensed-matter physics. Here, based on rst-principles calculations, maximally localized Wannier functions based tight-binding model, and Floquet theorem, we study the light-manipulated evolution of Weyl physics in a carbon a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.10723v1-abstract-full').style.display = 'inline'; document.getElementById('2308.10723v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.10723v1-abstract-full" style="display: none;"> The precise control of Weyl physics in realistic materials oers a promising avenue to construct accessible topological quantum systems, and thus draw widespread attention in condensed-matter physics. Here, based on rst-principles calculations, maximally localized Wannier functions based tight-binding model, and Floquet theorem, we study the light-manipulated evolution of Weyl physics in a carbon allotrope C6 crystallizing a face-centered orthogonal structure (fco-C6), an ideal Weyl semimetal with two pairs of Weyl nodes, under the irradiation of a linearly polarized light (LPL). We show that the positions of Weyl nodes and Fermi arcs can be accurately controlled by changing light intensity. Moreover, we employ a low-energy eective k p model to understand light-controllable Weyl physics. The results indicate that the symmetry of light-irradiated fco-C6 can be selectively preserved, which guarantees that the light-manipulated Weyl nodes can only move in the highsymmetry plane in momentum space. Our work not only demonstrates the ecacy of employing periodic driving light elds as an ecient approach to manipulate Weyl physics, but also paves a reliable pathway for designing accessible topological states under light irradiation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.10723v1-abstract-full').style.display = 'none'; document.getElementById('2308.10723v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.13815">arXiv:2305.13815</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.13815">pdf</a>, <a href="https://arxiv.org/format/2305.13815">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.094433">10.1103/PhysRevB.108.094433 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence of Kitaev interaction in the monolayer 1T-CrTe$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+C">Can Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+B">Bingjie Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">LingZi Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+Y">Yanfei Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Jiyu Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+D">Daning Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+C">Chunlan Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+Q">Qiang Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y">Yan Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.13815v2-abstract-short" style="display: inline;"> The two-dimensional 1T-CrTe$_2$ has been an attractive room-temperature van der Waals magnet which has a potential application in spintronic devices. Although it was recognized as a ferromagnetism in the past, the monolayer 1T-CrTe$_2$ was recently found to exhibit zigzag antiferromagnetism with the easy axis oriented at $70^\circ$ to the perpendicular direction of the plane. Therefore, the origin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.13815v2-abstract-full').style.display = 'inline'; document.getElementById('2305.13815v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.13815v2-abstract-full" style="display: none;"> The two-dimensional 1T-CrTe$_2$ has been an attractive room-temperature van der Waals magnet which has a potential application in spintronic devices. Although it was recognized as a ferromagnetism in the past, the monolayer 1T-CrTe$_2$ was recently found to exhibit zigzag antiferromagnetism with the easy axis oriented at $70^\circ$ to the perpendicular direction of the plane. Therefore, the origin of the intricate anisotropic magnetic behavior therein is well worthy of thorough exploration. Here, by applying density functional theory with spin spiral method, we demonstrate that the Kitaev interaction, together with the single-ion anisotropy and other off-diagonal exchanges, is amenable to explain the magnetic orientation in the metallic 1T-CrTe$_2$. Moreover, the Ruderman-Kittle-Kasuya-Yosida interaction can also be extracted from the dispersion calculations, which explains the metallic behavior of 1T-CrTe$_2$. Our results demonstrate that 1T-CrTe$_2$ is potentially a rare metallic Kitaev material. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.13815v2-abstract-full').style.display = 'none'; document.getElementById('2305.13815v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PhysRevB.108(2023)094433 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.12311">arXiv:2301.12311</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.12311">pdf</a>, <a href="https://arxiv.org/format/2301.12311">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Controlled synthetic chirality in macroscopic assemblies of carbon nanotubes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Doumani%2C+J">Jacques Doumani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lou%2C+M">Minhan Lou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dewey%2C+O">Oliver Dewey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+N">Nina Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Jichao Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baydin%2C+A">Andrey Baydin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yomogida%2C+Y">Yohei Yomogida</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yanagi%2C+K">Kazuhiro Yanagi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pasquali%2C+M">Matteo Pasquali</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saito%2C+R">Riichiro Saito</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kono%2C+J">Junichiro Kono</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+W">Weilu Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.12311v1-abstract-short" style="display: inline;"> There is an emerging recognition that successful utilization of chiral degrees of freedom can bring new scientific and technological opportunities to diverse research areas. Hence, methods are being sought for creating artificial matter with controllable chirality in an uncomplicated and reproducible manner. Here, we report the development of two straightforward methods for fabricating wafer-scale&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.12311v1-abstract-full').style.display = 'inline'; document.getElementById('2301.12311v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.12311v1-abstract-full" style="display: none;"> There is an emerging recognition that successful utilization of chiral degrees of freedom can bring new scientific and technological opportunities to diverse research areas. Hence, methods are being sought for creating artificial matter with controllable chirality in an uncomplicated and reproducible manner. Here, we report the development of two straightforward methods for fabricating wafer-scale chiral architectures of ordered carbon nanotubes (CNTs) with tunable and giant circular dichroism (CD). Both methods employ simple approaches, (i) mechanical rotation and (ii) twist-stacking, based on controlled vacuum filtration and do not involve any sophisticated nanofabrication processes. We used a racemic mixture of CNTs as the starting material, so the intrinsic chirality of chiral CNTs is not responsible for the observed chirality. In particular, by controlling the stacking angle and handedness in (ii), we were able to maximize the CD response and achieve a record-high deep-ultraviolet ellipticity of 40 $\pm$ 1 mdeg/nm. Our theoretical simulations using the transfer matrix method reproduce the salient features of the experimentally observed CD spectra and further predict that a film of twist-stacked CNTs with an optimized thickness will exhibit an ellipticity as high as 150 mdeg/nm. The created wafer-scale objects represent a new class of synthetic chiral matter consisting of ordered quantum wires whose macroscopic properties are governed by nanoscopic electronic signatures such as van Hove singularities. These artificial structures with engineered chirality will not only provide playgrounds for uncovering new chiral phenomena but also open up new opportunities for developing high-performance chiral photonic and optoelectronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.12311v1-abstract-full').style.display = 'none'; document.getElementById('2301.12311v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text: 4 figures, 21 pages; SI: 9 figures, 1 table, 11 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.08094">arXiv:2211.08094</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.08094">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Quasiparticle poisoning rate in a superconducting transmon qubit involving Majorana zero modes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">Xiaopei Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lyu%2C+Z">Zhaozheng Lyu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhuo%2C+E">Enna Zhuo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bing Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+Z">Zhongqing Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Jie Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+X">Xiaohui Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+F">Fanning Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+G">Guangtong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+J">Jie Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+L">Li Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.08094v1-abstract-short" style="display: inline;"> Majorana zero modes have been attracting considerable attention because of their prospective applications in fault-tolerant topological quantum computing. In recent years, some schemes have been proposed to detect and manipulate Majorana zero modes using superconducting qubits. However, manipulating and reading the Majorana zero modes must be kept in the time window of quasiparticle poisoning. In&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.08094v1-abstract-full').style.display = 'inline'; document.getElementById('2211.08094v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.08094v1-abstract-full" style="display: none;"> Majorana zero modes have been attracting considerable attention because of their prospective applications in fault-tolerant topological quantum computing. In recent years, some schemes have been proposed to detect and manipulate Majorana zero modes using superconducting qubits. However, manipulating and reading the Majorana zero modes must be kept in the time window of quasiparticle poisoning. In this work, we study the problem of quasiparticle poisoning in a split transmon qubit containing hybrid Josephson junctions involving Majorana zero modes. We show that Majorana coupling will cause parity mixing and 4蟺 Josephson effect. In addition, we obtained the expression of qubit parameter-dependent parity switching rate and demonstrated that quasiparticle poisoning can be greatly suppressed by reducing E_J/E_C via qubit design. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.08094v1-abstract-full').style.display = 'none'; document.getElementById('2211.08094v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.09753">arXiv:2209.09753</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.09753">pdf</a>, <a href="https://arxiv.org/format/2209.09753">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.2c04651">10.1021/acs.nanolett.2c04651 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Floquet Engineering of Nonequilibrium Valley-Polarized Quantum Anomalous Hall Effect with Tunable Chern Number </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhan%2C+F">Fangyang Zhan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+J">Junjie Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zhuo Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xin Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Jing Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+T">Tingyong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+R">Rui Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.09753v2-abstract-short" style="display: inline;"> Numerous attempts have been made so far to explore the quantum anomalous Hall effect (QAHE), but the ultralow observed temperature strongly hinders its practical applications. Hence, it is of great interest to go beyond the existing paradigm of QAHE. Here, we propose that Floquet engineering offers a strategy to realize the QAHE via hybridization of Floquet-Bloch bands. Based on first-principles c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.09753v2-abstract-full').style.display = 'inline'; document.getElementById('2209.09753v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.09753v2-abstract-full" style="display: none;"> Numerous attempts have been made so far to explore the quantum anomalous Hall effect (QAHE), but the ultralow observed temperature strongly hinders its practical applications. Hence, it is of great interest to go beyond the existing paradigm of QAHE. Here, we propose that Floquet engineering offers a strategy to realize the QAHE via hybridization of Floquet-Bloch bands. Based on first-principles calculations and Floquet theorem, we unveil that nonequilibrium valley-polarized QAHE (VP-QAHE), independent of magnetic orders, is widely present in ferromagnetic and nonmagnetic members of two-dimensional family materials $M$Si$_2$$Z_4$ ($M$ = Mo, W, V; $Z$ = N, P, As) by