CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 147 results for author: <span class="mathjax">Gao, W</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Gao%2C+W">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Gao, W"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Gao%2C+W&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Gao, W"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Gao%2C+W&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Gao%2C+W&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Gao%2C+W&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Gao%2C+W&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.07367">arXiv:2411.07367</a> <span> [<a href="https://arxiv.org/pdf/2411.07367">pdf</a>, <a href="https://arxiv.org/format/2411.07367">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Modeling Extensive Defects in Metals through Active Machine Learning and Automated Configuration Reconstruction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Shuang%2C+F">Fei Shuang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+K">Kai Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Ji%2C+Y">Yucheng Ji</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Wei Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Laurenti%2C+L">Luca Laurenti</a>, <a href="/search/cond-mat?searchtype=author&query=Dey%2C+P">Poulumi Dey</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.07367v1-abstract-short" style="display: inline;"> Extended defects such as dislocation networks and complex grain boundaries are ubiquitous in metals, and accurately modeling these extensive defects is crucial for understanding their deformation mechanisms. Existing machine learning interatomic potentials (MLIPs) often fall short in adequately describing these defects, as their significant characteristic sizes exceed the computational limits of f… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07367v1-abstract-full').style.display = 'inline'; document.getElementById('2411.07367v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.07367v1-abstract-full" style="display: none;"> Extended defects such as dislocation networks and complex grain boundaries are ubiquitous in metals, and accurately modeling these extensive defects is crucial for understanding their deformation mechanisms. Existing machine learning interatomic potentials (MLIPs) often fall short in adequately describing these defects, as their significant characteristic sizes exceed the computational limits of first-principles calculations. To address these challenges, this study constructs a comprehensive defect genome, derived through active machine learning from classical empirical potentials, and augmented by conventional on-the-fly active learning. Additionally, we have developed a approach for transforming defect atomic clusters into periodic configurations via precise atom insertion, using Grand Canonical Monte Carlo simulations. These strategies enable the development of highly accurate and transferable MLIPs for modeling extensive defects in metals. Using body-centered cubic tungsten as a model system, we develop an MLIP that reveals previously undocumented plastic mechanisms in simulations of nanoindentation and dislocation-grain boundary interactions. This framework not only improves the modeling accuracy of extensive defects in crystalline materials but also establishes a robust foundation for further advancement of MLIP development through the strategic use of defect genomes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07367v1-abstract-full').style.display = 'none'; document.getElementById('2411.07367v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.03664">arXiv:2411.03664</a> <span> [<a href="https://arxiv.org/pdf/2411.03664">pdf</a>, <a href="https://arxiv.org/format/2411.03664">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> A Predictive First-Principles Framework of Chiral Charge Density Waves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Shao%2C+S">Sen Shao</a>, <a href="/search/cond-mat?searchtype=author&query=Chiu%2C+W">Wei-Chi Chiu</a>, <a href="/search/cond-mat?searchtype=author&query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&query=Hou%2C+T">Tao Hou</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N">Naizhou Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Belopolski%2C+I">Ilya Belopolski</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+Y">Yilin Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Ni%2C+J">Jinyang Ni</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yongkai Li</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">Jinjin Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Yahyavi%2C+M">Mohammad Yahyavi</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+Y">Yuanjun Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Feng%2C+Q">Qiange Feng</a>, <a href="/search/cond-mat?searchtype=author&query=Cui%2C+P">Peiyuan Cui</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+C">Cheng-Long Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+Y">Yugui Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zhiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+S">Su-Yang Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+Q">Qiong Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Wei-bo Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Bansil%2C+A">Arun Bansil</a>, <a href="/search/cond-mat?searchtype=author&query=Hasan%2C+M+Z">M. Zahid Hasan</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+G">Guoqing Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.03664v1-abstract-short" style="display: inline;"> Implementing and tuning chirality is fundamental in physics, chemistry, and material science. Chiral charge density waves (CDWs), where chirality arises from correlated charge orders, are attracting intense interest due to their exotic transport and optical properties. However, a general framework for predicting chiral CDW materials is lacking, primarily because the underlying mechanisms remain el… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03664v1-abstract-full').style.display = 'inline'; document.getElementById('2411.03664v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.03664v1-abstract-full" style="display: none;"> Implementing and tuning chirality is fundamental in physics, chemistry, and material science. Chiral charge density waves (CDWs), where chirality arises from correlated charge orders, are attracting intense interest due to their exotic transport and optical properties. However, a general framework for predicting chiral CDW materials is lacking, primarily because the underlying mechanisms remain elusive. Here, we address this challenge by developing the first comprehensive predictive framework, systematically identifying chiral CDW materials via first-principles calculations. The key lies in the previously overlooked phase difference of the CDW Q-vectors between layers, which is linked to opposite collective atomic displacements across different layers. This phase difference induces a spiral arrangement of the Q-vectors, ultimately giving rise to a chiral structure in real space. We validate our framework by applying it to the kagome lattice AV$_{3}$Sb$_{5}$ (A = K, Rb, Cs), successfully predicting emergent structural chirality. To demonstrate the generality of our approach, we extend it to predict chiral CDWs in the triangular-lattice NbSe$_{2}$. Beyond material predictions, our theory uncovers a universal and unprecedented Hall effect in chiral CDW materials, occurring without external magnetic fields or intrinsic magnetization. Our experiments on CsV$_{3}$Sb$_{5}$ confirm this prediction, observing a unique signature where the Hall conductivity's sign reverses when the input current is reversed, a phenomenon distinct from known Hall effects. Our findings elucidate the mechanisms behind chiral CDWs and open new avenues for discovering materials with unconventional quantum properties, with potential applications in next-generation electronic and spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03664v1-abstract-full').style.display = 'none'; document.getElementById('2411.03664v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.17654">arXiv:2410.17654</a> <span> [<a href="https://arxiv.org/pdf/2410.17654">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Dynamic Tuning of Single-Photon Emission in Monolayer WSe2 via Localized Strain Engineering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yu%2C+Y">Yi Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Ge%2C+J">Junyu Ge</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+M">Manlin Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Seo%2C+I+C">In Cheol Seo</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+Y">Youngmin Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Eng%2C+J+J+H">John J. H. Eng</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+K">Kunze Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+T">Tian-Ran Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Weibo Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Hong Li</a>, <a href="/search/cond-mat?searchtype=author&query=Nam%2C+D">Donguk Nam</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.17654v1-abstract-short" style="display: inline;"> Two-dimensional (2D) materials have emerged as promising candidates for next-generation integrated single-photon emitters (SPEs). However, significant variability in the emission energies of 2D SPEs presents a major challenge in producing identical single photons from different SPEs, which may become crucial for various quantum applications including quantum information processing. Although variou… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17654v1-abstract-full').style.display = 'inline'; document.getElementById('2410.17654v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.17654v1-abstract-full" style="display: none;"> Two-dimensional (2D) materials have emerged as promising candidates for next-generation integrated single-photon emitters (SPEs). However, significant variability in the emission energies of 2D SPEs presents a major challenge in producing identical single photons from different SPEs, which may become crucial for various quantum applications including quantum information processing. Although various approaches to dynamically tuning the emission energies of 2D SPEs have been developed to address the issue, the practical solution to matching multiple individual SPEs in a single 2D flake is still scarce. In this work, we demonstrate a precise emission energy tuning of individual SPEs in a WSe2 monolayer. Our approach utilizes localized strain fields near individual SPEs, which we control independently by adjusting the physical volume of an SU-8-based stressor layer via focused laser annealing. This technique allows continuous emission energy tuning of up to 15 meV while maintaining the qualities of SPEs. Additionally, we showcase the precise spectral alignment of three distinct SPEs in a single WSe2 monolayer to the same wavelength. The tunability of 2D SPEs represents a solid step towards the on-chip integrated photonics with 2D materials for quantum technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17654v1-abstract-full').style.display = 'none'; document.getElementById('2410.17654v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.08586">arXiv:2410.08586</a> <span> [<a href="https://arxiv.org/pdf/2410.08586">pdf</a>, <a href="https://arxiv.org/format/2410.08586">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Optical modeling, solver, and design of wafer-scale single-enantiomer carbon nanotube film and reconfigurable chiral photonic device </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Fan%2C+J">Jichao Fan</a>, <a href="/search/cond-mat?searchtype=author&query=Hillam%2C+B">Benjamin Hillam</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+C">Cheng Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Fujinami%2C+H">Hiroyuki Fujinami</a>, <a href="/search/cond-mat?searchtype=author&query=Koki%2C+S">Shiba Koki</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+H">Haoyu Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+R">Ruiyang Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Yanagi%2C+K">Kazuhiro Yanagi</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Weilu Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.08586v1-abstract-short" style="display: inline;"> The interaction of circularly polarized light with chiral matter and functional devices enables novel phenomena and applications. Recently, wafer-scale solid-state single-enantiomer carbon nanotube (CNT) films have become feasible and are emerging as a chiral photonic material platform thanks to their quantum-confinement-induced optical properties and facile scalable assembly. However, optical mod… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.08586v1-abstract-full').style.display = 'inline'; document.getElementById('2410.08586v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.08586v1-abstract-full" style="display: none;"> The interaction of circularly polarized light with chiral matter and functional devices enables novel phenomena and applications. Recently, wafer-scale solid-state single-enantiomer carbon nanotube (CNT) films have become feasible and are emerging as a chiral photonic material platform thanks to their quantum-confinement-induced optical properties and facile scalable assembly. However, optical modeling, solver, and device design tools for such materials are non-existent. Here, we prepare wafer-scale single-enantiomer (6,5) and (11,-5) randomly oriented CNT films and create an optical material model based on measured experimental optical spectra. We also implement a highly-parallel graphic-processing-unit accelerated transfer matrix solver for general bi-anisotropic materials and layered structures. Further, we demonstrate reconfigurable chiral photonic devices in a heterostructure with phase change materials through machine learning-enabled efficient gradient-based inverse design and optimization. Our developed full stack of a chiral photonic material and device hardware platform and a corresponding high-performance differential-programming-enabled solver opens the door for future chiral photonic devices and applications based on single-enantiomer CNT films. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.08586v1-abstract-full').style.display = 'none'; document.getElementById('2410.08586v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.14573">arXiv:2409.14573</a> <span> [<a href="https://arxiv.org/pdf/2409.14573">pdf</a>, <a href="https://arxiv.org/format/2409.14573">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Decoding the hidden dynamics of super-Arrhenius hydrogen diffusion in multi-principal element alloys via machine learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Shuang%2C+F">Fei Shuang</a>, <a href="/search/cond-mat?searchtype=author&query=Ji%2C+Y">Yucheng Ji</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+Z">Zixiong Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+C">Chaofang Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Wei Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Laurenti%2C+L">Luca Laurenti</a>, <a href="/search/cond-mat?searchtype=author&query=Dey%2C+P">Poulumi Dey</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.14573v1-abstract-short" style="display: inline;"> Understanding atomic hydrogen (H) diffusion in multi-principal element alloys (MPEAs) is essential for advancing clean energy technologies such as H transport, storage, and nuclear fusion applications. However, the vast compositional space and the intricate chemical environments inherent in MPEAs pose significant obstacles. In this work, we address this challenge by developing a multifaceted machi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14573v1-abstract-full').style.display = 'inline'; document.getElementById('2409.14573v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.14573v1-abstract-full" style="display: none;"> Understanding atomic hydrogen (H) diffusion in multi-principal element alloys (MPEAs) is essential for advancing clean energy technologies such as H transport, storage, and nuclear fusion applications. However, the vast compositional space and the intricate chemical environments inherent in MPEAs pose significant obstacles. In this work, we address this challenge by developing a multifaceted machine learning framework that integrates machine-learning force field, neural network-driven kinetic Monte Carlo, and machine-learning symbolic regression. This framework allows for accurate investigation of H diffusion across the entire compositional space of body-centered cubic (BCC) refractory MoNbTaW alloys, achieving density functional theory accuracy. For the first time, we discover that H diffusion in MPEAs exhibits super-Arrhenius behavior, described by the Vogel-Fulcher-Tammann model, where the Vogel temperature correlates with the 5th percentile of H solution energy spectrum. We also derive robust analytical expressions that can be used to predict H diffusivity in general BCC MPEAs. Our findings further elucidate that chemical short-range order (SRO) generally does not impact H diffusion, except it enhances diffusion when "H-favoring" elements (notably Nb and Ta) are present in low concentrations. These findings not only enhance our understanding of H diffusion dynamics in general MPEAs but also guide the development of advanced MPEAs in H-related applications by manipulating element type, composition and SRO. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14573v1-abstract-full').style.display = 'none'; document.getElementById('2409.14573v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.14110">arXiv:2408.14110</a> <span> [<a href="https://arxiv.org/pdf/2408.14110">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Room-temperature Optically Detected Magnetic Resonance of Telecom Single Photon Emitters in GaN </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Eng%2C+J+J+H">John J. H. Eng</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Z">Zhengzhi Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Meunier%2C+M">Max Meunier</a>, <a href="/search/cond-mat?searchtype=author&query=Rasmita%2C+A">Abdullah Rasmita</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+H">Haoran Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+Y">Yuzhe Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+F">Feifei Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Cai%2C+H">Hongbing Cai</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+Z">Zhaogang Dong</a>, <a href="/search/cond-mat?searchtype=author&query=P%C3%A9rez%2C+J+Z">Jes煤s Z煤帽iga P茅rez</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Weibo Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.14110v1-abstract-short" style="display: inline;"> Solid-state defects susceptible of spin manipulation hold great promise for scalable quantum technology. To broaden their utility, operating at room temperature and emitting in the telecom wavelength range are desired, eliminating cryogenic requirements and leveraging existing optical fiber infrastructure for transmitting the quantum information. To that end, we report that telecom single photon e… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14110v1-abstract-full').style.display = 'inline'; document.getElementById('2408.14110v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.14110v1-abstract-full" style="display: none;"> Solid-state defects susceptible of spin manipulation hold great promise for scalable quantum technology. To broaden their utility, operating at room temperature and emitting in the telecom wavelength range are desired, eliminating cryogenic requirements and leveraging existing optical fiber infrastructure for transmitting the quantum information. To that end, we report that telecom single photon emitters (SPEs) in gallium nitride (GaN) exhibit optically detected magnetic resonance (ODMR) at room temperature. The analysis of ODMR as a function of magnetic field orientation enables the determination of the orientation of the spin quantization axis with respect to the GaN crystalline lattice. The optical transitions dynamics are analyzed to gain further insight into the transition rates dominating ODMR. Our findings, coupled with GaN's mature fabrication technology, could facilitate the realization of scalable quantum technology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14110v1-abstract-full').style.display = 'none'; document.getElementById('2408.14110v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.17867">arXiv:2407.17867</a> <span> [<a href="https://arxiv.org/pdf/2407.17867">pdf</a>, <a href="https://arxiv.org/format/2407.17867">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Intrinsic Nonlinear Spin Hall Effect and Manipulation of Perpendicular Magnetization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Hui Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+H">Huiying Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Feng%2C+X">Xukun Feng</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+J">Jin Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+W">Weikang Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Lai%2C+S">Shen Lai</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Weibo Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Xiao%2C+C">Cong Xiao</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+S+A">Shengyuan A. Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.17867v1-abstract-short" style="display: inline;"> We propose an intrinsic nonlinear spin Hall effect, which enables the generation of collinearly-polarized spin current in a large class of nonmagnetic materials with the corresponding linear response being symmetry-forbidden. This opens a new avenue for field-free switching of perpendicular magnetization, which is required for the next-generation information storage technology. We develop the micr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17867v1-abstract-full').style.display = 'inline'; document.getElementById('2407.17867v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.17867v1-abstract-full" style="display: none;"> We propose an intrinsic nonlinear spin Hall effect, which enables the generation of collinearly-polarized spin current in a large class of nonmagnetic materials with the corresponding linear response being symmetry-forbidden. This opens a new avenue for field-free switching of perpendicular magnetization, which is required for the next-generation information storage technology. We develop the microscopic theory of this effect, and clarify its quantum origin in band geometric quantities which can be enhanced by topological nodal features. Combined with first-principles calculations, we predict pronounced effects at room temperature in topological metals $\mathrm{PbTaSe_{2}}$ and PdGa. Our work establishes a fundamental nonlinear response in spin transport, and opens the door to exploring spintronic applications based on nonlinear spin Hall effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17867v1-abstract-full').style.display = 'none'; document.getElementById('2407.17867v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.16131">arXiv:2407.16131</a> <span> [<a href="https://arxiv.org/pdf/2407.16131">pdf</a>, <a href="https://arxiv.org/format/2407.16131">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> CrysToGraph: A Comprehensive Predictive Model for Crystal Materials Properties and the Benchmark </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Hongyi Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+J">Ji Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Liang%2C+J">Jinzhe Liang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhai%2C+L">Li Zhai</a>, <a href="/search/cond-mat?searchtype=author&query=Tang%2C+Z">Zitian Tang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z">Zijian Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhai%2C+W">Wei Zhai</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xusheng Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Weihao Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Gong%2C+S">Sheng Gong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.16131v2-abstract-short" style="display: inline;"> The ionic bonding across the lattice and ordered microscopic structures endow crystals with unique symmetry and determine their macroscopic properties. Unconventional crystals, in particular, exhibit non-traditional lattice structures or possess exotic physical properties, making them intriguing subjects for investigation. Therefore, to accurately predict the physical and chemical properties of cr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16131v2-abstract-full').style.display = 'inline'; document.getElementById('2407.16131v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.16131v2-abstract-full" style="display: none;"> The ionic bonding across the lattice and ordered microscopic structures endow crystals with unique symmetry and determine their macroscopic properties. Unconventional crystals, in particular, exhibit non-traditional lattice structures or possess exotic physical properties, making them intriguing subjects for investigation. Therefore, to accurately predict the physical and chemical properties of crystals, it is crucial to consider long-range orders. While GNN excels at capturing the local environment of atoms in crystals, they often face challenges in effectively capturing longer-ranged interactions due to their limited depth. In this paper, we propose CrysToGraph ($\textbf{Crys}$tals with $\textbf{T}$ransformers $\textbf{o}$n $\textbf{Graph}$s), a novel transformer-based geometric graph network designed specifically for unconventional crystalline systems, and UnconvBench, a comprehensive benchmark to evaluate models' predictive performance on unconventional crystal materials such as defected crystals, low-dimension crystals and MOF. CrysToGraph effectively captures short-range interactions with transformer-based graph convolution blocks as well as long-range interactions with graph-wise transformer blocks. CrysToGraph proofs its effectiveness in modelling unconventional crystal materials in multiple tasks, and moreover, it outperforms most existing methods, achieving new state-of-the-art results on the benchmarks of both unconventional crystals and traditional crystals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16131v2-abstract-full').style.display = 'none'; document.getElementById('2407.16131v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.13985">arXiv:2407.13985</a> <span> [<a href="https://arxiv.org/pdf/2407.13985">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Cluster Sliding Ferroelectricity in Trilayer Quasi-Hexagonal C60 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xuefei Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Ren%2C+Y">Yanhan Ren</a>, <a href="/search/cond-mat?searchtype=author&query=Qiu%2C+S">Shi Qiu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+F">Fan Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+X">Xueao Li</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+J">Junfeng Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Weiwei Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+J">Jijun Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.13985v1-abstract-short" style="display: inline;"> Electric polarization typically originates from non-centrosymmetric charge distributions. Since chemical bonds between atoms of the same elements favor centrosymmetric crystal structures and symmetrically distributed electron charges, elemental ferroelectrics are extremely rare. In comparison to atoms, elemental clusters are less symmetric and typically have various preferred orientations in cryst… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13985v1-abstract-full').style.display = 'inline'; document.getElementById('2407.13985v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.13985v1-abstract-full" style="display: none;"> Electric polarization typically originates from non-centrosymmetric charge distributions. Since chemical bonds between atoms of the same elements favor centrosymmetric crystal structures and symmetrically distributed electron charges, elemental ferroelectrics are extremely rare. In comparison to atoms, elemental clusters are less symmetric and typically have various preferred orientations in crystals. Consequently, the assembly of clusters with different orientations tends to break the inversion symmetry. Based on this concept, we show that sliding ferroelectricity naturally emerges in trilayer quasi-hexagonal phase (qHP) C60, a cluster-assembled carbon allotrope recently synthesized. Trilayer qHP C60's have several stable polar structures, which are distinguishable in second-harmonic generation (SHG) responses. Compared to previously found elemental ferroelectrics, trilayer qHP C60's have sizable band gaps and some of them have both switchable out-of-plane and in-plane polarizations. Remarkably, the out-of-plane and in-plane polarizations are decoupled, enabling an easy-to-implement construction of Van der Waals homostructures with ferroelectrically switchable chirality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13985v1-abstract-full').style.display = 'none'; document.getElementById('2407.13985v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.13674">arXiv:2407.13674</a> <span> [<a href="https://arxiv.org/pdf/2407.13674">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Observation of Ferromagnetic Phase in the Second Moir茅 Band of Twisted MoTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=An%2C+L">Liheng An</a>, <a href="/search/cond-mat?searchtype=author&query=Pan%2C+H">Haiyang Pan</a>, <a href="/search/cond-mat?searchtype=author&query=Qiu%2C+W">Wen-Xuan Qiu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N">Naizhou Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Ru%2C+S">Shihao Ru</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+Q">Qinghai Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Dai%2C+X">Xuran Dai</a>, <a href="/search/cond-mat?searchtype=author&query=Cai%2C+X">Xiangbin Cai</a>, <a href="/search/cond-mat?searchtype=author&query=Shang%2C+Q">Qiuyu Shang</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+X">Xiufang Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+H">Hao Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Lyu%2C+X">Xiaodan Lyu</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+F">Fengcheng Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Wei-bo Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.13674v1-abstract-short" style="display: inline;"> Flat bands and electron correlation in moir茅 lattices give rise to many exotic phases, including Mott insulators, superconductivity, and topological states. Within the first moir茅 band, integer and fractional quantum anomalous Hall effects have been observed in twisted bilayer MoTe2 (tMoTe2) at one hole doping and fractional doping per moir茅 unit cell, respectively. When the second moir茅 band is f… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13674v1-abstract-full').style.display = 'inline'; document.getElementById('2407.13674v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.13674v1-abstract-full" style="display: none;"> Flat bands and electron correlation in moir茅 lattices give rise to many exotic phases, including Mott insulators, superconductivity, and topological states. Within the first moir茅 band, integer and fractional quantum anomalous Hall effects have been observed in twisted bilayer MoTe2 (tMoTe2) at one hole doping and fractional doping per moir茅 unit cell, respectively. When the second moir茅 band is fully hole doped, quantum spin Hall insulator has also been reported in tMoTe2 at a certain twist angle. Exotic topological states together with ferromagnetic (FM) states in the high moir茅 band can potentially exist as well. In this study, we report the observation of a FM phase in the second moir茅 band in tMoTe2. The FM phase can be tuned by both the doping level and displacement field. At filling around 2.58 holes per moir茅 unit cell, the FM phase reaches a Curie temperature of 3.5 K. A large displacement field can suppress the FM phase, like the FM phase at the filling of -1. Our results demonstrate the realization of time-reversal symmetry-breaking states in the higher moir茅 bands in tMoTe2. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13674v1-abstract-full').style.display = 'none'; document.getElementById('2407.13674v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text: 13 pages, 5 figures. Supplementary: 11 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.04514">arXiv:2407.04514</a> <span> [<a href="https://arxiv.org/pdf/2407.04514">pdf</a>, <a href="https://arxiv.org/format/2407.04514">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Giant Second Harmonic Generation from Wafer-Scale Aligned Chiral Carbon Nanotubes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Xu%2C+R">Rui Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Doumani%2C+J">Jacques Doumani</a>, <a href="/search/cond-mat?searchtype=author&query=Labuntsov%2C+V">Viktor Labuntsov</a>, <a href="/search/cond-mat?searchtype=author&query=Hong%2C+N">Nina Hong</a>, <a href="/search/cond-mat?searchtype=author&query=Samaha%2C+A">Anna-Christina Samaha</a>, <a href="/search/cond-mat?searchtype=author&query=Tu%2C+W">Weiran Tu</a>, <a href="/search/cond-mat?searchtype=author&query=Tay%2C+F">Fuyang Tay</a>, <a href="/search/cond-mat?searchtype=author&query=Blackert%2C+E">Elizabeth Blackert</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+J">Jiaming Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Tahchi%2C+M+E">Mario El Tahchi</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Weilu Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Lou%2C+J">Jun Lou</a>, <a href="/search/cond-mat?searchtype=author&query=Yomogida%2C+Y">Yohei Yomogida</a>, <a href="/search/cond-mat?searchtype=author&query=Yanagi%2C+K">Kazuhiro Yanagi</a>, <a href="/search/cond-mat?searchtype=author&query=Saito%2C+R">Riichiro Saito</a>, <a href="/search/cond-mat?searchtype=author&query=Perebeinos%2C+V">Vasili Perebeinos</a>, <a href="/search/cond-mat?searchtype=author&query=Baydin%2C+A">Andrey Baydin</a>, <a href="/search/cond-mat?searchtype=author&query=Kono%2C+J">Junichiro Kono</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+H">Hanyu Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.04514v1-abstract-short" style="display: inline;"> Chiral carbon nanotubes (CNTs) are direct-gap semiconductors with optical properties governed by one-dimensional excitons with enormous oscillator strengths. Each species of chiral CNTs has an enantiomeric pair of left- and right-handed CNTs with nearly identical properties, but enantiomer-dependent phenomena can emerge, especially in nonlinear optical processes. Theoretical studies have predicted… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.04514v1-abstract-full').style.display = 'inline'; document.getElementById('2407.04514v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.04514v1-abstract-full" style="display: none;"> Chiral carbon nanotubes (CNTs) are direct-gap semiconductors with optical properties governed by one-dimensional excitons with enormous oscillator strengths. Each species of chiral CNTs has an enantiomeric pair of left- and right-handed CNTs with nearly identical properties, but enantiomer-dependent phenomena can emerge, especially in nonlinear optical processes. Theoretical studies have predicted strong second-order nonlinearities for chiral CNTs, but there has been no experimental verification due to the lack of macroscopically ordered assemblies of single-enantiomer chiral CNTs. Here for the first time, we report the synthesis of centimeter-scale films of densely packed and aligned single-enantiomer chiral CNTs that exhibit micro-fabrication compatibility. We observe giant second harmonic generation (SHG) emission from the chiral CNT film, which originates from the intrinsic chirality and inversion symmetry breaking of the atomic structure of chiral CNTs. The observed value of the dominant element of the second-order nonlinear optical susceptibility tensor reaches $1.5\times 10^{3}$ pm/V at a pump wavelength of 1030 nm, corresponding to the lowest-energy excitonic resonance. Our calculations based on many-body theory correctly estimate the spectrum and magnitude of such excitonically enhanced optical nonlinearity. These results are promising for developing scalable chiral-CNT electronics, nonlinear photonics and photonic quantum computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.04514v1-abstract-full').style.display = 'none'; document.getElementById('2407.04514v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.13190">arXiv:2406.13190</a> <span> [<a href="https://arxiv.org/pdf/2406.13190">pdf</a>, <a href="https://arxiv.org/format/2406.13190">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> A programmable wafer-scale chiroptical heterostructure of twisted aligned carbon nanotubes and phase change materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Fan%2C+J">Jichao Fan</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+R">Ruiyang Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Lou%2C+M">Minhan Lou</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+H">Haoyu Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Hong%2C+N">Nina Hong</a>, <a href="/search/cond-mat?searchtype=author&query=Tang%2C+Y">Yingheng Tang</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Weilu Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.13190v1-abstract-short" style="display: inline;"> The ability to design and dynamically control chiroptical responses in solid-state matter at wafer scale enables new opportunities in various areas. Here we present a full stack of computer-aided designs and experimental implementations of a dynamically programmable, unified, scalable chiroptical heterostructure containing twisted aligned one-dimensional (1D) carbon nanotubes (CNTs) and non-volati… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13190v1-abstract-full').style.display = 'inline'; document.getElementById('2406.13190v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.13190v1-abstract-full" style="display: none;"> The ability to design and dynamically control chiroptical responses in solid-state matter at wafer scale enables new opportunities in various areas. Here we present a full stack of computer-aided designs and experimental implementations of a dynamically programmable, unified, scalable chiroptical heterostructure containing twisted aligned one-dimensional (1D) carbon nanotubes (CNTs) and non-volatile phase change materials (PCMs). We develop a software infrastructure based on high-performance machine learning frameworks, including differentiable programming and derivative-free optimization, to efficiently optimize the tunability of both excitonic reciprocal and linear-anisotropy-induced nonreciprocal circular dichroism (CD) responses. We experimentally implement designed heterostructures with wafer-scale self-assembled aligned CNTs and deposited PCMs. We dynamically program reciprocal and nonreciprocal CD responses by inducing phase transitions of PCMs, and nonreciprocal responses display polarity reversal of CD upon sample flipping in broadband spectral ranges. All experimental results agree with simulations. Further, we demonstrate that the vertical dimension of heterostructure is scalable with the number of stacking layers and aligned CNTs play dual roles - the layer to produce CD responses and the Joule heating electrode to electrically program PCMs. This heterostructure platform is versatile and expandable to a library of 1D nanomaterials and electro-optic materials for exploring novel chiral phenomena and photonic and optoelectronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13190v1-abstract-full').style.display = 'none'; document.getElementById('2406.13190v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.12613">arXiv:2406.12613</a> <span> [<a href="https://arxiv.org/pdf/2406.12613">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Understanding the intrinsic framework of the Hall-Petch relationship of metals from the view of the electronic-structure level </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+X">Xin Li</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Wang Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Q">Qing Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.12613v1-abstract-short" style="display: inline;"> The relationship between grain size and yield strength of metals follows the Hall-Petch relationship 蟽 = 蟽0 + kd^-0.5; however, the specific physical factors that affect the coefficients 蟽0 and k of this relationship remain unclear. Here we propose the intrinsic descriptors to determine the Hall-Petch relation across different metals and alloys. Inspired by the tight-binding theory, we find that 蟽… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12613v1-abstract-full').style.display = 'inline'; document.getElementById('2406.12613v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.12613v1-abstract-full" style="display: none;"> The relationship between grain size and yield strength of metals follows the Hall-Petch relationship 蟽 = 蟽0 + kd^-0.5; however, the specific physical factors that affect the coefficients 蟽0 and k of this relationship remain unclear. Here we propose the intrinsic descriptors to determine the Hall-Petch relation across different metals and alloys. Inspired by the tight-binding theory, we find that 蟽0 strongly depends on the group and period number, the valence-electron number and electronegativity, while k is determined by the cohesive energy. Our framework establishes a predictive structure-property relationship for the size-dependent yield strength of various metals, and unravels that both the coefficients of the Hall-Petch relationship physically originate from the d-band properties. This novel correlation provides a new perspective for understanding the mechanical strength of metals, which is useful for the design of high-performance materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12613v1-abstract-full').style.display = 'none'; document.getElementById('2406.12613v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.02907">arXiv:2406.02907</a> <span> [<a href="https://arxiv.org/pdf/2406.02907">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/inf2.12504">10.1002/inf2.12504 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Room-temperature tunable tunneling magnetoresistance in Fe3GaTe2/WSe2/Fe3GaTe2 van der Waals heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Pan%2C+H">Haiyang Pan</a>, <a href="/search/cond-mat?searchtype=author&query=Singh%2C+A+K">Anil Kumar Singh</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+C">Chusheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+X">Xueqi Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+J">Jiayu Shi</a>, <a href="/search/cond-mat?searchtype=author&query=An%2C+L">Liheng An</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N">Naizhou Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Duan%2C+R">Ruihuan Duan</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Z">Zheng Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Parkin%2C+S+t+S+P">S tuart S. P. Parkin</a>, <a href="/search/cond-mat?searchtype=author&query=Deb%2C+P">Pritam Deb</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Weibo Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.02907v1-abstract-short" style="display: inline;"> The exceptional properties of two-dimensional (2D) magnet materials present a novel approach to fabricate functional magnetic tunnel junctions (MTJ) by constructing full van der Waals (vdW) heterostructures with atomically sharp and clean interfaces. The exploration of vdW MTJ devices with high working temperature and adjustable functionalities holds great potential for advancing the application o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.02907v1-abstract-full').style.display = 'inline'; document.getElementById('2406.02907v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.02907v1-abstract-full" style="display: none;"> The exceptional properties of two-dimensional (2D) magnet materials present a novel approach to fabricate functional magnetic tunnel junctions (MTJ) by constructing full van der Waals (vdW) heterostructures with atomically sharp and clean interfaces. The exploration of vdW MTJ devices with high working temperature and adjustable functionalities holds great potential for advancing the application of 2D materials in magnetic sensing and data storage. Here, we report the observation of highly tunable room-temperature tunneling magnetoresistance through electronic means in a full vdW Fe3GaTe2/WSe2/Fe3GaTe2 MTJ. The spin valve effect of the MTJ can be detected even with the current below 1 nA, both at low and room temperatures, yielding a tunneling magnetoresistance (TMR) of 340% at 2 K and 50% at 300 K, respectively. Importantly, the magnitude and sign of TMR can be modulated by a DC bias current, even at room temperature, a capability that was previously unrealized in full vdW MTJs. This tunable TMR arises from the contribution of energy-dependent localized spin states in the metallic ferromagnet Fe3GaTe2 during tunnel transport when a finite electrical bias is applied. Our work offers a new perspective for designing and exploring room-temperature tunable spintronic devices based on vdW magnet heterostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.02907v1-abstract-full').style.display = 'none'; document.getElementById('2406.02907v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> InfoMat.2023;e12504 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.14165">arXiv:2405.14165</a> <span> [<a href="https://arxiv.org/pdf/2405.14165">pdf</a>, <a href="https://arxiv.org/format/2405.14165">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Spatial topological insulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=He%2C+Q">Qinghua He</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Wenlong Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+F">Feng Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.14165v1-abstract-short" style="display: inline;"> Traditional topological insulators often rely on band inversions driven by nonuniform hopping textures and spin-orbit coupling, as exemplified in the Su-Schrieffer-Heeger and Kane-Mele models. We present a novel approach utilizing the spatial nature of sublattice symmetry to induce nontrivial topological insulating properties characterized by second-order corner states without band inversion. To s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.14165v1-abstract-full').style.display = 'inline'; document.getElementById('2405.14165v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.14165v1-abstract-full" style="display: none;"> Traditional topological insulators often rely on band inversions driven by nonuniform hopping textures and spin-orbit coupling, as exemplified in the Su-Schrieffer-Heeger and Kane-Mele models. We present a novel approach utilizing the spatial nature of sublattice symmetry to induce nontrivial topological insulating properties characterized by second-order corner states without band inversion. To substantiate our proposal, we design a photonic crystal with non primitive translational symmetry, demonstrating unique directional waveguide edge modes and localized corner modes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.14165v1-abstract-full').style.display = 'none'; document.getElementById('2405.14165v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.07120">arXiv:2405.07120</a> <span> [<a href="https://arxiv.org/pdf/2405.07120">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.21.054019">10.1103/PhysRevApplied.21.054019 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quasiparticle and Excitonic Structures of Few-layer and Bulk GaSe: Interlayer Coupling, Self-energy, and Electron-hole Interaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jia%2C+F">Fanhao Jia</a>, <a href="/search/cond-mat?searchtype=author&query=Tang%2C+Z">Zhao Tang</a>, <a href="/search/cond-mat?searchtype=author&query=Cruz%2C+G+J">Greis J. Cruz</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Weiwei Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+S">Shaowen Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Ren%2C+W">Wei Ren</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+P">Peihong Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.07120v1-abstract-short" style="display: inline;"> Metal monochalcogenide GaSe is a classic layered semiconductor that has received increasing research interest due to its highly tunable electronic and optical properties for ultrathin electronics applications. Despite intense research efforts, a systematic understanding of the layer-dependent electronic and optical properties of GaSe remains to be established, and there appear significant discrepa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.07120v1-abstract-full').style.display = 'inline'; document.getElementById('2405.07120v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.07120v1-abstract-full" style="display: none;"> Metal monochalcogenide GaSe is a classic layered semiconductor that has received increasing research interest due to its highly tunable electronic and optical properties for ultrathin electronics applications. Despite intense research efforts, a systematic understanding of the layer-dependent electronic and optical properties of GaSe remains to be established, and there appear significant discrepancies between different experiments. We have performed GW plus Bethe-Salpeter equation (BSE) calculations for few-layer and bulk GaSe, aiming at understanding the effects of interlayer coupling and dielectric screening on excited state properties of GaSe, and how the electronic and optical properties evolve from strongly two-dimensional (2D) like to intermediate thick layers, and to three-dimensional (3D) bulk character. Using a new definition of the exciton binding energy, we are able to calculate the binding energies of all excitonic states. Our results reveal an interesting correlation between the binding energy of an exciton and the spread of its wave function in the real and momentum spaces. We find that the existence of (nearly) parallel valence and conduction bands facilitates the formation of excitonic states that spread out in the momentum space. Thus, these excitons tend to be more localized in real space and have large exciton binding energies. The interlayer coupling substantially suppresses the Mexican-hat-like dispersion of the top valence band seen in monolayer system, explaining the greatly enhanced photoluminescence (PL) as layer thickness increases. Our results also help resolve apparent discrepancies between different experiments. After including the quasiparticle and excitonic effects as well the optical activities of excitons, our results compare well with available experimental results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.07120v1-abstract-full').style.display = 'none'; document.getElementById('2405.07120v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 21, 054019 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.07181">arXiv:2404.07181</a> <span> [<a href="https://arxiv.org/pdf/2404.07181">pdf</a>, <a href="https://arxiv.org/format/2404.07181">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> BAMBOO: a predictive and transferable machine learning force field framework for liquid electrolyte development </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Gong%2C+S">Sheng Gong</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yumin Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Mu%2C+Z">Zhenliang Mu</a>, <a href="/search/cond-mat?searchtype=author&query=Pu%2C+Z">Zhichen Pu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Hongyi Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+Z">Zhiao Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+M">Mengyi Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+T">Tianze Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zhi Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+L">Lifei Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+X">Xiaojie Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+S">Shaochen Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Weihao Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+W">Wen Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Xiang%2C+L">Liang Xiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.07181v4-abstract-short" style="display: inline;"> Despite the widespread applications of machine learning force field (MLFF) on solids and small molecules, there is a notable gap in applying MLFF to complex liquid electrolytes. In this work, we introduce BAMBOO (ByteDance AI Molecular Simulation Booster), a novel framework for molecular dynamics (MD) simulations, with a demonstration of its capabilities in the context of liquid electrolytes for l… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.07181v4-abstract-full').style.display = 'inline'; document.getElementById('2404.07181v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.07181v4-abstract-full" style="display: none;"> Despite the widespread applications of machine learning force field (MLFF) on solids and small molecules, there is a notable gap in applying MLFF to complex liquid electrolytes. In this work, we introduce BAMBOO (ByteDance AI Molecular Simulation Booster), a novel framework for molecular dynamics (MD) simulations, with a demonstration of its capabilities in the context of liquid electrolytes for lithium batteries. We design a physics-inspired graph equivariant transformer architecture as the backbone of BAMBOO to learn from quantum mechanical simulations. Additionally, we pioneer an ensemble knowledge distillation approach and apply it on MLFFs to improve the stability of MD simulations. Finally, we propose the density alignment algorithm to align BAMBOO with experimental measurements. BAMBOO demonstrates state-of-the-art accuracy in predicting key electrolyte properties such as density, viscosity, and ionic conductivity across various solvents and salt combinations. Our current model, trained on more than 15 chemical species, achieves the average density error of 0.01 g/cm$^3$ on various compositions compared with experimental data. Moreover, our model demonstrates transferability to molecules not included in the quantum mechanical dataset. We envision this work as paving the way to a "universal MLFF" capable of simulating properties of common organic liquids. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.07181v4-abstract-full').style.display = 'none'; document.getElementById('2404.07181v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.18122">arXiv:2403.18122</a> <span> [<a href="https://arxiv.org/pdf/2403.18122">pdf</a>, <a href="https://arxiv.org/format/2403.18122">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Adaptive Loss Weighting for Machine Learning Interatomic Potentials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ocampo%2C+D">Daniel Ocampo</a>, <a href="/search/cond-mat?searchtype=author&query=Posso%2C+D">Daniela Posso</a>, <a href="/search/cond-mat?searchtype=author&query=Namakian%2C+R">Reza Namakian</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Wei Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.18122v1-abstract-short" style="display: inline;"> Training machine learning interatomic potentials often requires optimizing a loss function composed of three variables: potential energies, forces, and stress. The contribution of each variable to the total loss is typically weighted using fixed coefficients. Identifying these coefficients usually relies on iterative or heuristic methods, which may yield sub-optimal results. To address this issu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.18122v1-abstract-full').style.display = 'inline'; document.getElementById('2403.18122v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.18122v1-abstract-full" style="display: none;"> Training machine learning interatomic potentials often requires optimizing a loss function composed of three variables: potential energies, forces, and stress. The contribution of each variable to the total loss is typically weighted using fixed coefficients. Identifying these coefficients usually relies on iterative or heuristic methods, which may yield sub-optimal results. To address this issue, we propose an adaptive loss weighting algorithm that automatically adjusts the loss weights of these variables during the training of potentials, dynamically adapting to the characteristics of the training dataset. The comparative analysis of models trained with fixed and adaptive loss weights demonstrates that the adaptive method not only achieves a more balanced predictions across the three variables but also improves overall prediction accuracy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.18122v1-abstract-full').style.display = 'none'; document.getElementById('2403.18122v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.00532">arXiv:2402.00532</a> <span> [<a href="https://arxiv.org/pdf/2402.00532">pdf</a>, <a href="https://arxiv.org/format/2402.00532">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Quantum Metric Nonlinear Spin-Orbit Torque Enhanced by Topological Bands </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Feng%2C+X">Xukun Feng</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+W">Weikang Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Hui Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Weibo Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Ang%2C+L+K">Lay Kee Ang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+Y+X">Y. X. Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Xiao%2C+C">Cong Xiao</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+S+A">Shengyuan A. Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.00532v1-abstract-short" style="display: inline;"> Effects manifesting quantum geometry have been a focus of physics research. Here, we reveal that quantum metric plays a crucial role in nonlinear electric spin response, leading to a quantum metric spin-orbit torque. We argue that enhanced quantum metric can occur at band (anti)crossings, so the nonlinear torque could be amplified in topological metals with nodal features close to Fermi level. By… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.00532v1-abstract-full').style.display = 'inline'; document.getElementById('2402.00532v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.00532v1-abstract-full" style="display: none;"> Effects manifesting quantum geometry have been a focus of physics research. Here, we reveal that quantum metric plays a crucial role in nonlinear electric spin response, leading to a quantum metric spin-orbit torque. We argue that enhanced quantum metric can occur at band (anti)crossings, so the nonlinear torque could be amplified in topological metals with nodal features close to Fermi level. By applying our theory to magnetic Kane-Mele model and monolayer CrSBr, which feature nodal lines and Weyl points, we demonstrate that the quantum metric torque dominates the response, and its magnitude is significantly enhanced by topological band structures, which even surpasses the previously reported linear torques and is sufficient to drive magnetic switching by itself. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.00532v1-abstract-full').style.display = 'none'; document.getElementById('2402.00532v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.08963">arXiv:2401.08963</a> <span> [<a href="https://arxiv.org/pdf/2401.08963">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> A critical review on recent progress of solution-processed monolayer assembly of nanomaterials and applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Liang Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Fan%2C+J">Jichao Fan</a>, <a href="/search/cond-mat?searchtype=author&query=Gong%2C+C">Chenchi Gong</a>, <a href="/search/cond-mat?searchtype=author&query=Dyke%2C+A">Alexis Dyke</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Weilu Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+B">Bo Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.08963v1-abstract-short" style="display: inline;"> The rapid development in nanotechnology has necessitated accurate and efficient assembly strategies for nanomaterials. Monolayer assembly of nanomaterials (MAN) represents an extreme challenge in manufacturing and is critical in understanding interactions among nanomaterials, solvents, and substrates. MAN enables highly tunable performance in electronic and photonic devices. This review summarizes… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.08963v1-abstract-full').style.display = 'inline'; document.getElementById('2401.08963v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.08963v1-abstract-full" style="display: none;"> The rapid development in nanotechnology has necessitated accurate and efficient assembly strategies for nanomaterials. Monolayer assembly of nanomaterials (MAN) represents an extreme challenge in manufacturing and is critical in understanding interactions among nanomaterials, solvents, and substrates. MAN enables highly tunable performance in electronic and photonic devices. This review summarizes the recent progress on the methods to achieve MAN and discusses important control factors. Moreover, the importance of MAN is elaborated by a broad range of applications in electronics and photonics. In the end, we outlook the opportunities as well as challenges in manufacturing and new applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.08963v1-abstract-full').style.display = 'none'; document.getElementById('2401.08963v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.07273">arXiv:2311.07273</a> <span> [<a href="https://arxiv.org/pdf/2311.07273">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/smll.202203274">10.1002/smll.202203274 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sumanene monolayer of pure carbon: a two-dimensional Kagome-analogy lattice with desirable band gap, ultrahigh carrier mobility and strong exciton binding energy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Shi%2C+X">Xiaoran Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Weiwei Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+H">Hongsheng Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Fu%2C+Z">Zhen-Guo Fu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+G">Gang Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yong-Wei Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+J">Junfeng Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+J">Jijun Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.07273v1-abstract-short" style="display: inline;"> Design and synthesis of novel two-dimensional (2D) materials that possess robust structural stability and unusual physical properties may open up enormous opportunities for device and engineering applications. Herein we propose a 2D sumanene lattice that be regarded as a derivative of the conventional Kagome lattice. Our tight-binding analysis demonstrates sumanene lattice contains two sets of Dir… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.07273v1-abstract-full').style.display = 'inline'; document.getElementById('2311.07273v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.07273v1-abstract-full" style="display: none;"> Design and synthesis of novel two-dimensional (2D) materials that possess robust structural stability and unusual physical properties may open up enormous opportunities for device and engineering applications. Herein we propose a 2D sumanene lattice that be regarded as a derivative of the conventional Kagome lattice. Our tight-binding analysis demonstrates sumanene lattice contains two sets of Dirac cones and two sets of flat bands near the Fermi surface, distinctively different from the Kagome lattice. Using first-principles calculations, we theoretically suggest two possible routines for realization of stable 2D sumanene monolayers (named as a phase and b phase), and a-sumanene monolayer can be experimentally synthesized with chemical vapor deposition using C21H12 as a precursor. Small binding energies on Au(111) surface signify the possibility of their peel-off after grown on the noble metal substrate. Importantly, our GW plus Bethe-Salpeter equation calculations demonstrate both monolayers have moderate band gaps (1.94 eV for a) and ultrahigh carrier mobilities (3.4*104 cm2/Vs for a). In particular, a-sumanene monolayer possesses a strong exciton binding energy of 0.73 eV, suggesting potential applications in optics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.07273v1-abstract-full').style.display = 'none'; document.getElementById('2311.07273v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.20103">arXiv:2310.20103</a> <span> [<a href="https://arxiv.org/pdf/2310.20103">pdf</a>, <a href="https://arxiv.org/format/2310.20103">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.126402">10.1103/PhysRevLett.132.126402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Efficient Full-frequency GW Calculations using a Lanczos Method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Weiwei Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Tang%2C+Z">Zhao Tang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+J">Jijun Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Chelikowsky%2C+J+R">James R. Chelikowsky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.20103v3-abstract-short" style="display: inline;"> The GW approximation is widely used for reliable and accurate modeling of single-particle excitations. It also serves as a starting point for many theoretical methods, such as its use in the Bethe-Salpeter equation (BSE) and dynamical mean-field theory. However, full-frequency GW calculations for large systems with hundreds of atoms remain computationally challenging, even after years of efforts t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.20103v3-abstract-full').style.display = 'inline'; document.getElementById('2310.20103v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.20103v3-abstract-full" style="display: none;"> The GW approximation is widely used for reliable and accurate modeling of single-particle excitations. It also serves as a starting point for many theoretical methods, such as its use in the Bethe-Salpeter equation (BSE) and dynamical mean-field theory. However, full-frequency GW calculations for large systems with hundreds of atoms remain computationally challenging, even after years of efforts to reduce the prefactor and improve scaling. We propose a method that reformulates the correlation part of the GW self-energy as a resolvent of a Hermitian matrix, which can be efficiently and accurately computed using the standard Lanczos method. This method enables full-frequency GW calculations of material systems with a few hundred atoms on a single computing workstation. We further demonstrate the efficiency of the method by calculating the defect-state energies of silicon quantum dots with diameters up to 4 nm and nearly 2,000 silicon atoms using only 20 computational nodes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.20103v3-abstract-full').style.display = 'none'; document.getElementById('2310.20103v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures (Supplemental material: 8 pages, 9 figures)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 132, 126402 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.07619">arXiv:2310.07619</a> <span> [<a href="https://arxiv.org/pdf/2310.07619">pdf</a>, <a href="https://arxiv.org/format/2310.07619">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Latent Su-Schrieffer-Heeger models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=R%C3%B6ntgen%2C+M">Malte R枚ntgen</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+X">Xuelong Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Wenlong Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Pyzh%2C+M">Maxim Pyzh</a>, <a href="/search/cond-mat?searchtype=author&query=Schmelcher%2C+P">Peter Schmelcher</a>, <a href="/search/cond-mat?searchtype=author&query=Pagneux%2C+V">Vincent Pagneux</a>, <a href="/search/cond-mat?searchtype=author&query=Achilleos%2C+V">Vassos Achilleos</a>, <a href="/search/cond-mat?searchtype=author&query=Coutant%2C+A">Antonin Coutant</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.07619v1-abstract-short" style="display: inline;"> The Su-Schrieffer-Heeger (SSH) chain is the reference model of a one-dimensional topological insulator. Its topological nature can be explained by the quantization of the Zak phase, due to reflection symmetry of the unit cell, or of the winding number, due to chiral symmetry. Here, we harness recent graph-theoretical results to construct families of setups whose unit cell features neither of these… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07619v1-abstract-full').style.display = 'inline'; document.getElementById('2310.07619v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.07619v1-abstract-full" style="display: none;"> The Su-Schrieffer-Heeger (SSH) chain is the reference model of a one-dimensional topological insulator. Its topological nature can be explained by the quantization of the Zak phase, due to reflection symmetry of the unit cell, or of the winding number, due to chiral symmetry. Here, we harness recent graph-theoretical results to construct families of setups whose unit cell features neither of these symmetries, but instead a so-called latent or hidden reflection symmetry. This causes the isospectral reduction -- akin to an effective Hamiltonian -- of the resulting lattice to have the form of an SSH model. As we show, these latent SSH models exhibit features such as multiple topological transitions and edge states, as well as a quantized Zak phase. Relying on a generally applicable discrete framework, we experimentally validate our findings using electric circuits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07619v1-abstract-full').style.display = 'none'; document.getElementById('2310.07619v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.14927">arXiv:2309.14927</a> <span> [<a href="https://arxiv.org/pdf/2309.14927">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Microstructure and structural modulation of lutetium dihydride LuH2 as seen via transmission electron microscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ma%2C+X">Xiao-Ping Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N">Ning-Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+W">Wen-Tao Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Nie%2C+J">Jing-Zhe Nie</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Wen-Li Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+S">Shuai-Shuai Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+J">Jun Li</a>, <a href="/search/cond-mat?searchtype=author&query=Tian%2C+H">Huan-Fang Tian</a>, <a href="/search/cond-mat?searchtype=author&query=Xia%2C+T">Tian-Long Xia</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+J">Jin-Guang Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+J">Jian-Qi Li</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+H">Huai-Xin Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.14927v1-abstract-short" style="display: inline;"> Structural investigations conducted using transmission electron microscopy (TEM) on LuH2 synthesized under atmospheric pressure (AP-LuH2) and nitrogen-doped LuH2 synthesized under high pressure (HP-LuH2) have revealed numerous microstructural phenomena. Both materials show a clear superstructure modulation with wave vector, q^* = 1/4 (2-20), and this modulation can be well interpreted by the displ… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.14927v1-abstract-full').style.display = 'inline'; document.getElementById('2309.14927v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.14927v1-abstract-full" style="display: none;"> Structural investigations conducted using transmission electron microscopy (TEM) on LuH2 synthesized under atmospheric pressure (AP-LuH2) and nitrogen-doped LuH2 synthesized under high pressure (HP-LuH2) have revealed numerous microstructural phenomena. Both materials show a clear superstructure modulation with wave vector, q^* = 1/4 (2-20), and this modulation can be well interpreted by the displacements of Lu atoms. Further investigations on the nitrogen-doped HP-LuH2 materials reveal the appearance of high-density antiphase boundaries, in particular, domain walls of a few atomic layer thickness without structural modulation can be observed, suggesting possible interface properties could be detected in this system. In-situ TEM observations of AP-LuH2 suggest that no evident structural phase transition occurs between 94 K and 673 K. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.14927v1-abstract-full').style.display = 'none'; document.getElementById('2309.14927v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.15960">arXiv:2306.15960</a> <span> [<a href="https://arxiv.org/pdf/2306.15960">pdf</a>, <a href="https://arxiv.org/format/2306.15960">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Robust Nuclear Spin Polarization via Ground-State Level Anti-Crossing of Boron Vacancy Defects in Hexagonal Boron Nitride </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ru%2C+S">Shihao Ru</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Z">Zhengzhi Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Liang%2C+H">Haidong Liang</a>, <a href="/search/cond-mat?searchtype=author&query=Kenny%2C+J">Jonathan Kenny</a>, <a href="/search/cond-mat?searchtype=author&query=Cai%2C+H">Hongbing Cai</a>, <a href="/search/cond-mat?searchtype=author&query=Lyu%2C+X">Xiaodan Lyu</a>, <a href="/search/cond-mat?searchtype=author&query=Cernansky%2C+R">Robert Cernansky</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+F">Feifei Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+Y">Yuzhe Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguch%2C+T">Takashi Taniguch</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+F">Fuli Li</a>, <a href="/search/cond-mat?searchtype=author&query=Seng%2C+K+T">Koh Teck Seng</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xiaogang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Jelezko%2C+F">Fedor Jelezko</a>, <a href="/search/cond-mat?searchtype=author&query=Bettiol%2C+A+A">Andrew A. Bettiol</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Weibo Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.15960v2-abstract-short" style="display: inline;"> Nuclear spin polarization plays a crucial role in quantum information processing and quantum sensing. In this work, we demonstrate a robust and efficient method for nuclear spin polarization with boron vacancy ($\mathrm{V_B^-}$) defects in hexagonal boron nitride (h-BN) using ground-state level anti-crossing (GSLAC). We show that GSLAC-assisted nuclear polarization can be achieved with significant… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.15960v2-abstract-full').style.display = 'inline'; document.getElementById('2306.15960v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.15960v2-abstract-full" style="display: none;"> Nuclear spin polarization plays a crucial role in quantum information processing and quantum sensing. In this work, we demonstrate a robust and efficient method for nuclear spin polarization with boron vacancy ($\mathrm{V_B^-}$) defects in hexagonal boron nitride (h-BN) using ground-state level anti-crossing (GSLAC). We show that GSLAC-assisted nuclear polarization can be achieved with significantly lower laser power than excited-state level anti-crossing, making the process experimentally more viable. Furthermore, we have demonstrated direct optical readout of nuclear spins for $\mathrm{V_B^-}$ in h-BN. Our findings suggest that GSLAC is a promising technique for the precise control and manipulation of nuclear spins in $\mathrm{V_B^-}$ defects in h-BN. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.15960v2-abstract-full').style.display = 'none'; document.getElementById('2306.15960v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures for main text, 13 pages, 17 figures for Supplementary Material. Accepted in Physical Review Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.11959">arXiv:2306.11959</a> <span> [<a href="https://arxiv.org/pdf/2306.11959">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Correlating Local Lattice Distortion with Dislocation Pinning in Refractory High-Entropy Alloys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Luo%2C+Z">Zhiling Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Wang Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Q">Qing Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.11959v2-abstract-short" style="display: inline;"> Local lattice distortion (LLD) of refractory high-entropy alloys (RHEAs) plays an essential role in mechanical properties and phase stability. However, the random distribution of multi-principal constituents of RHEAs inhibits the comprehension of LLD, although LLD is suggested to couple with chemical short-range-order (SRO). Herein, an analytical model is built to determine the site-to-site LLD of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.11959v2-abstract-full').style.display = 'inline'; document.getElementById('2306.11959v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.11959v2-abstract-full" style="display: none;"> Local lattice distortion (LLD) of refractory high-entropy alloys (RHEAs) plays an essential role in mechanical properties and phase stability. However, the random distribution of multi-principal constituents of RHEAs inhibits the comprehension of LLD, although LLD is suggested to couple with chemical short-range-order (SRO). Herein, an analytical model is built to determine the site-to-site LLD of RHEAs by coupling the local lattice sites, the local size ordering in their environments and the global constituent information. By elucidating the size coupling between components, the model demonstrates that LLD exhibits a mechanism similar to the relaxation of metal surfaces. Moreover, it is found that LLD, rather than chemical SRO, serves as the origin of solid-solution strengthening and as a measure of the phase transformation in RHEAs. The scheme provides a comprehensive physical picture and offers a quantitative measurement of LLD at macro and micro scales, laying a foundation for the design of RHEAs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.11959v2-abstract-full').style.display = 'none'; document.getElementById('2306.11959v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.09285">arXiv:2306.09285</a> <span> [<a href="https://arxiv.org/pdf/2306.09285">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-023-06363-3">10.1038/s41586-023-06363-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum metric-induced nonlinear transport in a topological antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N">Naizhou Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Kaplan%2C+D">Daniel Kaplan</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Z">Zhaowei Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Holder%2C+T">Tobias Holder</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+N">Ning Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+A">Aifeng Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+X">Xiaoyuan Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+F">Feifei Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Z">Zhengzhi Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+C">Chusheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Ru%2C+S">Shihao Ru</a>, <a href="/search/cond-mat?searchtype=author&query=Cai%2C+H">Hongbing Cai</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+B">Binghai Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Weibo Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.09285v2-abstract-short" style="display: inline;"> The Berry curvature and quantum metric are the imaginary part and real part, respectively, of the quantum geometric tensor which characterizes the topology of quantum states. The former is known to generate a zoo of important discoveries such as quantum Hall effect and anomalous Hall effect (AHE), while the consequences of the quantum metric have rarely been probed by transport. In this work, we o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09285v2-abstract-full').style.display = 'inline'; document.getElementById('2306.09285v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.09285v2-abstract-full" style="display: none;"> The Berry curvature and quantum metric are the imaginary part and real part, respectively, of the quantum geometric tensor which characterizes the topology of quantum states. The former is known to generate a zoo of important discoveries such as quantum Hall effect and anomalous Hall effect (AHE), while the consequences of the quantum metric have rarely been probed by transport. In this work, we observed quantum metric induced nonlinear transport, including both nonlinear AHE and diode-like nonreciprocal longitudinal response, in thin films of a topological antiferromagnet, MnBi$_2$Te$_4$. Our observation reveals that the transverse and longitudinal nonlinear conductivities reverse signs when reversing the antiferromagnetic order, diminish above the N茅el temperature, and are insensitive to disorder scattering, thus verifying their origin in the band structure topology. They also flip signs between electron and hole-doped regions, in agreement with theoretical calculations. Our work provides a pathway to probe the quantum metric through nonlinear transport and to design magnetic nonlinear devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09285v2-abstract-full').style.display = 'none'; document.getElementById('2306.09285v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 6 figures for the manuscript; Supplementary information included</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.03339">arXiv:2305.03339</a> <span> [<a href="https://arxiv.org/pdf/2305.03339">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Rich structural polymorphism of monolayer C60 from cluster rotation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+X">Xueao Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+F">Fan Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xuefei Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Weiwei Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+J">Jijun Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.03339v1-abstract-short" style="display: inline;"> The recent experimental fabrication of monolayer and few-layer C60 polymers paves the way for synthesizing two-dimensional cluster-assembled materials. Compared to atoms with the SO(3) symmetry, clusters as superatoms (e.g., C60) have an additional rotational degree of freedom, greatly enriching the phase spaces of superatom-assembled materials. Using first-principles calculations, we find the ene… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.03339v1-abstract-full').style.display = 'inline'; document.getElementById('2305.03339v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.03339v1-abstract-full" style="display: none;"> The recent experimental fabrication of monolayer and few-layer C60 polymers paves the way for synthesizing two-dimensional cluster-assembled materials. Compared to atoms with the SO(3) symmetry, clusters as superatoms (e.g., C60) have an additional rotational degree of freedom, greatly enriching the phase spaces of superatom-assembled materials. Using first-principles calculations, we find the energy barriers of cluster rotation in quasi-tetragonal monolayer C60 structures are rather low (about 10 meV/atom). The small rotational energy barriers lead to a series of tetragonal C60 polymorphs with energies that are close to the experimental quasi-tetragonal (expt-qT) phase. Similarly, several dynamically stable quasi-hexagonal monolayer C60 structures are found to have energies within 7 meV/atom above the experimental quasi-hexagonal phase. Our calculations demonstrate photo-excited electron-hole pairs and electrostatic doping of electrons can effectively modulate the relative energies of quasi-tetragonal C60 polymorphs. Particularly, the unstable monolayer expt-qT phase becomes dynamically stable when it is electrostatically doped with electrons. In contrast, the relative energies between different quasi-hexagonal polymorphs are insensitive to electrostatic doping of electrons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.03339v1-abstract-full').style.display = 'none'; document.getElementById('2305.03339v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.14872">arXiv:2303.14872</a> <span> [<a href="https://arxiv.org/pdf/2303.14872">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> A Local Concentration-based Descriptor Predicting the Stacking Fault Energy of Refractory High Entropy Alloys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ma%2C+C">Cong Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Wang Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Q">Qing Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.14872v1-abstract-short" style="display: inline;"> Stacking fault energy (SFE) is an essential parameter for characterizing mechanical properties. However, in high entropy alloys (HEAs), the local chemical environment varies significantly across different stacking fault planes, resulting in a substantial fluctuation of SFE values rather than a unique value, which prohibits the prediction of the local SFE. Herein, we proposed an effective descripto… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.14872v1-abstract-full').style.display = 'inline'; document.getElementById('2303.14872v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.14872v1-abstract-full" style="display: none;"> Stacking fault energy (SFE) is an essential parameter for characterizing mechanical properties. However, in high entropy alloys (HEAs), the local chemical environment varies significantly across different stacking fault planes, resulting in a substantial fluctuation of SFE values rather than a unique value, which prohibits the prediction of the local SFE. Herein, we proposed an effective descriptor based on the local concentration ratio near stacking fault to quantitatively predict the local SFE of refractory HEAs. We find that the role of a given element in determining SFE strongly depends on its valence-electron number relative to other components and the contribution of its s- and d-electrons to its cohesive properties, which can be understood in the framework of the tight-binding model. Notably, the descriptor not only unifies the local nature of SFE from simple alloys to HEAs but also helps to quickly design HEAs as the involved parameters are easily accessible. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.14872v1-abstract-full').style.display = 'none'; document.getElementById('2303.14872v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages,10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.12593">arXiv:2303.12593</a> <span> [<a href="https://arxiv.org/pdf/2303.12593">pdf</a>, <a href="https://arxiv.org/format/2303.12593">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1515/nanoph-2023-0556">10.1515/nanoph-2023-0556 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological edge and corner states in coupled wave lattices in nonlinear polariton condensates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Schneider%2C+T">Tobias Schneider</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Wenlong Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Zentgraf%2C+T">Thomas Zentgraf</a>, <a href="/search/cond-mat?searchtype=author&query=Schumacher%2C+S">Stefan Schumacher</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+X">Xuekai Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.12593v3-abstract-short" style="display: inline;"> Topological states have been widely investigated in different types of systems and lattices. In the present work, we report on topological edge states in double-wave (DW) chains, which can be described by a generalized Aubry-Andr茅-Harper (AAH) model. For the specific system of a driven-dissipative exciton polariton system we show that in such potential chains, different types of edge states can fo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.12593v3-abstract-full').style.display = 'inline'; document.getElementById('2303.12593v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.12593v3-abstract-full" style="display: none;"> Topological states have been widely investigated in different types of systems and lattices. In the present work, we report on topological edge states in double-wave (DW) chains, which can be described by a generalized Aubry-Andr茅-Harper (AAH) model. For the specific system of a driven-dissipative exciton polariton system we show that in such potential chains, different types of edge states can form. For resonant optical excitation, we further find that the optical nonlinearity leads to a multistability of different edge states. This includes topologically protected edge states evolved directly from individual linear eigenstates as well as additional edge states that originate from nonlinearity-induced localization of bulk states. Extending the system into two dimensions (2D) by stacking horizontal DW chains in the vertical direction, we also create 2D multi-wave lattices. In such 2D lattices multiple Su-Schrieffer-Heeger (SSH) chains appear along the vertical direction. The combination of DW chains in the horizontal and SSH chains in the vertical direction then results in the formation of higher-order topological insulator corner states. Multistable corner states emerge in the nonlinear regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.12593v3-abstract-full').style.display = 'none'; document.getElementById('2303.12593v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.01866">arXiv:2303.01866</a> <span> [<a href="https://arxiv.org/pdf/2303.01866">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.3c00765">10.1021/acs.nanolett.3c00765 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Transition from Diffusive to Superdiffusive Transport in Carbon Nanotube Networks via Nematic Order Control </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wais%2C+M">Michael Wais</a>, <a href="/search/cond-mat?searchtype=author&query=Bagsican%2C+F+R+G">Filchito Renee G. Bagsican</a>, <a href="/search/cond-mat?searchtype=author&query=Komatsu%2C+N">Natsumi Komatsu</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Weilu Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Serita%2C+K">Kazunori Serita</a>, <a href="/search/cond-mat?searchtype=author&query=Murakami%2C+H">Hironaru Murakami</a>, <a href="/search/cond-mat?searchtype=author&query=Held%2C+K">Karsten Held</a>, <a href="/search/cond-mat?searchtype=author&query=Kawayama%2C+I">Iwao Kawayama</a>, <a href="/search/cond-mat?searchtype=author&query=Kono%2C+J">Junichiro Kono</a>, <a href="/search/cond-mat?searchtype=author&query=Battiato%2C+M">Marco Battiato</a>, <a href="/search/cond-mat?searchtype=author&query=Tonouchi%2C+M">Masayoshi Tonouchi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.01866v2-abstract-short" style="display: inline;"> The one-dimensional confinement of quasiparticles in individual carbon nanotubes (CNTs) leads to extremely anisotropic electronic and optical properties. In a macroscopic ensemble of randomly oriented CNTs, this anisotropy disappears together with other properties that make them attractive for certain device applications. The question however remains if not only anisotropy, but other types of beha… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.01866v2-abstract-full').style.display = 'inline'; document.getElementById('2303.01866v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.01866v2-abstract-full" style="display: none;"> The one-dimensional confinement of quasiparticles in individual carbon nanotubes (CNTs) leads to extremely anisotropic electronic and optical properties. In a macroscopic ensemble of randomly oriented CNTs, this anisotropy disappears together with other properties that make them attractive for certain device applications. The question however remains if not only anisotropy, but other types of behaviours are suppressed by disorder. Here, we compare the dynamics of quasiparticles under strong electric fields in aligned and random CNT networks using a combination of terahertz emission and photocurrent experiments and out-of-equilibrium numerical simulations. We find that the degree of alignment strongly influences the excited quasiparticles' dynamics, rerouting the thermalisation pathways. This is, in particular, evidenced in the high-energy, high-momentum electronic population (probed through the formation of low energy excitons via exciton impact ionization) and the transport regime evolving from diffusive to superdiffusive. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.01866v2-abstract-full').style.display = 'none'; document.getElementById('2303.01866v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.01858">arXiv:2303.01858</a> <span> [<a href="https://arxiv.org/pdf/2303.01858">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Moir茅 Synergy: An Emerging Game Changer by Moir茅 of Moir茅 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cai%2C+X">Xiangbin Cai</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Weibo Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.01858v1-abstract-short" style="display: inline;"> Moir茅 superlattices of tunable wavelengths and the further developed moir茅 of moir茅 systems, by artificially assembling two-dimensional (2D) van der Waals (vdW) materials as designed, have brought up a versatile toolbox to explore fascinating condensed mater physics and their stimulating physicochemical functionalities. In this Perspective, we briefly review the recent progress in the emerging fie… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.01858v1-abstract-full').style.display = 'inline'; document.getElementById('2303.01858v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.01858v1-abstract-full" style="display: none;"> Moir茅 superlattices of tunable wavelengths and the further developed moir茅 of moir茅 systems, by artificially assembling two-dimensional (2D) van der Waals (vdW) materials as designed, have brought up a versatile toolbox to explore fascinating condensed mater physics and their stimulating physicochemical functionalities. In this Perspective, we briefly review the recent progress in the emerging field of moir茅 synergy, highlighting the synergetic effects arising in distinct dual moir茅 heterostructures of graphene and transition metal dichalcogenides (TMDCs). A spectrum of moir茅 of moir茅 configurations, the advanced characterization and the exploitation efforts on the moir茅-moir茅 interactions will be discussed. Finally, we look out for urgent challenges to be conquered in the community and some potential research directions in the near future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.01858v1-abstract-full').style.display = 'none'; document.getElementById('2303.01858v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.13003">arXiv:2302.13003</a> <span> [<a href="https://arxiv.org/pdf/2302.13003">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-41330-6">10.1038/s41467-023-41330-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interlayer donor-acceptor pair excitons in MoSe2/WSe2 moir茅 heterobilayer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cai%2C+H">Hongbing Cai</a>, <a href="/search/cond-mat?searchtype=author&query=Rasmita%2C+A">Abdullah Rasmita</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+Q">Qinghai Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Lai%2C+J">Jia-Min Lai</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+R">Ruihua He</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+D">Disheng Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N">Naizhou Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Mu%2C+Z">Zhao Mu</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Z">Zumeng Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Z">Zhaowei Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Eng%2C+J+J+H">John J. H. Eng</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yuanda Liu</a>, <a href="/search/cond-mat?searchtype=author&query=She%2C+Y">Yongzhi She</a>, <a href="/search/cond-mat?searchtype=author&query=Pan%2C+N">Nan Pan</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xiaoping Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xiaogang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J">Jun Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Weibo Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.13003v1-abstract-short" style="display: inline;"> Localized interlayer excitons (LIXs) in two-dimensional moir茅 superlattices exhibit sharp and dense emission peaks, making them promising as highly tunable single-photon sources. However, the fundamental nature of these LIXs is still elusive. Here, we show the donor-acceptor pair (DAP) mechanism as one of the origins of these excitonic peaks. Numerical simulation results of the DAP model agree wit… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.13003v1-abstract-full').style.display = 'inline'; document.getElementById('2302.13003v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.13003v1-abstract-full" style="display: none;"> Localized interlayer excitons (LIXs) in two-dimensional moir茅 superlattices exhibit sharp and dense emission peaks, making them promising as highly tunable single-photon sources. However, the fundamental nature of these LIXs is still elusive. Here, we show the donor-acceptor pair (DAP) mechanism as one of the origins of these excitonic peaks. Numerical simulation results of the DAP model agree with the experimental photoluminescence spectra of LIX in the moir茅 MoSe2/WSe2 heterobilayer. In particular, we find that the emission energy-lifetime correlation and the nonmonotonic power dependence of the lifetime agree well with the DAP IX model. Our results provide insight into the physical mechanism of LIX formation in moir茅 heterostructures and pave new directions for engineering interlayer exciton properties in moir茅 superlattices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.13003v1-abstract-full').style.display = 'none'; document.getElementById('2302.13003v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.12311">arXiv:2301.12311</a> <span> [<a href="https://arxiv.org/pdf/2301.12311">pdf</a>, <a href="https://arxiv.org/format/2301.12311">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Controlled synthetic chirality in macroscopic assemblies of carbon nanotubes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Doumani%2C+J">Jacques Doumani</a>, <a href="/search/cond-mat?searchtype=author&query=Lou%2C+M">Minhan Lou</a>, <a href="/search/cond-mat?searchtype=author&query=Dewey%2C+O">Oliver Dewey</a>, <a href="/search/cond-mat?searchtype=author&query=Hong%2C+N">Nina Hong</a>, <a href="/search/cond-mat?searchtype=author&query=Fan%2C+J">Jichao Fan</a>, <a href="/search/cond-mat?searchtype=author&query=Baydin%2C+A">Andrey Baydin</a>, <a href="/search/cond-mat?searchtype=author&query=Yomogida%2C+Y">Yohei Yomogida</a>, <a href="/search/cond-mat?searchtype=author&query=Yanagi%2C+K">Kazuhiro Yanagi</a>, <a href="/search/cond-mat?searchtype=author&query=Pasquali%2C+M">Matteo Pasquali</a>, <a href="/search/cond-mat?searchtype=author&query=Saito%2C+R">Riichiro Saito</a>, <a href="/search/cond-mat?searchtype=author&query=Kono%2C+J">Junichiro Kono</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Weilu Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.12311v1-abstract-short" style="display: inline;"> There is an emerging recognition that successful utilization of chiral degrees of freedom can bring new scientific and technological opportunities to diverse research areas. Hence, methods are being sought for creating artificial matter with controllable chirality in an uncomplicated and reproducible manner. Here, we report the development of two straightforward methods for fabricating wafer-scale… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.12311v1-abstract-full').style.display = 'inline'; document.getElementById('2301.12311v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.12311v1-abstract-full" style="display: none;"> There is an emerging recognition that successful utilization of chiral degrees of freedom can bring new scientific and technological opportunities to diverse research areas. Hence, methods are being sought for creating artificial matter with controllable chirality in an uncomplicated and reproducible manner. Here, we report the development of two straightforward methods for fabricating wafer-scale chiral architectures of ordered carbon nanotubes (CNTs) with tunable and giant circular dichroism (CD). Both methods employ simple approaches, (i) mechanical rotation and (ii) twist-stacking, based on controlled vacuum filtration and do not involve any sophisticated nanofabrication processes. We used a racemic mixture of CNTs as the starting material, so the intrinsic chirality of chiral CNTs is not responsible for the observed chirality. In particular, by controlling the stacking angle and handedness in (ii), we were able to maximize the CD response and achieve a record-high deep-ultraviolet ellipticity of 40 $\pm$ 1 mdeg/nm. Our theoretical simulations using the transfer matrix method reproduce the salient features of the experimentally observed CD spectra and further predict that a film of twist-stacked CNTs with an optimized thickness will exhibit an ellipticity as high as 150 mdeg/nm. The created wafer-scale objects represent a new class of synthetic chiral matter consisting of ordered quantum wires whose macroscopic properties are governed by nanoscopic electronic signatures such as van Hove singularities. These artificial structures with engineered chirality will not only provide playgrounds for uncovering new chiral phenomena but also open up new opportunities for developing high-performance chiral photonic and optoelectronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.12311v1-abstract-full').style.display = 'none'; document.getElementById('2301.12311v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text: 4 figures, 21 pages; SI: 9 figures, 1 table, 11 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.09571">arXiv:2301.09571</a> <span> [<a href="https://arxiv.org/pdf/2301.09571">pdf</a>, <a href="https://arxiv.org/format/2301.09571">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.3c00793">10.1021/acs.nanolett.3c00793 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spectral fingerprint of quantum confinement in single CsPbBr$_3$ nanocrystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Amara%2C+M">Mohamed-Raouf Amara</a>, <a href="/search/cond-mat?searchtype=author&query=Said%2C+Z">Zakaria Said</a>, <a href="/search/cond-mat?searchtype=author&query=Huo%2C+C">Caixia Huo</a>, <a href="/search/cond-mat?searchtype=author&query=Pierret%2C+A">Aur茅lie Pierret</a>, <a href="/search/cond-mat?searchtype=author&query=Voisin%2C+C">Christophe Voisin</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Weibo Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Xiong%2C+Q">Qihua Xiong</a>, <a href="/search/cond-mat?searchtype=author&query=Diederichs%2C+C">Carole Diederichs</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.09571v2-abstract-short" style="display: inline;"> Lead halide perovskite nanocrystals are promising materials for classical and quantum light emission. To understand these outstanding properties, a thorough analysis of the band-edge exciton emission is needed which is not reachable in ensemble and room temperature studies because of broadening effects. Here, we report on a cryogenic-temperature study of the photoluminescence of single CsPbBr$_3$… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.09571v2-abstract-full').style.display = 'inline'; document.getElementById('2301.09571v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.09571v2-abstract-full" style="display: none;"> Lead halide perovskite nanocrystals are promising materials for classical and quantum light emission. To understand these outstanding properties, a thorough analysis of the band-edge exciton emission is needed which is not reachable in ensemble and room temperature studies because of broadening effects. Here, we report on a cryogenic-temperature study of the photoluminescence of single CsPbBr$_3$ NCs in the intermediate quantum confinement regime. We reveal the size-dependence of the spectral features observed: the bright-triplet exciton energy splittings, the trion and biexciton binding energies as well as the optical phonon replica spectrum. In addition, we show that bright triplet energy splittings are consistent with a pure exchange model and that the variety of polarisation properties and spectra recorded can be rationalised simply by considering the orientation of the emitting dipoles and the populations of the emitting states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.09571v2-abstract-full').style.display = 'none'; document.getElementById('2301.09571v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.03234">arXiv:2301.03234</a> <span> [<a href="https://arxiv.org/pdf/2301.03234">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Unravelling the deterministic effect of the solid-state diffusion energy barrier for charge carrier on the self-discharge of supercapacitors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yan%2C+X">Xiaohui Yan</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+Y">Yue He</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xuncheng Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Jing%2C+S">Siqi Jing</a>, <a href="/search/cond-mat?searchtype=author&query=Guan%2C+J">Jiajian Guan</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Wei Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Ray%2C+S">Sudip Ray</a>, <a href="/search/cond-mat?searchtype=author&query=Xiong%2C+Y">Yige Xiong</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+T">Taibai Li</a>, <a href="/search/cond-mat?searchtype=author&query=Ge%2C+X">Xiang Ge</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.03234v2-abstract-short" style="display: inline;"> The further development of fast electrochemical devices is hindered by self-discharge. Current strategies for suppressing self-discharge are mainly focused on the extrinsic and general mechanisms including faradaic reactions, charge redistribution, and ohmic leakage. However, the self-discharge process is still severe for conventional supercapacitors. Herein, we unravel the deterministic effect of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.03234v2-abstract-full').style.display = 'inline'; document.getElementById('2301.03234v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.03234v2-abstract-full" style="display: none;"> The further development of fast electrochemical devices is hindered by self-discharge. Current strategies for suppressing self-discharge are mainly focused on the extrinsic and general mechanisms including faradaic reactions, charge redistribution, and ohmic leakage. However, the self-discharge process is still severe for conventional supercapacitors. Herein, we unravel the deterministic effect of solid-state diffusion energy barrier by constructing conjugately configured supercapacitors based on pairs of pre-lithiated niobium oxides with similar intercalation pseudocapacitive process but different phases. This device works with a single type of charge carrier while materials with various diffusion barriers can be implanted, thus serving as an ideal platform to illustrate the influence of the diffusion barrier. The results show that the comprehensive effect of solid-state diffusion energy barrier and extrinsic effects drives the self-discharge process. Noteworthy, the diffusion barrier presents with an exponential form, which governs the self-discharge of supercapacitors. This work is expected to unravel the deterministic effect of the solid-state diffusion energy barrier and provide a general guidance for suppressing self-discharge for supercapacitors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.03234v2-abstract-full').style.display = 'none'; document.getElementById('2301.03234v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 16 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.14867">arXiv:2211.14867</a> <span> [<a href="https://arxiv.org/pdf/2211.14867">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Understanding binary phase separation towards Cu-C nanocrystalline-amorphous composites </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Guan%2C+J">Jiajian Guan</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Q">Qin Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+Y">Yue He</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Liao%2C+B">Bin Liao</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Wei Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Qin%2C+L">Lizhao Qin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.14867v3-abstract-short" style="display: inline;"> The nanocrystalline-amorphous textures are commonly observed in the coatings synthesized by energetic deposition.This work reports a theoretical study towards binary Cu-C phase separation.By performing a MD simulation using the LAMMPS instead of classical PFK methodology, we theoretically explained how the initial pressure and Cu concentration fundamentally determines Cu nanocrystalline's final mo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.14867v3-abstract-full').style.display = 'inline'; document.getElementById('2211.14867v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.14867v3-abstract-full" style="display: none;"> The nanocrystalline-amorphous textures are commonly observed in the coatings synthesized by energetic deposition.This work reports a theoretical study towards binary Cu-C phase separation.By performing a MD simulation using the LAMMPS instead of classical PFK methodology, we theoretically explained how the initial pressure and Cu concentration fundamentally determines Cu nanocrystalline's final morphology and grain size,which gives a novel insight into binary phase separation and the evolution mechanism of nanocrystalline-amorphous structures during energetic deposition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.14867v3-abstract-full').style.display = 'none'; document.getElementById('2211.14867v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.05393">arXiv:2211.05393</a> <span> [<a href="https://arxiv.org/pdf/2211.05393">pdf</a>, <a href="https://arxiv.org/ps/2211.05393">ps</a>, <a href="https://arxiv.org/format/2211.05393">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.094509">10.1103/PhysRevB.107.094509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Robust Quantum Griffiths Singularity at above 1.5 Kelvin in Nitride Thin Films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xiaoni Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+L">Lijie Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yixin Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+F">Fan Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Wanpeng Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Y">Yu Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+Z">Zulei Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+W">Wei Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zhen Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Di%2C+Z">Zengfeng Di</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Wei Li</a>, <a href="/search/cond-mat?searchtype=author&query=Mu%2C+G">Gang Mu</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+Z">Zhirong Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.05393v1-abstract-short" style="display: inline;"> Quantum Griffiths singularity (QGS), which is closely correlated with the quenched disorder, is characterized by the divergence of the dynamical critical exponent and the presence of activated scaling behavior. Typically such a quantum phenomenon is rather rare and only observed in extremely low temperatures. Here we report the experimental observation of a robust QGS in nitride thin films, NbN, w… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.05393v1-abstract-full').style.display = 'inline'; document.getElementById('2211.05393v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.05393v1-abstract-full" style="display: none;"> Quantum Griffiths singularity (QGS), which is closely correlated with the quenched disorder, is characterized by the divergence of the dynamical critical exponent and the presence of activated scaling behavior. Typically such a quantum phenomenon is rather rare and only observed in extremely low temperatures. Here we report the experimental observation of a robust QGS in nitride thin films, NbN, which survives in a rather high temperature range. The electrical transport propertied were measured under the magnetic field up to 12 T. The field induced superconductor-metal transitions were observed with the continuously changed transition points with the decrease of temperature. The dynamical critical exponent based on the conventional power-law scaling reveals a divergent trend when approaching the the low temperature limit. Moreover, the temperature and field dependence of sheet resistance can be described by the activated scaling analysis in the temperature region up to 1.6 K $\leq T \leq$ 4.0 K. We argue that the robustness of QGS in the present system originates from the Pauli paramagnetic effect due to the strong coupling between the magnetic field and the spin degree of freedom. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.05393v1-abstract-full').style.display = 'none'; document.getElementById('2211.05393v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 107, 094509 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.05373">arXiv:2211.05373</a> <span> [<a href="https://arxiv.org/pdf/2211.05373">pdf</a>, <a href="https://arxiv.org/ps/2211.05373">ps</a>, <a href="https://arxiv.org/format/2211.05373">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physc.2023.1354223">10.1016/j.physc.2023.1354223 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Investigation of the Pauli paramagnetic effect in systematically tuned NbN thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xiaoni Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+L">Lijie Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yixin Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Wanpeng Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Y">Yu Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+Z">Zulei Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+H">Hua Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+L">Lu Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+W">Wei Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zhen Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+W">Wei Li</a>, <a href="/search/cond-mat?searchtype=author&query=Mu%2C+G">Gang Mu</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+Z">Zhirong Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.05373v1-abstract-short" style="display: inline;"> Superconductivity and the normal-state properties of NbN films can be tuned in a wide range, supplying a suitable platform to investigate the systematical evolution of the superconducting performances. Herein, we report the upper critical field of NbN films in both the vertical ($B\perp$ film) and parallel ($B\parallel$ film) orientations over a wide temperature range. Eight samples with the super… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.05373v1-abstract-full').style.display = 'inline'; document.getElementById('2211.05373v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.05373v1-abstract-full" style="display: none;"> Superconductivity and the normal-state properties of NbN films can be tuned in a wide range, supplying a suitable platform to investigate the systematical evolution of the superconducting performances. Herein, we report the upper critical field of NbN films in both the vertical ($B\perp$ film) and parallel ($B\parallel$ film) orientations over a wide temperature range. Eight samples with the superconducting critical temperature $T_c$ ranging from 2.5 K to 9.8 K are studied. Meanwhile, the normal-state resistivity is tuned by more than six times by changing the conditions of the film growth. It is found that the magnitudes of the upper critical field in both field directions ($B_{c2}^{\perp}$ and $B_{c2}^{\parallel}$) exceed the paramagnetic limiting field $B_p$. The temperature dependent $B_{c2}^{\perp}$ can be described by the extended Werthamer--Helfand--Hohenberg (WHH) model considering the Pauli spin paramagnetism. Meanwhile, the $B_{c2}^{\parallel}$-$T$ data shows the feature of two-dimensional superconductivity in the temperature range near $T_c$. The evolution of the obtained Maki parameter with other parameters, such as the slope of the upper critical field near $T_c$ and the normal-state resistivity, are discussed to reveal the characteristics of the Pauli paramagnetic effect in this system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.05373v1-abstract-full').style.display = 'none'; document.getElementById('2211.05373v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physica C 606, 1354223 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.05323">arXiv:2211.05323</a> <span> [<a href="https://arxiv.org/pdf/2211.05323">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.235119">10.1103/PhysRevB.107.235119 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Giant excitonic effects in bulk vacancy-ordered double perovskites </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+F">Fan Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Weiwei Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Cruz%2C+G+J">Greis J. Cruz</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+Y">Yi-yang Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+P">Peihong Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+J">Jijun Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.05323v1-abstract-short" style="display: inline;"> Using first-principles GW plus Bethe-Salpeter equation calculations, we identify anomalously strong excitonic effects in several vacancy-ordered double perovskites Cs2MX6 (M = Ti, Zr; X = I, Br). Giant exciton binding energies about 1 eV are found in these moderate-gap, inorganic bulk semiconductors, pushing the limit of our understanding of electron-hole (e-h) interaction and exciton formation in… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.05323v1-abstract-full').style.display = 'inline'; document.getElementById('2211.05323v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.05323v1-abstract-full" style="display: none;"> Using first-principles GW plus Bethe-Salpeter equation calculations, we identify anomalously strong excitonic effects in several vacancy-ordered double perovskites Cs2MX6 (M = Ti, Zr; X = I, Br). Giant exciton binding energies about 1 eV are found in these moderate-gap, inorganic bulk semiconductors, pushing the limit of our understanding of electron-hole (e-h) interaction and exciton formation in solids. Not only are the exciton binding energies extremely large compared with any other moderate-gap bulk semiconductors, but they are also larger than typical 2D semiconductors with comparable quasiparticle gaps. Our calculated lowest bright exciton energy agrees well with the experimental optical band gap. The low-energy excitons closely resemble the Frenkel excitons in molecular crystals, as they are highly localized in a single [MX6]2- octahedron and extended in the reciprocal space. The weak dielectric screening effects and the nearly flat frontier electronic bands, which are derived from the weakly bonded [MX6]2- units, together explain the significant excitonic effects. Spin-orbit coupling effects play a crucial role in red-shifting the lowest bright exciton by mixing up spin-singlet and spin-triplet excitons, while exciton-phonon coupling effects have minor impacts on the strong exciton binding energies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.05323v1-abstract-full').style.display = 'none'; document.getElementById('2211.05323v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.08444">arXiv:2209.08444</a> <span> [<a href="https://arxiv.org/pdf/2209.08444">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.L100407">10.1103/PhysRevB.106.L100407 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong Dzyaloshinskii-Moriya Interaction in Monolayer CrI$_3$ on Metal Substrates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+F">Fan Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+X">Xueao Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Y">Yabei Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xiaolong Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+J">Jijun Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Weiwei Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.08444v1-abstract-short" style="display: inline;"> Dzyaloshinskii-Moriya interaction (DMI) is the primary mechanism for realizing real-space chiral spin textures, which are regarded as key components for the next-generation spintronics. However, DMI arises from a perturbation term of the spin-orbit interaction and is usually weak in pristine magnetic semiconductors. To date, large DMI and the resulting skyrmions are only realized in a few material… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08444v1-abstract-full').style.display = 'inline'; document.getElementById('2209.08444v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.08444v1-abstract-full" style="display: none;"> Dzyaloshinskii-Moriya interaction (DMI) is the primary mechanism for realizing real-space chiral spin textures, which are regarded as key components for the next-generation spintronics. However, DMI arises from a perturbation term of the spin-orbit interaction and is usually weak in pristine magnetic semiconductors. To date, large DMI and the resulting skyrmions are only realized in a few materials under stringent conditions. Using first-principles calculations, we demonstrate that significant DMI occurs between nearest-neighbor Cr atoms in two-dimensional (2D) magnetic semiconductor CrI$_3$ on Au or Cu substrates. This exceptionally strong DMI is generated by the interfacial charge transfer and weak chemical interactions between chromium halides and metal substrates, which break the spatial inversion symmetry. These findings highlight the significance of substrate effects in 2D magnets and expand the inventory of feasible materials with strong DMI. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08444v1-abstract-full').style.display = 'none'; document.getElementById('2209.08444v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.08442">arXiv:2209.08442</a> <span> [<a href="https://arxiv.org/pdf/2209.08442">pdf</a>, <a href="https://arxiv.org/format/2209.08442">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Out-of-plane polarization and topological magnetic vortices in multiferroic CrPSe$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Weiwei Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+J">Jijun Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Chelikowsky%2C+J+R">James R. Chelikowsky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.08442v1-abstract-short" style="display: inline;"> Two-dimensional (2D) multiferroic materials are ideal systems for exploring new coupling mechanisms between different ferroic orders and producing novel quantum phenomena with potential applications. We employed first-principles density functional theory calculations to discover intrinsic ferroelectric and anti-ferroelectric phases of CrPSe$_3$, which show ferromagnetic order and compete with the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08442v1-abstract-full').style.display = 'inline'; document.getElementById('2209.08442v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.08442v1-abstract-full" style="display: none;"> Two-dimensional (2D) multiferroic materials are ideal systems for exploring new coupling mechanisms between different ferroic orders and producing novel quantum phenomena with potential applications. We employed first-principles density functional theory calculations to discover intrinsic ferroelectric and anti-ferroelectric phases of CrPSe$_3$, which show ferromagnetic order and compete with the centrosymmetric phase with an antiferromagnetic order. Our analysis show that the electrical dipoles of such type-I multiferroic phases come from the out-of-plane displacements of phosphorus ions due to the stereochemically active lone pairs. The coupling between polar and magnetic orders creates the opportunity for tunning the magnetic ground state by switching from the centrosymmetric to the ferroelectric phase using an out-of-plane electric field. In ferroelectric and antiferroelectric phases, the combination of easy-plane anisotropy and Dzyaloshinskii-Moriya interactions (DMI) indicate they can host topological magnetic vortices like meron pairs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08442v1-abstract-full').style.display = 'none'; document.getElementById('2209.08442v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures, and the supplementary material</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.02318">arXiv:2207.02318</a> <span> [<a href="https://arxiv.org/pdf/2207.02318">pdf</a>, <a href="https://arxiv.org/format/2207.02318">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-38995-4">10.1038/s41467-023-38995-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strain-tunable Berry curvature in quasi-two-dimensional chromium telluride </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chi%2C+H">Hang Chi</a>, <a href="/search/cond-mat?searchtype=author&query=Ou%2C+Y">Yunbo Ou</a>, <a href="/search/cond-mat?searchtype=author&query=Eldred%2C+T+B">Tim B. Eldred</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Wenpei Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Kwon%2C+S">Sohee Kwon</a>, <a href="/search/cond-mat?searchtype=author&query=Murray%2C+J">Joseph Murray</a>, <a href="/search/cond-mat?searchtype=author&query=Dreyer%2C+M">Michael Dreyer</a>, <a href="/search/cond-mat?searchtype=author&query=Butera%2C+R+E">Robert E. Butera</a>, <a href="/search/cond-mat?searchtype=author&query=Foucher%2C+A+C">Alexandre C. Foucher</a>, <a href="/search/cond-mat?searchtype=author&query=Ambaye%2C+H">Haile Ambaye</a>, <a href="/search/cond-mat?searchtype=author&query=Keum%2C+J">Jong Keum</a>, <a href="/search/cond-mat?searchtype=author&query=Greenberg%2C+A+T">Alice T. Greenberg</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yuhang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Neupane%2C+M+R">Mahesh R. Neupane</a>, <a href="/search/cond-mat?searchtype=author&query=de+Coster%2C+G+J">George J. de Coster</a>, <a href="/search/cond-mat?searchtype=author&query=Vail%2C+O+A">Owen A. Vail</a>, <a href="/search/cond-mat?searchtype=author&query=Taylor%2C+P+J">Patrick J. Taylor</a>, <a href="/search/cond-mat?searchtype=author&query=Folkes%2C+P+A">Patrick A. Folkes</a>, <a href="/search/cond-mat?searchtype=author&query=Rong%2C+C">Charles Rong</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+G">Gen Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Lake%2C+R+K">Roger K. Lake</a>, <a href="/search/cond-mat?searchtype=author&query=Ross%2C+F+M">Frances M. Ross</a>, <a href="/search/cond-mat?searchtype=author&query=Lauter%2C+V">Valeria Lauter</a>, <a href="/search/cond-mat?searchtype=author&query=Heiman%2C+D">Don Heiman</a>, <a href="/search/cond-mat?searchtype=author&query=Moodera%2C+J+S">Jagadeesh S. Moodera</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.02318v2-abstract-short" style="display: inline;"> Magnetic transition metal chalcogenides form an emerging platform for exploring spin-orbit driven Berry phase phenomena owing to the nontrivial interplay between topology and magnetism. Here we show that the anomalous Hall effect in pristine Cr2Te3 thin films manifests a unique temperature-dependent sign reversal at nonzero magnetization, resulting from the momentum-space Berry curvature as establ… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.02318v2-abstract-full').style.display = 'inline'; document.getElementById('2207.02318v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.02318v2-abstract-full" style="display: none;"> Magnetic transition metal chalcogenides form an emerging platform for exploring spin-orbit driven Berry phase phenomena owing to the nontrivial interplay between topology and magnetism. Here we show that the anomalous Hall effect in pristine Cr2Te3 thin films manifests a unique temperature-dependent sign reversal at nonzero magnetization, resulting from the momentum-space Berry curvature as established by first-principles simulations. The sign change is strain tunable, enabled by the sharp and well-defined substrate/film interface in the quasi-two-dimensional Cr2Te3 epitaxial films, revealed by scanning transmission electron microscopy and depth-sensitive polarized neutron reflectometry. This Berry phase effect further introduces hump-shaped Hall peaks in pristine Cr2Te3 near the coercive field during the magnetization switching process, owing to the presence of strain-modulated magnetic domains. The versatile interface tunability of Berry curvature in Cr2Te3 thin films offers new opportunities for topological electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.02318v2-abstract-full').style.display = 'none'; document.getElementById('2207.02318v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main: 9 pages, 5 figures; SI: 5 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 14, 3222 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.01891">arXiv:2207.01891</a> <span> [<a href="https://arxiv.org/pdf/2207.01891">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Determinants of local chemical environments and magnetic moments of high-entropy alloys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+B">Bo Li</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Wang Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Q">Qing Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.01891v1-abstract-short" style="display: inline;"> High-entropy alloys (HEAs) such as CrMnFeCoNi exhibit unconventional mechanical properties due to their compositional disorder. However, it remains a formidable challenge to estimate the local chemical-environment and magnetic effects of HEAs. Herein we identify the state-associated cohesive energy and band filling originated from the tight-binding and Friedel models as descriptors to quantify the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.01891v1-abstract-full').style.display = 'inline'; document.getElementById('2207.01891v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.01891v1-abstract-full" style="display: none;"> High-entropy alloys (HEAs) such as CrMnFeCoNi exhibit unconventional mechanical properties due to their compositional disorder. However, it remains a formidable challenge to estimate the local chemical-environment and magnetic effects of HEAs. Herein we identify the state-associated cohesive energy and band filling originated from the tight-binding and Friedel models as descriptors to quantify the site-to-site chemical bonding and magnetic moments of HEAs. We find that the s-state cohesive energy is indispensable in determining the bonding-strength trend of CrMnFeCoNi that differs from the bonding characteristics of precious and refractory HEAs, while the s-band filling is effective in determining the magnetic moments. This unusual behavior stems from the unique chemical and magnetic nature of Cr atoms and is essentially due to the localized and transferred itinerant electrons. Our study establishes a fundamental physical picture of chemical bonding and magnetic interactions of HEAs and provides a rational guidance for designing advanced structural alloys. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.01891v1-abstract-full').style.display = 'none'; document.getElementById('2207.01891v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages and 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.08299">arXiv:2205.08299</a> <span> [<a href="https://arxiv.org/pdf/2205.08299">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> A Rule of Solute Segregation at Grain Boundaries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+X">Xin Li</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Wang Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Q">Qing Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.08299v2-abstract-short" style="display: inline;"> The control of solute segregation at grain boundaries (GBs) is essential in engineering alloy properties, however the structure-activity relationship of the key parameter-the segregation energies-still remains elusive. Here we propose the electronic and geometric descriptors of GB segregation based on the valence, electronegativity and size of solutes and the non-local coordination number of free… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.08299v2-abstract-full').style.display = 'inline'; document.getElementById('2205.08299v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.08299v2-abstract-full" style="display: none;"> The control of solute segregation at grain boundaries (GBs) is essential in engineering alloy properties, however the structure-activity relationship of the key parameter-the segregation energies-still remains elusive. Here we propose the electronic and geometric descriptors of GB segregation based on the valence, electronegativity and size of solutes and the non-local coordination number of free surfaces, with which we build a predictive framework to determine the segregation energies across different solutes, matrices, GB structures and segregation sites. This framework uncovers not only the coupling rule of solutes and matrices in GB segregation, but also the origin of solute-segregation determinants. The contribution of solutes essentially stems from their d- and s-state coupling in alloying, whereas that of matrix GB interfaces is determined by matrix free surfaces. Our scheme builds a novel picture for the solute segregation at GBs and provides a useful tool for the design of advanced alloys. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.08299v2-abstract-full').style.display = 'none'; document.getElementById('2205.08299v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.09350">arXiv:2203.09350</a> <span> [<a href="https://arxiv.org/pdf/2203.09350">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-022-33705-y">10.1038/s41467-022-33705-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-reciprocal charge transport in an intrinsic magnetic topological insulator MnBi2Te4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Z">Zhaowei Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N">Naizhou Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+N">Ning Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+A">Aifeng Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+X">Xiaoyuan Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+B">Binghai Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Wei-bo Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.09350v1-abstract-short" style="display: inline;"> Symmetries, quantum geometries and electronic correlations are among the most important ingredients of condensed matters, and lead to nontrivial phenomena in experiments, for example, non-reciprocal charge transport. Here we report the non-reciprocal charge transport in the intrinsic magnetic topological insulator MnBi2Te4. The current direction relevant resistance is observed at chiral edges, whi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.09350v1-abstract-full').style.display = 'inline'; document.getElementById('2203.09350v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.09350v1-abstract-full" style="display: none;"> Symmetries, quantum geometries and electronic correlations are among the most important ingredients of condensed matters, and lead to nontrivial phenomena in experiments, for example, non-reciprocal charge transport. Here we report the non-reciprocal charge transport in the intrinsic magnetic topological insulator MnBi2Te4. The current direction relevant resistance is observed at chiral edges, which is magnetically switchable, edge position sensitive and septuple layer number controllable. Applying gate voltage can effectively tune the non-reciprocal resistance. The observation and manipulation of non-reciprocal charge transport indicate the fundamental role of chirality in charge transport of MnBi2Te4, and pave ways to develop van der Waals spintronic devices by chirality engineering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.09350v1-abstract-full').style.display = 'none'; document.getElementById('2203.09350v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 13, 6191 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.03453">arXiv:2203.03453</a> <span> [<a href="https://arxiv.org/pdf/2203.03453">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.13.014047">10.1103/PhysRevApplied.13.014047 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gain and loss induced topological insulating phase in a non Hermitian electrical circuit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+S">Shuo Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+S">Shaojie Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+C">Cheng Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+L">Lei Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Wenlong Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Xiang%2C+Y+J">Yuan Jiang Xiang</a>, <a href="/search/cond-mat?searchtype=author&query=Cui%2C+T+J">Tie Jun Cui</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S">Shuang Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.03453v1-abstract-short" style="display: inline;"> There have been considerable efforts devoted to the study of topological phases in certain non-Hermitian systems that possess real eigenfrequencies in the presence of gain and loss. However, it is challenging to experimentally realize such non-Hermitian topological insulators in either quantum or photonic systems, due to the difficulties in introducing controlled gain and loss. On the other hand,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.03453v1-abstract-full').style.display = 'inline'; document.getElementById('2203.03453v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.03453v1-abstract-full" style="display: none;"> There have been considerable efforts devoted to the study of topological phases in certain non-Hermitian systems that possess real eigenfrequencies in the presence of gain and loss. However, it is challenging to experimentally realize such non-Hermitian topological insulators in either quantum or photonic systems, due to the difficulties in introducing controlled gain and loss. On the other hand, the wide choices of active circuit components provide us with unprecedented convenience and flexibility in engineering non-Hermitian topological insulators in electrical circuits. Here, we report experimental realization of a one-dimensional (1D) non-Hermitian topological circuit which exhibits topologically protected edge state purely induced by gain and loss. We show that by tuning the value of the positive/negative resistors in the circuit, our system can switch between different topological phase regions. The topological edge states and interface states are observed at the circuit edge and at the interface between a trivial and nontrivial circuit, which are manifested by a prominent impedance peak at the mid-gap frequency topologically robust to variations of circuit parameters. Our work opens a new gateway towards actively controllable topological systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.03453v1-abstract-full').style.display = 'none'; document.getElementById('2203.03453v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 13, 014047, Published 24 January 2020 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.00484">arXiv:2203.00484</a> <span> [<a href="https://arxiv.org/pdf/2203.00484">pdf</a>, <a href="https://arxiv.org/format/2203.00484">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/advs.202202922">10.1002/advs.202202922 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental identification of the second-order non-Hermitian skin effect with physics-graph-informed machine learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Shang%2C+C">Ce Shang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+S">Shuo Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Shao%2C+R">Ruiwen Shao</a>, <a href="/search/cond-mat?searchtype=author&query=Han%2C+P">Peng Han</a>, <a href="/search/cond-mat?searchtype=author&query=Zang%2C+X">Xiaoning Zang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xiangliang Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Salama%2C+K+N">Khaled Nabil Salama</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Wenlong Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+C+H">Ching Hua Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Thomale%2C+R">Ronny Thomale</a>, <a href="/search/cond-mat?searchtype=author&query=Manchon%2C+A">Aurelien Manchon</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S">Shuang Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Cui%2C+T+J">Tie Jun Cui</a>, <a href="/search/cond-mat?searchtype=author&query=Schwingenschlogl%2C+U">Udo Schwingenschlogl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.00484v1-abstract-short" style="display: inline;"> Topological phases of matter are conventionally characterized by the bulk-boundary correspondence in Hermitian systems: The topological invariant of the bulk in $d$ dimensions corresponds to the number of $(d-1)$-dimensional boundary states. By extension, higher-order topological insulators reveal a bulk-edge-corner correspondence, such that $n$-th order topological phases feature $(d-n)$-dimensio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.00484v1-abstract-full').style.display = 'inline'; document.getElementById('2203.00484v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.00484v1-abstract-full" style="display: none;"> Topological phases of matter are conventionally characterized by the bulk-boundary correspondence in Hermitian systems: The topological invariant of the bulk in $d$ dimensions corresponds to the number of $(d-1)$-dimensional boundary states. By extension, higher-order topological insulators reveal a bulk-edge-corner correspondence, such that $n$-th order topological phases feature $(d-n)$-dimensional boundary states. The advent of non-Hermitian topological systems sheds new light on the emergence of the non-Hermitian skin effect (NHSE) with an extensive number of boundary modes under open boundary conditions. Still, the higher-order NHSE remains largely unexplored, particularly in the experiment. We introduce an unsupervised approach -- physics-graph-informed machine learning (PGIML) -- to enhance the data mining ability of machine learning with limited domain knowledge. Through PGIML, we experimentally demonstrate the second-order NHSE in a two-dimensional non-Hermitian topolectrical circuit. The admittance spectra of the circuit exhibit an extensive number of corner skin modes and extreme sensitivity of the spectral flow to the boundary conditions. The violation of the conventional bulk-boundary correspondence in the second-order NHSE implies that modification of the topological band theory is inevitable in higher dimensional non-Hermitian systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.00484v1-abstract-full').style.display = 'none'; document.getElementById('2203.00484v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.12528">arXiv:2202.12528</a> <span> [<a href="https://arxiv.org/pdf/2202.12528">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.abl3903">10.1126/sciadv.abl3903 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observing 0D subwavelength-localized modes at ~100 THz protected by weak topology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lu%2C+J">Jinlong Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Wirth%2C+K+G">Konstantin G. Wirth</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Wenlong Gao</a>, <a href="/search/cond-mat?searchtype=author&query=He%C3%9Fler%2C+A">Andreas He脽ler</a>, <a href="/search/cond-mat?searchtype=author&query=Sain%2C+B">Basudeb Sain</a>, <a href="/search/cond-mat?searchtype=author&query=Taubner%2C+T">Thomas Taubner</a>, <a href="/search/cond-mat?searchtype=author&query=Zentgraf%2C+T">Thomas Zentgraf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.12528v1-abstract-short" style="display: inline;"> Topological photonic crystals (TPhCs) provide robust manipulation of light with built-in immunity to fabrication tolerances and disorder. Recently, it was shown that TPhCs based on weak topology with a dislocation inherit this robustness and further host topologically protected lower-dimensional localized modes. However, TPhCs with weak topology at optical frequencies have not been demonstrated so… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.12528v1-abstract-full').style.display = 'inline'; document.getElementById('2202.12528v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.12528v1-abstract-full" style="display: none;"> Topological photonic crystals (TPhCs) provide robust manipulation of light with built-in immunity to fabrication tolerances and disorder. Recently, it was shown that TPhCs based on weak topology with a dislocation inherit this robustness and further host topologically protected lower-dimensional localized modes. However, TPhCs with weak topology at optical frequencies have not been demonstrated so far. Here, we use scattering-type scanning near field optical microscopy to verify mid-bandgap zero-dimensional light localization close to 100 THz in a TPhC with nontrivial Zak phase and an edge dislocation. We show that due to the weak topology, differently extended dislocation centers induce similarly strong light localization. The experimental results are supported by full-field simulations. Along with the underlying fundamental physics, our results lay a foundation for the application of TPhCs based on weak topology in active topological nanophotonics, and nonlinear and quantum optic integrated devices due to their strong and robust light localization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.12528v1-abstract-full').style.display = 'none'; document.getElementById('2202.12528v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science Advances 7, eabl3903 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.11957">arXiv:2202.11957</a> <span> [<a href="https://arxiv.org/pdf/2202.11957">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/advs.202104508">10.1002/advs.202104508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Efficient frequency conversion with geometric phase control in optical metasurfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Matsudo%2C+B+R">Bernhard Reineke Matsudo</a>, <a href="/search/cond-mat?searchtype=author&query=Sain%2C+B">Basudeb Sain</a>, <a href="/search/cond-mat?searchtype=author&query=Carletti%2C+L">Luca Carletti</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xue Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+W">Wenlong Gao</a>, <a href="/search/cond-mat?searchtype=author&query=de+Angelis%2C+C">Costantino de Angelis</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+L">Lingling Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Zentgraf%2C+T">Thomas Zentgraf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.11957v1-abstract-short" style="display: inline;"> Metasurfaces have appeared as a versatile platform for miniaturized functional nonlinear optics due to their design freedom in tailoring wavefronts. The key factor that limits its application in functional devices is the low conversion efficiency. Recently, dielectric metasurfaces governed by either high-quality factor modes (quasi-bound states in the continuum) or Mie modes, enabling strong light… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.11957v1-abstract-full').style.display = 'inline'; document.getElementById('2202.11957v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.11957v1-abstract-full" style="display: none;"> Metasurfaces have appeared as a versatile platform for miniaturized functional nonlinear optics due to their design freedom in tailoring wavefronts. The key factor that limits its application in functional devices is the low conversion efficiency. Recently, dielectric metasurfaces governed by either high-quality factor modes (quasi-bound states in the continuum) or Mie modes, enabling strong light-matter interaction, have become a prolific route to achieve high nonlinear efficiency. Here, we demonstrate both numerically and experimentally an effective way of spatial nonlinear phase control by using the Pancharatnam-Berry phase principle with a high third harmonic conversion efficiency of $10^{-4}$ $1/W^2$. We find that the magnetic Mie resonance appears to be the main contributor to the third harmonic response, while the contribution from the quasi-bound states in the continuum is negligible. This is confirmed by a phenomenological model based on coupled anharmonic oscillators. Besides, our metasurface provides experimentally a high diffraction efficiency (80-90%) in both polarization channels. We show a functional application of our approach by experimentally reconstructing an encoded polarization-multiplexed vortex beam array with different topological charges at the third harmonic frequency with high fidelity. Our approach has the potential viability for future on-chip nonlinear signal processing and wavefront control. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.11957v1-abstract-full').style.display = 'none'; document.getElementById('2202.11957v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Gao%2C+W&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Gao%2C+W&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Gao%2C+W&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Gao%2C+W&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>