CINXE.COM
Mark Grinstaff | Boston University - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Mark Grinstaff | Boston University - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="_fl-8DOPfoeyaM_MI6MqZqZkdWL0eNYupKhZOhLB3lFPSpnJqIRb47-gCo6JWshlKdVqF4thxeVbIoNHrzHvew" /> <link rel="stylesheet" href="//a.academia-assets.com/assets/wow-3d36c19b4875b226bfed0fcba1dcea3f2fe61148383d97c0465c016b8c969290.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/social/home-79e78ce59bef0a338eb6540ec3d93b4a7952115b56c57f1760943128f4544d42.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/single_work_page/figure_carousel-2004283e0948681916eefa74772df54f56cb5c7413d82b160212231c2f474bb3.css" media="all" /><script type="application/ld+json">{"@context":"https://schema.org","@type":"ProfilePage","mainEntity":{"@context":"https://schema.org","@type":"Person","name":"Mark Grinstaff","url":"https://bu.academia.edu/MGrinstaff","image":"https://0.academia-photos.com/176937962/49029731/37033717/s200_mark.grinstaff.jpg","sameAs":["https://scholar.google.com/citations?user=x0ViSaoAAAAJ\u0026hl=en","https://twitter.com/grinstaff","http://orcid.org/0000-0002-5453-3668","https://www.grinstaff.org/","https://www.grinstaff.org/"]},"dateCreated":"2020-11-02T16:03:12-08:00","dateModified":"2024-06-19T14:06:25-07:00","name":"Mark Grinstaff","description":"Mark W. Grinstaff is the William Fairfield Warren Distinguished Professor, and a Professor of Biomedical Engineering, Chemistry, Materials Science and Engineering, and Medicine at Boston University","image":"https://0.academia-photos.com/176937962/49029731/37033717/s200_mark.grinstaff.jpg","thumbnailUrl":"https://0.academia-photos.com/176937962/49029731/37033717/s65_mark.grinstaff.jpg","primaryImageOfPage":{"@type":"ImageObject","url":"https://0.academia-photos.com/176937962/49029731/37033717/s200_mark.grinstaff.jpg","width":200},"sameAs":["https://scholar.google.com/citations?user=x0ViSaoAAAAJ\u0026hl=en","https://twitter.com/grinstaff","http://orcid.org/0000-0002-5453-3668","https://www.grinstaff.org/","https://www.grinstaff.org/"],"relatedLink":"https://www.academia.edu/126070872/Poly_%CE%B5_caprolactone_microfiber_meshes_for_repeated_oil_retrieval"}</script><link rel="stylesheet" href="//a.academia-assets.com/assets/design_system/heading-95367dc03b794f6737f30123738a886cf53b7a65cdef98a922a98591d60063e3.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/design_system/button-8c9ae4b5c8a2531640c354d92a1f3579c8ff103277ef74913e34c8a76d4e6c00.css" media="all" /><link rel="stylesheet" href="//a.academia-assets.com/assets/design_system/body-170d1319f0e354621e81ca17054bb147da2856ec0702fe440a99af314a6338c5.css" media="all" /><style type="text/css">@media(max-width: 567px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 32px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 30px;--type-sans-serif-lg-line-height: 36px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 30px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 24px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 24px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 18px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 32px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 20px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 32px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 40px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 24px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 26px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 48px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 52px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 48px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 58px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 80px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 64px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}@media(min-width: 568px)and (max-width: 1279px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 42px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 32px;--type-sans-serif-lg-line-height: 36px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 34px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 28px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 25px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 20px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 30px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 24px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 40px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 48px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 28px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 32px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 58px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 68px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 74px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 82px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 104px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 80px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}@media(min-width: 1280px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 42px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 32px;--type-sans-serif-lg-line-height: 38px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 34px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 28px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 25px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 20px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 30px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 24px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 40px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 48px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 28px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 32px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 58px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 68px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 74px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 82px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 152px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 80px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}</style><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" href="//a.academia-assets.com/assets/design_system/common-57f9da13cef3fd4e2a8b655342c6488eded3e557e823fe67571f2ac77acd7b6f.css" media="all" /> <meta name="author" content="mark grinstaff" /> <meta name="description" content="Mark W. Grinstaff is the William Fairfield Warren Distinguished Professor, and a Professor of Biomedical Engineering, Chemistry, Materials Science and…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = 'fc9704ab29969ace70ae5a7183a1ea87c53b7b1c'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":13891,"monthly_visitors":"31 million","monthly_visitor_count":31300000,"monthly_visitor_count_in_millions":31,"user_count":286506108,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1744019998000); window.Aedu.timeDifference = new Date().getTime() - 1744019998000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link rel="preload" href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" as="style" onload="this.rel='stylesheet'"> <link rel="stylesheet" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" media="all" /> <link rel="stylesheet" href="//a.academia-assets.com/assets/academia-9982828ed1de4777566441c35ccf7157c55ca779141fce69380d727ebdbbb926.css" media="all" /> <link rel="stylesheet" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" media="all" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-7a64a3c38a29bc41c7f849e23ebd5bcb2b2df1201e0997a11aeca732433c8f4f.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-fcdc3d92f84da311a1719c39a9ce23e4fc404efc061db3295349654890f352b9.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://bu.academia.edu/MGrinstaff" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-f7aa9c07f7280b761db42ad8596e5fda81657e2511386a62cbe852b9a6f8fa36.js" defer="defer"></script><script>$viewedUser = Aedu.User.set_viewed( {"id":176937962,"first_name":"Mark","middle_initials":null,"last_name":"Grinstaff","page_name":"MGrinstaff","domain_name":"bu","created_at":"2020-11-02T16:03:12.423-08:00","display_name":"Mark Grinstaff","url":"https://bu.academia.edu/MGrinstaff","photo":"https://0.academia-photos.com/176937962/49029731/37033717/s65_mark.grinstaff.jpg","has_photo":true,"department":{"id":1817105,"name":"Departments of Biomedical Engineering and Chemistry","url":"https://bu.academia.edu/Departments/Departments_of_Biomedical_Engineering_and_Chemistry/Documents","university":{"id":539,"name":"Boston University","url":"https://bu.academia.edu/"}},"position":"Faculty Member","position_id":1,"is_analytics_public":false,"interests":[]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = [{"id":61267200,"link":"https://scholar.google.com/citations?user=x0ViSaoAAAAJ\u0026hl=en","name":"Google Scholar","link_domain":"scholar.google.com","icon":"//www.google.com/s2/u/0/favicons?domain=scholar.google.com"},{"id":61267205,"link":"https://twitter.com/grinstaff","name":"Twitter","link_domain":"twitter.com","icon":"//www.google.com/s2/u/0/favicons?domain=twitter.com"},{"id":61267211,"link":"http://orcid.org/0000-0002-5453-3668","name":"ORCID","link_domain":"orcid.org","icon":"//www.google.com/s2/u/0/favicons?domain=orcid.org"},{"id":61267220,"link":"https://www.grinstaff.org/","name":"Homepage","link_domain":"www.grinstaff.org","icon":"//www.google.com/s2/u/0/favicons?domain=www.grinstaff.org"},{"id":61267225,"link":"https://www.grinstaff.org/","name":"Homepage","link_domain":"www.grinstaff.org","icon":"//www.google.com/s2/u/0/favicons?domain=www.grinstaff.org"}]</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://bu.academia.edu/MGrinstaff","location":"/MGrinstaff","scheme":"https","host":"bu.academia.edu","port":null,"pathname":"/MGrinstaff","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-aea9ad45-7044-40b6-bfaf-ea259342a200"></div> <div id="ProfileCheckPaperUpdate-react-component-aea9ad45-7044-40b6-bfaf-ea259342a200"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Mark Grinstaff" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/176937962/49029731/37033717/s200_mark.grinstaff.jpg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Mark Grinstaff</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://bu.academia.edu/">Boston University</a>, <a class="u-tcGrayDarker" href="https://bu.academia.edu/Departments/Departments_of_Biomedical_Engineering_and_Chemistry/Documents">Departments of Biomedical Engineering and Chemistry</a>, <span class="u-tcGrayDarker">Faculty Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Mark" data-follow-user-id="176937962" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="176937962"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">9</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">0</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="user-bio-container"><div class="profile-bio fake-truncate js-profile-about" style="margin: 0px;">Mark W. Grinstaff is the William Fairfield Warren Distinguished Professor, and a Professor of Biomedical Engineering, Chemistry, Materials Science and Engineering, and Medicine at Boston University<br /><div class="js-profile-less-about u-linkUnstyled u-tcGrayDarker u-textDecorationUnderline u-displayNone">less</div></div></div><div class="suggested-academics-container"><div class="suggested-academics--header"><h3 class="ds2-5-heading-sans-serif-xs">Related Authors</h3></div><ul class="suggested-user-card-list" data-nosnippet="true"><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://unizg.academia.edu/AndrejDujella"><img class="profile-avatar u-positionAbsolute" alt="Andrej Dujella related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/29857/9709/9189/s200_andrej.dujella.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://unizg.academia.edu/AndrejDujella">Andrej Dujella</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Zagreb</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://uppsala.academia.edu/HeminKoyi"><img class="profile-avatar u-positionAbsolute" alt="Hemin Koyi related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/102248/28141/11213115/s200_hemin.koyi.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://uppsala.academia.edu/HeminKoyi">Hemin Koyi</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Uppsala University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://uel.academia.edu/JanaJavornik"><img class="profile-avatar u-positionAbsolute" alt="Jana Javornik related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/113072/30527/13170018/s200_jana.javornik.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://uel.academia.edu/JanaJavornik">Jana Javornik</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of East London</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://cria.academia.edu/ArmandoMarquesGuedes"><img class="profile-avatar u-positionAbsolute" alt="Armando Marques-Guedes related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/134181/3401094/148494125/s200_armando.marques-guedes.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://cria.academia.edu/ArmandoMarquesGuedes">Armando Marques-Guedes</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">UNL - New University of Lisbon</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://leicester.academia.edu/GrahamMartin"><img class="profile-avatar u-positionAbsolute" alt="Graham Martin related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/156189/40499/1481064/s200_graham.martin.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://leicester.academia.edu/GrahamMartin">Graham Martin</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Leicester</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://uncg.academia.edu/GwenRobbinsSchug"><img class="profile-avatar u-positionAbsolute" alt="Gwen Robbins Schug related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/161482/41323/170269686/s200_gwen.robbins_schug.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://uncg.academia.edu/GwenRobbinsSchug">Gwen Robbins Schug</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of North Carolina at Greensboro</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://usal.academia.edu/GabrielGutierrezAlonso"><img class="profile-avatar u-positionAbsolute" alt="Gabriel Gutierrez-Alonso related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/175637/822125/1022101/s200_gabriel.gutierrez-alonso.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://usal.academia.edu/GabrielGutierrezAlonso">Gabriel Gutierrez-Alonso</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Salamanca</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://mq.academia.edu/JohnSutton"><img class="profile-avatar u-positionAbsolute" alt="John Sutton related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/176044/43811/40295/s200_john.sutton.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://mq.academia.edu/JohnSutton">John Sutton</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Macquarie University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://ufrgs.academia.edu/ErosCarvalho"><img class="profile-avatar u-positionAbsolute" alt="Eros Carvalho related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/176585/88715/48865541/s200_eros.carvalho.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://ufrgs.academia.edu/ErosCarvalho">Eros Carvalho</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Universidade Federal do Rio Grande do Sul</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://swansea.academia.edu/KevinArbuckle"><img class="profile-avatar u-positionAbsolute" alt="Kevin Arbuckle related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/191329/90380/6936137/s200_kevin.arbuckle.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://swansea.academia.edu/KevinArbuckle">Kevin Arbuckle</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Swansea University</p></div></div></ul></div><style type="text/css">.suggested-academics--header h3{font-size:16px;font-weight:500;line-height:20px}</style><div class="external-links-container"><ul class="profile-links new-profile js-UserInfo-social"><li class="profile-profiles js-social-profiles-container"><i class="fa fa-spin fa-spinner"></i></li></ul></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Mark Grinstaff</h3></div><div class="js-work-strip profile--work_container" data-work-id="126070872"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126070872/Poly_%CE%B5_caprolactone_microfiber_meshes_for_repeated_oil_retrieval"><img alt="Research paper thumbnail of Poly(ε-caprolactone) microfiber meshes for repeated oil retrieval" class="work-thumbnail" src="https://attachments.academia-assets.com/120004945/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126070872/Poly_%CE%B5_caprolactone_microfiber_meshes_for_repeated_oil_retrieval">Poly(ε-caprolactone) microfiber meshes for repeated oil retrieval</a></div><div class="wp-workCard_item"><span>Environmental science</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Electrospun non-woven poly(ε-caprolactone) (PCL) microfiber meshes are described as biodegradable...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Electrospun non-woven poly(ε-caprolactone) (PCL) microfiber meshes are described as biodegradable, mechanically robust, and reusable polymeric oil sorbents capable of selectively retrieving oil from simulated oil spills in both fresh and seawater scenarios. Hydrophobic PCL meshes have >99.5% (oil over water) oil selectivity and oil absorption capacities of ~10 grams of oil per gram of sorbent material, which is shown to be a volumetrically driven process. Both the oil selectivity and absorption capacity remained constant over several oil absorption and vacuum assisted retrieval cycles when removing crude oil or mechanical pump oil from deionized water or simulated seawater mixtures. Finally, when challenged with surfactant stabilized water-in-oil emulsions, the PCL meshes continued to show selective oil absorption. These studies add to the knowledge base of synthetic oil sorbents highlighting a need for biodegradable synthetic oil sorbents which balance porosity and mechanical integrity enabling reuse, allowing for the efficient recovery of oil after an accidental oil spill. Electronic Supplementary Information (ESI) available: Additional figures and experimental protocols. See</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d20e142914976f1c97811f6053f40245" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120004945,"asset_id":126070872,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120004945/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126070872"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126070872"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126070872; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126070872]").text(description); $(".js-view-count[data-work-id=126070872]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126070872; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126070872']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d20e142914976f1c97811f6053f40245" } } $('.js-work-strip[data-work-id=126070872]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126070872,"title":"Poly(ε-caprolactone) microfiber meshes for repeated oil retrieval","translated_title":"","metadata":{"publisher":"Royal Society of Chemistry","grobid_abstract":"Electrospun non-woven poly(ε-caprolactone) (PCL) microfiber meshes are described as biodegradable, mechanically robust, and reusable polymeric oil sorbents capable of selectively retrieving oil from simulated oil spills in both fresh and seawater scenarios. Hydrophobic PCL meshes have \u003e99.5% (oil over water) oil selectivity and oil absorption capacities of ~10 grams of oil per gram of sorbent material, which is shown to be a volumetrically driven process. Both the oil selectivity and absorption capacity remained constant over several oil absorption and vacuum assisted retrieval cycles when removing crude oil or mechanical pump oil from deionized water or simulated seawater mixtures. Finally, when challenged with surfactant stabilized water-in-oil emulsions, the PCL meshes continued to show selective oil absorption. These studies add to the knowledge base of synthetic oil sorbents highlighting a need for biodegradable synthetic oil sorbents which balance porosity and mechanical integrity enabling reuse, allowing for the efficient recovery of oil after an accidental oil spill. Electronic Supplementary Information (ESI) available: Additional figures and experimental protocols. See","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Environmental science","grobid_abstract_attachment_id":120004945},"translated_abstract":null,"internal_url":"https://www.academia.edu/126070872/Poly_%CE%B5_caprolactone_microfiber_meshes_for_repeated_oil_retrieval","translated_internal_url":"","created_at":"2024-12-04T13:02:31.579-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":176937962,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":120004945,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004945/thumbnails/1.jpg","file_name":"pmc4790115.pdf","download_url":"https://www.academia.edu/attachments/120004945/download_file","bulk_download_file_name":"Poly__caprolactone_microfiber_meshes_fo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004945/pmc4790115-libre.pdf?1733368439=\u0026response-content-disposition=attachment%3B+filename%3DPoly__caprolactone_microfiber_meshes_fo.pdf\u0026Expires=1743457404\u0026Signature=dV56ql2SwyjIaqaYlfPjoQUT0RP-whEU7r8E5GP3PrBDdxCa8OOXchhCnYWQrm50zXiJDaJnzqE048w1ExkGOekY9AcAJg2knXGCA-0CR7UuqIbnBQaSecVWOiiTTk3nfG2p6It9RZm-gi1~de2roHeaQ6YbRCOTcgJjlrFyjxuMSUEgB8Kzu1RnRrj0BsXERoeYMfKGWAn~9vAmZH6Ol~iB4IGHdrmM-glKcmjuVQp5hyVKIQ9ZE4L6c8ME-3nGr~sOAZPwCBPEjbWnCNnd~R63fe-dN27~3hE5JGE3OR-2iWrSTnihd2VJRi94NszhAyUzAKxLp4qNlWRILuHhFA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Poly_ε_caprolactone_microfiber_meshes_for_repeated_oil_retrieval","translated_slug":"","page_count":15,"language":"en","content_type":"Work","summary":"Electrospun non-woven poly(ε-caprolactone) (PCL) microfiber meshes are described as biodegradable, mechanically robust, and reusable polymeric oil sorbents capable of selectively retrieving oil from simulated oil spills in both fresh and seawater scenarios. Hydrophobic PCL meshes have \u003e99.5% (oil over water) oil selectivity and oil absorption capacities of ~10 grams of oil per gram of sorbent material, which is shown to be a volumetrically driven process. Both the oil selectivity and absorption capacity remained constant over several oil absorption and vacuum assisted retrieval cycles when removing crude oil or mechanical pump oil from deionized water or simulated seawater mixtures. Finally, when challenged with surfactant stabilized water-in-oil emulsions, the PCL meshes continued to show selective oil absorption. These studies add to the knowledge base of synthetic oil sorbents highlighting a need for biodegradable synthetic oil sorbents which balance porosity and mechanical integrity enabling reuse, allowing for the efficient recovery of oil after an accidental oil spill. Electronic Supplementary Information (ESI) available: Additional figures and experimental protocols. See","owner":{"id":176937962,"first_name":"Mark","middle_initials":null,"last_name":"Grinstaff","page_name":"MGrinstaff","domain_name":"bu","created_at":"2020-11-02T16:03:12.423-08:00","display_name":"Mark Grinstaff","url":"https://bu.academia.edu/MGrinstaff"},"attachments":[{"id":120004945,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004945/thumbnails/1.jpg","file_name":"pmc4790115.pdf","download_url":"https://www.academia.edu/attachments/120004945/download_file","bulk_download_file_name":"Poly__caprolactone_microfiber_meshes_fo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004945/pmc4790115-libre.pdf?1733368439=\u0026response-content-disposition=attachment%3B+filename%3DPoly__caprolactone_microfiber_meshes_fo.pdf\u0026Expires=1743457404\u0026Signature=dV56ql2SwyjIaqaYlfPjoQUT0RP-whEU7r8E5GP3PrBDdxCa8OOXchhCnYWQrm50zXiJDaJnzqE048w1ExkGOekY9AcAJg2knXGCA-0CR7UuqIbnBQaSecVWOiiTTk3nfG2p6It9RZm-gi1~de2roHeaQ6YbRCOTcgJjlrFyjxuMSUEgB8Kzu1RnRrj0BsXERoeYMfKGWAn~9vAmZH6Ol~iB4IGHdrmM-glKcmjuVQp5hyVKIQ9ZE4L6c8ME-3nGr~sOAZPwCBPEjbWnCNnd~R63fe-dN27~3hE5JGE3OR-2iWrSTnihd2VJRi94NszhAyUzAKxLp4qNlWRILuHhFA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":120004950,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004950/thumbnails/1.jpg","file_name":"pmc4790115.pdf","download_url":"https://www.academia.edu/attachments/120004950/download_file","bulk_download_file_name":"Poly__caprolactone_microfiber_meshes_fo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004950/pmc4790115-libre.pdf?1733368443=\u0026response-content-disposition=attachment%3B+filename%3DPoly__caprolactone_microfiber_meshes_fo.pdf\u0026Expires=1743457404\u0026Signature=VJz5wWdbYAK13eEjh3OD~QQXjDsbIwRylPzMGo5zX0MSeEhuEuh0pNnh1EX87RovE0KSzPyC~~KgMKPoVR77tmxGDrevwix26l-WJIkj3GpZSkO75bjNsKEpHt8yL53J353QZmP34D9NVxQkJlPu3N9bj0ixR1FAsaWHLme3ZinorOvKuFXzpUlpo53fa7xHb5f1EZvSmbqCEvMTgZ35yA8C6IW4xISExB~ig8c3WT51t-vWXRwn6wY9if9fmY3J91-dBCQRK7BQV70iaJRECbvFgwYYOyUzMrcASdHWF7OF9ov2TluCWkgsHqq97RVlaeGKLaLTPxeq1WN5ApWfGA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":402,"name":"Environmental Science","url":"https://www.academia.edu/Documents/in/Environmental_Science"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":1368129,"name":"Microfiber","url":"https://www.academia.edu/Documents/in/Microfiber"},{"id":1947619,"name":"Caprolactone","url":"https://www.academia.edu/Documents/in/Caprolactone"}],"urls":[{"id":45919805,"url":"https://europepmc.org/articles/pmc4790115?pdf=render"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-126070872-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="126070868"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126070868/A_facile_approach_to_robust_superhydrophobic_3D_coatings_via_connective_particle_formation_using_the_electrospraying_process"><img alt="Research paper thumbnail of A facile approach to robust superhydrophobic 3D coatings via connective-particle formation using the electrospraying process" class="work-thumbnail" src="https://attachments.academia-assets.com/120004953/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126070868/A_facile_approach_to_robust_superhydrophobic_3D_coatings_via_connective_particle_formation_using_the_electrospraying_process">A facile approach to robust superhydrophobic 3D coatings via connective-particle formation using the electrospraying process</a></div><div class="wp-workCard_item"><span>Chemical Communications</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This work demonstrates a facile fabrication method to produce superhydrophobic coatings on chemic...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This work demonstrates a facile fabrication method to produce superhydrophobic coatings on chemically distinct materials using the electrospraying process. Coatings are mechanically robust, three-dimensional, and formed using a single fabrication step. Interest continues to evolve in superhydrophobic surfaces, where the unique property of having a permanent or semi-permanent air layer at a material surface can lead to improved material performance in specific applications. 1-15 Superhydrophobicity is achieved by trapping air at the material-water interface by adding sufficient surface roughness to a low energy material using one of a variety of microfabrication, surface modification, or surface coating techniques. 16-25 Fabricating a surface with superhydrophobicity has become a relatively straightforward procedure, but a number of complexities arise with the usage of such surfaces for practical application. 16 Producing a superhydrophobic surface that meets all of the following design criteria represents a significant challenge: 1) use of readily available hydrophobic materials which can be fabricated with sufficient surface roughness to promote superhydrophobicity; 2) selection of a one-step fabrication technique that is easily scalable for industrial use, utilizes relatively mild processing conditions, and can be coated over large areas; and 3) sufficient mechanical integrity of the surface for its intended application.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6f501156a50c4a833f69e6388282561c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120004953,"asset_id":126070868,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120004953/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126070868"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126070868"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126070868; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126070868]").text(description); $(".js-view-count[data-work-id=126070868]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126070868; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126070868']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6f501156a50c4a833f69e6388282561c" } } $('.js-work-strip[data-work-id=126070868]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126070868,"title":"A facile approach to robust superhydrophobic 3D coatings via connective-particle formation using the electrospraying process","translated_title":"","metadata":{"publisher":"Royal Society of Chemistry","grobid_abstract":"This work demonstrates a facile fabrication method to produce superhydrophobic coatings on chemically distinct materials using the electrospraying process. Coatings are mechanically robust, three-dimensional, and formed using a single fabrication step. Interest continues to evolve in superhydrophobic surfaces, where the unique property of having a permanent or semi-permanent air layer at a material surface can lead to improved material performance in specific applications. 1-15 Superhydrophobicity is achieved by trapping air at the material-water interface by adding sufficient surface roughness to a low energy material using one of a variety of microfabrication, surface modification, or surface coating techniques. 16-25 Fabricating a surface with superhydrophobicity has become a relatively straightforward procedure, but a number of complexities arise with the usage of such surfaces for practical application. 16 Producing a superhydrophobic surface that meets all of the following design criteria represents a significant challenge: 1) use of readily available hydrophobic materials which can be fabricated with sufficient surface roughness to promote superhydrophobicity; 2) selection of a one-step fabrication technique that is easily scalable for industrial use, utilizes relatively mild processing conditions, and can be coated over large areas; and 3) sufficient mechanical integrity of the surface for its intended application.","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Chemical Communications","grobid_abstract_attachment_id":120004953},"translated_abstract":null,"internal_url":"https://www.academia.edu/126070868/A_facile_approach_to_robust_superhydrophobic_3D_coatings_via_connective_particle_formation_using_the_electrospraying_process","translated_internal_url":"","created_at":"2024-12-04T13:02:30.982-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":176937962,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":120004953,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004953/thumbnails/1.jpg","file_name":"pmc3878809.pdf","download_url":"https://www.academia.edu/attachments/120004953/download_file","bulk_download_file_name":"A_facile_approach_to_robust_superhydroph.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004953/pmc3878809-libre.pdf?1733368435=\u0026response-content-disposition=attachment%3B+filename%3DA_facile_approach_to_robust_superhydroph.pdf\u0026Expires=1743457404\u0026Signature=J1AF8VsHk9GJYNc6uYRC-CI2rEZpZQ7D3WV5bjQtxUZx60F8gPNf5rk89co2lrEDP4MtpKvpt3Ec4WaDDHF5hww3~GaM3Bd1UwwiGLbR0bSf3iB65v8ORCn2ZCTNVW390Sl92KFLw7n7mat1rnBuajKdUxT2zLDB6~srhq2f7CksNTsN7uR~o-dc33qPN4wamwU4C1Glw~uhf1guZU1PtbyTjIYfC57njtiG84cR~Cy5hEtS-jLJdn0yQmpQZPTAhD4WYukx-iPSmC50BhDDP846AgVYd7GTa97YGKg48LYvdWv6CVOqQKOgXvd-3Lzq6XTUQhnDh5hV71vnzir4yQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_facile_approach_to_robust_superhydrophobic_3D_coatings_via_connective_particle_formation_using_the_electrospraying_process","translated_slug":"","page_count":9,"language":"en","content_type":"Work","summary":"This work demonstrates a facile fabrication method to produce superhydrophobic coatings on chemically distinct materials using the electrospraying process. Coatings are mechanically robust, three-dimensional, and formed using a single fabrication step. Interest continues to evolve in superhydrophobic surfaces, where the unique property of having a permanent or semi-permanent air layer at a material surface can lead to improved material performance in specific applications. 1-15 Superhydrophobicity is achieved by trapping air at the material-water interface by adding sufficient surface roughness to a low energy material using one of a variety of microfabrication, surface modification, or surface coating techniques. 16-25 Fabricating a surface with superhydrophobicity has become a relatively straightforward procedure, but a number of complexities arise with the usage of such surfaces for practical application. 16 Producing a superhydrophobic surface that meets all of the following design criteria represents a significant challenge: 1) use of readily available hydrophobic materials which can be fabricated with sufficient surface roughness to promote superhydrophobicity; 2) selection of a one-step fabrication technique that is easily scalable for industrial use, utilizes relatively mild processing conditions, and can be coated over large areas; and 3) sufficient mechanical integrity of the surface for its intended application.","owner":{"id":176937962,"first_name":"Mark","middle_initials":null,"last_name":"Grinstaff","page_name":"MGrinstaff","domain_name":"bu","created_at":"2020-11-02T16:03:12.423-08:00","display_name":"Mark Grinstaff","url":"https://bu.academia.edu/MGrinstaff"},"attachments":[{"id":120004953,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004953/thumbnails/1.jpg","file_name":"pmc3878809.pdf","download_url":"https://www.academia.edu/attachments/120004953/download_file","bulk_download_file_name":"A_facile_approach_to_robust_superhydroph.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004953/pmc3878809-libre.pdf?1733368435=\u0026response-content-disposition=attachment%3B+filename%3DA_facile_approach_to_robust_superhydroph.pdf\u0026Expires=1743457404\u0026Signature=J1AF8VsHk9GJYNc6uYRC-CI2rEZpZQ7D3WV5bjQtxUZx60F8gPNf5rk89co2lrEDP4MtpKvpt3Ec4WaDDHF5hww3~GaM3Bd1UwwiGLbR0bSf3iB65v8ORCn2ZCTNVW390Sl92KFLw7n7mat1rnBuajKdUxT2zLDB6~srhq2f7CksNTsN7uR~o-dc33qPN4wamwU4C1Glw~uhf1guZU1PtbyTjIYfC57njtiG84cR~Cy5hEtS-jLJdn0yQmpQZPTAhD4WYukx-iPSmC50BhDDP846AgVYd7GTa97YGKg48LYvdWv6CVOqQKOgXvd-3Lzq6XTUQhnDh5hV71vnzir4yQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":120004952,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004952/thumbnails/1.jpg","file_name":"pmc3878809.pdf","download_url":"https://www.academia.edu/attachments/120004952/download_file","bulk_download_file_name":"A_facile_approach_to_robust_superhydroph.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004952/pmc3878809-libre.pdf?1733368437=\u0026response-content-disposition=attachment%3B+filename%3DA_facile_approach_to_robust_superhydroph.pdf\u0026Expires=1743457404\u0026Signature=gfl~NEN6SmiEAVWZxeyNFqDY2euJddLmwEJ1rlnGLIKWL~Ljslm4c7~HrSiQUHWrrJJxgqzrhw51PNI94n4EmImLVXwb7xrfZSEH91em7NMtqlOi94Dr0a4y1R2ZUhu5nHp5kTL0Xe8Zc-kbvZC7V~5~v~WdfIaLRkh3Pd1uCwt5px~KxX2Zp4-Ts72K7MkaQVYp2xWNZkJCXj2LLaY3US93QTRZdyBRfZG6UAim05THjJkpsxZKLM279UOrjIh9B1bva1jCK3o5XbBFsD-B3D92IfR43n-HoAD7Kc1gwD~JBBDt4HxFG~SNlGDwK5QLvGCMIDBVkv1FIuzmNJf5tA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":136801,"name":"Fabrication","url":"https://www.academia.edu/Documents/in/Fabrication"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":283379,"name":"Glycerol","url":"https://www.academia.edu/Documents/in/Glycerol"},{"id":440924,"name":"Surface Properties","url":"https://www.academia.edu/Documents/in/Surface_Properties"},{"id":973559,"name":"Polyesters","url":"https://www.academia.edu/Documents/in/Polyesters"},{"id":1294768,"name":"Chemical Engineering Communications","url":"https://www.academia.edu/Documents/in/Chemical_Engineering_Communications"}],"urls":[{"id":45919801,"url":"https://europepmc.org/articles/pmc3878809?pdf=render"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-126070868-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="126070862"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126070862/An_Allosteric_Transcription_Factor_DNA_Binding_Electrochemical_Biosensor_for_Progesterone"><img alt="Research paper thumbnail of An Allosteric Transcription Factor DNA-Binding Electrochemical Biosensor for Progesterone" class="work-thumbnail" src="https://attachments.academia-assets.com/120004944/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126070862/An_Allosteric_Transcription_Factor_DNA_Binding_Electrochemical_Biosensor_for_Progesterone">An Allosteric Transcription Factor DNA-Binding Electrochemical Biosensor for Progesterone</a></div><div class="wp-workCard_item"><span>ACS Sensors</span><span>, Apr 12, 2022</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We describe an electrochemical strategy to transduce allosteric transcription factor (aTF) bindin...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We describe an electrochemical strategy to transduce allosteric transcription factor (aTF) binding affinity to sense steroid hormones. Our approach utilizes square wave voltammetry (SWV) to monitor changes in current output as a progesterone (PRG) specific aTF (SRTF1) unbinds from the cognate DNA sequence in the presence of PRG. The sensor detects PRG in artificial urine samples with sufficient sensitivity suitable for clinical applications. Our results highlight the capability of using aTFs as the biorecognition elements to develop electrochemical point-of-care biosensors for detection of small molecule biomarkers and analytes.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8804daa9f560988186d406f1e64b59f8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120004944,"asset_id":126070862,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120004944/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126070862"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126070862"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126070862; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126070862]").text(description); $(".js-view-count[data-work-id=126070862]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126070862; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126070862']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8804daa9f560988186d406f1e64b59f8" } } $('.js-work-strip[data-work-id=126070862]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126070862,"title":"An Allosteric Transcription Factor DNA-Binding Electrochemical Biosensor for Progesterone","translated_title":"","metadata":{"publisher":"American Chemical Society","grobid_abstract":"We describe an electrochemical strategy to transduce allosteric transcription factor (aTF) binding affinity to sense steroid hormones. Our approach utilizes square wave voltammetry (SWV) to monitor changes in current output as a progesterone (PRG) specific aTF (SRTF1) unbinds from the cognate DNA sequence in the presence of PRG. The sensor detects PRG in artificial urine samples with sufficient sensitivity suitable for clinical applications. Our results highlight the capability of using aTFs as the biorecognition elements to develop electrochemical point-of-care biosensors for detection of small molecule biomarkers and analytes.","publication_date":{"day":12,"month":4,"year":2022,"errors":{}},"publication_name":"ACS Sensors","grobid_abstract_attachment_id":120004944},"translated_abstract":null,"internal_url":"https://www.academia.edu/126070862/An_Allosteric_Transcription_Factor_DNA_Binding_Electrochemical_Biosensor_for_Progesterone","translated_internal_url":"","created_at":"2024-12-04T13:02:28.703-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":176937962,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":120004944,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004944/thumbnails/1.jpg","file_name":"document.pdf","download_url":"https://www.academia.edu/attachments/120004944/download_file","bulk_download_file_name":"An_Allosteric_Transcription_Factor_DNA_B.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004944/document-libre.pdf?1733368481=\u0026response-content-disposition=attachment%3B+filename%3DAn_Allosteric_Transcription_Factor_DNA_B.pdf\u0026Expires=1743457404\u0026Signature=Rmq6CLih~5rNu4dQ-pL~-rqDqRcRgqt2ToepzxdBxh~sgDD4IGiAXTN7wvsuCAHD-akDDF5pZYsz~SDRIYHKjhU6ASoLfJByaMlEPUXozHmUDUL~dAJ3K0vV-TdnQr~fD2EwQULW9JL9whMg-IlhjB1wAJGgf1OqtoJwT9Eyeo7h8tcTqBW0LvWmq~3jfH-uqhNVO6T7QiXi1xE~cv0rhrGOr5Q1FSq0a4cXvdnXmPvWg3g7G5UZL0fFpn4~-R-M1uzw76G55HEfNac3tuyKtgv45gVZkoO5i7ZVkEHtvbhQ6gmVfD0CguxjE~BQiGzXA-Zpjq0~WrgedkYKm8~Beg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"An_Allosteric_Transcription_Factor_DNA_Binding_Electrochemical_Biosensor_for_Progesterone","translated_slug":"","page_count":7,"language":"en","content_type":"Work","summary":"We describe an electrochemical strategy to transduce allosteric transcription factor (aTF) binding affinity to sense steroid hormones. Our approach utilizes square wave voltammetry (SWV) to monitor changes in current output as a progesterone (PRG) specific aTF (SRTF1) unbinds from the cognate DNA sequence in the presence of PRG. The sensor detects PRG in artificial urine samples with sufficient sensitivity suitable for clinical applications. Our results highlight the capability of using aTFs as the biorecognition elements to develop electrochemical point-of-care biosensors for detection of small molecule biomarkers and analytes.","owner":{"id":176937962,"first_name":"Mark","middle_initials":null,"last_name":"Grinstaff","page_name":"MGrinstaff","domain_name":"bu","created_at":"2020-11-02T16:03:12.423-08:00","display_name":"Mark Grinstaff","url":"https://bu.academia.edu/MGrinstaff"},"attachments":[{"id":120004944,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004944/thumbnails/1.jpg","file_name":"document.pdf","download_url":"https://www.academia.edu/attachments/120004944/download_file","bulk_download_file_name":"An_Allosteric_Transcription_Factor_DNA_B.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004944/document-libre.pdf?1733368481=\u0026response-content-disposition=attachment%3B+filename%3DAn_Allosteric_Transcription_Factor_DNA_B.pdf\u0026Expires=1743457404\u0026Signature=Rmq6CLih~5rNu4dQ-pL~-rqDqRcRgqt2ToepzxdBxh~sgDD4IGiAXTN7wvsuCAHD-akDDF5pZYsz~SDRIYHKjhU6ASoLfJByaMlEPUXozHmUDUL~dAJ3K0vV-TdnQr~fD2EwQULW9JL9whMg-IlhjB1wAJGgf1OqtoJwT9Eyeo7h8tcTqBW0LvWmq~3jfH-uqhNVO6T7QiXi1xE~cv0rhrGOr5Q1FSq0a4cXvdnXmPvWg3g7G5UZL0fFpn4~-R-M1uzw76G55HEfNac3tuyKtgv45gVZkoO5i7ZVkEHtvbhQ6gmVfD0CguxjE~BQiGzXA-Zpjq0~WrgedkYKm8~Beg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":109419,"name":"Biosensor","url":"https://www.academia.edu/Documents/in/Biosensor"},{"id":213901,"name":"Transcription Factor","url":"https://www.academia.edu/Documents/in/Transcription_Factor"},{"id":1970697,"name":"Allosteric regulation","url":"https://www.academia.edu/Documents/in/Allosteric_regulation"}],"urls":[{"id":45919796,"url":"https://hal.science/hal-03656612/document"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-126070862-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="126070861"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126070861/Aqueous_ROPISA_of_%CE%B1_amino_acid_i_N_i_carboxyanhydrides_polypeptide_block_secondary_structure_controls_nanoparticle_shape_anisotropy"><img alt="Research paper thumbnail of Aqueous ROPISA of α-amino acid <i>N</i>-carboxyanhydrides: polypeptide block secondary structure controls nanoparticle shape anisotropy" class="work-thumbnail" src="https://attachments.academia-assets.com/120004949/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126070861/Aqueous_ROPISA_of_%CE%B1_amino_acid_i_N_i_carboxyanhydrides_polypeptide_block_secondary_structure_controls_nanoparticle_shape_anisotropy">Aqueous ROPISA of α-amino acid <i>N</i>-carboxyanhydrides: polypeptide block secondary structure controls nanoparticle shape anisotropy</a></div><div class="wp-workCard_item"><span>Polymer Chemistry</span><span>, 2021</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="421320d8f0db6f54be9750c557cf0345" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120004949,"asset_id":126070861,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120004949/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126070861"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126070861"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126070861; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126070861]").text(description); $(".js-view-count[data-work-id=126070861]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126070861; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126070861']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "421320d8f0db6f54be9750c557cf0345" } } $('.js-work-strip[data-work-id=126070861]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126070861,"title":"Aqueous ROPISA of α-amino acid \u003ci\u003eN\u003c/i\u003e-carboxyanhydrides: polypeptide block secondary structure controls nanoparticle shape anisotropy","translated_title":"","metadata":{"publisher":"Royal Society of Chemistry","ai_abstract":"Aqueous ROPISA leverages the secondary structure of polypeptides to dictate the morphology and anisotropy of nanostructures formed from α-amino acid N-carboxyanhydrides. This research focuses on synthesizing polypeptides using two distinct monomers, BLG-NCA and Leu-NCA, with the findings demonstrating that the induced secondary structures (α-helices vs. β-sheets) play a critical role in determining the shape and properties of the nanoparticles. The study addresses the implications for scalable synthesis of functional nanomaterials in biomedical applications.","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Polymer Chemistry"},"translated_abstract":null,"internal_url":"https://www.academia.edu/126070861/Aqueous_ROPISA_of_%CE%B1_amino_acid_i_N_i_carboxyanhydrides_polypeptide_block_secondary_structure_controls_nanoparticle_shape_anisotropy","translated_internal_url":"","created_at":"2024-12-04T13:02:28.270-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":176937962,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":120004949,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004949/thumbnails/1.jpg","file_name":"document.pdf","download_url":"https://www.academia.edu/attachments/120004949/download_file","bulk_download_file_name":"Aqueous_ROPISA_of__amino_acid_i_N_i_car.