irradiating circularly polarized light (CPL). Remarkably, by tuning the frequency, intensity, and handedness of incident CPL, the Chern number of VP-QAHE is highly tunable and up to $\mathcal{C}=\pm 4$. We reveal that such Chern number tunable VP-QAHE attributes to light-induced trigonal warping and multiple band inversion at different valleys. The valley-resolved chiral edge states and quantized plateau of Hall conductance, which facilitates the experimental measurement, are visible inside the global band gap. Our work not only establishes Floquet Engineering of nonequilibrium VP-QAHE with tunable Chern number in realistic materials, but also provides a promising avenue to explore emergent topological phases under light irradiation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.09753v2-abstract-full').style.display = 'none'; document.getElementById('2209.09753v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.02292">arXiv:2209.02292</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.02292">pdf</a>, <a href="https://arxiv.org/format/2209.02292">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> Emergence of universal scaling in weather extreme events </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Q">Qing Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Jingfang Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+J">Jun Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lucarini%2C+V">Valerio Lucarini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jensen%2C+H+J">Henrik Jeldtoft Jensen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Christensen%2C+K">Kim Christensen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xiaosong Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.02292v1-abstract-short" style="display: inline;"> The frequency and magnitude of weather extreme events have increased significantly during the past few years in response to anthropogenic climate change. However, global statistical characteristics and underlying physical mechanisms are still not fully understood. Here, we adopt a statistical physics and probability theory based method to investigate the nature of extreme weather events, particula&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.02292v1-abstract-full').style.display = 'inline'; document.getElementById('2209.02292v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.02292v1-abstract-full" style="display: none;"> The frequency and magnitude of weather extreme events have increased significantly during the past few years in response to anthropogenic climate change. However, global statistical characteristics and underlying physical mechanisms are still not fully understood. Here, we adopt a statistical physics and probability theory based method to investigate the nature of extreme weather events, particularly the statistics of the day-to-day air temperature differences. These statistical measurements reveal that the distributions of the magnitudes of the extreme events satisfy a universal \textit{Gumbel} distribution, while the waiting time of those extreme events is governed by a universal \textit{Gamma} function. Further finite-size effects analysis indicates robust scaling behaviours. We additionally unveil that the cumulative distribution of logarithmic waiting times between the record events follows an \textit{Exponential} distribution and that the evolution of this climate system is directional where the underlying dynamics are related to a decelerating release of tension. The universal scaling laws are remarkably stable and unaffected by global warming. Counterintuitively, unlike as expected for record dynamics, we find that the number of quakes of the extreme temperature variability does not decay as one over time but with deviations relevant to large-scale climate extreme events. Our theoretical framework provides a fresh perspective on the linkage of universality, scaling, and climate systems. The findings throw light on the nature of the weather variabilities and could guide us to better forecast extreme events. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.02292v1-abstract-full').style.display = 'none'; document.getElementById('2209.02292v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.00436">arXiv:2208.00436</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.00436">pdf</a>, <a href="https://arxiv.org/format/2208.00436">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1056/ac754a">10.1088/1674-1056/ac754a <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the Onsager-Casimir reciprocal relations in a tilted Weyl semimetal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+B">Bingyan Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">Jiaji Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lujunyu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bi%2C+R">Ran Bi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Juewen Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zhilin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xiaosong Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.00436v1-abstract-short" style="display: inline;"> The Onsager-Casimir reciprocal relations are a fundamental symmetry of nonequilibrium statistical systems. Here we study an unusual chirality-dependent Hall effect in a tilted Weyl semimetal Co$_3$Sn$_2$S$_2$ with broken time reversal symmetry. It is confirmed that the reciprocal relations are satisfied. Since two Berry curvature effects, an anomalous velocity and a chiral chemical potential, cont&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.00436v1-abstract-full').style.display = 'inline'; document.getElementById('2208.00436v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.00436v1-abstract-full" style="display: none;"> The Onsager-Casimir reciprocal relations are a fundamental symmetry of nonequilibrium statistical systems. Here we study an unusual chirality-dependent Hall effect in a tilted Weyl semimetal Co$_3$Sn$_2$S$_2$ with broken time reversal symmetry. It is confirmed that the reciprocal relations are satisfied. Since two Berry curvature effects, an anomalous velocity and a chiral chemical potential, contribute to the observed Hall effect, the reciprocal relations suggest their intriguing connection. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.00436v1-abstract-full').style.display = 'none'; document.getElementById('2208.00436v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chin. Phys. B 31, 097306 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.00434">arXiv:2208.00434</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.00434">pdf</a>, <a href="https://arxiv.org/format/2208.00434">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.129.056601">10.1103/PhysRevLett.129.056601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Antisymmetric Seebeck effect in a tilted Weyl semimetal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+B">Bingyan Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">Jiaji Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+J">Jiangyuan Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shen Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiang%2C+X">XiaoBin Qiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lujunyu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bi%2C+R">Ran Bi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Juewen Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+H">Hai-Zhou Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+E">Enke Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xiaosong Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.00434v1-abstract-short" style="display: inline;"> Tilting the Weyl cone breaks the Lorentz invariance and enriches the Weyl physics. Here, we report the observation of a magnetic-field-antisymmetric Seebeck effect in a tilted Weyl semimetal, Co$_3$Sn$_2$S$_2$. Moreover, it is found that the Seebeck effect and the Nernst effect are antisymmetric in both the in-plane magnetic field and the magnetization. We attribute these exotic effects to the one&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.00434v1-abstract-full').style.display = 'inline'; document.getElementById('2208.00434v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.00434v1-abstract-full" style="display: none;"> Tilting the Weyl cone breaks the Lorentz invariance and enriches the Weyl physics. Here, we report the observation of a magnetic-field-antisymmetric Seebeck effect in a tilted Weyl semimetal, Co$_3$Sn$_2$S$_2$. Moreover, it is found that the Seebeck effect and the Nernst effect are antisymmetric in both the in-plane magnetic field and the magnetization. We attribute these exotic effects to the one-dimensional chiral anomaly and phase space correction due to the Berry curvature. The observation is further reproduced by a theoretical calculation, taking into account the orbital magnetization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.00434v1-abstract-full').style.display = 'none'; document.getElementById('2208.00434v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 129, 056601 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.01844">arXiv:2205.01844</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.01844">pdf</a>, <a href="https://arxiv.org/format/2205.01844">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.L100503">10.1103/PhysRevB.106.L100503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Percolative Superconductivity in Electron-Doped Sr$_{1-x}$Eu$_{x}$CuO$_{2+y}$ Films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+X">Xue-Qing Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+H">Hang Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+L">Li-Xuan Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+Z">Ze-Xian Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiong%2C+Y">Yan-Ling Xiong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Jia-Qi Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+P">Pu Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+X">Xu-Cun Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+Q">Qi-Kun Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+C">Can-Li Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.01844v1-abstract-short" style="display: inline;"> Electron-doped infinite-layer Sr$_{1-x}$Eu$_{x}$CuO$_{2+y}$ films over a wide doping range have been prepared epitaxially on SrTiO$_3$(001) using reactive molecular beam epitaxy. In-plane transport measurements of the single crystalline samples reveal a dome-shaped nodeless superconducting phase centered at $x$ $\sim$ 0.15, a Fermi-liquid behavior and pronounced upturn in low temperature resistivi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.01844v1-abstract-full').style.display = 'inline'; document.getElementById('2205.01844v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.01844v1-abstract-full" style="display: none;"> Electron-doped infinite-layer Sr$_{1-x}$Eu$_{x}$CuO$_{2+y}$ films over a wide doping range have been prepared epitaxially on SrTiO$_3$(001) using reactive molecular beam epitaxy. In-plane transport measurements of the single crystalline samples reveal a dome-shaped nodeless superconducting phase centered at $x$ $\sim$ 0.15, a Fermi-liquid behavior and pronounced upturn in low temperature resistivity. We show that the resistivity upturn follows square-root temperature dependence, suggesting the emergence of superconductivity via a three-dimensional percolation process. The percolative superconductivity is corroborated spectroscopically by imaging the electronic phase separation between superconducting and metallic phases with low-temperature scanning tunneling microscopy. Furthermore, we visualize interstitial and apical oxygen anions that rapidly increase in number as $x&gt;$ 0.12, and elucidate their impacts on the superconductivity and normal-state resistivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.01844v1-abstract-full').style.display = 'none'; document.getElementById('2205.01844v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures, 9 supplemental figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.01843">arXiv:2205.01843</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.01843">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/nsr/nwab225">10.1093/nsr/nwab225 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct observation of nodeless superconductivity and phonon modes in electron-doped copper oxide Sr$_{1-x}$Nd$_x$CuO$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Jia-Qi Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+X">Xue-Qing Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+F">Fang-Jun Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Heng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+R">Ruifeng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+X">Xiaobing Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+X">Xiao-Peng Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+D">Ding Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+X">Xu-Cun Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+Q">Qi-Kun Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+C">Can-Li Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.01843v1-abstract-short" style="display: inline;"> The microscopic understanding of high-temperature superconductivity in cuprates has been hindered by the apparent complexity of crystal structures in these materials. We used scanning tunneling microscopy and spectroscopy to study an electron-doped copper oxide compound Sr$_{1-x}$Nd$_x$CuO$_2$ that has only bare cations separating the CuO$_2$ planes and thus the simplest infinite-layer structure