CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 145 results for author: <span class="mathjax">Xu, F</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Xu%2C+F">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Xu, F"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Xu%2C+F&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Xu, F"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Xu%2C+F&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Xu%2C+F&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Xu%2C+F&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Xu%2C+F&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.00968">arXiv:2503.00968</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2503.00968">pdf</a>, <a href="https://arxiv.org/format/2503.00968">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Simulation of the Background from $^{13}$C$(伪, n)^{16}$O Reaction in the JUNO Scintillator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=JUNO+Collaboration"> JUNO Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowicz%2C+K">Kai Adamowicz</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+R">Rizwan Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">Costas Andreopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">Jo茫o Pedro Athayde Marcondes de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+W">Weidong Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Balashov%2C+N">Nikita Balashov</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Basilico%2C+D">Davide Basilico</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">Marco Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Bergnoli%2C+A">Antonio Bergnoli</a>, <a href="/search/physics?searchtype=author&amp;query=Bessonov%2C+N">Nikita Bessonov</a>, <a href="/search/physics?searchtype=author&amp;query=Bick%2C+D">Daniel Bick</a>, <a href="/search/physics?searchtype=author&amp;query=Bieger%2C+L">Lukas Bieger</a>, <a href="/search/physics?searchtype=author&amp;query=Biktemerova%2C+S">Svetlana Biktemerova</a> , et al. (608 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.00968v1-abstract-short" style="display: inline;"> Large-scale organic liquid scintillator detectors are highly efficient in the detection of MeV-scale electron antineutrinos. These signal events can be detected through inverse beta decay on protons, which produce a positron accompanied by a neutron. A noteworthy background for antineutrinos coming from nuclear power reactors and from the depths of the Earth (geoneutrinos) is generated by ($伪, n$)&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.00968v1-abstract-full').style.display = 'inline'; document.getElementById('2503.00968v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.00968v1-abstract-full" style="display: none;"> Large-scale organic liquid scintillator detectors are highly efficient in the detection of MeV-scale electron antineutrinos. These signal events can be detected through inverse beta decay on protons, which produce a positron accompanied by a neutron. A noteworthy background for antineutrinos coming from nuclear power reactors and from the depths of the Earth (geoneutrinos) is generated by ($伪, n$) reactions. In organic liquid scintillator detectors, $伪$ particles emitted from intrinsic contaminants such as $^{238}$U, $^{232}$Th, and $^{210}$Pb/$^{210}$Po, can be captured on $^{13}$C nuclei, followed by the emission of a MeV-scale neutron. Three distinct interaction mechanisms can produce prompt energy depositions preceding the delayed neutron capture, leading to a pair of events correlated in space and time within the detector. Thus, ($伪, n$) reactions represent an indistinguishable background in liquid scintillator-based antineutrino detectors, where their expected rate and energy spectrum are typically evaluated via Monte Carlo simulations. This work presents results from the open-source SaG4n software, used to calculate the expected energy depositions from the neutron and any associated de-excitation products. Also simulated is a detailed detector response to these interactions, using a dedicated Geant4-based simulation software from the JUNO experiment. An expected measurable $^{13}$C$(伪, n)^{16}$O event rate and reconstructed prompt energy spectrum with associated uncertainties, are presented in the context of JUNO, however, the methods and results are applicable and relevant to other organic liquid scintillator neutrino detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.00968v1-abstract-full').style.display = 'none'; document.getElementById('2503.00968v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 14 figures, 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.09878">arXiv:2502.09878</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.09878">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Superconductivity and a van Hove singularity confined to the surface of a topological semimetal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/physics?searchtype=author&amp;query=Islam%2C+R">Rajibul Islam</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Muhammad%2C+Z">Zahir Muhammad</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Guguchia%2C+Z">Zurab Guguchia</a>, <a href="/search/physics?searchtype=author&amp;query=Krieger%2C+J+A">Jonas A. Krieger</a>, <a href="/search/physics?searchtype=author&amp;query=Casas%2C+B">Brian Casas</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+Y">Yu-Xiao Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+B">Byunghoon Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/physics?searchtype=author&amp;query=Perakis%2C+I+E">Ilias E. Perakis</a>, <a href="/search/physics?searchtype=author&amp;query=Xue%2C+F">Fei Xue</a>, <a href="/search/physics?searchtype=author&amp;query=Kargarian%2C+M">Mehdi Kargarian</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+W">Weisheng Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Balicas%2C+L">Luis Balicas</a>, <a href="/search/physics?searchtype=author&amp;query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.09878v1-abstract-short" style="display: inline;"> The interplay between electronic topology and superconductivity is the subject of great current interest in condensed matter physics. For example, superconductivity induced on the surface of topological insulators is predicted to be triplet in nature, while the interplay between electronic correlations and topology may lead to unconventional superconductivity as in twisted bilayer graphene. Here,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.09878v1-abstract-full').style.display = 'inline'; document.getElementById('2502.09878v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.09878v1-abstract-full" style="display: none;"> The interplay between electronic topology and superconductivity is the subject of great current interest in condensed matter physics. For example, superconductivity induced on the surface of topological insulators is predicted to be triplet in nature, while the interplay between electronic correlations and topology may lead to unconventional superconductivity as in twisted bilayer graphene. Here, we unveil an unconventional two-dimensional superconducting state in the recently discovered Dirac nodal line semimetal ZrAs2 which is exclusively confined to the top and bottom surfaces within the crystal&#39;s ab plane. As a remarkable consequence of this emergent state, we observe a Berezinskii-Kosterlitz-Thouless (BKT) transition, the hallmark of two-dimensional superconductivity. Notably, this is the first observation of a BKT transition on the surface of a three-dimensional system. Furthermore, employing angle-resolved photoemission spectroscopy and first-principles calculations, we find that these same surfaces also host a two-dimensional van Hove singularity near the Fermi energy. The proximity of van Hove singularity to the Fermi level leads to enhanced electronic correlations contributing to the stabilization of superconductivity at the surface of ZrAs2, a unique phenomenon among topological semimetals. The surface-confined nature of the van Hove singularity, and associated superconductivity, realized for the first time, opens new avenues to explore the interplay between low-dimensional quantum topology, correlations, and superconductivity in a bulk material without resorting to the superconducting proximity effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.09878v1-abstract-full').style.display = 'none'; document.getElementById('2502.09878v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">in press</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.00338">arXiv:2502.00338</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.00338">pdf</a>, <a href="https://arxiv.org/format/2502.00338">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> OneForecast: A Universal Framework for Global and Regional Weather Forecasting </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gao%2C+Y">Yuan Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+H">Hao Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Shu%2C+R">Ruiqi Shu</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+H">Huanshuo Dong</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+F">Fan Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+R">Rui Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+Y">Yibo Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Wen%2C+Q">Qingsong Wen</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+X">Xuming Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+K">Kun Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+J">Jiahao Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Q">Qing Li</a>, <a href="/search/physics?searchtype=author&amp;query=Xiong%2C+H">Hui Xiong</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+X">Xiaomeng Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.00338v1-abstract-short" style="display: inline;"> Accurate weather forecasts are important for disaster prevention, agricultural planning, and water resource management. Traditional numerical weather prediction (NWP) methods offer physically interpretable high-accuracy predictions but are computationally expensive and fail to fully leverage rapidly growing historical data. In recent years, deep learning methods have made significant progress in w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.00338v1-abstract-full').style.display = 'inline'; document.getElementById('2502.00338v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.00338v1-abstract-full" style="display: none;"> Accurate weather forecasts are important for disaster prevention, agricultural planning, and water resource management. Traditional numerical weather prediction (NWP) methods offer physically interpretable high-accuracy predictions but are computationally expensive and fail to fully leverage rapidly growing historical data. In recent years, deep learning methods have made significant progress in weather forecasting, but challenges remain, such as balancing global and regional high-resolution forecasts, excessive smoothing in extreme event predictions, and insufficient dynamic system modeling. To address these issues, this paper proposes a global-regional nested weather forecasting framework based on graph neural networks (GNNs). By combining a dynamic system perspective with multi-grid theory, we construct a multi-scale graph structure and densify the target region to capture local high-frequency features. We introduce an adaptive information propagation mechanism, using dynamic gating units to deeply integrate node and edge features for more accurate extreme event forecasting. For high-resolution regional forecasts, we propose a neural nested grid method to mitigate boundary information loss. Experimental results show that the proposed method performs excellently across global to regional scales and short-term to long-term forecasts, especially in extreme event predictions (e.g., typhoons), significantly improving forecast accuracy. Our codes are available at https://github.com/YuanGao-YG/OneForecast. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.00338v1-abstract-full').style.display = 'none'; document.getElementById('2502.00338v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.15179">arXiv:2501.15179</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.15179">pdf</a>, <a href="https://arxiv.org/format/2501.15179">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Effects of rough walls on sheared annular centrifugal Rayleigh-B茅nard convection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xu%2C+F">Fan Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhong%2C+J">Jun Zhong</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+J">Jinghong Su</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+B">Bidan Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+Y">Yurong He</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+C">Chao Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">Junwu Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.15179v1-abstract-short" style="display: inline;"> In this study, we investigate the coupling effects of roughness and wall shear in an annular centrifugal Rayleigh-B茅nard convection (ACRBC) system, where two cylinders rotate with different angular velocities. Two-dimensional direct numerical simulations are conducted within a Rayleigh number range of $10^{6} \leq Ra \leq 10^{8}$, and the non-dimensional angular velocity difference ($\varOmega$),&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.15179v1-abstract-full').style.display = 'inline'; document.getElementById('2501.15179v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.15179v1-abstract-full" style="display: none;"> In this study, we investigate the coupling effects of roughness and wall shear in an annular centrifugal Rayleigh-B茅nard convection (ACRBC) system, where two cylinders rotate with different angular velocities. Two-dimensional direct numerical simulations are conducted within a Rayleigh number range of $10^{6} \leq Ra \leq 10^{8}$, and the non-dimensional angular velocity difference ($\varOmega$), representing wall shear, varied from 0 to 1. The Prandtl number is fixed at $Pr = 4.3$, the inverse Rossby number at $Ro^{-1} = 20$, and the radius ratio at $畏= 0.5$. The interaction between wall shear and roughness leads to distinct heat transfer behavior in different regimes. In the buoyancy-dominant regime, an increase in the non-dimensional angular velocity difference ($\varOmega$) significantly enhances heat transfer. However, as $\varOmega$ continues to rise, a sharp reduction in heat transfer is observed in the transitional regime. Beyond a critical value of $\varOmega$, the flow enters a shear-dominant regime, where heat transfer remains unchanged despite further increases in $\varOmega$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.15179v1-abstract-full').style.display = 'none'; document.getElementById('2501.15179v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.15532">arXiv:2412.15532</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.15532">pdf</a>, <a href="https://arxiv.org/format/2412.15532">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Improved Forecasts of Global Extreme Marine Heatwaves Through a Physics-guided Data-driven Approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shu%2C+R">Ruiqi Shu</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+H">Hao Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+Y">Yuan Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+F">Fanghua Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Gou%2C+R">Ruijian Gou</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+X">Xiaomeng Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.15532v1-abstract-short" style="display: inline;"> The unusually warm sea surface temperature events known as marine heatwaves (MHWs) have a profound impact on marine ecosystems. Accurate prediction of extreme MHWs has significant scientific and financial worth. However, existing methods still have certain limitations, especially in the most extreme MHWs. In this study, to address these issues, based on the physical nature of MHWs, we created a no&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.15532v1-abstract-full').style.display = 'inline'; document.getElementById('2412.15532v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.15532v1-abstract-full" style="display: none;"> The unusually warm