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004949/document-libre.pdf?1733368461=\u0026response-content-disposition=attachment%3B+filename%3DAqueous_ROPISA_of__amino_acid_i_N_i_car.pdf\u0026Expires=1743457404\u0026Signature=TEyOo367yZfnptoi9zHRg5jWJhCC3dDOKtfQE~FvdsLkAD0jxpvGC7ayfmGfUKf6~r5GN7IIma9z~ozlUOK87yEwxoPOWC~VS25Nk13y5mJbh3jiPsO~ftXXNjQxyzO1FGLh1sxOoazm-i-CShoTv5bKic2g76Rr7KtxkyA1DMZJn8qbxYAAYUXaRTvi51JA0hXlfPZSRvle~aoHEorF6RUNBQm72CNxDuAK8~nPzr1HkMy1UOmp4HEW8G7c2lkUuwkulRNlASfAQDAiZMeg~VbgXwu95f0QKoLEYUUbALS4WWUO1fhIO-X4rMDpHLJo9wacXb0c6d1akjmgvgfZbA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Aqueous_ROPISA_of_α_amino_acid_i_N_i_carboxyanhydrides_polypeptide_block_secondary_structure_controls_nanoparticle_shape_anisotropy","translated_slug":"","page_count":56,"language":"en","content_type":"Work","summary":null,"owner":{"id":176937962,"first_name":"Mark","middle_initials":null,"last_name":"Grinstaff","page_name":"MGrinstaff","domain_name":"bu","created_at":"2020-11-02T16:03:12.423-08:00","display_name":"Mark Grinstaff","url":"https://bu.academia.edu/MGrinstaff"},"attachments":[{"id":120004949,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004949/thumbnails/1.jpg","file_name":"document.pdf","download_url":"https://www.academia.edu/attachments/120004949/download_file","bulk_download_file_name":"Aqueous_ROPISA_of__amino_acid_i_N_i_car.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004949/document-libre.pdf?1733368461=\u0026response-content-disposition=attachment%3B+filename%3DAqueous_ROPISA_of__amino_acid_i_N_i_car.pdf\u0026Expires=1743457404\u0026Signature=TEyOo367yZfnptoi9zHRg5jWJhCC3dDOKtfQE~FvdsLkAD0jxpvGC7ayfmGfUKf6~r5GN7IIma9z~ozlUOK87yEwxoPOWC~VS25Nk13y5mJbh3jiPsO~ftXXNjQxyzO1FGLh1sxOoazm-i-CShoTv5bKic2g76Rr7KtxkyA1DMZJn8qbxYAAYUXaRTvi51JA0hXlfPZSRvle~aoHEorF6RUNBQm72CNxDuAK8~nPzr1HkMy1UOmp4HEW8G7c2lkUuwkulRNlASfAQDAiZMeg~VbgXwu95f0QKoLEYUUbALS4WWUO1fhIO-X4rMDpHLJo9wacXb0c6d1akjmgvgfZbA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":120004947,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004947/thumbnails/1.jpg","file_name":"document.pdf","download_url":"https://www.academia.edu/attachments/120004947/download_file","bulk_download_file_name":"Aqueous_ROPISA_of__amino_acid_i_N_i_car.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004947/document-libre.pdf?1733368466=\u0026response-content-disposition=attachment%3B+filename%3DAqueous_ROPISA_of__amino_acid_i_N_i_car.pdf\u0026Expires=1743457404\u0026Signature=QegOJIkkKLm~LCAaAScv1DPL~JS6OUM9KLsTWkEjlNqGz8mGAlyq71mZRWxz8EBbZtPkSVPvD9rQe4yhpaqAo11cpvnIA3-0VKT9GRcD0Pna2JspLVNcqzFqy~RsAISe~0ZvDFpNxcvjg0Z5KkZVXkEnUIHND0ZU3CMCiXd0hkb-aRWGgsN-Llzhszk7LX4TsmT9EPufzeU-EWPKaBkgdlf2vNX6LN-26oEmFwuET4K~zmauJ8Orq1292G48cbjPdWC6khJR7Y4r-sufhznjl5MNbzpHVqR3j6Jr6QLvGzxB4GNu5R5lrNBo2HY2rnh~xIe1b~zc9udwC56nY3RVQw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":2526,"name":"Polymer Chemistry","url":"https://www.academia.edu/Documents/in/Polymer_Chemistry"},{"id":8950,"name":"Nanoparticle","url":"https://www.academia.edu/Documents/in/Nanoparticle"},{"id":989646,"name":"Aqueous Solution","url":"https://www.academia.edu/Documents/in/Aqueous_Solution"}],"urls":[{"id":45919795,"url":"https://hal.science/hal-03359087/document"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-126070861-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="126070860"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126070860/Supramolecular_assemblies_with_DNA_Special_Topic_Article_"><img alt="Research paper thumbnail of Supramolecular assemblies with DNA* (Special Topic Article)" class="work-thumbnail" src="https://attachments.academia-assets.com/120004943/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126070860/Supramolecular_assemblies_with_DNA_Special_Topic_Article_">Supramolecular assemblies with DNA* (Special Topic Article)</a></div><div class="wp-workCard_item"><span>Pure and Applied Chemistry</span><span>, 2005</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">*This paper highlights and contextualizes research findings presented at an IUPAC-sponsored works...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">*This paper highlights and contextualizes research findings presented at an IUPAC-sponsored workshop entitled DNA Supramolecular Assemblies, held in Avignon, France on 5-6 May 2004. Special topic coverage in Pure and Applied Chemistry aims to highlight topical themes and offer critical insight into new and emerging concepts in chemical sciences.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="083085a275aa3ddd10698f4b2edf72f5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120004943,"asset_id":126070860,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120004943/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126070860"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126070860"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126070860; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126070860]").text(description); $(".js-view-count[data-work-id=126070860]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126070860; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126070860']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "083085a275aa3ddd10698f4b2edf72f5" } } $('.js-work-strip[data-work-id=126070860]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126070860,"title":"Supramolecular assemblies with DNA* (Special Topic Article)","translated_title":"","metadata":{"publisher":"International Union of Pure and Applied Chemistry","grobid_abstract":"*This paper highlights and contextualizes research findings presented at an IUPAC-sponsored workshop entitled DNA Supramolecular Assemblies, held in Avignon, France on 5-6 May 2004. Special topic coverage in Pure and Applied Chemistry aims to highlight topical themes and offer critical insight into new and emerging concepts in chemical sciences.","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"Pure and Applied Chemistry","grobid_abstract_attachment_id":120004939},"translated_abstract":null,"internal_url":"https://www.academia.edu/126070860/Supramolecular_assemblies_with_DNA_Special_Topic_Article_","translated_internal_url":"","created_at":"2024-12-04T13:02:27.995-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":176937962,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":120004943,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004943/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/120004943/download_file","bulk_download_file_name":"Supramolecular_assemblies_with_DNA_Speci.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004943/pdf-libre.pdf?1733368445=\u0026response-content-disposition=attachment%3B+filename%3DSupramolecular_assemblies_with_DNA_Speci.pdf\u0026Expires=1743457404\u0026Signature=hCi5QwesOiQd3PZ9YIWvgeJxXRXirR7PrfDolJO9yyvzYjVF4LZ2l1CPEx62HOJSI76ijYE1mgVsGAYAF~4SQ7JZXfbYOaDxHdV~~lhHAY0VGbpRL-GrEj-zOeyG9WiRSjtC4DsIE~LSf2KOhizrUH8GOWjqCsQ2e8XS7O7cW2tv4NwSc31yY7U31GrQIYxExP40nVojA91ID37PtQQ~Zo4KMhq2S4G06zLqitiQyEFFMHY8IPY-RAgb~p~s-n1prLHb9X5huEi6Mp9y~lTTCMuqOT-BOvoKgr2RUDdWpkDMxL6EcMZV06IWkPVbKRJnKdonV-CYvnNbXZ2aD9Nc3Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Supramolecular_assemblies_with_DNA_Special_Topic_Article_","translated_slug":"","page_count":16,"language":"en","content_type":"Work","summary":"*This paper highlights and contextualizes research findings presented at an IUPAC-sponsored workshop entitled DNA Supramolecular Assemblies, held in Avignon, France on 5-6 May 2004. Special topic coverage in Pure and Applied Chemistry aims to highlight topical themes and offer critical insight into new and emerging concepts in chemical sciences.","owner":{"id":176937962,"first_name":"Mark","middle_initials":null,"last_name":"Grinstaff","page_name":"MGrinstaff","domain_name":"bu","created_at":"2020-11-02T16:03:12.423-08:00","display_name":"Mark Grinstaff","url":"https://bu.academia.edu/MGrinstaff"},"attachments":[{"id":120004943,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004943/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/120004943/download_file","bulk_download_file_name":"Supramolecular_assemblies_with_DNA_Speci.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004943/pdf-libre.pdf?1733368445=\u0026response-content-disposition=attachment%3B+filename%3DSupramolecular_assemblies_with_DNA_Speci.pdf\u0026Expires=1743457404\u0026Signature=hCi5QwesOiQd3PZ9YIWvgeJxXRXirR7PrfDolJO9yyvzYjVF4LZ2l1CPEx62HOJSI76ijYE1mgVsGAYAF~4SQ7JZXfbYOaDxHdV~~lhHAY0VGbpRL-GrEj-zOeyG9WiRSjtC4DsIE~LSf2KOhizrUH8GOWjqCsQ2e8XS7O7cW2tv4NwSc31yY7U31GrQIYxExP40nVojA91ID37PtQQ~Zo4KMhq2S4G06zLqitiQyEFFMHY8IPY-RAgb~p~s-n1prLHb9X5huEi6Mp9y~lTTCMuqOT-BOvoKgr2RUDdWpkDMxL6EcMZV06IWkPVbKRJnKdonV-CYvnNbXZ2aD9Nc3Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":120004939,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004939/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/120004939/download_file","bulk_download_file_name":"Supramolecular_assemblies_with_DNA_Speci.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004939/pdf-libre.pdf?1733368444=\u0026response-content-disposition=attachment%3B+filename%3DSupramolecular_assemblies_with_DNA_Speci.pdf\u0026Expires=1743457404\u0026Signature=MDfsCgGepdxhYLmSZzcgjTyxix17A1zSRkBTxHJY3u3ySKQdaa3wl-lhPHTiQeCL~Oqyaw92CxnKCcpZYR7SmaOSTvf84uVFsqDCQePZIfP1EMY9YjWsD7vM8O0p9n4qOJdd-9ptBYQSae7QugfHjCoZGqsVDHHHOr3FvnPR2kMp4vAHwgQwawrlrheRopl1zscwnO4u0sq4aMNyMhKCtF1FC-iuLrp8VwToE7I6fSxOe4-BL5UgU7innWpnzope0KvRoraidkBUvAIikDxCou~N3OkJtxKuZ9w7fBsUISSW61~rPb1auzzBvwrGvTfSnl~BERYw3pF6uCERjIVJZA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":4493,"name":"Supramolecular Chemistry","url":"https://www.academia.edu/Documents/in/Supramolecular_Chemistry"},{"id":17733,"name":"Nanotechnology","url":"https://www.academia.edu/Documents/in/Nanotechnology"},{"id":167748,"name":"Non-covalent interactions","url":"https://www.academia.edu/Documents/in/Non-covalent_interactions"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":1957004,"name":"Stacking","url":"https://www.academia.edu/Documents/in/Stacking"},{"id":2711473,"name":"Pure and Applied Chemistry","url":"https://www.academia.edu/Documents/in/Pure_and_Applied_Chemistry"}],"urls":[{"id":45919794,"url":"https://www.degruyter.com/document/doi/10.1351/pac200577122133/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-126070860-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="126070859"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126070859/Restoration_of_lysosomal_acidification_rescues_autophagy_and_metabolic_dysfunction_in_non_alcoholic_fatty_liver_disease"><img alt="Research paper thumbnail of Restoration of lysosomal acidification rescues autophagy and metabolic dysfunction in non-alcoholic fatty liver disease" class="work-thumbnail" src="https://attachments.academia-assets.com/120004946/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126070859/Restoration_of_lysosomal_acidification_rescues_autophagy_and_metabolic_dysfunction_in_non_alcoholic_fatty_liver_disease">Restoration of lysosomal acidification rescues autophagy and metabolic dysfunction in non-alcoholic fatty liver disease</a></div><div class="wp-workCard_item"><span>Nature Communications</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the world. High lev...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the world. High levels of free fatty acids in the liver impair hepatic lysosomal acidification and reduce autophagic flux. We investigate whether restoration of lysosomal function in NAFLD recovers autophagic flux, mitochondrial function, and insulin sensitivity. Here, we report the synthesis of novel biodegradable acid-activated acidifying nanoparticles (acNPs) as a lysosome targeting treatment to restore lysosomal acidity and autophagy. The acNPs, composed of fluorinated polyesters, remain inactive at plasma pH, and only become activated in lysosomes after endocytosis. Specifically, they degrade at pH of ~6 characteristic of dysfunctional lysosomes, to further acidify and enhance the function of lysosomes. In established in vivo high fat diet mouse models of NAFLD, re-acidification of lysosomes via acNP treatment restores autophagy and mitochondria function to lean, healthy levels. This restoration, conc...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="900632d6f778b96def4b8853e9a3f599" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120004946,"asset_id":126070859,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120004946/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126070859"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126070859"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126070859; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126070859]").text(description); $(".js-view-count[data-work-id=126070859]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126070859; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126070859']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "900632d6f778b96def4b8853e9a3f599" } } $('.js-work-strip[data-work-id=126070859]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126070859,"title":"Restoration of lysosomal acidification rescues autophagy and metabolic dysfunction in non-alcoholic fatty liver disease","translated_title":"","metadata":{"abstract":"Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the world. High levels of free fatty acids in the liver impair hepatic lysosomal acidification and reduce autophagic flux. We investigate whether restoration of lysosomal function in NAFLD recovers autophagic flux, mitochondrial function, and insulin sensitivity. Here, we report the synthesis of novel biodegradable acid-activated acidifying nanoparticles (acNPs) as a lysosome targeting treatment to restore lysosomal acidity and autophagy. The acNPs, composed of fluorinated polyesters, remain inactive at plasma pH, and only become activated in lysosomes after endocytosis. Specifically, they degrade at pH of ~6 characteristic of dysfunctional lysosomes, to further acidify and enhance the function of lysosomes. In established in vivo high fat diet mouse models of NAFLD, re-acidification of lysosomes via acNP treatment restores autophagy and mitochondria function to lean, healthy levels. This restoration, conc...","publisher":"Springer Science and Business Media LLC","publication_name":"Nature Communications"},"translated_abstract":"Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the world. High levels of free fatty acids in the liver impair hepatic lysosomal acidification and reduce autophagic flux. We investigate whether restoration of lysosomal function in NAFLD recovers autophagic flux, mitochondrial function, and insulin sensitivity. Here, we report the synthesis of novel biodegradable acid-activated acidifying nanoparticles (acNPs) as a lysosome targeting treatment to restore lysosomal acidity and autophagy. The acNPs, composed of fluorinated polyesters, remain inactive at plasma pH, and only become activated in lysosomes after endocytosis. Specifically, they degrade at pH of ~6 characteristic of dysfunctional lysosomes, to further acidify and enhance the function of lysosomes. In established in vivo high fat diet mouse models of NAFLD, re-acidification of lysosomes via acNP treatment restores autophagy and mitochondria function to lean, healthy levels. This restoration, conc...","internal_url":"https://www.academia.edu/126070859/Restoration_of_lysosomal_acidification_rescues_autophagy_and_metabolic_dysfunction_in_non_alcoholic_fatty_liver_disease","translated_internal_url":"","created_at":"2024-12-04T13:02:27.704-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":176937962,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":120004946,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004946/thumbnails/1.jpg","file_name":"s41467-023-38165-6.pdf","download_url":"https://www.academia.edu/attachments/120004946/download_file","bulk_download_file_name":"Restoration_of_lysosomal_acidification_r.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004946/s41467-023-38165-6-libre.pdf?1733368453=\u0026response-content-disposition=attachment%3B+filename%3DRestoration_of_lysosomal_acidification_r.pdf\u0026Expires=1743457404\u0026Signature=CXjNqbxixLJ5NrPeeaau8Np0oALuIVek1Cu5u~xEf6Y2vLrN566rMmkJTAASdSUe5Y37uioX6Ecwi~tZtj6~tIerSSItM3SHqIerTcSbhZVACJ2fDLE9NOyDIUWhWSF6~yX0PLciPbvZmDEE8ZLB5GODauQ6LUNAToxUe13otgF3iFiTrwVAtU0Ms6gavayJ3sSQ8k1Op1UZtquj2YkUp9e34lbCz8ta4uoEP6QmGPm7GB7t82DDe5aVlcxzVLMw8prpCH6iHZTlibUHGiEBauhMqlQLx-w3B6ll7yktWOGZH-4Ow9gAWm8xkrEnjIG9Zkdi3-S~FSElFJS245UMzw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Restoration_of_lysosomal_acidification_rescues_autophagy_and_metabolic_dysfunction_in_non_alcoholic_fatty_liver_disease","translated_slug":"","page_count":17,"language":"en","content_type":"Work","summary":"Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the world. High levels of free fatty acids in the liver impair hepatic lysosomal acidification and reduce autophagic flux. We investigate whether restoration of lysosomal function in NAFLD recovers autophagic flux, mitochondrial function, and insulin sensitivity. Here, we report the synthesis of novel biodegradable acid-activated acidifying nanoparticles (acNPs) as a lysosome targeting treatment to restore lysosomal acidity and autophagy. The acNPs, composed of fluorinated polyesters, remain inactive at plasma pH, and only become activated in lysosomes after endocytosis. Specifically, they degrade at pH of ~6 characteristic of dysfunctional lysosomes, to further acidify and enhance the function of lysosomes. In established in vivo high fat diet mouse models of NAFLD, re-acidification of lysosomes via acNP treatment restores autophagy and mitochondria function to lean, healthy levels. This restoration, conc...","owner":{"id":176937962,"first_name":"Mark","middle_initials":null,"last_name":"Grinstaff","page_name":"MGrinstaff","domain_name":"bu","created_at":"2020-11-02T16:03:12.423-08:00","display_name":"Mark Grinstaff","url":"https://bu.academia.edu/MGrinstaff"},"attachments":[{"id":120004946,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004946/thumbnails/1.jpg","file_name":"s41467-023-38165-6.pdf","download_url":"https://www.academia.edu/attachments/120004946/download_file","bulk_download_file_name":"Restoration_of_lysosomal_acidification_r.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004946/s41467-023-38165-6-libre.pdf?1733368453=\u0026response-content-disposition=attachment%3B+filename%3DRestoration_of_lysosomal_acidification_r.pdf\u0026Expires=1743457404\u0026Signature=CXjNqbxixLJ5NrPeeaau8Np0oALuIVek1Cu5u~xEf6Y2vLrN566rMmkJTAASdSUe5Y37uioX6Ecwi~tZtj6~tIerSSItM3SHqIerTcSbhZVACJ2fDLE9NOyDIUWhWSF6~yX0PLciPbvZmDEE8ZLB5GODauQ6LUNAToxUe13otgF3iFiTrwVAtU0Ms6gavayJ3sSQ8k1Op1UZtquj2YkUp9e34lbCz8ta4uoEP6QmGPm7GB7t82DDe5aVlcxzVLMw8prpCH6iHZTlibUHGiEBauhMqlQLx-w3B6ll7yktWOGZH-4Ow9gAWm8xkrEnjIG9Zkdi3-S~FSElFJS245UMzw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":120004942,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004942/thumbnails/1.jpg","file_name":"s41467-023-38165-6.pdf","download_url":"https://www.academia.edu/attachments/120004942/download_file","bulk_download_file_name":"Restoration_of_lysosomal_acidification_r.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004942/s41467-023-38165-6-libre.pdf?1733368457=\u0026response-content-disposition=attachment%3B+filename%3DRestoration_of_lysosomal_acidification_r.pdf\u0026Expires=1743457404\u0026Signature=ac1MKW9qFJKHeCU0vse-pd1mATVgbLhUQv7sD9g1q8YMn00EjYqrUnwEQt799-Ye9VWm0Ivsm1dzhjkCUQaZ1K~AmXsqm72Yxen7bsJBF8Y8TuIGItVwMxA~wEUT8NQXimUdLx1wG44JPDt0zs2JoNUYwPKgzIkHf9SSYHW2H4KNB0VhI9Y5k8onhyoqUGqF3qvsy0ecbvoQLuTd-1vCQGIn-lx47Fy3scNKud-d0O8SjEVi48UUNRH2GEJ3YXqcJPL9OKAOfjIzSTd6Tr8DV5yghgUSZdu0v8r68Y9t8KRzHVmSlzLDBwhKxuxXU5jnPT2ZwPbCA5ZzDMT~PFZc-Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":17923,"name":"Autophagy","url":"https://www.academia.edu/Documents/in/Autophagy"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":90156,"name":"Endocytosis","url":"https://www.academia.edu/Documents/in/Endocytosis"},{"id":153671,"name":"Lysosome","url":"https://www.academia.edu/Documents/in/Lysosome"},{"id":295465,"name":"Fatty Liver","url":"https://www.academia.edu/Documents/in/Fatty_Liver"},{"id":781184,"name":"Mitophagy","url":"https://www.academia.edu/Documents/in/Mitophagy"},{"id":1267800,"name":"Nature Communications","url":"https://www.academia.edu/Documents/in/Nature_Communications"},{"id":1749141,"name":"Steatosis","url":"https://www.academia.edu/Documents/in/Steatosis"}],"urls":[{"id":45919793,"url":"https://www.nature.com/articles/s41467-023-38165-6.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-126070859-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="126070858"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126070858/In_vivo_multiscale_measurements_of_solid_stresses_in_tumors_reveal_scale_dependent_stress_transmission"><img alt="Research paper thumbnail of In vivo multiscale measurements of solid stresses in tumors reveal scale-dependent stress transmission" class="work-thumbnail" src="https://attachments.academia-assets.com/120004977/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126070858/In_vivo_multiscale_measurements_of_solid_stresses_in_tumors_reveal_scale_dependent_stress_transmission">In vivo multiscale measurements of solid stresses in tumors reveal scale-dependent stress transmission</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Solid stress, one of the physical hallmarks of cancer, affects trafficking and infiltration of im...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Solid stress, one of the physical hallmarks of cancer, affects trafficking and infiltration of immune cells, promotes metastasis and tumorigenic pathways, and impedes therapeutic delivery. Despite these clinical ramifications, questions remain regarding the origins and consequences of solid stresses and the differential response of tumor versus normal cells to solid stresses. Answering these fundamental questions requires probing solid stresses at the cellular scale, where biological and immunological responses manifest, as well as in vivo, where the complexities of the tumor microenvironment are present. Here, we report the first in vivo and multi-scale measurements of solid stress in mouse models of breast cancer using multi-modal intravital microscopy of deformable hydrogels complemented with mathematical modeling. Utilizing the capabilities of these methods, such as the high-resolution, longitudinal, and 3-D measurements of local solid stress, we measure and compare solid stress...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d2571e8ed8066e2683eae351f6d3be39" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120004977,"asset_id":126070858,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120004977/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126070858"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126070858"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126070858; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126070858]").text(description); $(".js-view-count[data-work-id=126070858]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126070858; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126070858']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d2571e8ed8066e2683eae351f6d3be39" } } $('.js-work-strip[data-work-id=126070858]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126070858,"title":"In vivo multiscale measurements of solid stresses in tumors reveal scale-dependent stress transmission","translated_title":"","metadata":{"abstract":"Solid stress, one of the physical hallmarks of cancer, affects trafficking and infiltration of immune cells, promotes metastasis and tumorigenic pathways, and impedes therapeutic delivery. Despite these clinical ramifications, questions remain regarding the origins and consequences of solid stresses and the differential response of tumor versus normal cells to solid stresses. Answering these fundamental questions requires probing solid stresses at the cellular scale, where biological and immunological responses manifest, as well as in vivo, where the complexities of the tumor microenvironment are present. Here, we report the first in vivo and multi-scale measurements of solid stress in mouse models of breast cancer using multi-modal intravital microscopy of deformable hydrogels complemented with mathematical modeling. Utilizing the capabilities of these methods, such as the high-resolution, longitudinal, and 3-D measurements of local solid stress, we measure and compare solid stress...","publisher":"Research Square Platform LLC"},"translated_abstract":"Solid stress, one of the physical hallmarks of cancer, affects trafficking and infiltration of immune cells, promotes metastasis and tumorigenic pathways, and impedes therapeutic delivery. Despite these clinical ramifications, questions remain regarding the origins and consequences of solid stresses and the differential response of tumor versus normal cells to solid stresses. Answering these fundamental questions requires probing solid stresses at the cellular scale, where biological and immunological responses manifest, as well as in vivo, where the complexities of the tumor microenvironment are present. Here, we report the first in vivo and multi-scale measurements of solid stress in mouse models of breast cancer using multi-modal intravital microscopy of deformable hydrogels complemented with mathematical modeling. Utilizing the capabilities of these methods, such as the high-resolution, longitudinal, and 3-D measurements of local solid stress, we measure and compare solid stress...","internal_url":"https://www.academia.edu/126070858/In_vivo_multiscale_measurements_of_solid_stresses_in_tumors_reveal_scale_dependent_stress_transmission","translated_internal_url":"","created_at":"2024-12-04T13:02:27.351-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":176937962,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":120004977,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004977/thumbnails/1.jpg","file_name":"latest.pdf","download_url":"https://www.academia.edu/attachments/120004977/download_file","bulk_download_file_name":"In_vivo_multiscale_measurements_of_solid.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004977/latest-libre.pdf?1733356542=\u0026response-content-disposition=attachment%3B+filename%3DIn_vivo_multiscale_measurements_of_solid.pdf\u0026Expires=1743457404\u0026Signature=EPd2VJckNjq8ozcBmJOl7wVZBN1Z8u0Zd3rWYEVt6t735pvOautqTte0bTORiOwJpsHDL86uHIKazaOMDd7LbuihHIdSLxXPfRufPinOQV1wM27dsWdpx~gotZIUJnBE3IUVrZqM30StxKdJc0YyKL7-JgLSjAJcyx9l8Mia07i3Z90Nz~CZfrY0a~dy9bNyfuEyEhUSAkFzVVfzlFR9qXxYnUC~tbz5k8icDBaT2JRTPLZ-nybB5qEYcdeTKibmM82UdO-uh5t7WPgvsQoZg7emJKeoEHWbKfW5sxKeQV8PXLbBLbB-uXMVpQDcrHxzLYOwGjJlK4z72mM4ivmHJw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"In_vivo_multiscale_measurements_of_solid_stresses_in_tumors_reveal_scale_dependent_stress_transmission","translated_slug":"","page_count":31,"language":"en","content_type":"Work","summary":"Solid stress, one of the physical hallmarks of cancer, affects trafficking and infiltration of immune cells, promotes metastasis and tumorigenic pathways, and impedes therapeutic delivery. Despite these clinical ramifications, questions remain regarding the origins and consequences of solid stresses and the differential response of tumor versus normal cells to solid stresses. Answering these fundamental questions requires probing solid stresses at the cellular scale, where biological and immunological responses manifest, as well as in vivo, where the complexities of the tumor microenvironment are present. Here, we report the first in vivo and multi-scale measurements of solid stress in mouse models of breast cancer using multi-modal intravital microscopy of deformable hydrogels complemented with mathematical modeling. Utilizing the capabilities of these methods, such as the high-resolution, longitudinal, and 3-D measurements of local solid stress, we measure and compare solid stress...","owner":{"id":176937962,"first_name":"Mark","middle_initials":null,"last_name":"Grinstaff","page_name":"MGrinstaff","domain_name":"bu","created_at":"2020-11-02T16:03:12.423-08:00","display_name":"Mark Grinstaff","url":"https://bu.academia.edu/MGrinstaff"},"attachments":[{"id":120004977,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004977/thumbnails/1.jpg","file_name":"latest.pdf","download_url":"https://www.academia.edu/attachments/120004977/download_file","bulk_download_file_name":"In_vivo_multiscale_measurements_of_solid.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004977/latest-libre.pdf?1733356542=\u0026response-content-disposition=attachment%3B+filename%3DIn_vivo_multiscale_measurements_of_solid.pdf\u0026Expires=1743457404\u0026Signature=EPd2VJckNjq8ozcBmJOl7wVZBN1Z8u0Zd3rWYEVt6t735pvOautqTte0bTORiOwJpsHDL86uHIKazaOMDd7LbuihHIdSLxXPfRufPinOQV1wM27dsWdpx~gotZIUJnBE3IUVrZqM30StxKdJc0YyKL7-JgLSjAJcyx9l8Mia07i3Z90Nz~CZfrY0a~dy9bNyfuEyEhUSAkFzVVfzlFR9qXxYnUC~tbz5k8icDBaT2JRTPLZ-nybB5qEYcdeTKibmM82UdO-uh5t7WPgvsQoZg7emJKeoEHWbKfW5sxKeQV8PXLbBLbB-uXMVpQDcrHxzLYOwGjJlK4z72mM4ivmHJw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":302037,"name":"In Vivo","url":"https://www.academia.edu/Documents/in/In_Vivo"},{"id":4142611,"name":"Solid tumor","url":"https://www.academia.edu/Documents/in/Solid_tumor"}],"urls":[{"id":45919792,"url":"https://www.researchsquare.com/article/rs-1697924/v1"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-126070858-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="126070857"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126070857/Dual_contrast_in_computed_tomography_allows_earlier_characterization_of_articular_cartilage_over_single_contrast"><img alt="Research paper thumbnail of Dual contrast in computed tomography allows earlier characterization of articular cartilage over single contrast" class="work-thumbnail" src="https://attachments.academia-assets.com/120004979/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126070857/Dual_contrast_in_computed_tomography_allows_earlier_characterization_of_articular_cartilage_over_single_contrast">Dual contrast in computed tomography allows earlier characterization of articular cartilage over single contrast</a></div><div class="wp-workCard_item"><span>Journal of Orthopaedic Research</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Cationic computed tomography contrast agents are more sensitive for detecting cartilage degenerat...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Cationic computed tomography contrast agents are more sensitive for detecting cartilage degeneration than anionic or non‐ionic agents. However, osteoarthritis‐related loss of proteoglycans and increase in water content contrarily affect the diffusion of cationic contrast agents, limiting their sensitivity. The quantitative dual‐energy computed tomography technique allows the simultaneous determination of the partitions of iodine‐based cationic (CA4+) and gadolinium‐based non‐ionic (gadoteridol) agents in cartilage at diffusion equilibrium. Normalizing the cationic agent partition at diffusion equilibrium with that of the non‐ionic agent improves diagnostic sensitivity. We hypothesize that this sensitivity improvement is also prominent during early diffusion time points and that the technique is applicable during contrast agent diffusion. To investigate the validity of this hypothesis, osteochondral plugs (d = 8 mm, N = 33), extracted from human cadaver (n = 4) knee joints, were imme...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="81098dddfd60b4661db87b540faca14a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120004979,"asset_id":126070857,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120004979/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126070857"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126070857"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126070857; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126070857]").text(description); $(".js-view-count[data-work-id=126070857]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126070857; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126070857']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "81098dddfd60b4661db87b540faca14a" } } $('.js-work-strip[data-work-id=126070857]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126070857,"title":"Dual contrast in computed tomography allows earlier characterization of articular cartilage over single contrast","translated_title":"","metadata":{"abstract":"Cationic computed tomography contrast agents are more sensitive for detecting cartilage degeneration than anionic or non‐ionic agents. However, osteoarthritis‐related loss of proteoglycans and increase in water content contrarily affect the diffusion of cationic contrast agents, limiting their sensitivity. The quantitative dual‐energy computed tomography technique allows the simultaneous determination of the partitions of iodine‐based cationic (CA4+) and gadolinium‐based non‐ionic (gadoteridol) agents in cartilage at diffusion equilibrium. Normalizing the cationic agent partition at diffusion equilibrium with that of the non‐ionic agent improves diagnostic sensitivity. We hypothesize that this sensitivity improvement is also prominent during early diffusion time points and that the technique is applicable during contrast agent diffusion. To investigate the validity of this hypothesis, osteochondral plugs (d = 8 mm, N = 33), extracted from human cadaver (n = 4) knee joints, were imme...","publisher":"Wiley","publication_name":"Journal of Orthopaedic Research"},"translated_abstract":"Cationic computed tomography contrast agents are more sensitive for detecting cartilage degeneration than anionic or non‐ionic agents. However, osteoarthritis‐related loss of proteoglycans and increase in water content contrarily affect the diffusion of cationic contrast agents, limiting their sensitivity. The quantitative dual‐energy computed tomography technique allows the simultaneous determination of the partitions of iodine‐based cationic (CA4+) and gadolinium‐based non‐ionic (gadoteridol) agents in cartilage at diffusion equilibrium. Normalizing the cationic agent partition at diffusion equilibrium with that of the non‐ionic agent improves diagnostic sensitivity. We hypothesize that this sensitivity improvement is also prominent during early diffusion time points and that the technique is applicable during contrast agent diffusion. To investigate the validity of this hypothesis, osteochondral plugs (d = 8 mm, N = 33), extracted from human cadaver (n = 4) knee joints, were imme...","internal_url":"https://www.academia.edu/126070857/Dual_contrast_in_computed_tomography_allows_earlier_characterization_of_articular_cartilage_over_single_contrast","translated_internal_url":"","created_at":"2024-12-04T13:02:27.074-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":176937962,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":120004979,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004979/thumbnails/1.jpg","file_name":"1610961803741311810.pdf","download_url":"https://www.academia.edu/attachments/120004979/download_file","bulk_download_file_name":"Dual_contrast_in_computed_tomography_all.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004979/1610961803741311810-libre.pdf?1733356528=\u0026response-content-disposition=attachment%3B+filename%3DDual_contrast_in_computed_tomography_all.pdf\u0026Expires=1743457404\u0026Signature=Qkv8KgBHjyPGUg6hDOqMZc5FKTEt2FR42scRL63QjmyBPAL553U0Piyy9N9SEW~nhFxa0EQrBM0ohrZ~P7EkFTtzTlFTg9nv6iXT~KuPzqOaXCQ6BtYihcB-3B5VFNC83~Oib5qno4mOzR0ItWJzHPf9UszZP5UrwkgxFtPxBqf2W~uycJV41mSUngn7JwAk~R6jSd-CPAD6jj-d2aAYlor6oDK-AY4H3CHYIo68lqMRl3YayC6Jlw-FShtaYn3AeSW38wCRwmME7uIKr9XwTQCEJV56ViB8FXQUNHsRu5HpnrpzKp4kMy1sIye03cPI9LJ2-WPnaRSTJmvBVjRUMw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Dual_contrast_in_computed_tomography_allows_earlier_characterization_of_articular_cartilage_over_single_contrast","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":"Cationic computed tomography contrast agents are more sensitive for detecting cartilage degeneration than anionic or non‐ionic agents. However, osteoarthritis‐related loss of proteoglycans and increase in water content contrarily affect the diffusion of cationic contrast agents, limiting their sensitivity. The quantitative dual‐energy computed tomography technique allows the simultaneous determination of the partitions of iodine‐based cationic (CA4+) and gadolinium‐based non‐ionic (gadoteridol) agents in cartilage at diffusion equilibrium. Normalizing the cationic agent partition at diffusion equilibrium with that of the non‐ionic agent improves diagnostic sensitivity. We hypothesize that this sensitivity improvement is also prominent during early diffusion time points and that the technique is applicable during contrast agent diffusion. To investigate the validity of this hypothesis, osteochondral plugs (d = 8 mm, N = 33), extracted from human cadaver (n = 4) knee joints, were imme...","owner":{"id":176937962,"first_name":"Mark","middle_initials":null,"last_name":"Grinstaff","page_name":"MGrinstaff","domain_name":"bu","created_at":"2020-11-02T16:03:12.423-08:00","display_name":"Mark Grinstaff","url":"https://bu.academia.edu/MGrinstaff"},"attachments":[{"id":120004979,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004979/thumbnails/1.jpg","file_name":"1610961803741311810.pdf","download_url":"https://www.academia.edu/attachments/120004979/download_file","bulk_download_file_name":"Dual_contrast_in_computed_tomography_all.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004979/1610961803741311810-libre.pdf?1733356528=\u0026response-content-disposition=attachment%3B+filename%3DDual_contrast_in_computed_tomography_all.pdf\u0026Expires=1743457404\u0026Signature=Qkv8KgBHjyPGUg6hDOqMZc5FKTEt2FR42scRL63QjmyBPAL553U0Piyy9N9SEW~nhFxa0EQrBM0ohrZ~P7EkFTtzTlFTg9nv6iXT~KuPzqOaXCQ6BtYihcB-3B5VFNC83~Oib5qno4mOzR0ItWJzHPf9UszZP5UrwkgxFtPxBqf2W~uycJV41mSUngn7JwAk~R6jSd-CPAD6jj-d2aAYlor6oDK-AY4H3CHYIo68lqMRl3YayC6Jlw-FShtaYn3AeSW38wCRwmME7uIKr9XwTQCEJV56ViB8FXQUNHsRu5HpnrpzKp4kMy1sIye03cPI9LJ2-WPnaRSTJmvBVjRUMw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":1131,"name":"Biomedical Engineering","url":"https://www.academia.edu/Documents/in/Biomedical_Engineering"},{"id":3132,"name":"Biomechanics","url":"https://www.academia.edu/Documents/in/Biomechanics"},{"id":24675,"name":"Orthopaedic","url":"https://www.academia.edu/Documents/in/Orthopaedic"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":78188,"name":"Cartilage","url":"https://www.academia.edu/Documents/in/Cartilage"},{"id":244814,"name":"Clinical Sciences","url":"https://www.academia.edu/Documents/in/Clinical_Sciences"},{"id":1931839,"name":"Dual energy CT","url":"https://www.academia.edu/Documents/in/Dual_energy_CT"}],"urls":[{"id":45919791,"url":"https://onlinelibrary.wiley.com/doi/pdf/10.1002/jor.24774"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-126070857-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="126070856"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126070856/Asah2_Represses_the_p53_Hmox1_Axis_to_Protect_Myeloid_Derived_Suppressor_Cells_from_Ferroptosis"><img alt="Research paper thumbnail of Asah2 Represses the p53–Hmox1 Axis to Protect Myeloid-Derived Suppressor Cells from Ferroptosis" class="work-thumbnail" src="https://attachments.academia-assets.com/120004951/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126070856/Asah2_Represses_the_p53_Hmox1_Axis_to_Protect_Myeloid_Derived_Suppressor_Cells_from_Ferroptosis">Asah2 Represses the p53–Hmox1 Axis to Protect Myeloid-Derived Suppressor Cells from Ferroptosis</a></div><div class="wp-workCard_item"><span>The Journal of Immunology</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Myeloid-derived suppressor cells (MDSCs) are immune suppressive cells that massively accumulate u...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Myeloid-derived suppressor cells (MDSCs) are immune suppressive cells that massively accumulate under pathological conditions to suppress T cell immune response. Dysregulated cell death contributes to MDSC accumulation, but the molecular mechanism underlying this cell death dysregulation is not fully understood. In this study, we report that neutral ceramidase (N-acylsphingosine amidohydrolase [ASAH2]) is highly expressed in tumor-infiltrating MDSCs in colon carcinoma and acts as an MDSC survival factor. To target ASAH2, we performed molecular docking based on human ASAH2 protein structure. Enzymatic inhibition analysis of identified hits determined NC06 as an ASAH2 inhibitor. Chemical and nuclear magnetic resonance analysis determined NC06 as 7-chloro-2-(3-chloroanilino)pyrano[3,4-e][1,3]oxazine-4,5-dione. NC06 inhibits ceramidase activity with an IC50 of 10.16–25.91 μM for human ASAH2 and 18.6–30.2 μM for mouse Asah2 proteins. NC06 induces MDSC death in a dose-dependent manner, an...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="bea31230b8774617f257b09deb6ae6f4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120004951,"asset_id":126070856,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120004951/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126070856"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126070856"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126070856; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126070856]").text(description); $(".js-view-count[data-work-id=126070856]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126070856; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126070856']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "bea31230b8774617f257b09deb6ae6f4" } } $('.js-work-strip[data-work-id=126070856]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126070856,"title":"Asah2 Represses the p53–Hmox1 Axis to Protect Myeloid-Derived Suppressor Cells from Ferroptosis","translated_title":"","metadata":{"abstract":"Myeloid-derived suppressor cells (MDSCs) are immune suppressive cells that massively accumulate under pathological conditions to suppress T cell immune response. Dysregulated cell death contributes to MDSC accumulation, but the molecular mechanism underlying this cell death dysregulation is not fully understood. In this study, we report that neutral ceramidase (N-acylsphingosine amidohydrolase [ASAH2]) is highly expressed in tumor-infiltrating MDSCs in colon carcinoma and acts as an MDSC survival factor. To target ASAH2, we performed molecular docking based on human ASAH2 protein structure. Enzymatic inhibition analysis of identified hits determined NC06 as an ASAH2 inhibitor. Chemical and nuclear magnetic resonance analysis determined NC06 as 7-chloro-2-(3-chloroanilino)pyrano[3,4-e][1,3]oxazine-4,5-dione. NC06 inhibits ceramidase activity with an IC50 of 10.16–25.91 μM for human ASAH2 and 18.6–30.2 μM for mouse Asah2 proteins. NC06 induces MDSC death in a dose-dependent manner, an...","publisher":"The American Association of Immunologists","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"The Journal of Immunology"},"translated_abstract":"Myeloid-derived suppressor cells (MDSCs) are immune suppressive cells that massively accumulate under pathological conditions to suppress T cell immune response. Dysregulated cell death contributes to MDSC accumulation, but the molecular mechanism underlying this cell death dysregulation is not fully understood. In this study, we report that neutral ceramidase (N-acylsphingosine amidohydrolase [ASAH2]) is highly expressed in tumor-infiltrating MDSCs in colon carcinoma and acts as an MDSC survival factor. To target ASAH2, we performed molecular docking based on human ASAH2 protein structure. Enzymatic inhibition analysis of identified hits determined NC06 as an ASAH2 inhibitor. Chemical and nuclear magnetic resonance analysis determined NC06 as 7-chloro-2-(3-chloroanilino)pyrano[3,4-e][1,3]oxazine-4,5-dione. NC06 inhibits ceramidase activity with an IC50 of 10.16–25.91 μM for human ASAH2 and 18.6–30.2 μM for mouse Asah2 proteins. NC06 induces MDSC death in a dose-dependent manner, an...","internal_url":"https://www.academia.edu/126070856/Asah2_Represses_the_p53_Hmox1_Axis_to_Protect_Myeloid_Derived_Suppressor_Cells_from_Ferroptosis","translated_internal_url":"","created_at":"2024-12-04T13:02:26.751-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":176937962,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":120004951,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004951/thumbnails/1.jpg","file_name":"ji2000500.pdf","download_url":"https://www.academia.edu/attachments/120004951/download_file","bulk_download_file_name":"Asah2_Represses_the_p53_Hmox1_Axis_to_Pr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004951/ji2000500-libre.pdf?1733368454=\u0026response-content-disposition=attachment%3B+filename%3DAsah2_Represses_the_p53_Hmox1_Axis_to_Pr.pdf\u0026Expires=1743457405\u0026Signature=DGudl~yT-20VETiHEBO71vejT9ZE4hzAtC6xWRI~4GYQHzNGCMNixXKOz-idqwSfT199dZMgc5PxEnY6AlfXZfuY4G753apQlFANmlpi3Yv-fCp3IYxW7FjM4sD6CEUELWpqjGTH9bvrJJ4rNXZeHOGu9yMsANGiBF~c~CyvLawFhgz0fAsA~qqdR5QTAeLYAhsZipZhdOrV42OcMYtlakZ1P3QiFdkIIIuMCp2WGYdjfrWEw7x2mIn~k5iP8sosJs4p83yY6e0qn~7UJNKSM7uH7Aci9pf5UPR0IlkBNsR9K~djzh3GtHrVbqnxJOxY524NQIaNiHxzN7lkJvw4Dg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Asah2_Represses_the_p53_Hmox1_Axis_to_Protect_Myeloid_Derived_Suppressor_Cells_from_Ferroptosis","translated_slug":"","page_count":11,"language":"en","content_type":"Work","summary":"Myeloid-derived suppressor cells (MDSCs) are immune suppressive cells that massively accumulate under pathological conditions to suppress T cell immune response. Dysregulated cell death contributes to MDSC accumulation, but the molecular mechanism underlying this cell death dysregulation is not fully understood. In this study, we report that neutral ceramidase (N-acylsphingosine amidohydrolase [ASAH2]) is highly expressed in tumor-infiltrating MDSCs in colon carcinoma and acts as an MDSC survival factor. To target ASAH2, we performed molecular docking based on human ASAH2 protein structure. Enzymatic inhibition analysis of identified hits determined NC06 as an ASAH2 inhibitor. Chemical and nuclear magnetic resonance analysis determined NC06 as 7-chloro-2-(3-chloroanilino)pyrano[3,4-e][1,3]oxazine-4,5-dione. NC06 inhibits ceramidase activity with an IC50 of 10.16–25.91 μM for human ASAH2 and 18.6–30.2 μM for mouse Asah2 proteins. NC06 induces MDSC death in a dose-dependent manner, an...","owner":{"id":176937962,"first_name":"Mark","middle_initials":null,"last_name":"Grinstaff","page_name":"MGrinstaff","domain_name":"bu","created_at":"2020-11-02T16:03:12.423-08:00","display_name":"Mark Grinstaff","url":"https://bu.academia.edu/MGrinstaff"},"attachments":[{"id":120004951,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004951/thumbnails/1.jpg","file_name":"ji2000500.pdf","download_url":"https://www.academia.edu/attachments/120004951/download_file","bulk_download_file_name":"Asah2_Represses_the_p53_Hmox1_Axis_to_Pr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004951/ji2000500-libre.pdf?1733368454=\u0026response-content-disposition=attachment%3B+filename%3DAsah2_Represses_the_p53_Hmox1_Axis_to_Pr.pdf\u0026Expires=1743457405\u0026Signature=DGudl~yT-20VETiHEBO71vejT9ZE4hzAtC6xWRI~4GYQHzNGCMNixXKOz-idqwSfT199dZMgc5PxEnY6AlfXZfuY4G753apQlFANmlpi3Yv-fCp3IYxW7FjM4sD6CEUELWpqjGTH9bvrJJ4rNXZeHOGu9yMsANGiBF~c~CyvLawFhgz0fAsA~qqdR5QTAeLYAhsZipZhdOrV42OcMYtlakZ1P3QiFdkIIIuMCp2WGYdjfrWEw7x2mIn~k5iP8sosJs4p83yY6e0qn~7UJNKSM7uH7Aci9pf5UPR0IlkBNsR9K~djzh3GtHrVbqnxJOxY524NQIaNiHxzN7lkJvw4Dg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":120004941,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004941/thumbnails/1.jpg","file_name":"ji2000500.pdf","download_url":"https://www.academia.edu/attachments/120004941/download_file","bulk_download_file_name":"Asah2_Represses_the_p53_Hmox1_Axis_to_Pr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004941/ji2000500-libre.pdf?1733368456=\u0026response-content-disposition=attachment%3B+filename%3DAsah2_Represses_the_p53_Hmox1_Axis_to_Pr.pdf\u0026Expires=1743457405\u0026Signature=M3fUwKAfJ3~7tUuuHNlKDEfon-98Y9oB2LL8lBRT37e2Enw-1RehMDCRrCZDjPoJHpGjUSctIJAQ5fpf4GI9ECYIcKyRNawc66Bnr-8ebDnhJFDOv3STeTiZOkrtpMsdDucZWII-a468sqskuHz2VUYjddmv4ofA3Kyih52iOAP-3kA7zYv5v-LWHYvh~4Enc-A3Eq9KF4jBOTzAnkTILyZWmt8JOBvH3Ys1CmwFzYlEuDZFVgcnBSUzFMV2iYooQepGP-hNkFdSLJQMLtlRgFWUSr6rKpE~bShFb-iKcWY9D5122wRadh-WSB3OHTEm-TNVpXMeOob~sbg0aQkxNA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":1290,"name":"Immunology","url":"https://www.academia.edu/Documents/in/Immunology"},{"id":18327,"name":"Immunology of the Gut","url":"https://www.academia.edu/Documents/in/Immunology_of_the_Gut"},{"id":22255,"name":"Cancer Research","url":"https://www.academia.edu/Documents/in/Cancer_Research"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":175490,"name":"Programmed cell death","url":"https://www.academia.edu/Documents/in/Programmed_cell_death"}],"urls":[{"id":45919790,"url":"https://journals.aai.org/jimmunol/article-pdf/206/6/1395/1464065/ji2000500.