a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.01843v1-abstract-full').style.display = 'inline'; document.getElementById('2205.01843v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.01843v1-abstract-full" style="display: none;"> The microscopic understanding of high-temperature superconductivity in cuprates has been hindered by the apparent complexity of crystal structures in these materials. We used scanning tunneling microscopy and spectroscopy to study an electron-doped copper oxide compound Sr$_{1-x}$Nd$_x$CuO$_2$ that has only bare cations separating the CuO$_2$ planes and thus the simplest infinite-layer structure among all cuprate superconductors. Tunneling conductance spectra of the major CuO$_2$ planes in the superconducting state revealed direct evidence for a nodeless pairing gap, regardless of variation of its magnitude with the local doping of trivalent neodymium. Furthermore, three distinct bosonic modes are observed as multiple peak-dip-hump features outside the superconducting gaps and their respective energies depend little on the spatially varying gaps. Along with the bosonic modes with energies identical to those of the external, bending and stretching phonons of copper oxides, our findings indicate their origin from lattice vibrations rather than spin excitations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.01843v1-abstract-full').style.display = 'none'; document.getElementById('2205.01843v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 Pages, 4 figures, 5 supplemental figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Natl. Sci. Rev. 9, nwab225 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.06288">arXiv:2204.06288</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.06288">pdf</a>, <a href="https://arxiv.org/format/2204.06288">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Automated Atomic Silicon Quantum Dot Circuit Design via Deep Reinforcement Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lupoiu%2C+R">Robert Lupoiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ng%2C+S+S+H">Samuel S. H. Ng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J+A">Jonathan A. Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walus%2C+K">Konrad Walus</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.06288v1-abstract-short" style="display: inline;"> Robust automated design tools are crucial for the proliferation of any computing technology. We introduce the first automated design tool for the silicon dangling bond quantum dot computing technology, which is an extremely versatile and flexible single-atom computing circuitry framework. The automated designer is capable of navigating the complex, hyperdimensional design spaces of arbitrarily siz&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.06288v1-abstract-full').style.display = 'inline'; document.getElementById('2204.06288v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.06288v1-abstract-full" style="display: none;"> Robust automated design tools are crucial for the proliferation of any computing technology. We introduce the first automated design tool for the silicon dangling bond quantum dot computing technology, which is an extremely versatile and flexible single-atom computing circuitry framework. The automated designer is capable of navigating the complex, hyperdimensional design spaces of arbitrarily sized design areas and truth tables by employing a tabula rasa double-deep Q-learning reinforcement learning algorithm. Robust policy convergence is demonstrated for a wide range of two-input, one-output logic circuits and a two-input, two-output half-adder, designed with an order of magnitude fewer SiDBs in several orders of magnitude less time than the only other half-adder demonstrated in the literature. We anticipate that reinforcement learning-based automated design tools will accelerate the development of the SiDB quantum dot computing technology, leading to its eventual adoption in specialized computing hardware. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.06288v1-abstract-full').style.display = 'none'; document.getElementById('2204.06288v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.17151">arXiv:2203.17151</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.17151">pdf</a>, <a href="https://arxiv.org/format/2203.17151">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1056/ac5d30">10.1088/1674-1056/ac5d30 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V$_5$S$_8$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Juewen Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+B">Bingyan Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">Jiaji Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bi%2C+R">Ran Bi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J">Jiadong Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zheng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+G">Guang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+J">Jie Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+F">Fanming Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+L">Li Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+N">Ning Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xiaosong Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.17151v2-abstract-short" style="display: inline;"> Introduction of spin-orbit coupling (SOC) in a Josephson junction (JJ) gives rise to unusual Josephson effects. We investigate JJs based on a newly discovered heterodimensional superlattice V$_5$S$_8$ with a special form of SOC. The unique homointerface of our JJs enables elimination of extrinsic effects due to interfaces and disorder. We observe asymmetric Fraunhofer patterns with respect to both&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.17151v2-abstract-full').style.display = 'inline'; document.getElementById('2203.17151v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.17151v2-abstract-full" style="display: none;"> Introduction of spin-orbit coupling (SOC) in a Josephson junction (JJ) gives rise to unusual Josephson effects. We investigate JJs based on a newly discovered heterodimensional superlattice V$_5$S$_8$ with a special form of SOC. The unique homointerface of our JJs enables elimination of extrinsic effects due to interfaces and disorder. We observe asymmetric Fraunhofer patterns with respect to both the perpendicular magnetic field and the current. The asymmetry is influenced by an in-plane magnetic field. Analysis of the pattern points to a nontrivial spatial distribution of the Josephson current that is intrinsic to the SOC in V$_5$S$_8$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.17151v2-abstract-full').style.display = 'none'; document.getElementById('2203.17151v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages,5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chin. Phys. B, 31, 057402 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.03748">arXiv:2201.03748</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.03748">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Ultrahigh quality infrared polaritonic resonators based on bottom-up-synthesized van der Waals nanoribbons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+S">Shang-Jie Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yue Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roberts%2C+J+A">John A. Roberts</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huber%2C+M+A">Markus A. Huber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+H">Helen Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+X">Xinjian Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bechtel%2C+H+A">Hans A. Bechtel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Corder%2C+S+N+G">Stephanie N. Gilbert Corder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heinz%2C+T+F">Tony F. Heinz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+X">Xiaolin Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J+A">Jonathan A. Fan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.03748v1-abstract-short" style="display: inline;"> van der Waals nanomaterials supporting phonon polariton quasiparticles possess unprecedented light confinement capabilities, making them ideal systems for molecular sensing, thermal emission, and subwavelength imaging applications, but they require defect-free crystallinity and nanostructured form factors to fully showcase these capabilities. We introduce bottom-up-synthesized 伪-MoO3 structures as&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.03748v1-abstract-full').style.display = 'inline'; document.getElementById('2201.03748v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.03748v1-abstract-full" style="display: none;"> van der Waals nanomaterials supporting phonon polariton quasiparticles possess unprecedented light confinement capabilities, making them ideal systems for molecular sensing, thermal emission, and subwavelength imaging applications, but they require defect-free crystallinity and nanostructured form factors to fully showcase these capabilities. We introduce bottom-up-synthesized 伪-MoO3 structures as nanoscale phonon polaritonic systems that feature tailorable morphologies and crystal qualities consistent with bulk single crystals. 伪-MoO3 nanoribbons serve as low-loss hyperbolic Fabry-P茅rot nanoresonators, and we experimentally map hyperbolic resonances over four Reststrahlen bands spanning the far- and mid-infrared spectral range, including resonance modes beyond the tenth order. The measured quality factors are the highest from phonon polaritonic van der Waals structures to date. We anticipate that bottom-up-synthesized polaritonic van der Waals nanostructures will serve as an enabling high-performance and low-loss platform for infrared optical and optoelectronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.03748v1-abstract-full').style.display = 'none'; document.getElementById('2201.03748v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.14352">arXiv:2112.14352</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.14352">pdf</a>, <a href="https://arxiv.org/format/2112.14352">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.125126">10.1103/PhysRevB.105.125126 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electric and magnetic fields tuned spin-polarized topological phases in two-dimensional ferromagnetic MnBi$_4$Te$_7$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+S">Shi Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+X">Xiaoliang Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhan%2C+F">Fangyang Zhan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Jing Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xiaozhi Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+R">Rui Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.14352v1-abstract-short" style="display: inline;"> Applying electric or magnetic fields is widely used to not only create and manipulate topological states but also facilitate their observations in experiments. In this work, we show by first-principles calculations and topological analysis that the time-reversal (TR) symmetry-broken quantum spin Hall (QSH) state emerges in a two-dimensional ferromagnetic MnBi$_4$Te$_7$ monolayer. This TR-symmetry&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.14352v1-abstract-full').style.display = 'inline'; document.getElementById('2112.14352v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.14352v1-abstract-full" style="display: none;"> Applying electric or magnetic fields is widely used to not only create and manipulate topological states but also facilitate their observations in experiments. In this work, we show by first-principles calculations and topological analysis that the time-reversal (TR) symmetry-broken quantum spin Hall (QSH) state emerges in a two-dimensional ferromagnetic MnBi$_4$Te$_7$ monolayer. This TR-symmetry broken QSH phase possesses a highly tunable nontrivial band gap under an external electric field (or tuning interlayer distance). Furthermore, based on the Wannier-function-based tight-binding approach, we reveal that a topological phase transition from the TR-symmetry broken QSH phase to the quantum anomalous Hall (QAH) phase occurs with the increase of magnetic fields. Besides, we also find that a reverse electric fields can facilitate the realization of QAH phase. Our work not only uncovers the ferromagnetic topological properties the MnBi$_4$Te$_7$ monolayer tuned by electric and magnetic fields, but also can stimulate further applications to spintronics and topological devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.14352v1-abstract-full').style.display = 'none'; document.getElementById('2112.14352v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PhysRevB 105, 125126 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.02964">arXiv:2112.02964</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.02964">pdf</a>, <a href="https://arxiv.org/format/2112.02964">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0076861">10.1063/5.0076861 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Homointerface planar Josephson junction based on inverse proximity effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Juewen Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+B">Bingyan Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">Jiaji Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bi%2C+R">Ran Bi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J">Jiadong Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zheng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+N">Ning Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+F">Fanming Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+L">Li Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xiaosong Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.02964v2-abstract-short" style="display: inline;"> The quality of a superconductor-normal metal-superconductor Josephson junction (JJ) depends crucially on the transparency of the superconductor-normal metal (S/N) interface. We demonstrate a technique for fabricating planar JJs with perfect S/N interfaces. The technique utilizes a strong inverse proximity effect discovered in Al/V$_5$S$_8$ bilayers, by which the Al layer is driven into the resisti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.02964v2-abstract-full').style.display = 'inline'; document.getElementById('2112.02964v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.02964v2-abstract-full" style="display: none;"> The quality of a superconductor-normal metal-superconductor Josephson junction (JJ) depends crucially on the transparency of the superconductor-normal metal (S/N) interface. We demonstrate a technique for fabricating planar JJs with perfect S/N interfaces. The technique utilizes a strong inverse proximity effect discovered in Al/V$_5$S$_8$ bilayers, by which the Al layer is driven into the resistive state. The highly transparent S/N homointerface and the peculiar normal metal enable the flow of Josephson supercurrent across a 2.9 $渭$m long weak link. Moreover, our JJ exhibits a giant critical current and a large product of the critical current and the normal state resistance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.02964v2-abstract-full').style.display = 'none'; document.getElementById('2112.02964v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Appl. Phys. 131, 093903 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.11009">arXiv:2110.11009</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.11009">pdf</a>, <a href="https://arxiv.org/format/2110.11009">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.L081115">10.1103/PhysRevB.105.L081115 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Floquet Valley-Polarized Quantum Anomalous Hall State in Nonmagnetic Heterobilayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhan%2C+F">Fangyang Zhan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ning%2C+Z">Zhen Ning</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gan%2C+L">Li-Yong Gan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+B">Baobing Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Jing Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+R">Rui Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.11009v2-abstract-short" style="display: inline;"> The valley-polarized quantum anomalous Hall (VQAH) state, which forwards a strategy for combining valleytronics and spintronics with nontrivial topology, attracts intensive interest in condensed-matter physics. So far, the explored VQAH states have still been limited to magnetic systems. Here, using the low-energy effective model and Floquet theorem, we propose a different mechanism to realize the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.11009v2-abstract-full').style.display = 'inline'; document.getElementById('2110.11009v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.11009v2-abstract-full" style="display: none;"> The valley-polarized quantum anomalous Hall (VQAH) state, which forwards a strategy for combining valleytronics and spintronics with nontrivial topology, attracts intensive interest in condensed-matter physics. So far, the explored VQAH states have still been limited to magnetic systems. Here, using the low-energy effective model and Floquet theorem, we propose a different mechanism to realize the Floquet VQAH state in nonmagnetic heterobilayers under light irradiation. We then realize this proposal via first-principles calculations in transition metal dichalcogenide heterobilayers, which initially possess the time-reversal invariant valley quantum spin Hall (VQSH) state. By irradiating circularly polarized light, the time-reversal invariant VQSH state can evolve into the VQAH state, behaving as an optically switchable topological spin-valley filter. These findings not only offer a rational scheme to realize the VQAH state without magnetic orders, but also pave a fascinating path for designing topological spintronic and valleytronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.11009v2-abstract-full').style.display = 'none'; document.getElementById('2110.11009v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, Supplemental Material</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.10769">arXiv:2109.10769</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.10769">pdf</a>, <a href="https://arxiv.org/format/2109.10769">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.035131">10.1103/PhysRevB.105.035131 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic field induced Valley-Polarized Quantum Anomalous Hall Effects in Ferromagnetic van der Waals Heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhan%2C+F">Fangyang Zhan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+B">Baobing Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+X">Xiaoliang Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Jing Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xiaozhi Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+R">Rui Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.10769v2-abstract-short" style="display: inline;"> The valley-polarized quantum anomalous Hall effect (VQAHE) attracts intensive interest since it uniquely combines valleytronics and spintronics with nontrivial band topology. Here, based on first-principles calculations and Wannier-function-based tight-binding (WFTB) model, we reveal that valley-based Hall effects and especially the VQAHE induced by external magnetic fields can occur in two-dimens&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.10769v2-abstract-full').style.display = 'inline'; document.getElementById('2109.10769v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.10769v2-abstract-full" style="display: none;"> The valley-polarized quantum anomalous Hall effect (VQAHE) attracts intensive interest since it uniquely combines valleytronics and spintronics with nontrivial band topology. Here, based on first-principles calculations and Wannier-function-based tight-binding (WFTB) model, we reveal that valley-based Hall effects and especially the VQAHE induced by external magnetic fields can occur in two-dimensional (2D) ferromagnetic van der Waals heterostructures (vdWHs). The results show that considerable valley-splitting derived from the Zeeman exchange energy drives these vdWHs generating the valley anomalous Hall effect and then the VQAHE. The chiral edge states and quantized Hall conductance are utilized to confirm the presence of VQAHE. Besides, it is also found that external electric fields (or tuning interlayer distances) can facilitate the realization of VQAHE, and thus we present a phase diagram in a broad parameter regime of magnetic fields and electric fields (or interlayer distances). Our work not only offers a class of ferromagnetic vdWHs to realize various valley-based Hall phases, but also can guide advancements for designing topological devices with spin-valley filtering effects based on the VQAHE. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.10769v2-abstract-full').style.display = 'none'; document.getElementById('2109.10769v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures in the main text</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.05445">arXiv:2109.05445</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.05445">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Zero-field magnetometry using hyperfine-biased nitrogen-vacancy centers near diamond surfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Chu-Feng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Jing-Wei Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+X">Xi Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leong%2C+W">Weng-Hang Leong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Finkler%2C+A">Amit Finkler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Denisenko%2C+A">Andrej Denisenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wrachtrup%2C+J">J枚rg Wrachtrup</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q">Quan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+R">Ren-Bao Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.05445v1-abstract-short" style="display: inline;"> Shallow nitrogen-vacancy (NV) centers in diamond are promising for nano-magnetometry for they can be placed proximate to targets. To study the intrinsic magnetic properties, zero-field magnetometry is desirable. However, for shallow NV centers under zero field, the strain near diamond surfaces would cause level anti-crossing between the spin states, leading to clock transitions whose frequencies a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.05445v1-abstract-full').style.display = 'inline'; document.getElementById('2109.05445v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.05445v1-abstract-full" style="display: none;"> Shallow nitrogen-vacancy (NV) centers in diamond are promising for nano-magnetometry for they can be placed proximate to targets. To study the intrinsic magnetic properties, zero-field magnetometry is desirable. However, for shallow NV centers under zero field, the strain near diamond surfaces would cause level anti-crossing between the spin states, leading to clock transitions whose frequencies are insensitive to magnetic signals. Furthermore, the charge noises from the surfaces would induce extra spin decoherence and hence reduce the magnetic sensitivity. Here we demonstrate that the relatively strong hyperfine coupling (130 MHz) from a first-shell 13C nuclear spin can provide an effective bias field to an NV center spin so that the clock-transition condition is broken and the charge noises are suppressed. The hyperfine bias enhances the dc magnetic sensitivity by a factor of 22 in our setup. With the charge noises suppressed by the strong hyperfine field, the ac magnetometry under zero field also reaches the limit set by decoherence due to the nuclear spin bath. In addition, the 130 MHz splitting of the NV center spin transitions allows relaxometry of magnetic noises simultaneously at two well-separated frequencies (~2.870 +/- 0.065 GHz), providing (low-resolution) spectral information of high-frequency noises under zero field. The hyperfine-bias enhanced zero-field magnetometry can be combined with dynamical decoupling to enhance single-molecule magnetic resonance spectroscopy and to improve the frequency resolution in nanoscale magnetic resonance imaging. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.05445v1-abstract-full').style.display = 'none'; document.getElementById('2109.05445v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.10823">arXiv:2108.10823</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.10823">pdf</a>, <a href="https://arxiv.org/format/2108.10823">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41524-021-00695-2">10.1038/s41524-021-00695-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Liganded Xene as a Prototype of Two-Dimensional Stiefel-Whitney Insulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+M">Mingxiang Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+D">Dexin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Jiahao Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+H">Huaqing Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.10823v2-abstract-short" style="display: inline;"> Two-dimensional (2D) Stiefel-Whitney insulator (SWI), which is characterized by the second Stiefel-Whitney class, is a new class of topological phases with zero Berry curvature. As a novel topological state, it has been well studied in theory but seldom realized in realistic materials. Here we propose that a large class of liganded Xenes, i.e., hydrogenated and halogenated 2D group-IV honeycomb la&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.10823v2-abstract-full').style.display = 'inline'; document.getElementById('2108.10823v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.10823v2-abstract-full" style="display: none;"> Two-dimensional (2D) Stiefel-Whitney insulator (SWI), which is characterized by the second Stiefel-Whitney class, is a new class of topological phases with zero Berry curvature. As a novel topological state, it has been well studied in theory but seldom realized in realistic materials. Here we propose that a large class of liganded Xenes, i.e., hydrogenated and halogenated 2D group-IV honeycomb lattices, are 2D SWIs. The nontrivial topology of liganded Xenes is identified by the bulk topological invariant and the existence of protected corner states. Moreover, the large and tunable band gap (up to 3.5 eV) of liganded Xenes will facilitate the experimental characterization of the 2D SWI phase. Our findings not only provide abundant realistic material candidates that are experimentally feasible, but also draw more fundamental research interest towards the topological physics associated with Stiefel-Whitney class in the absence of Berry curvature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.10823v2-abstract-full').style.display = 'none'; document.getElementById('2108.10823v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages 3figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Computational Materials volume 8, Article number: 1 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.01560">arXiv:2108.01560</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.01560">pdf</a>, <a