CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 962 results for author: <span class="mathjax">Chen, Y</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/quant-ph" aria-role="search"> Searching in archive <strong>quant-ph</strong>. <a href="/search/?searchtype=author&query=Chen%2C+Y">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Chen, Y"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Chen%2C+Y&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Chen, Y"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Chen%2C+Y&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Chen%2C+Y&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Chen%2C+Y&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Chen%2C+Y&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Chen%2C+Y&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Chen%2C+Y&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.14292">arXiv:2411.14292</a> <span> [<a href="https://arxiv.org/pdf/2411.14292">pdf</a>, <a href="https://arxiv.org/format/2411.14292">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> </div> </div> <p class="title is-5 mathjax"> Hypothesis testing of symmetry in quantum dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yu-Ao Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Zhu%2C+C">Chenghong Zhu</a>, <a href="/search/quant-ph?searchtype=author&query=He%2C+K">Keming He</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+Y">Yingjian Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+X">Xin Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.14292v1-abstract-short" style="display: inline;"> Symmetry plays a crucial role in quantum physics, dictating the behavior and dynamics of physical systems. In this paper, We develop a hypothesis-testing framework for quantum dynamics symmetry using a limited number of queries to the unknown unitary operation and establish the quantum max-relative entropy lower bound for the type-II error. We construct optimal ancilla-free protocols that achieve… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14292v1-abstract-full').style.display = 'inline'; document.getElementById('2411.14292v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.14292v1-abstract-full" style="display: none;"> Symmetry plays a crucial role in quantum physics, dictating the behavior and dynamics of physical systems. In this paper, We develop a hypothesis-testing framework for quantum dynamics symmetry using a limited number of queries to the unknown unitary operation and establish the quantum max-relative entropy lower bound for the type-II error. We construct optimal ancilla-free protocols that achieve optimal type-II error probability for testing time-reversal symmetry (T-symmetry) and diagonal symmetry (Z-symmetry) with limited queries. Contrasting with the advantages of indefinite causal order strategies in various quantum information processing tasks, we show that parallel, adaptive, and indefinite causal order strategies have equal power for our tasks. We establish optimal protocols for T-symmetry testing and Z-symmetry testing for 6 and 5 queries, respectively, from which we infer that the type-II error exhibits a decay rate of $\mathcal{O}(m^{-2})$ with respect to the number of queries $m$. This represents a significant improvement over the basic repetition protocols without using global entanglement, where the error decays at a slower rate of $\mathcal{O}(m^{-1})$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14292v1-abstract-full').style.display = 'none'; document.getElementById('2411.14292v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13712">arXiv:2411.13712</a> <span> [<a href="https://arxiv.org/pdf/2411.13712">pdf</a>, <a href="https://arxiv.org/format/2411.13712">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Self-testing quantum randomness expansion on an integrated photonic chip </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+G">Gong Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Primaatmaja%2C+I+W">Ignatius William Primaatmaja</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yue Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Ng%2C+S+Q">Si Qi Ng</a>, <a href="/search/quant-ph?searchtype=author&query=Ng%2C+H+J">Hong Jie Ng</a>, <a href="/search/quant-ph?searchtype=author&query=Pistoia%2C+M">Marco Pistoia</a>, <a href="/search/quant-ph?searchtype=author&query=Gong%2C+X">Xiao Gong</a>, <a href="/search/quant-ph?searchtype=author&query=Goh%2C+K+T">Koon Tong Goh</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+C">Chao Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Lim%2C+C">Charles Lim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13712v1-abstract-short" style="display: inline;"> The power of quantum random number generation is more than just the ability to create truly random numbers$\unicode{x2013}$it can also enable self-testing, which allows the user to verify the implementation integrity of certain critical quantum components with minimal assumptions. In this work, we develop and implement a self-testing quantum random number generator (QRNG) chipset capable of genera… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13712v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13712v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13712v1-abstract-full" style="display: none;"> The power of quantum random number generation is more than just the ability to create truly random numbers$\unicode{x2013}$it can also enable self-testing, which allows the user to verify the implementation integrity of certain critical quantum components with minimal assumptions. In this work, we develop and implement a self-testing quantum random number generator (QRNG) chipset capable of generating 15.33 Mbits of certifiable randomness in each run (an expansion rate of $5.11\times 10^{-4}$ at a repetition rate of 10 Mhz). The chip design is based on a highly loss-and-noise tolerant measurement-device-independent protocol, where random coherent states encoded using quadrature phase shift keying are used to self-test the quantum homodyne detection unit: well-known to be challenging to characterise in practice. Importantly, this proposal opens up the possibility to implement miniaturised self-testing QRNG devices at production scale using standard silicon photonics foundry platforms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13712v1-abstract-full').style.display = 'none'; document.getElementById('2411.13712v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 Pages, 5 Figures, and 2 Tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12622">arXiv:2411.12622</a> <span> [<a href="https://arxiv.org/pdf/2411.12622">pdf</a>, <a href="https://arxiv.org/format/2411.12622">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Cavity-enabled real-time observation of individual atomic collisions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Peters%2C+M+L">Matthew L. Peters</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+G">Guoqing Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Spierings%2C+D+C">David C. Spierings</a>, <a href="/search/quant-ph?searchtype=author&query=Drucker%2C+N">Niv Drucker</a>, <a href="/search/quant-ph?searchtype=author&query=Hu%2C+B">Beili Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yu-Ting Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Vuleti%C4%87%2C+V">Vladan Vuleti膰</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12622v1-abstract-short" style="display: inline;"> Using the strong dispersive coupling to a high-cooperativity cavity, we demonstrate fast and non-destructive number-resolved detection of atoms in optical tweezers. We observe individual atom-atom collisions, quantum state jumps, and atom loss events with a time resolution of $100\ 渭$s through continuous measurement of cavity transmission. Using adaptive feedback control in combination with the no… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12622v1-abstract-full').style.display = 'inline'; document.getElementById('2411.12622v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12622v1-abstract-full" style="display: none;"> Using the strong dispersive coupling to a high-cooperativity cavity, we demonstrate fast and non-destructive number-resolved detection of atoms in optical tweezers. We observe individual atom-atom collisions, quantum state jumps, and atom loss events with a time resolution of $100\ 渭$s through continuous measurement of cavity transmission. Using adaptive feedback control in combination with the non-destructive measurements, we further prepare a single atom with $92(2)\%$ probability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12622v1-abstract-full').style.display = 'none'; document.getElementById('2411.12622v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.09736">arXiv:2411.09736</a> <span> [<a href="https://arxiv.org/pdf/2411.09736">pdf</a>, <a href="https://arxiv.org/format/2411.09736">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Non-Variational ADAPT algorithm for quantum simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Tang%2C+H+L">Ho Lun Tang</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yanzhu Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Biswas%2C+P">Prakriti Biswas</a>, <a href="/search/quant-ph?searchtype=author&query=Magann%2C+A+B">Alicia B. Magann</a>, <a href="/search/quant-ph?searchtype=author&query=Arenz%2C+C">Christian Arenz</a>, <a href="/search/quant-ph?searchtype=author&query=Economou%2C+S+E">Sophia E. Economou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.09736v1-abstract-short" style="display: inline;"> We explore a non-variational quantum state preparation approach combined with the ADAPT operator selection strategy in the application of preparing the ground state of a desired target Hamiltonian. In this algorithm, energy gradient measurements determine both the operators and the gate parameters in the quantum circuit construction. We compare this non-variational algorithm with ADAPT-VQE and wit… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09736v1-abstract-full').style.display = 'inline'; document.getElementById('2411.09736v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.09736v1-abstract-full" style="display: none;"> We explore a non-variational quantum state preparation approach combined with the ADAPT operator selection strategy in the application of preparing the ground state of a desired target Hamiltonian. In this algorithm, energy gradient measurements determine both the operators and the gate parameters in the quantum circuit construction. We compare this non-variational algorithm with ADAPT-VQE and with feedback-based quantum algorithms in terms of the rate of energy reduction, the circuit depth, and the measurement cost in molecular simulation. We find that despite using deeper circuits, this new algorithm reaches chemical accuracy at a similar measurement cost to ADAPT-VQE. Since it does not rely on a classical optimization subroutine, it may provide robustness against circuit parameter errors due to imperfect control or gate synthesis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09736v1-abstract-full').style.display = 'none'; document.getElementById('2411.09736v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 8 figures. Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.09403">arXiv:2411.09403</a> <span> [<a href="https://arxiv.org/pdf/2411.09403">pdf</a>, <a href="https://arxiv.org/format/2411.09403">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Quantum Machine Learning: An Interplay Between Quantum Computing and Machine Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Qi%2C+J">Jun Qi</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+C">Chao-Han Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+S+Y">Samuel Yen-Chi Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+P">Pin-Yu Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.09403v1-abstract-short" style="display: inline;"> Quantum machine learning (QML) is a rapidly growing field that combines quantum computing principles with traditional machine learning. It seeks to revolutionize machine learning by harnessing the unique capabilities of quantum mechanics and employs machine learning techniques to advance quantum computing research. This paper introduces quantum computing for the machine learning paradigm, where va… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09403v1-abstract-full').style.display = 'inline'; document.getElementById('2411.09403v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.09403v1-abstract-full" style="display: none;"> Quantum machine learning (QML) is a rapidly growing field that combines quantum computing principles with traditional machine learning. It seeks to revolutionize machine learning by harnessing the unique capabilities of quantum mechanics and employs machine learning techniques to advance quantum computing research. This paper introduces quantum computing for the machine learning paradigm, where variational quantum circuits (VQC) are used to develop QML architectures on noisy intermediate-scale quantum (NISQ) devices. We discuss machine learning for the quantum computing paradigm, showcasing our recent theoretical and empirical findings. In particular, we delve into future directions for studying QML, exploring the potential industrial impacts of QML research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09403v1-abstract-full').style.display = 'none'; document.getElementById('2411.09403v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">In submission</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08552">arXiv:2411.08552</a> <span> [<a href="https://arxiv.org/pdf/2411.08552">pdf</a>, <a href="https://arxiv.org/format/2411.08552">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Qi%2C+J">Jun Qi</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+C">Chao-Han Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+S+Y">Samuel Yen-Chi Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+P">Pin-Yu Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Zenil%2C+H">Hector Zenil</a>, <a href="/search/quant-ph?searchtype=author&query=Tegner%2C+J">Jesper Tegner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08552v1-abstract-short" style="display: inline;"> Quantum Machine Learning (QML) offers tremendous potential but is currently limited by the availability of qubits. We introduce an innovative approach that utilizes pre-trained neural networks to enhance Variational Quantum Circuits (VQC). This technique effectively separates approximation error from qubit count and removes the need for restrictive conditions, making QML more viable for real-world… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08552v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08552v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08552v1-abstract-full" style="display: none;"> Quantum Machine Learning (QML) offers tremendous potential but is currently limited by the availability of qubits. We introduce an innovative approach that utilizes pre-trained neural networks to enhance Variational Quantum Circuits (VQC). This technique effectively separates approximation error from qubit count and removes the need for restrictive conditions, making QML more viable for real-world applications. Our method significantly improves parameter optimization for VQC while delivering notable gains in representation and generalization capabilities, as evidenced by rigorous theoretical analysis and extensive empirical testing on quantum dot classification tasks. Moreover, our results extend to applications such as human genome analysis, demonstrating the broad applicability of our approach. By addressing the constraints of current quantum hardware, our work paves the way for a new era of advanced QML applications, unlocking the full potential of quantum computing in fields such as machine learning, materials science, medicine, mimetics, and various interdisciplinary areas. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08552v1-abstract-full').style.display = 'none'; document.getElementById('2411.08552v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">In submission</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.05578">arXiv:2411.05578</a> <span> [<a href="https://arxiv.org/pdf/2411.05578">pdf</a>, <a href="https://arxiv.org/format/2411.05578">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> Semiclassical gravity phenomenology under the causal-conditional quantum measurement prescription II: Heisenberg picture and apparent optical entanglement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Liu%2C+Y">Yubao Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Zhong%2C+W">Wenjie Zhong</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yanbei Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Ma%2C+Y">Yiqiu Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.05578v1-abstract-short" style="display: inline;"> The evolution of quantum states influenced by semiclassical gravity is distinct from that in quantum gravity theory due to the presence of a state-dependent gravitational potential. This state-dependent potential introduces nonlinearity into the state evolution, of which the theory is named Schroedinger-Newton (SN) theory. The formalism for understanding the continuous quantum measurement process… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05578v1-abstract-full').style.display = 'inline'; document.getElementById('2411.05578v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.05578v1-abstract-full" style="display: none;"> The evolution of quantum states influenced by semiclassical gravity is distinct from that in quantum gravity theory due to the presence of a state-dependent gravitational potential. This state-dependent potential introduces nonlinearity into the state evolution, of which the theory is named Schroedinger-Newton (SN) theory. The formalism for understanding the continuous quantum measurement process on the quantum state in the context of semiclassical gravity theory has been previously discussed using the Schr枚dinger picture in Paper I [1]. In this work, an equivalent formalism using the Heisenberg picture is developed and applied to the analysis of two optomechanical experiment protocols that targeted testing the quantum nature of gravity. This Heisenberg picture formalism of the SN theory has the advantage of helping the investigation of the covariance matrices of the outgoing light fields in these protocols and further the entanglement features. We found that the classical gravity between the quantum trajectories of two mirrors under continuous quantum measurement in the SN theory can induce an apparent entanglement of the outgoing light field (though there is no quantum entanglement of the mirrors), which could serve as a false alarm for those experiments designed for probing the quantum gravity induced entanglement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05578v1-abstract-full').style.display = 'none'; document.getElementById('2411.05578v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.04765">arXiv:2411.04765</a> <span> [<a href="https://arxiv.org/pdf/2411.04765">pdf</a>, <a href="https://arxiv.org/format/2411.04765">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Study of decoherence in radial local phonon hopping within trapped-ion string </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yu-Xuan Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Yuri%2C+T">Takumi Yuri</a>, <a href="/search/quant-ph?searchtype=author&query=Toyoda%2C+K">Kenji Toyoda</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.04765v1-abstract-short" style="display: inline;"> We systematically investigate local phonon hopping in the radial direction of a linear trapped-ion string. We measure the decay of hopping as a function of key trap parameters and analyze the results in terms of the decay time and the number of oscillations. We attribute the loss of coherence to nonlinear coupling between different modes. Despite quantitative differences, the overall trends in our… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04765v1-abstract-full').style.display = 'inline'; document.getElementById('2411.04765v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.04765v1-abstract-full" style="display: none;"> We systematically investigate local phonon hopping in the radial direction of a linear trapped-ion string. We measure the decay of hopping as a function of key trap parameters and analyze the results in terms of the decay time and the number of oscillations. We attribute the loss of coherence to nonlinear coupling between different modes. Despite quantitative differences, the overall trends in our numerical simulations are similar to those of the experimental results. This work establishes a method for evaluating phonon hopping coherence and provides insight into the underlying decoherence mechanisms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04765v1-abstract-full').style.display = 'none'; document.getElementById('2411.04765v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.03903">arXiv:2411.03903</a> <span> [<a href="https://arxiv.org/pdf/2411.03903">pdf</a>, <a href="https://arxiv.org/format/2411.03903">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Causality and Duality in Multipartite Generalized Probabilistic Theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yiying Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+P">Peidong Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+Z">Zizhu Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.03903v1-abstract-short" style="display: inline;"> Causality is one of the most fundamental notions in physics. Generalized probabilistic theories (GPTs) and the process matrix framework incorporate it in different forms. However, a direct connection between these frameworks remains unexplored. By demonstrating the duality between no-signaling principle and classical processes in tripartite classical systems, and extending some results to multipar… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03903v1-abstract-full').style.display = 'inline'; document.getElementById('2411.03903v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.03903v1-abstract-full" style="display: none;"> Causality is one of the most fundamental notions in physics. Generalized probabilistic theories (GPTs) and the process matrix framework incorporate it in different forms. However, a direct connection between these frameworks remains unexplored. By demonstrating the duality between no-signaling principle and classical processes in tripartite classical systems, and extending some results to multipartite systems, we first establish a strong link between these two frameworks, which are two sides of the same coin. This provides an axiomatic approach to describe the measurement space within both box world and local theories. Furthermore, we describe a logically consistent 4-partite classical process acting as an extension of the quantum switch. By incorporating more than two control states, it allows both parallel and serial application of operations. We also provide a device-independent certification of its quantum variant in the form of an inequality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03903v1-abstract-full').style.display = 'none'; document.getElementById('2411.03903v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.03719">arXiv:2411.03719</a> <span> [<a href="https://arxiv.org/pdf/2411.03719">pdf</a>, <a href="https://arxiv.org/format/2411.03719">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Spontaneous emission in Casimir-Rabi oscillations through a weak optomechanical coupling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Yan%2C+K">Ke-Xiong Yan</a>, <a href="/search/quant-ph?searchtype=author&query=Qiu%2C+Y">Yuan Qiu</a>, <a href="/search/quant-ph?searchtype=author&query=Xiao%2C+Y">Yang Xiao</a>, <a href="/search/quant-ph?searchtype=author&query=Song%2C+J">Jie Song</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Ye-Hong Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Xia%2C+Y">Yan Xia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.03719v1-abstract-short" style="display: inline;"> The dynamical Casimir effect (DCE) describes the energy conversion from a mechanical motion to the electromagnetic fields. When the mechanical oscillator is in a mechanically excited state, the free evolution due to the DCE produces radiation in the vacuum, in analogy with the spontaneous emission from an excited atom. In this manuscript, we investigate such a spontaneous radiation process by empl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03719v1-abstract-full').style.display = 'inline'; document.getElementById('2411.03719v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.03719v1-abstract-full" style="display: none;"> The dynamical Casimir effect (DCE) describes the energy conversion from a mechanical motion to the electromagnetic fields. When the mechanical oscillator is in a mechanically excited state, the free evolution due to the DCE produces radiation in the vacuum, in analogy with the spontaneous emission from an excited atom. In this manuscript, we investigate such a spontaneous radiation process by employing the quantum trajectory approach. When the dissipation rate of the system is very low, there can be a reversible energy exchange between the mirror in the excited state and the vacuum field, and this reversible exchange is called vacuum Casimir-Rabi oscillations. Multiple quantum trajectory simulations of this process show that the number of trajectories responsible for the generation of radiation can reach a significant value when the mechanical dissipation rate is less than the photon dissipation rate. We also find that two-photon (two/three-phonon) bundle emission occurs in photon (phonon) emission. In comparison to pure two-photon and three-phonon free dissipation, the probability of two-photon bundle emission and two-phonon bundle emission are observed to be marginally elevated as a consequence of the presence of the DCE. This pattern may assist in developing a deeper comprehension of the physical characteristics of photon and phonon emission in the DCE. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03719v1-abstract-full').style.display = 'none'; document.getElementById('2411.03719v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 9 figures, comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.03710">arXiv:2411.03710</a> <span> [<a href="https://arxiv.org/pdf/2411.03710">pdf</a>, <a href="https://arxiv.org/format/2411.03710">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Suppressed Energy Relaxation in the Quantum Rabi Model at the Critical Point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Ye-Hong Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Shi%2C+Z">Zhi-Cheng Shi</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+Y">Yu-Ran Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Nori%2C+F">Franco Nori</a>, <a href="/search/quant-ph?searchtype=author&query=Xia%2C+Y">Yan Xia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.03710v1-abstract-short" style="display: inline;"> We derive a modified master equation for the quantum Rabi model in the parameter regime where quantum criticality can occur. The modified master equation can avoid some unphysical predictions, such as excitations in the system at zero temperature and emission of ground-state photons. Due to spectrum collapse, we find that there is mostly no energy relaxation in the system at the critical point. Fo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03710v1-abstract-full').style.display = 'inline'; document.getElementById('2411.03710v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.03710v1-abstract-full" style="display: none;"> We derive a modified master equation for the quantum Rabi model in the parameter regime where quantum criticality can occur. The modified master equation can avoid some unphysical predictions, such as excitations in the system at zero temperature and emission of ground-state photons. Due to spectrum collapse, we find that there is mostly no energy relaxation in the system at the critical point. For the same reason, phase coherence rapidly reduces and vanishes at the critical point. We analyze the quantum metrological limits of the system in the presence of dephasing. These results show a strong limitation on the precision of phase-shift estimation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03710v1-abstract-full').style.display = 'none'; document.getElementById('2411.03710v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, two figures, comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.02447">arXiv:2411.02447</a> <span> [<a href="https://arxiv.org/pdf/2411.02447">pdf</a>, <a href="https://arxiv.org/format/2411.02447">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> qGDP: Quantum Legalization and Detailed Placement for Superconducting Quantum Computers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+J">Junyao Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhou%2C+G">Guanglei Zhou</a>, <a href="/search/quant-ph?searchtype=author&query=Cheng%2C+F">Feng Cheng</a>, <a href="/search/quant-ph?searchtype=author&query=Ku%2C+J">Jonathan Ku</a>, <a href="/search/quant-ph?searchtype=author&query=Ding%2C+Q">Qi Ding</a>, <a href="/search/quant-ph?searchtype=author&query=Gu%2C+J">Jiaqi Gu</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+H">Hanrui Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+H+%22">Hai "Helen" Li</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yiran Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.02447v1-abstract-short" style="display: inline;"> Noisy Intermediate-Scale Quantum (NISQ) computers are currently limited by their qubit numbers, which hampers progress towards fault-tolerant quantum computing. A major challenge in scaling these systems is crosstalk, which arises from unwanted interactions among neighboring components such as qubits and resonators. An innovative placement strategy tailored for superconducting quantum computers ca… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02447v1-abstract-full').style.display = 'inline'; document.getElementById('2411.02447v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.02447v1-abstract-full" style="display: none;"> Noisy Intermediate-Scale Quantum (NISQ) computers are currently limited by their qubit numbers, which hampers progress towards fault-tolerant quantum computing. A major challenge in scaling these systems is crosstalk, which arises from unwanted interactions among neighboring components such as qubits and resonators. An innovative placement strategy tailored for superconducting quantum computers can systematically address crosstalk within the constraints of limited substrate areas. Legalization is a crucial stage in placement process, refining post-global-placement configurations to satisfy design constraints and enhance layout quality. However, existing legalizers are not supported to legalize quantum placements. We aim to address this gap with qGDP, developed to meticulously legalize quantum components by adhering to quantum spatial constraints and reducing resonator crossing to alleviate various crosstalk effects. Our results indicate that qGDP effectively legalizes and fine-tunes the layout, addressing the quantum-specific spatial constraints inherent in various device topologies. By evaluating diverse NISQ benchmarks. qGDP consistently outperforms state-of-the-art legalization engines, delivering substantial improvements in fidelity and reducing spatial violation, with average gains of 34.4x and 16.9x, respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02447v1-abstract-full').style.display = 'none'; document.getElementById('2411.02447v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01265">arXiv:2411.01265</a> <span> [<a href="https://arxiv.org/pdf/2411.01265">pdf</a>, <a href="https://arxiv.org/format/2411.01265">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Neural Network-Based Design of Approximate Gottesman-Kitaev-Preskill Code </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Zeng%2C+Y">Yexiong Zeng</a>, <a href="/search/quant-ph?searchtype=author&query=Qin%2C+W">Wei Qin</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Ye-Hong Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Gneiting%2C+C">Clemens Gneiting</a>, <a href="/search/quant-ph?searchtype=author&query=Nori%2C+F">Franco Nori</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01265v1-abstract-short" style="display: inline;"> Gottesman-Kitaev-Preskill (GKP) encoding holds promise for continuous-variable fault-tolerant quantum computing. While an ideal GKP encoding is abstract and impractical due to its nonphysical nature, approximate versions provide viable alternatives. Conventional approximate GKP codewords are superpositions of multiple {large-amplitude} squeezed coherent states. This feature ensures correctability… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01265v1-abstract-full').style.display = 'inline'; document.getElementById('2411.01265v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01265v1-abstract-full" style="display: none;"> Gottesman-Kitaev-Preskill (GKP) encoding holds promise for continuous-variable fault-tolerant quantum computing. While an ideal GKP encoding is abstract and impractical due to its nonphysical nature, approximate versions provide viable alternatives. Conventional approximate GKP codewords are superpositions of multiple {large-amplitude} squeezed coherent states. This feature ensures correctability against single-photon loss and dephasing {at short times}, but also increases the difficulty of preparing the codewords. To minimize this trade-off, we utilize a neural network to generate optimal approximate GKP states, allowing effective error correction with just a few squeezed coherent states. We find that such optimized GKP codes outperform the best conventional ones, requiring fewer squeezed coherent states, while maintaining simple and generalized stabilizer operators. Specifically, the former outperform the latter with just \textit{one third} of the number of squeezed coherent states at a squeezing level of 9.55 dB. This optimization drastically decreases the complexity of codewords while improving error correctability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01265v1-abstract-full').style.display = 'none'; document.getElementById('2411.01265v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.23857">arXiv:2410.23857</a> <span> [<a href="https://arxiv.org/pdf/2410.23857">pdf</a>, <a href="https://arxiv.org/format/2410.23857">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> </div> </div> <p class="title is-5 mathjax"> ECDQC: Efficient Compilation for Distributed Quantum Computing with Linear Layout </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Liu%2C+K">Kecheng Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Zhou%2C+Y">Yidong Zhou</a>, <a href="/search/quant-ph?searchtype=author&query=Luo%2C+H">Haochen Luo</a>, <a href="/search/quant-ph?searchtype=author&query=Xiong%2C+L">Lingjun Xiong</a>, <a href="/search/quant-ph?searchtype=author&query=Zhu%2C+Y">Yuchen Zhu</a>, <a href="/search/quant-ph?searchtype=author&query=Casey%2C+E">Eilis Casey</a>, <a href="/search/quant-ph?searchtype=author&query=Cheng%2C+J">Jinglei Cheng</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+S+Y">Samuel Yen-Chi Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Liang%2C+Z">Zhiding Liang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.23857v2-abstract-short" style="display: inline;"> In this paper, we propose an efficient compilation method for distributed quantum computing (DQC) using the Linear Nearest Neighbor (LNN) architecture. By exploiting the LNN topology's symmetry, we optimize quantum circuit compilation for High Local Connectivity, Sparse Full Connectivity (HLC-SFC) algorithms like Quantum Approximate Optimization Algorithm (QAOA) and Quantum Fourier Transform (QFT)… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23857v2-abstract-full').style.display = 'inline'; document.getElementById('2410.23857v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.23857v2-abstract-full" style="display: none;"> In this paper, we propose an efficient compilation method for distributed quantum computing (DQC) using the Linear Nearest Neighbor (LNN) architecture. By exploiting the LNN topology's symmetry, we optimize quantum circuit compilation for High Local Connectivity, Sparse