sea surface temperature events known as marine heatwaves (MHWs) have a profound impact on marine ecosystems. Accurate prediction of extreme MHWs has significant scientific and financial worth. However, existing methods still have certain limitations, especially in the most extreme MHWs. In this study, to address these issues, based on the physical nature of MHWs, we created a novel deep learning neural network that is capable of accurate 10-day MHW forecasting. Our framework significantly improves the forecast ability of extreme MHWs through two specially designed modules inspired by numerical models: a coupler and a probabilistic data argumentation. The coupler simulates the driving effect of atmosphere on MHWs while the probabilistic data argumentation approaches significantly boost the forecast ability of extreme MHWs based on the idea of ensemble forecast. Compared with traditional numerical prediction, our framework has significantly higher accuracy and requires fewer computational resources. What&#39;s more, explainable AI methods show that wind forcing is the primary driver of MHW evolution and reveal its relation with air-sea heat exchange. Overall, our model provides a framework for understanding MHWs&#39; driving processes and operational forecasts in the future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.15532v1-abstract-full').style.display = 'none'; document.getElementById('2412.15532v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13115">arXiv:2411.13115</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.13115">pdf</a>, <a href="https://arxiv.org/format/2411.13115">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> How interfacial tension enhances drag in turbulent Taylor-Couette flow with neutrally buoyant and equally viscous droplets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Su%2C+J">Jinghong Su</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yi-bao Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+C">Cheng Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Yi%2C+L">Lei Yi</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+F">Fan Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+Y">Yaning Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">Junwu Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+C">Chao Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13115v1-abstract-short" style="display: inline;"> The presence of dispersed-phase droplets can result in a notable increase in the system&#39;s drag. However, our understanding of the mechanism underlying this phenomenon remains limited. In this study, we use three-dimensional direct numerical simulations with a modified multi-marker volume-of-fluid method to investigate liquid-liquid two-phase turbulence in a Taylor-Couette geometry. The dispersed p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13115v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13115v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13115v1-abstract-full" style="display: none;"> The presence of dispersed-phase droplets can result in a notable increase in the system&#39;s drag. However, our understanding of the mechanism underlying this phenomenon remains limited. In this study, we use three-dimensional direct numerical simulations with a modified multi-marker volume-of-fluid method to investigate liquid-liquid two-phase turbulence in a Taylor-Couette geometry. The dispersed phase has the same density and viscosity as the continuous phase. The Reynolds number $Re\equiv r_i蠅_i d/谓$ is fixed at 5200, the volume fraction of the dispersed phase is up to $40\%$, and the Weber number $We\equiv 蟻u^2_蟿d/蟽$ is around 8. It is found that the increase in the system&#39;s drag originates from the contribution of interfacial tension. Specifically, droplets experience significant deformation and stretching in the streamwise direction due to shear near the inner cylinder. Consequently, the rear end of the droplets lags behind the fore head. This causes opposing interfacial tension effects on the fore head and rear end of the droplets. For the fore head of the droplets, the effect of interfacial tension appears to act against the flow direction. For the rear end, the effect appears to act in the flow direction. The increase in the system&#39;s drag is primarily attributed to the effect of interfacial tension on the fore head of the droplets which leads to the hindering effect of the droplets on the surrounding continuous phase. This hindering effect disrupts the formation of high-speed streaks, favoring the formation of low-speed ones, which are generally associated with higher viscous stress and drag of the system. This study provides new insights into the mechanism of drag enhancement reported in our previous experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13115v1-abstract-full').style.display = 'none'; document.getElementById('2411.13115v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.10301">arXiv:2410.10301</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.10301">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Intercalation of Functional Materials with Phase Transitions for Neuromorphic Applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=He%2C+X">Xin He</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Hua Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+J">Jian Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+X">Xixiang Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+K">Kai Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Xue%2C+F">Fei Xue</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.10301v1-abstract-short" style="display: inline;"> Introducing foreign ions, atoms, or molecules into emerging functional materials is crucial for manipulating material physical properties and innovating device applications. The intercalation of emerging new materials can induce multiple intrinsic changes, such as charge doping, chemical bonding, and lattice expansion, which facilitates the exploration of structural phase transformations, the tuni&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10301v1-abstract-full').style.display = 'inline'; document.getElementById('2410.10301v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.10301v1-abstract-full" style="display: none;"> Introducing foreign ions, atoms, or molecules into emerging functional materials is crucial for manipulating material physical properties and innovating device applications. The intercalation of emerging new materials can induce multiple intrinsic changes, such as charge doping, chemical bonding, and lattice expansion, which facilitates the exploration of structural phase transformations, the tuning of symmetry-breaking-related physics, and the creation of brain-inspired advanced devices. Moreover, incorporating various hosts and intercalants enables a series of crystal structures with a rich spectrum of characteristics, greatly expanding the scope and fundamental understanding of existing materials. Herein, we summarize the methods typically used for the intercalation of functional materials. We highlight recent progress in intercalation-based phase transitions and their emerging physics, i.e., ferroelectric, magnetic, insulator-metal, superconducting, and charge-density-wave phase transitions. We discuss prospective device applications for intercalation-based phase transitions, i.e., neuromorphic devices. Finally, we provide potential future research lines for promoting its further development. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10301v1-abstract-full').style.display = 'none'; document.getElementById('2410.10301v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">74 pages, 11 figures, accepted by Matter</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.13989">arXiv:2409.13989</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.13989">pdf</a>, <a href="https://arxiv.org/format/2409.13989">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> </div> </div> <p class="title is-5 mathjax"> ChemEval: A Comprehensive Multi-Level Chemical Evaluation for Large Language Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yuqing Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+R">Rongyang Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+X">Xuesong He</a>, <a href="/search/physics?searchtype=author&amp;query=Zhi%2C+X">Xuyang Zhi</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Hao Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xin Li</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+F">Feiyang Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D">Deguang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+H">Huadong Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yi Li</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+J">Jian Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zimu Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+S">Shijin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+G">Guoping Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+G">Guiquan Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Qi Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Lian%2C+D">Defu Lian</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+E">Enhong Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.13989v1-abstract-short" style="display: inline;"> There is a growing interest in the role that LLMs play in chemistry which lead to an increased focus on the development of LLMs benchmarks tailored to chemical domains to assess the performance of LLMs across a spectrum of chemical tasks varying in type and complexity. However, existing benchmarks in this domain fail to adequately meet the specific requirements of chemical research professionals.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13989v1-abstract-full').style.display = 'inline'; document.getElementById('2409.13989v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.13989v1-abstract-full" style="display: none;"> There is a growing interest in the role that LLMs play in chemistry which lead to an increased focus on the development of LLMs benchmarks tailored to chemical domains to assess the performance of LLMs across a spectrum of chemical tasks varying in type and complexity. However, existing benchmarks in this domain fail to adequately meet the specific requirements of chemical research professionals. To this end, we propose \textbf{\textit{ChemEval}}, which provides a comprehensive assessment of the capabilities of LLMs across a wide range of chemical domain tasks. Specifically, ChemEval identified 4 crucial progressive levels in chemistry, assessing 12 dimensions of LLMs across 42 distinct chemical tasks which are informed by open-source data and the data meticulously crafted by chemical experts, ensuring that the tasks have practical value and can effectively evaluate the capabilities of LLMs. In the experiment, we evaluate 12 mainstream LLMs on ChemEval under zero-shot and few-shot learning contexts, which included carefully selected demonstration examples and carefully designed prompts. The results show that while general LLMs like GPT-4 and Claude-3.5 excel in literature understanding and instruction following, they fall short in tasks demanding advanced chemical knowledge. Conversely, specialized LLMs exhibit enhanced chemical competencies, albeit with reduced literary comprehension. This suggests that LLMs have significant potential for enhancement when tackling sophisticated tasks in the field of chemistry. We believe our work will facilitate the exploration of their potential to drive progress in chemistry. Our benchmark and analysis will be available at {\color{blue} \url{https://github.com/USTC-StarTeam/ChemEval}}. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13989v1-abstract-full').style.display = 'none'; document.getElementById('2409.13989v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.08306">arXiv:2409.08306</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.08306">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Dataset of Tensile Properties for Sub-sized Specimens of Nuclear Structural Materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+L">Longze Li</a>, <a href="/search/physics?searchtype=author&amp;query=Merickel%2C+J+W">John W. Merickel</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Y">Yalei Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+R">Rongjie Song</a>, <a href="/search/physics?searchtype=author&amp;query=Rittenhouse%2C+J+E">Joshua E. Rittenhouse</a>, <a href="/search/physics?searchtype=author&amp;query=Vakanski%2C+A">Aleksandar Vakanski</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+F">Fei Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.08306v2-abstract-short" style="display: inline;"> Mechanical testing with sub-sized specimens plays an important role in the nuclear industry, facilitating tests in confined experimental spaces with lower irradiation levels and accelerating the qualification of new materials. The reduced size of specimens results in different material behavior at the microscale, mesoscale, and macroscale, in comparison to standard-sized specimens, which is referr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08306v2-abstract-full').style.display = 'inline'; document.getElementById('2409.08306v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.08306v2-abstract-full" style="display: none;"> Mechanical testing with sub-sized specimens plays an important role in the nuclear industry, facilitating tests in confined experimental spaces with lower irradiation levels and accelerating the qualification of new materials. The reduced size of specimens results in different material behavior at the microscale, mesoscale, and macroscale, in comparison to standard-sized specimens, which is referred to as the specimen size effect. Although analytical models have been proposed to correlate the properties of sub-sized specimens to standard-sized specimens, these models lack broad applicability across different materials and testing conditions. The objective of this study is to create the first large public dataset of tensile properties for sub-sized specimens used in nuclear structural materials. We performed an extensive literature review of relevant publications and extracted over 1,000 tensile testing records comprising 54 parameters including material type and composition, manufacturing information, irradiation conditions, specimen dimensions, and tensile properties. The dataset can serve as a valuable resource to investigate the specimen size effect and develop computational methods to correlate the tensile properties of sub-sized specimens. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08306v2-abstract-full').style.display = 'none'; document.getElementById('2409.08306v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.15681">arXiv:2408.15681</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.15681">pdf</a>, <a href="https://arxiv.org/format/2408.15681">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Towards a Unified Benchmark and Framework for Deep Learning-Based Prediction of Nuclear Magnetic Resonance Chemical Shifts </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xu%2C+F">Fanjie Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+W">Wentao Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+F">Feng Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Yao%2C+L">Lin Yao</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Hongshuai Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+F">Fujie Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+Z">Zhifeng Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L">Linfeng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=E%2C+W">Weinan E</a>, <a href="/search/physics?searchtype=author&amp;query=Tian%2C+Z">Zhong-Qun Tian</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Jun Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.15681v1-abstract-short" style="display: inline;"> The study of structure-spectrum relationships is essential for spectral interpretation, impacting structural elucidation and material design. Predicting spectra from molecular structures is challenging due to their complex relationships. Herein, we introduce NMRNet, a deep learning framework using the SE(3) Transformer for atomic environment modeling, following a pre-training and fine-tuning parad&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15681v1-abstract-full').style.display = 'inline'; document.getElementById('2408.15681v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.15681v1-abstract-full" style="display: none;"> The study of structure-spectrum relationships is essential for spectral interpretation, impacting structural elucidation and material design. Predicting spectra from molecular structures is challenging due to their complex relationships. Herein, we introduce NMRNet, a deep learning framework using the SE(3) Transformer for atomic environment modeling, following a pre-training and fine-tuning paradigm. To support the evaluation of NMR chemical shift prediction models, we have established a comprehensive benchmark based on previous research and databases, covering diverse chemical systems. Applying NMRNet to these benchmark datasets, we achieve state-of-the-art performance in both liquid-state and solid-state NMR datasets, demonstrating its robustness and practical utility in real-world scenarios. This marks the first integration of solid and liquid state NMR within a unified model architecture, highlighting the need for domainspecific handling of different atomic environments. Our work sets a new standard for NMR prediction, advancing deep learning applications in analytical and structural chemistry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15681v1-abstract-full').style.display = 'none'; document.getElementById('2408.15681v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.01164">arXiv:2408.01164</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.01164">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Discriminative Addressing of Versatile Nanodiamonds via Physically-Enabled Classifier in Complex Bio-Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Tan%2C+Y">Yayin Tan</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xiaolu Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+F">Feng Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+X">Xinhao Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+Y">Yuan Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+B">Bo Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+Z">Zhiqin Chu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.01164v1-abstract-short" style="display: inline;"> Nitrogen-vacancy (NV) centers show great potentials for nanoscale bio-sensing and bio-imaging. Nevertheless, their envisioned bio-applications suffer from intrinsic background noise due to unavoidable light scattering and autofluorescence in cells and tissues. Herein, we develop a novel all-optical modulated imaging method via physically-enabled classifier, for on-demand and direct access to NV fl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.01164v1-abstract-full').style.display = 'inline'; document.getElementById('2408.01164v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.01164v1-abstract-full" style="display: none;"> Nitrogen-vacancy (NV) centers show great potentials for nanoscale bio-sensing and bio-imaging. Nevertheless, their envisioned bio-applications suffer from intrinsic background noise due to unavoidable light scattering and autofluorescence in cells and tissues. Herein, we develop a novel all-optical modulated imaging method via physically-enabled classifier, for on-demand and direct access to NV fluorescence at pixel resolution while effectively filtering out background noise. Specifically, NV fluorescence can be modulated optically to exhibit sinusoid-like variations, providing basis for classification. We validate our method in various complex biological scenarios with fluorescence interference, ranging from cells to organisms. Notably, our classification-based approach achieves almost 10^6 times enhancement of signal-to-background ratio (SBR) for fluorescent nanodiamonds (FNDs) in neural protein imaging. We also demonstrate 4-fold contrast improvement in optically-detected magnetic resonance measurements (ODMR) of FNDs inside stained cells. Our technique offers a generic, explainable and robust solution, applicable for realistic high-fidelity imaging and sensing in challenging noise-laden scenarios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.01164v1-abstract-full').style.display = 'none'; document.getElementById('2408.01164v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.07651">arXiv:2407.07651</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.07651">pdf</a>, <a href="https://arxiv.org/format/2407.07651">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Study of the decay and production properties of $D_{s1}(2536)$ and $D_{s2}^*(2573)$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/physics?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/physics?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/physics?searchtype=author&amp;query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/physics?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/physics?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/physics?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/physics?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/physics?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/physics?searchtype=author&amp;query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/physics?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/physics?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/physics?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/physics?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/physics?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/physics?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/physics?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/physics?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/physics?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a>, <a href="/search/physics?searchtype=author&amp;query=Brueggemann%2C+A">A. Brueggemann</a> , et al. (645 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.07651v1-abstract-short" style="display: inline;"> The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of $D_{s1}(2536)^- \rightarrow \bar{D}^{*0}K^-$ and $D_{s2}^*(2573)^- \rightarrow \bar{D}^0K^-$ are measured for the first time to be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07651v1-abstract-full').style.display = 'inline'; document.getElementById('2407.07651v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.07651v1-abstract-full" style="display: none;"> The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of $D_{s1}(2536)^- \rightarrow \bar{D}^{*0}K^-$ and $D_{s2}^*(2573)^- \rightarrow \bar{D}^0K^-$ are measured for the first time to be $(35.9\pm 4.8\pm 3.5)\%$ and $(37.4\pm 3.1\pm 4.6)\%$, respectively. The measurements are in tension with predictions based on the assumption that the $D_{s1}(2536)$ and $D_{s2}^*(2573)$ are dominated by a bare $c\bar{s}$ component. The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ cross sections are measured, and a resonant structure at around 4.6~GeV with a width of 50~MeV is observed for the first time with a statistical significance of $15蟽$ in the $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ process. It could be the $Y(4626)$ found by the Belle collaboration in the $D_s^+D_{s1}(2536)^{-}$ final state, since they have similar masses and widths. There is also evidence for a structure at around 4.75~GeV in both processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07651v1-abstract-full').style.display = 'none'; document.getElementById('2407.07651v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.00992">arXiv:2407.00992</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.00992">pdf</a>, <a href="https://arxiv.org/format/2407.00992">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Turbulence modulation in liquid-liquid two-phase Taylor-Couette turbulence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Su%2C+J">Jinghong Su</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+C">Cheng Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yi-bao Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+F">Fan Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">Junwu Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+C">Chao Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.00992v2-abstract-short" style="display: inline;"> We investigate the coupling effects of the two-phase interface, viscosity ratio, and density ratio of the dispersed phase to the continuous phase on the flow statistics in two-phase Taylor-Couette turbulence at a system Reynolds number of 6000 and a system Weber number of 10 using interface-resolved three-dimensional direct numerical simulations with the volume-of-fluid method. Our study focuses o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00992v2-abstract-full').style.display = 'inline'; document.getElementById('2407.00992v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.00992v2-abstract-full" style="display: none;"> We investigate the coupling effects of the two-phase interface, viscosity ratio, and density ratio of the dispersed phase to the continuous phase on the flow statistics in two-phase Taylor-Couette turbulence at a system Reynolds number of 6000 and a system Weber number of 10 using interface-resolved three-dimensional direct numerical simulations with the volume-of-fluid method. Our study focuses on four different scenarios: neutral droplets, low-viscosity droplets, light droplets, and low-viscosity light droplets. We find that neutral droplets and low-viscosity droplets primarily contribute to drag enhancement through the two-phase interface, while light droplets reduce the system&#39;s drag by explicitly reducing Reynolds stress due to the density dependence of Reynolds stress. Additionally, low-viscosity light droplets contribute to greater drag reduction by further reducing momentum transport near the inner cylinder and implicitly reducing Reynolds stress. While interfacial tension enhances turbulent kinetic energy (TKE) transport, drag enhancement is not strongly correlated with TKE transport for both neutral droplets and low-viscosity droplets. Light droplets primarily reduce the production term by diminishing Reynolds stress, whereas the density contrast between the phases boosts TKE transport near the inner wall. Therefore, the reduction in the dissipation rate is predominantly attributed to decreased turbulence production, causing drag reduction. For low-viscosity light droplets, the production term diminishes further, primarily due to their greater reduction in Reynolds stress, while reduced viscosity weakens the density difference&#39;s contribution to TKE transport near the inner cylinder, resulting in a more pronounced reduction in the dissipation rate and consequently stronger drag reduction. Our findings provide new insights into the turbulence modulation in two-phase flow. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00992v2-abstract-full').style.display = 'none'; document.getElementById('2407.00992v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.17860">arXiv:2405.17860</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.17860">pdf</a>, <a href="https://arxiv.org/format/2405.17860">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/ad83aa">10.1088/1674-1137/ad83aa <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Prediction of Energy Resolution in the JUNO Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=JUNO+Collaboration"> JUNO Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowicz%2C+K">Kai Adamowicz</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+R">Rizwan Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">Jo茫o Pedro Athayde Marcondes de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+W">Weidong Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Balashov%2C+N">Nikita Balashov</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">Wander Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Basilico%2C+D">Davide Basilico</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Bellato%2C+M">Marco Bellato</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">Marco Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Bergnoli%2C+A">Antonio Bergnoli</a>, <a href="/search/physics?searchtype=author&amp;query=Bick%2C+D">Daniel Bick</a> , et al. (629 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.17860v2-abstract-short" style="display: inline;"> This paper presents an energy resolution study of the JUNO experiment, incorporating the latest knowledge acquired during the detector construction phase. The determination of neutrino mass ordering in JUNO requires an exceptional energy resolution better than 3\% at 1~MeV. To achieve this ambitious goal, significant efforts have been undertaken in the design and production of the key components o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17860v2-abstract-full').style.display = 'inline'; document.getElementById('2405.17860v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.17860v2-abstract-full" style="display: none;"> This paper presents an energy resolution study of the JUNO experiment, incorporating the latest knowledge acquired during the detector construction phase. The determination of neutrino mass ordering in JUNO requires an exceptional energy resolution better than 3\% at 1~MeV. To achieve this ambitious goal, significant efforts have been undertaken in the design and production of the key components of the JUNO detector. Various factors affecting the detection of inverse beta decay signals have an impact on the energy resolution, extending beyond the statistical fluctuations of the detected number of photons, such as the properties of the liquid scintillator, performance of photomultiplier tubes, and the energy reconstruction algorithm. To account for these effects, a full JUNO simulation and reconstruction approach is employed. This enables the modeling of all relevant effects and the evaluation of associated inputs to accurately estimate the energy resolution. The results of study reveal an energy resolution of 2.95\% at 1~MeV. Furthermore, this study assesses the contribution of major effects to the overall energy resolution budget. This analysis serves as a reference for interpreting future measurements of energy resolution during JUNO data collection. Moreover, it provides a guideline for comprehending the energy resolution characteristics of liquid scintillator-based detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17860v2-abstract-full').style.display = 'none'; document.getElementById('2405.17860v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chinese Phys. C 49 013003 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.11826">arXiv:2405.11826</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.11826">pdf</a>, <a href="https://arxiv.org/format/2405.11826">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Data quality control system and long-term performance monitor of the LHAASO-KM2A </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cao%2C+Z">Zhen Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Aharonian%2C+F">F. Aharonian</a>, <a href="/search/physics?searchtype=author&amp;query=Axikegu"> Axikegu</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+Y+X">Y. X. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Bao%2C+Y+W">Y. W. Bao</a>, <a href="/search/physics?searchtype=author&amp;query=Bastieri%2C+D">D. Bastieri</a>, <a href="/search/physics?searchtype=author&amp;query=Bi%2C+X+J">X. J. Bi</a>, <a href="/search/physics?searchtype=author&amp;query=Bi%2C+Y+J">Y. J. Bi</a>, <a href="/search/physics?searchtype=author&amp;query=Bian%2C+W">W. Bian</a>, <a href="/search/physics?searchtype=author&amp;query=Bukevich%2C+A+V">A. V. Bukevich</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+Q">Q. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+W+Y">W. Y. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+Z">Zhe Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J">J. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+F">J. F. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+A+M">A. M. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+E+S">E. S. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H+X">H. X. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+L">Liang Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+L">Lin Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+L">Long Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M+J">M. J. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M+L">M. L. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Q+H">Q. H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S">S. Chen</a> , et al. (263 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.11826v3-abstract-short" style="display: inline;"> The KM2A is the largest sub-array of the Large High Altitude Air Shower Observatory (LHAASO). It consists of 5216 electromagnetic particle detectors (EDs) and 1188 muon detectors (MDs). The data recorded by the EDs and MDs are used to reconstruct primary information of cosmic ray and gamma-ray showers. This information is used for physical analysis in gamma-ray astronomy and cosmic ray physics. To&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.11826v3-abstract-full').style.display = 'inline'; document.getElementById('2405.11826v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.11826v3-abstract-full" style="display: none;"> The KM2A is the largest sub-array of the Large High Altitude Air Shower Observatory (LHAASO). It consists of 5216 electromagnetic particle detectors (EDs) and 1188 muon detectors (MDs). The data recorded by the EDs and MDs are used to reconstruct primary information of cosmic ray and gamma-ray showers. This information is used for physical analysis in gamma-ray astronomy and cosmic ray physics. To ensure the reliability of the LHAASO-KM2A data, a three-level quality control system has been established. It is used to monitor the status of detector units, stability of reconstructed parameters and the performance of the array based on observations of the Crab Nebula and Moon shadow. This paper will introduce the control system and its application on the LHAASO-KM2A data collected from August 2021 to July 2023. During this period, the pointing and angular resolution of the array were stable. From the observations of the Moon shadow and Crab Nebula, the results achieved using the two methods are consistent with each other. According to the observation of the Crab Nebula at energies from 25 TeV to 100 TeV, the time averaged pointing errors are estimated to be $-0.003^{\circ} \pm 0.005^{\circ}$ and $0.001^{\circ} \pm 0.006^{\circ}$ in the R.A. and Dec directions, respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.11826v3-abstract-full').style.display = 'none'; document.getElementById('2405.11826v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.15685">arXiv:2404.15685</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.15685">pdf</a>, <a href="https://arxiv.org/format/2404.15685">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Super-resolution imaging based on active optical intensity interferometry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+L">Lu-Chuan Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+C">Cheng Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wei Li</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yu-Ao Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Wilczek%2C+F">Frank Wilczek</a>, <a href="/search/physics?searchtype=author&amp;query=Shao%2C+X">Xiao-Peng Shao</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+F">Feihu Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Q">Qiang Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Pan%2C+J">Jian-Wei Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.15685v1-abstract-short" style="display: inline;"> Long baseline diffraction-limited optical aperture synthesis technology by interferometry plays an important role in scientific study and practical application. In contrast to amplitude (phase) interferometry, intensity interferometry -- which exploits the quantum nature of light to measure the photon bunching effect in thermal light -- is robust against atmospheric turbulence and optical defects.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.15685v1-abstract-full').style.display = 'inline'; document.getElementById('2404.15685v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.15685v1-abstract-full" style="display: none;"> Long baseline diffraction-limited optical aperture synthesis technology by interferometry plays an important role in scientific study and practical application. In contrast to amplitude (phase) interferometry, intensity interferometry -- which exploits the quantum nature of light to measure the photon bunching effect in thermal light -- is robust against atmospheric turbulence and optical defects. However, a thermal light source typically has a significant divergence angle and a low average photon number per mode, forestalling the applicability over long ranges. Here, we propose and demonstrate active intensity interferometry for super-resolution imaging over the kilometer range. Our scheme exploits phase-independent multiple laser emitters to produce the thermal illumination and uses an elaborate computational algorithm to reconstruct the image. In outdoor environments, we image two-dimension millimeter-level targets over 1.36 kilometers at a resolution of 14 times the diffraction limit of a single telescope. High-resolution optical imaging and sensing are anticipated by applying long-baseline active intensity interferometry in general branches of physics and metrology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.15685v1-abstract-full').style.display = 'none'; document.getElementById('2404.15685v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">42 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.10470">arXiv:2404.10470</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.10470">pdf</a>, <a href="https://arxiv.org/ps/2404.10470">ps</a>, <a href="https://arxiv.org/format/2404.10470">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0256-307X/41/4/044205">10.1088/0256-307X/41/4/044205 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reversible optical isolators and quasi-circulators using a magneto-optical Fabry-P茅rot cavity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+T">Tiantian Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+W">Wenpeng Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z">Zhixiang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Y">Yutao Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+F">Fan Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+H">Haodong Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+H">Han Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+J">Jiang-Shan Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Ruan%2C+Y">Ya-Ping Ruan</a>, <a href="/search/physics?searchtype=author&amp;query=Xia%2C+K">Keyu Xia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.10470v1-abstract-short" style="display: inline;"> Nonreciprocal optical devices are essential for laser protection, modern optical communication and quantum information processing by enforcing one-way light propagation. The conventional Faraday magneto-optical nonreciprocal devices rely on a strong magnetic field, which is provided by a permanent magnet. As a result, the isolation direction of such devices is fixed and severely restricts their ap&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.10470v1-abstract-full').style.display = 'inline'; document.getElementById('2404.10470v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.10470v1-abstract-full" style="display: none;"> Nonreciprocal optical devices are essential for laser protection, modern optical communication and quantum information processing by enforcing one-way light propagation. The conventional Faraday magneto-optical nonreciprocal devices rely on a strong magnetic field, which is provided by a permanent magnet. As a result, the isolation direction of such devices is fixed and severely restricts their applications in quantum networks.In this work, we experimentally demonstrate the simultaneous one-way transmission and unidirectional reflection by using a magneto-optical Fabry-P茅rot cavity and a magnetic field strength of $50~\milli\tesla$. An optical isolator and a three-port quasi-circulator are realized based on this nonreciprocal cavity system. The isolator achieves an isolation ratio of up to $22~\deci\bel$ and an averaged insertion loss down to $0.97~\deci\bel$. The quasi-circulator is realized with a fidelity exceeding $99\%$ and an overall survival probability of $89.9\%$, corresponding to an insertion loss of $\sim 0.46~\deci\bel$. The magnetic field is provided by an electromagnetic coil, thereby allowing for reversing the light circulating path. The reversible quasi-circulator paves the way for building reconfigurable quantum networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.10470v1-abstract-full').style.display = 'none'; document.getElementById('2404.10470v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chinese Physics Letters 4 (2024), 044205 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.07218">arXiv:2404.07218</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.07218">pdf</a>, <a href="https://arxiv.org/format/2404.07218">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0193824">10.1063/5.0193824 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Miniaturized time-correlated single-photon counting module for time-of-flight non-line-of-sight imaging applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wu%2C+J">Jie Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+C">Chao Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Zeng%2C+J">Jian-Wei Zeng</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+C">Chen Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+F">Feihu Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jun Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.07218v1-abstract-short" style="display: inline;"> Single-photon time-of-flight (TOF) non-line-of-sight (NLOS) imaging enables the high-resolution reconstruction of objects outside the field of view. The compactness of TOF NLOS imaging systems, entailing the miniaturization of key components within such systems is crucial for practical applications. Here, we present a miniaturized four-channel time-correlated single-photon counting module dedicate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.07218v1-abstract-full').style.display = 'inline'; document.getElementById('2404.07218v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.07218v1-abstract-full" style="display: none;"> Single-photon time-of-flight (TOF) non-line-of-sight (NLOS) imaging enables the high-resolution reconstruction of objects outside the field of view. The compactness of TOF NLOS imaging systems, entailing the miniaturization of key components within such systems is crucial for practical applications. Here, we present a miniaturized four-channel time-correlated single-photon counting module dedicated to TOF NLOS imaging applications. The module achieves excellent performance with a 10 ps bin size and 27.4 ps minimum root-mean-square time resolution. We present the results of TOF NLOS imaging experiment using an InGaAs/InP single-photon detector and the time-correlated single-photon counting module, and show that a 6.3 cm lateral resolution and 2.3 cm depth resolution can be achieved under the conditions of 5 m imaging distance and 1 ms pixel dwell time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.07218v1-abstract-full').style.display = 'none'; document.getElementById('2404.07218v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published by Review of Scientific Instrument</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Rev. Sci. Instrum. 95, 035107 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.13850">arXiv:2403.13850</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.13850">pdf</a>, <a href="https://arxiv.org/format/2403.13850">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Spatio-Temporal Fluid Dynamics Modeling via Physical-Awareness and Parameter Diffusion Guidance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wu%2C+H">Hao Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+F">Fan Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Duan%2C+Y">Yifan Duan</a>, <a href="/search/physics?searchtype=author&amp;query=Niu%2C+Z">Ziwei Niu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+W">Weiyan Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+G">Gaofeng Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+K">Kun Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+Y">Yuxuan Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.13850v1-abstract-short" style="display: inline;"> This paper proposes a two-stage framework named ST-PAD for spatio-temporal fluid dynamics modeling in the field of earth sciences, aiming to achieve high-precision simulation and prediction of fluid dynamics through spatio-temporal physics awareness and parameter diffusion guidance. In the upstream stage, we design a vector quantization reconstruction module with temporal evolution characteristics&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.13850v1-abstract-full').style.display = 'inline'; document.getElementById('2403.13850v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.13850v1-abstract-full" style="display: none;"> This paper proposes a two-stage framework named ST-PAD for spatio-temporal fluid dynamics modeling in the field of earth sciences, aiming to achieve high-precision simulation and prediction of fluid dynamics through spatio-temporal physics awareness and parameter diffusion guidance. In the upstream stage, we design a vector quantization reconstruction module with temporal evolution characteristics, ensuring balanced and resilient parameter distribution by introducing general physical constraints. In the downstream stage, a diffusion probability network involving parameters is utilized to generate high-quality future states of fluids, while enhancing the model&#39;s generalization ability by perceiving parameters in various physical setups. Extensive experiments on multiple benchmark datasets have verified the effectiveness and robustness of the ST-PAD framework, which showcase that ST-PAD outperforms current mainstream models in fluid dynamics modeling and prediction, especially in effectively capturing local representations and maintaining significant advantages in OOD generations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.13850v1-abstract-full').style.display = 'none'; document.getElementById('2403.13850v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.05028">arXiv:2403.05028</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.05028">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> A Neural Network-Based Submesoscale Vertical Heat Flux Parameterization and Its Implementation in Regional Ocean Modeling System (ROMS) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+S">Shuyi Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+J">Jihai Dong</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+F">Fanghua Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Jing%2C+Z">Zhiyou Jing</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+C">Changming Dong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.05028v1-abstract-short" style="display: inline;"> Submesoscale processes, with spatio-temporal scales of O(0.01-10) km and hours to 1 day which are hardly resolved by current ocean models, are important sub-grid processes in ocean models. Due to the strong vertical currents, submesoscale processes can lead to submesoscale vertical heat flux (SVHF) in the upper ocean which plays a crucial role in the heat exchange between the atmosphere and the oc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05028v1-abstract-full').style.display = 'inline'; document.getElementById('2403.05028v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.05028v1-abstract-full" style="display: none;"> Submesoscale processes, with spatio-temporal scales of O(0.01-10) km and hours to 1 day which are hardly resolved by current ocean models, are important sub-grid processes in ocean models. Due to the strong vertical currents, submesoscale processes can lead to submesoscale vertical heat flux (SVHF) in the upper ocean which plays a crucial role in the heat exchange between the atmosphere and the ocean interior, and further modulates the global heat redistribution. At present, simulating a submesoscale-resolving ocean model is still expensive and time-consuming. Parameterizing SVHF becomes a feasible alternative by introducing it into coarse-resolution models. Traditionally, researchers tend to parameterize SVHF by a mathematically fitted relationship based on one or two key background