href="https://arxiv.org/format/2108.01560">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11467-021-1100-y">10.1007/s11467-021-1100-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological states in quasicrystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Jiahao Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+H">Huaqing Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.01560v1-abstract-short" style="display: inline;"> With the rapid development of topological states in crystals, the study of topological states has been extended to quasicrystals in recent years. In this review, we summarize the recent progress of topological states in quasicrystals, particularly focusing on one-dimensional (1D) and 2D systems. We first give a brief introduction to quasicrystalline structures. Then, we discuss topological phases&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.01560v1-abstract-full').style.display = 'inline'; document.getElementById('2108.01560v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.01560v1-abstract-full" style="display: none;"> With the rapid development of topological states in crystals, the study of topological states has been extended to quasicrystals in recent years. In this review, we summarize the recent progress of topological states in quasicrystals, particularly focusing on one-dimensional (1D) and 2D systems. We first give a brief introduction to quasicrystalline structures. Then, we discuss topological phases in 1D quasicrystals where the topological nature is attributed to the synthetic dimensions associated with the quasiperiodic order of quasicrystals. We further present the generalization of various types of crystalline topological states to 2D quasicrystals, where real-space expressions of corresponding topological invariants are introduced due to the lack of translational symmetry in quasicrystals. Finally, since quasicrystals possess forbidden symmetries in crystals such as five-fold and eight-fold rotation, we provide an overview of unique quasicrystalline symmetry-protected topological states without crystalline counterpart. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.01560v1-abstract-full').style.display = 'none'; document.getElementById('2108.01560v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 17 figures, to be published in Front. Phys. 17(1), 13203 (2022)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.12618">arXiv:2106.12618</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.12618">pdf</a>, <a href="https://arxiv.org/format/2106.12618">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.2002284117">10.1073/pnas.2002284117 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermoelectric response from grain boundaries and lattice distortions in crystalline gold devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Evans%2C+C+I">Charlotte I. Evans</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+R">Rui Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gan%2C+L+T">Lucia T. Gan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abbasi%2C+M">Mahdiyeh Abbasi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xifan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Traylor%2C+R">Rachel Traylor</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J+A">Jonathan A. Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Natelson%2C+D">Douglas Natelson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.12618v1-abstract-short" style="display: inline;"> The electronic Seebeck response in a conductor involves the energy-dependent mean free path of the charge carriers and is affected by crystal structure, scattering from boundaries and defects, and strain. Previous photothermoelectric (PTE) studies have suggested that the thermoelectric properties of polycrystalline metal nanowires are related to grain structure, though direct evidence linking crys&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.12618v1-abstract-full').style.display = 'inline'; document.getElementById('2106.12618v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.12618v1-abstract-full" style="display: none;"> The electronic Seebeck response in a conductor involves the energy-dependent mean free path of the charge carriers and is affected by crystal structure, scattering from boundaries and defects, and strain. Previous photothermoelectric (PTE) studies have suggested that the thermoelectric properties of polycrystalline metal nanowires are related to grain structure, though direct evidence linking crystal microstructure to the PTE response is difficult to elucidate. Here, we show that room temperature scanning PTE measurements are sensitive probes that can detect subtle changes in the local Seebeck coefficient of gold tied to the underlying defects and strain that mediate crystal deformation. This connection is revealed through a combination of scanning PTE and electron microscopy measurements of single crystal and bicrystal gold microscale devices. Unexpectedly, the photovoltage maps strongly correlate with gradually varying crystallographic misorientations detected by electron backscatter diffraction. The effects of individual grain boundaries and differing grain orientations on the PTE signal are minimal. This scanning PTE technique shows promise for identifying minor structural distortions in nanoscale materials and devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.12618v1-abstract-full').style.display = 'none'; document.getElementById('2106.12618v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc. Nat. Acad. Sci. US 117, 23350-23355 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.04677">arXiv:2104.04677</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.04677">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.jpclett.1c01540">10.1021/acs.jpclett.1c01540 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Role of polyhedron unit in distinct photodynamics of zero-dimensional organic-inorganic hybrid tin halide compounds </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaoyu Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yuanyuan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+T">Tianyuan Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Jiyang Fan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.04677v2-abstract-short" style="display: inline;"> The zero-dimensional (0D) metal halides comprise periodically distributed and isolated metal-halide polyhedra, which act as the smallest inorganic quantum systems and can accommodate quasi-localized Frenkel excitons. These excitons exhibit unique photophysics including broadband photon emission, huge Stokes shift, and long decay lifetime. The polyhedra can have different symmetries due to the coor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.04677v2-abstract-full').style.display = 'inline'; document.getElementById('2104.04677v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.04677v2-abstract-full" style="display: none;"> The zero-dimensional (0D) metal halides comprise periodically distributed and isolated metal-halide polyhedra, which act as the smallest inorganic quantum systems and can accommodate quasi-localized Frenkel excitons. These excitons exhibit unique photophysics including broadband photon emission, huge Stokes shift, and long decay lifetime. The polyhedra can have different symmetries due to the coordination degree of the metal ions. Little is known about how the polyhedron type affects the characteristics of the 0D metal halide crystals. We synthesize and comparatively study three novel kinds of 0D organic-inorganic hybrid tin halide compounds. They are efficient light emitters with a highest quantum yield of 92.3%. Although they have the same compositional organic group, the most stable phases are composed of octahedra for the bromide and iodide but disphenoids (see-saw structures) for the chloride. They separately exhibit biexponential and monoexponential luminescence decays due to different symmetries (Ci group for octahedra and C2 group for disphenoids) and corresponding different electronic structures. The chloride has the largest absorption photon energy among the three halides, but it has the smallest emission photon energy. A model regarding the unoccupied energy band degeneracy is proposed based on the experiments and density functional theory calculations, which explains well the experimental phenomena and reveals the crucial role of polyhedron type in determining the optical properties of the 0D tin halide compounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.04677v2-abstract-full').style.display = 'none'; document.getElementById('2104.04677v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. Chem. Lett. 12, 5765-5773 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.15491">arXiv:2103.15491</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.15491">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.chemmater.1c00542">10.1021/acs.chemmater.1c00542 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> In Situ Phase-Transition Crystallization of All-Inorganic Water-Resistant Exciton-Radiative Heteroepitaxial CsPbBr3-CsPb2Br5 Core-Shell Perovskite Nanocrystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+T">Tianyuan Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+W">Wenjie Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaoyu Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yuanyuan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+W">Wenhui Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Jiyang Fan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.15491v2-abstract-short" style="display: inline;"> The instability of metal halide perovskites upon exposure to moisture or heat strongly hampers their applications in optoelectronic devices. Here, we report the large-yield synthesis of highly water-resistant total-inorganic green luminescent CsPbBr3/CsPb2Br5 core/shell heteronanocrystals (HNCs) by developing an in situ phase transition approach. It is implemented via water-driven phase transition&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.15491v2-abstract-full').style.display = 'inline'; document.getElementById('2103.15491v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.15491v2-abstract-full" style="display: none;"> The instability of metal halide perovskites upon exposure to moisture or heat strongly hampers their applications in optoelectronic devices. Here, we report the large-yield synthesis of highly water-resistant total-inorganic green luminescent CsPbBr3/CsPb2Br5 core/shell heteronanocrystals (HNCs) by developing an in situ phase transition approach. It is implemented via water-driven phase transition of the original monoclinic CsPbBr3 nanocrystal and the resultant tetragonal CsPb2Br5 nanoshell has small lattice mismatch with the CsPbBr3 core, which ensures formation of an epitaxial interface for the yielded CsPbBr3/CsPb2Br5 HNCs. These HNCs maintain nearly 100% of the original luminescence intensity after immersion in water for eleven months and the luminescence intensity drops only to 81.3% at 100 掳C. The transient luminescence spectroscopy and density functional theory calculation reveal that there are double radiative recombination channels in the core CsPbBr3 nanocrystal, and the electron potential barrier provided by the CsPb2Br5 nanoshell significantly improves the exciton recombination rate. A prototype quasi-white light-emitting device based on these robust CsPbBr3/CsPb2Br5 HNCs is realized, showing their strong competence in solid-state lighting and wide color-gamut displays. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.15491v2-abstract-full').style.display = 'none'; document.getElementById('2103.15491v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chem. Mater. 