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-126070856-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="126070855"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126070855/Biofabrication_of_a_shape_stable_auricular_structure_for_the_reconstruction_of_ear_deformities"><img alt="Research paper thumbnail of Biofabrication of a shape-stable auricular structure for the reconstruction of ear deformities" class="work-thumbnail" src="https://attachments.academia-assets.com/120004975/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126070855/Biofabrication_of_a_shape_stable_auricular_structure_for_the_reconstruction_of_ear_deformities">Biofabrication of a shape-stable auricular structure for the reconstruction of ear deformities</a></div><div class="wp-workCard_item"><span>Materials Today Bio</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Bioengineering of the human auricle remains a significant challenge, where the complex and unique...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Bioengineering of the human auricle remains a significant challenge, where the complex and unique shape, the generation of high-quality neocartilage, and shape preservation are key factors. Future regenerative medicine-based approaches for auricular cartilage reconstruction will benefit from a smart combination of various strategies. Our approach to fabrication of an ear-shaped construct uses hybrid bioprinting techniques, a recently identified progenitor cell population, previously validated biomaterials, and a smart scaffold design. Specifically, we generated a 3D-printed polycaprolactone (PCL) scaffold via fused deposition modeling, photocrosslinked a human auricular cartilage progenitor cell-laden gelatin methacryloyl (gelMA) hydrogel within the scaffold, and cultured the bioengineered structure in vitro in chondrogenic media for 30 days. Our results show that the fabrication process maintains the viability and chondrogenic phenotype of the cells, that the compressive properties of the combined PCL and gelMA hybrid auricular constructs are similar to native auricular cartilage, and that biofabricated hybrid auricular structures exhibit excellent shape fidelity compared with the 3D digital model along with deposition of cartilage-like matrix in both peripheral and central areas of the auricular structure. Our strategy affords an anatomically enhanced auricular structure with appropriate mechanical properties, ensures adequate preservation of the auricular shape during a dynamic in vitro culture period, and enables chondrogenically potent progenitor cells to produce abundant cartilage-like matrix throughout the auricular construct. The combination of smart scaffold design with 3D bioprinting and cartilage progenitor cells holds promise for the development of clinically translatable regenerative medicine strategies for auricular reconstruction.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1b09070e88ac6c92ce8845a8aa8d1ae3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120004975,"asset_id":126070855,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120004975/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126070855"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126070855"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126070855; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126070855]").text(description); $(".js-view-count[data-work-id=126070855]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126070855; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126070855']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1b09070e88ac6c92ce8845a8aa8d1ae3" } } $('.js-work-strip[data-work-id=126070855]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126070855,"title":"Biofabrication of a shape-stable auricular structure for the reconstruction of ear deformities","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"Bioengineering of the human auricle remains a significant challenge, where the complex and unique shape, the generation of high-quality neocartilage, and shape preservation are key factors. Future regenerative medicine-based approaches for auricular cartilage reconstruction will benefit from a smart combination of various strategies. Our approach to fabrication of an ear-shaped construct uses hybrid bioprinting techniques, a recently identified progenitor cell population, previously validated biomaterials, and a smart scaffold design. Specifically, we generated a 3D-printed polycaprolactone (PCL) scaffold via fused deposition modeling, photocrosslinked a human auricular cartilage progenitor cell-laden gelatin methacryloyl (gelMA) hydrogel within the scaffold, and cultured the bioengineered structure in vitro in chondrogenic media for 30 days. Our results show that the fabrication process maintains the viability and chondrogenic phenotype of the cells, that the compressive properties of the combined PCL and gelMA hybrid auricular constructs are similar to native auricular cartilage, and that biofabricated hybrid auricular structures exhibit excellent shape fidelity compared with the 3D digital model along with deposition of cartilage-like matrix in both peripheral and central areas of the auricular structure. Our strategy affords an anatomically enhanced auricular structure with appropriate mechanical properties, ensures adequate preservation of the auricular shape during a dynamic in vitro culture period, and enables chondrogenically potent progenitor cells to produce abundant cartilage-like matrix throughout the auricular construct. The combination of smart scaffold design with 3D bioprinting and cartilage progenitor cells holds promise for the development of clinically translatable regenerative medicine strategies for auricular reconstruction.","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Materials Today Bio","grobid_abstract_attachment_id":120004975},"translated_abstract":null,"internal_url":"https://www.academia.edu/126070855/Biofabrication_of_a_shape_stable_auricular_structure_for_the_reconstruction_of_ear_deformities","translated_internal_url":"","created_at":"2024-12-04T13:02:26.471-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":176937962,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":120004975,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004975/thumbnails/1.jpg","file_name":"Otto_2021_Biofabrication_of_a_shape_stable_au.pdf","download_url":"https://www.academia.edu/attachments/120004975/download_file","bulk_download_file_name":"Biofabrication_of_a_shape_stable_auricul.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004975/Otto_2021_Biofabrication_of_a_shape_stable_au-libre.pdf?1733356532=\u0026response-content-disposition=attachment%3B+filename%3DBiofabrication_of_a_shape_stable_auricul.pdf\u0026Expires=1743457405\u0026Signature=TQMuxIcZENq28JRbLoq2oDVS09JiG7Hdnp3XAIhrtMNqGQ-g8aElzXTywSUvgafdwA13MlgRAPom3eJgVpnkmxEaFDQOaYaUQ2D1xiM4DH05-PI-Shyxu5x2ON2O40vGl8HHsOeQXFalkC5CJ9ktC0ssyG0tf726WsFew7f1JRngwImQ~aHFdmZHth64AbIL8gbRFnlf9OcffZEB0rTtatmF7A9cD8OMHytZvn6aMlYB-8Gc3BGRVVWtV5TOAYpT7Va~kaaiai0-VTxlyiblNYJBegh4bfQ8F2uCniOEzIQRNgCJjHOV9VUKTMQgn0~-UOJdaxsDBqZyX59jb1D5VQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Biofabrication_of_a_shape_stable_auricular_structure_for_the_reconstruction_of_ear_deformities","translated_slug":"","page_count":11,"language":"en","content_type":"Work","summary":"Bioengineering of the human auricle remains a significant challenge, where the complex and unique shape, the generation of high-quality neocartilage, and shape preservation are key factors. Future regenerative medicine-based approaches for auricular cartilage reconstruction will benefit from a smart combination of various strategies. Our approach to fabrication of an ear-shaped construct uses hybrid bioprinting techniques, a recently identified progenitor cell population, previously validated biomaterials, and a smart scaffold design. Specifically, we generated a 3D-printed polycaprolactone (PCL) scaffold via fused deposition modeling, photocrosslinked a human auricular cartilage progenitor cell-laden gelatin methacryloyl (gelMA) hydrogel within the scaffold, and cultured the bioengineered structure in vitro in chondrogenic media for 30 days. Our results show that the fabrication process maintains the viability and chondrogenic phenotype of the cells, that the compressive properties of the combined PCL and gelMA hybrid auricular constructs are similar to native auricular cartilage, and that biofabricated hybrid auricular structures exhibit excellent shape fidelity compared with the 3D digital model along with deposition of cartilage-like matrix in both peripheral and central areas of the auricular structure. Our strategy affords an anatomically enhanced auricular structure with appropriate mechanical properties, ensures adequate preservation of the auricular shape during a dynamic in vitro culture period, and enables chondrogenically potent progenitor cells to produce abundant cartilage-like matrix throughout the auricular construct. The combination of smart scaffold design with 3D bioprinting and cartilage progenitor cells holds promise for the development of clinically translatable regenerative medicine strategies for auricular reconstruction.","owner":{"id":176937962,"first_name":"Mark","middle_initials":null,"last_name":"Grinstaff","page_name":"MGrinstaff","domain_name":"bu","created_at":"2020-11-02T16:03:12.423-08:00","display_name":"Mark Grinstaff","url":"https://bu.academia.edu/MGrinstaff"},"attachments":[{"id":120004975,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004975/thumbnails/1.jpg","file_name":"Otto_2021_Biofabrication_of_a_shape_stable_au.pdf","download_url":"https://www.academia.edu/attachments/120004975/download_file","bulk_download_file_name":"Biofabrication_of_a_shape_stable_auricul.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004975/Otto_2021_Biofabrication_of_a_shape_stable_au-libre.pdf?1733356532=\u0026response-content-disposition=attachment%3B+filename%3DBiofabrication_of_a_shape_stable_auricul.pdf\u0026Expires=1743457405\u0026Signature=TQMuxIcZENq28JRbLoq2oDVS09JiG7Hdnp3XAIhrtMNqGQ-g8aElzXTywSUvgafdwA13MlgRAPom3eJgVpnkmxEaFDQOaYaUQ2D1xiM4DH05-PI-Shyxu5x2ON2O40vGl8HHsOeQXFalkC5CJ9ktC0ssyG0tf726WsFew7f1JRngwImQ~aHFdmZHth64AbIL8gbRFnlf9OcffZEB0rTtatmF7A9cD8OMHytZvn6aMlYB-8Gc3BGRVVWtV5TOAYpT7Va~kaaiai0-VTxlyiblNYJBegh4bfQ8F2uCniOEzIQRNgCJjHOV9VUKTMQgn0~-UOJdaxsDBqZyX59jb1D5VQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":1131,"name":"Biomedical Engineering","url":"https://www.academia.edu/Documents/in/Biomedical_Engineering"},{"id":25550,"name":"Regenerative Medicine","url":"https://www.academia.edu/Documents/in/Regenerative_Medicine"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":78188,"name":"Cartilage","url":"https://www.academia.edu/Documents/in/Cartilage"},{"id":114783,"name":"Scaffold","url":"https://www.academia.edu/Documents/in/Scaffold"},{"id":216119,"name":"Biofabrication","url":"https://www.academia.edu/Documents/in/Biofabrication"},{"id":606065,"name":"Chondrogenesis","url":"https://www.academia.edu/Documents/in/Chondrogenesis"},{"id":4040890,"name":"Auricle","url":"https://www.academia.edu/Documents/in/Auricle"}],"urls":[{"id":45919789,"url":"https://api.elsevier.com/content/article/PII:S2590006421000028?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-126070855-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="126070854"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126070854/Surface_Immobilized_Nucleic_Acid_Transcription_Factor_Quantum_Dots_for_Biosensing"><img alt="Research paper thumbnail of Surface Immobilized Nucleic Acid–Transcription Factor Quantum Dots for Biosensing" class="work-thumbnail" src="https://attachments.academia-assets.com/120004978/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126070854/Surface_Immobilized_Nucleic_Acid_Transcription_Factor_Quantum_Dots_for_Biosensing">Surface Immobilized Nucleic Acid–Transcription Factor Quantum Dots for Biosensing</a></div><div class="wp-workCard_item"><span>Advanced Healthcare Materials</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Immobilization of biosensors on surfaces is a key step toward development of devices for real‐wor...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Immobilization of biosensors on surfaces is a key step toward development of devices for real‐world applications. Here the preparation, characterization, and evaluation of a surface‐bound transcription factor–nucleic acid complex for analyte detection as an alternative to conventional systems employing aptamers or antibodies are described. The sensor consists of a gold surface modified with thiolated Cy5 fluorophore‐labeled DNA and an allosteric transcription factor (TetR) linked to a quantum dot (QD). Upon addition of anhydrotetracycline (aTc)—the analyte—the TetR‐QDs release from the surface‐bound DNA, resulting in loss of the Förster resonance energy transfer signal. The sensor responds in a dose‐dependent manner over the relevant range of 0–200 µm aTc with a limit of detection of 80 nm. The fabrication of the sensor and the subsequent real‐time quantitative measurements establish a framework for the design of future surface‐bound, affinity‐based biosensors using allosteric trans...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2637cedb291a0c29bf80dc70a5a83407" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120004978,"asset_id":126070854,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120004978/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126070854"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126070854"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126070854; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126070854]").text(description); $(".js-view-count[data-work-id=126070854]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126070854; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126070854']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2637cedb291a0c29bf80dc70a5a83407" } } $('.js-work-strip[data-work-id=126070854]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126070854,"title":"Surface Immobilized Nucleic Acid–Transcription Factor Quantum Dots for Biosensing","translated_title":"","metadata":{"abstract":"Immobilization of biosensors on surfaces is a key step toward development of devices for real‐world applications. Here the preparation, characterization, and evaluation of a surface‐bound transcription factor–nucleic acid complex for analyte detection as an alternative to conventional systems employing aptamers or antibodies are described. The sensor consists of a gold surface modified with thiolated Cy5 fluorophore‐labeled DNA and an allosteric transcription factor (TetR) linked to a quantum dot (QD). Upon addition of anhydrotetracycline (aTc)—the analyte—the TetR‐QDs release from the surface‐bound DNA, resulting in loss of the Förster resonance energy transfer signal. The sensor responds in a dose‐dependent manner over the relevant range of 0–200 µm aTc with a limit of detection of 80 nm. The fabrication of the sensor and the subsequent real‐time quantitative measurements establish a framework for the design of future surface‐bound, affinity‐based biosensors using allosteric trans...","publisher":"Wiley","ai_title_tag":"Quantum Dot-Based Nucleic Acid Biosensor","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"Advanced Healthcare Materials"},"translated_abstract":"Immobilization of biosensors on surfaces is a key step toward development of devices for real‐world applications. Here the preparation, characterization, and evaluation of a surface‐bound transcription factor–nucleic acid complex for analyte detection as an alternative to conventional systems employing aptamers or antibodies are described. The sensor consists of a gold surface modified with thiolated Cy5 fluorophore‐labeled DNA and an allosteric transcription factor (TetR) linked to a quantum dot (QD). Upon addition of anhydrotetracycline (aTc)—the analyte—the TetR‐QDs release from the surface‐bound DNA, resulting in loss of the Förster resonance energy transfer signal. The sensor responds in a dose‐dependent manner over the relevant range of 0–200 µm aTc with a limit of detection of 80 nm. The fabrication of the sensor and the subsequent real‐time quantitative measurements establish a framework for the design of future surface‐bound, affinity‐based biosensors using allosteric trans...","internal_url":"https://www.academia.edu/126070854/Surface_Immobilized_Nucleic_Acid_Transcription_Factor_Quantum_Dots_for_Biosensing","translated_internal_url":"","created_at":"2024-12-04T13:02:26.200-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":176937962,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":120004978,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004978/thumbnails/1.jpg","file_name":"Surface_20Immobilized_20Nucleic_20Acid_20-_20Transcription_20Factor_20Quantum_20Dots_20for_20Biosensing_HAL.pdf","download_url":"https://www.academia.edu/attachments/120004978/download_file","bulk_download_file_name":"Surface_Immobilized_Nucleic_Acid_Transcr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004978/Surface_20Immobilized_20Nucleic_20Acid_20-_20Transcription_20Factor_20Quantum_20Dots_20for_20Biosensing_HAL-libre.pdf?1733356539=\u0026response-content-disposition=attachment%3B+filename%3DSurface_Immobilized_Nucleic_Acid_Transcr.pdf\u0026Expires=1743457405\u0026Signature=UGBFFJionadOtI~CUcYol7ZhGVRH~wwEIfXWTaqMFAwZkxFG-mW-3luow46o9WkWWEu3ExJb5MDLm5WOB6yBypH8pdm4Y1RqPlp~n2eMRAcCVXjN37kbZBg6zn8D0xZKrGWiGueO7DtZCJFUkSA~I1tDw385VF4tdHw~l-Ym7FruHzZjEDhwYwUeESyJhUGP~8Iww6Rr8Dks1Mffvs7NM2jdNKij9wjvahvRVLeFYOmP4YfX-ArP3S-Hau42~4uSItLZEL4smnmbHwHfFH2wDl6HerqAGv8SW6dBiVwTHttXflsDunMfbWDKkS4K2ban4uzAwTaqNtPLsuX8S~dCfA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Surface_Immobilized_Nucleic_Acid_Transcription_Factor_Quantum_Dots_for_Biosensing","translated_slug":"","page_count":27,"language":"en","content_type":"Work","summary":"Immobilization of biosensors on surfaces is a key step toward development of devices for real‐world applications. Here the preparation, characterization, and evaluation of a surface‐bound transcription factor–nucleic acid complex for analyte detection as an alternative to conventional systems employing aptamers or antibodies are described. The sensor consists of a gold surface modified with thiolated Cy5 fluorophore‐labeled DNA and an allosteric transcription factor (TetR) linked to a quantum dot (QD). Upon addition of anhydrotetracycline (aTc)—the analyte—the TetR‐QDs release from the surface‐bound DNA, resulting in loss of the Förster resonance energy transfer signal. The sensor responds in a dose‐dependent manner over the relevant range of 0–200 µm aTc with a limit of detection of 80 nm. The fabrication of the sensor and the subsequent real‐time quantitative measurements establish a framework for the design of future surface‐bound, affinity‐based biosensors using allosteric trans...","owner":{"id":176937962,"first_name":"Mark","middle_initials":null,"last_name":"Grinstaff","page_name":"MGrinstaff","domain_name":"bu","created_at":"2020-11-02T16:03:12.423-08:00","display_name":"Mark Grinstaff","url":"https://bu.academia.edu/MGrinstaff"},"attachments":[{"id":120004978,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004978/thumbnails/1.jpg","file_name":"Surface_20Immobilized_20Nucleic_20Acid_20-_20Transcription_20Factor_20Quantum_20Dots_20for_20Biosensing_HAL.pdf","download_url":"https://www.academia.edu/attachments/120004978/download_file","bulk_download_file_name":"Surface_Immobilized_Nucleic_Acid_Transcr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004978/Surface_20Immobilized_20Nucleic_20Acid_20-_20Transcription_20Factor_20Quantum_20Dots_20for_20Biosensing_HAL-libre.pdf?1733356539=\u0026response-content-disposition=attachment%3B+filename%3DSurface_Immobilized_Nucleic_Acid_Transcr.pdf\u0026Expires=1743457405\u0026Signature=UGBFFJionadOtI~CUcYol7ZhGVRH~wwEIfXWTaqMFAwZkxFG-mW-3luow46o9WkWWEu3ExJb5MDLm5WOB6yBypH8pdm4Y1RqPlp~n2eMRAcCVXjN37kbZBg6zn8D0xZKrGWiGueO7DtZCJFUkSA~I1tDw385VF4tdHw~l-Ym7FruHzZjEDhwYwUeESyJhUGP~8Iww6Rr8Dks1Mffvs7NM2jdNKij9wjvahvRVLeFYOmP4YfX-ArP3S-Hau42~4uSItLZEL4smnmbHwHfFH2wDl6HerqAGv8SW6dBiVwTHttXflsDunMfbWDKkS4K2ban4uzAwTaqNtPLsuX8S~dCfA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":17733,"name":"Nanotechnology","url":"https://www.academia.edu/Documents/in/Nanotechnology"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":109419,"name":"Biosensor","url":"https://www.academia.edu/Documents/in/Biosensor"},{"id":445674,"name":"Quantum Dot","url":"https://www.academia.edu/Documents/in/Quantum_Dot"},{"id":1338314,"name":"Aptamer","url":"https://www.academia.edu/Documents/in/Aptamer"},{"id":1727314,"name":"Nucleic Acid","url":"https://www.academia.edu/Documents/in/Nucleic_Acid"}],"urls":[{"id":45919788,"url":"https://onlinelibrary.wiley.com/doi/pdf/10.1002/adhm.202000403"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-126070854-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="126070853"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126070853/Aqueous_Ring_Opening_Polymerization_Induced_Self_Assembly_ROPISA_of_N_Carboxyanhydrides"><img alt="Research paper thumbnail of Aqueous Ring‐Opening Polymerization‐Induced Self‐Assembly (ROPISA) of N‐Carboxyanhydrides" class="work-thumbnail" src="https://attachments.academia-assets.com/120004976/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126070853/Aqueous_Ring_Opening_Polymerization_Induced_Self_Assembly_ROPISA_of_N_Carboxyanhydrides">Aqueous Ring‐Opening Polymerization‐Induced Self‐Assembly (ROPISA) of N‐Carboxyanhydrides</a></div><div class="wp-workCard_item"><span>Angewandte Chemie International Edition</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Reported here is the first aqueous ring‐opening polymerization (ROP) of N‐carboxyanhydrides (NCAs...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Reported here is the first aqueous ring‐opening polymerization (ROP) of N‐carboxyanhydrides (NCAs) using α‐amino‐poly(ethylene oxide) as a macroinitiator to protect the NCA monomers from hydrolysis through spontaneous in situ self‐assembly (ISA). This ROPISA process affords well‐defined amphiphilic diblock copolymers that simultaneously form original needle‐like nanoparticles.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5bc0c87fd6690568cc7bf8d0d1d327a1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120004976,"asset_id":126070853,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120004976/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126070853"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126070853"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126070853; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126070853]").text(description); $(".js-view-count[data-work-id=126070853]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126070853; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126070853']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5bc0c87fd6690568cc7bf8d0d1d327a1" } } $('.js-work-strip[data-work-id=126070853]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126070853,"title":"Aqueous Ring‐Opening Polymerization‐Induced Self‐Assembly (ROPISA) of N‐Carboxyanhydrides","translated_title":"","metadata":{"abstract":"Reported here is the first aqueous ring‐opening polymerization (ROP) of N‐carboxyanhydrides (NCAs) using α‐amino‐poly(ethylene oxide) as a macroinitiator to protect the NCA monomers from hydrolysis through spontaneous in situ self‐assembly (ISA). This ROPISA process affords well‐defined amphiphilic diblock copolymers that simultaneously form original needle‐like nanoparticles.","publisher":"Wiley","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Angewandte Chemie International Edition"},"translated_abstract":"Reported here is the first aqueous ring‐opening polymerization (ROP) of N‐carboxyanhydrides (NCAs) using α‐amino‐poly(ethylene oxide) as a macroinitiator to protect the NCA monomers from hydrolysis through spontaneous in situ self‐assembly (ISA). This ROPISA process affords well‐defined amphiphilic diblock copolymers that simultaneously form original needle‐like nanoparticles.","internal_url":"https://www.academia.edu/126070853/Aqueous_Ring_Opening_Polymerization_Induced_Self_Assembly_ROPISA_of_N_Carboxyanhydrides","translated_internal_url":"","created_at":"2024-12-04T13:02:25.250-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":176937962,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":120004976,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004976/thumbnails/1.jpg","file_name":"ange.pdf","download_url":"https://www.academia.edu/attachments/120004976/download_file","bulk_download_file_name":"Aqueous_Ring_Opening_Polymerization_Indu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004976/ange-libre.pdf?1733356531=\u0026response-content-disposition=attachment%3B+filename%3DAqueous_Ring_Opening_Polymerization_Indu.pdf\u0026Expires=1743457405\u0026Signature=aLU17GIztGInvwHoqOJUNhXvXniPjly4kzZwhQUUA4jrWzlcwtprls72fnJIq5tjIWc2tUyCHVrtEhorrWQsRx~AWr4FKNB0TgssEvic9bPdUUdibGwzWT875KBY9HyZ519YKsBPHwHT9VGNkanZnxz~YXcKaQ3tvxYcQWcmTTj~oeu3MoRppLWLxJAMJPHD3Fj5rDXzn1NB1pN5SyUaSafL2f7sTRDWz1OvFqCnpRSrJSjqfnFeNzvNJpNuB8f5JeGLHHHWsDIwry7IzVjw6mkCct1j4FwFDZQq2yQ9zPSDODVoj-UDGSWbxgfK5IkDzxz6Ftq34Bz4k1tTZHDytA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Aqueous_Ring_Opening_Polymerization_Induced_Self_Assembly_ROPISA_of_N_Carboxyanhydrides","translated_slug":"","page_count":1,"language":"de","content_type":"Work","summary":"Reported here is the first aqueous ring‐opening polymerization (ROP) of N‐carboxyanhydrides (NCAs) using α‐amino‐poly(ethylene oxide) as a macroinitiator to protect the NCA monomers from hydrolysis through spontaneous in situ self‐assembly (ISA). This ROPISA process affords well‐defined amphiphilic diblock copolymers that simultaneously form original needle‐like nanoparticles.","owner":{"id":176937962,"first_name":"Mark","middle_initials":null,"last_name":"Grinstaff","page_name":"MGrinstaff","domain_name":"bu","created_at":"2020-11-02T16:03:12.423-08:00","display_name":"Mark Grinstaff","url":"https://bu.academia.edu/MGrinstaff"},"attachments":[{"id":120004976,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004976/thumbnails/1.jpg","file_name":"ange.pdf","download_url":"https://www.academia.edu/attachments/120004976/download_file","bulk_download_file_name":"Aqueous_Ring_Opening_Polymerization_Indu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004976/ange-libre.pdf?1733356531=\u0026response-content-disposition=attachment%3B+filename%3DAqueous_Ring_Opening_Polymerization_Indu.pdf\u0026Expires=1743457405\u0026Signature=aLU17GIztGInvwHoqOJUNhXvXniPjly4kzZwhQUUA4jrWzlcwtprls72fnJIq5tjIWc2tUyCHVrtEhorrWQsRx~AWr4FKNB0TgssEvic9bPdUUdibGwzWT875KBY9HyZ519YKsBPHwHT9VGNkanZnxz~YXcKaQ3tvxYcQWcmTTj~oeu3MoRppLWLxJAMJPHD3Fj5rDXzn1NB1pN5SyUaSafL2f7sTRDWz1OvFqCnpRSrJSjqfnFeNzvNJpNuB8f5JeGLHHHWsDIwry7IzVjw6mkCct1j4FwFDZQq2yQ9zPSDODVoj-UDGSWbxgfK5IkDzxz6Ftq34Bz4k1tTZHDytA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":2526,"name":"Polymer Chemistry","url":"https://www.academia.edu/Documents/in/Polymer_Chemistry"},{"id":11073,"name":"Self Assembly","url":"https://www.academia.edu/Documents/in/Self_Assembly"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":32909,"name":"Polymerization","url":"https://www.academia.edu/Documents/in/Polymerization"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":387449,"name":"Monomer","url":"https://www.academia.edu/Documents/in/Monomer"},{"id":989646,"name":"Aqueous Solution","url":"https://www.academia.edu/Documents/in/Aqueous_Solution"},{"id":1030794,"name":"Hydrolysis","url":"https://www.academia.edu/Documents/in/Hydrolysis"},{"id":1270386,"name":"Chimie Des Matériaux","url":"https://www.academia.edu/Documents/in/Chimie_Des_Materiaux"},{"id":1291661,"name":"Copolymer","url":"https://www.academia.edu/Documents/in/Copolymer"},{"id":1880965,"name":"Ring Opening Polymerization","url":"https://www.academia.edu/Documents/in/Ring_Opening_Polymerization"}],"urls":[{"id":45919787,"url":"https://onlinelibrary.wiley.com/doi/pdf/10.1002/anie.201912028"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-126070853-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="126070852"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126070852/Triple_Contrast_CT_Method_Enables_Simultaneous_Evaluation_of_Articular_Cartilage_Composition_and_Segmentation"><img alt="Research paper thumbnail of Triple Contrast CT Method Enables Simultaneous Evaluation of Articular Cartilage Composition and Segmentation" class="work-thumbnail" src="https://attachments.academia-assets.com/120004940/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126070852/Triple_Contrast_CT_Method_Enables_Simultaneous_Evaluation_of_Articular_Cartilage_Composition_and_Segmentation">Triple Contrast CT Method Enables Simultaneous Evaluation of Articular Cartilage Composition and Segmentation</a></div><div class="wp-workCard_item"><span>Annals of Biomedical Engineering</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Early degenerative changes of articular cartilage are detected using contrast-enhanced computed t...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Early degenerative changes of articular cartilage are detected using contrast-enhanced computed tomography (CT) with a cationic contrast agent (CA). However, cationic CA diffusion into degenerated cartilage decreases with proteoglycan depletion and increases with elevated water content, thus hampering tissue evaluation at early diffusion time points. Furthermore, the contrast at synovial fluid-cartilage interface diminishes as a function of diffusion time hindering accurate cartilage segmentation. For the first time, we employ quantitative dual-energy CT (QDECT) imaging utilizing a mixture of three CAs (cationic CA4+ and non-ionic gadoteridol which are sensitive to proteoglycan and water contents, respectively, and bismuth nanoparticles which highlight the cartilage surface) to simultaneously segment the articulating surfaces and determine of the cartilage condition. Intact healthy, proteoglycan-depleted, and mechanically injured bovine cartilage samples (n = 27) were halved and ima...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="236a70d1031a52d109fef9959991f69f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120004940,"asset_id":126070852,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120004940/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126070852"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126070852"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126070852; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126070852]").text(description); $(".js-view-count[data-work-id=126070852]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126070852; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126070852']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "236a70d1031a52d109fef9959991f69f" } } $('.js-work-strip[data-work-id=126070852]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126070852,"title":"Triple Contrast CT Method Enables Simultaneous Evaluation of Articular Cartilage Composition and Segmentation","translated_title":"","metadata":{"abstract":"Early degenerative changes of articular cartilage are detected using contrast-enhanced computed tomography (CT) with a cationic contrast agent (CA). However, cationic CA diffusion into degenerated cartilage decreases with proteoglycan depletion and increases with elevated water content, thus hampering tissue evaluation at early diffusion time points. Furthermore, the contrast at synovial fluid-cartilage interface diminishes as a function of diffusion time hindering accurate cartilage segmentation. For the first time, we employ quantitative dual-energy CT (QDECT) imaging utilizing a mixture of three CAs (cationic CA4+ and non-ionic gadoteridol which are sensitive to proteoglycan and water contents, respectively, and bismuth nanoparticles which highlight the cartilage surface) to simultaneously segment the articulating surfaces and determine of the cartilage condition. Intact healthy, proteoglycan-depleted, and mechanically injured bovine cartilage samples (n = 27) were halved and ima...","publisher":"Springer Science and Business Media LLC","ai_title_tag":"Triple Contrast CT for Cartilage Evaluation","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Annals of Biomedical Engineering"},"translated_abstract":"Early degenerative changes of articular cartilage are detected using contrast-enhanced computed tomography (CT) with a cationic contrast agent (CA). However, cationic CA diffusion into degenerated cartilage decreases with proteoglycan depletion and increases with elevated water content, thus hampering tissue evaluation at early diffusion time points. Furthermore, the contrast at synovial fluid-cartilage interface diminishes as a function of diffusion time hindering accurate cartilage segmentation. For the first time, we employ quantitative dual-energy CT (QDECT) imaging utilizing a mixture of three CAs (cationic CA4+ and non-ionic gadoteridol which are sensitive to proteoglycan and water contents, respectively, and bismuth nanoparticles which highlight the cartilage surface) to simultaneously segment the articulating surfaces and determine of the cartilage condition. Intact healthy, proteoglycan-depleted, and mechanically injured bovine cartilage samples (n = 27) were halved and ima...","internal_url":"https://www.academia.edu/126070852/Triple_Contrast_CT_Method_Enables_Simultaneous_Evaluation_of_Articular_Cartilage_Composition_and_Segmentation","translated_internal_url":"","created_at":"2024-12-04T13:02:24.838-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":176937962,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":120004940,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004940/thumbnails/1.jpg","file_name":"s10439-019-02362-6.pdf","download_url":"https://www.academia.edu/attachments/120004940/download_file","bulk_download_file_name":"Triple_Contrast_CT_Method_Enables_Simult.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004940/s10439-019-02362-6-libre.pdf?1733368452=\u0026response-content-disposition=attachment%3B+filename%3DTriple_Contrast_CT_Method_Enables_Simult.pdf\u0026Expires=1743457405\u0026Signature=OZ6LR-~RKSOv9VfSMQrr~~v7aGt5LssGtv8tTMHYl5tYou5~5QucCuCGvBrsPx1A7TQdEYrCSMHGK9H4hbpKaogDmuLZbUWzJI4KEn6ynXLRld61yvSOO-PELZJ0RQ3a6Tzfwx1aFsUzO-STVpPkUhUiVYBPcfRsrerhPgnhwD4rryqrZmgeFCEoFv2azIH0C152BbRKLApfHvFcwaJmZZ~vQrOcPJV5cQf2Dljqk9bN8onibhCrnkYyLoorHEgE~S-C-bAmimFjS22rOf04rRX3vTmoRFf2zrBANmO1PcdhSLXjQ1wPB2p4678Qj1MW2DJs30cqeyAhTq~zxhVR1w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Triple_Contrast_CT_Method_Enables_Simultaneous_Evaluation_of_Articular_Cartilage_Composition_and_Segmentation","translated_slug":"","page_count":12,"language":"en","content_type":"Work","summary":"Early degenerative changes of articular cartilage are detected using contrast-enhanced computed tomography (CT) with a cationic contrast agent (CA). However, cationic CA diffusion into degenerated cartilage decreases with proteoglycan depletion and increases with elevated water content, thus hampering tissue evaluation at early diffusion time points. Furthermore, the contrast at synovial fluid-cartilage interface diminishes as a function of diffusion time hindering accurate cartilage segmentation. For the first time, we employ quantitative dual-energy CT (QDECT) imaging utilizing a mixture of three CAs (cationic CA4+ and non-ionic gadoteridol which are sensitive to proteoglycan and water contents, respectively, and bismuth nanoparticles which highlight the cartilage surface) to simultaneously segment the articulating surfaces and determine of the cartilage condition. Intact healthy, proteoglycan-depleted, and mechanically injured bovine cartilage samples (n = 27) were halved and ima...","owner":{"id":176937962,"first_name":"Mark","middle_initials":null,"last_name":"Grinstaff","page_name":"MGrinstaff","domain_name":"bu","created_at":"2020-11-02T16:03:12.423-08:00","display_name":"Mark Grinstaff","url":"https://bu.academia.edu/MGrinstaff"},"attachments":[{"id":120004940,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004940/thumbnails/1.jpg","file_name":"s10439-019-02362-6.pdf","download_url":"https://www.academia.edu/attachments/120004940/download_file","bulk_download_file_name":"Triple_Contrast_CT_Method_Enables_Simult.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004940/s10439-019-02362-6-libre.pdf?1733368452=\u0026response-content-disposition=attachment%3B+filename%3DTriple_Contrast_CT_Method_Enables_Simult.pdf\u0026Expires=1743457405\u0026Signature=OZ6LR-~RKSOv9VfSMQrr~~v7aGt5LssGtv8tTMHYl5tYou5~5QucCuCGvBrsPx1A7TQdEYrCSMHGK9H4hbpKaogDmuLZbUWzJI4KEn6ynXLRld61yvSOO-PELZJ0RQ3a6Tzfwx1aFsUzO-STVpPkUhUiVYBPcfRsrerhPgnhwD4rryqrZmgeFCEoFv2azIH0C152BbRKLApfHvFcwaJmZZ~vQrOcPJV5cQf2Dljqk9bN8onibhCrnkYyLoorHEgE~S-C-bAmimFjS22rOf04rRX3vTmoRFf2zrBANmO1PcdhSLXjQ1wPB2p4678Qj1MW2DJs30cqeyAhTq~zxhVR1w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":120004938,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004938/thumbnails/1.jpg","file_name":"s10439-019-02362-6.pdf","download_url":"https://www.academia.edu/attachments/120004938/download_file","bulk_download_file_name":"Triple_Contrast_CT_Method_Enables_Simult.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004938/s10439-019-02362-6-libre.pdf?1733368458=\u0026response-content-disposition=attachment%3B+filename%3DTriple_Contrast_CT_Method_Enables_Simult.pdf\u0026Expires=1743457405\u0026Signature=T31mJZuEXRhAYn2D3AG8HezGQpoAknzHK3dME3wDuBbud6ZJZUMGFCOW45MXR0JXTL9hPZY2VxSK4TWXpcKJ01F-pmb9RcTo88a22rJelzDzdUHoVQy1OFprqaiatIRau3jnFePoXN2vbjK0I3uTBAC3Smca2M5xnPdlMCxtyUALxqU1wGfbX6RuiYLpNu0tJGed23PGlOvcEXKJVHEHEiKLojORalW5wxhRZUE0EVI59oJWGENqAdV0eQl9nlHgbnmrin7mELMbzI6lvMr~ZY~Y2BGyeBeKUeMO31xISRs~QdAhq0teJRpYX2NMoiKHVUXcut04NkfFbkxljXnGkQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":1131,"name":"Biomedical Engineering","url":"https://www.academia.edu/Documents/in/Biomedical_Engineering"},{"id":1648,"name":"Computed Tomography","url":"https://www.academia.edu/Documents/in/Computed_Tomography"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":78188,"name":"Cartilage","url":"https://www.academia.edu/Documents/in/Cartilage"},{"id":1146501,"name":"Articular Cartilage","url":"https://www.academia.edu/Documents/in/Articular_Cartilage"},{"id":3763225,"name":"Medical and Health Sciences","url":"https://www.academia.edu/Documents/in/Medical_and_Health_Sciences"}],"urls":[{"id":45919786,"url":"http://link.springer.com/content/pdf/10.1007/s10439-019-02362-6.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-126070852-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="126070851"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126070851/A_versatile_and_accessible_polymer_coating_for_functionalizable_zwitterionic_quantum_dots_with_high_DNA_grafting_efficiency"><img alt="Research paper thumbnail of A versatile and accessible polymer coating for functionalizable zwitterionic quantum dots with high DNA grafting efficiency" class="work-thumbnail" src="https://attachments.academia-assets.com/120004973/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126070851/A_versatile_and_accessible_polymer_coating_for_functionalizable_zwitterionic_quantum_dots_with_high_DNA_grafting_efficiency">A versatile and accessible polymer coating for functionalizable zwitterionic quantum dots with high DNA grafting efficiency</a></div><div class="wp-workCard_item"><span>Chemical Communications</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">An accessible method to produce a click chemistry-ready, zwitterionic polymer from commercially a...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">An accessible method to produce a click chemistry-ready, zwitterionic polymer from commercially available reagents facilitates efficient DNA grafting to quantum dots.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9310827d1550c04ef6eba0c48db32e5a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120004973,"asset_id":126070851,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120004973/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126070851"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126070851"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126070851; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126070851]").text(description); $(".js-view-count[data-work-id=126070851]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126070851; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126070851']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9310827d1550c04ef6eba0c48db32e5a" } } $('.js-work-strip[data-work-id=126070851]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126070851,"title":"A versatile and accessible polymer coating for functionalizable zwitterionic quantum dots with high DNA grafting efficiency","translated_title":"","metadata":{"abstract":"An accessible method to produce a click chemistry-ready, zwitterionic polymer from commercially available reagents facilitates efficient DNA grafting to quantum dots.","publisher":"Royal Society of Chemistry (RSC)","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Chemical Communications"},"translated_abstract":"An accessible method to produce a click chemistry-ready, zwitterionic polymer from commercially available reagents facilitates efficient DNA grafting to quantum dots.","internal_url":"https://www.academia.edu/126070851/A_versatile_and_accessible_polymer_coating_for_functionalizable_zwitterionic_quantum_dots_with_high_DNA_grafting_efficiency","translated_internal_url":"","created_at":"2024-12-04T13:02:24.367-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":176937962,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":120004973,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004973/thumbnails/1.jpg","file_name":"Grazon_et_al_ChemComm2019.pdf","download_url":"https://www.academia.edu/attachments/120004973/download_file","bulk_download_file_name":"A_versatile_and_accessible_polymer_coati.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004973/Grazon_et_al_ChemComm2019-libre.pdf?1733356562=\u0026response-content-disposition=attachment%3B+filename%3DA_versatile_and_accessible_polymer_coati.pdf\u0026Expires=1743457405\u0026Signature=WqkVtbsvOeIygiXXE-~-4CdTzoZEAA~4JWVSvmWmHJk6xPZ2~bJ5fRTX-CFXrQ-pPIuVzSz8NlQLsg7h~XwP3cVwa6rVVwWpLtCOuHrGxcaPRHmgbiKYu6qJ6XZ66rttDhnRq2Vv3NTwWlBUUYc5x8CFX7qBTqTUJCqg6GYkYrmGuJnQtQcwyVdlkyFQGs56AUlDgAMq8D9J6FcrG2QsVm-X4JWc-O9IQQO-PaHz8y65y5w1CVk5uJaL3-FUF5TYjZRtStqmIzwCMG9W9OGwan98LVM2D7i5d18eBoPGVHQxAetgGIv7XA3UhicaTzf1Mb51g6z1MW51Cy9L8AA-yA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_versatile_and_accessible_polymer_coating_for_functionalizable_zwitterionic_quantum_dots_with_high_DNA_grafting_efficiency","translated_slug":"","page_count":28,"language":"en","content_type":"Work","summary":"An accessible method to produce a click chemistry-ready, zwitterionic polymer from commercially available reagents facilitates efficient DNA grafting to quantum dots.","owner":{"id":176937962,"first_name":"Mark","middle_initials":null,"last_name":"Grinstaff","page_name":"MGrinstaff","domain_name":"bu","created_at":"2020-11-02T16:03:12.423-08:00","display_name":"Mark Grinstaff","url":"https://bu.academia.edu/MGrinstaff"},"attachments":[{"id":120004973,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004973/thumbnails/1.jpg","file_name":"Grazon_et_al_ChemComm2019.pdf","download_url":"https://www.academia.edu/attachments/120004973/download_file","bulk_download_file_name":"A_versatile_and_accessible_polymer_coati.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004973/Grazon_et_al_ChemComm2019-libre.pdf?1733356562=\u0026response-content-disposition=attachment%3B+filename%3DA_versatile_and_accessible_polymer_coati.pdf\u0026Expires=1743457405\u0026Signature=WqkVtbsvOeIygiXXE-~-4CdTzoZEAA~4JWVSvmWmHJk6xPZ2~bJ5fRTX-CFXrQ-pPIuVzSz8NlQLsg7h~XwP3cVwa6rVVwWpLtCOuHrGxcaPRHmgbiKYu6qJ6XZ66rttDhnRq2Vv3NTwWlBUUYc5x8CFX7qBTqTUJCqg6GYkYrmGuJnQtQcwyVdlkyFQGs56AUlDgAMq8D9J6FcrG2QsVm-X4JWc-O9IQQO-PaHz8y65y5w1CVk5uJaL3-FUF5TYjZRtStqmIzwCMG9W9OGwan98LVM2D7i5d18eBoPGVHQxAetgGIv7XA3UhicaTzf1Mb51g6z1MW51Cy9L8AA-yA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":54463,"name":"Click chemistry","url":"https://www.academia.edu/Documents/in/Click_chemistry"},{"id":58527,"name":"Polymer","url":"https://www.academia.edu/Documents/in/Polymer"},{"id":70476,"name":"Grafting","url":"https://www.academia.edu/Documents/in/Grafting"},{"id":79275,"name":"Surface modification","url":"https://www.academia.edu/Documents/in/Surface_modification"},{"id":93150,"name":"Coating","url":"https://www.academia.edu/Documents/in/Coating"},{"id":209759,"name":"Maleic Anhydride","url":"https://www.academia.edu/Documents/in/Maleic_Anhydride"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":445674,"name":"Quantum Dot","url":"https://www.academia.edu/Documents/in/Quantum_Dot"},{"id":481990,"name":"Green Reagent","url":"https://www.academia.edu/Documents/in/Green_Reagent"},{"id":989646,"name":"Aqueous Solution","url":"https://www.academia.edu/Documents/in/Aqueous_Solution"},{"id":1294768,"name":"Chemical Engineering Communications","url":"https://www.academia.edu/Documents/in/Chemical_Engineering_Communications"}],"urls":[{"id":45919785,"url":"http://pubs.rsc.org/en/content/articlepdf/2019/CC/C9CC04856A"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-126070851-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="126070850"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126070850/Meroterpenoids_from_Neosetophoma_sp_A_Dioxa_4_3_3_propellane_Ring_System_Potent_Cytotoxicity_and_Prolific_Expression"><img alt="Research paper thumbnail of Meroterpenoids from Neosetophoma sp.: A Dioxa[4.3.3]propellane Ring System, Potent Cytotoxicity, and Prolific Expression" class="work-thumbnail" src="https://attachments.academia-assets.com/120004936/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126070850/Meroterpenoids_from_Neosetophoma_sp_A_Dioxa_4_3_3_propellane_Ring_System_Potent_Cytotoxicity_and_Prolific_Expression">Meroterpenoids from Neosetophoma sp.: A Dioxa[4.3.3]propellane Ring System, Potent Cytotoxicity, and Prolific Expression</a></div><div class="wp-workCard_item"><span>Organic Letters</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Six fungal metabolites, of which five were new, including one (1) with a dioxa[4.3.3]propellane r...