state variables, which fail to represent the relationship between SVHF and the background state variables comprehensively. In this study, we propose a data-driven SVHF parameterization scheme based on a deep neural network and implement it into the Regional Ocean Modeling System (ROMS). In offline tests, our scheme can accurately calculate SVHF using mesoscale-averaged variables and characterize how it varies with depth. In online tests, we simulate an idealized model of an anticyclonic mesoscale eddy and a realistic model of the Gulf Stream, respectively. Compared to the coarse-resolution cases without the SVHF effect, the coarse-resolution cases with the SVHF scheme tend to reproduce results closer to the high-resolution case and the observational state in terms of the temperature structure and mixed layer depth, indicating a good performance of the neural network-based SVHF scheme. Our results show the potential of applying the neural network in parameterizing sub-grid processes in ocean models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05028v1-abstract-full').style.display = 'none'; document.getElementById('2403.05028v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.15187">arXiv:2402.15187</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.15187">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Ultra-short lifetime isomer studies from photonuclear reactions using laser-driven ultra-intense 纬-ray </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wu%2C+D">Di Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Lan%2C+H">Haoyang Lan</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Jiaxing Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Huangang Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jianyao Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Lv%2C+J">Jianfeng Lv</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+X">Xuezhi Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+H">Hui Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Xia%2C+Y">Yadong Xia</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+Q">Qiangyou He</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+J">Jie Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+Q">Qianyi Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Xia%2C+Y">Yuhui Xia</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhenan Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+M">Meizhi Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Z">Zhiyan Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+X">Xinlu Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Geng%2C+Y">Yixing Geng</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+C">Chen Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+W">Wenjun Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Y">Yanying Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Haoran Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+F">Fulong Liu</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+C">Chuangye He</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+J">Jinqing Yu</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.15187v1-abstract-short" style="display: inline;"> Isomers, ubiquitous populations of relatively long-lived nuclear excited states, play a crucial role in nuclear physics. However, isomers with half-life times of several seconds or less barely had experimental cross section data due to the lack of a suitable measuring method. We report a method of online 纬 spectroscopy for ultra-short-lived isomers from photonuclear reactions using laser-driven ul&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.15187v1-abstract-full').style.display = 'inline'; document.getElementById('2402.15187v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.15187v1-abstract-full" style="display: none;"> Isomers, ubiquitous populations of relatively long-lived nuclear excited states, play a crucial role in nuclear physics. However, isomers with half-life times of several seconds or less barely had experimental cross section data due to the lack of a suitable measuring method. We report a method of online 纬 spectroscopy for ultra-short-lived isomers from photonuclear reactions using laser-driven ultra-intense 纬-rays. The fastest time resolution can reach sub-ps level with 纬-ray intensities &gt;10^{19}/s ({\geqslant} 8 MeV). The ^{115}In(纬, n)^{114m2}In reaction (T_{1/2} = 43.1 ms) was first measured in the high-energy region which shed light on the nuclear structure studies of In element. Simulations showed it would be an efficient way to study ^{229m}Th (T_{1/2} = 7 渭s), which is believed to be the next generation of nuclear clock. This work offered a unique way of gaining insight into ultra-short lifetimes and promised an effective way to fill the gap in relevant experimental data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.15187v1-abstract-full').style.display = 'none'; document.getElementById('2402.15187v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.13736">arXiv:2402.13736</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.13736">pdf</a>, <a href="https://arxiv.org/format/2402.13736">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0191370">10.1063/5.0191370 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Penetrative magneto-convection of a rotating Boussinesq flow in $f$-planes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xu%2C+F">Fan Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+T">Tao Cai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.13736v1-abstract-short" style="display: inline;"> In this study, we conducted a linear instability analysis of penetrative magneto-convection in rapidly rotating Boussinesq flows within tilted f-planes, under the influence of a uniform background magnetic field. We integrated wave theory and convection theory to elucidate the penetration dynamics in rotating magneto-convection. Our findings suggest that efficient penetration in rapidly rotating f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.13736v1-abstract-full').style.display = 'inline'; document.getElementById('2402.13736v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.13736v1-abstract-full" style="display: none;"> In this study, we conducted a linear instability analysis of penetrative magneto-convection in rapidly rotating Boussinesq flows within tilted f-planes, under the influence of a uniform background magnetic field. We integrated wave theory and convection theory to elucidate the penetration dynamics in rotating magneto-convection. Our findings suggest that efficient penetration in rapidly rotating flows with weakly stratified stable layers at low latitudes can be attributed to the resonance of wave transmission near the interface between unstable and stable layers. In the context of strongly stratified flows, we derived the scaling relationships of penetrative distances $螖$ with the stability parameter $未$. Our calculation shows that, for both rotation-dominated and magnetism-dominated flows, $螖$ obeys a scaling of $螖\sim O(未^{-1/2})$. In rotation-dominated flows, we noted a general decrease in penetrative distance with increased rotational effect, and a minor decrease in penetrative distance with increased latitude. When a background magnetic field is introduced, we observed a significant shift in penetrative distance as the Elsasser number $螞$ approaches one. The penetrative distance tends to decrease when $螞\ll 1$ and increase when $螞\gg 1$ with the rotational effect, indicating a transition from rotation-dominated to magnetism-dominated flow. We have further investigated the impact of the background magnetic field when it is not aligned with the rotational axis. This presents a notable contrast to the case where the magnetic field is parallel to the rotational axis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.13736v1-abstract-full').style.display = 'none'; document.getElementById('2402.13736v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in F. Xu and T. Cai, Physics of Fluids, 36, 026609 (2024), and may be found at https://doi.org/10.1063/5.0191370</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physics of Fluids, 36, 026609 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.05613">arXiv:2402.05613</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.05613">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Valley-dependent Multiple Quantum States and Topological Transitions in Germanene-based Ferromagnetic van der Waals Heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xue%2C+F">Feng Xue</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jiaheng Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yizhou Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+R">Ruqian Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Y">Yong Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Duan%2C+W">Wenhui Duan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.05613v1-abstract-short" style="display: inline;"> Topological and valleytronic materials are promising for spintronic and quantum applications due to their unique properties. Using first principles calculations, we demonstrate that germanene (Ge)-based ferromagnetic heterostructures can exhibit multiple quantum states such as quantum anomalous Hall effect (QAHE) with Chern numbers of C=-1 or C=-2, quantum valley Hall effect (QVHE) with a valley C&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.05613v1-abstract-full').style.display = 'inline'; document.getElementById('2402.05613v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.05613v1-abstract-full" style="display: none;"> Topological and valleytronic materials are promising for spintronic and quantum applications due to their unique properties. Using first principles calculations, we demonstrate that germanene (Ge)-based ferromagnetic heterostructures can exhibit multiple quantum states such as quantum anomalous Hall effect (QAHE) with Chern numbers of C=-1 or C=-2, quantum valley Hall effect (QVHE) with a valley Chern number of C$v$=2, valley-polarized quantum anomalous Hall effect (VP-QAHE) with two Chern numbers of C=-1 and C$v$=-1 as well as time-reversal symmetry broken quantum spin Hall effect (T-broken QSHE) with a spin Chern number of C$s$~1. Furthermore, we find that the transitions between different quantum states can occur by changing the magnetic orientation of ferromagnetic layers through applying a magnetic field. Our discovery provides new routes and novel material platforms with a unique combination of diverse properties that make it well suitable for applications in electronics, spintronics and valley electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.05613v1-abstract-full').style.display = 'none'; document.getElementById('2402.05613v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.03862">arXiv:2401.03862</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.03862">pdf</a>, <a href="https://arxiv.org/format/2401.03862">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> End-to-End Crystal Structure Prediction from Powder X-Ray Diffraction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lai%2C+Q">Qingsi Lai</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+F">Fanjie Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Yao%2C+L">Lin Yao</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+Z">Zhifeng Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Siyuan Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Hongshuai Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+S">Shuqi Lu</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+D">Di He</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+L">Liwei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+C">Cheng Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Ke%2C+G">Guolin Ke</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.03862v3-abstract-short" style="display: inline;"> Powder X-ray diffraction (PXRD) is a prevalent technique in materials characterization. While the analysis of PXRD often requires extensive human manual intervention, and most automated method only achieved at coarse-grained level. The more difficult and important task of fine-grained crystal structure prediction from PXRD remains unaddressed. This study introduces XtalNet, the first equivariant d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.03862v3-abstract-full').style.display = 'inline'; document.getElementById('2401.03862v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.03862v3-abstract-full" style="display: none;"> Powder X-ray diffraction (PXRD) is a prevalent technique in materials characterization. While the analysis of PXRD often requires extensive human manual intervention, and most automated method only achieved at coarse-grained level. The more difficult and important task of fine-grained crystal structure prediction from PXRD remains unaddressed. This study introduces XtalNet, the first equivariant deep generative model for end-to-end crystal structure prediction from PXRD. Unlike previous crystal structure prediction methods that rely solely on composition, XtalNet leverages PXRD as an additional condition, eliminating ambiguity and enabling the generation of complex organic structures with up to 400 atoms in the unit cell. XtalNet comprises two modules: a Contrastive PXRD-Crystal Pretraining (CPCP) module that aligns PXRD space with crystal structure space, and a Conditional Crystal Structure Generation (CCSG) module that generates candidate crystal structures conditioned on PXRD patterns. Evaluation on two MOF datasets (hMOF-100 and hMOF-400) demonstrates XtalNet&#39;s effectiveness. XtalNet achieves a top-10 Match Rate of 90.2% and 79% for hMOF-100 and hMOF-400 in conditional crystal structure prediction task, respectively. XtalNet enables the direct prediction of crystal structures from experimental measurements, eliminating the need for manual intervention and external databases. This opens up new possibilities for automated crystal structure determination and the accelerated discovery of novel materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.03862v3-abstract-full').style.display = 'none'; document.getElementById('2401.03862v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">to be published in Advanced Science. DOI: 10.1002/advs.202410722</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.18335">arXiv:2311.18335</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.18335">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0170937">10.1063/5.0170937 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Vanishing of the anomalous Hall effect and enhanced carrier mobility in the spin-gapless ferromagnetic Mn2CoGa1-xAlx alloys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+C">Cheng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Pan%2C+S">Shuang Pan</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+P">Peihao Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Men%2C+Y">Yuchen Men</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xiang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+Y">Yuqing Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+L">Li Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+F">Feng Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+G">Guizhou Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.18335v1-abstract-short" style="display: inline;"> Spin gapless semiconductor (SGS) has attracted long attention since its theoretical prediction, while concrete experimental hints are still lack in the relevant Heusler alloys. Here in this work, by preparing the series alloys of Mn2CoGa1-xAlx (x=0, 0.25, 0.5, 0.75 and 1), we identified the vanishing of anomalous Hall effect in the ferromagnetic Mn2CoGa (or x=0.25) alloy in a wide temperature inte&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.18335v1-abstract-full').style.display = 'inline'; document.getElementById('2311.18335v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.18335v1-abstract-full" style="display: none;"> Spin gapless semiconductor (SGS) has attracted long attention since its theoretical prediction, while concrete experimental hints are still lack in the relevant Heusler alloys. Here in this work, by preparing the series alloys of Mn2CoGa1-xAlx (x=0, 0.25, 0.5, 0.75 and 1), we identified the vanishing of anomalous Hall effect in the ferromagnetic Mn2CoGa (or x=0.25) alloy in a wide temperature interval, accompanying with growing contribution from