33, 4948-4959 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.04593">arXiv:2103.04593</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.04593">pdf</a>, <a href="https://arxiv.org/format/2103.04593">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.L060301">10.1103/PhysRevB.104.L060301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Symmorphic and nonsymmorphic symmetries jointly-protected hourglass phonons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+B">Baobing Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhan%2C+F">Fangyang Zhan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xiaozhi Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+R">Rui Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Jing Fan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.04593v2-abstract-short" style="display: inline;"> Hourglass dispersion is generally believed to be solely protected by nonsymmorphic symmetries, because these symmetries can introduce high-dimensional projective representations. Here, based on symmetry arguments, we propose that the hourglass dispersion can be jointly protected by symmorphic and nonsymmorphic symmetries, instead of the only conventional nonsymmorphic symmetry. Moreover, using fir&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.04593v2-abstract-full').style.display = 'inline'; document.getElementById('2103.04593v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.04593v2-abstract-full" style="display: none;"> Hourglass dispersion is generally believed to be solely protected by nonsymmorphic symmetries, because these symmetries can introduce high-dimensional projective representations. Here, based on symmetry arguments, we propose that the hourglass dispersion can be jointly protected by symmorphic and nonsymmorphic symmetries, instead of the only conventional nonsymmorphic symmetry. Moreover, using first-principles calculations, we realize our proposal in phonon spectra of realistic materials that share an antiperovskite structure with space group \emph{P}4/\emph{nmm}. Importantly, the neck points of these hourglass dispersions trace out two nodal rings tangent to four nodal lines, forming a unique hourglass nodal cage in the bulk Brillouin zone. The Berry phase analysis reveal the nontrivial topology of these nodal rings and nodal lines. Furthermore, the nontrivial surface states and isofrequency surface arcs are visible, facilitating their experimental confirmation of such exotic quasiparticles. Our work not only offers a new insight into the hourglass dispersion, but also expands aspects for studying promising topological quasiparticles in condensed-matter systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.04593v2-abstract-full').style.display = 'none'; document.getElementById('2103.04593v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages,4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 104, 060301 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.07915">arXiv:2102.07915</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.07915">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.1c04372">10.1021/acs.nanolett.1c04372 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Semiconductor-metal phase transition and emergent charge density waves in 1T-ZrX$_2$ (X = Se, Te) at the two-dimensional limit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+M">Ming-Qiang Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+S">Sha Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Jia-Qi Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shujing Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shu-Ze Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+F">Fawei Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Ping Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+X">Xu-Cun Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+Q">Qi-Kun Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+C">Can-Li Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.07915v2-abstract-short" style="display: inline;"> Charge density wave (CDW) is a collective quantum phenomenon in metals and features a wave-like modulation of the conduction electron density. A microscopic understanding and experimental control of this many-body electronic state in atomically thin materials remain hot topics in materials physics. By means of material engineering, we realized a dimensionality and Zr intercalation induced semicond&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.07915v2-abstract-full').style.display = 'inline'; document.getElementById('2102.07915v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.07915v2-abstract-full" style="display: none;"> Charge density wave (CDW) is a collective quantum phenomenon in metals and features a wave-like modulation of the conduction electron density. A microscopic understanding and experimental control of this many-body electronic state in atomically thin materials remain hot topics in materials physics. By means of material engineering, we realized a dimensionality and Zr intercalation induced semiconductor-metal phase transition in 1T-ZrX$_2$ (X = Se, Te) ultra-thin films, accompanied by a commensurate 2 $\times$ 2 CDW order. Furthermore, we observed a CDW energy gap up to 22 meV around the Fermi level. Fourier-transformed scanning tunneling microscopy and angle-resolved photoemission spectroscopy reveal that 1T-ZrX$_2$ films exhibit the simplest Fermi surface among the known CDW materials in TMDCs, consisting only of Zr 4d-derived elliptical electron conduction band at the corners of the Brillouin zone. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.07915v2-abstract-full').style.display = 'none'; document.getElementById('2102.07915v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 4 figures, 4 Supplementary notes</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters 22, 476 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.07913">arXiv:2102.07913</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.07913">pdf</a>, <a href="https://arxiv.org/format/2102.07913">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.241408">10.1103/PhysRevB.102.241408 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charge density waves and Fermi level pinning in monolayer and bilayer SnSe$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shu-Ze Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yi-Min Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Jia-Qi Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+M">Ming-Qiang Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+C">Can-Li Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+X">Xu-Cun Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+Q">Qi-Kun Xue</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.07913v1-abstract-short" style="display: inline;"> Materials with reduced dimensionality often exhibit exceptional properties that are different from their bulk counterparts. Here we report the emergence of a commensurate 2 $\times$ 2 charge density wave (CDW) in monolayer and bilayer SnSe$_2$ films by scanning tunneling microscope. The visualized spatial modulation of CDW phase becomes prominent near the Fermi level, which is pinned inside the se&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.07913v1-abstract-full').style.display = 'inline'; document.getElementById('2102.07913v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.07913v1-abstract-full" style="display: none;"> Materials with reduced dimensionality often exhibit exceptional properties that are different from their bulk counterparts. Here we report the emergence of a commensurate 2 $\times$ 2 charge density wave (CDW) in monolayer and bilayer SnSe$_2$ films by scanning tunneling microscope. The visualized spatial modulation of CDW phase becomes prominent near the Fermi level, which is pinned inside the semiconductor band gap of SnSe$_2$. We show that both CDW and Fermi level pinning are intimately correlated with band bending and virtual induced gap states at the semiconductor heterointerface. Through interface engineering, the electron-density-dependent phase diagram is established in SnSe$_2$. Fermi surface nesting between symmetry inequivalent electron pockets is revealed to drive the CDW formation and to provide an alternative CDW mechanism that might work in other compounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.07913v1-abstract-full').style.display = 'none'; document.getElementById('2102.07913v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 241408(R) (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.14795">arXiv:2012.14795</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.14795">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.085423">10.1103/PhysRevB.104.085423 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dimensionality-dependent type-II Weyl semimetal state in Mo$_{0.25}$W$_{0.75}$Te$_{2}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+P">Peiling Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+Y">Ya Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hsu%2C+C">Chuanghan Hsu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+C">Chao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+J">Jian Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X">Xue Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J">Jiadong Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+Y">Yichun Hung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Jie Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+Z">Zhongqing Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+F">Fanming Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+J">Jie Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Changli Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jing%2C+X">Xiunian Jing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zheng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+L">Li Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+G">Guangtong Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.14795v1-abstract-short" style="display: inline;"> Weyl nodes and Fermi arcs in type-II Weyl semimetals (WSMs) have led to lots of exotic transport phenomena. Recently, Mo$_{0.25}$W$_{0.75}$Te$_{2}$ has been established as a type-II WSM with Weyl points located near Fermi level, which offers an opportunity to study its intriguing band structure by electrical transport measurements. Here, by selecting a special sample with the thickness gradient ac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.14795v1-abstract-full').style.display = 'inline'; document.getElementById('2012.14795v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.14795v1-abstract-full" style="display: none;"> Weyl nodes and Fermi arcs in type-II Weyl semimetals (WSMs) have led to lots of exotic transport phenomena. Recently, Mo$_{0.25}$W$_{0.75}$Te$_{2}$ has been established as a type-II WSM with Weyl points located near Fermi level, which offers an opportunity to study its intriguing band structure by electrical transport measurements. Here, by selecting a special sample with the thickness gradient across two- (2D) and three-dimensional (3D) regime, we show strong evidences that Mo$_{0.25}$W$_{0.75}$Te$_{2}$ is a type-II Weyl semimetal by observing the following two dimensionality-dependent transport features: 1) A chiral-anomaly-induced anisotropic magneto-conductivity enhancement, proportional to the square of in-plane magnetic field (B$_{in}$$^{2}$); 2) An additional quantum oscillation with thickness-dependent phase shift. Our theoretical calculations show that the observed quantum oscillation originates from a Weyl-orbit-like scenario due to the unique band structure of Mo$_{0.25}$W$_{0.75}$Te$_{2}$. The in situ dimensionality-tuned transport experiment offers a new strategy to search for type-II WSMs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.14795v1-abstract-full').style.display = 'none'; document.getElementById('2012.14795v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 104, 085423 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.04918">arXiv:2009.04918</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.04918">pdf</a>, <a href="https://arxiv.org/format/2009.04918">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physrep.2020.09.005">10.1016/j.physrep.2020.09.005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Statistical physics approaches to the complex Earth system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Jingfang Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+J">Jun Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ludescher%2C+J">Josef Ludescher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xiaosong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ashkenazy%2C+Y">Yosef Ashkenazy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kurths%2C+J">Jurgen Kurths</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Havlin%2C+S">Shlomo Havlin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schellnhuber%2C+H+J">Hans Joachim Schellnhuber</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.04918v1-abstract-short" style="display: inline;"> Global climate change, extreme climate events, earthquakes and their accompanying natural disasters pose significant risks to humanity. Yet due to the nonlinear feedbacks, strategic interactions and complex structure of the Earth system, the understanding and in particular the predicting of such disruptive events represent formidable challenges for both scientific and policy communities. During th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.04918v1-abstract-full').style.display = 'inline'; document.getElementById('2009.04918v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.04918v1-abstract-full" style="display: none;"> Global climate change, extreme climate events, earthquakes and their accompanying natural disasters pose significant risks to humanity. Yet due to the nonlinear feedbacks, strategic interactions and complex structure of the Earth system, the understanding and in particular the predicting of such disruptive events represent formidable challenges for both scientific and policy communities. During the past years, the emergence and evolution of Earth system science has attracted much attention and produced new concepts and frameworks. Especially, novel statistical physics and complex networks-based techniques have been developed and implemented to substantially advance our knowledge for a better understanding of the Earth system, including climate extreme events, earthquakes and Earth geometric relief features, leading to substantially improved predictive performances. We present here a comprehensive review on the recent scientific progress in the development and application of how combined statistical physics and complex systems science approaches such as, critical phenomena, network theory, percolation, tipping points analysis, as well as entropy can be applied to complex Earth systems (climate, earthquakes, etc.). Notably, these integrating tools and approaches provide new insights and perspectives for understanding the dynamics of the Earth systems. The overall aim of this review is to offer readers the knowledge on how statistical physics approaches can be useful in the field of Earth system science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.04918v1-abstract-full').style.display = 'none'; document.getElementById('2009.04918v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.03631">arXiv:2009.03631</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.03631">pdf</a>, <a