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Six fungal metabolites, of which five were new, including one (1) with a dioxa[4.3.3]propellane ring system, were discovered, identified, and structurally elucidated from Neosetophoma sp. (strain MSX50044); these compounds are similar to the bis-tropolone, eupenifeldin. Three of the meroterpenoids are potent cytotoxic agents against breast, ovarian, mesothelioma, and lung cancer cells with nanomolar IC 50 values while not inducing mitochondrial toxicity at 12.5 μM.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="094318e57efd3c14d3647d9d7935706a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120004936,"asset_id":126070850,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120004936/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126070850"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126070850"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126070850; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126070850]").text(description); $(".js-view-count[data-work-id=126070850]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126070850; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126070850']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "094318e57efd3c14d3647d9d7935706a" } } $('.js-work-strip[data-work-id=126070850]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126070850,"title":"Meroterpenoids from Neosetophoma sp.: A Dioxa[4.3.3]propellane Ring System, Potent Cytotoxicity, and Prolific Expression","translated_title":"","metadata":{"publisher":"American Chemical Society (ACS)","grobid_abstract":"Six fungal metabolites, of which five were new, including one (1) with a dioxa[4.3.3]propellane ring system, were discovered, identified, and structurally elucidated from Neosetophoma sp. (strain MSX50044); these compounds are similar to the bis-tropolone, eupenifeldin. Three of the meroterpenoids are potent cytotoxic agents against breast, ovarian, mesothelioma, and lung cancer cells with nanomolar IC 50 values while not inducing mitochondrial toxicity at 12.5 μM.","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Organic Letters","grobid_abstract_attachment_id":120004936},"translated_abstract":null,"internal_url":"https://www.academia.edu/126070850/Meroterpenoids_from_Neosetophoma_sp_A_Dioxa_4_3_3_propellane_Ring_System_Potent_Cytotoxicity_and_Prolific_Expression","translated_internal_url":"","created_at":"2024-12-04T13:02:24.078-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":176937962,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":120004936,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004936/thumbnails/1.jpg","file_name":"acs.orglett.pdf","download_url":"https://www.academia.edu/attachments/120004936/download_file","bulk_download_file_name":"Meroterpenoids_from_Neosetophoma_sp_A_Di.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004936/acs.orglett-libre.pdf?1733368446=\u0026response-content-disposition=attachment%3B+filename%3DMeroterpenoids_from_Neosetophoma_sp_A_Di.pdf\u0026Expires=1743457405\u0026Signature=HXMXj4DXhJlkXRJHO2BzXW1WSI1Swt-wb4W5~0tBooVYCTHGVVdVNOyoFYowUEafGvTsC2STdllW9uvxEOJcj0MTcs90EHVvWWX28~~6obD0WH8ZYgXq9o6iF~toZQj8OlWh45FDSTglJzX81JmZ5OMggE~d7TRm2tBtKa9uqaWcU9xD1WMgex5t55Ck8PWroIt7IFAa1V94dc4PwRGjwTTvVLXT2tzJsY00yU01PcAD8ijBHvft3phsVlMnY4u6V1T8ztzzKGxMZHqlD0-F1SNcWW~2lN9JqjWXHN4GSrrt1AWU4YS9fd7Axhubv885Ngz62Urz2lwAClY1zFr7rA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Meroterpenoids_from_Neosetophoma_sp_A_Dioxa_4_3_3_propellane_Ring_System_Potent_Cytotoxicity_and_Prolific_Expression","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"Six fungal metabolites, of which five were new, including one (1) with a dioxa[4.3.3]propellane ring system, were discovered, identified, and structurally elucidated from Neosetophoma sp. (strain MSX50044); these compounds are similar to the bis-tropolone, eupenifeldin. Three of the meroterpenoids are potent cytotoxic agents against breast, ovarian, mesothelioma, and lung cancer cells with nanomolar IC 50 values while not inducing mitochondrial toxicity at 12.5 μM.","owner":{"id":176937962,"first_name":"Mark","middle_initials":null,"last_name":"Grinstaff","page_name":"MGrinstaff","domain_name":"bu","created_at":"2020-11-02T16:03:12.423-08:00","display_name":"Mark Grinstaff","url":"https://bu.academia.edu/MGrinstaff"},"attachments":[{"id":120004936,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004936/thumbnails/1.jpg","file_name":"acs.orglett.pdf","download_url":"https://www.academia.edu/attachments/120004936/download_file","bulk_download_file_name":"Meroterpenoids_from_Neosetophoma_sp_A_Di.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004936/acs.orglett-libre.pdf?1733368446=\u0026response-content-disposition=attachment%3B+filename%3DMeroterpenoids_from_Neosetophoma_sp_A_Di.pdf\u0026Expires=1743457405\u0026Signature=HXMXj4DXhJlkXRJHO2BzXW1WSI1Swt-wb4W5~0tBooVYCTHGVVdVNOyoFYowUEafGvTsC2STdllW9uvxEOJcj0MTcs90EHVvWWX28~~6obD0WH8ZYgXq9o6iF~toZQj8OlWh45FDSTglJzX81JmZ5OMggE~d7TRm2tBtKa9uqaWcU9xD1WMgex5t55Ck8PWroIt7IFAa1V94dc4PwRGjwTTvVLXT2tzJsY00yU01PcAD8ijBHvft3phsVlMnY4u6V1T8ztzzKGxMZHqlD0-F1SNcWW~2lN9JqjWXHN4GSrrt1AWU4YS9fd7Axhubv885Ngz62Urz2lwAClY1zFr7rA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":120004934,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004934/thumbnails/1.jpg","file_name":"acs.orglett.pdf","download_url":"https://www.academia.edu/attachments/120004934/download_file","bulk_download_file_name":"Meroterpenoids_from_Neosetophoma_sp_A_Di.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004934/acs.orglett-libre.pdf?1733368445=\u0026response-content-disposition=attachment%3B+filename%3DMeroterpenoids_from_Neosetophoma_sp_A_Di.pdf\u0026Expires=1743457405\u0026Signature=Loinsc0bHCXWvspTy7gSTP1bYBYGs4yaSSFyA9SDt1fQwf3d0bFo5dAeKe0ZHhUwQhkrwPMwkt1m9K6IAhLbmUh0NO-LBVm3hEnYjjzldR80iDDYhqY8peofFVWHq81NGvGQSwsUmjBRwynYk3lDngLujfZApOJfCvK1dZGg4jDv4Ueuzndtkx3mgiGeyPEFw1q9cxA1FCUZNNeQ6~PgPrwYb2ovvr6yaYWZe6OiudZ0uHBYM-retCV-xiQ2j-IlYGs-y-aeTPZdIpBwXBomu6U7d5Dn2NjyRzexHXLdU8cckeOhmxzwuSt~aIF0i0C3kkrZcmwmceOEU0IbzEyCNg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":22050,"name":"Cytotoxicity","url":"https://www.academia.edu/Documents/in/Cytotoxicity"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":114715,"name":"Stereochemistry","url":"https://www.academia.edu/Documents/in/Stereochemistry"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"}],"urls":[{"id":45919784,"url":"http://pubs.acs.org/doi/pdf/10.1021/acs.orglett.8b03769"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-126070850-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="126070849"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126070849/SUV39H1_Represses_the_Expression_of_Cytotoxic_T_Lymphocyte_Effector_Genes_to_Promote_Colon_Tumor_Immune_Evasion"><img alt="Research paper thumbnail of SUV39H1 Represses the Expression of Cytotoxic T-Lymphocyte Effector Genes to Promote Colon Tumor Immune Evasion" class="work-thumbnail" src="https://attachments.academia-assets.com/120004937/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126070849/SUV39H1_Represses_the_Expression_of_Cytotoxic_T_Lymphocyte_Effector_Genes_to_Promote_Colon_Tumor_Immune_Evasion">SUV39H1 Represses the Expression of Cytotoxic T-Lymphocyte Effector Genes to Promote Colon Tumor Immune Evasion</a></div><div class="wp-workCard_item"><span>Cancer Immunology Research</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Despite the presence of CTLs in the tumor microenvironment, the majority of immunogenic human col...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Despite the presence of CTLs in the tumor microenvironment, the majority of immunogenic human colon cancer does not respond to immune checkpoint inhibitor immunotherapy, and microsatellite instable (MSI) tumors are not naturally eliminated. The molecular mechanism underlying the inactivity of tumor-infiltrating CTLs is unknown. We report here that CTLs were present in both MSI and microsatellite stable colon tumors. The expression of the H3K9me3-specific histone methyltransferase SUV39H1 was significantly elevated in human colon carcinoma compared with normal colon tissues. Using a mouse colon carcinoma model, we further determined that tumor-infiltrating CTLs in the colon tumor microenvironment have high expression of SUV39H1. To target SUV39H1 in the tumor microenvironment, a virtual chemical library was screened on the basis of the SET (suppressor of variegation 3–9, enhancer of zeste and trithorax) domain structure of the human SUV39H1 protein. Functional enzymatic activity assa...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5cc018c08cbdc17e95068416b3e0ccb4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120004937,"asset_id":126070849,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120004937/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126070849"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126070849"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126070849; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126070849]").text(description); $(".js-view-count[data-work-id=126070849]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126070849; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126070849']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5cc018c08cbdc17e95068416b3e0ccb4" } } $('.js-work-strip[data-work-id=126070849]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126070849,"title":"SUV39H1 Represses the Expression of Cytotoxic T-Lymphocyte Effector Genes to Promote Colon Tumor Immune Evasion","translated_title":"","metadata":{"abstract":"Despite the presence of CTLs in the tumor microenvironment, the majority of immunogenic human colon cancer does not respond to immune checkpoint inhibitor immunotherapy, and microsatellite instable (MSI) tumors are not naturally eliminated. The molecular mechanism underlying the inactivity of tumor-infiltrating CTLs is unknown. We report here that CTLs were present in both MSI and microsatellite stable colon tumors. The expression of the H3K9me3-specific histone methyltransferase SUV39H1 was significantly elevated in human colon carcinoma compared with normal colon tissues. Using a mouse colon carcinoma model, we further determined that tumor-infiltrating CTLs in the colon tumor microenvironment have high expression of SUV39H1. To target SUV39H1 in the tumor microenvironment, a virtual chemical library was screened on the basis of the SET (suppressor of variegation 3–9, enhancer of zeste and trithorax) domain structure of the human SUV39H1 protein. Functional enzymatic activity assa...","publisher":"American Association for Cancer Research (AACR)","ai_title_tag":"SUV39H1 Mediates CTL Evasion in Colon Cancer","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Cancer Immunology Research"},"translated_abstract":"Despite the presence of CTLs in the tumor microenvironment, the majority of immunogenic human colon cancer does not respond to immune checkpoint inhibitor immunotherapy, and microsatellite instable (MSI) tumors are not naturally eliminated. The molecular mechanism underlying the inactivity of tumor-infiltrating CTLs is unknown. We report here that CTLs were present in both MSI and microsatellite stable colon tumors. The expression of the H3K9me3-specific histone methyltransferase SUV39H1 was significantly elevated in human colon carcinoma compared with normal colon tissues. Using a mouse colon carcinoma model, we further determined that tumor-infiltrating CTLs in the colon tumor microenvironment have high expression of SUV39H1. To target SUV39H1 in the tumor microenvironment, a virtual chemical library was screened on the basis of the SET (suppressor of variegation 3–9, enhancer of zeste and trithorax) domain structure of the human SUV39H1 protein. Functional enzymatic activity assa...","internal_url":"https://www.academia.edu/126070849/SUV39H1_Represses_the_Expression_of_Cytotoxic_T_Lymphocyte_Effector_Genes_to_Promote_Colon_Tumor_Immune_Evasion","translated_internal_url":"","created_at":"2024-12-04T13:02:23.705-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":176937962,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":120004937,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004937/thumbnails/1.jpg","file_name":"414.pdf","download_url":"https://www.academia.edu/attachments/120004937/download_file","bulk_download_file_name":"SUV39H1_Represses_the_Expression_of_Cyto.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004937/414-libre.pdf?1733368452=\u0026response-content-disposition=attachment%3B+filename%3DSUV39H1_Represses_the_Expression_of_Cyto.pdf\u0026Expires=1743457405\u0026Signature=I0L7WPiQFFu0bKI~UK32Y9Z7d6-tS9HhTFyzeskmI8I1oqFgoUKwZyObf0jzM1S5X6NK~kEhN6JFk8s7-HPplW9zbUp1aqc7oYKtQHJMcka9AOlNgccol0u3DJzxFg6aBIVQqd-nxH0M0u~n7TqBzf4laldPiaAMDOhw2D5XWhGKpsJY5W0prM7hSovFsr-yYp-AlBfSq1WSQogp5VxhylX90qAF54e9DzaKB6uyvaSy9L-HSKwmIOy01hVIuk6B-zLdwotDcBx9MFiVoAeV93kVkMlbhGF5yau6twkYm1AhVNMrVHRtBU5bV8lm9nxIlPaocHudebRn9YFexJIn5g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"SUV39H1_Represses_the_Expression_of_Cytotoxic_T_Lymphocyte_Effector_Genes_to_Promote_Colon_Tumor_Immune_Evasion","translated_slug":"","page_count":14,"language":"en","content_type":"Work","summary":"Despite the presence of CTLs in the tumor microenvironment, the majority of immunogenic human colon cancer does not respond to immune checkpoint inhibitor immunotherapy, and microsatellite instable (MSI) tumors are not naturally eliminated. The molecular mechanism underlying the inactivity of tumor-infiltrating CTLs is unknown. We report here that CTLs were present in both MSI and microsatellite stable colon tumors. The expression of the H3K9me3-specific histone methyltransferase SUV39H1 was significantly elevated in human colon carcinoma compared with normal colon tissues. Using a mouse colon carcinoma model, we further determined that tumor-infiltrating CTLs in the colon tumor microenvironment have high expression of SUV39H1. To target SUV39H1 in the tumor microenvironment, a virtual chemical library was screened on the basis of the SET (suppressor of variegation 3–9, enhancer of zeste and trithorax) domain structure of the human SUV39H1 protein. Functional enzymatic activity assa...","owner":{"id":176937962,"first_name":"Mark","middle_initials":null,"last_name":"Grinstaff","page_name":"MGrinstaff","domain_name":"bu","created_at":"2020-11-02T16:03:12.423-08:00","display_name":"Mark Grinstaff","url":"https://bu.academia.edu/MGrinstaff"},"attachments":[{"id":120004937,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004937/thumbnails/1.jpg","file_name":"414.pdf","download_url":"https://www.academia.edu/attachments/120004937/download_file","bulk_download_file_name":"SUV39H1_Represses_the_Expression_of_Cyto.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004937/414-libre.pdf?1733368452=\u0026response-content-disposition=attachment%3B+filename%3DSUV39H1_Represses_the_Expression_of_Cyto.pdf\u0026Expires=1743457405\u0026Signature=I0L7WPiQFFu0bKI~UK32Y9Z7d6-tS9HhTFyzeskmI8I1oqFgoUKwZyObf0jzM1S5X6NK~kEhN6JFk8s7-HPplW9zbUp1aqc7oYKtQHJMcka9AOlNgccol0u3DJzxFg6aBIVQqd-nxH0M0u~n7TqBzf4laldPiaAMDOhw2D5XWhGKpsJY5W0prM7hSovFsr-yYp-AlBfSq1WSQogp5VxhylX90qAF54e9DzaKB6uyvaSy9L-HSKwmIOy01hVIuk6B-zLdwotDcBx9MFiVoAeV93kVkMlbhGF5yau6twkYm1AhVNMrVHRtBU5bV8lm9nxIlPaocHudebRn9YFexJIn5g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":120004935,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004935/thumbnails/1.jpg","file_name":"414.pdf","download_url":"https://www.academia.edu/attachments/120004935/download_file","bulk_download_file_name":"SUV39H1_Represses_the_Expression_of_Cyto.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004935/414-libre.pdf?1733368451=\u0026response-content-disposition=attachment%3B+filename%3DSUV39H1_Represses_the_Expression_of_Cyto.pdf\u0026Expires=1743457405\u0026Signature=LmcMdIw8qfdwPhV0OcM1I7eRMUqlY0KgxydteV3dLFTuvbfl80KfQRVzizwGdb0DExsmtQr0N6BYtYbV0a8X8CIozmuTbguUGeEYuH7PApY1KuLnI~IzEGPQ~Of81SYkdoJo0SdsWUqn~mu7LI3bUh63f0TGG7EkvyOotz8LkeBEVbOusXw3RWEvqdaMhdMsOOM-ciq9VPEYhbUit8ZoyLczBQbInjeIPLjM~msFmv93nwcxMHvY-wVMdoTzSr3iT8L1JKPReStwU5AMx5lMEx9KI1YxZDzhibKg~EisTzF~RMuiTcqFmUlYKE4Og-Orh0d3p5ybtoCyJWdYwIPszQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"},{"id":22255,"name":"Cancer Research","url":"https://www.academia.edu/Documents/in/Cancer_Research"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":37912,"name":"Cancer Immunology","url":"https://www.academia.edu/Documents/in/Cancer_Immunology"},{"id":62710,"name":"Tumor microenvironment","url":"https://www.academia.edu/Documents/in/Tumor_microenvironment"},{"id":324154,"name":"Immune system","url":"https://www.academia.edu/Documents/in/Immune_system"},{"id":431152,"name":"CTL","url":"https://www.academia.edu/Documents/in/CTL"}],"urls":[{"id":45919783,"url":"https://aacrjournals.org/cancerimmunolres/article-pdf/7/3/414/2355347/414.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-126070849-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="126070848"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126070848/Bioconjugated_Oligonucleotides_Recent_Developments_and_Therapeutic_Applications"><img alt="Research paper thumbnail of Bioconjugated Oligonucleotides: Recent Developments and Therapeutic Applications" class="work-thumbnail" src="https://attachments.academia-assets.com/120004971/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126070848/Bioconjugated_Oligonucleotides_Recent_Developments_and_Therapeutic_Applications">Bioconjugated Oligonucleotides: Recent Developments and Therapeutic Applications</a></div><div class="wp-workCard_item"><span>Bioconjugate Chemistry</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Oligonucleotide-based agents have the potential to treat or cure almost any disease, and are one ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Oligonucleotide-based agents have the potential to treat or cure almost any disease, and are one of the key therapeutic drug classes of the future. Bioconjugated oligonucleotides, a subset of this class, are emerging from basic research and being successfully translated to the clinic. In this review, we first briefly describe two approaches for inhibiting specific genes using oligonucleotides-antisense DNA (ASO) and RNA interference (RNAi)followed by a discussion on delivery to cells. We then summarize and analyze recent developments in bioconjugated oligonucleotides including those possessing GalNAc, cell penetrating peptides, αtocopherol, aptamers, antibodies, cholesterol, squalene, fatty acids, or nucleolipids. These novel conjugates provide a means to enhance tissue targeting, cell internalization, endosomal escape, target binding specificity, resistance to nucleases, and more. We next describe those bioconjugated oligonucleotides approved for patient use or in clinical trials. Finally, we summarize the state of the field, describe current limitations, and discuss future prospects. Bioconjugation chemistry is at the centerpiece of this therapeutic oligonucleotide revolution, and significant opportunities exist for development of new modification chemistries, for mechanistic studies at the chemical-biology interface, and for translating such agents to the clinic.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1933e44fa0c4fc5cbfeb9a061a80d088" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120004971,"asset_id":126070848,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120004971/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126070848"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126070848"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126070848; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126070848]").text(description); $(".js-view-count[data-work-id=126070848]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126070848; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126070848']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1933e44fa0c4fc5cbfeb9a061a80d088" } } $('.js-work-strip[data-work-id=126070848]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126070848,"title":"Bioconjugated Oligonucleotides: Recent Developments and Therapeutic Applications","translated_title":"","metadata":{"publisher":"American Chemical Society (ACS)","grobid_abstract":"Oligonucleotide-based agents have the potential to treat or cure almost any disease, and are one of the key therapeutic drug classes of the future. Bioconjugated oligonucleotides, a subset of this class, are emerging from basic research and being successfully translated to the clinic. In this review, we first briefly describe two approaches for inhibiting specific genes using oligonucleotides-antisense DNA (ASO) and RNA interference (RNAi)followed by a discussion on delivery to cells. We then summarize and analyze recent developments in bioconjugated oligonucleotides including those possessing GalNAc, cell penetrating peptides, αtocopherol, aptamers, antibodies, cholesterol, squalene, fatty acids, or nucleolipids. These novel conjugates provide a means to enhance tissue targeting, cell internalization, endosomal escape, target binding specificity, resistance to nucleases, and more. We next describe those bioconjugated oligonucleotides approved for patient use or in clinical trials. Finally, we summarize the state of the field, describe current limitations, and discuss future prospects. Bioconjugation chemistry is at the centerpiece of this therapeutic oligonucleotide revolution, and significant opportunities exist for development of new modification chemistries, for mechanistic studies at the chemical-biology interface, and for translating such agents to the clinic.","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Bioconjugate Chemistry","grobid_abstract_attachment_id":120004971},"translated_abstract":null,"internal_url":"https://www.academia.edu/126070848/Bioconjugated_Oligonucleotides_Recent_Developments_and_Therapeutic_Applications","translated_internal_url":"","created_at":"2024-12-04T13:02:23.382-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":176937962,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":120004971,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004971/thumbnails/1.jpg","file_name":"2002.11532v1.pdf","download_url":"https://www.academia.edu/attachments/120004971/download_file","bulk_download_file_name":"Bioconjugated_Oligonucleotides_Recent_De.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004971/2002.11532v1-libre.pdf?1733356544=\u0026response-content-disposition=attachment%3B+filename%3DBioconjugated_Oligonucleotides_Recent_De.pdf\u0026Expires=1743457405\u0026Signature=Gj978JiW1t7nscOi7KK5hpTpR2U5WXsOhB9x-efh19kcxb~ijk5vKRx-YM1h2rGK3xVADwT1uzUtg109vKQbYYVVZboOGmpon2ECrAULlfwfM9-wVKnh5TqJFrOpzK-Sd1t3GTP~aNv-koK7igZQjRmx1KqRGWSlye0Ble1RPnoLCb9xQTY4ULy6a9mRxkmj2tcW31XPHNe9VBceSc7jjQK-ogmu4RD0hrx2BzXVmQ7hUK89O5M0xrhKJrMLcP2RLAsXNSu6eH9jQJoT4PyiUcB0KpsZU8-24sL-A1cbbxN2Tz9fEpf0g5KPFefObmU2oJZe6Np7VPrUvqEGHwAsDg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Bioconjugated_Oligonucleotides_Recent_Developments_and_Therapeutic_Applications","translated_slug":"","page_count":19,"language":"en","content_type":"Work","summary":"Oligonucleotide-based agents have the potential to treat or cure almost any disease, and are one of the key therapeutic drug classes of the future. Bioconjugated oligonucleotides, a subset of this class, are emerging from basic research and being successfully translated to the clinic. In this review, we first briefly describe two approaches for inhibiting specific genes using oligonucleotides-antisense DNA (ASO) and RNA interference (RNAi)followed by a discussion on delivery to cells. We then summarize and analyze recent developments in bioconjugated oligonucleotides including those possessing GalNAc, cell penetrating peptides, αtocopherol, aptamers, antibodies, cholesterol, squalene, fatty acids, or nucleolipids. These novel conjugates provide a means to enhance tissue targeting, cell internalization, endosomal escape, target binding specificity, resistance to nucleases, and more. We next describe those bioconjugated oligonucleotides approved for patient use or in clinical trials. Finally, we summarize the state of the field, describe current limitations, and discuss future prospects. Bioconjugation chemistry is at the centerpiece of this therapeutic oligonucleotide revolution, and significant opportunities exist for development of new modification chemistries, for mechanistic studies at the chemical-biology interface, and for translating such agents to the clinic.","owner":{"id":176937962,"first_name":"Mark","middle_initials":null,"last_name":"Grinstaff","page_name":"MGrinstaff","domain_name":"bu","created_at":"2020-11-02T16:03:12.423-08:00","display_name":"Mark Grinstaff","url":"https://bu.academia.edu/MGrinstaff"},"attachments":[{"id":120004971,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004971/thumbnails/1.jpg","file_name":"2002.11532v1.pdf","download_url":"https://www.academia.edu/attachments/120004971/download_file","bulk_download_file_name":"Bioconjugated_Oligonucleotides_Recent_De.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004971/2002.11532v1-libre.pdf?1733356544=\u0026response-content-disposition=attachment%3B+filename%3DBioconjugated_Oligonucleotides_Recent_De.pdf\u0026Expires=1743457405\u0026Signature=Gj978JiW1t7nscOi7KK5hpTpR2U5WXsOhB9x-efh19kcxb~ijk5vKRx-YM1h2rGK3xVADwT1uzUtg109vKQbYYVVZboOGmpon2ECrAULlfwfM9-wVKnh5TqJFrOpzK-Sd1t3GTP~aNv-koK7igZQjRmx1KqRGWSlye0Ble1RPnoLCb9xQTY4ULy6a9mRxkmj2tcW31XPHNe9VBceSc7jjQK-ogmu4RD0hrx2BzXVmQ7hUK89O5M0xrhKJrMLcP2RLAsXNSu6eH9jQJoT4PyiUcB0KpsZU8-24sL-A1cbbxN2Tz9fEpf0g5KPFefObmU2oJZe6Np7VPrUvqEGHwAsDg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":531,"name":"Organic Chemistry","url":"https://www.academia.edu/Documents/in/Organic_Chemistry"},{"id":4233,"name":"Computational Biology","url":"https://www.academia.edu/Documents/in/Computational_Biology"},{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":51121,"name":"RNA interference","url":"https://www.academia.edu/Documents/in/RNA_interference"},{"id":207347,"name":"Bioconjugate Chemistry","url":"https://www.academia.edu/Documents/in/Bioconjugate_Chemistry"},{"id":372466,"name":"mRNA","url":"https://www.academia.edu/Documents/in/mRNA"},{"id":1338314,"name":"Aptamer","url":"https://www.academia.edu/Documents/in/Aptamer"},{"id":1649745,"name":"Oligonucleotides","url":"https://www.academia.edu/Documents/in/Oligonucleotides"},{"id":1681026,"name":"Biochemistry and cell biology","url":"https://www.academia.edu/Documents/in/Biochemistry_and_cell_biology"},{"id":2205703,"name":"Oligonucleotide","url":"https://www.academia.edu/Documents/in/Oligonucleotide"},{"id":2824591,"name":"RNA interference (RNAi) ","url":"https://www.academia.edu/Documents/in/RNA_interference_RNAi_"}],"urls":[{"id":45919782,"url":"https://pubs.acs.org/doi/pdf/10.1021/acs.bioconjchem.8b00761"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-126070848-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="126070847"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126070847/A_Solid_State_Hard_Microfluidic_Nanopore_Biosensor_with_Multilayer_Fluidics_and_On_Chip_Bioassay_Purification_Chamber"><img alt="Research paper thumbnail of A Solid‐State Hard Microfluidic–Nanopore Biosensor with Multilayer Fluidics and On‐Chip Bioassay/Purification Chamber" class="work-thumbnail" src="https://attachments.academia-assets.com/120004986/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126070847/A_Solid_State_Hard_Microfluidic_Nanopore_Biosensor_with_Multilayer_Fluidics_and_On_Chip_Bioassay_Purification_Chamber">A Solid‐State Hard Microfluidic–Nanopore Biosensor with Multilayer Fluidics and On‐Chip Bioassay/Purification Chamber</a></div><div class="wp-workCard_item"><span>Advanced Functional Materials</span><span>, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Solid-state nanopores are an emerging biosensor for nucleic acid and protein characterization. Fo...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Solid-state nanopores are an emerging biosensor for nucleic acid and protein characterization. For use in a clinical setting, solid-state nanopore sensing requires sample preparation and purification, fluid handling, a heating element, electrical noise insulators, and an electrical readout detector, all of which hamper its translation to a point-of-care diagnostic device. A standalone microfluidic-based nanopore device is described that combines a bioassay reaction/purification chamber with a solid-state nanopore sensor. The microfluidic device is composed of the high-temperature/solvent resistance Zeonex plastic, formed via micromachining and heat bonding, enabling the use of both a heat regulator and a magnetic controller. Fluid control through the microfluidic channels and chambers is controlled via fluid port selector valves and allows up to eight different solutions. Electrical noise measurements and DNA translocation experiments demonstrate the integrity of the device, with performance comparable to a conventional stand-alone nanopore setup. However, the microfluidic-nanopore setup is superior in terms of ease of use. To showcase the utility of the device, single molecule detection of a DNA polymerase chain reaction product, after magnetic bead DNA separation, is accomplished on-chip.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="81ed1f8ac461c767d7bb82df87f0f796" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120004986,"asset_id":126070847,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120004986/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126070847"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126070847"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126070847; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126070847]").text(description); $(".js-view-count[data-work-id=126070847]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126070847; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126070847']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "81ed1f8ac461c767d7bb82df87f0f796" } } $('.js-work-strip[data-work-id=126070847]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126070847,"title":"A Solid‐State Hard Microfluidic–Nanopore Biosensor with Multilayer Fluidics and On‐Chip Bioassay/Purification Chamber","translated_title":"","metadata":{"publisher":"Wiley","grobid_abstract":"Solid-state nanopores are an emerging biosensor for nucleic acid and protein characterization. For use in a clinical setting, solid-state nanopore sensing requires sample preparation and purification, fluid handling, a heating element, electrical noise insulators, and an electrical readout detector, all of which hamper its translation to a point-of-care diagnostic device. A standalone microfluidic-based nanopore device is described that combines a bioassay reaction/purification chamber with a solid-state nanopore sensor. The microfluidic device is composed of the high-temperature/solvent resistance Zeonex plastic, formed via micromachining and heat bonding, enabling the use of both a heat regulator and a magnetic controller. Fluid control through the microfluidic channels and chambers is controlled via fluid port selector valves and allows up to eight different solutions. Electrical noise measurements and DNA translocation experiments demonstrate the integrity of the device, with performance comparable to a conventional stand-alone nanopore setup. However, the microfluidic-nanopore setup is superior in terms of ease of use. To showcase the utility of the device, single molecule detection of a DNA polymerase chain reaction product, after magnetic bead DNA separation, is accomplished on-chip.","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"Advanced Functional Materials","grobid_abstract_attachment_id":120004986},"translated_abstract":null,"internal_url":"https://www.academia.edu/126070847/A_Solid_State_Hard_Microfluidic_Nanopore_Biosensor_with_Multilayer_Fluidics_and_On_Chip_Bioassay_Purification_Chamber","translated_internal_url":"","created_at":"2024-12-04T13:02:23.032-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":176937962,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":120004986,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004986/thumbnails/1.jpg","file_name":"2018_Adv_Funct_Mater_Varongchayakul.pdf","download_url":"https://www.academia.edu/attachments/120004986/download_file","bulk_download_file_name":"A_Solid_State_Hard_Microfluidic_Nanopore.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004986/2018_Adv_Funct_Mater_Varongchayakul-libre.pdf?1733356531=\u0026response-content-disposition=attachment%3B+filename%3DA_Solid_State_Hard_Microfluidic_Nanopore.pdf\u0026Expires=1743457405\u0026Signature=cGvGcfshhCiwUe8cxv~ufoHjboexMItsyj7i0ymL4QwfvKRgK0ipbqac~4gW3XnemN6E61jVQVO0YzOUmqTnqVxOpUBOlSgHI5V4wkJ8wAf~lI-4Tm9s93aOM6qVB-sh9bSmp-ZWMQFfAqiNYKvgODEVx4YxPxpx-KUFewI-O4O8HsHdpxBEzo9NG2qkLTe2h~WAHAchPeurn-PiNqJKzJSmCLzYi4KECUl--Ir5QFNqagwG7YXS9h1Jhz4HTj3qI5vEnUvbc0XRNIHqDwia7qtwfyjrrs0y9ET4u4De5McilAfVfGCOiuFWxW9IQK2oU86CyTgzW2DT8JzshyDCTA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_Solid_State_Hard_Microfluidic_Nanopore_Biosensor_with_Multilayer_Fluidics_and_On_Chip_Bioassay_Purification_Chamber","translated_slug":"","page_count":9,"language":"en","content_type":"Work","summary":"Solid-state nanopores are an emerging biosensor for nucleic acid and protein characterization. For use in a clinical setting, solid-state nanopore sensing requires sample preparation and purification, fluid handling, a heating element, electrical noise insulators, and an electrical readout detector, all of which hamper its translation to a point-of-care diagnostic device. A standalone microfluidic-based nanopore device is described that combines a bioassay reaction/purification chamber with a solid-state nanopore sensor. The microfluidic device is composed of the high-temperature/solvent resistance Zeonex plastic, formed via micromachining and heat bonding, enabling the use of both a heat regulator and a magnetic controller. Fluid control through the microfluidic channels and chambers is controlled via fluid port selector valves and allows up to eight different solutions. Electrical noise measurements and DNA translocation experiments demonstrate the integrity of the device, with performance comparable to a conventional stand-alone nanopore setup. However, the microfluidic-nanopore setup is superior in terms of ease of use. To showcase the utility of the device, single molecule detection of a DNA polymerase chain reaction product, after magnetic bead DNA separation, is accomplished on-chip.","owner":{"id":176937962,"first_name":"Mark","middle_initials":null,"last_name":"Grinstaff","page_name":"MGrinstaff","domain_name":"bu","created_at":"2020-11-02T16:03:12.423-08:00","display_name":"Mark Grinstaff","url":"https://bu.academia.edu/MGrinstaff"},"attachments":[{"id":120004986,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004986/thumbnails/1.jpg","file_name":"2018_Adv_Funct_Mater_Varongchayakul.pdf","download_url":"https://www.academia.edu/attachments/120004986/download_file","bulk_download_file_name":"A_Solid_State_Hard_Microfluidic_Nanopore.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004986/2018_Adv_Funct_Mater_Varongchayakul-libre.pdf?1733356531=\u0026response-content-disposition=attachment%3B+filename%3DA_Solid_State_Hard_Microfluidic_Nanopore.pdf\u0026Expires=1743457405\u0026Signature=cGvGcfshhCiwUe8cxv~ufoHjboexMItsyj7i0ymL4QwfvKRgK0ipbqac~4gW3XnemN6E61jVQVO0YzOUmqTnqVxOpUBOlSgHI5V4wkJ8wAf~lI-4Tm9s93aOM6qVB-sh9bSmp-ZWMQFfAqiNYKvgODEVx4YxPxpx-KUFewI-O4O8HsHdpxBEzo9NG2qkLTe2h~WAHAchPeurn-PiNqJKzJSmCLzYi4KECUl--Ir5QFNqagwG7YXS9h1Jhz4HTj3qI5vEnUvbc0XRNIHqDwia7qtwfyjrrs0y9ET4u4De5McilAfVfGCOiuFWxW9IQK2oU86CyTgzW2DT8JzshyDCTA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":17733,"name":"Nanotechnology","url":"https://www.academia.edu/Documents/in/Nanotechnology"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":71615,"name":"Advanced Functional Materials","url":"https://www.academia.edu/Documents/in/Advanced_Functional_Materials"},{"id":109419,"name":"Biosensor","url":"https://www.academia.edu/Documents/in/Biosensor"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":852297,"name":"Fluidics","url":"https://www.academia.edu/Documents/in/Fluidics"},{"id":3478741,"name":"Nanopore","url":"https://www.academia.edu/Documents/in/Nanopore"}],"urls":[{"id":45919781,"url":"https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.201804182"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-126070847-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="126070846"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126070846/Predoctoral_and_Postdoctoral_Training_Pipeline_in_Translational_Biomaterials_Research_and_Regenerative_Medicine"><img alt="Research paper thumbnail of Predoctoral and Postdoctoral Training Pipeline in Translational Biomaterials Research and Regenerative Medicine" class="work-thumbnail" src="https://attachments.academia-assets.com/120004970/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126070846/Predoctoral_and_Postdoctoral_Training_Pipeline_in_Translational_Biomaterials_Research_and_Regenerative_Medicine">Predoctoral and Postdoctoral Training Pipeline in Translational Biomaterials Research and Regenerative Medicine</a></div><div class="wp-workCard_item"><span>ACS Biomaterials Science &amp; Engineering</span><span>, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The translation of biomaterial based and regenerative therapies from the laboratory to patients i...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The translation of biomaterial based and regenerative therapies from the laboratory to patients involves multiple challenges. One of the most pressing challenges is the educational one: to train a cohort of scientists and engineers capable of translating their discoveries from bench to market to clinic. To meet this need, translational training programs are being implemented globally at universities and as partnerships between universities and corporations. In this perspective, we describe two translational NIH T32 graduate and postgraduate training programs that augment the traditional approach to training early stage scientists and engineers. At the graduate level, Boston University developed and implemented the Translational Research in Biomaterials (TRB) predoctoral training program. At the postgraduate level, Rutgers, The State University of New Jersey, developed and implemented the Translational Research in Regenerative Medicine (TRRM) program for postdoctoral training. These programs are motivated by the need for training in translational research in the biomedical field, by young scientists' requests for such training, and by the fundamental challenges facing future discovery and clinical implementation of biomaterialbased technologies. The TRB program immerses trainees in the concept of translating an idea from the research laboratory to the clinic, introduces them to the challenges of such an endeavor, provides discussions with relevant faculty (for example, with businesses, patient care, or clinical trial experience), and educates them in the critical areas required for their future careers. Similarly, the TRRM program emphasizes translational research and the concept of "training without borders," which enables collaborations across several geographically dispersed institutions so as to make regional experts accessible regardless of where they are located physically. Both programs promote interdisciplinary research, expose young scientists and engineers to challenges outside of their specialty, and build interpersonal skills for cross-disciplinary communication. The TRB program focuses on quantitative science and engineering courses, together with translation-based courses in clinical trials and business. The TRRM program focuses on broadening the horizon of its trainees through exposure to a wider network of mentors than traditional postdoctoral *</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="09e7aa3737fdaf578f51ba266074f364" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120004970,"asset_id":126070846,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120004970/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126070846"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126070846"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126070846; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126070846]").text(description); $(".js-view-count[data-work-id=126070846]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126070846; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126070846']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "09e7aa3737fdaf578f51ba266074f364" } } $('.js-work-strip[data-work-id=126070846]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126070846,"title":"Predoctoral and Postdoctoral Training Pipeline in Translational Biomaterials Research and Regenerative Medicine","translated_title":"","metadata":{"publisher":"American Chemical Society (ACS)","ai_title_tag":"Training for Translational Biomaterials Research","grobid_abstract":"The translation of biomaterial based and regenerative therapies from the laboratory to patients involves multiple challenges. One of the most pressing challenges is the educational one: to train a cohort of scientists and engineers capable of translating their discoveries from bench to market to clinic. To meet this need, translational training programs are being implemented globally at universities and as partnerships between universities and corporations. In this perspective, we describe two translational NIH T32 graduate and postgraduate training programs that augment the traditional approach to training early stage scientists and engineers. At the graduate level, Boston University developed and implemented the Translational Research in Biomaterials (TRB) predoctoral training program. At the postgraduate level, Rutgers, The State University of New Jersey, developed and implemented the Translational Research in Regenerative Medicine (TRRM) program for postdoctoral training. These programs are motivated by the need for training in translational research in the biomedical field, by young scientists' requests for such training, and by the fundamental challenges facing future discovery and clinical implementation of biomaterialbased technologies. The TRB program immerses trainees in the concept of translating an idea from the research laboratory to the clinic, introduces them to the challenges of such an endeavor, provides discussions with relevant faculty (for example, with businesses, patient care, or clinical trial experience), and educates them in the critical areas required for their future careers. Similarly, the TRRM program emphasizes translational research and the concept of \"training without borders,\" which enables collaborations across several geographically dispersed institutions so as to make regional experts accessible regardless of where they are located physically. Both programs promote interdisciplinary research, expose young scientists and engineers to challenges outside of their specialty, and build interpersonal skills for cross-disciplinary communication. The TRB program focuses on quantitative science and engineering courses, together with translation-based courses in clinical trials and business. The TRRM program focuses on broadening the horizon of its trainees through exposure to a wider network of mentors than traditional postdoctoral *","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"ACS Biomaterials Science \u0026amp; Engineering","grobid_abstract_attachment_id":120004970},"translated_abstract":null,"internal_url":"https://www.academia.edu/126070846/Predoctoral_and_Postdoctoral_Training_Pipeline_in_Translational_Biomaterials_Research_and_Regenerative_Medicine","translated_internal_url":"","created_at":"2024-12-04T13:02:22.763-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":176937962,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":120004970,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004970/thumbnails/1.jpg","file_name":"ptpmcrender.pdf","download_url":"https://www.academia.edu/attachments/120004970/download_file","bulk_download_file_name":"Predoctoral_and_Postdoctoral_Training_Pi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004970/ptpmcrender-libre.pdf?1733368433=\u0026response-content-disposition=attachment%3B+filename%3DPredoctoral_and_Postdoctoral_Training_Pi.pdf\u0026Expires=1743457405\u0026Signature=Pe8o1BjQJWZDCx~-VJSKyw0aWJgqNqMpKnUrAQHcLb-f4YzIkDuxir5jCHdI~Lin2wEB0tPbPnQk38ivuoKwuv8fDoxcS4hGZaqL7e~-WSLjLDiBIvwdHkb-ZUxJNtoGY1L7B7x0K95W~EQj~ify67HuOFJ8Z2S2TngPTo4MtdSlkmh76imb6YUOyATwu2JvS0jFmmr6k7kxSgAqmXSTj5fXxC4OaC~u~U6lk48I8rlmQrClEbefcFK5aZ23tspGl80e4rY4EDNGEK0ZWnr5kraAFl0fTtLVG79N682hF6kO7woI1F6pS7XOzS2YksyCRr4tl8JXktd1IIMBjoBrnQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Predoctoral_and_Postdoctoral_Training_Pipeline_in_Translational_Biomaterials_Research_and_Regenerative_Medicine","translated_slug":"","page_count":16,"language":"en","content_type":"Work","summary":"The translation of biomaterial based and regenerative therapies from the laboratory to patients involves multiple challenges. One of the most pressing challenges is the educational one: to train a cohort of scientists and engineers capable of translating their discoveries from bench to market to clinic. To meet this need, translational training programs are being implemented globally at universities and as partnerships between universities and corporations. In this perspective, we describe two translational NIH T32 graduate and postgraduate training programs that augment the traditional approach to training early stage scientists and engineers. At the graduate level, Boston University developed and implemented the Translational Research in Biomaterials (TRB) predoctoral training program. At the postgraduate level, Rutgers, The State University of New Jersey, developed and implemented the Translational Research in Regenerative Medicine (TRRM) program for postdoctoral training. These programs are motivated by the need for training in translational research in the biomedical field, by young scientists' requests for such training, and by the fundamental challenges facing future discovery and clinical implementation of biomaterialbased technologies. The TRB program immerses trainees in the concept of translating an idea from the research laboratory to the clinic, introduces them to the challenges of such an endeavor, provides discussions with relevant faculty (for example, with businesses, patient care, or clinical trial experience), and educates them in the critical areas required for their future careers. Similarly, the TRRM program emphasizes translational research and the concept of \"training without borders,\" which enables collaborations across several geographically dispersed institutions so as to make regional experts accessible regardless of where they are located physically. Both programs promote interdisciplinary research, expose young scientists and engineers to challenges outside of their specialty, and build interpersonal skills for cross-disciplinary communication. The TRB program focuses on quantitative science and engineering courses, together with translation-based courses in clinical trials and business. The TRRM program focuses on broadening the horizon of its trainees through exposure to a wider network of mentors than traditional postdoctoral *","owner":{"id":176937962,"first_name":"Mark","middle_initials":null,"last_name":"Grinstaff","page_name":"MGrinstaff","domain_name":"bu","created_at":"2020-11-02T16:03:12.423-08:00","display_name":"Mark Grinstaff","url":"https://bu.academia.edu/MGrinstaff"},"attachments":[{"id":120004970,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004970/thumbnails/1.jpg","file_name":"ptpmcrender.pdf","download_url":"https://www.academia.edu/attachments/120004970/download_file","bulk_download_file_name":"Predoctoral_and_Postdoctoral_Training_Pi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004970/ptpmcrender-libre.pdf?1733368433=\u0026response-content-disposition=attachment%3B+filename%3DPredoctoral_and_Postdoctoral_Training_Pi.pdf\u0026Expires=1743457405\u0026Signature=Pe8o1BjQJWZDCx~-VJSKyw0aWJgqNqMpKnUrAQHcLb-f4YzIkDuxir5jCHdI~Lin2wEB0tPbPnQk38ivuoKwuv8fDoxcS4hGZaqL7e~-WSLjLDiBIvwdHkb-ZUxJNtoGY1L7B7x0K95W~EQj~ify67HuOFJ8Z2S2TngPTo4MtdSlkmh76imb6YUOyATwu2JvS0jFmmr6k7kxSgAqmXSTj5fXxC4OaC~u~U6lk48I8rlmQrClEbefcFK5aZ23tspGl80e4rY4EDNGEK0ZWnr5kraAFl0fTtLVG79N682hF6kO7woI1F6pS7XOzS2YksyCRr4tl8JXktd1IIMBjoBrnQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":24405,"name":"Translational Research","url":"https://www.academia.edu/Documents/in/Translational_Research"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":37369,"name":"Translational Medicine","url":"https://www.academia.edu/Documents/in/Translational_Medicine"}],"urls":[{"id":45919780,"url":"https://pubs.acs.org/doi/pdf/10.1021/acsbiomaterials.7b00268"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-126070846-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="126070845"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126070845/Single_molecule_protein_sensing_in_a_nanopore_a_tutorial"><img alt="Research paper thumbnail of Single-molecule protein sensing in a nanopore: a tutorial" class="work-thumbnail" src="https://attachments.academia-assets.com/120004972/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126070845/Single_molecule_protein_sensing_in_a_nanopore_a_tutorial">Single-molecule protein sensing in a nanopore: a tutorial</a></div><div class="wp-workCard_item"><span>Chemical Society Reviews</span><span>, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A guidebook and reference for detecting and characterizing proteins at the single-molecule level ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A guidebook and reference for detecting and characterizing proteins at the single-molecule level using nanopores.