Full Connectivity (HLC-SFC) algorithms like Quantum Approximate Optimization Algorithm (QAOA) and Quantum Fourier Transform (QFT). We also utilize dangling qubits to minimize non-local interactions and reduce SWAP gates. Our approach significantly decreases compilation time, gate count, and circuit depth, improving scalability and robustness for large-scale quantum computations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23857v2-abstract-full').style.display = 'none'; document.getElementById('2410.23857v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.22378">arXiv:2410.22378</a> <span> [<a href="https://arxiv.org/pdf/2410.22378">pdf</a>, <a href="https://arxiv.org/format/2410.22378">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Theory of vibrational Stark effect for adsorbates and diatomic molecules </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Yang%2C+S">Sang Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Cai%2C+J">Jun Cai</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yanxia Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Gong%2C+M">Ming Gong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.22378v1-abstract-short" style="display: inline;"> Nowadays the vibrational Stark effect (VSE) of adsorbates at the electrochemical interfaces is generally investigated using the Lambert theory, in which the strong electric field across the interfaces can be treated as some kind of perturbation. Lambert found that the VSE arises mainly from the classical effect, and the quantum effect is negligible. This idea is accepted by almost all current firs… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22378v1-abstract-full').style.display = 'inline'; document.getElementById('2410.22378v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.22378v1-abstract-full" style="display: none;"> Nowadays the vibrational Stark effect (VSE) of adsorbates at the electrochemical interfaces is generally investigated using the Lambert theory, in which the strong electric field across the interfaces can be treated as some kind of perturbation. Lambert found that the VSE arises mainly from the classical effect, and the quantum effect is negligible. This idea is accepted by almost all current first-principle calculations for this issue. Here we revisit this problem by addressing the fundamental question that to what extent the quantum effect is important for VSE, and if it is observable, then which physical quantity determines this effect. We use the Morse, Lennard-Jones and Dunham potentials as basic potentials to explore this problem using quantum perturbation theory. We define the relative difference between quantum and classical VSE slopes to define the quantum effect, $畏$, and show that for CO, $畏\sim $ 2 - 3\%, while for adsorbed hydrogen on Pt electrode, $畏\sim$ 8 - 10\%, using the experimental data. We find that $畏$ is determined by the anharmonic coefficient $蠂_e$. Without results we present a new understanding of the VSE as a function of electric field and potential in electrochemical experiments, showing that the nonlinear slope of VSE as a function of potential should arise from the nonlinear relation between electric field and potential across the interfaces, which may resolve the long-standing controversial in experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22378v1-abstract-full').style.display = 'none'; document.getElementById('2410.22378v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages and 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.14286">arXiv:2410.14286</a> <span> [<a href="https://arxiv.org/pdf/2410.14286">pdf</a>, <a href="https://arxiv.org/ps/2410.14286">ps</a>, <a href="https://arxiv.org/format/2410.14286">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Smolyak algorithm assisted robust control of quantum systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+Z">Zigui Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Miao%2C+Z">Zibo Miao</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yu Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Deng%2C+X">Xiu-Hao Deng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.14286v2-abstract-short" style="display: inline;"> Efficient and systematic numerical methods for robust control design are crucial in quantum systems due to inevitable uncertainties or disturbances. We propose a novel approach that models uncertainties as random variables and quantifies robustness using the expectation of infidelity. By reformulating the robustness measure as a weighted tensor product quadrature, we employ the Smolyak sparse grid… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14286v2-abstract-full').style.display = 'inline'; document.getElementById('2410.14286v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.14286v2-abstract-full" style="display: none;"> Efficient and systematic numerical methods for robust control design are crucial in quantum systems due to inevitable uncertainties or disturbances. We propose a novel approach that models uncertainties as random variables and quantifies robustness using the expectation of infidelity. By reformulating the robustness measure as a weighted tensor product quadrature, we employ the Smolyak sparse grid algorithm to develop a parametric robust quantum control scheme. This scheme significantly reduces computational cost while improving accuracy. We demonstrate the effectiveness of our Smolyak algorithm assisted gradient-based methods including smGOAT and smGRAPE in robust control problems regarding state transfer and quantum gate realization, with ultrahigh fidelity and strong robustness achieved. Our results contribute to improving the reliability and security of quantum computing and communication systems in the presence of real-world imperfections. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14286v2-abstract-full').style.display = 'none'; document.getElementById('2410.14286v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.12308">arXiv:2410.12308</a> <span> [<a href="https://arxiv.org/pdf/2410.12308">pdf</a>, <a href="https://arxiv.org/format/2410.12308">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Mitigating higher-band heating in Floquet-Hubbard lattices via two-tone driving </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yuanning Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Zhu%2C+Z">Zijie Zhu</a>, <a href="/search/quant-ph?searchtype=author&query=Viebahn%2C+K">Konrad Viebahn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.12308v1-abstract-short" style="display: inline;"> Multi-photon resonances to high-lying energy levels represent an unavoidable source of Floquet heating in strongly driven quantum systems. In this work, we extend the recently developed two-tone approach of 'cancelling' multi-photon resonances to shaken lattices in the Hubbard regime. Our experiments show that even for strong lattice shaking the inclusion of a weak second drive leads to cancellati… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12308v1-abstract-full').style.display = 'inline'; document.getElementById('2410.12308v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.12308v1-abstract-full" style="display: none;"> Multi-photon resonances to high-lying energy levels represent an unavoidable source of Floquet heating in strongly driven quantum systems. In this work, we extend the recently developed two-tone approach of 'cancelling' multi-photon resonances to shaken lattices in the Hubbard regime. Our experiments show that even for strong lattice shaking the inclusion of a weak second drive leads to cancellation of multi-photon heating resonances. Surprisingly, the optimal cancelling amplitude depends on the Hubbard interaction strength $U$, in qualitative agreement with exact diagonalisation calculations. Our results call for novel analytical approaches to capture the physics of strongly-driven-strongly-interacting many-body systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12308v1-abstract-full').style.display = 'none'; document.getElementById('2410.12308v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.11942">arXiv:2410.11942</a> <span> [<a href="https://arxiv.org/pdf/2410.11942">pdf</a>, <a href="https://arxiv.org/format/2410.11942">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Algebra">math.QA</span> </div> </div> <p class="title is-5 mathjax"> Operator algebra and algorithmic construction of boundaries and defects in (2+1)D topological Pauli stabilizer codes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Liang%2C+Z">Zijian Liang</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+B">Bowen Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Iosue%2C+J+T">Joseph T. Iosue</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yu-An Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.11942v2-abstract-short" style="display: inline;"> In this paper, we present a computational algorithm for constructing all boundaries and defects of topological generalized Pauli stabilizer codes in two spatial dimensions. Utilizing the operator algebra formalism, we establish a one-to-one correspondence between the topological data-such as anyon types, fusion rules, topological spins, and braiding statistics-of (2+1)D bulk stabilizer codes and (… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11942v2-abstract-full').style.display = 'inline'; document.getElementById('2410.11942v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.11942v2-abstract-full" style="display: none;"> In this paper, we present a computational algorithm for constructing all boundaries and defects of topological generalized Pauli stabilizer codes in two spatial dimensions. Utilizing the operator algebra formalism, we establish a one-to-one correspondence between the topological data-such as anyon types, fusion rules, topological spins, and braiding statistics-of (2+1)D bulk stabilizer codes and (1+1)D boundary anomalous subsystem codes. To make the operator algebra computationally accessible, we adapt Laurent polynomials and convert the tasks into matrix operations, e.g., the Hermite normal form for obtaining boundary anyons and the Smith normal form for determining fusion rules. This approach enables computers to automatically generate all possible gapped boundaries and defects for topological Pauli stabilizer codes through boundary anyon condensation and topological order completion. This streamlines the analysis of surface codes and associated logical operations for fault-tolerant quantum computation. Our algorithm applies to $Z_d$ qudits, including both prime and nonprime $d$, thus enabling the exploration of topological quantum codes beyond toric codes. We have applied the algorithm and explicitly demonstrated the lattice constructions of 2 boundaries and 6 defects in the $Z_2$ toric code, 3 boundaries and 22 defects in the $Z_4$ toric code, 1 boundary and 2 defects in the double semion code, 1 boundary and 22 defects in the six-semion code, 6 boundaries and 270 defects in the color code, and 6 defects in the anomalous three-fermion code. In addition, we investigate the boundaries of two specific bivariate bicycle codes within a family of low-density parity-check (LDPC) codes. We demonstrate that their topological orders are equivalent to 8 and 10 copies of $Z_2$ toric codes, with anyons restricted to move by 12 and 1023 lattice sites in the square lattice, respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11942v2-abstract-full').style.display = 'none'; document.getElementById('2410.11942v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36+17 pages, 41 figures; v2: typos fixed, figures updated</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.11158">arXiv:2410.11158</a> <span> [<a href="https://arxiv.org/pdf/2410.11158">pdf</a>, <a href="https://arxiv.org/format/2410.11158">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Bosonic Entanglement and Quantum Sensing from Energy Transfer in two-tone Floquet Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yinan Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Elben%2C+A">Andreas Elben</a>, <a href="/search/quant-ph?searchtype=author&query=Rubio%2C+A">Angel Rubio</a>, <a href="/search/quant-ph?searchtype=author&query=Refael%2C+G">Gil Refael</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.11158v1-abstract-short" style="display: inline;"> Quantum-enhanced sensors, which surpass the standard quantum limit (SQL) and approach the fundamental precision limits dictated by quantum mechanics, are finding applications across a wide range of scientific fields. This quantum advantage becomes particularly significant when a large number of particles are included in the sensing circuit. Achieving such enhancement requires introducing and prese… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11158v1-abstract-full').style.display = 'inline'; document.getElementById('2410.11158v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.11158v1-abstract-full" style="display: none;"> Quantum-enhanced sensors, which surpass the standard quantum limit (SQL) and approach the fundamental precision limits dictated by quantum mechanics, are finding applications across a wide range of scientific fields. This quantum advantage becomes particularly significant when a large number of particles are included in the sensing circuit. Achieving such enhancement requires introducing and preserving entanglement among many particles, posing significant experimental challenges. In this work, we integrate concepts from Floquet theory and quantum information to design an entangler capable of generating the desired entanglement between two paths of a quantum interferometer. We demonstrate that our path-entangled states enable sensing beyond the SQL, reaching the fundamental Heisenberg limit (HL) of quantum mechanics. Moreover, we show that a decoding parity measurement maintains the HL when specific conditions from Floquet theory are satisfied$\unicode{x2013}$particularly those related to the periodic driving parameters that preserve entanglement during evolution. We address the effects of a priori phase uncertainty and imperfect transmission, showing that our method remains robust under realistic conditions. Finally, we propose a superconducting-circuit implementation of our sensor in the microwave regime, highlighting its potential for practical applications in high-precision measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11158v1-abstract-full').style.display = 'none'; document.getElementById('2410.11158v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.10794">arXiv:2410.10794</a> <span> [<a href="https://arxiv.org/pdf/2410.10794">pdf</a>, <a href="https://arxiv.org/format/2410.10794">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Robustness of near-thermal dynamics on digital quantum computers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Chertkov%2C+E">Eli Chertkov</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yi-Hsiang Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Lubasch%2C+M">Michael Lubasch</a>, <a href="/search/quant-ph?searchtype=author&query=Hayes%2C+D">David Hayes</a>, <a href="/search/quant-ph?searchtype=author&query=Foss-Feig%2C+M">Michael Foss-Feig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.10794v2-abstract-short" style="display: inline;"> Understanding the impact of gate errors on quantum circuits is crucial to determining the potential applications of quantum computers, especially in the absence of large-scale error-corrected hardware. We put forward analytical arguments, corroborated by extensive numerical and experimental evidence, that Trotterized quantum circuits simulating the time-evolution of systems near thermal equilibriu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10794v2-abstract-full').style.display = 'inline'; document.getElementById('2410.10794v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.10794v2-abstract-full" style="display: none;"> Understanding the impact of gate errors on quantum circuits is crucial to determining the potential applications of quantum computers, especially in the absence of large-scale error-corrected hardware. We put forward analytical arguments, corroborated by extensive numerical and experimental evidence, that Trotterized quantum circuits simulating the time-evolution of systems near thermal equilibrium are substantially more robust to both quantum gate errors and Trotter (discretization) errors than is widely assumed. In Quantinuum's trapped-ion computers, the weakly entangling gates that appear in Trotterized circuits can be implemented natively, and their error rate is smaller when they generate less entanglement; from benchmarking, we know that the error for a gate $\exp[-i (Z\otimes Z) 蟿]$ decreases roughly linearly with $蟿$, up to a small offset at $蟿= 0$. We provide extensive evidence that this scaling, together with the robustness of near-thermal dynamics to both gate and discretization errors, facilitates substantial improvements in the achievable accuracy of Trotterized dynamics on near-term quantum computers. We make heavy use of a new theoretical tool -- a statistical ensemble of random product states that approximates a thermal state, which can be efficiently prepared with low noise on quantum computers. We outline how the random product state ensemble can be used to predict, optimize, and design Hamiltonian simulation experiments on near-thermal quantum systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10794v2-abstract-full').style.display = 'none'; document.getElementById('2410.10794v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 24 figures; updated references, fixed typo</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.10275">arXiv:2410.10275</a> <span> [<a href="https://arxiv.org/pdf/2410.10275">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Probing the Meissner effect in pressurized bilayer nickelate superconductors using diamond quantum sensors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Wen%2C+J">Junyan Wen</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+Y">Yue Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+G">Gang Wang</a>, <a href="/search/quant-ph?searchtype=author&query=He%2C+Z">Ze-Xu