href="https://arxiv.org/format/2009.03631">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.201105">10.1103/PhysRevB.102.201105 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Photoinduced Floquet Mixed-Weyl Semimetallic Phase in a Carbon Allotrope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+T">Tingwei Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+B">Baobing Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhan%2C+F">Fangyang Zhan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Jing Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xiaozhi Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+R">Rui Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.03631v2-abstract-short" style="display: inline;"> The interplay between light and matter attracts tremendous interest for exploring novel topological quantum states and their phase transitions. Here we show by first-principles calculations and the Floquet theorem that a carbon allotrope bct-C$_{16}$, a typical nodal-line semimetal, exhibits exotic photoinduced Floquet mixed-Weyl semimetallic features. Under the irradiation of a linearly polarized&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.03631v2-abstract-full').style.display = 'inline'; document.getElementById('2009.03631v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.03631v2-abstract-full" style="display: none;"> The interplay between light and matter attracts tremendous interest for exploring novel topological quantum states and their phase transitions. Here we show by first-principles calculations and the Floquet theorem that a carbon allotrope bct-C$_{16}$, a typical nodal-line semimetal, exhibits exotic photoinduced Floquet mixed-Weyl semimetallic features. Under the irradiation of a linearly polarized light, bct-C$_{16}$ undergos a topological phase transition from a Driac nodal-line semimetal to a Weyl semimetal with two pairs of tunable Weyl points. With increasing the light intensity, left-handed Weyl points evolve from type-I into type-II while right-handed ones are always preserved to be type-I, giving rise to photo-dressed unconventional Weyl pairs composed of distinct types of Weyl points. Importantly, a special Weyl pair formed by type-I and type-III Weyl points is present at the boundary between type-I and type-II states. The Floquet Fermi arcs connecting the projections of two different types of Weyl points are clearly visible, further revealing their unique topological features. Our work not only realizes promising unconventional Weyl pairs but also paves a reliable avenue for investigating light-induced topological phase transitions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.03631v2-abstract-full').style.display = 'none'; document.getElementById('2009.03631v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 201105 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.05729">arXiv:2008.05729</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.05729">pdf</a>, <a href="https://arxiv.org/format/2008.05729">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.100508">10.1103/PhysRevB.102.100508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic inhomogeneity and band structure on superstructural CuO2 planes of infinite-layer Sr0.94La0.06CuO2+y films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+R">Rui-Feng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guan%2C+J">Jiaqi Guan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiong%2C+Y">Yan-Ling Xiong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xue-Feng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Jia-Qi Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+J">Jing Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+C">Can-Li Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+X">Xu-Cun Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+Q">Qi-Kun Xue</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.05729v1-abstract-short" style="display: inline;"> Scanning tunneling microscopy and spectroscopy are utilized to study the atomic-scale structure and electronic properties of infinite-layer Sr0.94La0.06CuO2+y films prepared on SrRuO3-buffered SrTiO3(001) substrate by ozone-assisted molecular beam epitaxy. Incommensurate structural supermodulation with a period of 24.5脜 is identified on the CuO2-terminated surface, leading to characteristic stripe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.05729v1-abstract-full').style.display = 'inline'; document.getElementById('2008.05729v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.05729v1-abstract-full" style="display: none;"> Scanning tunneling microscopy and spectroscopy are utilized to study the atomic-scale structure and electronic properties of infinite-layer Sr0.94La0.06CuO2+y films prepared on SrRuO3-buffered SrTiO3(001) substrate by ozone-assisted molecular beam epitaxy. Incommensurate structural supermodulation with a period of 24.5脜 is identified on the CuO2-terminated surface, leading to characteristic stripes running along the 45o direction with respect to the Cu-O-Cu bonds. Spatially resolved tunneling spectra reveal substantial inhomogeneity on a nanometer length scale and emergence of in-gap states at sufficient doping. Despite the Fermi level shifting up to 0.7 eV, the charge-transfer energy gap of the CuO2 planes remains fundamentally unchanged at different doping levels. The occurrence of the CuO2 superstructure is constrained in the surface region and its formation is found to link with oxygen intake that serves as doping agent of holes in the epitaxial films. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.05729v1-abstract-full').style.display = 'none'; document.getElementById('2008.05729v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures, also see arXiv:1904.12280</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 100508(R) (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.05725">arXiv:2008.05725</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.05725">pdf</a>, <a href="https://arxiv.org/format/2008.05725">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.180508">10.1103/PhysRevB.101.180508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Molecular beam epitaxy growth and surface structure of Sr1-xNdxCuO2 cuprate films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Jia-Qi Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shu-Ze Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+X">Xue-Qing Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+R">Rui-Feng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiong%2C+Y">Yan-Ling Xiong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+C">Can-Li Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+X">Xu-Cun Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+Q">Qi-Kun Xue</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.05725v1-abstract-short" style="display: inline;"> We report on the epitaxial growth and surface structure of infinite-layer cuprate Sr1-xNdxCuO2 films on SrTiO3(001) substrates by combining ozone-assisted molecular beam epitaxy and in situ scanning tunneling microscopy. Careful substrate temperature and flux control has been used to achieve single-phase, stoichiometric, and c-axis oriented films. The surface of the films is usually characterized&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.05725v1-abstract-full').style.display = 'inline'; document.getElementById('2008.05725v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.05725v1-abstract-full" style="display: none;"> We report on the epitaxial growth and surface structure of infinite-layer cuprate Sr1-xNdxCuO2 films on SrTiO3(001) substrates by combining ozone-assisted molecular beam epitaxy and in situ scanning tunneling microscopy. Careful substrate temperature and flux control has been used to achieve single-phase, stoichiometric, and c-axis oriented films. The surface of the films is usually characterized by a mixed CuO2 surface and gridlike superstructure. The superstructure exhibits a periodicity of 3.47 nm that corresponds to a coincidence lattice between the overlayer peroxide SrO2 and underlying CuO2 plane, and gives rise to a conductance spectrum that is distinct from the Mott-Hubbard band structure of CuO2. At a higher Nd composition x &gt; 0.1, a (2 x 2) surface characteristic of the hole-doped CuO2 emerges, which we ascribe to the intake of apical oxygens in the intervening Sr planes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.05725v1-abstract-full').style.display = 'none'; document.getElementById('2008.05725v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 180508(R) 2020 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.14131">arXiv:2007.14131</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.14131">pdf</a>, <a href="https://arxiv.org/format/2007.14131">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.102.063311">10.1103/PhysRevA.102.063311 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamical Zeeman resonance in spin-orbit-coupled spin-1 Bose gases </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Jingtao Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+G">Gang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+S">Suotang Jia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.14131v1-abstract-short" style="display: inline;"> We predict a dynamical resonant effect, which is driven by externally applied linear and quadratic Zeeman fields, in a spin-orbit-coupled spin-1 Bose-Einstein condensate. The Bose-Einstein condensate is assumed to be initialized in some superposed state of Zeeman sublevels and subject to a sudden shift of the trapping potential. It is shown that the time-averaged center-of-mass oscillation and the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.14131v1-abstract-full').style.display = 'inline'; document.getElementById('2007.14131v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.14131v1-abstract-full" style="display: none;"> We predict a dynamical resonant effect, which is driven by externally applied linear and quadratic Zeeman fields, in a spin-orbit-coupled spin-1 Bose-Einstein condensate. The Bose-Einstein condensate is assumed to be initialized in some superposed state of Zeeman sublevels and subject to a sudden shift of the trapping potential. It is shown that the time-averaged center-of-mass oscillation and the spin polarizations of the Bose-Einstein condensate exhibit remarkable resonant peaks when the Zeeman fields are tuned to certain strengths. The underlying physics behind this resonance can be traced back to the out-of-phase interference of the dynamical phases carried by different spinorbit states. By analyzing the single particle spectrum, the resonant condition is summarized as a simple algebraic relation, connecting the strengths of the linear and quadratic Zeeman fields. This property is potentially applicable in quantum information and quantum precision measurement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.14131v1-abstract-full').style.display = 'none'; document.getElementById('2007.14131v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 102, 063311 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.09823">arXiv:2007.09823</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.09823">pdf</a>, <a href="https://arxiv.org/format/2007.09823">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.4.051402">10.1103/PhysRevMaterials.4.051402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Stoichiometry and defect superstructures in epitaxial FeSe films on SrTiO3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+X">Xue-Qing Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+M">Ming-Qiang Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yi-Min Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Jia-Qi Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+S">Sha Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+C">Can-Li Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+X">Xu-Cun Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+Q">Qi-Kun Xue</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.09823v1-abstract-short" style="display: inline;"> Cryogenic scanning tunneling microscopy is employed to investigate the stoichiometry and defects of epitaxial FeSe thin films on SrTiO3(001) substrates under various post-growth annealing conditions. Low-temperature annealing with an excess supply of Se leads to formation of Fe vacancies and superstructures, accompanied by a superconductivity (metal)-to-insulator transition in FeSe films. By contr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.09823v1-abstract-full').style.display = 'inline'; document.getElementById('2007.09823v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.09823v1-abstract-full" style="display: none;"> Cryogenic scanning tunneling microscopy is employed to investigate the stoichiometry and defects of epitaxial FeSe thin films on SrTiO3(001) substrates under various post-growth annealing conditions. Low-temperature annealing with an excess supply of Se leads to formation of Fe vacancies and superstructures, accompanied by a superconductivity (metal)-to-insulator transition in FeSe films. By contrast, high-temperature annealing could eliminate the Fe vacancies and superstructures, and thus recover the high-temperature superconducting phase of monolayer FeSe films. We also observe multilayer FeSe during low-temperature annealing, which is revealed to link with Fe vacancy formation and adatom migration. Our results document very special roles of film stoichiometry and help unravel several controversies in the properties of monolayer FeSe films. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.09823v1-abstract-full').style.display = 'none'; document.getElementById('2007.09823v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 4, 051402(R) (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.07883">arXiv:2006.07883</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.07883">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41563-020-00875-3">10.1038/s41563-020-00875-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ferroelastic-switching-driven colossal shear strain and piezoelectricity in a hybrid ferroelectric </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Y">Yuzhong Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=You%2C+L">Lu You</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+B">Bin Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morris%2C+S+A">Samuel Alexander Morris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yongxin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yehui Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+P+S">Pooi See Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+H+J">Hong Jin Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Junling Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.07883v1-abstract-short" style="display: inline;"> Materials that can produce large controllable strains are widely used in shape memory devices, actuators and sensors. Great efforts have been made to improve the strain outputs of various material systems. Among them, ferroelastic transitions underpin giant reversible strains in electrically-driven ferro/piezoelectrics and thermally- or magneticallydriven shape memory alloys. However, large-strain&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.07883v1-abstract-full').style.display = 'inline'; document.getElementById('2006.07883v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.07883v1-abstract-full" style="display: none;"> Materials that can produce large controllable strains are widely used in shape memory devices, actuators and sensors. Great efforts have been made to improve the strain outputs of various material systems. Among them, ferroelastic transitions underpin giant reversible strains in electrically-driven ferro/piezoelectrics and thermally- or magneticallydriven shape memory alloys. However, large-strain ferroelastic switching in conventional ferroelectrics is very challenging while magnetic and thermal controls are not desirable for applications. Here, we demonstrate an unprecedentedly large shear strain up to 21.5 % in a hybrid ferroelectric, C6H5N(CH3)3CdCl3. The strain response is about two orders of magnitude higher than those of top-performing conventional ferroelectric polymers and oxides. It is achieved via inorganic bond switching and facilitated by the structural confinement of the large organic moieties, which prevents the undesired 180-degree polarization switching. Furthermore, Br substitution can effectively soften the bonds and result in giant shear piezoelectric coefficient (d35 ~ 4800 pm/V) in Br-rich end of the solid solution, C6H5N(CH3)3CdBr3xCl3(1-x). The superior electromechanical properties of the compounds promise their potential in lightweight and high energy density devices, and the strategy described here should inspire the development of next-generation piezoelectrics and electroactive materials based on hybrid ferroelectrics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.07883v1-abstract-full').style.display = 'none'; document.getElementById('2006.07883v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 14 figures, 5 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Materials 2021 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.06628">arXiv:2004.06628</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.06628">pdf</a>, <a href="https://arxiv.org/format/2004.06628">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Network-based Approach and Climate Change Benefits for Forecasting the Amount of Indian Monsoon Rainfall </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Jingfang Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+J">Jun Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ludescher%2C+J">Josef Ludescher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zhaoyuan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Surovyatkina%2C+E">Elena Surovyatkina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xiaosong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kurths%2C+J">J眉rgen Kurths</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schellnhuber%2C+H+J">Hans Joachim Schellnhuber</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.06628v1-abstract-short" style="display: inline;"> The Indian summer monsoon rainfall (ISMR) has a decisive influence on India&#39;s agricultural output and economy. Extreme deviations from the normal seasonal amount of rainfall can cause severe droughts or floods, affecting Indian food production and security. Despite the development of sophisticated statistical and dynamical climate models, a long-term and reliable prediction of the ISMR has remaine&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.06628v1-abstract-full').style.display = 'inline'; document.getElementById('2004.06628v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.06628v1-abstract-full" style="display: none;"> The Indian summer monsoon rainfall (ISMR) has a decisive influence on India&#39;s agricultural output and economy. Extreme deviations from the normal seasonal amount of rainfall can cause severe droughts or floods, affecting Indian food production and security. Despite the development of sophisticated statistical and dynamical climate models, a long-term and reliable prediction of the ISMR has remained a challenging problem. Towards achieving this goal, here we construct a series of dynamical and physical climate networks based on the global near surface air temperature field. We uncover that some characteristics of the directed and weighted climate networks can serve as efficient long-term predictors for ISMR forecasting. The developed prediction method produces a forecast skill of 0.5 with a 5-month lead-time in advance by using the previous calendar year&#39;s data. The skill of our ISMR forecast, is comparable to the current state-of-the-art models, however, with quite a short (i.e., within one month) lead-time. We discuss the underlying mechanism of our predictor and associate it with network-delayed-ENSO and ENSO-monsoon connections. Moreover, our approach allows predicting the all India rainfall, as well as forecasting the different Indian homogeneous regions&#39; rainfall, which is crucial for agriculture in India. We reveal that global warming affects the climate network by enhancing cross-equatorial teleconnections between Southwest Atlantic, Western part of the Indian Ocean, and North Asia-Pacific with significant impacts on the precipitation in India. We find a hotspots area in the mid-latitude South Atlantic, which is the basis for our predictor. Remarkably, the significant warming trend in this area yields an improvement of the prediction skill. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.06628v1-abstract-full').style.display = 'none'; document.getElementById('2004.06628v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.04311">arXiv:2004.04311</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.04311">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.0c00025">10.1021/acs.nanolett.0c00025 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnitude and Spatial Distribution Control of the Supercurrent in Bi2O2Se-Based Josephson Junction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ying%2C+J">Jianghua Ying</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+J">Jiangbo He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+G">Guang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+M">Mingli Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lyu%2C+Z">Zhaozheng Lyu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xiang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Huaiyuan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+K">Kui Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+R">Ruiyang Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+Z">Zhongqing Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Jie Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Changli Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jing%2C+X">Xiunian Jing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+G">Guangtong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+X">Xuewei Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xuefeng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+L">Li Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+F">Fanming Qu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.04311v1-abstract-short" style="display: inline;"> Many proposals in exploring topological quantum computation are based on superconducting quantum devices constructed on materials with strong spin-orbit coupling (SOC). For these devices, a full control on both the magnitude and the spatial distribution of the supercurrent would be highly demanded, but has been elusive up to now. We constructed proximity-type Josephson junction on nanoplates of Bi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.04311v1-abstract-full').style.display = 'inline'; document.getElementById('2004.04311v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.04311v1-abstract-full" style="display: none;"> Many proposals in exploring topological quantum computation are based on superconducting quantum devices constructed on materials with strong spin-orbit coupling (SOC). For these devices, a full control on both the magnitude and the spatial distribution of the supercurrent would be highly demanded, but has been elusive up to now. We constructed proximity-type Josephson junction on nanoplates of Bi2O2Se, a new emerging semiconductor with strong SOC. Through electrical gating, we show that the supercurrent can be fully turned ON and OFF, and its real-space pathways can be configured either through the bulk or along the edges. Our work demonstrates Bi2O2Se as a promising platform for constructing multifunctional hybrid superconducting devices as well as for searching for topological superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.04311v1-abstract-full').style.display = 'none'; document.getElementById('2004.04311v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters 20, 2569-2575, (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.12624">arXiv:2002.12624</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.12624">pdf</a>, <a href="https://arxiv.org/format/2002.12624">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.161108">10.1103/PhysRevB.101.161108 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Intrinsic quantum anomalous Hall phase induced by proximity in germanene/Cr$_2$Ge$_2$Te$_6$ van der Waals heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+R">Ruiling Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhan%2C+F">Fangyang Zhan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+B">Baobing Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xiaozhi Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Jing Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+R">Rui Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.12624v1-abstract-short" style="display: inline;"> A van der Waals heterostructure combined with intrinsic magnetism and topological orders have recently paved attractive avenues to realize quantum anomalous Hall effects. In this work, using first-principles calculations and effective model analysis, we propose that the robust quantum anomalous Hall states with sizable band gaps emerge in the van der Waals heterostructure of germanene/Cr$_2$Ge&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.12624v1-abstract-full').style.display = 'inline'; document.getElementById('2002.12624v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.12624v1-abstract-full" style="display: none;"> A van der Waals heterostructure combined with intrinsic magnetism and topological orders have recently paved attractive avenues to realize quantum anomalous Hall effects. In this work, using first-principles calculations and effective model analysis, we propose that the robust quantum anomalous Hall states with sizable band gaps emerge in the van der Waals heterostructure of germanene/Cr$_2$Ge$_2$Te$_6$. This heterostructure possesses high thermodynamic stability, thus facilitating its experimental fabrication. Furthermore, we uncover that the proximity effect enhances the coupling between the germanene and Cr$_2$Ge$_2$Te$_6$ layers, inducing the nontrivial band gaps in a wide range from 29 meV to 72 meV. The chiral edge states inside the band gap, leading to Hall conductance quantized to $-e^2/h$, are clearly visible. This findings provide an ideal candidate to detect the quantum anomalous Hall states and realize further applications to nontrivial quantum transport at a high temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.12624v1-abstract-full').style.display = 'none'; document.getElementById('2002.12624v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 161108 (2020) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Fan%2C+J&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Fan%2C+J&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Fan%2C+J&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Fan%2C+J&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10