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b64b0e2793e15b874eaa42eb690bcf68" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120004972,"asset_id":126070845,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120004972/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126070845"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126070845"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126070845; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126070845]").text(description); $(".js-view-count[data-work-id=126070845]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126070845; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126070845']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b64b0e2793e15b874eaa42eb690bcf68" } } $('.js-work-strip[data-work-id=126070845]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126070845,"title":"Single-molecule protein sensing in a nanopore: a tutorial","translated_title":"","metadata":{"abstract":"A guidebook and reference for detecting and characterizing proteins at the single-molecule level using nanopores.","publisher":"Royal Society of Chemistry (RSC)","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"Chemical Society Reviews"},"translated_abstract":"A guidebook and reference for detecting and characterizing proteins at the single-molecule level using nanopores.","internal_url":"https://www.academia.edu/126070845/Single_molecule_protein_sensing_in_a_nanopore_a_tutorial","translated_internal_url":"","created_at":"2024-12-04T13:02:22.462-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":176937962,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":120004972,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004972/thumbnails/1.jpg","file_name":"Chem._Soc._Rev._2018_Varongchayakul.pdf","download_url":"https://www.academia.edu/attachments/120004972/download_file","bulk_download_file_name":"Single_molecule_protein_sensing_in_a_nan.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004972/Chem._Soc._Rev._2018_Varongchayakul-libre.pdf?1733356541=\u0026response-content-disposition=attachment%3B+filename%3DSingle_molecule_protein_sensing_in_a_nan.pdf\u0026Expires=1743457405\u0026Signature=eXdRx7gztE3Bw2mvzNxdbEoza8GZoa2qXOTWxyhoyk8WL7H9bOTSpsKvWY4jntYwVwLNA4dKcHtk2Zj--cKXu3PYPNcMyncLOTMFD4K5ld-Csc2A1I0YbjfKuBqkhn0dCxux4LNnDIEKP1HEFe3VOnSa7Ps85uUXRpnTJBqHI8sLoMXUZUoTFcWiBnLRMKnLqmgyD91M~PHyZHDy1gh16vWfp8devjOjsQZCXXaI2YtZK6Rlul527a7Fc~prLn7aRXjMvV2x7cISRneMXE-X~eF585JMKTKRQTwZrodHCsC3acNXkVd-FNwwbEeeRpibSiqPiRdlc~ThAnElqFpRzA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Single_molecule_protein_sensing_in_a_nanopore_a_tutorial","translated_slug":"","page_count":13,"language":"en","content_type":"Work","summary":"A guidebook and reference for detecting and characterizing proteins at the single-molecule level using nanopores.","owner":{"id":176937962,"first_name":"Mark","middle_initials":null,"last_name":"Grinstaff","page_name":"MGrinstaff","domain_name":"bu","created_at":"2020-11-02T16:03:12.423-08:00","display_name":"Mark Grinstaff","url":"https://bu.academia.edu/MGrinstaff"},"attachments":[{"id":120004972,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004972/thumbnails/1.jpg","file_name":"Chem._Soc._Rev._2018_Varongchayakul.pdf","download_url":"https://www.academia.edu/attachments/120004972/download_file","bulk_download_file_name":"Single_molecule_protein_sensing_in_a_nan.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004972/Chem._Soc._Rev._2018_Varongchayakul-libre.pdf?1733356541=\u0026response-content-disposition=attachment%3B+filename%3DSingle_molecule_protein_sensing_in_a_nan.pdf\u0026Expires=1743457405\u0026Signature=eXdRx7gztE3Bw2mvzNxdbEoza8GZoa2qXOTWxyhoyk8WL7H9bOTSpsKvWY4jntYwVwLNA4dKcHtk2Zj--cKXu3PYPNcMyncLOTMFD4K5ld-Csc2A1I0YbjfKuBqkhn0dCxux4LNnDIEKP1HEFe3VOnSa7Ps85uUXRpnTJBqHI8sLoMXUZUoTFcWiBnLRMKnLqmgyD91M~PHyZHDy1gh16vWfp8devjOjsQZCXXaI2YtZK6Rlul527a7Fc~prLn7aRXjMvV2x7cISRneMXE-X~eF585JMKTKRQTwZrodHCsC3acNXkVd-FNwwbEeeRpibSiqPiRdlc~ThAnElqFpRzA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":3478741,"name":"Nanopore","url":"https://www.academia.edu/Documents/in/Nanopore"}],"urls":[{"id":45919779,"url":"http://pubs.rsc.org/en/content/articlepdf/2018/CS/C8CS00106E"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-126070845-figures'); } }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="10750635" id="papers"><div class="js-work-strip profile--work_container" data-work-id="126070872"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126070872/Poly_%CE%B5_caprolactone_microfiber_meshes_for_repeated_oil_retrieval"><img alt="Research paper thumbnail of Poly(ε-caprolactone) microfiber meshes for repeated oil retrieval" class="work-thumbnail" src="https://attachments.academia-assets.com/120004945/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126070872/Poly_%CE%B5_caprolactone_microfiber_meshes_for_repeated_oil_retrieval">Poly(ε-caprolactone) microfiber meshes for repeated oil retrieval</a></div><div class="wp-workCard_item"><span>Environmental science</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Electrospun non-woven poly(ε-caprolactone) (PCL) microfiber meshes are described as biodegradable...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Electrospun non-woven poly(ε-caprolactone) (PCL) microfiber meshes are described as biodegradable, mechanically robust, and reusable polymeric oil sorbents capable of selectively retrieving oil from simulated oil spills in both fresh and seawater scenarios. Hydrophobic PCL meshes have >99.5% (oil over water) oil selectivity and oil absorption capacities of ~10 grams of oil per gram of sorbent material, which is shown to be a volumetrically driven process. Both the oil selectivity and absorption capacity remained constant over several oil absorption and vacuum assisted retrieval cycles when removing crude oil or mechanical pump oil from deionized water or simulated seawater mixtures. Finally, when challenged with surfactant stabilized water-in-oil emulsions, the PCL meshes continued to show selective oil absorption. These studies add to the knowledge base of synthetic oil sorbents highlighting a need for biodegradable synthetic oil sorbents which balance porosity and mechanical integrity enabling reuse, allowing for the efficient recovery of oil after an accidental oil spill. Electronic Supplementary Information (ESI) available: Additional figures and experimental protocols. See</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d20e142914976f1c97811f6053f40245" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120004945,"asset_id":126070872,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120004945/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126070872"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126070872"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126070872; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126070872]").text(description); $(".js-view-count[data-work-id=126070872]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126070872; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126070872']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d20e142914976f1c97811f6053f40245" } } $('.js-work-strip[data-work-id=126070872]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126070872,"title":"Poly(ε-caprolactone) microfiber meshes for repeated oil retrieval","translated_title":"","metadata":{"publisher":"Royal Society of Chemistry","grobid_abstract":"Electrospun non-woven poly(ε-caprolactone) (PCL) microfiber meshes are described as biodegradable, mechanically robust, and reusable polymeric oil sorbents capable of selectively retrieving oil from simulated oil spills in both fresh and seawater scenarios. Hydrophobic PCL meshes have \u003e99.5% (oil over water) oil selectivity and oil absorption capacities of ~10 grams of oil per gram of sorbent material, which is shown to be a volumetrically driven process. Both the oil selectivity and absorption capacity remained constant over several oil absorption and vacuum assisted retrieval cycles when removing crude oil or mechanical pump oil from deionized water or simulated seawater mixtures. Finally, when challenged with surfactant stabilized water-in-oil emulsions, the PCL meshes continued to show selective oil absorption. These studies add to the knowledge base of synthetic oil sorbents highlighting a need for biodegradable synthetic oil sorbents which balance porosity and mechanical integrity enabling reuse, allowing for the efficient recovery of oil after an accidental oil spill. Electronic Supplementary Information (ESI) available: Additional figures and experimental protocols. See","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Environmental science","grobid_abstract_attachment_id":120004945},"translated_abstract":null,"internal_url":"https://www.academia.edu/126070872/Poly_%CE%B5_caprolactone_microfiber_meshes_for_repeated_oil_retrieval","translated_internal_url":"","created_at":"2024-12-04T13:02:31.579-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":176937962,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":120004945,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004945/thumbnails/1.jpg","file_name":"pmc4790115.pdf","download_url":"https://www.academia.edu/attachments/120004945/download_file","bulk_download_file_name":"Poly__caprolactone_microfiber_meshes_fo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004945/pmc4790115-libre.pdf?1733368439=\u0026response-content-disposition=attachment%3B+filename%3DPoly__caprolactone_microfiber_meshes_fo.pdf\u0026Expires=1743457404\u0026Signature=dV56ql2SwyjIaqaYlfPjoQUT0RP-whEU7r8E5GP3PrBDdxCa8OOXchhCnYWQrm50zXiJDaJnzqE048w1ExkGOekY9AcAJg2knXGCA-0CR7UuqIbnBQaSecVWOiiTTk3nfG2p6It9RZm-gi1~de2roHeaQ6YbRCOTcgJjlrFyjxuMSUEgB8Kzu1RnRrj0BsXERoeYMfKGWAn~9vAmZH6Ol~iB4IGHdrmM-glKcmjuVQp5hyVKIQ9ZE4L6c8ME-3nGr~sOAZPwCBPEjbWnCNnd~R63fe-dN27~3hE5JGE3OR-2iWrSTnihd2VJRi94NszhAyUzAKxLp4qNlWRILuHhFA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Poly_ε_caprolactone_microfiber_meshes_for_repeated_oil_retrieval","translated_slug":"","page_count":15,"language":"en","content_type":"Work","summary":"Electrospun non-woven poly(ε-caprolactone) (PCL) microfiber meshes are described as biodegradable, mechanically robust, and reusable polymeric oil sorbents capable of selectively retrieving oil from simulated oil spills in both fresh and seawater scenarios. Hydrophobic PCL meshes have \u003e99.5% (oil over water) oil selectivity and oil absorption capacities of ~10 grams of oil per gram of sorbent material, which is shown to be a volumetrically driven process. Both the oil selectivity and absorption capacity remained constant over several oil absorption and vacuum assisted retrieval cycles when removing crude oil or mechanical pump oil from deionized water or simulated seawater mixtures. Finally, when challenged with surfactant stabilized water-in-oil emulsions, the PCL meshes continued to show selective oil absorption. These studies add to the knowledge base of synthetic oil sorbents highlighting a need for biodegradable synthetic oil sorbents which balance porosity and mechanical integrity enabling reuse, allowing for the efficient recovery of oil after an accidental oil spill. Electronic Supplementary Information (ESI) available: Additional figures and experimental protocols. See","owner":{"id":176937962,"first_name":"Mark","middle_initials":null,"last_name":"Grinstaff","page_name":"MGrinstaff","domain_name":"bu","created_at":"2020-11-02T16:03:12.423-08:00","display_name":"Mark Grinstaff","url":"https://bu.academia.edu/MGrinstaff"},"attachments":[{"id":120004945,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004945/thumbnails/1.jpg","file_name":"pmc4790115.pdf","download_url":"https://www.academia.edu/attachments/120004945/download_file","bulk_download_file_name":"Poly__caprolactone_microfiber_meshes_fo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004945/pmc4790115-libre.pdf?1733368439=\u0026response-content-disposition=attachment%3B+filename%3DPoly__caprolactone_microfiber_meshes_fo.pdf\u0026Expires=1743457404\u0026Signature=dV56ql2SwyjIaqaYlfPjoQUT0RP-whEU7r8E5GP3PrBDdxCa8OOXchhCnYWQrm50zXiJDaJnzqE048w1ExkGOekY9AcAJg2knXGCA-0CR7UuqIbnBQaSecVWOiiTTk3nfG2p6It9RZm-gi1~de2roHeaQ6YbRCOTcgJjlrFyjxuMSUEgB8Kzu1RnRrj0BsXERoeYMfKGWAn~9vAmZH6Ol~iB4IGHdrmM-glKcmjuVQp5hyVKIQ9ZE4L6c8ME-3nGr~sOAZPwCBPEjbWnCNnd~R63fe-dN27~3hE5JGE3OR-2iWrSTnihd2VJRi94NszhAyUzAKxLp4qNlWRILuHhFA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":120004950,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004950/thumbnails/1.jpg","file_name":"pmc4790115.pdf","download_url":"https://www.academia.edu/attachments/120004950/download_file","bulk_download_file_name":"Poly__caprolactone_microfiber_meshes_fo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004950/pmc4790115-libre.pdf?1733368443=\u0026response-content-disposition=attachment%3B+filename%3DPoly__caprolactone_microfiber_meshes_fo.pdf\u0026Expires=1743457404\u0026Signature=VJz5wWdbYAK13eEjh3OD~QQXjDsbIwRylPzMGo5zX0MSeEhuEuh0pNnh1EX87RovE0KSzPyC~~KgMKPoVR77tmxGDrevwix26l-WJIkj3GpZSkO75bjNsKEpHt8yL53J353QZmP34D9NVxQkJlPu3N9bj0ixR1FAsaWHLme3ZinorOvKuFXzpUlpo53fa7xHb5f1EZvSmbqCEvMTgZ35yA8C6IW4xISExB~ig8c3WT51t-vWXRwn6wY9if9fmY3J91-dBCQRK7BQV70iaJRECbvFgwYYOyUzMrcASdHWF7OF9ov2TluCWkgsHqq97RVlaeGKLaLTPxeq1WN5ApWfGA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":402,"name":"Environmental Science","url":"https://www.academia.edu/Documents/in/Environmental_Science"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":1368129,"name":"Microfiber","url":"https://www.academia.edu/Documents/in/Microfiber"},{"id":1947619,"name":"Caprolactone","url":"https://www.academia.edu/Documents/in/Caprolactone"}],"urls":[{"id":45919805,"url":"https://europepmc.org/articles/pmc4790115?pdf=render"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-126070872-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="126070868"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126070868/A_facile_approach_to_robust_superhydrophobic_3D_coatings_via_connective_particle_formation_using_the_electrospraying_process"><img alt="Research paper thumbnail of A facile approach to robust superhydrophobic 3D coatings via connective-particle formation using the electrospraying process" class="work-thumbnail" src="https://attachments.academia-assets.com/120004953/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126070868/A_facile_approach_to_robust_superhydrophobic_3D_coatings_via_connective_particle_formation_using_the_electrospraying_process">A facile approach to robust superhydrophobic 3D coatings via connective-particle formation using the electrospraying process</a></div><div class="wp-workCard_item"><span>Chemical Communications</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This work demonstrates a facile fabrication method to produce superhydrophobic coatings on chemic...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This work demonstrates a facile fabrication method to produce superhydrophobic coatings on chemically distinct materials using the electrospraying process. Coatings are mechanically robust, three-dimensional, and formed using a single fabrication step. Interest continues to evolve in superhydrophobic surfaces, where the unique property of having a permanent or semi-permanent air layer at a material surface can lead to improved material performance in specific applications. 1-15 Superhydrophobicity is achieved by trapping air at the material-water interface by adding sufficient surface roughness to a low energy material using one of a variety of microfabrication, surface modification, or surface coating techniques. 16-25 Fabricating a surface with superhydrophobicity has become a relatively straightforward procedure, but a number of complexities arise with the usage of such surfaces for practical application. 16 Producing a superhydrophobic surface that meets all of the following design criteria represents a significant challenge: 1) use of readily available hydrophobic materials which can be fabricated with sufficient surface roughness to promote superhydrophobicity; 2) selection of a one-step fabrication technique that is easily scalable for industrial use, utilizes relatively mild processing conditions, and can be coated over large areas; and 3) sufficient mechanical integrity of the surface for its intended application.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6f501156a50c4a833f69e6388282561c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120004953,"asset_id":126070868,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120004953/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126070868"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126070868"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126070868; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126070868]").text(description); $(".js-view-count[data-work-id=126070868]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126070868; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126070868']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6f501156a50c4a833f69e6388282561c" } } $('.js-work-strip[data-work-id=126070868]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126070868,"title":"A facile approach to robust superhydrophobic 3D coatings via connective-particle formation using the electrospraying process","translated_title":"","metadata":{"publisher":"Royal Society of Chemistry","grobid_abstract":"This work demonstrates a facile fabrication method to produce superhydrophobic coatings on chemically distinct materials using the electrospraying process. Coatings are mechanically robust, three-dimensional, and formed using a single fabrication step. Interest continues to evolve in superhydrophobic surfaces, where the unique property of having a permanent or semi-permanent air layer at a material surface can lead to improved material performance in specific applications. 1-15 Superhydrophobicity is achieved by trapping air at the material-water interface by adding sufficient surface roughness to a low energy material using one of a variety of microfabrication, surface modification, or surface coating techniques. 16-25 Fabricating a surface with superhydrophobicity has become a relatively straightforward procedure, but a number of complexities arise with the usage of such surfaces for practical application. 16 Producing a superhydrophobic surface that meets all of the following design criteria represents a significant challenge: 1) use of readily available hydrophobic materials which can be fabricated with sufficient surface roughness to promote superhydrophobicity; 2) selection of a one-step fabrication technique that is easily scalable for industrial use, utilizes relatively mild processing conditions, and can be coated over large areas; and 3) sufficient mechanical integrity of the surface for its intended application.","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Chemical Communications","grobid_abstract_attachment_id":120004953},"translated_abstract":null,"internal_url":"https://www.academia.edu/126070868/A_facile_approach_to_robust_superhydrophobic_3D_coatings_via_connective_particle_formation_using_the_electrospraying_process","translated_internal_url":"","created_at":"2024-12-04T13:02:30.982-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":176937962,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":120004953,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004953/thumbnails/1.jpg","file_name":"pmc3878809.pdf","download_url":"https://www.academia.edu/attachments/120004953/download_file","bulk_download_file_name":"A_facile_approach_to_robust_superhydroph.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004953/pmc3878809-libre.pdf?1733368435=\u0026response-content-disposition=attachment%3B+filename%3DA_facile_approach_to_robust_superhydroph.pdf\u0026Expires=1743457404\u0026Signature=J1AF8VsHk9GJYNc6uYRC-CI2rEZpZQ7D3WV5bjQtxUZx60F8gPNf5rk89co2lrEDP4MtpKvpt3Ec4WaDDHF5hww3~GaM3Bd1UwwiGLbR0bSf3iB65v8ORCn2ZCTNVW390Sl92KFLw7n7mat1rnBuajKdUxT2zLDB6~srhq2f7CksNTsN7uR~o-dc33qPN4wamwU4C1Glw~uhf1guZU1PtbyTjIYfC57njtiG84cR~Cy5hEtS-jLJdn0yQmpQZPTAhD4WYukx-iPSmC50BhDDP846AgVYd7GTa97YGKg48LYvdWv6CVOqQKOgXvd-3Lzq6XTUQhnDh5hV71vnzir4yQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_facile_approach_to_robust_superhydrophobic_3D_coatings_via_connective_particle_formation_using_the_electrospraying_process","translated_slug":"","page_count":9,"language":"en","content_type":"Work","summary":"This work demonstrates a facile fabrication method to produce superhydrophobic coatings on chemically distinct materials using the electrospraying process. Coatings are mechanically robust, three-dimensional, and formed using a single fabrication step. Interest continues to evolve in superhydrophobic surfaces, where the unique property of having a permanent or semi-permanent air layer at a material surface can lead to improved material performance in specific applications. 1-15 Superhydrophobicity is achieved by trapping air at the material-water interface by adding sufficient surface roughness to a low energy material using one of a variety of microfabrication, surface modification, or surface coating techniques. 16-25 Fabricating a surface with superhydrophobicity has become a relatively straightforward procedure, but a number of complexities arise with the usage of such surfaces for practical application. 16 Producing a superhydrophobic surface that meets all of the following design criteria represents a significant challenge: 1) use of readily available hydrophobic materials which can be fabricated with sufficient surface roughness to promote superhydrophobicity; 2) selection of a one-step fabrication technique that is easily scalable for industrial use, utilizes relatively mild processing conditions, and can be coated over large areas; and 3) sufficient mechanical integrity of the surface for its intended application.","owner":{"id":176937962,"first_name":"Mark","middle_initials":null,"last_name":"Grinstaff","page_name":"MGrinstaff","domain_name":"bu","created_at":"2020-11-02T16:03:12.423-08:00","display_name":"Mark Grinstaff","url":"https://bu.academia.edu/MGrinstaff"},"attachments":[{"id":120004953,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004953/thumbnails/1.jpg","file_name":"pmc3878809.pdf","download_url":"https://www.academia.edu/attachments/120004953/download_file","bulk_download_file_name":"A_facile_approach_to_robust_superhydroph.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004953/pmc3878809-libre.pdf?1733368435=\u0026response-content-disposition=attachment%3B+filename%3DA_facile_approach_to_robust_superhydroph.pdf\u0026Expires=1743457404\u0026Signature=J1AF8VsHk9GJYNc6uYRC-CI2rEZpZQ7D3WV5bjQtxUZx60F8gPNf5rk89co2lrEDP4MtpKvpt3Ec4WaDDHF5hww3~GaM3Bd1UwwiGLbR0bSf3iB65v8ORCn2ZCTNVW390Sl92KFLw7n7mat1rnBuajKdUxT2zLDB6~srhq2f7CksNTsN7uR~o-dc33qPN4wamwU4C1Glw~uhf1guZU1PtbyTjIYfC57njtiG84cR~Cy5hEtS-jLJdn0yQmpQZPTAhD4WYukx-iPSmC50BhDDP846AgVYd7GTa97YGKg48LYvdWv6CVOqQKOgXvd-3Lzq6XTUQhnDh5hV71vnzir4yQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":120004952,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004952/thumbnails/1.jpg","file_name":"pmc3878809.pdf","download_url":"https://www.academia.edu/attachments/120004952/download_file","bulk_download_file_name":"A_facile_approach_to_robust_superhydroph.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004952/pmc3878809-libre.pdf?1733368437=\u0026response-content-disposition=attachment%3B+filename%3DA_facile_approach_to_robust_superhydroph.pdf\u0026Expires=1743457404\u0026Signature=gfl~NEN6SmiEAVWZxeyNFqDY2euJddLmwEJ1rlnGLIKWL~Ljslm4c7~HrSiQUHWrrJJxgqzrhw51PNI94n4EmImLVXwb7xrfZSEH91em7NMtqlOi94Dr0a4y1R2ZUhu5nHp5kTL0Xe8Zc-kbvZC7V~5~v~WdfIaLRkh3Pd1uCwt5px~KxX2Zp4-Ts72K7MkaQVYp2xWNZkJCXj2LLaY3US93QTRZdyBRfZG6UAim05THjJkpsxZKLM279UOrjIh9B1bva1jCK3o5XbBFsD-B3D92IfR43n-HoAD7Kc1gwD~JBBDt4HxFG~SNlGDwK5QLvGCMIDBVkv1FIuzmNJf5tA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":136801,"name":"Fabrication","url":"https://www.academia.edu/Documents/in/Fabrication"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":283379,"name":"Glycerol","url":"https://www.academia.edu/Documents/in/Glycerol"},{"id":440924,"name":"Surface Properties","url":"https://www.academia.edu/Documents/in/Surface_Properties"},{"id":973559,"name":"Polyesters","url":"https://www.academia.edu/Documents/in/Polyesters"},{"id":1294768,"name":"Chemical Engineering Communications","url":"https://www.academia.edu/Documents/in/Chemical_Engineering_Communications"}],"urls":[{"id":45919801,"url":"https://europepmc.org/articles/pmc3878809?pdf=render"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-126070868-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="126070862"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126070862/An_Allosteric_Transcription_Factor_DNA_Binding_Electrochemical_Biosensor_for_Progesterone"><img alt="Research paper thumbnail of An Allosteric Transcription Factor DNA-Binding Electrochemical Biosensor for Progesterone" class="work-thumbnail" src="https://attachments.academia-assets.com/120004944/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126070862/An_Allosteric_Transcription_Factor_DNA_Binding_Electrochemical_Biosensor_for_Progesterone">An Allosteric Transcription Factor DNA-Binding Electrochemical Biosensor for Progesterone</a></div><div class="wp-workCard_item"><span>ACS Sensors</span><span>, Apr 12, 2022</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We describe an electrochemical strategy to transduce allosteric transcription factor (aTF) bindin...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We describe an electrochemical strategy to transduce allosteric transcription factor (aTF) binding affinity to sense steroid hormones. Our approach utilizes square wave voltammetry (SWV) to monitor changes in current output as a progesterone (PRG) specific aTF (SRTF1) unbinds from the cognate DNA sequence in the presence of PRG. The sensor detects PRG in artificial urine samples with sufficient sensitivity suitable for clinical applications. Our results highlight the capability of using aTFs as the biorecognition elements to develop electrochemical point-of-care biosensors for detection of small molecule biomarkers and analytes.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8804daa9f560988186d406f1e64b59f8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120004944,"asset_id":126070862,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120004944/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126070862"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126070862"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126070862; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126070862]").text(description); $(".js-view-count[data-work-id=126070862]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126070862; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126070862']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8804daa9f560988186d406f1e64b59f8" } } $('.js-work-strip[data-work-id=126070862]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126070862,"title":"An Allosteric Transcription Factor DNA-Binding Electrochemical Biosensor for Progesterone","translated_title":"","metadata":{"publisher":"American Chemical Society","grobid_abstract":"We describe an electrochemical strategy to transduce allosteric transcription factor (aTF) binding affinity to sense steroid hormones. Our approach utilizes square wave voltammetry (SWV) to monitor changes in current output as a progesterone (PRG) specific aTF (SRTF1) unbinds from the cognate DNA sequence in the presence of PRG. The sensor detects PRG in artificial urine samples with sufficient sensitivity suitable for clinical applications. Our results highlight the capability of using aTFs as the biorecognition elements to develop electrochemical point-of-care biosensors for detection of small molecule biomarkers and analytes.","publication_date":{"day":12,"month":4,"year":2022,"errors":{}},"publication_name":"ACS Sensors","grobid_abstract_attachment_id":120004944},"translated_abstract":null,"internal_url":"https://www.academia.edu/126070862/An_Allosteric_Transcription_Factor_DNA_Binding_Electrochemical_Biosensor_for_Progesterone","translated_internal_url":"","created_at":"2024-12-04T13:02:28.703-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":176937962,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":120004944,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004944/thumbnails/1.jpg","file_name":"document.pdf","download_url":"https://www.academia.edu/attachments/120004944/download_file","bulk_download_file_name":"An_Allosteric_Transcription_Factor_DNA_B.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004944/document-libre.pdf?1733368481=\u0026response-content-disposition=attachment%3B+filename%3DAn_Allosteric_Transcription_Factor_DNA_B.pdf\u0026Expires=1743457404\u0026Signature=Rmq6CLih~5rNu4dQ-pL~-rqDqRcRgqt2ToepzxdBxh~sgDD4IGiAXTN7wvsuCAHD-akDDF5pZYsz~SDRIYHKjhU6ASoLfJByaMlEPUXozHmUDUL~dAJ3K0vV-TdnQr~fD2EwQULW9JL9whMg-IlhjB1wAJGgf1OqtoJwT9Eyeo7h8tcTqBW0LvWmq~3jfH-uqhNVO6T7QiXi1xE~cv0rhrGOr5Q1FSq0a4cXvdnXmPvWg3g7G5UZL0fFpn4~-R-M1uzw76G55HEfNac3tuyKtgv45gVZkoO5i7ZVkEHtvbhQ6gmVfD0CguxjE~BQiGzXA-Zpjq0~WrgedkYKm8~Beg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"An_Allosteric_Transcription_Factor_DNA_Binding_Electrochemical_Biosensor_for_Progesterone","translated_slug":"","page_count":7,"language":"en","content_type":"Work","summary":"We describe an electrochemical strategy to transduce allosteric transcription factor (aTF) binding affinity to sense steroid hormones. Our approach utilizes square wave voltammetry (SWV) to monitor changes in current output as a progesterone (PRG) specific aTF (SRTF1) unbinds from the cognate DNA sequence in the presence of PRG. The sensor detects PRG in artificial urine samples with sufficient sensitivity suitable for clinical applications. Our results highlight the capability of using aTFs as the biorecognition elements to develop electrochemical point-of-care biosensors for detection of small molecule biomarkers and analytes.","owner":{"id":176937962,"first_name":"Mark","middle_initials":null,"last_name":"Grinstaff","page_name":"MGrinstaff","domain_name":"bu","created_at":"2020-11-02T16:03:12.423-08:00","display_name":"Mark Grinstaff","url":"https://bu.academia.edu/MGrinstaff"},"attachments":[{"id":120004944,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004944/thumbnails/1.jpg","file_name":"document.pdf","download_url":"https://www.academia.edu/attachments/120004944/download_file","bulk_download_file_name":"An_Allosteric_Transcription_Factor_DNA_B.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004944/document-libre.pdf?1733368481=\u0026response-content-disposition=attachment%3B+filename%3DAn_Allosteric_Transcription_Factor_DNA_B.pdf\u0026Expires=1743457404\u0026Signature=Rmq6CLih~5rNu4dQ-pL~-rqDqRcRgqt2ToepzxdBxh~sgDD4IGiAXTN7wvsuCAHD-akDDF5pZYsz~SDRIYHKjhU6ASoLfJByaMlEPUXozHmUDUL~dAJ3K0vV-TdnQr~fD2EwQULW9JL9whMg-IlhjB1wAJGgf1OqtoJwT9Eyeo7h8tcTqBW0LvWmq~3jfH-uqhNVO6T7QiXi1xE~cv0rhrGOr5Q1FSq0a4cXvdnXmPvWg3g7G5UZL0fFpn4~-R-M1uzw76G55HEfNac3tuyKtgv45gVZkoO5i7ZVkEHtvbhQ6gmVfD0CguxjE~BQiGzXA-Zpjq0~WrgedkYKm8~Beg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":109419,"name":"Biosensor","url":"https://www.academia.edu/Documents/in/Biosensor"},{"id":213901,"name":"Transcription Factor","url":"https://www.academia.edu/Documents/in/Transcription_Factor"},{"id":1970697,"name":"Allosteric regulation","url":"https://www.academia.edu/Documents/in/Allosteric_regulation"}],"urls":[{"id":45919796,"url":"https://hal.science/hal-03656612/document"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-126070862-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="126070861"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126070861/Aqueous_ROPISA_of_%CE%B1_amino_acid_i_N_i_carboxyanhydrides_polypeptide_block_secondary_structure_controls_nanoparticle_shape_anisotropy"><img alt="Research paper thumbnail of Aqueous ROPISA of α-amino acid <i>N</i>-carboxyanhydrides: polypeptide block secondary structure controls nanoparticle shape anisotropy" class="work-thumbnail" src="https://attachments.academia-assets.com/120004949/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126070861/Aqueous_ROPISA_of_%CE%B1_amino_acid_i_N_i_carboxyanhydrides_polypeptide_block_secondary_structure_controls_nanoparticle_shape_anisotropy">Aqueous ROPISA of α-amino acid <i>N</i>-carboxyanhydrides: polypeptide block secondary structure controls nanoparticle shape anisotropy</a></div><div class="wp-workCard_item"><span>Polymer Chemistry</span><span>, 2021</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="421320d8f0db6f54be9750c557cf0345" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120004949,"asset_id":126070861,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120004949/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126070861"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126070861"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126070861; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126070861]").text(description); $(".js-view-count[data-work-id=126070861]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126070861; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126070861']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "421320d8f0db6f54be9750c557cf0345" } } $('.js-work-strip[data-work-id=126070861]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126070861,"title":"Aqueous ROPISA of α-amino acid \u003ci\u003eN\u003c/i\u003e-carboxyanhydrides: polypeptide block secondary structure controls nanoparticle shape anisotropy","translated_title":"","metadata":{"publisher":"Royal Society of Chemistry","ai_abstract":"Aqueous ROPISA leverages the secondary structure of polypeptides to dictate the morphology and anisotropy of nanostructures formed from α-amino acid N-carboxyanhydrides. This research focuses on synthesizing polypeptides using two distinct monomers, BLG-NCA and Leu-NCA, with the findings demonstrating that the induced secondary structures (α-helices vs. β-sheets) play a critical role in determining the shape and properties of the nanoparticles. The study addresses the implications for scalable synthesis of functional nanomaterials in biomedical applications.","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Polymer Chemistry"},"translated_abstract":null,"internal_url":"https://www.academia.edu/126070861/Aqueous_ROPISA_of_%CE%B1_amino_acid_i_N_i_carboxyanhydrides_polypeptide_block_secondary_structure_controls_nanoparticle_shape_anisotropy","translated_internal_url":"","created_at":"2024-12-04T13:02:28.270-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":176937962,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":120004949,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004949/thumbnails/1.jpg","file_name":"document.pdf","download_url":"https://www.academia.edu/attachments/120004949/download_file","bulk_download_file_name":"Aqueous_ROPISA_of__amino_acid_i_N_i_car.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004949/document-libre.pdf?1733368461=\u0026response-content-disposition=attachment%3B+filename%3DAqueous_ROPISA_of__amino_acid_i_N_i_car.pdf\u0026Expires=1743457404\u0026Signature=TEyOo367yZfnptoi9zHRg5jWJhCC3dDOKtfQE~FvdsLkAD0jxpvGC7ayfmGfUKf6~r5GN7IIma9z~ozlUOK87yEwxoPOWC~VS25Nk13y5mJbh3jiPsO~ftXXNjQxyzO1FGLh1sxOoazm-i-CShoTv5bKic2g76Rr7KtxkyA1DMZJn8qbxYAAYUXaRTvi51JA0hXlfPZSRvle~aoHEorF6RUNBQm72CNxDuAK8~nPzr1HkMy1UOmp4HEW8G7c2lkUuwkulRNlASfAQDAiZMeg~VbgXwu95f0QKoLEYUUbALS4WWUO1fhIO-X4rMDpHLJo9wacXb0c6d1akjmgvgfZbA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Aqueous_ROPISA_of_α_amino_acid_i_N_i_carboxyanhydrides_polypeptide_block_secondary_structure_controls_nanoparticle_shape_anisotropy","translated_slug":"","page_count":56,"language":"en","content_type":"Work","summary":null,"owner":{"id":176937962,"first_name":"Mark","middle_initials":null,"last_name":"Grinstaff","page_name":"MGrinstaff","domain_name":"bu","created_at":"2020-11-02T16:03:12.423-08:00","display_name":"Mark Grinstaff","url":"https://bu.academia.edu/MGrinstaff"},"attachments":[{"id":120004949,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004949/thumbnails/1.jpg","file_name":"document.pdf","download_url":"https://www.academia.edu/attachments/120004949/download_file","bulk_download_file_name":"Aqueous_ROPISA_of__amino_acid_i_N_i_car.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004949/document-libre.pdf?1733368461=\u0026response-content-disposition=attachment%3B+filename%3DAqueous_ROPISA_of__amino_acid_i_N_i_car.pdf\u0026Expires=1743457404\u0026Signature=TEyOo367yZfnptoi9zHRg5jWJhCC3dDOKtfQE~FvdsLkAD0jxpvGC7ayfmGfUKf6~r5GN7IIma9z~ozlUOK87yEwxoPOWC~VS25Nk13y5mJbh3jiPsO~ftXXNjQxyzO1FGLh1sxOoazm-i-CShoTv5bKic2g76Rr7KtxkyA1DMZJn8qbxYAAYUXaRTvi51JA0hXlfPZSRvle~aoHEorF6RUNBQm72CNxDuAK8~nPzr1HkMy1UOmp4HEW8G7c2lkUuwkulRNlASfAQDAiZMeg~VbgXwu95f0QKoLEYUUbALS4WWUO1fhIO-X4rMDpHLJo9wacXb0c6d1akjmgvgfZbA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":120004947,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004947/thumbnails/1.jpg","file_name":"document.pdf","download_url":"https://www.academia.edu/attachments/120004947/download_file","bulk_download_file_name":"Aqueous_ROPISA_of__amino_acid_i_N_i_car.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004947/document-libre.pdf?1733368466=\u0026response-content-disposition=attachment%3B+filename%3DAqueous_ROPISA_of__amino_acid_i_N_i_car.pdf\u0026Expires=1743457404\u0026Signature=QegOJIkkKLm~LCAaAScv1DPL~JS6OUM9KLsTWkEjlNqGz8mGAlyq71mZRWxz8EBbZtPkSVPvD9rQe4yhpaqAo11cpvnIA3-0VKT9GRcD0Pna2JspLVNcqzFqy~RsAISe~0ZvDFpNxcvjg0Z5KkZVXkEnUIHND0ZU3CMCiXd0hkb-aRWGgsN-Llzhszk7LX4TsmT9EPufzeU-EWPKaBkgdlf2vNX6LN-26oEmFwuET4K~zmauJ8Orq1292G48cbjPdWC6khJR7Y4r-sufhznjl5MNbzpHVqR3j6Jr6QLvGzxB4GNu5R5lrNBo2HY2rnh~xIe1b~zc9udwC56nY3RVQw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":2526,"name":"Polymer Chemistry","url":"https://www.academia.edu/Documents/in/Polymer_Chemistry"},{"id":8950,"name":"Nanoparticle","url":"https://www.academia.edu/Documents/in/Nanoparticle"},{"id":989646,"name":"Aqueous Solution","url":"https://www.academia.edu/Documents/in/Aqueous_Solution"}],"urls":[{"id":45919795,"url":"https://hal.science/hal-03359087/document"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-126070861-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="126070860"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126070860/Supramolecular_assemblies_with_DNA_Special_Topic_Article_"><img alt="Research paper thumbnail of Supramolecular assemblies with DNA* (Special Topic Article)" class="work-thumbnail" src="https://attachments.academia-assets.com/120004943/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126070860/Supramolecular_assemblies_with_DNA_Special_Topic_Article_">Supramolecular assemblies with DNA* (Special Topic Article)</a></div><div class="wp-workCard_item"><span>Pure and Applied Chemistry</span><span>, 2005</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">*This paper highlights and contextualizes research findings presented at an IUPAC-sponsored works...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">*This paper highlights and contextualizes research findings presented at an IUPAC-sponsored workshop entitled DNA Supramolecular Assemblies, held in Avignon, France on 5-6 May 2004. Special topic coverage in Pure and Applied Chemistry aims to highlight topical themes and offer critical insight into new and emerging concepts in chemical sciences.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="083085a275aa3ddd10698f4b2edf72f5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120004943,"asset_id":126070860,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120004943/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126070860"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126070860"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126070860; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126070860]").text(description); $(".js-view-count[data-work-id=126070860]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126070860; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126070860']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "083085a275aa3ddd10698f4b2edf72f5" } } $('.js-work-strip[data-work-id=126070860]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126070860,"title":"Supramolecular assemblies with DNA* (Special Topic Article)","translated_title":"","metadata":{"publisher":"International Union of Pure and Applied Chemistry","grobid_abstract":"*This paper highlights and contextualizes research findings presented at an IUPAC-sponsored workshop entitled DNA Supramolecular Assemblies, held in Avignon, France on 5-6 May 2004. Special topic coverage in Pure and Applied Chemistry aims to highlight topical themes and offer critical insight into new and emerging concepts in chemical sciences.","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"Pure and Applied Chemistry","grobid_abstract_attachment_id":120004939},"translated_abstract":null,"internal_url":"https://www.academia.edu/126070860/Supramolecular_assemblies_with_DNA_Special_Topic_Article_","translated_internal_url":"","created_at":"2024-12-04T13:02:27.995-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":176937962,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":120004943,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004943/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/120004943/download_file","bulk_download_file_name":"Supramolecular_assemblies_with_DNA_Speci.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004943/pdf-libre.pdf?1733368445=\u0026response-content-disposition=attachment%3B+filename%3DSupramolecular_assemblies_with_DNA_Speci.pdf\u0026Expires=1743457404\u0026Signature=hCi5QwesOiQd3PZ9YIWvgeJxXRXirR7PrfDolJO9yyvzYjVF4LZ2l1CPEx62HOJSI76ijYE1mgVsGAYAF~4SQ7JZXfbYOaDxHdV~~lhHAY0VGbpRL-GrEj-zOeyG9WiRSjtC4DsIE~LSf2KOhizrUH8GOWjqCsQ2e8XS7O7cW2tv4NwSc31yY7U31GrQIYxExP40nVojA91ID37PtQQ~Zo4KMhq2S4G06zLqitiQyEFFMHY8IPY-RAgb~p~s-n1prLHb9X5huEi6Mp9y~lTTCMuqOT-BOvoKgr2RUDdWpkDMxL6EcMZV06IWkPVbKRJnKdonV-CYvnNbXZ2aD9Nc3Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Supramolecular_assemblies_with_DNA_Special_Topic_Article_","translated_slug":"","page_count":16,"language":"en","content_type":"Work","summary":"*This paper highlights and contextualizes research findings presented at an IUPAC-sponsored workshop entitled DNA Supramolecular Assemblies, held in Avignon, France on 5-6 May 2004. Special topic coverage in Pure and Applied Chemistry aims to highlight topical themes and offer critical insight into new and emerging concepts in chemical sciences.","owner":{"id":176937962,"first_name":"Mark","middle_initials":null,"last_name":"Grinstaff","page_name":"MGrinstaff","domain_name":"bu","created_at":"2020-11-02T16:03:12.423-08:00","display_name":"Mark Grinstaff","url":"https://bu.academia.edu/MGrinstaff"},"attachments":[{"id":120004943,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004943/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/120004943/download_file","bulk_download_file_name":"Supramolecular_assemblies_with_DNA_Speci.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004943/pdf-libre.pdf?1733368445=\u0026response-content-disposition=attachment%3B+filename%3DSupramolecular_assemblies_with_DNA_Speci.pdf\u0026Expires=1743457404\u0026Signature=hCi5QwesOiQd3PZ9YIWvgeJxXRXirR7PrfDolJO9yyvzYjVF4LZ2l1CPEx62HOJSI76ijYE1mgVsGAYAF~4SQ7JZXfbYOaDxHdV~~lhHAY0VGbpRL-GrEj-zOeyG9WiRSjtC4DsIE~LSf2KOhizrUH8GOWjqCsQ2e8XS7O7cW2tv4NwSc31yY7U31GrQIYxExP40nVojA91ID37PtQQ~Zo4KMhq2S4G06zLqitiQyEFFMHY8IPY-RAgb~p~s-n1prLHb9X5huEi6Mp9y~lTTCMuqOT-BOvoKgr2RUDdWpkDMxL6EcMZV06IWkPVbKRJnKdonV-CYvnNbXZ2aD9Nc3Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":120004939,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004939/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/120004939/download_file","bulk_download_file_name":"Supramolecular_assemblies_with_DNA_Speci.