He</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yang Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+N">Ningning Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Lu%2C+T">Tenglong Lu</a>, <a href="/search/quant-ph?searchtype=author&query=Ma%2C+X">Xiaoli Ma</a>, <a href="/search/quant-ph?searchtype=author&query=Jin%2C+F">Feng Jin</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+L">Liucheng Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+M">Miao Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Fan%2C+J">Jing-Wei Fan</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+X">Xiaobing Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Pan%2C+X">Xin-Yu Pan</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+G">Gang-Qin Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Cheng%2C+J">Jinguang Cheng</a>, <a href="/search/quant-ph?searchtype=author&query=Yu%2C+X">Xiaohui Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.10275v1-abstract-short" style="display: inline;"> Recent reports on the signatures of high-temperature superconductivity with a critical temperature Tc close to 80 K have triggered great research interest and extensive follow-up studies. Although zero-resistance state has been successfully achieved under improved hydrostatic pressure conditions, there is no clear evidence of superconducting diamagnetism in pressurized… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10275v1-abstract-full').style.display = 'inline'; document.getElementById('2410.10275v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.10275v1-abstract-full" style="display: none;"> Recent reports on the signatures of high-temperature superconductivity with a critical temperature Tc close to 80 K have triggered great research interest and extensive follow-up studies. Although zero-resistance state has been successfully achieved under improved hydrostatic pressure conditions, there is no clear evidence of superconducting diamagnetism in pressurized $\mathrm{La_{3}Ni_{2}O_{7-未}}$ due to the low superconducting volume fraction and limited magnetic measurement techniques under high pressure conditions. Here, using shallow nitrogen-vacancy centers implanted on the culet of diamond anvils as in-situ quantum sensors, we observe convincing evidence for the Meissner effect in polycrystalline samples $\mathrm{La_{3}Ni_{2}O_{7-未}}$ and $\mathrm{La_{2}PrNi_{2}O_{7}}$: the magnetic field expulsion during both field cooling and field warming processes. The correlated measurements of Raman spectra and NV-based magnetic imaging indicate an incomplete structural transformation related to the displacement of oxygen ions emerging in the non-superconducting region. Furthermore, comparative experiments on different pressure transmitting media (silicone oil and KBr) and nickelates ($\mathrm{La_{3}Ni_{2}O_{7-未}}$ and $\mathrm{La_{2}PrNi_{2}O_{7}}$) reveal that an improved hydrostatic pressure conditions and the substitution of La by Pr in $\mathrm{La_{3}Ni_{2}O_{7-未}}$ can dramatically increase the superconductivity. Our work clarifies the controversy about the Meissner effect of bilayer nickelate and contributes to a deeper understanding of the mechanism of nickelate high-temperature superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10275v1-abstract-full').style.display = 'none'; document.getElementById('2410.10275v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.10208">arXiv:2410.10208</a> <span> [<a href="https://arxiv.org/pdf/2410.10208">pdf</a>, <a href="https://arxiv.org/format/2410.10208">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Floquet Engineering of Anisotropic Transverse Interactions in Superconducting Qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Liang%2C+Y">Yongqi Liang</a>, <a href="/search/quant-ph?searchtype=author&query=Huang%2C+W">Wenhui Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+L">Libo Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Tao%2C+Z">Ziyu Tao</a>, <a href="/search/quant-ph?searchtype=author&query=Tang%2C+K">Kai Tang</a>, <a href="/search/quant-ph?searchtype=author&query=Chu%2C+J">Ji Chu</a>, <a href="/search/quant-ph?searchtype=author&query=Qiu%2C+J">Jiawei Qiu</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+X">Xuandong Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Zhou%2C+Y">Yuxuan Zhou</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+J">Jiawei Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+J">Jiajian Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Guo%2C+W">Weijie Guo</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+Y">Yang Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yuanzhen Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+S">Song Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Zhong%2C+Y">Youpeng Zhong</a>, <a href="/search/quant-ph?searchtype=author&query=Niu%2C+J">Jingjing Niu</a>, <a href="/search/quant-ph?searchtype=author&query=Yu%2C+D">Dapeng Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.10208v1-abstract-short" style="display: inline;"> Superconducting transmon qubits have established as a leading candidate for quantum computation, as well as a flexible platform for exploring exotic quantum phases and dynamics. However, physical coupling naturally yields isotropic transverse interactions between qubits, restricting their access to diverse quantum phases that require spatially dependent interactions. Here, we demonstrate the simul… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10208v1-abstract-full').style.display = 'inline'; document.getElementById('2410.10208v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.10208v1-abstract-full" style="display: none;"> Superconducting transmon qubits have established as a leading candidate for quantum computation, as well as a flexible platform for exploring exotic quantum phases and dynamics. However, physical coupling naturally yields isotropic transverse interactions between qubits, restricting their access to diverse quantum phases that require spatially dependent interactions. Here, we demonstrate the simultaneous realization of both pairing (XX-YY) and hopping (XX+YY) interactions between transmon qubits by Floquet engineering. The coherent superposition of these interactions enables independent control over the XX and YY terms, yielding anisotropic transverse interactions. By aligning the transverse interactions along a 1D chain of six qubits, as calibrated via Aharonov-Bohm interference in synthetic space, we synthesize a transverse field Ising chain model and explore its dynamical phase transition under varying external field. The scalable synthesis of anisotropic transverse interactions paves the way for the implementation of more complex physical systems requiring spatially dependent interactions, enriching the toolbox for engineering quantum phases with superconducting qubits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10208v1-abstract-full').style.display = 'none'; document.getElementById('2410.10208v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7+14 pages; 4+12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.09250">arXiv:2410.09250</a> <span> [<a href="https://arxiv.org/pdf/2410.09250">pdf</a>, <a href="https://arxiv.org/format/2410.09250">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum-Trained Convolutional Neural Network for Deepfake Audio Detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Lin%2C+C+A">Chu-Hsuan Abraham Lin</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+C">Chen-Yu Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+S+Y">Samuel Yen-Chi Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+K">Kuan-Cheng Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.09250v1-abstract-short" style="display: inline;"> The rise of deepfake technologies has posed significant challenges to privacy, security, and information integrity, particularly in audio and multimedia content. This paper introduces a Quantum-Trained Convolutional Neural Network (QT-CNN) framework designed to enhance the detection of deepfake audio, leveraging the computational power of quantum machine learning (QML). The QT-CNN employs a hybrid… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09250v1-abstract-full').style.display = 'inline'; document.getElementById('2410.09250v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.09250v1-abstract-full" style="display: none;"> The rise of deepfake technologies has posed significant challenges to privacy, security, and information integrity, particularly in audio and multimedia content. This paper introduces a Quantum-Trained Convolutional Neural Network (QT-CNN) framework designed to enhance the detection of deepfake audio, leveraging the computational power of quantum machine learning (QML). The QT-CNN employs a hybrid quantum-classical approach, integrating Quantum Neural Networks (QNNs) with classical neural architectures to optimize training efficiency while reducing the number of trainable parameters. Our method incorporates a novel quantum-to-classical parameter mapping that effectively utilizes quantum states to enhance the expressive power of the model, achieving up to 70% parameter reduction compared to classical models without compromising accuracy. Data pre-processing involved extracting essential audio features, label encoding, feature scaling, and constructing sequential datasets for robust model evaluation. Experimental results demonstrate that the QT-CNN achieves comparable performance to traditional CNNs, maintaining high accuracy during training and testing phases across varying configurations of QNN blocks. The QT framework's ability to reduce computational overhead while maintaining performance underscores its potential for real-world applications in deepfake detection and other resource-constrained scenarios. This work highlights the practical benefits of integrating quantum computing into artificial intelligence, offering a scalable and efficient approach to advancing deepfake detection technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09250v1-abstract-full').style.display = 'none'; document.getElementById('2410.09250v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.06557">arXiv:2410.06557</a> <span> [<a href="https://arxiv.org/pdf/2410.06557">pdf</a>, <a href="https://arxiv.org/format/2410.06557">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Observation of disorder-free localization and efficient disorder averaging on a quantum processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Gyawali%2C+G">Gaurav Gyawali</a>, <a href="/search/quant-ph?searchtype=author&query=Cochran%2C+T">Tyler Cochran</a>, <a href="/search/quant-ph?searchtype=author&query=Lensky%2C+Y">Yuri Lensky</a>, <a href="/search/quant-ph?searchtype=author&query=Rosenberg%2C+E">Eliott Rosenberg</a>, <a href="/search/quant-ph?searchtype=author&query=Karamlou%2C+A+H">Amir H. Karamlou</a>, <a href="/search/quant-ph?searchtype=author&query=Kechedzhi%2C+K">Kostyantyn Kechedzhi</a>, <a href="/search/quant-ph?searchtype=author&query=Berndtsson%2C+J">Julia Berndtsson</a>, <a href="/search/quant-ph?searchtype=author&query=Westerhout%2C+T">Tom Westerhout</a>, <a href="/search/quant-ph?searchtype=author&query=Asfaw%2C+A">Abraham Asfaw</a>, <a href="/search/quant-ph?searchtype=author&query=Abanin%2C+D">Dmitry Abanin</a>, <a href="/search/quant-ph?searchtype=author&query=Acharya%2C+R">Rajeev Acharya</a>, <a href="/search/quant-ph?searchtype=author&query=Beni%2C+L+A">Laleh Aghababaie Beni</a>, <a href="/search/quant-ph?searchtype=author&query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/quant-ph?searchtype=author&query=Ansmann%2C+M">Markus Ansmann</a>, <a href="/search/quant-ph?searchtype=author&query=Arute%2C+F">Frank Arute</a>, <a href="/search/quant-ph?searchtype=author&query=Arya%2C+K">Kunal Arya</a>, <a href="/search/quant-ph?searchtype=author&query=Astrakhantsev%2C+N">Nikita Astrakhantsev</a>, <a href="/search/quant-ph?searchtype=author&query=Atalaya%2C+J">Juan Atalaya</a>, <a href="/search/quant-ph?searchtype=author&query=Babbush%2C+R">Ryan Babbush</a>, <a href="/search/quant-ph?searchtype=author&query=Ballard%2C+B">Brian Ballard</a>, <a href="/search/quant-ph?searchtype=author&query=Bardin%2C+J+C">Joseph C. Bardin</a>, <a href="/search/quant-ph?searchtype=author&query=Bengtsson%2C+A">Andreas Bengtsson</a>, <a href="/search/quant-ph?searchtype=author&query=Bilmes%2C+A">Alexander Bilmes</a>, <a href="/search/quant-ph?searchtype=author&query=Bortoli%2C+G">Gina Bortoli</a>, <a href="/search/quant-ph?searchtype=author&query=Bourassa%2C+A">Alexandre Bourassa</a> , et al. (195 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.06557v1-abstract-short" style="display: inline;"> One of the most challenging problems in the computational study of localization in quantum manybody systems is to capture the effects of rare events, which requires sampling over exponentially many disorder realizations. We implement an efficient procedure on a quantum processor, leveraging quantum parallelism, to efficiently sample over all disorder realizations. We observe localization without d… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06557v1-abstract-full').style.display = 'inline'; document.getElementById('2410.06557v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.06557v1-abstract-full" style="display: none;"> One of the most challenging problems in the computational study of localization in quantum manybody systems is to capture the effects of rare events, which requires sampling over exponentially many disorder realizations. We implement an efficient procedure on a quantum processor, leveraging quantum parallelism, to efficiently sample over all disorder realizations. We observe localization without disorder in quantum many-body dynamics in one and two dimensions: perturbations do not diffuse even though both the generator of evolution and the initial states are fully translationally invariant. The disorder strength as well as its density can be readily tuned using the initial state. Furthermore, we demonstrate the versatility of our platform by measuring Renyi entropies. Our method could also be extended to higher moments of the physical observables and disorder learning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06557v1-abstract-full').style.display = 'none'; document.getElementById('2410.06557v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.01717">arXiv:2410.01717</a> <span> [<a href="https://arxiv.org/pdf/2410.01717">pdf</a>, <a href="https://arxiv.org/format/2410.01717">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Revealing non-Markovian Kondo transport with waiting time distributions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Chan%2C+F">Feng-Jui Chan</a>, <a href="/search/quant-ph?searchtype=author&query=Kuo%2C+P">Po-Chen Kuo</a>, <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N">Neill Lambert</a>, <a href="/search/quant-ph?searchtype=author&query=Cirio%2C+M">Mauro Cirio</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yueh-Nan Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.01717v2-abstract-short" style="display: inline;"> We investigate non-Markovian transport dynamics and signatures of the Kondo effect in a single impurity Anderson model. The model consists of a quantum dot (QD) with ultra-strong coupling to a left lead and weak coupling to a right lead acting as a detector. We calculate the waiting time distribution (WTD) of electrons tunneling into the detector using a combination of the hierarchical equations o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01717v2-abstract-full').style.display = 'inline'; document.getElementById('2410.01717v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.01717v2-abstract-full" style="display: none;"> We investigate non-Markovian transport dynamics and signatures of the Kondo effect in a single impurity Anderson model. The model consists of a quantum dot (QD) with ultra-strong coupling to a left lead and weak coupling to a right lead acting as a detector. We calculate the waiting time distribution (WTD) of electrons tunneling into the detector using a combination of the hierarchical equations of motion approach (HEOM) and a dressed master equation. Oscillations emerge in the short-time WTD, becoming more pronounced with stronger left-lead coupling. Fourier analysis reveals a blue shift in the oscillation frequency as coupling increases, indicating enhanced system-bath hybridization. Crucially, comparison with a dressed master equation confirms that these oscillations are a direct consequence of non-Markovian system-bath correlations. We examine the Kondo effect's influence on these oscillations by varying the quantum dot's Coulomb repulsion. Increasing this interaction enhances the WTD oscillations, coinciding with the signatures of a strengthened Kondo resonance in the quantum dot's density of states. Our results demonstrate that WTD oscillations offer a valuable tool for probing non-Markovian system-bath interactions and the emergence of Kondo correlations within quantum dot systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01717v2-abstract-full').style.display = 'none'; document.getElementById('2410.01717v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.17142">arXiv:2409.17142</a> <span> [<a href="https://arxiv.org/pdf/2409.17142">pdf</a>, <a href="https://arxiv.org/format/2409.17142">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Visualizing Dynamics of Charges and Strings in (2+1)D Lattice Gauge Theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/quant-ph?searchtype=author&query=Jobst%2C+B">Bernhard Jobst</a>, <a href="/search/quant-ph?searchtype=author&query=Rosenberg%2C+E">Eliott Rosenberg</a>, <a href="/search/quant-ph?searchtype=author&query=Lensky%2C+Y+D">Yuri D. Lensky</a>, <a href="/search/quant-ph?searchtype=author&query=Gyawali%2C+G">Gaurav Gyawali</a>, <a href="/search/quant-ph?searchtype=author&query=Eassa%2C+N">Norhan Eassa</a>, <a href="/search/quant-ph?searchtype=author&query=Will%2C+M">Melissa Will</a>, <a href="/search/quant-ph?searchtype=author&query=Abanin%2C+D">Dmitry Abanin</a>, <a href="/search/quant-ph?searchtype=author&query=Acharya%2C+R">Rajeev Acharya</a>, <a href="/search/quant-ph?searchtype=author&query=Beni%2C+L+A">Laleh Aghababaie Beni</a>, <a href="/search/quant-ph?searchtype=author&query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/quant-ph?searchtype=author&query=Ansmann%2C+M">Markus