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004939/pdf-libre.pdf?1733368444=\u0026response-content-disposition=attachment%3B+filename%3DSupramolecular_assemblies_with_DNA_Speci.pdf\u0026Expires=1743457404\u0026Signature=MDfsCgGepdxhYLmSZzcgjTyxix17A1zSRkBTxHJY3u3ySKQdaa3wl-lhPHTiQeCL~Oqyaw92CxnKCcpZYR7SmaOSTvf84uVFsqDCQePZIfP1EMY9YjWsD7vM8O0p9n4qOJdd-9ptBYQSae7QugfHjCoZGqsVDHHHOr3FvnPR2kMp4vAHwgQwawrlrheRopl1zscwnO4u0sq4aMNyMhKCtF1FC-iuLrp8VwToE7I6fSxOe4-BL5UgU7innWpnzope0KvRoraidkBUvAIikDxCou~N3OkJtxKuZ9w7fBsUISSW61~rPb1auzzBvwrGvTfSnl~BERYw3pF6uCERjIVJZA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":4493,"name":"Supramolecular Chemistry","url":"https://www.academia.edu/Documents/in/Supramolecular_Chemistry"},{"id":17733,"name":"Nanotechnology","url":"https://www.academia.edu/Documents/in/Nanotechnology"},{"id":167748,"name":"Non-covalent interactions","url":"https://www.academia.edu/Documents/in/Non-covalent_interactions"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":1957004,"name":"Stacking","url":"https://www.academia.edu/Documents/in/Stacking"},{"id":2711473,"name":"Pure and Applied Chemistry","url":"https://www.academia.edu/Documents/in/Pure_and_Applied_Chemistry"}],"urls":[{"id":45919794,"url":"https://www.degruyter.com/document/doi/10.1351/pac200577122133/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-126070860-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="126070859"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126070859/Restoration_of_lysosomal_acidification_rescues_autophagy_and_metabolic_dysfunction_in_non_alcoholic_fatty_liver_disease"><img alt="Research paper thumbnail of Restoration of lysosomal acidification rescues autophagy and metabolic dysfunction in non-alcoholic fatty liver disease" class="work-thumbnail" src="https://attachments.academia-assets.com/120004946/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126070859/Restoration_of_lysosomal_acidification_rescues_autophagy_and_metabolic_dysfunction_in_non_alcoholic_fatty_liver_disease">Restoration of lysosomal acidification rescues autophagy and metabolic dysfunction in non-alcoholic fatty liver disease</a></div><div class="wp-workCard_item"><span>Nature Communications</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the world. High lev...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the world. High levels of free fatty acids in the liver impair hepatic lysosomal acidification and reduce autophagic flux. We investigate whether restoration of lysosomal function in NAFLD recovers autophagic flux, mitochondrial function, and insulin sensitivity. Here, we report the synthesis of novel biodegradable acid-activated acidifying nanoparticles (acNPs) as a lysosome targeting treatment to restore lysosomal acidity and autophagy. The acNPs, composed of fluorinated polyesters, remain inactive at plasma pH, and only become activated in lysosomes after endocytosis. Specifically, they degrade at pH of ~6 characteristic of dysfunctional lysosomes, to further acidify and enhance the function of lysosomes. In established in vivo high fat diet mouse models of NAFLD, re-acidification of lysosomes via acNP treatment restores autophagy and mitochondria function to lean, healthy levels. This restoration, conc...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="900632d6f778b96def4b8853e9a3f599" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120004946,"asset_id":126070859,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120004946/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126070859"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126070859"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126070859; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126070859]").text(description); $(".js-view-count[data-work-id=126070859]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126070859; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126070859']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "900632d6f778b96def4b8853e9a3f599" } } $('.js-work-strip[data-work-id=126070859]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126070859,"title":"Restoration of lysosomal acidification rescues autophagy and metabolic dysfunction in non-alcoholic fatty liver disease","translated_title":"","metadata":{"abstract":"Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the world. High levels of free fatty acids in the liver impair hepatic lysosomal acidification and reduce autophagic flux. We investigate whether restoration of lysosomal function in NAFLD recovers autophagic flux, mitochondrial function, and insulin sensitivity. Here, we report the synthesis of novel biodegradable acid-activated acidifying nanoparticles (acNPs) as a lysosome targeting treatment to restore lysosomal acidity and autophagy. The acNPs, composed of fluorinated polyesters, remain inactive at plasma pH, and only become activated in lysosomes after endocytosis. Specifically, they degrade at pH of ~6 characteristic of dysfunctional lysosomes, to further acidify and enhance the function of lysosomes. In established in vivo high fat diet mouse models of NAFLD, re-acidification of lysosomes via acNP treatment restores autophagy and mitochondria function to lean, healthy levels. This restoration, conc...","publisher":"Springer Science and Business Media LLC","publication_name":"Nature Communications"},"translated_abstract":"Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the world. High levels of free fatty acids in the liver impair hepatic lysosomal acidification and reduce autophagic flux. We investigate whether restoration of lysosomal function in NAFLD recovers autophagic flux, mitochondrial function, and insulin sensitivity. Here, we report the synthesis of novel biodegradable acid-activated acidifying nanoparticles (acNPs) as a lysosome targeting treatment to restore lysosomal acidity and autophagy. The acNPs, composed of fluorinated polyesters, remain inactive at plasma pH, and only become activated in lysosomes after endocytosis. Specifically, they degrade at pH of ~6 characteristic of dysfunctional lysosomes, to further acidify and enhance the function of lysosomes. In established in vivo high fat diet mouse models of NAFLD, re-acidification of lysosomes via acNP treatment restores autophagy and mitochondria function to lean, healthy levels. This restoration, conc...","internal_url":"https://www.academia.edu/126070859/Restoration_of_lysosomal_acidification_rescues_autophagy_and_metabolic_dysfunction_in_non_alcoholic_fatty_liver_disease","translated_internal_url":"","created_at":"2024-12-04T13:02:27.704-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":176937962,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":120004946,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004946/thumbnails/1.jpg","file_name":"s41467-023-38165-6.pdf","download_url":"https://www.academia.edu/attachments/120004946/download_file","bulk_download_file_name":"Restoration_of_lysosomal_acidification_r.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004946/s41467-023-38165-6-libre.pdf?1733368453=\u0026response-content-disposition=attachment%3B+filename%3DRestoration_of_lysosomal_acidification_r.pdf\u0026Expires=1743457404\u0026Signature=CXjNqbxixLJ5NrPeeaau8Np0oALuIVek1Cu5u~xEf6Y2vLrN566rMmkJTAASdSUe5Y37uioX6Ecwi~tZtj6~tIerSSItM3SHqIerTcSbhZVACJ2fDLE9NOyDIUWhWSF6~yX0PLciPbvZmDEE8ZLB5GODauQ6LUNAToxUe13otgF3iFiTrwVAtU0Ms6gavayJ3sSQ8k1Op1UZtquj2YkUp9e34lbCz8ta4uoEP6QmGPm7GB7t82DDe5aVlcxzVLMw8prpCH6iHZTlibUHGiEBauhMqlQLx-w3B6ll7yktWOGZH-4Ow9gAWm8xkrEnjIG9Zkdi3-S~FSElFJS245UMzw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Restoration_of_lysosomal_acidification_rescues_autophagy_and_metabolic_dysfunction_in_non_alcoholic_fatty_liver_disease","translated_slug":"","page_count":17,"language":"en","content_type":"Work","summary":"Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the world. High levels of free fatty acids in the liver impair hepatic lysosomal acidification and reduce autophagic flux. We investigate whether restoration of lysosomal function in NAFLD recovers autophagic flux, mitochondrial function, and insulin sensitivity. Here, we report the synthesis of novel biodegradable acid-activated acidifying nanoparticles (acNPs) as a lysosome targeting treatment to restore lysosomal acidity and autophagy. The acNPs, composed of fluorinated polyesters, remain inactive at plasma pH, and only become activated in lysosomes after endocytosis. Specifically, they degrade at pH of ~6 characteristic of dysfunctional lysosomes, to further acidify and enhance the function of lysosomes. In established in vivo high fat diet mouse models of NAFLD, re-acidification of lysosomes via acNP treatment restores autophagy and mitochondria function to lean, healthy levels. This restoration, conc...","owner":{"id":176937962,"first_name":"Mark","middle_initials":null,"last_name":"Grinstaff","page_name":"MGrinstaff","domain_name":"bu","created_at":"2020-11-02T16:03:12.423-08:00","display_name":"Mark Grinstaff","url":"https://bu.academia.edu/MGrinstaff"},"attachments":[{"id":120004946,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004946/thumbnails/1.jpg","file_name":"s41467-023-38165-6.pdf","download_url":"https://www.academia.edu/attachments/120004946/download_file","bulk_download_file_name":"Restoration_of_lysosomal_acidification_r.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004946/s41467-023-38165-6-libre.pdf?1733368453=\u0026response-content-disposition=attachment%3B+filename%3DRestoration_of_lysosomal_acidification_r.pdf\u0026Expires=1743457404\u0026Signature=CXjNqbxixLJ5NrPeeaau8Np0oALuIVek1Cu5u~xEf6Y2vLrN566rMmkJTAASdSUe5Y37uioX6Ecwi~tZtj6~tIerSSItM3SHqIerTcSbhZVACJ2fDLE9NOyDIUWhWSF6~yX0PLciPbvZmDEE8ZLB5GODauQ6LUNAToxUe13otgF3iFiTrwVAtU0Ms6gavayJ3sSQ8k1Op1UZtquj2YkUp9e34lbCz8ta4uoEP6QmGPm7GB7t82DDe5aVlcxzVLMw8prpCH6iHZTlibUHGiEBauhMqlQLx-w3B6ll7yktWOGZH-4Ow9gAWm8xkrEnjIG9Zkdi3-S~FSElFJS245UMzw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":120004942,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004942/thumbnails/1.jpg","file_name":"s41467-023-38165-6.pdf","download_url":"https://www.academia.edu/attachments/120004942/download_file","bulk_download_file_name":"Restoration_of_lysosomal_acidification_r.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004942/s41467-023-38165-6-libre.pdf?1733368457=\u0026response-content-disposition=attachment%3B+filename%3DRestoration_of_lysosomal_acidification_r.pdf\u0026Expires=1743457404\u0026Signature=ac1MKW9qFJKHeCU0vse-pd1mATVgbLhUQv7sD9g1q8YMn00EjYqrUnwEQt799-Ye9VWm0Ivsm1dzhjkCUQaZ1K~AmXsqm72Yxen7bsJBF8Y8TuIGItVwMxA~wEUT8NQXimUdLx1wG44JPDt0zs2JoNUYwPKgzIkHf9SSYHW2H4KNB0VhI9Y5k8onhyoqUGqF3qvsy0ecbvoQLuTd-1vCQGIn-lx47Fy3scNKud-d0O8SjEVi48UUNRH2GEJ3YXqcJPL9OKAOfjIzSTd6Tr8DV5yghgUSZdu0v8r68Y9t8KRzHVmSlzLDBwhKxuxXU5jnPT2ZwPbCA5ZzDMT~PFZc-Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":17923,"name":"Autophagy","url":"https://www.academia.edu/Documents/in/Autophagy"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":90156,"name":"Endocytosis","url":"https://www.academia.edu/Documents/in/Endocytosis"},{"id":153671,"name":"Lysosome","url":"https://www.academia.edu/Documents/in/Lysosome"},{"id":295465,"name":"Fatty Liver","url":"https://www.academia.edu/Documents/in/Fatty_Liver"},{"id":781184,"name":"Mitophagy","url":"https://www.academia.edu/Documents/in/Mitophagy"},{"id":1267800,"name":"Nature Communications","url":"https://www.academia.edu/Documents/in/Nature_Communications"},{"id":1749141,"name":"Steatosis","url":"https://www.academia.edu/Documents/in/Steatosis"}],"urls":[{"id":45919793,"url":"https://www.nature.com/articles/s41467-023-38165-6.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-126070859-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="126070858"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126070858/In_vivo_multiscale_measurements_of_solid_stresses_in_tumors_reveal_scale_dependent_stress_transmission"><img alt="Research paper thumbnail of In vivo multiscale measurements of solid stresses in tumors reveal scale-dependent stress transmission" class="work-thumbnail" src="https://attachments.academia-assets.com/120004977/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126070858/In_vivo_multiscale_measurements_of_solid_stresses_in_tumors_reveal_scale_dependent_stress_transmission">In vivo multiscale measurements of solid stresses in tumors reveal scale-dependent stress transmission</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Solid stress, one of the physical hallmarks of cancer, affects trafficking and infiltration of im...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Solid stress, one of the physical hallmarks of cancer, affects trafficking and infiltration of immune cells, promotes metastasis and tumorigenic pathways, and impedes therapeutic delivery. Despite these clinical ramifications, questions remain regarding the origins and consequences of solid stresses and the differential response of tumor versus normal cells to solid stresses. Answering these fundamental questions requires probing solid stresses at the cellular scale, where biological and immunological responses manifest, as well as in vivo, where the complexities of the tumor microenvironment are present. Here, we report the first in vivo and multi-scale measurements of solid stress in mouse models of breast cancer using multi-modal intravital microscopy of deformable hydrogels complemented with mathematical modeling. Utilizing the capabilities of these methods, such as the high-resolution, longitudinal, and 3-D measurements of local solid stress, we measure and compare solid stress...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d2571e8ed8066e2683eae351f6d3be39" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120004977,"asset_id":126070858,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120004977/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126070858"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126070858"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126070858; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126070858]").text(description); $(".js-view-count[data-work-id=126070858]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126070858; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126070858']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d2571e8ed8066e2683eae351f6d3be39" } } $('.js-work-strip[data-work-id=126070858]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126070858,"title":"In vivo multiscale measurements of solid stresses in tumors reveal scale-dependent stress transmission","translated_title":"","metadata":{"abstract":"Solid stress, one of the physical hallmarks of cancer, affects trafficking and infiltration of immune cells, promotes metastasis and tumorigenic pathways, and impedes therapeutic delivery. Despite these clinical ramifications, questions remain regarding the origins and consequences of solid stresses and the differential response of tumor versus normal cells to solid stresses. Answering these fundamental questions requires probing solid stresses at the cellular scale, where biological and immunological responses manifest, as well as in vivo, where the complexities of the tumor microenvironment are present. Here, we report the first in vivo and multi-scale measurements of solid stress in mouse models of breast cancer using multi-modal intravital microscopy of deformable hydrogels complemented with mathematical modeling. Utilizing the capabilities of these methods, such as the high-resolution, longitudinal, and 3-D measurements of local solid stress, we measure and compare solid stress...","publisher":"Research Square Platform LLC"},"translated_abstract":"Solid stress, one of the physical hallmarks of cancer, affects trafficking and infiltration of immune cells, promotes metastasis and tumorigenic pathways, and impedes therapeutic delivery. Despite these clinical ramifications, questions remain regarding the origins and consequences of solid stresses and the differential response of tumor versus normal cells to solid stresses. Answering these fundamental questions requires probing solid stresses at the cellular scale, where biological and immunological responses manifest, as well as in vivo, where the complexities of the tumor microenvironment are present. Here, we report the first in vivo and multi-scale measurements of solid stress in mouse models of breast cancer using multi-modal intravital microscopy of deformable hydrogels complemented with mathematical modeling. Utilizing the capabilities of these methods, such as the high-resolution, longitudinal, and 3-D measurements of local solid stress, we measure and compare solid stress...","internal_url":"https://www.academia.edu/126070858/In_vivo_multiscale_measurements_of_solid_stresses_in_tumors_reveal_scale_dependent_stress_transmission","translated_internal_url":"","created_at":"2024-12-04T13:02:27.351-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":176937962,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":120004977,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004977/thumbnails/1.jpg","file_name":"latest.pdf","download_url":"https://www.academia.edu/attachments/120004977/download_file","bulk_download_file_name":"In_vivo_multiscale_measurements_of_solid.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004977/latest-libre.pdf?1733356542=\u0026response-content-disposition=attachment%3B+filename%3DIn_vivo_multiscale_measurements_of_solid.pdf\u0026Expires=1743457404\u0026Signature=EPd2VJckNjq8ozcBmJOl7wVZBN1Z8u0Zd3rWYEVt6t735pvOautqTte0bTORiOwJpsHDL86uHIKazaOMDd7LbuihHIdSLxXPfRufPinOQV1wM27dsWdpx~gotZIUJnBE3IUVrZqM30StxKdJc0YyKL7-JgLSjAJcyx9l8Mia07i3Z90Nz~CZfrY0a~dy9bNyfuEyEhUSAkFzVVfzlFR9qXxYnUC~tbz5k8icDBaT2JRTPLZ-nybB5qEYcdeTKibmM82UdO-uh5t7WPgvsQoZg7emJKeoEHWbKfW5sxKeQV8PXLbBLbB-uXMVpQDcrHxzLYOwGjJlK4z72mM4ivmHJw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"In_vivo_multiscale_measurements_of_solid_stresses_in_tumors_reveal_scale_dependent_stress_transmission","translated_slug":"","page_count":31,"language":"en","content_type":"Work","summary":"Solid stress, one of the physical hallmarks of cancer, affects trafficking and infiltration of immune cells, promotes metastasis and tumorigenic pathways, and impedes therapeutic delivery. Despite these clinical ramifications, questions remain regarding the origins and consequences of solid stresses and the differential response of tumor versus normal cells to solid stresses. Answering these fundamental questions requires probing solid stresses at the cellular scale, where biological and immunological responses manifest, as well as in vivo, where the complexities of the tumor microenvironment are present. Here, we report the first in vivo and multi-scale measurements of solid stress in mouse models of breast cancer using multi-modal intravital microscopy of deformable hydrogels complemented with mathematical modeling. Utilizing the capabilities of these methods, such as the high-resolution, longitudinal, and 3-D measurements of local solid stress, we measure and compare solid stress...","owner":{"id":176937962,"first_name":"Mark","middle_initials":null,"last_name":"Grinstaff","page_name":"MGrinstaff","domain_name":"bu","created_at":"2020-11-02T16:03:12.423-08:00","display_name":"Mark Grinstaff","url":"https://bu.academia.edu/MGrinstaff"},"attachments":[{"id":120004977,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004977/thumbnails/1.jpg","file_name":"latest.pdf","download_url":"https://www.academia.edu/attachments/120004977/download_file","bulk_download_file_name":"In_vivo_multiscale_measurements_of_solid.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004977/latest-libre.pdf?1733356542=\u0026response-content-disposition=attachment%3B+filename%3DIn_vivo_multiscale_measurements_of_solid.pdf\u0026Expires=1743457404\u0026Signature=EPd2VJckNjq8ozcBmJOl7wVZBN1Z8u0Zd3rWYEVt6t735pvOautqTte0bTORiOwJpsHDL86uHIKazaOMDd7LbuihHIdSLxXPfRufPinOQV1wM27dsWdpx~gotZIUJnBE3IUVrZqM30StxKdJc0YyKL7-JgLSjAJcyx9l8Mia07i3Z90Nz~CZfrY0a~dy9bNyfuEyEhUSAkFzVVfzlFR9qXxYnUC~tbz5k8icDBaT2JRTPLZ-nybB5qEYcdeTKibmM82UdO-uh5t7WPgvsQoZg7emJKeoEHWbKfW5sxKeQV8PXLbBLbB-uXMVpQDcrHxzLYOwGjJlK4z72mM4ivmHJw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":302037,"name":"In Vivo","url":"https://www.academia.edu/Documents/in/In_Vivo"},{"id":4142611,"name":"Solid tumor","url":"https://www.academia.edu/Documents/in/Solid_tumor"}],"urls":[{"id":45919792,"url":"https://www.researchsquare.com/article/rs-1697924/v1"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-126070858-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="126070857"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126070857/Dual_contrast_in_computed_tomography_allows_earlier_characterization_of_articular_cartilage_over_single_contrast"><img alt="Research paper thumbnail of Dual contrast in computed tomography allows earlier characterization of articular cartilage over single contrast" class="work-thumbnail" src="https://attachments.academia-assets.com/120004979/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126070857/Dual_contrast_in_computed_tomography_allows_earlier_characterization_of_articular_cartilage_over_single_contrast">Dual contrast in computed tomography allows earlier characterization of articular cartilage over single contrast</a></div><div class="wp-workCard_item"><span>Journal of Orthopaedic Research</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Cationic computed tomography contrast agents are more sensitive for detecting cartilage degenerat...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Cationic computed tomography contrast agents are more sensitive for detecting cartilage degeneration than anionic or non‐ionic agents. However, osteoarthritis‐related loss of proteoglycans and increase in water content contrarily affect the diffusion of cationic contrast agents, limiting their sensitivity. The quantitative dual‐energy computed tomography technique allows the simultaneous determination of the partitions of iodine‐based cationic (CA4+) and gadolinium‐based non‐ionic (gadoteridol) agents in cartilage at diffusion equilibrium. Normalizing the cationic agent partition at diffusion equilibrium with that of the non‐ionic agent improves diagnostic sensitivity. We hypothesize that this sensitivity improvement is also prominent during early diffusion time points and that the technique is applicable during contrast agent diffusion. To investigate the validity of this hypothesis, osteochondral plugs (d = 8 mm, N = 33), extracted from human cadaver (n = 4) knee joints, were imme...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="81098dddfd60b4661db87b540faca14a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120004979,"asset_id":126070857,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120004979/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126070857"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126070857"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126070857; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126070857]").text(description); $(".js-view-count[data-work-id=126070857]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126070857; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126070857']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "81098dddfd60b4661db87b540faca14a" } } $('.js-work-strip[data-work-id=126070857]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126070857,"title":"Dual contrast in computed tomography allows earlier characterization of articular cartilage over single contrast","translated_title":"","metadata":{"abstract":"Cationic computed tomography contrast agents are more sensitive for detecting cartilage degeneration than anionic or non‐ionic agents. However, osteoarthritis‐related loss of proteoglycans and increase in water content contrarily affect the diffusion of cationic contrast agents, limiting their sensitivity. The quantitative dual‐energy computed tomography technique allows the simultaneous determination of the partitions of iodine‐based cationic (CA4+) and gadolinium‐based non‐ionic (gadoteridol) agents in cartilage at diffusion equilibrium. Normalizing the cationic agent partition at diffusion equilibrium with that of the non‐ionic agent improves diagnostic sensitivity. We hypothesize that this sensitivity improvement is also prominent during early diffusion time points and that the technique is applicable during contrast agent diffusion. To investigate the validity of this hypothesis, osteochondral plugs (d = 8 mm, N = 33), extracted from human cadaver (n = 4) knee joints, were imme...","publisher":"Wiley","publication_name":"Journal of Orthopaedic Research"},"translated_abstract":"Cationic computed tomography contrast agents are more sensitive for detecting cartilage degeneration than anionic or non‐ionic agents. However, osteoarthritis‐related loss of proteoglycans and increase in water content contrarily affect the diffusion of cationic contrast agents, limiting their sensitivity. The quantitative dual‐energy computed tomography technique allows the simultaneous determination of the partitions of iodine‐based cationic (CA4+) and gadolinium‐based non‐ionic (gadoteridol) agents in cartilage at diffusion equilibrium. Normalizing the cationic agent partition at diffusion equilibrium with that of the non‐ionic agent improves diagnostic sensitivity. We hypothesize that this sensitivity improvement is also prominent during early diffusion time points and that the technique is applicable during contrast agent diffusion. To investigate the validity of this hypothesis, osteochondral plugs (d = 8 mm, N = 33), extracted from human cadaver (n = 4) knee joints, were imme...","internal_url":"https://www.academia.edu/126070857/Dual_contrast_in_computed_tomography_allows_earlier_characterization_of_articular_cartilage_over_single_contrast","translated_internal_url":"","created_at":"2024-12-04T13:02:27.074-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":176937962,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":120004979,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004979/thumbnails/1.jpg","file_name":"1610961803741311810.pdf","download_url":"https://www.academia.edu/attachments/120004979/download_file","bulk_download_file_name":"Dual_contrast_in_computed_tomography_all.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004979/1610961803741311810-libre.pdf?1733356528=\u0026response-content-disposition=attachment%3B+filename%3DDual_contrast_in_computed_tomography_all.pdf\u0026Expires=1743457404\u0026Signature=Qkv8KgBHjyPGUg6hDOqMZc5FKTEt2FR42scRL63QjmyBPAL553U0Piyy9N9SEW~nhFxa0EQrBM0ohrZ~P7EkFTtzTlFTg9nv6iXT~KuPzqOaXCQ6BtYihcB-3B5VFNC83~Oib5qno4mOzR0ItWJzHPf9UszZP5UrwkgxFtPxBqf2W~uycJV41mSUngn7JwAk~R6jSd-CPAD6jj-d2aAYlor6oDK-AY4H3CHYIo68lqMRl3YayC6Jlw-FShtaYn3AeSW38wCRwmME7uIKr9XwTQCEJV56ViB8FXQUNHsRu5HpnrpzKp4kMy1sIye03cPI9LJ2-WPnaRSTJmvBVjRUMw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Dual_contrast_in_computed_tomography_allows_earlier_characterization_of_articular_cartilage_over_single_contrast","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":"Cationic computed tomography contrast agents are more sensitive for detecting cartilage degeneration than anionic or non‐ionic agents. However, osteoarthritis‐related loss of proteoglycans and increase in water content contrarily affect the diffusion of cationic contrast agents, limiting their sensitivity. The quantitative dual‐energy computed tomography technique allows the simultaneous determination of the partitions of iodine‐based cationic (CA4+) and gadolinium‐based non‐ionic (gadoteridol) agents in cartilage at diffusion equilibrium. Normalizing the cationic agent partition at diffusion equilibrium with that of the non‐ionic agent improves diagnostic sensitivity. We hypothesize that this sensitivity improvement is also prominent during early diffusion time points and that the technique is applicable during contrast agent diffusion. To investigate the validity of this hypothesis, osteochondral plugs (d = 8 mm, N = 33), extracted from human cadaver (n = 4) knee joints, were imme...","owner":{"id":176937962,"first_name":"Mark","middle_initials":null,"last_name":"Grinstaff","page_name":"MGrinstaff","domain_name":"bu","created_at":"2020-11-02T16:03:12.423-08:00","display_name":"Mark Grinstaff","url":"https://bu.academia.edu/MGrinstaff"},"attachments":[{"id":120004979,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004979/thumbnails/1.jpg","file_name":"1610961803741311810.pdf","download_url":"https://www.academia.edu/attachments/120004979/download_file","bulk_download_file_name":"Dual_contrast_in_computed_tomography_all.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004979/1610961803741311810-libre.pdf?1733356528=\u0026response-content-disposition=attachment%3B+filename%3DDual_contrast_in_computed_tomography_all.pdf\u0026Expires=1743457404\u0026Signature=Qkv8KgBHjyPGUg6hDOqMZc5FKTEt2FR42scRL63QjmyBPAL553U0Piyy9N9SEW~nhFxa0EQrBM0ohrZ~P7EkFTtzTlFTg9nv6iXT~KuPzqOaXCQ6BtYihcB-3B5VFNC83~Oib5qno4mOzR0ItWJzHPf9UszZP5UrwkgxFtPxBqf2W~uycJV41mSUngn7JwAk~R6jSd-CPAD6jj-d2aAYlor6oDK-AY4H3CHYIo68lqMRl3YayC6Jlw-FShtaYn3AeSW38wCRwmME7uIKr9XwTQCEJV56ViB8FXQUNHsRu5HpnrpzKp4kMy1sIye03cPI9LJ2-WPnaRSTJmvBVjRUMw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":1131,"name":"Biomedical Engineering","url":"https://www.academia.edu/Documents/in/Biomedical_Engineering"},{"id":3132,"name":"Biomechanics","url":"https://www.academia.edu/Documents/in/Biomechanics"},{"id":24675,"name":"Orthopaedic","url":"https://www.academia.edu/Documents/in/Orthopaedic"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":78188,"name":"Cartilage","url":"https://www.academia.edu/Documents/in/Cartilage"},{"id":244814,"name":"Clinical Sciences","url":"https://www.academia.edu/Documents/in/Clinical_Sciences"},{"id":1931839,"name":"Dual energy CT","url":"https://www.academia.edu/Documents/in/Dual_energy_CT"}],"urls":[{"id":45919791,"url":"https://onlinelibrary.wiley.com/doi/pdf/10.1002/jor.24774"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-126070857-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="126070856"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126070856/Asah2_Represses_the_p53_Hmox1_Axis_to_Protect_Myeloid_Derived_Suppressor_Cells_from_Ferroptosis"><img alt="Research paper thumbnail of Asah2 Represses the p53–Hmox1 Axis to Protect Myeloid-Derived Suppressor Cells from Ferroptosis" class="work-thumbnail" src="https://attachments.academia-assets.com/120004951/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126070856/Asah2_Represses_the_p53_Hmox1_Axis_to_Protect_Myeloid_Derived_Suppressor_Cells_from_Ferroptosis">Asah2 Represses the p53–Hmox1 Axis to Protect Myeloid-Derived Suppressor Cells from Ferroptosis</a></div><div class="wp-workCard_item"><span>The Journal of Immunology</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Myeloid-derived suppressor cells (MDSCs) are immune suppressive cells that massively accumulate u...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Myeloid-derived suppressor cells (MDSCs) are immune suppressive cells that massively accumulate under pathological conditions to suppress T cell immune response. Dysregulated cell death contributes to MDSC accumulation, but the molecular mechanism underlying this cell death dysregulation is not fully understood. In this study, we report that neutral ceramidase (N-acylsphingosine amidohydrolase [ASAH2]) is highly expressed in tumor-infiltrating MDSCs in colon carcinoma and acts as an MDSC survival factor. To target ASAH2, we performed molecular docking based on human ASAH2 protein structure. Enzymatic inhibition analysis of identified hits determined NC06 as an ASAH2 inhibitor. Chemical and nuclear magnetic resonance analysis determined NC06 as 7-chloro-2-(3-chloroanilino)pyrano[3,4-e][1,3]oxazine-4,5-dione. NC06 inhibits ceramidase activity with an IC50 of 10.16–25.91 μM for human ASAH2 and 18.6–30.2 μM for mouse Asah2 proteins. NC06 induces MDSC death in a dose-dependent manner, an...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="bea31230b8774617f257b09deb6ae6f4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120004951,"asset_id":126070856,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120004951/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126070856"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126070856"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126070856; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126070856]").text(description); $(".js-view-count[data-work-id=126070856]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126070856; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126070856']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "bea31230b8774617f257b09deb6ae6f4" } } $('.js-work-strip[data-work-id=126070856]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126070856,"title":"Asah2 Represses the p53–Hmox1 Axis to Protect Myeloid-Derived Suppressor Cells from Ferroptosis","translated_title":"","metadata":{"abstract":"Myeloid-derived suppressor cells (MDSCs) are immune suppressive cells that massively accumulate under pathological conditions to suppress T cell immune response. Dysregulated cell death contributes to MDSC accumulation, but the molecular mechanism underlying this cell death dysregulation is not fully understood. In this study, we report that neutral ceramidase (N-acylsphingosine amidohydrolase [ASAH2]) is highly expressed in tumor-infiltrating MDSCs in colon carcinoma and acts as an MDSC survival factor. To target ASAH2, we performed molecular docking based on human ASAH2 protein structure. Enzymatic inhibition analysis of identified hits determined NC06 as an ASAH2 inhibitor. Chemical and nuclear magnetic resonance analysis determined NC06 as 7-chloro-2-(3-chloroanilino)pyrano[3,4-e][1,3]oxazine-4,5-dione. NC06 inhibits ceramidase activity with an IC50 of 10.16–25.91 μM for human ASAH2 and 18.6–30.2 μM for mouse Asah2 proteins. NC06 induces MDSC death in a dose-dependent manner, an...","publisher":"The American Association of Immunologists","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"The Journal of Immunology"},"translated_abstract":"Myeloid-derived suppressor cells (MDSCs) are immune suppressive cells that massively accumulate under pathological conditions to suppress T cell immune response. Dysregulated cell death contributes to MDSC accumulation, but the molecular mechanism underlying this cell death dysregulation is not fully understood. In this study, we report that neutral ceramidase (N-acylsphingosine amidohydrolase [ASAH2]) is highly expressed in tumor-infiltrating MDSCs in colon carcinoma and acts as an MDSC survival factor. To target ASAH2, we performed molecular docking based on human ASAH2 protein structure. Enzymatic inhibition analysis of identified hits determined NC06 as an ASAH2 inhibitor. Chemical and nuclear magnetic resonance analysis determined NC06 as 7-chloro-2-(3-chloroanilino)pyrano[3,4-e][1,3]oxazine-4,5-dione. NC06 inhibits ceramidase activity with an IC50 of 10.16–25.91 μM for human ASAH2 and 18.6–30.2 μM for mouse Asah2 proteins. NC06 induces MDSC death in a dose-dependent manner, an...","internal_url":"https://www.academia.edu/126070856/Asah2_Represses_the_p53_Hmox1_Axis_to_Protect_Myeloid_Derived_Suppressor_Cells_from_Ferroptosis","translated_internal_url":"","created_at":"2024-12-04T13:02:26.751-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":176937962,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":120004951,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004951/thumbnails/1.jpg","file_name":"ji2000500.pdf","download_url":"https://www.academia.edu/attachments/120004951/download_file","bulk_download_file_name":"Asah2_Represses_the_p53_Hmox1_Axis_to_Pr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004951/ji2000500-libre.pdf?1733368454=\u0026response-content-disposition=attachment%3B+filename%3DAsah2_Represses_the_p53_Hmox1_Axis_to_Pr.pdf\u0026Expires=1743457405\u0026Signature=DGudl~yT-20VETiHEBO71vejT9ZE4hzAtC6xWRI~4GYQHzNGCMNixXKOz-idqwSfT199dZMgc5PxEnY6AlfXZfuY4G753apQlFANmlpi3Yv-fCp3IYxW7FjM4sD6CEUELWpqjGTH9bvrJJ4rNXZeHOGu9yMsANGiBF~c~CyvLawFhgz0fAsA~qqdR5QTAeLYAhsZipZhdOrV42OcMYtlakZ1P3QiFdkIIIuMCp2WGYdjfrWEw7x2mIn~k5iP8sosJs4p83yY6e0qn~7UJNKSM7uH7Aci9pf5UPR0IlkBNsR9K~djzh3GtHrVbqnxJOxY524NQIaNiHxzN7lkJvw4Dg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Asah2_Represses_the_p53_Hmox1_Axis_to_Protect_Myeloid_Derived_Suppressor_Cells_from_Ferroptosis","translated_slug":"","page_count":11,"language":"en","content_type":"Work","summary":"Myeloid-derived suppressor cells (MDSCs) are immune suppressive cells that massively accumulate under pathological conditions to suppress T cell immune response. Dysregulated cell death contributes to MDSC accumulation, but the molecular mechanism underlying this cell death dysregulation is not fully understood. In this study, we report that neutral ceramidase (N-acylsphingosine amidohydrolase [ASAH2]) is highly expressed in tumor-infiltrating MDSCs in colon carcinoma and acts as an MDSC survival factor. To target ASAH2, we performed molecular docking based on human ASAH2 protein structure. Enzymatic inhibition analysis of identified hits determined NC06 as an ASAH2 inhibitor. Chemical and nuclear magnetic resonance analysis determined NC06 as 7-chloro-2-(3-chloroanilino)pyrano[3,4-e][1,3]oxazine-4,5-dione. NC06 inhibits ceramidase activity with an IC50 of 10.16–25.91 μM for human ASAH2 and 18.6–30.2 μM for mouse Asah2 proteins. NC06 induces MDSC death in a dose-dependent manner, an...","owner":{"id":176937962,"first_name":"Mark","middle_initials":null,"last_name":"Grinstaff","page_name":"MGrinstaff","domain_name":"bu","created_at":"2020-11-02T16:03:12.423-08:00","display_name":"Mark Grinstaff","url":"https://bu.academia.edu/MGrinstaff"},"attachments":[{"id":120004951,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004951/thumbnails/1.jpg","file_name":"ji2000500.pdf","download_url":"https://www.academia.edu/attachments/120004951/download_file","bulk_download_file_name":"Asah2_Represses_the_p53_Hmox1_Axis_to_Pr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004951/ji2000500-libre.pdf?1733368454=\u0026response-content-disposition=attachment%3B+filename%3DAsah2_Represses_the_p53_Hmox1_Axis_to_Pr.pdf\u0026Expires=1743457405\u0026Signature=DGudl~yT-20VETiHEBO71vejT9ZE4hzAtC6xWRI~4GYQHzNGCMNixXKOz-idqwSfT199dZMgc5PxEnY6AlfXZfuY4G753apQlFANmlpi3Yv-fCp3IYxW7FjM4sD6CEUELWpqjGTH9bvrJJ4rNXZeHOGu9yMsANGiBF~c~CyvLawFhgz0fAsA~qqdR5QTAeLYAhsZipZhdOrV42OcMYtlakZ1P3QiFdkIIIuMCp2WGYdjfrWEw7x2mIn~k5iP8sosJs4p83yY6e0qn~7UJNKSM7uH7Aci9pf5UPR0IlkBNsR9K~djzh3GtHrVbqnxJOxY524NQIaNiHxzN7lkJvw4Dg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":120004941,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004941/thumbnails/1.jpg","file_name":"ji2000500.pdf","download_url":"https://www.academia.edu/attachments/120004941/download_file","bulk_download_file_name":"Asah2_Represses_the_p53_Hmox1_Axis_to_Pr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004941/ji2000500-libre.pdf?1733368456=\u0026response-content-disposition=attachment%3B+filename%3DAsah2_Represses_the_p53_Hmox1_Axis_to_Pr.pdf\u0026Expires=1743457405\u0026Signature=M3fUwKAfJ3~7tUuuHNlKDEfon-98Y9oB2LL8lBRT37e2Enw-1RehMDCRrCZDjPoJHpGjUSctIJAQ5fpf4GI9ECYIcKyRNawc66Bnr-8ebDnhJFDOv3STeTiZOkrtpMsdDucZWII-a468sqskuHz2VUYjddmv4ofA3Kyih52iOAP-3kA7zYv5v-LWHYvh~4Enc-A3Eq9KF4jBOTzAnkTILyZWmt8JOBvH3Ys1CmwFzYlEuDZFVgcnBSUzFMV2iYooQepGP-hNkFdSLJQMLtlRgFWUSr6rKpE~bShFb-iKcWY9D5122wRadh-WSB3OHTEm-TNVpXMeOob~sbg0aQkxNA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":1290,"name":"Immunology","url":"https://www.academia.edu/Documents/in/Immunology"},{"id":18327,"name":"Immunology of the Gut","url":"https://www.academia.edu/Documents/in/Immunology_of_the_Gut"},{"id":22255,"name":"Cancer Research","url":"https://www.academia.edu/Documents/in/Cancer_Research"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":175490,"name":"Programmed cell death","url":"https://www.academia.edu/Documents/in/Programmed_cell_death"}],"urls":[{"id":45919790,"url":"https://journals.aai.org/jimmunol/article-pdf/206/6/1395/1464065/ji2000500.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-126070856-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="126070855"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126070855/Biofabrication_of_a_shape_stable_auricular_structure_for_the_reconstruction_of_ear_deformities"><img alt="Research paper thumbnail of Biofabrication of a shape-stable auricular structure for the reconstruction of ear deformities" class="work-thumbnail" src="https://attachments.academia-assets.com/120004975/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126070855/Biofabrication_of_a_shape_stable_auricular_structure_for_the_reconstruction_of_ear_deformities">Biofabrication of a shape-stable auricular structure for the reconstruction of ear deformities</a></div><div class="wp-workCard_item"><span>Materials Today Bio</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Bioengineering of the human auricle remains a significant challenge, where the complex and unique...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Bioengineering of the human auricle remains a significant challenge, where the complex and unique shape, the generation of high-quality neocartilage, and shape preservation are key factors. Future regenerative medicine-based approaches for auricular cartilage reconstruction will benefit from a smart combination of various strategies. Our approach to fabrication of an ear-shaped construct uses hybrid bioprinting techniques, a recently identified progenitor cell population, previously validated biomaterials, and a smart scaffold design. Specifically, we generated a 3D-printed polycaprolactone (PCL) scaffold via fused deposition modeling, photocrosslinked a human auricular cartilage progenitor cell-laden gelatin methacryloyl (gelMA) hydrogel within the scaffold, and cultured the bioengineered structure in vitro in chondrogenic media for 30 days. Our results show that the fabrication process maintains the viability and chondrogenic phenotype of the cells, that the compressive properties of the combined PCL and gelMA hybrid auricular constructs are similar to native auricular cartilage, and that biofabricated hybrid auricular structures exhibit excellent shape fidelity compared with the 3D digital model along with deposition of cartilage-like matrix in both peripheral and central areas of the auricular structure. Our strategy affords an anatomically enhanced auricular structure with appropriate mechanical properties, ensures adequate preservation of the auricular shape during a dynamic in vitro culture period, and enables chondrogenically potent progenitor cells to produce abundant cartilage-like matrix throughout the auricular construct. The combination of smart scaffold design with 3D bioprinting and cartilage progenitor cells holds promise for the development of clinically translatable regenerative medicine strategies for auricular reconstruction.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1b09070e88ac6c92ce8845a8aa8d1ae3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120004975,"asset_id":126070855,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120004975/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126070855"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126070855"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126070855; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126070855]").text(description); $(".js-view-count[data-work-id=126070855]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126070855; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126070855']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1b09070e88ac6c92ce8845a8aa8d1ae3" } } $('.js-work-strip[data-work-id=126070855]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126070855,"title":"Biofabrication of a shape-stable auricular structure for the reconstruction of ear deformities","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"Bioengineering of the human auricle remains a significant challenge, where the complex and unique shape, the generation of high-quality neocartilage, and shape preservation are key factors. Future regenerative medicine-based approaches for auricular cartilage reconstruction will benefit from a smart combination of various strategies. Our approach to fabrication of an ear-shaped construct uses hybrid bioprinting techniques, a recently identified progenitor cell population, previously validated biomaterials, and a smart scaffold design. Specifically, we generated a 3D-printed polycaprolactone (PCL) scaffold via fused deposition modeling, photocrosslinked a human auricular cartilage progenitor cell-laden gelatin methacryloyl (gelMA) hydrogel within the scaffold, and cultured the bioengineered structure in vitro in chondrogenic media for 30 days. Our results show that the fabrication process maintains the viability and chondrogenic phenotype of the cells, that the compressive properties of the combined PCL and gelMA hybrid auricular constructs are similar to native auricular cartilage, and that biofabricated hybrid auricular structures exhibit excellent shape fidelity compared with the 3D digital model along with deposition of cartilage-like matrix in both peripheral and central areas of the auricular structure. Our strategy affords an anatomically enhanced auricular structure with appropriate mechanical properties, ensures adequate preservation of the auricular shape during a dynamic in vitro culture period, and enables chondrogenically potent progenitor cells to produce abundant cartilage-like matrix throughout the auricular construct. The combination of smart scaffold design with 3D bioprinting and cartilage progenitor cells holds promise for the development of clinically translatable regenerative medicine strategies for auricular reconstruction.","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Materials Today Bio","grobid_abstract_attachment_id":120004975},"translated_abstract":null,"internal_url":"https://www.academia.edu/126070855/Biofabrication_of_a_shape_stable_auricular_structure_for_the_reconstruction_of_ear_deformities","translated_internal_url":"","created_at":"2024-12-04T13:02:26.471-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":176937962,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":120004975,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004975/thumbnails/1.jpg","file_name":"Otto_2021_Biofabrication_of_a_shape_stable_au.pdf","download_url":"https://www.academia.edu/attachments/120004975/download_file","bulk_download_file_name":"Biofabrication_of_a_shape_stable_auricul.