Ansmann</a>, <a href="/search/quant-ph?searchtype=author&query=Arute%2C+F">Frank Arute</a>, <a href="/search/quant-ph?searchtype=author&query=Arya%2C+K">Kunal Arya</a>, <a href="/search/quant-ph?searchtype=author&query=Asfaw%2C+A">Abraham Asfaw</a>, <a href="/search/quant-ph?searchtype=author&query=Atalaya%2C+J">Juan Atalaya</a>, <a href="/search/quant-ph?searchtype=author&query=Babbush%2C+R">Ryan Babbush</a>, <a href="/search/quant-ph?searchtype=author&query=Ballard%2C+B">Brian Ballard</a>, <a href="/search/quant-ph?searchtype=author&query=Bardin%2C+J+C">Joseph C. Bardin</a>, <a href="/search/quant-ph?searchtype=author&query=Bengtsson%2C+A">Andreas Bengtsson</a>, <a href="/search/quant-ph?searchtype=author&query=Bilmes%2C+A">Alexander Bilmes</a>, <a href="/search/quant-ph?searchtype=author&query=Bourassa%2C+A">Alexandre Bourassa</a>, <a href="/search/quant-ph?searchtype=author&query=Bovaird%2C+J">Jenna Bovaird</a>, <a href="/search/quant-ph?searchtype=author&query=Broughton%2C+M">Michael Broughton</a>, <a href="/search/quant-ph?searchtype=author&query=Browne%2C+D+A">David A. Browne</a> , et al. (167 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.17142v1-abstract-short" style="display: inline;"> Lattice gauge theories (LGTs) can be employed to understand a wide range of phenomena, from elementary particle scattering in high-energy physics to effective descriptions of many-body interactions in materials. Studying dynamical properties of emergent phases can be challenging as it requires solving many-body problems that are generally beyond perturbative limits. We investigate the dynamics of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17142v1-abstract-full').style.display = 'inline'; document.getElementById('2409.17142v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.17142v1-abstract-full" style="display: none;"> Lattice gauge theories (LGTs) can be employed to understand a wide range of phenomena, from elementary particle scattering in high-energy physics to effective descriptions of many-body interactions in materials. Studying dynamical properties of emergent phases can be challenging as it requires solving many-body problems that are generally beyond perturbative limits. We investigate the dynamics of local excitations in a $\mathbb{Z}_2$ LGT using a two-dimensional lattice of superconducting qubits. We first construct a simple variational circuit which prepares low-energy states that have a large overlap with the ground state; then we create particles with local gates and simulate their quantum dynamics via a discretized time evolution. As the effective magnetic field is increased, our measurements show signatures of transitioning from deconfined to confined dynamics. For confined excitations, the magnetic field induces a tension in the string connecting them. Our method allows us to experimentally image string dynamics in a (2+1)D LGT from which we uncover two distinct regimes inside the confining phase: for weak confinement the string fluctuates strongly in the transverse direction, while for strong confinement transverse fluctuations are effectively frozen. In addition, we demonstrate a resonance condition at which dynamical string breaking is facilitated. Our LGT implementation on a quantum processor presents a novel set of techniques for investigating emergent particle and string dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17142v1-abstract-full').style.display = 'none'; document.getElementById('2409.17142v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.16634">arXiv:2409.16634</a> <span> [<a href="https://arxiv.org/pdf/2409.16634">pdf</a>, <a href="https://arxiv.org/format/2409.16634">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Trotter error time scaling separation via commutant decomposition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yi-Hsiang Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.16634v1-abstract-short" style="display: inline;"> Suppressing the Trotter error in dynamical quantum simulation typically requires running deeper circuits, posing a great challenge for noisy near-term quantum devices. Studies have shown that the empirical error is usually much smaller than the one suggested by existing bounds, implying the actual circuit cost required is much less than the ones based on those bounds. Here, we improve the estimate… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16634v1-abstract-full').style.display = 'inline'; document.getElementById('2409.16634v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.16634v1-abstract-full" style="display: none;"> Suppressing the Trotter error in dynamical quantum simulation typically requires running deeper circuits, posing a great challenge for noisy near-term quantum devices. Studies have shown that the empirical error is usually much smaller than the one suggested by existing bounds, implying the actual circuit cost required is much less than the ones based on those bounds. Here, we improve the estimate of the Trotter error over existing bounds, by introducing a general framework of commutant decomposition that separates disjoint error components that have fundamentally different scaling with time. In particular we identify two error components that each scale as $\mathcal{O}(t^{p+1}/r^p)$ and $\mathcal{O}(t^p/r^p)$ for a $p$th-order product formula evolving to time $t$ using $r$ partitions. Under a fixed step size $t/r$, it implies one would scale linearly with time $t$ and the other would be constant of $t$. We show that this formalism not only straightforwardly reproduces previous results but also provides a better error estimate for higher-order product formulas. We demonstrate the improvement both analytically and numerically. We also apply the analysis to observable error relating to the heating in Floquet dynamics and thermalization, which is of independent interest. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16634v1-abstract-full').style.display = 'none'; document.getElementById('2409.16634v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.09840">arXiv:2409.09840</a> <span> [<a href="https://arxiv.org/pdf/2409.09840">pdf</a>, <a href="https://arxiv.org/format/2409.09840">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Sub-shot noise sensitivity via deformed four-headed kitten states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Akhtar%2C+N">Naeem Akhtar</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+X">Xiaosen Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Peng%2C+J">Jia-Xin Peng</a>, <a href="/search/quant-ph?searchtype=author&query=Haq%2C+I+U">Inaam Ul Haq</a>, <a href="/search/quant-ph?searchtype=author&query=Xie%2C+Y">Yuee Xie</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yuanping Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.09840v1-abstract-short" style="display: inline;"> The original compass state, created by superposing four coherent states, yields anisotropic sub-Planck structures and demonstrates enhanced sensitivity to perturbations, offering advantages for quantum sensing. We propose two variants of this compass state by simultaneously applying photon addition and subtraction in different orders: one with addition first and one with subtraction first to the s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09840v1-abstract-full').style.display = 'inline'; document.getElementById('2409.09840v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.09840v1-abstract-full" style="display: none;"> The original compass state, created by superposing four coherent states, yields anisotropic sub-Planck structures and demonstrates enhanced sensitivity to perturbations, offering advantages for quantum sensing. We propose two variants of this compass state by simultaneously applying photon addition and subtraction in different orders: one with addition first and one with subtraction first to the state. Our variants display sub-Planck structures and improved sensitivity to displacements, with photon addition and subtraction influencing these characteristics. In our cases, adding photons increases the average photon number, while photon subtraction lowers it in the first case and has no effect in the second. Furthermore, an increment in the added number of photons uniformly reduces the size of sub-Planck structures, whereas increasing the number of photons subtracted from the state causes these sub-Planck structures to expand in size; higher photon addition improves sensitivity, while photon subtraction decreases it. Remarkably, under optimal parameters, our specific variants achieve isotropic sub-Planck structures and provide isotropic enhanced sensitivity across all directions, surpassing compass states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09840v1-abstract-full').style.display = 'none'; document.getElementById('2409.09840v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, and 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.08173">arXiv:2409.08173</a> <span> [<a href="https://arxiv.org/pdf/2409.08173">pdf</a>, <a href="https://arxiv.org/format/2409.08173">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum Entanglement Allocation through a Central Hub </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yu-Ao Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+X">Xia Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Zhu%2C+C">Chenghong Zhu</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+L">Lei Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+J">Junyu Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+X">Xin Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.08173v2-abstract-short" style="display: inline;"> Establishing a fully functional quantum internet relies on the efficient allocation of multipartite entangled states, which enables advanced quantum communication protocols, secure multipartite quantum key distribution, and distributed quantum computing. In this work, we propose local operations and classical communication (LOCC) protocols for allocating generalized $N$-qubit W states within a cen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08173v2-abstract-full').style.display = 'inline'; document.getElementById('2409.08173v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.08173v2-abstract-full" style="display: none;"> Establishing a fully functional quantum internet relies on the efficient allocation of multipartite entangled states, which enables advanced quantum communication protocols, secure multipartite quantum key distribution, and distributed quantum computing. In this work, we propose local operations and classical communication (LOCC) protocols for allocating generalized $N$-qubit W states within a centralized hub architecture, where the central hub node preshares Bell states with each end node. We develop a detailed analysis of the optimality of the resources required for our proposed W-state allocation protocol and the previously proposed GHZ-state protocol. Our results show that these protocols deterministically and exactly distribute states using only $N$ qubits of quantum memory within the central system, with communication costs of $2N - 2$ and $N$ classical bits for the W and GHZ states, respectively. These resource-efficient LOCC protocols are further proven to be optimal within the centralized hub architecture, outperforming conventional teleportation protocols for entanglement distribution in both memory and communication costs. Our results provide a more resource-efficient method for allocating essential multipartite entangled states in quantum networks, paving the way for the realization of a quantum internet with enhanced efficiency. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08173v2-abstract-full').style.display = 'none'; document.getElementById('2409.08173v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.06659">arXiv:2409.06659</a> <span> [<a href="https://arxiv.org/pdf/2409.06659">pdf</a>, <a href="https://arxiv.org/format/2409.06659">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Amortized Stabilizer R茅nyi Entropy of Quantum Dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Zhu%2C+C">Chengkai Zhu</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yu-Ao Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Shen%2C+Z">Zanqiu Shen</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+Z">Zhiping Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Yu%2C+Z">Zhan Yu</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+X">Xin Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.06659v1-abstract-short" style="display: inline;"> Unraveling the secrets of how much nonstabilizerness a quantum dynamic can generate is crucial for harnessing the power of magic states, the essential resources for achieving quantum advantage and realizing fault-tolerant quantum computation. In this work, we introduce the amortized $伪$-stabilizer R茅nyi entropy, a magic monotone for unitary operations that quantifies the nonstabilizerness generati… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06659v1-abstract-full').style.display = 'inline'; document.getElementById('2409.06659v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.06659v1-abstract-full" style="display: none;"> Unraveling the secrets of how much nonstabilizerness a quantum dynamic can generate is crucial for harnessing the power of magic states, the essential resources for achieving quantum advantage and realizing fault-tolerant quantum computation. In this work, we introduce the amortized $伪$-stabilizer R茅nyi entropy, a magic monotone for unitary operations that quantifies the nonstabilizerness generation capability of quantum dynamics. Amortization is key in quantifying the magic of quantum dynamics, as we reveal that nonstabilizerness generation can be enhanced by prior nonstabilizerness in input states when considering the $伪$-stabilizer R茅nyi entropy, while this is not the case for robustness of magic or stabilizer extent. We demonstrate the versatility of the amortized $伪$-stabilizer R茅nyi entropy in investigating the nonstabilizerness resources of quantum dynamics of computational and fundamental interest. In particular, we establish improved lower bounds on the $T$-count of quantum Fourier transforms and the quantum evolutions of one-dimensional Heisenberg Hamiltonians, showcasing the power of this tool in studying quantum advantages and the corresponding cost in fault-tolerant quantum computation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06659v1-abstract-full').style.display = 'none'; document.getElementById('2409.06659v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 + 7 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.05846">arXiv:2409.05846</a> <span> [<a href="https://arxiv.org/pdf/2409.05846">pdf</a>, <a href="https://arxiv.org/format/2409.05846">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Neural and Evolutionary Computing">cs.NE</span> </div> </div> <p class="title is-5 mathjax"> An Introduction to Quantum Reinforcement Learning (QRL) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Chen%2C+S+Y">Samuel Yen-Chi Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.05846v1-abstract-short" style="display: inline;"> Recent advancements in quantum computing (QC) and machine learning (ML) have sparked considerable interest in the integration of these two cutting-edge fields. Among the various ML techniques, reinforcement learning (RL) stands out for its ability to address complex sequential decision-making problems. RL has already demonstrated substantial success in the classical ML community. Now, the emerging… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.05846v1-abstract-full').style.display = 'inline'; document.getElementById('2409.05846v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.05846v1-abstract-full" style="display: none;"> Recent advancements in quantum computing (QC) and machine learning (ML) have sparked considerable interest in the integration of these two cutting-edge fields. Among the various ML techniques, reinforcement learning (RL) stands out for its ability to address complex sequential decision-making problems. RL has already demonstrated substantial success in the classical ML community. Now, the emerging field of Quantum Reinforcement Learning (QRL) seeks to enhance RL algorithms by incorporating principles from quantum computing. This paper offers an introduction to this exciting area for the broader AI and ML community. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.05846v1-abstract-full').style.display = 'none'; document.getElementById('2409.05846v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by The 15th International Conference on ICT Convergence - ICTC 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.02763">arXiv:2409.02763</a> <span> [<a href="https://arxiv.org/pdf/2409.02763">pdf</a>, <a href="https://arxiv.org/format/2409.02763">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Federated Quantum-Train with Batched Parameter Generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Liu%2C+C">Chen-Yu Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+S+Y">Samuel Yen-Chi Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.02763v1-abstract-short" style="display: inline;"> In this work, we introduce the Federated Quantum-Train (QT) framework, which integrates the QT model into federated learning to leverage quantum computing for distributed learning systems. Quantum client nodes employ Quantum Neural Networks (QNNs) and a mapping model to generate local target model parameters, which are updated and aggregated at a central node. Testing with a VGG-like convolutional… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02763v1-abstract-full').style.display = 'inline'; document.getElementById('2409.02763v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.02763v1-abstract-full" style="display: none;"> In this work, we introduce the Federated Quantum-Train (QT) framework, which integrates the QT model into federated learning to leverage quantum computing for distributed learning systems. Quantum client nodes employ Quantum Neural Networks (QNNs) and a mapping model to generate local target model parameters, which are updated and aggregated at a central node. Testing with a VGG-like convolutional neural network on the CIFAR-10 dataset, our approach significantly reduces qubit usage from 19 to as low as 8 qubits while reducing generalization error. The QT method mitigates overfitting observed in classical models, aligning training and testing accuracy and improving performance in highly compressed models. Notably, the Federated QT framework does not require a quantum computer during inference, enhancing practicality given current quantum hardware limitations. This work highlights the potential of integrating quantum techniques into federated learning, paving the way for advancements in quantum machine learning and distributed learning systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02763v1-abstract-full').style.display = 'none'; document.getElementById('2409.02763v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.01135">arXiv:2409.01135</a> <span> [<a href="https://arxiv.org/pdf/2409.01135">pdf</a>, <a href="https://arxiv.org/ps/2409.01135">ps</a>, <a href="https://arxiv.org/format/2409.01135">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Suppression of soliton collapses, modulational instability, and rogue-wave excitation in two-L茅vy-index fractional Kerr media </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Zhong%2C+M">Ming Zhong</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yong Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Yan%2C+Z">Zhenya Yan</a>, <a href="/search/quant-ph?searchtype=author&query=Malomed%2C+B+A">Boris A. Malomed</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.01135v1-abstract-short" style="display: inline;"> s in laser systems with two fractional-dispersion/diffraction terms, quantified by their L茅vy indices, $伪_{1}\, 伪_{2}\in (1, 2]$, and self-focusing or defocusing Kerr nonlinearity. Some fundamental solitons are obtained by means of the variational approximation, which are verified by comparison with numerical results. We find that the soliton collapse, exhibited by the one-dimensional cubic fracti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01135v1-abstract-full').style.display = 'inline'; document.getElementById('2409.01135v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.01135v1-abstract-full" style="display: none;"> s in laser systems with two fractional-dispersion/diffraction terms, quantified by their L茅vy indices, $伪_{1}\, 伪_{2}\in (1, 2]$, and self-focusing or defocusing Kerr nonlinearity. Some fundamental solitons are obtained by means of the variational approximation, which are verified by comparison with numerical results. We find that the soliton collapse, exhibited by the one-dimensional cubic fractional nonlinear Schr枚dinger equation with only one L茅vy index $伪=1$, can be suppressed in the two-L茅vy-index fractional nonlinear Schr枚dinger system. Stability of the solitons is also explored against collisions with Gaussian pulses and adiabatic variation of the system parameters. Modulation instability of continuous waves is investigated in the two-L茅vy-index system too. In particular, the modulation instability may occur in the case of the defocusing nonlinearity when two diffraction coefficients have opposite signs. Using results for the modulation instability, we produce first- and second-order rogue waves on top of continuous waves, for both signs of the Kerr nonlinearity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01135v1-abstract-full').style.display = 'none'; document.getElementById('2409.01135v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc. R. Soc. A 480 (2024) 20230765 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.13687">arXiv:2408.13687</a> <span> [<a href="https://arxiv.org/pdf/2408.13687">pdf</a>, <a href="https://arxiv.org/format/2408.13687">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum error correction below the surface code threshold </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Acharya%2C+R">Rajeev Acharya</a>, <a href="/search/quant-ph?searchtype=author&query=Aghababaie-Beni%2C+L">Laleh Aghababaie-Beni</a>, <a href="/search/quant-ph?searchtype=author&query=Aleiner%2C+I">Igor Aleiner</a>, <a href="/search/quant-ph?searchtype=author&query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/quant-ph?searchtype=author&query=Ansmann%2C+M">Markus Ansmann</a>, <a href="/search/quant-ph?searchtype=author&query=Arute%2C+F">Frank Arute</a>, <a href="/search/quant-ph?searchtype=author&query=Arya%2C+K">Kunal Arya</a>, <a href="/search/quant-ph?searchtype=author&query=Asfaw%2C+A">Abraham Asfaw</a>, <a href="/search/quant-ph?searchtype=author&query=Astrakhantsev%2C+N">Nikita Astrakhantsev</a>, <a href="/search/quant-ph?searchtype=author&query=Atalaya%2C+J">Juan Atalaya</a>, <a href="/search/quant-ph?searchtype=author&query=Babbush%2C+R">Ryan Babbush</a>, <a href="/search/quant-ph?searchtype=author&query=Bacon%2C+D">Dave Bacon</a>, <a href="/search/quant-ph?searchtype=author&query=Ballard%2C+B">Brian Ballard</a>, <a href="/search/quant-ph?searchtype=author&query=Bardin%2C+J+C">Joseph C. Bardin</a>, <a href="/search/quant-ph?searchtype=author&query=Bausch%2C+J">Johannes Bausch</a>, <a href="/search/quant-ph?searchtype=author&query=Bengtsson%2C+A">Andreas Bengtsson</a>, <a href="/search/quant-ph?searchtype=author&query=Bilmes%2C+A">Alexander Bilmes</a>, <a href="/search/quant-ph?searchtype=author&query=Blackwell%2C+S">Sam Blackwell</a>, <a href="/search/quant-ph?searchtype=author&query=Boixo%2C+S">Sergio Boixo</a>, <a href="/search/quant-ph?searchtype=author&query=Bortoli%2C+G">Gina Bortoli</a>, <a href="/search/quant-ph?searchtype=author&query=Bourassa%2C+A">Alexandre Bourassa</a>, <a href="/search/quant-ph?searchtype=author&query=Bovaird%2C+J">Jenna Bovaird</a>, <a href="/search/quant-ph?searchtype=author&query=Brill%2C+L">Leon Brill</a>, <a href="/search/quant-ph?searchtype=author&query=Broughton%2C+M">Michael Broughton</a>, <a href="/search/quant-ph?searchtype=author&query=Browne%2C+D+A">David A. Browne</a> , et al. (224 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.13687v1-abstract-short" style="display: inline;"> Quantum error correction provides a path to reach practical quantum computing by combining multiple physical qubits into a logical qubit, where the logical error rate is suppressed exponentially as more qubits are added. However, this exponential suppression only occurs if the physical error rate is below a critical threshold. In this work, we present two surface code memories operating below this… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.13687v1-abstract-full').style.display = 'inline'; document.getElementById('2408.13687v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.13687v1-abstract-full" style="display: none;"> Quantum error correction provides a path to reach practical quantum computing by combining multiple physical qubits into a logical qubit, where the logical error rate is suppressed exponentially as more qubits are added. However, this exponential suppression only occurs if the physical error rate is below a critical threshold. In this work, we present two surface code memories operating below this threshold: a distance-7 code and a distance-5 code integrated with a real-time decoder. The logical error rate of our larger quantum memory is suppressed by a factor of $螞$ = 2.14 $\pm$ 0.02 when increasing the code distance by two, culminating in a 101-qubit distance-7 code with 0.143% $\pm$ 0.003% error per cycle of error correction. This logical memory is also beyond break-even, exceeding its best physical qubit's lifetime by a factor of 2.4 $\pm$ 0.3. We maintain below-threshold performance when decoding in real time, achieving an average decoder latency of 63 $渭$s at distance-5 up to a million cycles, with a cycle time of 1.1 $渭$s. To probe the limits of our error-correction performance, we run repetition codes up to distance-29 and find that logical performance is limited by rare correlated error events occurring approximately once every hour, or 3 $\times$ 10$^9$ cycles. Our results present device performance that, if scaled, could realize the operational requirements of large scale fault-tolerant quantum algorithms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.13687v1-abstract-full').style.display = 'none'; document.getElementById('2408.13687v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures, Supplementary Information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.12641">arXiv:2408.12641</a> <span> [<a href="https://arxiv.org/pdf/2408.12641">pdf</a>, <a href="https://arxiv.org/format/2408.12641">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Surrogate Constructed Scalable Circuits ADAPT-VQE in the Schwinger model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Gustafson%2C+E">Erik Gustafson</a>, <a href="/search/quant-ph?searchtype=author&query=Sherbert%2C+K">Kyle Sherbert</a>, <a href="/search/quant-ph?searchtype=author&query=Florio%2C+A">Adrien Florio</a>, <a href="/search/quant-ph?searchtype=author&query=Shirali%2C+K">Karunya Shirali</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yanzhu Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Lamm%2C+H">Henry Lamm</a>, <a href="/search/quant-ph?searchtype=author&query=Valgushev%2C+S">Semeon Valgushev</a>, <a href="/search/quant-ph?searchtype=author&query=Weichselbaum%2C+A">Andreas Weichselbaum</a>, <a href="/search/quant-ph?searchtype=author&query=Economou%2C+S+E">Sophia E. Economou</a>, <a href="/search/quant-ph?searchtype=author&query=Pisarski%2C+R+D">Robert D. Pisarski</a>, <a href="/search/quant-ph?searchtype=author&query=Tubman%2C+N+M">Norm M. Tubman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.12641v1-abstract-short" style="display: inline;"> Inspired by recent advancements of simulating periodic systems on quantum computers, we develop a new approach, (SC)$^2$-ADAPT-VQE, to further advance the simulation of these systems. Our approach extends the scalable circuits ADAPT-VQE framework, which builds an ansatz from a pool of coordinate-invariant operators defined for arbitrarily large, though not arbitrarily small, volumes. Our method us… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12641v1-abstract-full').style.display = 'inline'; document.getElementById('2408.12641v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.12641v1-abstract-full" style="display: none;"> Inspired by recent advancements of simulating periodic systems on quantum computers, we develop a new approach, (SC)$^2$-ADAPT-VQE, to further advance the simulation of these systems. Our approach extends the scalable circuits ADAPT-VQE framework, which builds an ansatz from a pool of coordinate-invariant operators defined for arbitrarily large, though not arbitrarily small, volumes. Our method uses a classically tractable ``Surrogate Constructed'' method to remove irrelevant operators from the pool, reducing the minimum size for which the scalable circuits are defined. Bringing together the scalable circuits and the surrogate constructed approaches forms the core of the (SC)$^2$ methodology. Our approach allows for a wider set of classical computations, on small volumes, which can be used for a more robust extrapolation protocol. While developed in the context of lattice models, the surrogate construction portion is applicable to a wide variety of problems where information about the relative importance of operators in the pool is available. As an example, we use it to compute properties of the Schwinger model - quantum electrodynamics for a single, massive fermion in $1+1$ dimensions - and show that our method can be used to accurately extrapolate to the continuum limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12641v1-abstract-full').style.display = 'none'; document.getElementById('2408.12641v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0456-SQMS-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.12192">arXiv:2408.12192</a> <span> [<a href="https://arxiv.org/pdf/2408.12192">pdf</a>, <a href="https://arxiv.org/format/2408.12192">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> A framework for extracting the rates of photophysical processes from biexponentially decaying photon emission data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Cleveland%2C+J+M">Jill M. Cleveland</a>, <a href="/search/quant-ph?searchtype=author&query=Welsch%2C+T+A">Tory A. Welsch</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+E+Y">Eric Y. Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Chase%2C+D+B">D. Bruce Chase</a>, <a href="/search/quant-ph?searchtype=author&query=Doty%2C+M+F">Matthew F. Doty</a>, <a href="/search/quant-ph?searchtype=author&query=Ram%C3%ADrez-G%C3%B3mez%2C+H+Y">Hanz Y. Ram铆rez-G贸mez</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.12192v1-abstract-short" style="display: inline;"> There is strong interest in designing and realizing optically-active semiconductor nanostructures of greater complexity for applications in fields ranging from biomedical engineering to quantum computing. While these increasingly complex nanostructures can implement progressively sophisticated optical functions, the presence of more material constituents and interfaces also leads to increasingly c… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12192v1-abstract-full').style.display = 'inline'; document.getElementById('2408.12192v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.12192v1-abstract-full" style="display: none;"> There is strong interest in designing and realizing optically-active semiconductor nanostructures of greater complexity for applications in fields ranging from biomedical engineering to quantum computing. While these increasingly complex nanostructures can implement progressively sophisticated optical functions, the presence of more material constituents and interfaces also leads to increasingly complex exciton dynamics. In particular, the rates of carrier trapping and detrapping in complex heterostructures are critically important for advanced optical functionality, but they can rarely be directly measured. In this work, we develop a model that includes trapping and release of carriers by optically inactive states. The model explains the widely observed biexponential decay of the photoluminescence signal from neutral excitons in low dimensional semiconductor emitters. The model also allows determination of likelihood intervals for all the transition rates involved in the emission dynamics, without the use of approximations. Furthermore, in cases for which the high temperature limit is suitable, the model leads to specific values of such rates, outperforming reduced models previously used to estimate those quantities. We demonstrate the value of this model by applying it to time resolved photoluminescence measurements of CdSeTe/CdS heterostructures. We obtain values not only for the radiative and nonradiative lifetimes, but also for the delayed photoluminescence originating in trapping and release. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12192v1-abstract-full').style.display = 'none'; document.getElementById('2408.12192v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.09922">arXiv:2408.09922</a> <span> [<a href="https://arxiv.org/pdf/2408.09922">pdf</a>, <a href="https://arxiv.org/format/2408.09922">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Realization of Landau-Zener Rabi Oscillations on optical lattice clock </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Tan%2C+W">Wei Tan</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+W">Wei-Xin Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Ying-Xin Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Zhou%2C+C">Chi-Hua Zhou</a>, <a href="/search/quant-ph?searchtype=author&query=Zhao%2C+G">Guo-Dong Zhao</a>, <a href="/search/quant-ph?searchtype=author&query=Chang%2C+H">Hong Chang</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+T">Tao Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.09922v1-abstract-short" style="display: inline;"> Manipulating quantum states is at the heart of quantum information processing and quantum metrology. Landau-Zener Rabi oscillation (LZRO), which arises from a quantum two-level system swept repeatedly across the avoided crossing point in the time domain, has been suggested for widespread use in manipulating quantum states. Cold atom is one of the most prominent platforms for quantum computing and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09922v1-abstract-full').style.display = 'inline'; document.getElementById('2408.09922v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.09922v1-abstract-full" style="display: none;"> Manipulating quantum states is at the heart of quantum information processing and quantum metrology. Landau-Zener Rabi oscillation (LZRO), which arises from a quantum two-level system swept repeatedly across the avoided crossing point in the time domain, has been suggested for widespread use in manipulating quantum states. Cold atom is one of the most prominent platforms for quantum computing and precision measurement. However, LZRO has never been observed in cold atoms due to its stringent requirements. By compensating for the linear drift of the clock laser and optimizing experimental parameters, we successfully measured LZRO on the strontium atomic optical clock platform under both fast and slow passage limits within $4$ to $6$ driving periods. Compared to previous results on other platforms, the duration of the plateau is $10^4$ times longer in the optical lattice clock. The experimental data also suggest that destructive Landau-Zener interference can effectively suppress dephasing effects in the optical lattice clock, paving the way for manipulating quantum states against various environmental effects in cold atomic systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09922v1-abstract-full').style.display = 'none'; document.getElementById('2408.09922v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.05899">arXiv:2408.05899</a> <span> [<a href="https://arxiv.org/pdf/2408.05899">pdf</a>, <a href="https://arxiv.org/format/2408.05899">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Quantum Gradient Class Activation Map for Model Interpretability </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Lin%2C+H">Hsin-Yi Lin</a>, <a href="/search/quant-ph?searchtype=author&query=Tseng%2C+H">Huan-Hsin Tseng</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+S+Y">Samuel Yen-Chi Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Yoo%2C+S">Shinjae Yoo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.05899v1-abstract-short" style="display: inline;"> Quantum machine learning (QML) has recently made significant advancements in various topics. Despite the successes, the safety and interpretability of QML applications have not been thoroughly investigated. This work proposes using Variational Quantum Circuits (VQCs) for activation mapping to enhance model transparency, introducing the Quantum Gradient Class Activation Map (QGrad-CAM). This hybrid… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05899v1-abstract-full').style.display = 'inline'; document.getElementById('2408.05899v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.05899v1-abstract-full" style="display: none;"> Quantum machine learning (QML) has recently made significant advancements in various topics. Despite the successes, the safety and interpretability of QML applications have not been thoroughly investigated. This work proposes using Variational Quantum Circuits (VQCs) for activation mapping to enhance model transparency, introducing the Quantum Gradient Class Activation Map (QGrad-CAM). This hybrid quantum-classical computing framework leverages both quantum and classical strengths and gives access to the derivation of an explicit formula of feature map importance. Experimental results demonstrate significant, fine-grained, class-discriminative visual explanations generated across both image and speech datasets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05899v1-abstract-full').style.display = 'none'; document.getElementById('2408.05899v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to IEEE SiPS 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.03880">arXiv:2408.03880</a> <span> [<a href="https://arxiv.org/pdf/2408.03880">pdf</a>, <a href="https://arxiv.org/format/2408.03880">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Bottom-up Fabrication of 2D Rydberg Exciton Arrays in Cuprous Oxide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Barua%2C+K">Kinjol Barua</a>, <a href="/search/quant-ph?searchtype=author&query=Peana%2C+S">Samuel Peana</a>, <a href="/search/quant-ph?searchtype=author&query=Keni%2C+A+D">Arya Deepak Keni</a>, <a href="/search/quant-ph?searchtype=author&query=Mkhitaryan%2C+V">Vahagn Mkhitaryan</a>, <a href="/search/quant-ph?searchtype=author&query=Shalaev%2C+V">Vladimir Shalaev</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y+P">Yong P. Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Boltasseva%2C+A">Alexandra Boltasseva</a>, <a href="/search/quant-ph?searchtype=author&query=Alaeian%2C+H">Hadiseh Alaeian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.03880v1-abstract-short" style="display: inline;"> Solid-state platforms provide exceptional opportunities for advancing on-chip quantum technologies by enhancing interaction strengths through coupling, scalability, and robustness. Cuprous oxide ($\text{Cu}_{2}\text{O}$) has recently emerged as a promising medium for scalable quantum technology due to its high-lying Rydberg excitonic states, akin to those in hydrogen atoms. To harness these nonlin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03880v1-abstract-full').style.display = 'inline'; document.getElementById('2408.03880v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.03880v1-abstract-full" style="display: none;"> Solid-state platforms provide exceptional opportunities for advancing on-chip quantum technologies by enhancing interaction strengths through coupling, scalability, and robustness. Cuprous oxide ($\text{Cu}_{2}\text{O}$) has recently emerged as a promising medium for scalable quantum technology due to its high-lying Rydberg excitonic states, akin to those in hydrogen atoms. To harness these nonlinearities for quantum applications, the confinement dimensions must match the Rydberg blockade size, which can reach several microns in $\text{Cu}_{2}\text{O}$. Using a CMOS-compatible growth technique, this study demonstrates the bottom-up fabrication of site-selective arrays of $\text{Cu}_{2}\text{O}$ microparticles. We observed Rydberg excitons up to the principal quantum number $n$=5 within these $\text{Cu}_{2}\text{O}$ arrays on a quartz substrate and analyzed the spatial variation of their spectrum across the array, showing robustness and reproducibility on a large chip. These results lay the groundwork for the deterministic growth of $\text{Cu}_{2}\text{O}$ around photonic structures, enabling substantial light-matter interaction on integrated photonic platforms and paving the way for scalable, on-chip quantum devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03880v1-abstract-full').style.display = 'none'; document.getElementById('2408.03880v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.03815">arXiv:2408.03815</a> <span> [<a href="https://arxiv.org/pdf/2408.03815">pdf</a>, <a href="https://arxiv.org/format/2408.03815">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Dissipation Driven Coherent Dynamics Observed in Bose-Einstein Condensates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Tian%2C+Y">Ye Tian</a>, <a href="/search/quant-ph?searchtype=author&query=Zhao%2C+Y">Yajuan Zhao</a>, <a href="/search/quant-ph?searchtype=author&query=Wu%2C+Y">Yue Wu</a>, <a href="/search/quant-ph?searchtype=author&query=Ye%2C+J">Jilai Ye</a>, <a href="/search/quant-ph?searchtype=author&query=Mei%2C+S">Shuyao Mei</a>, <a href="/search/quant-ph?searchtype=author&query=Chi%2C+Z">Zhihao Chi</a>, <a href="/search/quant-ph?searchtype=author&query=Tian%2C+T">Tian Tian</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+C">Ce Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Shi%2C+Z">Zhe-Yu Shi</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yu Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Hu%2C+J">Jiazhong Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Zhai%2C+H">Hui Zhai</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+W">Wenlan Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.03815v1-abstract-short" style="display: inline;"> We report the first experimental observation of dissipation-driven coherent quantum many-body oscillation, and this oscillation is manifested as the coherent exchange of atoms between the thermal and the condensate components in a three-dimensional partially condensed Bose gas. Firstly, we observe that the dissipation leads to two different atom loss rates between the thermal and the condensate co… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03815v1-abstract-full').style.display = 'inline'; document.getElementById('2408.03815v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.03815v1-abstract-full" style="display: none;"> We report the first experimental observation of dissipation-driven coherent quantum many-body oscillation, and this oscillation is manifested as the coherent exchange of atoms between the thermal and the condensate components in a three-dimensional partially condensed Bose gas. Firstly, we observe that the dissipation leads to two different atom loss rates between the thermal and the condensate components, such that the thermal fraction increases as dissipation time increases. Therefore, this dissipation process serves as a tool to uniformly ramp up the system's temperature without introducing extra density excitation. Subsequently, a coherent pair exchange of atoms between the thermal and the condensate components occurs, resulting in coherent oscillation of atom numbers in both components. This oscillation, permanently embedded in the atom loss process, is revealed clearly when we inset a duration of dissipation-free evolution into the entire dynamics, manifested as an oscillation of total atom number at the end. Finally, we also present a theoretical calculation to support this physical mechanism, which simultaneously includes dissipation, interaction, finite temperature, and harmonic trap effects. Our work introduces a highly controllable dissipation as a new tool to control quantum many-body dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03815v1-abstract-full').style.display = 'none'; document.getElementById('2408.03815v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00471">arXiv:2408.00471</a> <span> [<a href="https://arxiv.org/pdf/2408.00471">pdf</a>, <a href="https://arxiv.org/format/2408.00471">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Preparation of high fidelity entangled cat states with composite pulses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Gu%2C+G">Ge-Ge Gu</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+D">Dong-Sheng Li</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Ye-Hong Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Huang%2C+B">Bi-Hua Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Xia%2C+Y">Yan Xia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00471v1-abstract-short" style="display: inline;"> We propose a protocol for the preparation of high-fidelity entangled cat states with composite pulses. The physical model contains two Kerr-nonlinear resonators and a cavity. By properly designing the parameters, each Kerr-nonlinear resonator is confined in the cat-state subspace and the entangled cat states can be generated efficiently. We introduce composite two-photon drives with multiple ampli… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00471v1-abstract-full').style.display = 'inline'; document.getElementById('2408.00471v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00471v1-abstract-full" style="display: none;"> We propose a protocol for the preparation of high-fidelity entangled cat states with composite pulses. The physical model contains two Kerr-nonlinear resonators and a cavity. By properly designing the parameters, each Kerr-nonlinear resonator is confined in the cat-state subspace and the entangled cat states can be generated efficiently. We introduce composite two-photon drives with multiple amplitudes and frequencies to improve the fidelity of the entangled cat states in the presence of parameter errors. The performance of the protocol is estimated by taking into account the parametric errors and decoherence. Numerical simulation results show that the protocol is insensitive to timing error and detuning error, and has strong robustness to decoherence. We hope the protocol may provide a method for preparing stable entangled cat states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00471v1-abstract-full').style.display = 'none'; document.getElementById('2408.00471v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures, comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00468">arXiv:2408.00468</a> <span> [<a href="https://arxiv.org/pdf/2408.00468">pdf</a>, <a href="https://arxiv.org/format/2408.00468">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.110.043711">10.1103/PhysRevA.110.043711 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Generating three-photon Rabi oscillations without a large-detuning condition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Yan%2C+K">Ke-Xiong Yan</a>, <a href="/search/quant-ph?searchtype=author&query=Qiu%2C+Y">Yuan Qiu</a>, <a href="/search/quant-ph?searchtype=author&query=Xiao%2C+Y">Yang Xiao</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Ye-Hong Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Xia%2C+Y">Yan Xia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00468v1-abstract-short" style="display: inline;"> It is well known that in the quantum Rabi model, a three-photon resonance occurs when the cavity field bare frequency is about 1/3 of the atomic transition frequency. In this manuscript, we show that the resonance can also be generated in the absence of the 1/3 condition by employing an artificial atom with tunable transition frequency. To realize the protocol, the modulation frequency should be c… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00468v1-abstract-full').style.display = 'inline'; document.getElementById('2408.00468v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00468v1-abstract-full" style="display: none;"> It is well known that in the quantum Rabi model, a three-photon resonance occurs when the cavity field bare frequency is about 1/3 of the atomic transition frequency. In this manuscript, we show that the resonance can also be generated in the absence of the 1/3 condition by employing an artificial atom with tunable transition frequency. To realize the protocol, the modulation frequency should be comparable to the cavity frequency in order to induce a counter-rotating interaction in the effective Hamiltonian. In this way, three-photon Rabi oscillations can be observed in a small-detuning regime, thus avoiding the excitation of high-energy states. We derive an effective Hamiltonian (equivalent to the anisotropic Rabi model Hamiltonian) to determine the magnitude of the energy splitting and the resonance position. Numerical simulations results show that the protocol not only generates a three-photon resonance, but also has a detectable output photon flux. We hope the protocol can be exploited for the realization of Fock-state sources and the generation of multiparticle entanglement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00468v1-abstract-full').style.display = 'none'; document.getElementById('2408.00468v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 10 figures, comments are welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 110, 043711 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00464">arXiv:2408.00464</a> <span> [<a href="https://arxiv.org/pdf/2408.00464">pdf</a>, <a href="https://arxiv.org/format/2408.00464">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Optimally robust shortcuts to population inversion in cat-state qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Xu%2C+S">Shao-Wei Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+Z">Zhong-Zheng Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Guo%2C+Y">Yue-Ying Guo</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Ye-Hong Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Xia%2C+Y">Yan Xia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00464v1-abstract-short" style="display: inline;"> Cat-state qubits formed by photonic coherent states are a promising candidate for realizing fault-tolerant quantum computing. Such logic qubits have a biased noise channel that the bit-flip error dominates over all the other errors. In this manuscript, we propose an optimally robust protocol using the control method of shortcuts to adiabaticity to realize a nearly perfect population inversion in a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00464v1-abstract-full').style.display = 'inline'; document.getElementById('2408.00464v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00464v1-abstract-full" style="display: none;"> Cat-state qubits formed by photonic coherent states are a promising candidate for realizing fault-tolerant quantum computing. Such logic qubits have a biased noise channel that the bit-flip error dominates over all the other errors. In this manuscript, we propose an optimally robust protocol using the control method of shortcuts to adiabaticity to realize a nearly perfect population inversion in a cat-state qubit. We construct a shortcut based on the Lewis-Riesenfeld invariant and examine the stability versus different types of perturbations for the fast and robust population inversion. Numerical simulations demonstrate that the population inversion can be mostly insensitive to systematic errors in our protocol. Even when the parameter imperfection rate for bit-flip control is $20\%$, the final population of the target state can still reach $\geq 99\%$. The optimally robust control provides a feasible method for fault-tolerant and scalable quantum computation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00464v1-abstract-full').style.display = 'none'; document.getElementById('2408.00464v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 8 figures, comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.20147">arXiv:2407.20147</a> <span> [<a href="https://arxiv.org/pdf/2407.20147">pdf</a>, <a href="https://arxiv.org/format/2407.20147">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Neural and Evolutionary Computing">cs.NE</span> </div> </div> <p class="title is-5 mathjax"> Quantum Machine Learning Architecture Search via Deep Reinforcement Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Dai%2C+X">Xin Dai</a>, <a href="/search/quant-ph?searchtype=author&query=Wei%2C+T">Tzu-Chieh Wei</a>, <a href="/search/quant-ph?searchtype=author&query=Yoo%2C+S">Shinjae Yoo</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+S+Y">Samuel Yen-Chi Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.20147v1-abstract-short" style="display: inline;"> The rapid advancement of quantum computing (QC) and machine learning (ML) has given rise to the burgeoning field of quantum machine learning (QML), aiming to capitalize on the strengths of quantum computing to propel ML forward. Despite its promise, crafting effective QML models necessitates profound expertise to strike a delicate balance between model intricacy and feasibility on Noisy Intermedia… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20147v1-abstract-full').style.display = 'inline'; document.getElementById('2407.20147v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.20147v1-abstract-full" style="display: none;"> The rapid advancement of quantum computing (QC) and machine learning (ML) has given rise to the burgeoning field of quantum machine learning (QML), aiming to capitalize on the strengths of quantum computing to propel ML forward. Despite its promise, crafting effective QML models necessitates profound expertise to strike a delicate balance between model intricacy and feasibility on Noisy Intermediate-Scale Quantum (NISQ) devices. While complex models offer robust representation capabilities, their extensive circuit depth may impede seamless execution on extant noisy quantum platforms. In this paper, we address this quandary of QML model design by employing deep reinforcement learning to explore proficient QML model architectures tailored for designated supervised learning tasks. Specifically, our methodology involves training an RL agent to devise policies that facilitate the discovery of QML models without predetermined ansatz. Furthermore, we integrate an adaptive mechanism to dynamically adjust the learning objectives, fostering continuous improvement in the agent's learning process. Through extensive numerical simulations, we illustrate the efficacy of our approach within the realm of classification tasks. Our proposed method successfully identifies VQC architectures capable of achieving high classification accuracy while minimizing gate depth. This pioneering approach not only advances the study of AI-driven quantum circuit design but also holds significant promise for enhancing performance in the NISQ era. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20147v1-abstract-full').style.display = 'none'; document.getElementById('2407.20147v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by IEEE International Conference on Quantum Computing and Engineering - QCE 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.19214">arXiv:2407.19214</a> <span> [<a href="https://arxiv.org/pdf/2407.19214">pdf</a>, <a href="https://arxiv.org/format/2407.19214">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> QEEGNet: Quantum Machine Learning for Enhanced Electroencephalography Encoding </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Chen%2C+C">Chi-Sheng Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+S+Y">Samuel Yen-Chi Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Tsai%2C+A+H">Aidan Hung-Wen Tsai</a>, <a href="/search/quant-ph?searchtype=author&query=Wei%2C+C">Chun-Shu Wei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.19214v2-abstract-short" style="display: inline;"> Electroencephalography (EEG) is a critical tool in neuroscience and clinical practice for monitoring and analyzing brain activity. Traditional neural network models, such as EEGNet, have achieved considerable success in decoding EEG signals but often struggle with the complexity and high dimensionality of the data. Recent advances in quantum computing present new opportunities to enhance machine l… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.19214v2-abstract-full').style.display = 'inline'; document.getElementById('2407.19214v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.19214v2-abstract-full" style="display: none;"> Electroencephalography (EEG) is a critical tool in neuroscience and clinical practice for monitoring and analyzing brain activity. Traditional neural network models, such as EEGNet, have achieved considerable success in decoding EEG signals but often struggle with the complexity and high dimensionality of the data. Recent advances in quantum computing present new opportunities to enhance machine learning models through quantum machine learning (QML) techniques. In this paper, we introduce Quantum-EEGNet (QEEGNet), a novel hybrid neural network that integrates quantum computing with the classical EEGNet architecture to improve EEG encoding and analysis, as a forward-looking approach, acknowledging that the results might not always surpass traditional methods but it shows its potential. QEEGNet incorporates quantum layers within the neural network, allowing it to capture more intricate patterns in EEG data and potentially offering computational advantages. We evaluate QEEGNet on a benchmark EEG dataset, BCI Competition IV 2a, demonstrating that it consistently outperforms traditional EEGNet on most of the subjects and other robustness to noise. Our results highlight the significant potential of quantum-enhanced neural networks in EEG analysis, suggesting new directions for both research and practical applications in the field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.19214v2-abstract-full').style.display = 'none'; document.getElementById('2407.19214v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.18202">arXiv:2407.18202</a> <span> [<a href="https://arxiv.org/pdf/2407.18202">pdf</a>, <a href="https://arxiv.org/format/2407.18202">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Neural and Evolutionary Computing">cs.NE</span> </div> </div> <p class="title is-5 mathjax"> Differentiable Quantum Architecture Search in Asynchronous Quantum Reinforcement Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Chen%2C+S+Y">Samuel Yen-Chi Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.18202v1-abstract-short" style="display: inline;"> The emergence of quantum reinforcement learning (QRL) is propelled by advancements in quantum computing (QC) and machine learning (ML), particularly through quantum neural networks (QNN) built on variational quantum circuits (VQC). These advancements have proven successful in addressing sequential decision-making tasks. However, constructing effective QRL models demands significant expertise due t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.18202v1-abstract-full').style.display = 'inline'; document.getElementById('2407.18202v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.18202v1-abstract-full" style="display: none;"> The emergence of quantum reinforcement learning (QRL) is propelled by advancements in quantum computing (QC) and machine learning (ML), particularly through quantum neural networks (QNN) built on variational quantum circuits (VQC). These advancements have proven successful in addressing sequential decision-making tasks. However, constructing effective QRL models demands significant expertise due to challenges in designing quantum circuit architectures, including data encoding and parameterized circuits, which profoundly influence model performance. In this paper, we propose addressing this challenge with differentiable quantum architecture search (DiffQAS), enabling trainable circuit parameters and structure weights using gradient-based optimization. Furthermore, we enhance training efficiency through asynchronous reinforcement learning (RL) methods facilitating parallel training. Through numerical simulations, we demonstrate that our proposed DiffQAS-QRL approach achieves performance comparable to manually-crafted circuit architectures across considered environments, showcasing stability across diverse scenarios. This methodology offers a pathway for designing QRL models without extensive quantum knowledge, ensuring robust performance and fostering broader application of QRL. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.18202v1-abstract-full').style.display = 'none'; document.getElementById('2407.18202v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by IEEE International Conference on Quantum Computing and Engineering - QCE 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.15783">arXiv:2407.15783</a> <span> [<a href="https://arxiv.org/pdf/2407.15783">pdf</a>, <a href="https://arxiv.org/format/2407.15783">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> 24 days-stable CNOT-gate on fluxonium qubits with over 99.9% fidelity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Lin%2C+W">Wei-Ju Lin</a>, <a href="/search/quant-ph?searchtype=author&query=Cho%2C+H">Hyunheung Cho</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yinqi Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Vavilov%2C+M+G">Maxim G. Vavilov</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+C">Chen Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Manucharyan%2C+V+E">Vladimir E. Manucharyan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.15783v2-abstract-short" style="display: inline;"> Fluxonium qubit is a promising building block for quantum information processing due to its long coherence time and strong anharmonicity. In this paper, we realize a 60 ns direct CNOT-gate on two inductively-coupled fluxonium qubits using selective darkening approach, resulting in a gate fidelity as high as 99.94%. The fidelity remains above 99.9% for 24 days without any recalibration between rand… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15783v2-abstract-full').style.display = 'inline'; document.getElementById('2407.15783v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.15783v2-abstract-full" style="display: none;"> Fluxonium qubit is a promising building block for quantum information processing due to its long coherence time and strong anharmonicity. In this paper, we realize a 60 ns direct CNOT-gate on two inductively-coupled fluxonium qubits using selective darkening approach, resulting in a gate fidelity as high as 99.94%. The fidelity remains above 99.9% for 24 days without any recalibration between randomized benchmarking measurements. Compared with the 99.96% fidelity of a 60 ns identity gate, our data brings the investigation of the non-decoherence-related errors during gate operations down to $2 \times 10^{-4}$. The present result adds a simple and robust two-qubit gate into the still relatively small family of "the beyond three nines" demonstrations on superconducting qubits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15783v2-abstract-full').style.display = 'none'; document.getElementById('2407.15783v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.15574">arXiv:2407.15574</a> <span> [<a href="https://arxiv.org/pdf/2407.15574">pdf</a>, <a href="https://arxiv.org/format/2407.15574">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Spin-orbit coupling mediated photon-like resonance for a single atom trapped in a symmetric double well </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Fan%2C+C">Changwei Fan</a>, <a href="/search/quant-ph?searchtype=author&query=Hu%2C+X">Xiaoxiao Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Yan%2C+X">Xin Yan</a>, <a href="/search/quant-ph?searchtype=author&query=Wu%2C+H">Hongzheng Wu</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+Z">Zhiqiang Li</a>, <a href="/search/quant-ph?searchtype=author&query=Xiao%2C+J">Jinpeng Xiao</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yajiang Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Luo%2C+X">Xiaobing Luo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.15574v1-abstract-short" style="display: inline;"> We employ a method involving coherent periodic modulation of Raman laser intensity to induce resonance transitions between energy levels of a spin-orbit coupled atom in a symmetric double-well trap. By integrating photon-assisted tunneling (PAT) technique with spin-orbit coupling (SOC), we achieve resonance transitions between the predefined energy levels of the atom, thereby enabling further prec… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15574v1-abstract-full').style.display = 'inline'; document.getElementById('2407.15574v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.15574v1-abstract-full" style="display: none;"> We employ a method involving coherent periodic modulation of Raman laser intensity to induce resonance transitions between energy levels of a spin-orbit coupled atom in a symmetric double-well trap. By integrating photon-assisted tunneling (PAT) technique with spin-orbit coupling (SOC), we achieve resonance transitions between the predefined energy levels of the atom, thereby enabling further precise control of the atom's dynamics. We observe that such photon-like resonance can induce a transition from a localized state to atomic Rabi oscillation between two wells, or effectively reduce tunneling as manifested by a quantum beating phenomenon. Moreover, such resonance transitions have the potential to induce spin flipping in a spin-orbit coupled atom. Additionally, the SOC-mediated transition from multiphoton resonance to fundamental resonance and the SOC-induced resonance suppression are also discovered. In these cases, the analytical results of the effective coupling coefficients of the resonance transition derived from a four-level model can account for the entire dynamics, demonstrating surprisingly good agreement with the numerically exact results based on the realistic continuous model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15574v1-abstract-full').style.display = 'none'; document.getElementById('2407.15574v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.15450">arXiv:2407.15450</a> <span> [<a href="https://arxiv.org/pdf/2407.15450">pdf</a>, <a href="https://arxiv.org/format/2407.15450">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Verifying the analogy between transversely coupled spin-1/2 systems and inductively-coupled fluxoniums </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Lin%2C+W">Wei-Ju Lin</a>, <a href="/search/quant-ph?searchtype=author&query=Cho%2C+H">Hyunheung Cho</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yinqi Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Vavilov%2C+M+G">Maxim G. Vavilov</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+C">Chen Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Manucharyan%2C+V+E">Vladimir E. Manucharyan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.15450v1-abstract-short" style="display: inline;"> We report a detailed characterization of two inductively coupled superconducting fluxonium qubits for implementing high-fidelity cross-resonance gates. Our circuit stands out because it behaves very closely to the case of two transversely coupled spin-1/2 systems. In particular, the generally unwanted static ZZ-term due to the non-computational transitions is nearly absent despite a strong qubit-q… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15450v1-abstract-full').style.display = 'inline'; document.getElementById('2407.15450v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.15450v1-abstract-full" style="display: none;"> We report a detailed characterization of two inductively coupled superconducting fluxonium qubits for implementing high-fidelity cross-resonance gates. Our circuit stands out because it behaves very closely to the case of two transversely coupled spin-1/2 systems. In particular, the generally unwanted static ZZ-term due to the non-computational transitions is nearly absent despite a strong qubit-qubit hybridization. Spectroscopy of the non-computational transitions reveals a spurious LC-mode arising from the combination of the coupling inductance and the capacitive links between the terminals of the two qubit circuits. Such a mode has a minor effect on our specific device, but it must be carefully considered for optimizing future designs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15450v1-abstract-full').style.display = 'none'; document.getElementById('2407.15450v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.13321">arXiv:2407.13321</a> <span> [<a href="https://arxiv.org/pdf/2407.13321">pdf</a>, <a href="https://arxiv.org/format/2407.13321">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Hardware-Efficient Stabilization of Entanglement via Engineered Dissipation in Superconducting Circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Chen%2C+C">Changling Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Tang%2C+K">Kai Tang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhou%2C+Y">Yuxuan Zhou</a>, <a href="/search/quant-ph?searchtype=author&query=Yi%2C+K">KangYuan Yi</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+X">Xuan Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Guo%2C+H">Haosheng Guo</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+S">Song Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yuanzhen Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Yan%2C+T">Tongxing Yan</a>, <a href="/search/quant-ph?searchtype=author&query=Yu%2C+D">Dapeng Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.13321v1-abstract-short" style="display: inline;"> Generation and preservation of quantum entanglement are among the primary tasks in quantum information processing. State stabilization via quantum bath engineering offers a resource-efficient approach to achieve this objective. However, current methods for engineering dissipative channels to stabilize target entangled states often require specialized hardware designs, complicating experimental rea… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13321v1-abstract-full').style.display = 'inline'; document.getElementById('2407.13321v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.13321v1-abstract-full" style="display: none;"> Generation and preservation of quantum entanglement are among the primary tasks in quantum information processing. State stabilization via quantum bath engineering offers a resource-efficient approach to achieve this objective. However, current methods for engineering dissipative channels to stabilize target entangled states often require specialized hardware designs, complicating experimental realization and hindering their compatibility with scalable quantum computation architectures. In this work, we propose and experimentally demonstrate a stabilization protocol readily implementable in the mainstream integrated superconducting quantum circuits. The approach utilizes a Raman process involving a resonant (or nearly resonant) superconducting qubit array and their dedicated readout resonators to effectively emerge nonlocal dissipative channels. Leveraging individual controllability of the qubits and resonators, the protocol stabilizes two-qubit Bell states with a fidelity of $90.7\%$, marking the highest reported value in solid-state platforms to date. Furthermore, by extending this strategy to include three qubits, an entangled $W$ state is achieved with a fidelity of $86.2\%$, which has not been experimentally investigated before. Notably, the protocol is of practical interest since it only utilizes existing hardware common to standard operations in the underlying superconducting circuits, thereby facilitating the exploration of many-body quantum entanglement with dissipative resources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13321v1-abstract-full').style.display = 'none'; document.getElementById('2407.13321v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Chen%2C+Y&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Chen%2C+Y&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Chen%2C+Y&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Chen%2C+Y&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Chen%2C+Y&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Chen%2C+Y&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>