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004975/Otto_2021_Biofabrication_of_a_shape_stable_au-libre.pdf?1733356532=\u0026response-content-disposition=attachment%3B+filename%3DBiofabrication_of_a_shape_stable_auricul.pdf\u0026Expires=1743457405\u0026Signature=TQMuxIcZENq28JRbLoq2oDVS09JiG7Hdnp3XAIhrtMNqGQ-g8aElzXTywSUvgafdwA13MlgRAPom3eJgVpnkmxEaFDQOaYaUQ2D1xiM4DH05-PI-Shyxu5x2ON2O40vGl8HHsOeQXFalkC5CJ9ktC0ssyG0tf726WsFew7f1JRngwImQ~aHFdmZHth64AbIL8gbRFnlf9OcffZEB0rTtatmF7A9cD8OMHytZvn6aMlYB-8Gc3BGRVVWtV5TOAYpT7Va~kaaiai0-VTxlyiblNYJBegh4bfQ8F2uCniOEzIQRNgCJjHOV9VUKTMQgn0~-UOJdaxsDBqZyX59jb1D5VQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Biofabrication_of_a_shape_stable_auricular_structure_for_the_reconstruction_of_ear_deformities","translated_slug":"","page_count":11,"language":"en","content_type":"Work","summary":"Bioengineering of the human auricle remains a significant challenge, where the complex and unique shape, the generation of high-quality neocartilage, and shape preservation are key factors. Future regenerative medicine-based approaches for auricular cartilage reconstruction will benefit from a smart combination of various strategies. Our approach to fabrication of an ear-shaped construct uses hybrid bioprinting techniques, a recently identified progenitor cell population, previously validated biomaterials, and a smart scaffold design. Specifically, we generated a 3D-printed polycaprolactone (PCL) scaffold via fused deposition modeling, photocrosslinked a human auricular cartilage progenitor cell-laden gelatin methacryloyl (gelMA) hydrogel within the scaffold, and cultured the bioengineered structure in vitro in chondrogenic media for 30 days. Our results show that the fabrication process maintains the viability and chondrogenic phenotype of the cells, that the compressive properties of the combined PCL and gelMA hybrid auricular constructs are similar to native auricular cartilage, and that biofabricated hybrid auricular structures exhibit excellent shape fidelity compared with the 3D digital model along with deposition of cartilage-like matrix in both peripheral and central areas of the auricular structure. Our strategy affords an anatomically enhanced auricular structure with appropriate mechanical properties, ensures adequate preservation of the auricular shape during a dynamic in vitro culture period, and enables chondrogenically potent progenitor cells to produce abundant cartilage-like matrix throughout the auricular construct. The combination of smart scaffold design with 3D bioprinting and cartilage progenitor cells holds promise for the development of clinically translatable regenerative medicine strategies for auricular reconstruction.","owner":{"id":176937962,"first_name":"Mark","middle_initials":null,"last_name":"Grinstaff","page_name":"MGrinstaff","domain_name":"bu","created_at":"2020-11-02T16:03:12.423-08:00","display_name":"Mark Grinstaff","url":"https://bu.academia.edu/MGrinstaff"},"attachments":[{"id":120004975,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004975/thumbnails/1.jpg","file_name":"Otto_2021_Biofabrication_of_a_shape_stable_au.pdf","download_url":"https://www.academia.edu/attachments/120004975/download_file","bulk_download_file_name":"Biofabrication_of_a_shape_stable_auricul.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004975/Otto_2021_Biofabrication_of_a_shape_stable_au-libre.pdf?1733356532=\u0026response-content-disposition=attachment%3B+filename%3DBiofabrication_of_a_shape_stable_auricul.pdf\u0026Expires=1743457405\u0026Signature=TQMuxIcZENq28JRbLoq2oDVS09JiG7Hdnp3XAIhrtMNqGQ-g8aElzXTywSUvgafdwA13MlgRAPom3eJgVpnkmxEaFDQOaYaUQ2D1xiM4DH05-PI-Shyxu5x2ON2O40vGl8HHsOeQXFalkC5CJ9ktC0ssyG0tf726WsFew7f1JRngwImQ~aHFdmZHth64AbIL8gbRFnlf9OcffZEB0rTtatmF7A9cD8OMHytZvn6aMlYB-8Gc3BGRVVWtV5TOAYpT7Va~kaaiai0-VTxlyiblNYJBegh4bfQ8F2uCniOEzIQRNgCJjHOV9VUKTMQgn0~-UOJdaxsDBqZyX59jb1D5VQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":1131,"name":"Biomedical Engineering","url":"https://www.academia.edu/Documents/in/Biomedical_Engineering"},{"id":25550,"name":"Regenerative Medicine","url":"https://www.academia.edu/Documents/in/Regenerative_Medicine"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":78188,"name":"Cartilage","url":"https://www.academia.edu/Documents/in/Cartilage"},{"id":114783,"name":"Scaffold","url":"https://www.academia.edu/Documents/in/Scaffold"},{"id":216119,"name":"Biofabrication","url":"https://www.academia.edu/Documents/in/Biofabrication"},{"id":606065,"name":"Chondrogenesis","url":"https://www.academia.edu/Documents/in/Chondrogenesis"},{"id":4040890,"name":"Auricle","url":"https://www.academia.edu/Documents/in/Auricle"}],"urls":[{"id":45919789,"url":"https://api.elsevier.com/content/article/PII:S2590006421000028?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-126070855-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="126070854"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126070854/Surface_Immobilized_Nucleic_Acid_Transcription_Factor_Quantum_Dots_for_Biosensing"><img alt="Research paper thumbnail of Surface Immobilized Nucleic Acid–Transcription Factor Quantum Dots for Biosensing" class="work-thumbnail" src="https://attachments.academia-assets.com/120004978/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126070854/Surface_Immobilized_Nucleic_Acid_Transcription_Factor_Quantum_Dots_for_Biosensing">Surface Immobilized Nucleic Acid–Transcription Factor Quantum Dots for Biosensing</a></div><div class="wp-workCard_item"><span>Advanced Healthcare Materials</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Immobilization of biosensors on surfaces is a key step toward development of devices for real‐wor...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Immobilization of biosensors on surfaces is a key step toward development of devices for real‐world applications. Here the preparation, characterization, and evaluation of a surface‐bound transcription factor–nucleic acid complex for analyte detection as an alternative to conventional systems employing aptamers or antibodies are described. The sensor consists of a gold surface modified with thiolated Cy5 fluorophore‐labeled DNA and an allosteric transcription factor (TetR) linked to a quantum dot (QD). Upon addition of anhydrotetracycline (aTc)—the analyte—the TetR‐QDs release from the surface‐bound DNA, resulting in loss of the Förster resonance energy transfer signal. The sensor responds in a dose‐dependent manner over the relevant range of 0–200 µm aTc with a limit of detection of 80 nm. The fabrication of the sensor and the subsequent real‐time quantitative measurements establish a framework for the design of future surface‐bound, affinity‐based biosensors using allosteric trans...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2637cedb291a0c29bf80dc70a5a83407" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120004978,"asset_id":126070854,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120004978/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126070854"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126070854"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126070854; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126070854]").text(description); $(".js-view-count[data-work-id=126070854]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126070854; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126070854']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2637cedb291a0c29bf80dc70a5a83407" } } $('.js-work-strip[data-work-id=126070854]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126070854,"title":"Surface Immobilized Nucleic Acid–Transcription Factor Quantum Dots for Biosensing","translated_title":"","metadata":{"abstract":"Immobilization of biosensors on surfaces is a key step toward development of devices for real‐world applications. Here the preparation, characterization, and evaluation of a surface‐bound transcription factor–nucleic acid complex for analyte detection as an alternative to conventional systems employing aptamers or antibodies are described. The sensor consists of a gold surface modified with thiolated Cy5 fluorophore‐labeled DNA and an allosteric transcription factor (TetR) linked to a quantum dot (QD). Upon addition of anhydrotetracycline (aTc)—the analyte—the TetR‐QDs release from the surface‐bound DNA, resulting in loss of the Förster resonance energy transfer signal. The sensor responds in a dose‐dependent manner over the relevant range of 0–200 µm aTc with a limit of detection of 80 nm. The fabrication of the sensor and the subsequent real‐time quantitative measurements establish a framework for the design of future surface‐bound, affinity‐based biosensors using allosteric trans...","publisher":"Wiley","ai_title_tag":"Quantum Dot-Based Nucleic Acid Biosensor","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"Advanced Healthcare Materials"},"translated_abstract":"Immobilization of biosensors on surfaces is a key step toward development of devices for real‐world applications. Here the preparation, characterization, and evaluation of a surface‐bound transcription factor–nucleic acid complex for analyte detection as an alternative to conventional systems employing aptamers or antibodies are described. The sensor consists of a gold surface modified with thiolated Cy5 fluorophore‐labeled DNA and an allosteric transcription factor (TetR) linked to a quantum dot (QD). Upon addition of anhydrotetracycline (aTc)—the analyte—the TetR‐QDs release from the surface‐bound DNA, resulting in loss of the Förster resonance energy transfer signal. The sensor responds in a dose‐dependent manner over the relevant range of 0–200 µm aTc with a limit of detection of 80 nm. The fabrication of the sensor and the subsequent real‐time quantitative measurements establish a framework for the design of future surface‐bound, affinity‐based biosensors using allosteric trans...","internal_url":"https://www.academia.edu/126070854/Surface_Immobilized_Nucleic_Acid_Transcription_Factor_Quantum_Dots_for_Biosensing","translated_internal_url":"","created_at":"2024-12-04T13:02:26.200-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":176937962,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":120004978,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004978/thumbnails/1.jpg","file_name":"Surface_20Immobilized_20Nucleic_20Acid_20-_20Transcription_20Factor_20Quantum_20Dots_20for_20Biosensing_HAL.pdf","download_url":"https://www.academia.edu/attachments/120004978/download_file","bulk_download_file_name":"Surface_Immobilized_Nucleic_Acid_Transcr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004978/Surface_20Immobilized_20Nucleic_20Acid_20-_20Transcription_20Factor_20Quantum_20Dots_20for_20Biosensing_HAL-libre.pdf?1733356539=\u0026response-content-disposition=attachment%3B+filename%3DSurface_Immobilized_Nucleic_Acid_Transcr.pdf\u0026Expires=1743457405\u0026Signature=UGBFFJionadOtI~CUcYol7ZhGVRH~wwEIfXWTaqMFAwZkxFG-mW-3luow46o9WkWWEu3ExJb5MDLm5WOB6yBypH8pdm4Y1RqPlp~n2eMRAcCVXjN37kbZBg6zn8D0xZKrGWiGueO7DtZCJFUkSA~I1tDw385VF4tdHw~l-Ym7FruHzZjEDhwYwUeESyJhUGP~8Iww6Rr8Dks1Mffvs7NM2jdNKij9wjvahvRVLeFYOmP4YfX-ArP3S-Hau42~4uSItLZEL4smnmbHwHfFH2wDl6HerqAGv8SW6dBiVwTHttXflsDunMfbWDKkS4K2ban4uzAwTaqNtPLsuX8S~dCfA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Surface_Immobilized_Nucleic_Acid_Transcription_Factor_Quantum_Dots_for_Biosensing","translated_slug":"","page_count":27,"language":"en","content_type":"Work","summary":"Immobilization of biosensors on surfaces is a key step toward development of devices for real‐world applications. Here the preparation, characterization, and evaluation of a surface‐bound transcription factor–nucleic acid complex for analyte detection as an alternative to conventional systems employing aptamers or antibodies are described. The sensor consists of a gold surface modified with thiolated Cy5 fluorophore‐labeled DNA and an allosteric transcription factor (TetR) linked to a quantum dot (QD). Upon addition of anhydrotetracycline (aTc)—the analyte—the TetR‐QDs release from the surface‐bound DNA, resulting in loss of the Förster resonance energy transfer signal. The sensor responds in a dose‐dependent manner over the relevant range of 0–200 µm aTc with a limit of detection of 80 nm. The fabrication of the sensor and the subsequent real‐time quantitative measurements establish a framework for the design of future surface‐bound, affinity‐based biosensors using allosteric trans...","owner":{"id":176937962,"first_name":"Mark","middle_initials":null,"last_name":"Grinstaff","page_name":"MGrinstaff","domain_name":"bu","created_at":"2020-11-02T16:03:12.423-08:00","display_name":"Mark Grinstaff","url":"https://bu.academia.edu/MGrinstaff"},"attachments":[{"id":120004978,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004978/thumbnails/1.jpg","file_name":"Surface_20Immobilized_20Nucleic_20Acid_20-_20Transcription_20Factor_20Quantum_20Dots_20for_20Biosensing_HAL.pdf","download_url":"https://www.academia.edu/attachments/120004978/download_file","bulk_download_file_name":"Surface_Immobilized_Nucleic_Acid_Transcr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004978/Surface_20Immobilized_20Nucleic_20Acid_20-_20Transcription_20Factor_20Quantum_20Dots_20for_20Biosensing_HAL-libre.pdf?1733356539=\u0026response-content-disposition=attachment%3B+filename%3DSurface_Immobilized_Nucleic_Acid_Transcr.pdf\u0026Expires=1743457405\u0026Signature=UGBFFJionadOtI~CUcYol7ZhGVRH~wwEIfXWTaqMFAwZkxFG-mW-3luow46o9WkWWEu3ExJb5MDLm5WOB6yBypH8pdm4Y1RqPlp~n2eMRAcCVXjN37kbZBg6zn8D0xZKrGWiGueO7DtZCJFUkSA~I1tDw385VF4tdHw~l-Ym7FruHzZjEDhwYwUeESyJhUGP~8Iww6Rr8Dks1Mffvs7NM2jdNKij9wjvahvRVLeFYOmP4YfX-ArP3S-Hau42~4uSItLZEL4smnmbHwHfFH2wDl6HerqAGv8SW6dBiVwTHttXflsDunMfbWDKkS4K2ban4uzAwTaqNtPLsuX8S~dCfA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":17733,"name":"Nanotechnology","url":"https://www.academia.edu/Documents/in/Nanotechnology"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":109419,"name":"Biosensor","url":"https://www.academia.edu/Documents/in/Biosensor"},{"id":445674,"name":"Quantum Dot","url":"https://www.academia.edu/Documents/in/Quantum_Dot"},{"id":1338314,"name":"Aptamer","url":"https://www.academia.edu/Documents/in/Aptamer"},{"id":1727314,"name":"Nucleic Acid","url":"https://www.academia.edu/Documents/in/Nucleic_Acid"}],"urls":[{"id":45919788,"url":"https://onlinelibrary.wiley.com/doi/pdf/10.1002/adhm.202000403"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-126070854-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="126070853"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126070853/Aqueous_Ring_Opening_Polymerization_Induced_Self_Assembly_ROPISA_of_N_Carboxyanhydrides"><img alt="Research paper thumbnail of Aqueous Ring‐Opening Polymerization‐Induced Self‐Assembly (ROPISA) of N‐Carboxyanhydrides" class="work-thumbnail" src="https://attachments.academia-assets.com/120004976/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126070853/Aqueous_Ring_Opening_Polymerization_Induced_Self_Assembly_ROPISA_of_N_Carboxyanhydrides">Aqueous Ring‐Opening Polymerization‐Induced Self‐Assembly (ROPISA) of N‐Carboxyanhydrides</a></div><div class="wp-workCard_item"><span>Angewandte Chemie International Edition</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Reported here is the first aqueous ring‐opening polymerization (ROP) of N‐carboxyanhydrides (NCAs...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Reported here is the first aqueous ring‐opening polymerization (ROP) of N‐carboxyanhydrides (NCAs) using α‐amino‐poly(ethylene oxide) as a macroinitiator to protect the NCA monomers from hydrolysis through spontaneous in situ self‐assembly (ISA). This ROPISA process affords well‐defined amphiphilic diblock copolymers that simultaneously form original needle‐like nanoparticles.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5bc0c87fd6690568cc7bf8d0d1d327a1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120004976,"asset_id":126070853,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120004976/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126070853"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126070853"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126070853; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126070853]").text(description); $(".js-view-count[data-work-id=126070853]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126070853; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126070853']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5bc0c87fd6690568cc7bf8d0d1d327a1" } } $('.js-work-strip[data-work-id=126070853]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126070853,"title":"Aqueous Ring‐Opening Polymerization‐Induced Self‐Assembly (ROPISA) of N‐Carboxyanhydrides","translated_title":"","metadata":{"abstract":"Reported here is the first aqueous ring‐opening polymerization (ROP) of N‐carboxyanhydrides (NCAs) using α‐amino‐poly(ethylene oxide) as a macroinitiator to protect the NCA monomers from hydrolysis through spontaneous in situ self‐assembly (ISA). This ROPISA process affords well‐defined amphiphilic diblock copolymers that simultaneously form original needle‐like nanoparticles.","publisher":"Wiley","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Angewandte Chemie International Edition"},"translated_abstract":"Reported here is the first aqueous ring‐opening polymerization (ROP) of N‐carboxyanhydrides (NCAs) using α‐amino‐poly(ethylene oxide) as a macroinitiator to protect the NCA monomers from hydrolysis through spontaneous in situ self‐assembly (ISA). This ROPISA process affords well‐defined amphiphilic diblock copolymers that simultaneously form original needle‐like nanoparticles.","internal_url":"https://www.academia.edu/126070853/Aqueous_Ring_Opening_Polymerization_Induced_Self_Assembly_ROPISA_of_N_Carboxyanhydrides","translated_internal_url":"","created_at":"2024-12-04T13:02:25.250-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":176937962,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":120004976,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004976/thumbnails/1.jpg","file_name":"ange.pdf","download_url":"https://www.academia.edu/attachments/120004976/download_file","bulk_download_file_name":"Aqueous_Ring_Opening_Polymerization_Indu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004976/ange-libre.pdf?1733356531=\u0026response-content-disposition=attachment%3B+filename%3DAqueous_Ring_Opening_Polymerization_Indu.pdf\u0026Expires=1743457405\u0026Signature=aLU17GIztGInvwHoqOJUNhXvXniPjly4kzZwhQUUA4jrWzlcwtprls72fnJIq5tjIWc2tUyCHVrtEhorrWQsRx~AWr4FKNB0TgssEvic9bPdUUdibGwzWT875KBY9HyZ519YKsBPHwHT9VGNkanZnxz~YXcKaQ3tvxYcQWcmTTj~oeu3MoRppLWLxJAMJPHD3Fj5rDXzn1NB1pN5SyUaSafL2f7sTRDWz1OvFqCnpRSrJSjqfnFeNzvNJpNuB8f5JeGLHHHWsDIwry7IzVjw6mkCct1j4FwFDZQq2yQ9zPSDODVoj-UDGSWbxgfK5IkDzxz6Ftq34Bz4k1tTZHDytA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Aqueous_Ring_Opening_Polymerization_Induced_Self_Assembly_ROPISA_of_N_Carboxyanhydrides","translated_slug":"","page_count":1,"language":"de","content_type":"Work","summary":"Reported here is the first aqueous ring‐opening polymerization (ROP) of N‐carboxyanhydrides (NCAs) using α‐amino‐poly(ethylene oxide) as a macroinitiator to protect the NCA monomers from hydrolysis through spontaneous in situ self‐assembly (ISA). This ROPISA process affords well‐defined amphiphilic diblock copolymers that simultaneously form original needle‐like nanoparticles.","owner":{"id":176937962,"first_name":"Mark","middle_initials":null,"last_name":"Grinstaff","page_name":"MGrinstaff","domain_name":"bu","created_at":"2020-11-02T16:03:12.423-08:00","display_name":"Mark Grinstaff","url":"https://bu.academia.edu/MGrinstaff"},"attachments":[{"id":120004976,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004976/thumbnails/1.jpg","file_name":"ange.pdf","download_url":"https://www.academia.edu/attachments/120004976/download_file","bulk_download_file_name":"Aqueous_Ring_Opening_Polymerization_Indu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004976/ange-libre.pdf?1733356531=\u0026response-content-disposition=attachment%3B+filename%3DAqueous_Ring_Opening_Polymerization_Indu.pdf\u0026Expires=1743457405\u0026Signature=aLU17GIztGInvwHoqOJUNhXvXniPjly4kzZwhQUUA4jrWzlcwtprls72fnJIq5tjIWc2tUyCHVrtEhorrWQsRx~AWr4FKNB0TgssEvic9bPdUUdibGwzWT875KBY9HyZ519YKsBPHwHT9VGNkanZnxz~YXcKaQ3tvxYcQWcmTTj~oeu3MoRppLWLxJAMJPHD3Fj5rDXzn1NB1pN5SyUaSafL2f7sTRDWz1OvFqCnpRSrJSjqfnFeNzvNJpNuB8f5JeGLHHHWsDIwry7IzVjw6mkCct1j4FwFDZQq2yQ9zPSDODVoj-UDGSWbxgfK5IkDzxz6Ftq34Bz4k1tTZHDytA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":2526,"name":"Polymer Chemistry","url":"https://www.academia.edu/Documents/in/Polymer_Chemistry"},{"id":11073,"name":"Self Assembly","url":"https://www.academia.edu/Documents/in/Self_Assembly"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":32909,"name":"Polymerization","url":"https://www.academia.edu/Documents/in/Polymerization"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":387449,"name":"Monomer","url":"https://www.academia.edu/Documents/in/Monomer"},{"id":989646,"name":"Aqueous Solution","url":"https://www.academia.edu/Documents/in/Aqueous_Solution"},{"id":1030794,"name":"Hydrolysis","url":"https://www.academia.edu/Documents/in/Hydrolysis"},{"id":1270386,"name":"Chimie Des Matériaux","url":"https://www.academia.edu/Documents/in/Chimie_Des_Materiaux"},{"id":1291661,"name":"Copolymer","url":"https://www.academia.edu/Documents/in/Copolymer"},{"id":1880965,"name":"Ring Opening Polymerization","url":"https://www.academia.edu/Documents/in/Ring_Opening_Polymerization"}],"urls":[{"id":45919787,"url":"https://onlinelibrary.wiley.com/doi/pdf/10.1002/anie.201912028"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-126070853-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="126070852"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126070852/Triple_Contrast_CT_Method_Enables_Simultaneous_Evaluation_of_Articular_Cartilage_Composition_and_Segmentation"><img alt="Research paper thumbnail of Triple Contrast CT Method Enables Simultaneous Evaluation of Articular Cartilage Composition and Segmentation" class="work-thumbnail" src="https://attachments.academia-assets.com/120004940/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126070852/Triple_Contrast_CT_Method_Enables_Simultaneous_Evaluation_of_Articular_Cartilage_Composition_and_Segmentation">Triple Contrast CT Method Enables Simultaneous Evaluation of Articular Cartilage Composition and Segmentation</a></div><div class="wp-workCard_item"><span>Annals of Biomedical Engineering</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Early degenerative changes of articular cartilage are detected using contrast-enhanced computed t...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Early degenerative changes of articular cartilage are detected using contrast-enhanced computed tomography (CT) with a cationic contrast agent (CA). However, cationic CA diffusion into degenerated cartilage decreases with proteoglycan depletion and increases with elevated water content, thus hampering tissue evaluation at early diffusion time points. Furthermore, the contrast at synovial fluid-cartilage interface diminishes as a function of diffusion time hindering accurate cartilage segmentation. For the first time, we employ quantitative dual-energy CT (QDECT) imaging utilizing a mixture of three CAs (cationic CA4+ and non-ionic gadoteridol which are sensitive to proteoglycan and water contents, respectively, and bismuth nanoparticles which highlight the cartilage surface) to simultaneously segment the articulating surfaces and determine of the cartilage condition. Intact healthy, proteoglycan-depleted, and mechanically injured bovine cartilage samples (n = 27) were halved and ima...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="236a70d1031a52d109fef9959991f69f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120004940,"asset_id":126070852,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120004940/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126070852"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126070852"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126070852; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126070852]").text(description); $(".js-view-count[data-work-id=126070852]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126070852; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126070852']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "236a70d1031a52d109fef9959991f69f" } } $('.js-work-strip[data-work-id=126070852]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126070852,"title":"Triple Contrast CT Method Enables Simultaneous Evaluation of Articular Cartilage Composition and Segmentation","translated_title":"","metadata":{"abstract":"Early degenerative changes of articular cartilage are detected using contrast-enhanced computed tomography (CT) with a cationic contrast agent (CA). However, cationic CA diffusion into degenerated cartilage decreases with proteoglycan depletion and increases with elevated water content, thus hampering tissue evaluation at early diffusion time points. Furthermore, the contrast at synovial fluid-cartilage interface diminishes as a function of diffusion time hindering accurate cartilage segmentation. For the first time, we employ quantitative dual-energy CT (QDECT) imaging utilizing a mixture of three CAs (cationic CA4+ and non-ionic gadoteridol which are sensitive to proteoglycan and water contents, respectively, and bismuth nanoparticles which highlight the cartilage surface) to simultaneously segment the articulating surfaces and determine of the cartilage condition. Intact healthy, proteoglycan-depleted, and mechanically injured bovine cartilage samples (n = 27) were halved and ima...","publisher":"Springer Science and Business Media LLC","ai_title_tag":"Triple Contrast CT for Cartilage Evaluation","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Annals of Biomedical Engineering"},"translated_abstract":"Early degenerative changes of articular cartilage are detected using contrast-enhanced computed tomography (CT) with a cationic contrast agent (CA). However, cationic CA diffusion into degenerated cartilage decreases with proteoglycan depletion and increases with elevated water content, thus hampering tissue evaluation at early diffusion time points. Furthermore, the contrast at synovial fluid-cartilage interface diminishes as a function of diffusion time hindering accurate cartilage segmentation. For the first time, we employ quantitative dual-energy CT (QDECT) imaging utilizing a mixture of three CAs (cationic CA4+ and non-ionic gadoteridol which are sensitive to proteoglycan and water contents, respectively, and bismuth nanoparticles which highlight the cartilage surface) to simultaneously segment the articulating surfaces and determine of the cartilage condition. Intact healthy, proteoglycan-depleted, and mechanically injured bovine cartilage samples (n = 27) were halved and ima...","internal_url":"https://www.academia.edu/126070852/Triple_Contrast_CT_Method_Enables_Simultaneous_Evaluation_of_Articular_Cartilage_Composition_and_Segmentation","translated_internal_url":"","created_at":"2024-12-04T13:02:24.838-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":176937962,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":120004940,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004940/thumbnails/1.jpg","file_name":"s10439-019-02362-6.pdf","download_url":"https://www.academia.edu/attachments/120004940/download_file","bulk_download_file_name":"Triple_Contrast_CT_Method_Enables_Simult.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004940/s10439-019-02362-6-libre.pdf?1733368452=\u0026response-content-disposition=attachment%3B+filename%3DTriple_Contrast_CT_Method_Enables_Simult.pdf\u0026Expires=1743457405\u0026Signature=OZ6LR-~RKSOv9VfSMQrr~~v7aGt5LssGtv8tTMHYl5tYou5~5QucCuCGvBrsPx1A7TQdEYrCSMHGK9H4hbpKaogDmuLZbUWzJI4KEn6ynXLRld61yvSOO-PELZJ0RQ3a6Tzfwx1aFsUzO-STVpPkUhUiVYBPcfRsrerhPgnhwD4rryqrZmgeFCEoFv2azIH0C152BbRKLApfHvFcwaJmZZ~vQrOcPJV5cQf2Dljqk9bN8onibhCrnkYyLoorHEgE~S-C-bAmimFjS22rOf04rRX3vTmoRFf2zrBANmO1PcdhSLXjQ1wPB2p4678Qj1MW2DJs30cqeyAhTq~zxhVR1w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Triple_Contrast_CT_Method_Enables_Simultaneous_Evaluation_of_Articular_Cartilage_Composition_and_Segmentation","translated_slug":"","page_count":12,"language":"en","content_type":"Work","summary":"Early degenerative changes of articular cartilage are detected using contrast-enhanced computed tomography (CT) with a cationic contrast agent (CA). However, cationic CA diffusion into degenerated cartilage decreases with proteoglycan depletion and increases with elevated water content, thus hampering tissue evaluation at early diffusion time points. Furthermore, the contrast at synovial fluid-cartilage interface diminishes as a function of diffusion time hindering accurate cartilage segmentation. For the first time, we employ quantitative dual-energy CT (QDECT) imaging utilizing a mixture of three CAs (cationic CA4+ and non-ionic gadoteridol which are sensitive to proteoglycan and water contents, respectively, and bismuth nanoparticles which highlight the cartilage surface) to simultaneously segment the articulating surfaces and determine of the cartilage condition. Intact healthy, proteoglycan-depleted, and mechanically injured bovine cartilage samples (n = 27) were halved and ima...","owner":{"id":176937962,"first_name":"Mark","middle_initials":null,"last_name":"Grinstaff","page_name":"MGrinstaff","domain_name":"bu","created_at":"2020-11-02T16:03:12.423-08:00","display_name":"Mark Grinstaff","url":"https://bu.academia.edu/MGrinstaff"},"attachments":[{"id":120004940,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004940/thumbnails/1.jpg","file_name":"s10439-019-02362-6.pdf","download_url":"https://www.academia.edu/attachments/120004940/download_file","bulk_download_file_name":"Triple_Contrast_CT_Method_Enables_Simult.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004940/s10439-019-02362-6-libre.pdf?1733368452=\u0026response-content-disposition=attachment%3B+filename%3DTriple_Contrast_CT_Method_Enables_Simult.pdf\u0026Expires=1743457405\u0026Signature=OZ6LR-~RKSOv9VfSMQrr~~v7aGt5LssGtv8tTMHYl5tYou5~5QucCuCGvBrsPx1A7TQdEYrCSMHGK9H4hbpKaogDmuLZbUWzJI4KEn6ynXLRld61yvSOO-PELZJ0RQ3a6Tzfwx1aFsUzO-STVpPkUhUiVYBPcfRsrerhPgnhwD4rryqrZmgeFCEoFv2azIH0C152BbRKLApfHvFcwaJmZZ~vQrOcPJV5cQf2Dljqk9bN8onibhCrnkYyLoorHEgE~S-C-bAmimFjS22rOf04rRX3vTmoRFf2zrBANmO1PcdhSLXjQ1wPB2p4678Qj1MW2DJs30cqeyAhTq~zxhVR1w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":120004938,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004938/thumbnails/1.jpg","file_name":"s10439-019-02362-6.pdf","download_url":"https://www.academia.edu/attachments/120004938/download_file","bulk_download_file_name":"Triple_Contrast_CT_Method_Enables_Simult.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004938/s10439-019-02362-6-libre.pdf?1733368458=\u0026response-content-disposition=attachment%3B+filename%3DTriple_Contrast_CT_Method_Enables_Simult.pdf\u0026Expires=1743457405\u0026Signature=T31mJZuEXRhAYn2D3AG8HezGQpoAknzHK3dME3wDuBbud6ZJZUMGFCOW45MXR0JXTL9hPZY2VxSK4TWXpcKJ01F-pmb9RcTo88a22rJelzDzdUHoVQy1OFprqaiatIRau3jnFePoXN2vbjK0I3uTBAC3Smca2M5xnPdlMCxtyUALxqU1wGfbX6RuiYLpNu0tJGed23PGlOvcEXKJVHEHEiKLojORalW5wxhRZUE0EVI59oJWGENqAdV0eQl9nlHgbnmrin7mELMbzI6lvMr~ZY~Y2BGyeBeKUeMO31xISRs~QdAhq0teJRpYX2NMoiKHVUXcut04NkfFbkxljXnGkQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":1131,"name":"Biomedical Engineering","url":"https://www.academia.edu/Documents/in/Biomedical_Engineering"},{"id":1648,"name":"Computed Tomography","url":"https://www.academia.edu/Documents/in/Computed_Tomography"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":78188,"name":"Cartilage","url":"https://www.academia.edu/Documents/in/Cartilage"},{"id":1146501,"name":"Articular Cartilage","url":"https://www.academia.edu/Documents/in/Articular_Cartilage"},{"id":3763225,"name":"Medical and Health Sciences","url":"https://www.academia.edu/Documents/in/Medical_and_Health_Sciences"}],"urls":[{"id":45919786,"url":"http://link.springer.com/content/pdf/10.1007/s10439-019-02362-6.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-126070852-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="126070851"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126070851/A_versatile_and_accessible_polymer_coating_for_functionalizable_zwitterionic_quantum_dots_with_high_DNA_grafting_efficiency"><img alt="Research paper thumbnail of A versatile and accessible polymer coating for functionalizable zwitterionic quantum dots with high DNA grafting efficiency" class="work-thumbnail" src="https://attachments.academia-assets.com/120004973/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126070851/A_versatile_and_accessible_polymer_coating_for_functionalizable_zwitterionic_quantum_dots_with_high_DNA_grafting_efficiency">A versatile and accessible polymer coating for functionalizable zwitterionic quantum dots with high DNA grafting efficiency</a></div><div class="wp-workCard_item"><span>Chemical Communications</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">An accessible method to produce a click chemistry-ready, zwitterionic polymer from commercially a...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">An accessible method to produce a click chemistry-ready, zwitterionic polymer from commercially available reagents facilitates efficient DNA grafting to quantum dots.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9310827d1550c04ef6eba0c48db32e5a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120004973,"asset_id":126070851,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120004973/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126070851"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126070851"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126070851; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126070851]").text(description); $(".js-view-count[data-work-id=126070851]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126070851; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126070851']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9310827d1550c04ef6eba0c48db32e5a" } } $('.js-work-strip[data-work-id=126070851]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126070851,"title":"A versatile and accessible polymer coating for functionalizable zwitterionic quantum dots with high DNA grafting efficiency","translated_title":"","metadata":{"abstract":"An accessible method to produce a click chemistry-ready, zwitterionic polymer from commercially available reagents facilitates efficient DNA grafting to quantum dots.","publisher":"Royal Society of Chemistry (RSC)","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Chemical Communications"},"translated_abstract":"An accessible method to produce a click chemistry-ready, zwitterionic polymer from commercially available reagents facilitates efficient DNA grafting to quantum dots.","internal_url":"https://www.academia.edu/126070851/A_versatile_and_accessible_polymer_coating_for_functionalizable_zwitterionic_quantum_dots_with_high_DNA_grafting_efficiency","translated_internal_url":"","created_at":"2024-12-04T13:02:24.367-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":176937962,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":120004973,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004973/thumbnails/1.jpg","file_name":"Grazon_et_al_ChemComm2019.pdf","download_url":"https://www.academia.edu/attachments/120004973/download_file","bulk_download_file_name":"A_versatile_and_accessible_polymer_coati.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004973/Grazon_et_al_ChemComm2019-libre.pdf?1733356562=\u0026response-content-disposition=attachment%3B+filename%3DA_versatile_and_accessible_polymer_coati.pdf\u0026Expires=1743457405\u0026Signature=WqkVtbsvOeIygiXXE-~-4CdTzoZEAA~4JWVSvmWmHJk6xPZ2~bJ5fRTX-CFXrQ-pPIuVzSz8NlQLsg7h~XwP3cVwa6rVVwWpLtCOuHrGxcaPRHmgbiKYu6qJ6XZ66rttDhnRq2Vv3NTwWlBUUYc5x8CFX7qBTqTUJCqg6GYkYrmGuJnQtQcwyVdlkyFQGs56AUlDgAMq8D9J6FcrG2QsVm-X4JWc-O9IQQO-PaHz8y65y5w1CVk5uJaL3-FUF5TYjZRtStqmIzwCMG9W9OGwan98LVM2D7i5d18eBoPGVHQxAetgGIv7XA3UhicaTzf1Mb51g6z1MW51Cy9L8AA-yA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_versatile_and_accessible_polymer_coating_for_functionalizable_zwitterionic_quantum_dots_with_high_DNA_grafting_efficiency","translated_slug":"","page_count":28,"language":"en","content_type":"Work","summary":"An accessible method to produce a click chemistry-ready, zwitterionic polymer from commercially available reagents facilitates efficient DNA grafting to quantum dots.","owner":{"id":176937962,"first_name":"Mark","middle_initials":null,"last_name":"Grinstaff","page_name":"MGrinstaff","domain_name":"bu","created_at":"2020-11-02T16:03:12.423-08:00","display_name":"Mark Grinstaff","url":"https://bu.academia.edu/MGrinstaff"},"attachments":[{"id":120004973,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004973/thumbnails/1.jpg","file_name":"Grazon_et_al_ChemComm2019.pdf","download_url":"https://www.academia.edu/attachments/120004973/download_file","bulk_download_file_name":"A_versatile_and_accessible_polymer_coati.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004973/Grazon_et_al_ChemComm2019-libre.pdf?1733356562=\u0026response-content-disposition=attachment%3B+filename%3DA_versatile_and_accessible_polymer_coati.pdf\u0026Expires=1743457405\u0026Signature=WqkVtbsvOeIygiXXE-~-4CdTzoZEAA~4JWVSvmWmHJk6xPZ2~bJ5fRTX-CFXrQ-pPIuVzSz8NlQLsg7h~XwP3cVwa6rVVwWpLtCOuHrGxcaPRHmgbiKYu6qJ6XZ66rttDhnRq2Vv3NTwWlBUUYc5x8CFX7qBTqTUJCqg6GYkYrmGuJnQtQcwyVdlkyFQGs56AUlDgAMq8D9J6FcrG2QsVm-X4JWc-O9IQQO-PaHz8y65y5w1CVk5uJaL3-FUF5TYjZRtStqmIzwCMG9W9OGwan98LVM2D7i5d18eBoPGVHQxAetgGIv7XA3UhicaTzf1Mb51g6z1MW51Cy9L8AA-yA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":54463,"name":"Click chemistry","url":"https://www.academia.edu/Documents/in/Click_chemistry"},{"id":58527,"name":"Polymer","url":"https://www.academia.edu/Documents/in/Polymer"},{"id":70476,"name":"Grafting","url":"https://www.academia.edu/Documents/in/Grafting"},{"id":79275,"name":"Surface modification","url":"https://www.academia.edu/Documents/in/Surface_modification"},{"id":93150,"name":"Coating","url":"https://www.academia.edu/Documents/in/Coating"},{"id":209759,"name":"Maleic Anhydride","url":"https://www.academia.edu/Documents/in/Maleic_Anhydride"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":445674,"name":"Quantum Dot","url":"https://www.academia.edu/Documents/in/Quantum_Dot"},{"id":481990,"name":"Green Reagent","url":"https://www.academia.edu/Documents/in/Green_Reagent"},{"id":989646,"name":"Aqueous Solution","url":"https://www.academia.edu/Documents/in/Aqueous_Solution"},{"id":1294768,"name":"Chemical Engineering Communications","url":"https://www.academia.edu/Documents/in/Chemical_Engineering_Communications"}],"urls":[{"id":45919785,"url":"http://pubs.rsc.org/en/content/articlepdf/2019/CC/C9CC04856A"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-126070851-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="126070850"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126070850/Meroterpenoids_from_Neosetophoma_sp_A_Dioxa_4_3_3_propellane_Ring_System_Potent_Cytotoxicity_and_Prolific_Expression"><img alt="Research paper thumbnail of Meroterpenoids from Neosetophoma sp.: A Dioxa[4.3.3]propellane Ring System, Potent Cytotoxicity, and Prolific Expression" class="work-thumbnail" src="https://attachments.academia-assets.com/120004936/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126070850/Meroterpenoids_from_Neosetophoma_sp_A_Dioxa_4_3_3_propellane_Ring_System_Potent_Cytotoxicity_and_Prolific_Expression">Meroterpenoids from Neosetophoma sp.: A Dioxa[4.3.3]propellane Ring System, Potent Cytotoxicity, and Prolific Expression</a></div><div class="wp-workCard_item"><span>Organic Letters</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Six fungal metabolites, of which five were new, including one (1) with a dioxa[4.3.3]propellane r...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Six fungal metabolites, of which five were new, including one (1) with a dioxa[4.3.3]propellane ring system, were discovered, identified, and structurally elucidated from Neosetophoma sp. (strain MSX50044); these compounds are similar to the bis-tropolone, eupenifeldin. Three of the meroterpenoids are potent cytotoxic agents against breast, ovarian, mesothelioma, and lung cancer cells with nanomolar IC 50 values while not inducing mitochondrial toxicity at 12.5 μM.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="094318e57efd3c14d3647d9d7935706a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120004936,"asset_id":126070850,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120004936/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126070850"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126070850"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126070850; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126070850]").text(description); $(".js-view-count[data-work-id=126070850]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126070850; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126070850']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "094318e57efd3c14d3647d9d7935706a" } } $('.js-work-strip[data-work-id=126070850]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126070850,"title":"Meroterpenoids from Neosetophoma sp.: A Dioxa[4.3.3]propellane Ring System, Potent Cytotoxicity, and Prolific Expression","translated_title":"","metadata":{"publisher":"American Chemical Society (ACS)","grobid_abstract":"Six fungal metabolites, of which five were new, including one (1) with a dioxa[4.3.3]propellane ring system, were discovered, identified, and structurally elucidated from Neosetophoma sp. (strain MSX50044); these compounds are similar to the bis-tropolone, eupenifeldin. Three of the meroterpenoids are potent cytotoxic agents against breast, ovarian, mesothelioma, and lung cancer cells with nanomolar IC 50 values while not inducing mitochondrial toxicity at 12.5 μM.","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Organic Letters","grobid_abstract_attachment_id":120004936},"translated_abstract":null,"internal_url":"https://www.academia.edu/126070850/Meroterpenoids_from_Neosetophoma_sp_A_Dioxa_4_3_3_propellane_Ring_System_Potent_Cytotoxicity_and_Prolific_Expression","translated_internal_url":"","created_at":"2024-12-04T13:02:24.078-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":176937962,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":120004936,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004936/thumbnails/1.jpg","file_name":"acs.orglett.pdf","download_url":"https://www.academia.edu/attachments/120004936/download_file","bulk_download_file_name":"Meroterpenoids_from_Neosetophoma_sp_A_Di.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004936/acs.orglett-libre.pdf?1733368446=\u0026response-content-disposition=attachment%3B+filename%3DMeroterpenoids_from_Neosetophoma_sp_A_Di.pdf\u0026Expires=1743457405\u0026Signature=HXMXj4DXhJlkXRJHO2BzXW1WSI1Swt-wb4W5~0tBooVYCTHGVVdVNOyoFYowUEafGvTsC2STdllW9uvxEOJcj0MTcs90EHVvWWX28~~6obD0WH8ZYgXq9o6iF~toZQj8OlWh45FDSTglJzX81JmZ5OMggE~d7TRm2tBtKa9uqaWcU9xD1WMgex5t55Ck8PWroIt7IFAa1V94dc4PwRGjwTTvVLXT2tzJsY00yU01PcAD8ijBHvft3phsVlMnY4u6V1T8ztzzKGxMZHqlD0-F1SNcWW~2lN9JqjWXHN4GSrrt1AWU4YS9fd7Axhubv885Ngz62Urz2lwAClY1zFr7rA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Meroterpenoids_from_Neosetophoma_sp_A_Dioxa_4_3_3_propellane_Ring_System_Potent_Cytotoxicity_and_Prolific_Expression","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"Six fungal metabolites, of which five were new, including one (1) with a dioxa[4.3.3]propellane ring system, were discovered, identified, and structurally elucidated from Neosetophoma sp. (strain MSX50044); these compounds are similar to the bis-tropolone, eupenifeldin. Three of the meroterpenoids are potent cytotoxic agents against breast, ovarian, mesothelioma, and lung cancer cells with nanomolar IC 50 values while not inducing mitochondrial toxicity at 12.5 μM.","owner":{"id":176937962,"first_name":"Mark","middle_initials":null,"last_name":"Grinstaff","page_name":"MGrinstaff","domain_name":"bu","created_at":"2020-11-02T16:03:12.423-08:00","display_name":"Mark Grinstaff","url":"https://bu.academia.edu/MGrinstaff"},"attachments":[{"id":120004936,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004936/thumbnails/1.jpg","file_name":"acs.orglett.pdf","download_url":"https://www.academia.edu/attachments/120004936/download_file","bulk_download_file_name":"Meroterpenoids_from_Neosetophoma_sp_A_Di.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004936/acs.orglett-libre.pdf?1733368446=\u0026response-content-disposition=attachment%3B+filename%3DMeroterpenoids_from_Neosetophoma_sp_A_Di.pdf\u0026Expires=1743457405\u0026Signature=HXMXj4DXhJlkXRJHO2BzXW1WSI1Swt-wb4W5~0tBooVYCTHGVVdVNOyoFYowUEafGvTsC2STdllW9uvxEOJcj0MTcs90EHVvWWX28~~6obD0WH8ZYgXq9o6iF~toZQj8OlWh45FDSTglJzX81JmZ5OMggE~d7TRm2tBtKa9uqaWcU9xD1WMgex5t55Ck8PWroIt7IFAa1V94dc4PwRGjwTTvVLXT2tzJsY00yU01PcAD8ijBHvft3phsVlMnY4u6V1T8ztzzKGxMZHqlD0-F1SNcWW~2lN9JqjWXHN4GSrrt1AWU4YS9fd7Axhubv885Ngz62Urz2lwAClY1zFr7rA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":120004934,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004934/thumbnails/1.jpg","file_name":"acs.orglett.pdf","download_url":"https://www.academia.edu/attachments/120004934/download_file","bulk_download_file_name":"Meroterpenoids_from_Neosetophoma_sp_A_Di.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004934/acs.orglett-libre.pdf?1733368445=\u0026response-content-disposition=attachment%3B+filename%3DMeroterpenoids_from_Neosetophoma_sp_A_Di.pdf\u0026Expires=1743457405\u0026Signature=Loinsc0bHCXWvspTy7gSTP1bYBYGs4yaSSFyA9SDt1fQwf3d0bFo5dAeKe0ZHhUwQhkrwPMwkt1m9K6IAhLbmUh0NO-LBVm3hEnYjjzldR80iDDYhqY8peofFVWHq81NGvGQSwsUmjBRwynYk3lDngLujfZApOJfCvK1dZGg4jDv4Ueuzndtkx3mgiGeyPEFw1q9cxA1FCUZNNeQ6~PgPrwYb2ovvr6yaYWZe6OiudZ0uHBYM-retCV-xiQ2j-IlYGs-y-aeTPZdIpBwXBomu6U7d5Dn2NjyRzexHXLdU8cckeOhmxzwuSt~aIF0i0C3kkrZcmwmceOEU0IbzEyCNg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":22050,"name":"Cytotoxicity","url":"https://www.academia.edu/Documents/in/Cytotoxicity"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":114715,"name":"Stereochemistry","url":"https://www.academia.edu/Documents/in/Stereochemistry"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"}],"urls":[{"id":45919784,"url":"http://pubs.acs.org/doi/pdf/10.1021/acs.orglett.8b03769"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-126070850-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="126070849"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126070849/SUV39H1_Represses_the_Expression_of_Cytotoxic_T_Lymphocyte_Effector_Genes_to_Promote_Colon_Tumor_Immune_Evasion"><img alt="Research paper thumbnail of SUV39H1 Represses the Expression of Cytotoxic T-Lymphocyte Effector Genes to Promote Colon Tumor Immune Evasion" class="work-thumbnail" src="https://attachments.academia-assets.com/120004937/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126070849/SUV39H1_Represses_the_Expression_of_Cytotoxic_T_Lymphocyte_Effector_Genes_to_Promote_Colon_Tumor_Immune_Evasion">SUV39H1 Represses the Expression of Cytotoxic T-Lymphocyte Effector Genes to Promote Colon Tumor Immune Evasion</a></div><div class="wp-workCard_item"><span>Cancer Immunology Research</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Despite the presence of CTLs in the tumor microenvironment, the majority of immunogenic human col...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Despite the presence of CTLs in the tumor microenvironment, the majority of immunogenic human colon cancer does not respond to immune checkpoint inhibitor immunotherapy, and microsatellite instable (MSI) tumors are not naturally eliminated. The molecular mechanism underlying the inactivity of tumor-infiltrating CTLs is unknown. We report here that CTLs were present in both MSI and microsatellite stable colon tumors. The expression of the H3K9me3-specific histone methyltransferase SUV39H1 was significantly elevated in human colon carcinoma compared with normal colon tissues. Using a mouse colon carcinoma model, we further determined that tumor-infiltrating CTLs in the colon tumor microenvironment have high expression of SUV39H1. To target SUV39H1 in the tumor microenvironment, a virtual chemical library was screened on the basis of the SET (suppressor of variegation 3–9, enhancer of zeste and trithorax) domain structure of the human SUV39H1 protein. Functional enzymatic activity assa...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5cc018c08cbdc17e95068416b3e0ccb4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120004937,"asset_id":126070849,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120004937/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126070849"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126070849"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126070849; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126070849]").text(description); $(".js-view-count[data-work-id=126070849]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126070849; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126070849']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5cc018c08cbdc17e95068416b3e0ccb4" } } $('.js-work-strip[data-work-id=126070849]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126070849,"title":"SUV39H1 Represses the Expression of Cytotoxic T-Lymphocyte Effector Genes to Promote Colon Tumor Immune Evasion","translated_title":"","metadata":{"abstract":"Despite the presence of CTLs in the tumor microenvironment, the majority of immunogenic human colon cancer does not respond to immune checkpoint inhibitor immunotherapy, and microsatellite instable (MSI) tumors are not naturally eliminated. The molecular mechanism underlying the inactivity of tumor-infiltrating CTLs is unknown. We report here that CTLs were present in both MSI and microsatellite stable colon tumors. The expression of the H3K9me3-specific histone methyltransferase SUV39H1 was significantly elevated in human colon carcinoma compared with normal colon tissues. Using a mouse colon carcinoma model, we further determined that tumor-infiltrating CTLs in the colon tumor microenvironment have high expression of SUV39H1. To target SUV39H1 in the tumor microenvironment, a virtual chemical library was screened on the basis of the SET (suppressor of variegation 3–9, enhancer of zeste and trithorax) domain structure of the human SUV39H1 protein. Functional enzymatic activity assa...","publisher":"American Association for Cancer Research (AACR)","ai_title_tag":"SUV39H1 Mediates CTL Evasion in Colon Cancer","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Cancer Immunology Research"},"translated_abstract":"Despite the presence of CTLs in the tumor microenvironment, the majority of immunogenic human colon cancer does not respond to immune checkpoint inhibitor immunotherapy, and microsatellite instable (MSI) tumors are not naturally eliminated. The molecular mechanism underlying the inactivity of tumor-infiltrating CTLs is unknown. We report here that CTLs were present in both MSI and microsatellite stable colon tumors. The expression of the H3K9me3-specific histone methyltransferase SUV39H1 was significantly elevated in human colon carcinoma compared with normal colon tissues. Using a mouse colon carcinoma model, we further determined that tumor-infiltrating CTLs in the colon tumor microenvironment have high expression of SUV39H1. To target SUV39H1 in the tumor microenvironment, a virtual chemical library was screened on the basis of the SET (suppressor of variegation 3–9, enhancer of zeste and trithorax) domain structure of the human SUV39H1 protein. Functional enzymatic activity assa...","internal_url":"https://www.academia.edu/126070849/SUV39H1_Represses_the_Expression_of_Cytotoxic_T_Lymphocyte_Effector_Genes_to_Promote_Colon_Tumor_Immune_Evasion","translated_internal_url":"","created_at":"2024-12-04T13:02:23.705-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":176937962,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":120004937,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004937/thumbnails/1.jpg","file_name":"414.pdf","download_url":"https://www.academia.edu/attachments/120004937/download_file","bulk_download_file_name":"SUV39H1_Represses_the_Expression_of_Cyto.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004937/414-libre.pdf?1733368452=\u0026response-content-disposition=attachment%3B+filename%3DSUV39H1_Represses_the_Expression_of_Cyto.pdf\u0026Expires=1743457405\u0026Signature=I0L7WPiQFFu0bKI~UK32Y9Z7d6-tS9HhTFyzeskmI8I1oqFgoUKwZyObf0jzM1S5X6NK~kEhN6JFk8s7-HPplW9zbUp1aqc7oYKtQHJMcka9AOlNgccol0u3DJzxFg6aBIVQqd-nxH0M0u~n7TqBzf4laldPiaAMDOhw2D5XWhGKpsJY5W0prM7hSovFsr-yYp-AlBfSq1WSQogp5VxhylX90qAF54e9DzaKB6uyvaSy9L-HSKwmIOy01hVIuk6B-zLdwotDcBx9MFiVoAeV93kVkMlbhGF5yau6twkYm1AhVNMrVHRtBU5bV8lm9nxIlPaocHudebRn9YFexJIn5g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"SUV39H1_Represses_the_Expression_of_Cytotoxic_T_Lymphocyte_Effector_Genes_to_Promote_Colon_Tumor_Immune_Evasion","translated_slug":"","page_count":14,"language":"en","content_type":"Work","summary":"Despite the presence of CTLs in the tumor microenvironment, the majority of immunogenic human colon cancer does not respond to immune checkpoint inhibitor immunotherapy, and microsatellite instable (MSI) tumors are not naturally eliminated. The molecular mechanism underlying the inactivity of tumor-infiltrating CTLs is unknown. We report here that CTLs were present in both MSI and microsatellite stable colon tumors. The expression of the H3K9me3-specific histone methyltransferase SUV39H1 was significantly elevated in human colon carcinoma compared with normal colon tissues. Using a mouse colon carcinoma model, we further determined that tumor-infiltrating CTLs in the colon tumor microenvironment have high expression of SUV39H1. To target SUV39H1 in the tumor microenvironment, a virtual chemical library was screened on the basis of the SET (suppressor of variegation 3–9, enhancer of zeste and trithorax) domain structure of the human SUV39H1 protein. Functional enzymatic activity assa...","owner":{"id":176937962,"first_name":"Mark","middle_initials":null,"last_name":"Grinstaff","page_name":"MGrinstaff","domain_name":"bu","created_at":"2020-11-02T16:03:12.423-08:00","display_name":"Mark Grinstaff","url":"https://bu.academia.edu/MGrinstaff"},"attachments":[{"id":120004937,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004937/thumbnails/1.jpg","file_name":"414.pdf","download_url":"https://www.academia.edu/attachments/120004937/download_file","bulk_download_file_name":"SUV39H1_Represses_the_Expression_of_Cyto.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004937/414-libre.pdf?1733368452=\u0026response-content-disposition=attachment%3B+filename%3DSUV39H1_Represses_the_Expression_of_Cyto.pdf\u0026Expires=1743457405\u0026Signature=I0L7WPiQFFu0bKI~UK32Y9Z7d6-tS9HhTFyzeskmI8I1oqFgoUKwZyObf0jzM1S5X6NK~kEhN6JFk8s7-HPplW9zbUp1aqc7oYKtQHJMcka9AOlNgccol0u3DJzxFg6aBIVQqd-nxH0M0u~n7TqBzf4laldPiaAMDOhw2D5XWhGKpsJY5W0prM7hSovFsr-yYp-AlBfSq1WSQogp5VxhylX90qAF54e9DzaKB6uyvaSy9L-HSKwmIOy01hVIuk6B-zLdwotDcBx9MFiVoAeV93kVkMlbhGF5yau6twkYm1AhVNMrVHRtBU5bV8lm9nxIlPaocHudebRn9YFexJIn5g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":120004935,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004935/thumbnails/1.jpg","file_name":"414.pdf","download_url":"https://www.academia.edu/attachments/120004935/download_file","bulk_download_file_name":"SUV39H1_Represses_the_Expression_of_Cyto.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004935/414-libre.pdf?1733368451=\u0026response-content-disposition=attachment%3B+filename%3DSUV39H1_Represses_the_Expression_of_Cyto.pdf\u0026Expires=1743457405\u0026Signature=LmcMdIw8qfdwPhV0OcM1I7eRMUqlY0KgxydteV3dLFTuvbfl80KfQRVzizwGdb0DExsmtQr0N6BYtYbV0a8X8CIozmuTbguUGeEYuH7PApY1KuLnI~IzEGPQ~Of81SYkdoJo0SdsWUqn~mu7LI3bUh63f0TGG7EkvyOotz8LkeBEVbOusXw3RWEvqdaMhdMsOOM-ciq9VPEYhbUit8ZoyLczBQbInjeIPLjM~msFmv93nwcxMHvY-wVMdoTzSr3iT8L1JKPReStwU5AMx5lMEx9KI1YxZDzhibKg~EisTzF~RMuiTcqFmUlYKE4Og-Orh0d3p5ybtoCyJWdYwIPszQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"},{"id":22255,"name":"Cancer Research","url":"https://www.academia.edu/Documents/in/Cancer_Research"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":37912,"name":"Cancer Immunology","url":"https://www.academia.edu/Documents/in/Cancer_Immunology"},{"id":62710,"name":"Tumor microenvironment","url":"https://www.academia.edu/Documents/in/Tumor_microenvironment"},{"id":324154,"name":"Immune system","url":"https://www.academia.edu/Documents/in/Immune_system"},{"id":431152,"name":"CTL","url":"https://www.academia.edu/Documents/in/CTL"}],"urls":[{"id":45919783,"url":"https://aacrjournals.org/cancerimmunolres/article-pdf/7/3/414/2355347/414.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-126070849-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="126070848"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126070848/Bioconjugated_Oligonucleotides_Recent_Developments_and_Therapeutic_Applications"><img alt="Research paper thumbnail of Bioconjugated Oligonucleotides: Recent Developments and Therapeutic Applications" class="work-thumbnail" src="https://attachments.academia-assets.com/120004971/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126070848/Bioconjugated_Oligonucleotides_Recent_Developments_and_Therapeutic_Applications">Bioconjugated Oligonucleotides: Recent Developments and Therapeutic Applications</a></div><div class="wp-workCard_item"><span>Bioconjugate Chemistry</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Oligonucleotide-based agents have the potential to treat or cure almost any disease, and are one ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Oligonucleotide-based agents have the potential to treat or cure almost any disease, and are one of the key therapeutic drug classes of the future. Bioconjugated oligonucleotides, a subset of this class, are emerging from basic research and being successfully translated to the clinic. In this review, we first briefly describe two approaches for inhibiting specific genes using oligonucleotides-antisense DNA (ASO) and RNA interference (RNAi)followed by a discussion on delivery to cells. We then summarize and analyze recent developments in bioconjugated oligonucleotides including those possessing GalNAc, cell penetrating peptides, αtocopherol, aptamers, antibodies, cholesterol, squalene, fatty acids, or nucleolipids. These novel conjugates provide a means to enhance tissue targeting, cell internalization, endosomal escape, target binding specificity, resistance to nucleases, and more. We next describe those bioconjugated oligonucleotides approved for patient use or in clinical trials. Finally, we summarize the state of the field, describe current limitations, and discuss future prospects. Bioconjugation chemistry is at the centerpiece of this therapeutic oligonucleotide revolution, and significant opportunities exist for development of new modification chemistries, for mechanistic studies at the chemical-biology interface, and for translating such agents to the clinic.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1933e44fa0c4fc5cbfeb9a061a80d088" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120004971,"asset_id":126070848,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120004971/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126070848"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126070848"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126070848; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126070848]").text(description); $(".js-view-count[data-work-id=126070848]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126070848; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126070848']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1933e44fa0c4fc5cbfeb9a061a80d088" } } $('.js-work-strip[data-work-id=126070848]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126070848,"title":"Bioconjugated Oligonucleotides: Recent Developments and Therapeutic Applications","translated_title":"","metadata":{"publisher":"American Chemical Society (ACS)","grobid_abstract":"Oligonucleotide-based agents have the potential to treat or cure almost any disease, and are one of the key therapeutic drug classes of the future. Bioconjugated oligonucleotides, a subset of this class, are emerging from basic research and being successfully translated to the clinic. In this review, we first briefly describe two approaches for inhibiting specific genes using oligonucleotides-antisense DNA (ASO) and RNA interference (RNAi)followed by a discussion on delivery to cells. We then summarize and analyze recent developments in bioconjugated oligonucleotides including those possessing GalNAc, cell penetrating peptides, αtocopherol, aptamers, antibodies, cholesterol, squalene, fatty acids, or nucleolipids. These novel conjugates provide a means to enhance tissue targeting, cell internalization, endosomal escape, target binding specificity, resistance to nucleases, and more. We next describe those bioconjugated oligonucleotides approved for patient use or in clinical trials. Finally, we summarize the state of the field, describe current limitations, and discuss future prospects. Bioconjugation chemistry is at the centerpiece of this therapeutic oligonucleotide revolution, and significant opportunities exist for development of new modification chemistries, for mechanistic studies at the chemical-biology interface, and for translating such agents to the clinic.","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Bioconjugate Chemistry","grobid_abstract_attachment_id":120004971},"translated_abstract":null,"internal_url":"https://www.academia.edu/126070848/Bioconjugated_Oligonucleotides_Recent_Developments_and_Therapeutic_Applications","translated_internal_url":"","created_at":"2024-12-04T13:02:23.382-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":176937962,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":120004971,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004971/thumbnails/1.jpg","file_name":"2002.11532v1.pdf","download_url":"https://www.academia.edu/attachments/120004971/download_file","bulk_download_file_name":"Bioconjugated_Oligonucleotides_Recent_De.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004971/2002.11532v1-libre.pdf?1733356544=\u0026response-content-disposition=attachment%3B+filename%3DBioconjugated_Oligonucleotides_Recent_De.pdf\u0026Expires=1743457405\u0026Signature=Gj978JiW1t7nscOi7KK5hpTpR2U5WXsOhB9x-efh19kcxb~ijk5vKRx-YM1h2rGK3xVADwT1uzUtg109vKQbYYVVZboOGmpon2ECrAULlfwfM9-wVKnh5TqJFrOpzK-Sd1t3GTP~aNv-koK7igZQjRmx1KqRGWSlye0Ble1RPnoLCb9xQTY4ULy6a9mRxkmj2tcW31XPHNe9VBceSc7jjQK-ogmu4RD0hrx2BzXVmQ7hUK89O5M0xrhKJrMLcP2RLAsXNSu6eH9jQJoT4PyiUcB0KpsZU8-24sL-A1cbbxN2Tz9fEpf0g5KPFefObmU2oJZe6Np7VPrUvqEGHwAsDg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Bioconjugated_Oligonucleotides_Recent_Developments_and_Therapeutic_Applications","translated_slug":"","page_count":19,"language":"en","content_type":"Work","summary":"Oligonucleotide-based agents have the potential to treat or cure almost any disease, and are one of the key therapeutic drug classes of the future. Bioconjugated oligonucleotides, a subset of this class, are emerging from basic research and being successfully translated to the clinic. In this review, we first briefly describe two approaches for inhibiting specific genes using oligonucleotides-antisense DNA (ASO) and RNA interference (RNAi)followed by a discussion on delivery to cells. We then summarize and analyze recent developments in bioconjugated oligonucleotides including those possessing GalNAc, cell penetrating peptides, αtocopherol, aptamers, antibodies, cholesterol, squalene, fatty acids, or nucleolipids. These novel conjugates provide a means to enhance tissue targeting, cell internalization, endosomal escape, target binding specificity, resistance to nucleases, and more. We next describe those bioconjugated oligonucleotides approved for patient use or in clinical trials. Finally, we summarize the state of the field, describe current limitations, and discuss future prospects. Bioconjugation chemistry is at the centerpiece of this therapeutic oligonucleotide revolution, and significant opportunities exist for development of new modification chemistries, for mechanistic studies at the chemical-biology interface, and for translating such agents to the clinic.","owner":{"id":176937962,"first_name":"Mark","middle_initials":null,"last_name":"Grinstaff","page_name":"MGrinstaff","domain_name":"bu","created_at":"2020-11-02T16:03:12.423-08:00","display_name":"Mark Grinstaff","url":"https://bu.academia.edu/MGrinstaff"},"attachments":[{"id":120004971,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004971/thumbnails/1.jpg","file_name":"2002.11532v1.pdf","download_url":"https://www.academia.edu/attachments/120004971/download_file","bulk_download_file_name":"Bioconjugated_Oligonucleotides_Recent_De.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004971/2002.11532v1-libre.pdf?1733356544=\u0026response-content-disposition=attachment%3B+filename%3DBioconjugated_Oligonucleotides_Recent_De.pdf\u0026Expires=1743457405\u0026Signature=Gj978JiW1t7nscOi7KK5hpTpR2U5WXsOhB9x-efh19kcxb~ijk5vKRx-YM1h2rGK3xVADwT1uzUtg109vKQbYYVVZboOGmpon2ECrAULlfwfM9-wVKnh5TqJFrOpzK-Sd1t3GTP~aNv-koK7igZQjRmx1KqRGWSlye0Ble1RPnoLCb9xQTY4ULy6a9mRxkmj2tcW31XPHNe9VBceSc7jjQK-ogmu4RD0hrx2BzXVmQ7hUK89O5M0xrhKJrMLcP2RLAsXNSu6eH9jQJoT4PyiUcB0KpsZU8-24sL-A1cbbxN2Tz9fEpf0g5KPFefObmU2oJZe6Np7VPrUvqEGHwAsDg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":531,"name":"Organic Chemistry","url":"https://www.academia.edu/Documents/in/Organic_Chemistry"},{"id":4233,"name":"Computational Biology","url":"https://www.academia.edu/Documents/in/Computational_Biology"},{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":51121,"name":"RNA interference","url":"https://www.academia.edu/Documents/in/RNA_interference"},{"id":207347,"name":"Bioconjugate Chemistry","url":"https://www.academia.edu/Documents/in/Bioconjugate_Chemistry"},{"id":372466,"name":"mRNA","url":"https://www.academia.edu/Documents/in/mRNA"},{"id":1338314,"name":"Aptamer","url":"https://www.academia.edu/Documents/in/Aptamer"},{"id":1649745,"name":"Oligonucleotides","url":"https://www.academia.edu/Documents/in/Oligonucleotides"},{"id":1681026,"name":"Biochemistry and cell biology","url":"https://www.academia.edu/Documents/in/Biochemistry_and_cell_biology"},{"id":2205703,"name":"Oligonucleotide","url":"https://www.academia.edu/Documents/in/Oligonucleotide"},{"id":2824591,"name":"RNA interference (RNAi) ","url":"https://www.academia.edu/Documents/in/RNA_interference_RNAi_"}],"urls":[{"id":45919782,"url":"https://pubs.acs.org/doi/pdf/10.1021/acs.bioconjchem.8b00761"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-126070848-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="126070847"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126070847/A_Solid_State_Hard_Microfluidic_Nanopore_Biosensor_with_Multilayer_Fluidics_and_On_Chip_Bioassay_Purification_Chamber"><img alt="Research paper thumbnail of A Solid‐State Hard Microfluidic–Nanopore Biosensor with Multilayer Fluidics and On‐Chip Bioassay/Purification Chamber" class="work-thumbnail" src="https://attachments.academia-assets.com/120004986/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126070847/A_Solid_State_Hard_Microfluidic_Nanopore_Biosensor_with_Multilayer_Fluidics_and_On_Chip_Bioassay_Purification_Chamber">A Solid‐State Hard Microfluidic–Nanopore Biosensor with Multilayer Fluidics and On‐Chip Bioassay/Purification Chamber</a></div><div class="wp-workCard_item"><span>Advanced Functional Materials</span><span>, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Solid-state nanopores are an emerging biosensor for nucleic acid and protein characterization. Fo...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Solid-state nanopores are an emerging biosensor for nucleic acid and protein characterization. For use in a clinical setting, solid-state nanopore sensing requires sample preparation and purification, fluid handling, a heating element, electrical noise insulators, and an electrical readout detector, all of which hamper its translation to a point-of-care diagnostic device. A standalone microfluidic-based nanopore device is described that combines a bioassay reaction/purification chamber with a solid-state nanopore sensor. The microfluidic device is composed of the high-temperature/solvent resistance Zeonex plastic, formed via micromachining and heat bonding, enabling the use of both a heat regulator and a magnetic controller. Fluid control through the microfluidic channels and chambers is controlled via fluid port selector valves and allows up to eight different solutions. Electrical noise measurements and DNA translocation experiments demonstrate the integrity of the device, with performance comparable to a conventional stand-alone nanopore setup. However, the microfluidic-nanopore setup is superior in terms of ease of use. To showcase the utility of the device, single molecule detection of a DNA polymerase chain reaction product, after magnetic bead DNA separation, is accomplished on-chip.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="81ed1f8ac461c767d7bb82df87f0f796" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120004986,"asset_id":126070847,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120004986/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126070847"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126070847"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126070847; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126070847]").text(description); $(".js-view-count[data-work-id=126070847]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126070847; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126070847']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "81ed1f8ac461c767d7bb82df87f0f796" } } $('.js-work-strip[data-work-id=126070847]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126070847,"title":"A Solid‐State Hard Microfluidic–Nanopore Biosensor with Multilayer Fluidics and On‐Chip Bioassay/Purification Chamber","translated_title":"","metadata":{"publisher":"Wiley","grobid_abstract":"Solid-state nanopores are an emerging biosensor for nucleic acid and protein characterization. For use in a clinical setting, solid-state nanopore sensing requires sample preparation and purification, fluid handling, a heating element, electrical noise insulators, and an electrical readout detector, all of which hamper its translation to a point-of-care diagnostic device. A standalone microfluidic-based nanopore device is described that combines a bioassay reaction/purification chamber with a solid-state nanopore sensor. The microfluidic device is composed of the high-temperature/solvent resistance Zeonex plastic, formed via micromachining and heat bonding, enabling the use of both a heat regulator and a magnetic controller. Fluid control through the microfluidic channels and chambers is controlled via fluid port selector valves and allows up to eight different solutions. Electrical noise measurements and DNA translocation experiments demonstrate the integrity of the device, with performance comparable to a conventional stand-alone nanopore setup. However, the microfluidic-nanopore setup is superior in terms of ease of use. To showcase the utility of the device, single molecule detection of a DNA polymerase chain reaction product, after magnetic bead DNA separation, is accomplished on-chip.","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"Advanced Functional Materials","grobid_abstract_attachment_id":120004986},"translated_abstract":null,"internal_url":"https://www.academia.edu/126070847/A_Solid_State_Hard_Microfluidic_Nanopore_Biosensor_with_Multilayer_Fluidics_and_On_Chip_Bioassay_Purification_Chamber","translated_internal_url":"","created_at":"2024-12-04T13:02:23.032-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":176937962,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":120004986,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004986/thumbnails/1.jpg","file_name":"2018_Adv_Funct_Mater_Varongchayakul.pdf","download_url":"https://www.academia.edu/attachments/120004986/download_file","bulk_download_file_name":"A_Solid_State_Hard_Microfluidic_Nanopore.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004986/2018_Adv_Funct_Mater_Varongchayakul-libre.pdf?1733356531=\u0026response-content-disposition=attachment%3B+filename%3DA_Solid_State_Hard_Microfluidic_Nanopore.pdf\u0026Expires=1743457405\u0026Signature=cGvGcfshhCiwUe8cxv~ufoHjboexMItsyj7i0ymL4QwfvKRgK0ipbqac~4gW3XnemN6E61jVQVO0YzOUmqTnqVxOpUBOlSgHI5V4wkJ8wAf~lI-4Tm9s93aOM6qVB-sh9bSmp-ZWMQFfAqiNYKvgODEVx4YxPxpx-KUFewI-O4O8HsHdpxBEzo9NG2qkLTe2h~WAHAchPeurn-PiNqJKzJSmCLzYi4KECUl--Ir5QFNqagwG7YXS9h1Jhz4HTj3qI5vEnUvbc0XRNIHqDwia7qtwfyjrrs0y9ET4u4De5McilAfVfGCOiuFWxW9IQK2oU86CyTgzW2DT8JzshyDCTA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_Solid_State_Hard_Microfluidic_Nanopore_Biosensor_with_Multilayer_Fluidics_and_On_Chip_Bioassay_Purification_Chamber","translated_slug":"","page_count":9,"language":"en","content_type":"Work","summary":"Solid-state nanopores are an emerging biosensor for nucleic acid and protein characterization. For use in a clinical setting, solid-state nanopore sensing requires sample preparation and purification, fluid handling, a heating element, electrical noise insulators, and an electrical readout detector, all of which hamper its translation to a point-of-care diagnostic device. A standalone microfluidic-based nanopore device is described that combines a bioassay reaction/purification chamber with a solid-state nanopore sensor. The microfluidic device is composed of the high-temperature/solvent resistance Zeonex plastic, formed via micromachining and heat bonding, enabling the use of both a heat regulator and a magnetic controller. Fluid control through the microfluidic channels and chambers is controlled via fluid port selector valves and allows up to eight different solutions. Electrical noise measurements and DNA translocation experiments demonstrate the integrity of the device, with performance comparable to a conventional stand-alone nanopore setup. However, the microfluidic-nanopore setup is superior in terms of ease of use. To showcase the utility of the device, single molecule detection of a DNA polymerase chain reaction product, after magnetic bead DNA separation, is accomplished on-chip.","owner":{"id":176937962,"first_name":"Mark","middle_initials":null,"last_name":"Grinstaff","page_name":"MGrinstaff","domain_name":"bu","created_at":"2020-11-02T16:03:12.423-08:00","display_name":"Mark Grinstaff","url":"https://bu.academia.edu/MGrinstaff"},"attachments":[{"id":120004986,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004986/thumbnails/1.jpg","file_name":"2018_Adv_Funct_Mater_Varongchayakul.pdf","download_url":"https://www.academia.edu/attachments/120004986/download_file","bulk_download_file_name":"A_Solid_State_Hard_Microfluidic_Nanopore.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004986/2018_Adv_Funct_Mater_Varongchayakul-libre.pdf?1733356531=\u0026response-content-disposition=attachment%3B+filename%3DA_Solid_State_Hard_Microfluidic_Nanopore.pdf\u0026Expires=1743457405\u0026Signature=cGvGcfshhCiwUe8cxv~ufoHjboexMItsyj7i0ymL4QwfvKRgK0ipbqac~4gW3XnemN6E61jVQVO0YzOUmqTnqVxOpUBOlSgHI5V4wkJ8wAf~lI-4Tm9s93aOM6qVB-sh9bSmp-ZWMQFfAqiNYKvgODEVx4YxPxpx-KUFewI-O4O8HsHdpxBEzo9NG2qkLTe2h~WAHAchPeurn-PiNqJKzJSmCLzYi4KECUl--Ir5QFNqagwG7YXS9h1Jhz4HTj3qI5vEnUvbc0XRNIHqDwia7qtwfyjrrs0y9ET4u4De5McilAfVfGCOiuFWxW9IQK2oU86CyTgzW2DT8JzshyDCTA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":2721,"name":"Microfluidics","url":"https://www.academia.edu/Documents/in/Microfluidics"},{"id":17733,"name":"Nanotechnology","url":"https://www.academia.edu/Documents/in/Nanotechnology"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":71615,"name":"Advanced Functional Materials","url":"https://www.academia.edu/Documents/in/Advanced_Functional_Materials"},{"id":109419,"name":"Biosensor","url":"https://www.academia.edu/Documents/in/Biosensor"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":852297,"name":"Fluidics","url":"https://www.academia.edu/Documents/in/Fluidics"},{"id":3478741,"name":"Nanopore","url":"https://www.academia.edu/Documents/in/Nanopore"}],"urls":[{"id":45919781,"url":"https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.201804182"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-126070847-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="126070846"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126070846/Predoctoral_and_Postdoctoral_Training_Pipeline_in_Translational_Biomaterials_Research_and_Regenerative_Medicine"><img alt="Research paper thumbnail of Predoctoral and Postdoctoral Training Pipeline in Translational Biomaterials Research and Regenerative Medicine" class="work-thumbnail" src="https://attachments.academia-assets.com/120004970/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126070846/Predoctoral_and_Postdoctoral_Training_Pipeline_in_Translational_Biomaterials_Research_and_Regenerative_Medicine">Predoctoral and Postdoctoral Training Pipeline in Translational Biomaterials Research and Regenerative Medicine</a></div><div class="wp-workCard_item"><span>ACS Biomaterials Science &amp; Engineering</span><span>, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The translation of biomaterial based and regenerative therapies from the laboratory to patients i...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The translation of biomaterial based and regenerative therapies from the laboratory to patients involves multiple challenges. One of the most pressing challenges is the educational one: to train a cohort of scientists and engineers capable of translating their discoveries from bench to market to clinic. To meet this need, translational training programs are being implemented globally at universities and as partnerships between universities and corporations. In this perspective, we describe two translational NIH T32 graduate and postgraduate training programs that augment the traditional approach to training early stage scientists and engineers. At the graduate level, Boston University developed and implemented the Translational Research in Biomaterials (TRB) predoctoral training program. At the postgraduate level, Rutgers, The State University of New Jersey, developed and implemented the Translational Research in Regenerative Medicine (TRRM) program for postdoctoral training. These programs are motivated by the need for training in translational research in the biomedical field, by young scientists' requests for such training, and by the fundamental challenges facing future discovery and clinical implementation of biomaterialbased technologies. The TRB program immerses trainees in the concept of translating an idea from the research laboratory to the clinic, introduces them to the challenges of such an endeavor, provides discussions with relevant faculty (for example, with businesses, patient care, or clinical trial experience), and educates them in the critical areas required for their future careers. Similarly, the TRRM program emphasizes translational research and the concept of "training without borders," which enables collaborations across several geographically dispersed institutions so as to make regional experts accessible regardless of where they are located physically. Both programs promote interdisciplinary research, expose young scientists and engineers to challenges outside of their specialty, and build interpersonal skills for cross-disciplinary communication. The TRB program focuses on quantitative science and engineering courses, together with translation-based courses in clinical trials and business. The TRRM program focuses on broadening the horizon of its trainees through exposure to a wider network of mentors than traditional postdoctoral *</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="09e7aa3737fdaf578f51ba266074f364" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120004970,"asset_id":126070846,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120004970/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126070846"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126070846"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126070846; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126070846]").text(description); $(".js-view-count[data-work-id=126070846]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126070846; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126070846']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "09e7aa3737fdaf578f51ba266074f364" } } $('.js-work-strip[data-work-id=126070846]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126070846,"title":"Predoctoral and Postdoctoral Training Pipeline in Translational Biomaterials Research and Regenerative Medicine","translated_title":"","metadata":{"publisher":"American Chemical Society (ACS)","ai_title_tag":"Training for Translational Biomaterials Research","grobid_abstract":"The translation of biomaterial based and regenerative therapies from the laboratory to patients involves multiple challenges. One of the most pressing challenges is the educational one: to train a cohort of scientists and engineers capable of translating their discoveries from bench to market to clinic. To meet this need, translational training programs are being implemented globally at universities and as partnerships between universities and corporations. In this perspective, we describe two translational NIH T32 graduate and postgraduate training programs that augment the traditional approach to training early stage scientists and engineers. At the graduate level, Boston University developed and implemented the Translational Research in Biomaterials (TRB) predoctoral training program. At the postgraduate level, Rutgers, The State University of New Jersey, developed and implemented the Translational Research in Regenerative Medicine (TRRM) program for postdoctoral training. These programs are motivated by the need for training in translational research in the biomedical field, by young scientists' requests for such training, and by the fundamental challenges facing future discovery and clinical implementation of biomaterialbased technologies. The TRB program immerses trainees in the concept of translating an idea from the research laboratory to the clinic, introduces them to the challenges of such an endeavor, provides discussions with relevant faculty (for example, with businesses, patient care, or clinical trial experience), and educates them in the critical areas required for their future careers. Similarly, the TRRM program emphasizes translational research and the concept of \"training without borders,\" which enables collaborations across several geographically dispersed institutions so as to make regional experts accessible regardless of where they are located physically. Both programs promote interdisciplinary research, expose young scientists and engineers to challenges outside of their specialty, and build interpersonal skills for cross-disciplinary communication. The TRB program focuses on quantitative science and engineering courses, together with translation-based courses in clinical trials and business. The TRRM program focuses on broadening the horizon of its trainees through exposure to a wider network of mentors than traditional postdoctoral *","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"ACS Biomaterials Science \u0026amp; Engineering","grobid_abstract_attachment_id":120004970},"translated_abstract":null,"internal_url":"https://www.academia.edu/126070846/Predoctoral_and_Postdoctoral_Training_Pipeline_in_Translational_Biomaterials_Research_and_Regenerative_Medicine","translated_internal_url":"","created_at":"2024-12-04T13:02:22.763-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":176937962,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":120004970,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004970/thumbnails/1.jpg","file_name":"ptpmcrender.pdf","download_url":"https://www.academia.edu/attachments/120004970/download_file","bulk_download_file_name":"Predoctoral_and_Postdoctoral_Training_Pi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004970/ptpmcrender-libre.pdf?1733368433=\u0026response-content-disposition=attachment%3B+filename%3DPredoctoral_and_Postdoctoral_Training_Pi.pdf\u0026Expires=1743457405\u0026Signature=Pe8o1BjQJWZDCx~-VJSKyw0aWJgqNqMpKnUrAQHcLb-f4YzIkDuxir5jCHdI~Lin2wEB0tPbPnQk38ivuoKwuv8fDoxcS4hGZaqL7e~-WSLjLDiBIvwdHkb-ZUxJNtoGY1L7B7x0K95W~EQj~ify67HuOFJ8Z2S2TngPTo4MtdSlkmh76imb6YUOyATwu2JvS0jFmmr6k7kxSgAqmXSTj5fXxC4OaC~u~U6lk48I8rlmQrClEbefcFK5aZ23tspGl80e4rY4EDNGEK0ZWnr5kraAFl0fTtLVG79N682hF6kO7woI1F6pS7XOzS2YksyCRr4tl8JXktd1IIMBjoBrnQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Predoctoral_and_Postdoctoral_Training_Pipeline_in_Translational_Biomaterials_Research_and_Regenerative_Medicine","translated_slug":"","page_count":16,"language":"en","content_type":"Work","summary":"The translation of biomaterial based and regenerative therapies from the laboratory to patients involves multiple challenges. One of the most pressing challenges is the educational one: to train a cohort of scientists and engineers capable of translating their discoveries from bench to market to clinic. To meet this need, translational training programs are being implemented globally at universities and as partnerships between universities and corporations. In this perspective, we describe two translational NIH T32 graduate and postgraduate training programs that augment the traditional approach to training early stage scientists and engineers. At the graduate level, Boston University developed and implemented the Translational Research in Biomaterials (TRB) predoctoral training program. At the postgraduate level, Rutgers, The State University of New Jersey, developed and implemented the Translational Research in Regenerative Medicine (TRRM) program for postdoctoral training. These programs are motivated by the need for training in translational research in the biomedical field, by young scientists' requests for such training, and by the fundamental challenges facing future discovery and clinical implementation of biomaterialbased technologies. The TRB program immerses trainees in the concept of translating an idea from the research laboratory to the clinic, introduces them to the challenges of such an endeavor, provides discussions with relevant faculty (for example, with businesses, patient care, or clinical trial experience), and educates them in the critical areas required for their future careers. Similarly, the TRRM program emphasizes translational research and the concept of \"training without borders,\" which enables collaborations across several geographically dispersed institutions so as to make regional experts accessible regardless of where they are located physically. Both programs promote interdisciplinary research, expose young scientists and engineers to challenges outside of their specialty, and build interpersonal skills for cross-disciplinary communication. The TRB program focuses on quantitative science and engineering courses, together with translation-based courses in clinical trials and business. The TRRM program focuses on broadening the horizon of its trainees through exposure to a wider network of mentors than traditional postdoctoral *","owner":{"id":176937962,"first_name":"Mark","middle_initials":null,"last_name":"Grinstaff","page_name":"MGrinstaff","domain_name":"bu","created_at":"2020-11-02T16:03:12.423-08:00","display_name":"Mark Grinstaff","url":"https://bu.academia.edu/MGrinstaff"},"attachments":[{"id":120004970,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004970/thumbnails/1.jpg","file_name":"ptpmcrender.pdf","download_url":"https://www.academia.edu/attachments/120004970/download_file","bulk_download_file_name":"Predoctoral_and_Postdoctoral_Training_Pi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004970/ptpmcrender-libre.pdf?1733368433=\u0026response-content-disposition=attachment%3B+filename%3DPredoctoral_and_Postdoctoral_Training_Pi.pdf\u0026Expires=1743457405\u0026Signature=Pe8o1BjQJWZDCx~-VJSKyw0aWJgqNqMpKnUrAQHcLb-f4YzIkDuxir5jCHdI~Lin2wEB0tPbPnQk38ivuoKwuv8fDoxcS4hGZaqL7e~-WSLjLDiBIvwdHkb-ZUxJNtoGY1L7B7x0K95W~EQj~ify67HuOFJ8Z2S2TngPTo4MtdSlkmh76imb6YUOyATwu2JvS0jFmmr6k7kxSgAqmXSTj5fXxC4OaC~u~U6lk48I8rlmQrClEbefcFK5aZ23tspGl80e4rY4EDNGEK0ZWnr5kraAFl0fTtLVG79N682hF6kO7woI1F6pS7XOzS2YksyCRr4tl8JXktd1IIMBjoBrnQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":24405,"name":"Translational Research","url":"https://www.academia.edu/Documents/in/Translational_Research"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":37369,"name":"Translational Medicine","url":"https://www.academia.edu/Documents/in/Translational_Medicine"}],"urls":[{"id":45919780,"url":"https://pubs.acs.org/doi/pdf/10.1021/acsbiomaterials.7b00268"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-126070846-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="126070845"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/126070845/Single_molecule_protein_sensing_in_a_nanopore_a_tutorial"><img alt="Research paper thumbnail of Single-molecule protein sensing in a nanopore: a tutorial" class="work-thumbnail" src="https://attachments.academia-assets.com/120004972/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/126070845/Single_molecule_protein_sensing_in_a_nanopore_a_tutorial">Single-molecule protein sensing in a nanopore: a tutorial</a></div><div class="wp-workCard_item"><span>Chemical Society Reviews</span><span>, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A guidebook and reference for detecting and characterizing proteins at the single-molecule level ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A guidebook and reference for detecting and characterizing proteins at the single-molecule level using nanopores.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b64b0e2793e15b874eaa42eb690bcf68" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":120004972,"asset_id":126070845,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/120004972/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="126070845"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="126070845"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 126070845; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=126070845]").text(description); $(".js-view-count[data-work-id=126070845]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 126070845; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='126070845']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b64b0e2793e15b874eaa42eb690bcf68" } } $('.js-work-strip[data-work-id=126070845]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":126070845,"title":"Single-molecule protein sensing in a nanopore: a tutorial","translated_title":"","metadata":{"abstract":"A guidebook and reference for detecting and characterizing proteins at the single-molecule level using nanopores.","publisher":"Royal Society of Chemistry (RSC)","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"Chemical Society Reviews"},"translated_abstract":"A guidebook and reference for detecting and characterizing proteins at the single-molecule level using nanopores.","internal_url":"https://www.academia.edu/126070845/Single_molecule_protein_sensing_in_a_nanopore_a_tutorial","translated_internal_url":"","created_at":"2024-12-04T13:02:22.462-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":176937962,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":120004972,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004972/thumbnails/1.jpg","file_name":"Chem._Soc._Rev._2018_Varongchayakul.pdf","download_url":"https://www.academia.edu/attachments/120004972/download_file","bulk_download_file_name":"Single_molecule_protein_sensing_in_a_nan.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004972/Chem._Soc._Rev._2018_Varongchayakul-libre.pdf?1733356541=\u0026response-content-disposition=attachment%3B+filename%3DSingle_molecule_protein_sensing_in_a_nan.pdf\u0026Expires=1743457405\u0026Signature=eXdRx7gztE3Bw2mvzNxdbEoza8GZoa2qXOTWxyhoyk8WL7H9bOTSpsKvWY4jntYwVwLNA4dKcHtk2Zj--cKXu3PYPNcMyncLOTMFD4K5ld-Csc2A1I0YbjfKuBqkhn0dCxux4LNnDIEKP1HEFe3VOnSa7Ps85uUXRpnTJBqHI8sLoMXUZUoTFcWiBnLRMKnLqmgyD91M~PHyZHDy1gh16vWfp8devjOjsQZCXXaI2YtZK6Rlul527a7Fc~prLn7aRXjMvV2x7cISRneMXE-X~eF585JMKTKRQTwZrodHCsC3acNXkVd-FNwwbEeeRpibSiqPiRdlc~ThAnElqFpRzA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Single_molecule_protein_sensing_in_a_nanopore_a_tutorial","translated_slug":"","page_count":13,"language":"en","content_type":"Work","summary":"A guidebook and reference for detecting and characterizing proteins at the single-molecule level using nanopores.","owner":{"id":176937962,"first_name":"Mark","middle_initials":null,"last_name":"Grinstaff","page_name":"MGrinstaff","domain_name":"bu","created_at":"2020-11-02T16:03:12.423-08:00","display_name":"Mark Grinstaff","url":"https://bu.academia.edu/MGrinstaff"},"attachments":[{"id":120004972,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/120004972/thumbnails/1.jpg","file_name":"Chem._Soc._Rev._2018_Varongchayakul.pdf","download_url":"https://www.academia.edu/attachments/120004972/download_file","bulk_download_file_name":"Single_molecule_protein_sensing_in_a_nan.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/120004972/Chem._Soc._Rev._2018_Varongchayakul-libre.pdf?1733356541=\u0026response-content-disposition=attachment%3B+filename%3DSingle_molecule_protein_sensing_in_a_nan.pdf\u0026Expires=1743457405\u0026Signature=eXdRx7gztE3Bw2mvzNxdbEoza8GZoa2qXOTWxyhoyk8WL7H9bOTSpsKvWY4jntYwVwLNA4dKcHtk2Zj--cKXu3PYPNcMyncLOTMFD4K5ld-Csc2A1I0YbjfKuBqkhn0dCxux4LNnDIEKP1HEFe3VOnSa7Ps85uUXRpnTJBqHI8sLoMXUZUoTFcWiBnLRMKnLqmgyD91M~PHyZHDy1gh16vWfp8devjOjsQZCXXaI2YtZK6Rlul527a7Fc~prLn7aRXjMvV2x7cISRneMXE-X~eF585JMKTKRQTwZrodHCsC3acNXkVd-FNwwbEeeRpibSiqPiRdlc~ThAnElqFpRzA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":3478741,"name":"Nanopore","url":"https://www.academia.edu/Documents/in/Nanopore"}],"urls":[{"id":45919779,"url":"http://pubs.rsc.org/en/content/articlepdf/2018/CS/C8CS00106E"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-126070845-figures'); } }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; } .sign-in-with-apple-button > div { margin: 0 auto; / This centers the Apple-rendered button horizontally }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "eb632eede86aa541e9b4282ebec215b6c3200250709bb27a9a78ff4deab4066e", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="rgMPdj-WS1cbMYMUoQoKNKJV0NMGP8Yqy5tvBJx1MJ8csOhPpJ1uMxb5RlYL8-g3LeTPpnkm1eE0EbV5IYUBtQ" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://bu.academia.edu/MGrinstaff" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="druXUTw0m8aT_OKJt6dq2DqOX5gqsMZUYQxXVS-D3Q3ECHBopz--op40J8sdXojbtT9A7VWp1Z-eho0oknPsJw" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2025</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>