the ordinary Hall effect. As a result, comparatively low carrier density (1020 cm-3) and high carrier mobility (150 cm2/Vs) are obtained in Mn2CoGa (or x=0.25) alloy in the temperature range of 10-200K. These also lead to a large dip in the related magnetoresistance at low fields. While in high Al content, despite the magnetization behavior is not altered significantly, the Hall resistivity is instead dominated by the anomalous one, just analogous to that widely reported in Mn2CoAl. The distinct electrical transport behavior of x=0 and x=0.75 (or 1) is presently understood by their possible different scattering mechanism of the anomalous Hall effect due to the differences in atomic order and conductivity. Our work can expand the existing understanding of the SGS properties and offer a better SGS candidate with higher carrier mobility that can facilitate the application in the spin-injected related devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.18335v1-abstract-full').style.display = 'none'; document.getElementById('2311.18335v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Appl. Phys. 134, 173902 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.03908">arXiv:2311.03908</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.03908">pdf</a>, <a href="https://arxiv.org/format/2311.03908">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Direct reduction of iron-ore with hydrogen in fluidized beds: A coarse-grained CFD-DEM-IBM study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lan%2C+B">Bin Lan</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+J">Ji Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+S">Shuai Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yige Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+F">Fan Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+B">Bidan Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Zou%2C+Z">Zheng Zou</a>, <a href="/search/physics?searchtype=author&amp;query=Zhai%2C+M">Ming Zhai</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">Junwu Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.03908v1-abstract-short" style="display: inline;"> Hydrogen metallurgy technology uses hydrogen as the reducing agent instead of carbon reduction, which is one of the important ways to reduce carbon dioxide emissions and ensure the green and sustainable development of iron and steel industry. Due to the advantages of high gas-solid contact efficiency and outstanding mass and heat transfer, direct reduction of iron ore in fluidized beds has attract&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.03908v1-abstract-full').style.display = 'inline'; document.getElementById('2311.03908v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.03908v1-abstract-full" style="display: none;"> Hydrogen metallurgy technology uses hydrogen as the reducing agent instead of carbon reduction, which is one of the important ways to reduce carbon dioxide emissions and ensure the green and sustainable development of iron and steel industry. Due to the advantages of high gas-solid contact efficiency and outstanding mass and heat transfer, direct reduction of iron ore in fluidized beds has attracted much attention. In this study, a coarse-grained CFD-DEM-IBM solver based on hybrid CPU-GPU computing is developed to simulate the direct reduction process of two kinds of iron ore with hydrogen in fluidized beds, where an unreacted shrinking core model based on multiple reaction paths is used to model the reduction reactions, a coarse-grained model and multiple GPUs enable the significant acceleration of particle computation, and the immersed boundary method (IBM) enables the use of simple mesh even in complex geometries of reactors. The predicted results of particle reduction degree are in good agreement with the experimental values, which proves the correctness of the CFD-DEM-IBM solver. In addition, the effects of reaction kinetic parameters and operating temperature on particle reduction degree are also investigated. Present study provides a method for digital design, optimization and scale-up of ironmaking reactors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.03908v1-abstract-full').style.display = 'none'; document.getElementById('2311.03908v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.11642">arXiv:2310.11642</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.11642">pdf</a>, <a href="https://arxiv.org/format/2310.11642">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Direct numerical simulation of Taylor-Couette flow with vertical asymmetric rough walls </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xu%2C+F">Fan Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+J">Jinghong Su</a>, <a href="/search/physics?searchtype=author&amp;query=Lan%2C+B">Bin Lan</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+P">Peng Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+Y">Yurong He</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+C">Chao Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">Junwu Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.11642v2-abstract-short" style="display: inline;"> Direct numerical simulations are performed to explore the effects of rotating direction of the vertical asymmetric rough wall on the transport properties of Taylor-Couette (TC) flow up to a Taylor number of $\textit{Ta} = 2.39 \times 10^7$. It is shown that compared to the smooth wall, the rough wall with vertical asymmetric strips can enhance the dimensionless torque \textit{Nu}$_蠅$, and more imp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.11642v2-abstract-full').style.display = 'inline'; document.getElementById('2310.11642v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.11642v2-abstract-full" style="display: none;"> Direct numerical simulations are performed to explore the effects of rotating direction of the vertical asymmetric rough wall on the transport properties of Taylor-Couette (TC) flow up to a Taylor number of $\textit{Ta} = 2.39 \times 10^7$. It is shown that compared to the smooth wall, the rough wall with vertical asymmetric strips can enhance the dimensionless torque \textit{Nu}$_蠅$, and more importantly, at high \textit{Ta} clockwise rotation of the inner rough wall (the fluid is sheared by the steeper slope side of the strips) results in a significantly bigger torque enhancement as compared to the counter-clockwise rotation (the fluid is sheared by the smaller slope side of the strips) due to the larger convective contribution to the angular velocity flux, although the rotating direction has a negligible effect on the torque at low \textit{Ta}. The larger torque enhancement caused by the clockwise rotation of vertical asymmetric rough wall at high \textit{Ta} is then explained by the stronger coupling between the rough wall and the bulk due to the larger biased azimuthal velocity towards the rough wall at the mid-gap of TC system, the increased intensity of turbulence manifesting by larger Reynolds stress and thinner boundary layer, and the more significant contribution of the pressure force on the surface of rough wall to the torque. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.11642v2-abstract-full').style.display = 'none'; document.getElementById('2310.11642v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages,11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.08913">arXiv:2310.08913</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.08913">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Populations and Evolution">q-bio.PE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> How enlightened self-interest guided global vaccine sharing benefits all: a modelling study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Han%2C+Z">Zhenyu Han</a>, <a href="/search/physics?searchtype=author&amp;query=Hao%2C+Q">Qianyue Hao</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+Q">Qiwei He</a>, <a href="/search/physics?searchtype=author&amp;query=Budeski%2C+K">Katherine Budeski</a>, <a href="/search/physics?searchtype=author&amp;query=Jin%2C+D">Depeng Jin</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+F">Fengli Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+K">Kun Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.08913v1-abstract-short" style="display: inline;"> Background: Despite the consensus that vaccines play an important role in combating the global spread of infectious diseases, vaccine inequity is still rampant with deep-seated mentality of self-priority. This study aims to evaluate the existence and possible outcomes of a more equitable global vaccine distribution and explore a concrete incentive mechanism that promotes vaccine equity. Methods: W&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.08913v1-abstract-full').style.display = 'inline'; document.getElementById('2310.08913v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.08913v1-abstract-full" style="display: none;"> Background: Despite the consensus that vaccines play an important role in combating the global spread of infectious diseases, vaccine inequity is still rampant with deep-seated mentality of self-priority. This study aims to evaluate the existence and possible outcomes of a more equitable global vaccine distribution and explore a concrete incentive mechanism that promotes vaccine equity. Methods: We design a metapopulation epidemiological model that simultaneously considers global vaccine distribution and human mobility, which is then calibrated by the number of infections and real-world vaccination records during COVID-19 pandemic from March 2020 to July 2021. We explore the possibility of the enlightened self-interest incentive mechanism, i.e., improving one&#39;s own epidemic outcomes by sharing vaccines with other countries, by evaluating the number of infections and deaths under various vaccine sharing strategies using the proposed model. To understand how these strategies affect the national interests, we distinguish the imported and local cases for further cost-benefit analyses that rationalize the enlightened self-interest incentive mechanism behind vaccine sharing. ... <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.08913v1-abstract-full').style.display = 'none'; document.getElementById('2310.08913v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by Journal of Global Health</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.08098">arXiv:2310.08098</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.08098">pdf</a>, <a href="https://arxiv.org/format/2310.08098">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Numerical study on the mechanism of drag modulation by dispersed drops in two-phase Taylor-Couette turbulence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Su%2C+J">Jinghong Su</a>, <a href="/search/physics?searchtype=author&amp;query=Yi%2C+L">Lei Yi</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+B">Bidan Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+C">Cheng Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+F">Fan Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">Junwu Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+C">Chao Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.08098v2-abstract-short" style="display: inline;"> The presence of a dispersed phase can significantly modulate the drag in turbulent systems. We derived a conserved quantity that characterizes the radial transport of azimuthal momentum in the fluid-fluid two-phase Taylor-Couette turbulence. This quantity consists of contributions from advection, diffusion, and two-phase interface, which are closely related to density, viscosity, and interfacial t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.08098v2-abstract-full').style.display = 'inline'; document.getElementById('2310.08098v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.08098v2-abstract-full" style="display: none;"> The presence of a dispersed phase can significantly modulate the drag in turbulent systems. We derived a conserved quantity that characterizes the radial transport of azimuthal momentum in the fluid-fluid two-phase Taylor-Couette turbulence. This quantity consists of contributions from advection, diffusion, and two-phase interface, which are closely related to density, viscosity, and interfacial tension, respectively. We found that the presence of the two-phase interface consistently produces a positive contribution to the momentum transport and leads to drag enhancement, while decreasing the density and viscosity ratios of the dispersed phase to the continuous phase reduces the contribution of local advection and diffusion terms to the momentum transport, respectively, resulting in drag reduction. Therefore, we concluded that the decreased density ratio and the decreased viscosity ratio work together to compete with the presence of two-phase interface for achieving drag modulation in fluid-fluid two-phase turbulence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.08098v2-abstract-full').style.display = 'none'; document.getElementById('2310.08098v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.05361">arXiv:2309.05361</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.05361">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Cross-tokamak Disruption Prediction based on Physics-Guided Feature Extraction and domain adaptation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shen%2C+C">Chengshuo Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+W">Wei Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+B">Bihao Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yonghua Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+D">Dalong Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Ai%2C+X">Xinkun Ai</a>, <a href="/search/physics?searchtype=author&amp;query=Xue%2C+F">Fengming Xue</a>, <a href="/search/physics?searchtype=author&amp;query=Zhong%2C+Y">Yu Zhong</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+N">Nengchao Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+B">Biao Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+B">Binjia Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z">Zhongyong Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Pan%2C+Y">Yuan Pan</a>, <a href="/search/physics?searchtype=author&amp;query=team%2C+J">J-TEXT team</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.05361v2-abstract-short" style="display: inline;"> The high acquisition cost and the significant demand for disruptive discharges for data-driven disruption prediction models in future tokamaks pose an inherent contradiction in disruption prediction research. In this paper, we demonstrated a novel approach to predict disruption in a future tokamak using only a few discharges. The first step is to use the existing understanding of physics to extrac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05361v2-abstract-full').style.display = 'inline'; document.getElementById('2309.05361v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.05361v2-abstract-full" style="display: none;"> The high acquisition cost and the significant demand for disruptive discharges for data-driven disruption prediction models in future tokamaks pose an inherent contradiction in disruption prediction research. In this paper, we demonstrated a novel approach to predict disruption in a future tokamak using only a few discharges. The first step is to use the existing understanding of physics to extract physics-guided features from the diagnostic signals of each tokamak, called physics-guided feature extraction (PGFE). The second step is to align a few data from the future tokamak (target domain) and a large amount of data from existing tokamak (source domain) based on a domain adaptation algorithm called CORrelation ALignment (CORAL). It is the first attempt at applying domain adaptation in the task of disruption prediction. PGFE has been successfully applied in J-TEXT to predict disruption with excellent performance. PGFE can also reduce the data volume requirements due to extracting the less device-specific features, thereby establishing a solid foundation for cross-tokamak disruption prediction. We have further improved CORAL (supervised CORAL, S-CORAL) to enhance its appropriateness in feature alignment for the disruption prediction task. To simulate the existing and future tokamak case, we selected J-TEXT as the existing tokamak and EAST as the future tokamak, which has a large gap in the ranges of plasma parameters. The utilization of the S-CORAL improves the disruption prediction performance on future tokamak. Through interpretable analysis, we discovered that the learned knowledge of the disruption prediction model through this approach exhibits more similarities to the model trained on large data volumes of future tokamak. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05361v2-abstract-full').style.display = 'none'; document.getElementById('2309.05361v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.11409">arXiv:2308.11409</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.11409">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Critical transitions on route to chaos of natural convection on a heated horizontal circular surface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+Y">Yuhan Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Y">Yongling Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Carmeliet%2C+J">Jan Carmeliet</a>, <a href="/search/physics?searchtype=author&amp;query=Nie%2C+B">Bingchuan Nie</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+F">Feng Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.11409v1-abstract-short" style="display: inline;"> The transition route and bifurcations of the buoyant flow developing on a heated circular horizontal surface are elaborated using direct numerical simulations and direct stability analysis. A series of bifurcations, as a function of Rayleigh numbers (Ra) ranging from $10^1$ to $6\times10^7$, are found on the route to the chaos of the flow at $Pr=7$. When $Ra&lt;1.0\times10^3$, the buoyant flow above&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.11409v1-abstract-full').style.display = 'inline'; document.getElementById('2308.11409v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.11409v1-abstract-full" style="display: none;"> The transition route and bifurcations of the buoyant flow developing on a heated circular horizontal surface are elaborated using direct numerical simulations and direct stability analysis. A series of bifurcations, as a function of Rayleigh numbers (Ra) ranging from $10^1$ to $6\times10^7$, are found on the route to the chaos of the flow at $Pr=7$. When $Ra&lt;1.0\times10^3$, the buoyant flow above the heated horizontal surface is dominated by conduction, because of which distinct thermal boundary layer and plume are not present. At $Ra=1.1\times10^6$, a Hopf bifurcation occurs, resulting in the flow transition from a steady state to a periodic puffing state. As Ra increases further, the flow enters a periodic rotating state at $Ra=1.9\times10^6$, which is a unique state that was rarely discussed in the literature. These critical transitions, leaving from a steady state and subsequently entering a series of periodic states (puffing, rotating, flapping and doubling) and finally leading to chaos, are diagnosed using spectral analysis and two-dimensional Fourier Transform (2DFT). Moreover, direct stability analysis is conducted by introducing random numerical perturbations into the boundary condition of the surface heating. We find that when the state of a flow is in the vicinity of bifurcation points (e.g., $Ra=2.0\times10^6$), the flow is conditionally unstable to perturbations, and it can bifurcate from the rotating state to the flapping state in advance. However, for relatively stable flow states, such as at $Ra=1.5\times10^6$, the flow remains its periodic puffing state even though it is being perturbed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.11409v1-abstract-full').style.display = 'none'; document.getElementById('2308.11409v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.14990">arXiv:2307.14990</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.14990">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Super-resolution enabled widefield quantum diamond microscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xu%2C+F">Feng Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J">Jialong Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Hou%2C+Y">Yong Hou</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Juan Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Hui%2C+T+K">Tony KC Hui</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S">Shih-Chi Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+Z">Zhiqin Chu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.14990v1-abstract-short" style="display: inline;"> Widefield quantum diamond microscopy (WQDM) based on Kohler-illumination has been widely adopted in the field of quantum sensing, however, practical applications are still limited by issues such as unavoidable photodamage and unsatisfied spatial-resolution. Here, we design and develop a super-resolution enabled WQDM using a digital micromirror device (DMD)-based structured illumination microscopy.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.14990v1-abstract-full').style.display = 'inline'; document.getElementById('2307.14990v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.14990v1-abstract-full" style="display: none;"> Widefield quantum diamond microscopy (WQDM) based on Kohler-illumination has been widely adopted in the field of quantum sensing, however, practical applications are still limited by issues such as unavoidable photodamage and unsatisfied spatial-resolution. Here, we design and develop a super-resolution enabled WQDM using a digital micromirror device (DMD)-based structured illumination microscopy. With the rapidly programmable illumination patterns, we have firstly demonstrated how to mitigate phototoxicity when imaging nanodiamonds in cell samples. As a showcase, we have performed the super-resolved quantum sensing measurements of two individual nanodiamonds not even distinguishable with conventional WQDM. The DMD-powered WQDM presents not only excellent compatibility with quantum sensing solutions, but also strong advantages in high imaging speed, high resolution, low phototoxicity, and enhanced signal-to-background ratio, making it a competent tool to for applications in demanding fields such as biomedical science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.14990v1-abstract-full').style.display = 'none'; document.getElementById('2307.14990v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.09250">arXiv:2307.09250</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.09250">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/jfm.2024.789">10.1017/jfm.2024.789 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Transition of the thermal boundary layer and plume over an isothermal section-triangular roof: An experimental study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhai%2C+H">Haoyu Zhai</a>, <a href="/search/physics?searchtype=author&amp;query=Torres%2C+J+F">Juan F. Torres</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Y">Yongling Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+F">Feng Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.09250v2-abstract-short" style="display: inline;"> The development of thermal boundary layers and plume near a section-triangular roof under different isothermal heating conditions have been the focus of numerous numerical studies. However, flow transition in this type of flow has never been observed experimentally. Here, phase-shifting interferometry and thermistor measurements are employed to experimentally observe and quantify the flow transiti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.09250v2-abstract-full').style.display = 'inline'; document.getElementById('2307.09250v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.09250v2-abstract-full" style="display: none;"> The development of thermal boundary layers and plume near a section-triangular roof under different isothermal heating conditions have been the focus of numerous numerical studies. However, flow transition in this type of flow has never been observed experimentally. Here, phase-shifting interferometry and thermistor measurements are employed to experimentally observe and quantify the flow transitions in a buoyancy-driven flow over an isothermal section-triangular roof. Visualisation of temperature contours is conducted across a wide range of Rayleigh numbers from laminar at $10^3$ to chaotic state at $4 \times 10^6$. Power spectral density of the temperature measurements reveals the type of bifurcations developing as the Rayleigh number is increased. This flow transition is characterised as a complex bifurcation route with the presence of two fundamental frequencies, a low and a high frequency. We found that the thermal stratification in the environment plays a significant role in the flow transition. The spatial development of flow is also quantitatively and qualitatively described. In addition to clarifying flow transition in experiments, the work demonstrates the implementation of phase-shifting interferometry and punctual temperature measurements for characterisation of near-field flow over heated surface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.09250v2-abstract-full').style.display = 'none'; document.getElementById('2307.09250v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted manuscript, to be published in Journal of Fluid Mechanics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Fluid Mech. 998 (2024) A7 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.16640">arXiv:2306.16640</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.16640">pdf</a>, <a href="https://arxiv.org/format/2306.16640">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0157862">10.1063/5.0157862 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultraviolet photon-counting single-pixel imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ye%2C+J">Jun-Tian Ye</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+C">Chao Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wenwen Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z">Zheng-Ping Li</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Hai Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+R">Rong Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jun Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+F">Feihu Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Pan%2C+J">Jian-Wei Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.16640v1-abstract-short" style="display: inline;"> We demonstrate photon-counting single-pixel imaging in the ultraviolet region. Toward this target, we develop a high-performance compact single-photon detector based on a 4H-SiC single-photon avalanche diode (SPAD), where a tailored readout circuit with active hold-off time is designed to restrain detector noise and operate the SPAD in free-running mode. We use structured illumination to reconstru&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.16640v1-abstract-full').style.display = 'inline'; document.getElementById('2306.16640v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.16640v1-abstract-full" style="display: none;"> We demonstrate photon-counting single-pixel imaging in the ultraviolet region. Toward this target, we develop a high-performance compact single-photon detector based on a 4H-SiC single-photon avalanche diode (SPAD), where a tailored readout circuit with active hold-off time is designed to restrain detector noise and operate the SPAD in free-running mode. We use structured illumination to reconstruct 192$\times$192 compressed images at a 4 fps frame rate. To show the superior capability of ultraviolet characteristics, we use our single-pixel imaging system to identify and distinguish different transparent objects under low-intensity irradiation, and image ultraviolet light sources. The results provide a practical solution for general ultraviolet imaging applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.16640v1-abstract-full').style.display = 'none'; document.getElementById('2306.16640v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures, accepted for publication in Applied Physics Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 123, 024005 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.14099">arXiv:2306.14099</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.14099">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> High-precision and low-latency widefield diamond quantum sensing with neuromorphic vision sensors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Du%2C+Z">Zhiyuan Du</a>, <a href="/search/physics?searchtype=author&amp;query=Gupta%2C+M">Madhav Gupta</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+F">Feng Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+K">Kai Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jiahua Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+Y">Yan Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yiyao Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhenyu Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wrachtrup%2C+J">Jorg Wrachtrup</a>, <a href="/search/physics?searchtype=author&amp;query=Wong%2C+N">Ngai Wong</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+C">Can Li</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+Z">Zhiqin Chu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.14099v1-abstract-short" style="display: inline;"> During the past decade, interest has grown significantly in developing ultrasensitive widefield diamond magnetometry for various applications. Despite attempts to improve the adoption of conventional frame-based sensors, achieving high temporal resolution and sensitivity simultaneously remains a key challenge. This is largely due to the transfer and processing of massive amounts of sensor data to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.14099v1-abstract-full').style.display = 'inline'; document.getElementById('2306.14099v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.14099v1-abstract-full" style="display: none;"> During the past decade, interest has grown significantly in developing ultrasensitive widefield diamond magnetometry for various applications. Despite attempts to improve the adoption of conventional frame-based sensors, achieving high temporal resolution and sensitivity simultaneously remains a key challenge. This is largely due to the transfer and processing of massive amounts of sensor data to capture the widefield fluorescence intensity changes of spin defects in diamonds. In this study, we adopt a neuromorphic vision sensor to address this issue. This sensor pre-processes the detected signals in optically detected magnetic resonance (ODMR) measurements for quantum sensing, employing a working principle that closely resembles the operation of the human vision system. By encoding the changes of light intensity into spikes, this approach results in a vast dynamic range, high temporal resolution, and exceptional signal-to-background ratio. After a thorough evaluation of theoretical feasibility, our experiment with an off-the-shelf event camera demonstrated a 13x improvement in temporal resolution with comparable precision of detecting ODMR resonance frequencies compared with the state-of-the-art highly specialized frame-based approach. A specialized camera system with the same mechanism has the potential to enhance these benefits further. This performance improvement is primarily attributable to orders of magnitude smaller data volumes and, thus, reduced latency. We further showcase the deployment of this technology in monitoring dynamically modulated laser heating of gold nanoparticles coated on a diamond surface, a recognizably difficult task using existing approaches. The current development provides new insights for high-precision and low-latency widefield quantum sensing, with possibilities for integration with emerging memory devices for more efficient event-based data processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.14099v1-abstract-full').style.display = 'none'; document.getElementById('2306.14099v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.14895">arXiv:2305.14895</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.14895">pdf</a>, <a href="https://arxiv.org/format/2305.14895">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-4527/acd593">10.1088/1674-4527/acd593 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Lobster Eye Imager for Astronomy Onboard the SATech-01 Satellite </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ling%2C+Z+X">Z. X. Ling</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+X+J">X. J. Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+C">C. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+S+L">S. L. Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Jin%2C+G">G. Jin</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+S+N">S. N. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+X+F">X. F. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J+B">J. B. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+F+S">F. S. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y+F">Y. F. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Z+W">Z. W. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+W">W. Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+Y+X">Y. X. Han</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">H. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J+F">J. F. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Y. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z+D">Z. D. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+P+R">P. R. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Lv%2C+Y+H">Y. H. Lv</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+X+H">X. H. Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Y+J">Y. J. Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+C+B">C. B. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+R+J">R. J. Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Xue%2C+Y+L">Y. L. Xue</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+A+L">A. L. Yan</a> , et al. (101 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.14895v1-abstract-short" style="display: inline;"> The Lobster Eye Imager for Astronomy (LEIA), a pathfinder of the Wide-field X-ray Telescope of the Einstein Probe (EP) mission, was successfully launched onboard the SATech-01 satellite of the Chinese Academy of Sciences on 27 July 2022. In this paper, we introduce the design and on-ground test results of the LEIA instrument. Using state-of-the-art Micro-Pore Optics (MPO), a wide field-of-view (Fo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.14895v1-abstract-full').style.display = 'inline'; document.getElementById('2305.14895v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.14895v1-abstract-full" style="display: none;"> The Lobster Eye Imager for Astronomy (LEIA), a pathfinder of the Wide-field X-ray Telescope of the Einstein Probe (EP) mission, was successfully launched onboard the SATech-01 satellite of the Chinese Academy of Sciences on 27 July 2022. In this paper, we introduce the design and on-ground test results of the LEIA instrument. Using state-of-the-art Micro-Pore Optics (MPO), a wide field-of-view (FoV) of 346 square degrees (18.6 degrees * 18.6 degrees) of the X-ray imager is realized. An optical assembly composed of 36 MPO chips is used to focus incident X-ray photons, and four large-format complementary metal-oxide semiconductor (CMOS) sensors, each of 6 cm * 6 cm, are used as the focal plane detectors. The instrument has an angular resolution of 4 - 8 arcmin (in FWHM) for the central focal spot of the point spread function, and an effective area of 2 - 3 cm2 at 1 keV in essentially all the directions within the field of view. The detection passband is 0.5 - 4 keV in the soft X-rays and the sensitivity is 2 - 3 * 10-11 erg s-1 cm-2 (about 1 mini-Crab) at 1,000 second observation. The total weight of LEIA is 56 kg and the power is 85 W. The satellite, with a design lifetime of 2 years, operates in a Sun-synchronous orbit of 500 km with an orbital period of 95 minutes. LEIA is paving the way for future missions by verifying in flight the technologies of both novel focusing imaging optics and CMOS sensors for X-ray observation, and by optimizing the working setups of the instrumental parameters. In addition, LEIA is able to carry out scientific observations to find new transients and to monitor known sources in the soft X-ray band, albeit limited useful observing time available. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.14895v1-abstract-full').style.display = 'none'; document.getElementById('2305.14895v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by RAA</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.13022">arXiv:2305.13022</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.13022">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/nbm.5050">10.1002/nbm.5050 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A three-dimensional MR-STAT protocol for high-resolution multi-parametric quantitative MRI </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+H">Hongyan Liu</a>, <a href="/search/physics?searchtype=author&amp;query=van+der+Heide%2C+O">Oscar van der Heide</a>, <a href="/search/physics?searchtype=author&amp;query=Versteeg%2C+E">Edwin Versteeg</a>, <a href="/search/physics?searchtype=author&amp;query=Froeling%2C+M">Martijn Froeling</a>, <a href="/search/physics?searchtype=author&amp;query=Fuderer%2C+M">Miha Fuderer</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+F">Fei Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Berg%2C+C+A+T+v+d">Cornelis A. T. van den Berg</a>, <a href="/search/physics?searchtype=author&amp;query=Sbrizzi%2C+A">Alessandro Sbrizzi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.13022v1-abstract-short" style="display: inline;"> Magnetic Resonance Spin Tomography in Time-Domain (MR-STAT) is a multiparametric quantitative MR framework, which allows for simultaneously acquiring quantitative tissue parameters such as T1, T2 and proton density from one single short scan. A typical 2D MR-STAT acquisition uses a gradient-spoiled, gradient-echo sequence with a slowly varying RF flip-angle train and Cartesian readouts, and the qu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.13022v1-abstract-full').style.display = 'inline'; document.getElementById('2305.13022v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.13022v1-abstract-full" style="display: none;"> Magnetic Resonance Spin Tomography in Time-Domain (MR-STAT) is a multiparametric quantitative MR framework, which allows for simultaneously acquiring quantitative tissue parameters such as T1, T2 and proton density from one single short scan. A typical 2D MR-STAT acquisition uses a gradient-spoiled, gradient-echo sequence with a slowly varying RF flip-angle train and Cartesian readouts, and the quantitative tissue maps are reconstructed by an iterative, model-based optimization algorithm. In this work, we design a 3D MR-STAT framework based on previous 2D work, in order to achieve better image SNR, higher though-plan resolution and better tissue characterization. Specifically, we design a 7-minute, high-resolution 3D MR-STAT sequence, and the corresponding two-step reconstruction algorithm for the large-scale dataset. To reduce the long acquisition time, Cartesian undersampling strategies such as SENSE are adopted in our transient-state quantitative framework. To reduce the computational burden, a data splitting scheme is designed for decoupling the 3D reconstruction problem into independent 2D reconstructions. The proposed 3D framework is validated by numerical simulations, phantom experiments and in-vivo experiments. High-quality knee quantitative maps with 0.8 x 0.8 x 1.5mm3 resolution and bilateral lower leg maps with 1.6mm isotropic resolution can be acquired using the proposed 7-minute acquisition sequence and the 3-minute-per-slice decoupled reconstruction algorithm. The proposed 3D MR-STAT framework could have wide clinical applications in the future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.13022v1-abstract-full').style.display = 'none'; document.getElementById('2305.13022v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> NMR Biomed. 2023. e5050 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.15790">arXiv:2303.15790</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.15790">pdf</a>, <a href="https://arxiv.org/format/2303.15790">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11467-023-1333-z">10.1007/s11467-023-1333-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> STCF Conceptual Design Report: Volume 1 -- Physics &amp; Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Achasov%2C+M">M. Achasov</a>, <a href="/search/physics?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/physics?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+L+P">L. P. An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+X+Z">X. Z. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/physics?searchtype=author&amp;query=Barnyakov%2C+A">A. Barnyakov</a>, <a href="/search/physics?searchtype=author&amp;query=Blinov%2C+V">V. Blinov</a>, <a href="/search/physics?searchtype=author&amp;query=Bobrovnikov%2C+V">V. Bobrovnikov</a>, <a href="/search/physics?searchtype=author&amp;query=Bodrov%2C+D">D. Bodrov</a>, <a href="/search/physics?searchtype=author&amp;query=Bogomyagkov%2C+A">A. Bogomyagkov</a>, <a href="/search/physics?searchtype=author&amp;query=Bondar%2C+A">A. Bondar</a>, <a href="/search/physics?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/physics?searchtype=author&amp;query=Bu%2C+Z+H">Z. H. Bu</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+F+M">F. M. Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+H">H. Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+J+J">J. J. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+Q+H">Q. H. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+Z">Z. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+Q">Q. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chao%2C+K+T">K. T. Chao</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+D+Y">D. Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H">H. Chen</a> , et al. (413 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.15790v3-abstract-short" style="display: inline;"> The Super $蟿$-Charm facility (STCF) is an electron-positron collider proposed by the Chinese particle physics community. It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of $0.5\times 10^{35}{\rm cm}^{-2}{\rm s}^{-1}$ or higher. The STCF will produce a data sample about a factor of 100 larger than that by the present $蟿$-Charm factory -- the BEPCII,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.15790v3-abstract-full').style.display = 'inline'; document.getElementById('2303.15790v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.15790v3-abstract-full" style="display: none;"> The Super $蟿$-Charm facility (STCF) is an electron-positron collider proposed by the Chinese particle physics community. It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of $0.5\times 10^{35}{\rm cm}^{-2}{\rm s}^{-1}$ or higher. The STCF will produce a data sample about a factor of 100 larger than that by the present $蟿$-Charm factory -- the BEPCII, providing a unique platform for exploring the asymmetry of matter-antimatter (charge-parity violation), in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions, as well as searching for exotic hadrons and physics beyond the Standard Model. The STCF project in China is under development with an extensive R\&amp;D program. This document presents the physics opportunities at the STCF, describes conceptual designs of the STCF detector system, and discusses future plans for detector R\&amp;D and physics case studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.15790v3-abstract-full').style.display = 'none'; document.getElementById('2303.15790v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Front. Phys. 19(1), 14701 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.05172">arXiv:2303.05172</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.05172">pdf</a>, <a href="https://arxiv.org/format/2303.05172">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2023.168680">10.1016/j.nima.2023.168680 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The JUNO experiment Top Tracker </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=JUNO+Collaboration"> JUNO Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+R">Rizwan Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Akram%2C+M">Muhammad Akram</a>, <a href="/search/physics?searchtype=author&amp;query=Aleem%2C+A">Abid Aleem</a>, <a href="/search/physics?searchtype=author&amp;query=Alexandros%2C+T">Tsagkarakis Alexandros</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=Asavapibhop%2C+B">Burin Asavapibhop</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">Jo茫o Pedro Athayde Marcondes de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+W">Weidong Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Balashov%2C+N">Nikita Balashov</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">Wander Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Basilico%2C+D">Davide Basilico</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Bellato%2C+M">Marco Bellato</a> , et al. (592 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.05172v1-abstract-short" style="display: inline;"> The main task of the Top Tracker detector of the neutrino reactor experiment Jiangmen Underground Neutrino Observatory (JUNO) is to reconstruct and extrapolate atmospheric muon tracks down to the central detector. This muon tracker will help to evaluate the contribution of the cosmogenic background to the signal. The Top Tracker is located above JUNO&#39;s water Cherenkov Detector and Central Detector&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05172v1-abstract-full').style.display = 'inline'; document.getElementById('2303.05172v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.05172v1-abstract-full" style="display: none;"> The main task of the Top Tracker detector of the neutrino reactor experiment Jiangmen Underground Neutrino Observatory (JUNO) is to reconstruct and extrapolate atmospheric muon tracks down to the central detector. This muon tracker will help to evaluate the contribution of the cosmogenic background to the signal. The Top Tracker is located above JUNO&#39;s water Cherenkov Detector and Central Detector, covering about 60% of the surface above them. The JUNO Top Tracker is constituted by the decommissioned OPERA experiment Target Tracker modules. The technology used consists in walls of two planes of plastic scintillator strips, one per transverse direction. Wavelength shifting fibres collect the light signal emitted by the scintillator strips and guide it to both ends where it is read by multianode photomultiplier tubes. Compared to the OPERA Target Tracker, the JUNO Top Tracker uses new electronics able to cope with the high rate produced by the high rock radioactivity compared to the one in Gran Sasso underground laboratory. This paper will present the new electronics and mechanical structure developed for the Top Tracker of JUNO along with its expected performance based on the current detector simulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05172v1-abstract-full').style.display = 'none'; document.getElementById('2303.05172v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl.Instrum.Meth.A 1057 (2023) 168680 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.03910">arXiv:2303.03910</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.03910">pdf</a>, <a href="https://arxiv.org/format/2303.03910">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> JUNO sensitivity to $^7$Be, $pep$, and CNO solar neutrinos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+R">Rizwan Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Akram%2C+M">Muhammad Akram</a>, <a href="/search/physics?searchtype=author&amp;query=Aleem%2C+A">Abid Aleem</a>, <a href="/search/physics?searchtype=author&amp;query=Alexandros%2C+T">Tsagkarakis Alexandros</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=Asavapibhop%2C+B">Burin Asavapibhop</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">Jo茫o Pedro Athayde Marcondes de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+W">Weidong Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Balashov%2C+N">Nikita Balashov</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">Wander Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Basilico%2C+D">Davide Basilico</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Bellato%2C+M">Marco Bellato</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">Marco Beretta</a> , et al. (592 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.03910v1-abstract-short" style="display: inline;"> The Jiangmen Underground Neutrino Observatory (JUNO), the first multi-kton liquid scintillator detector, which is under construction in China, will have a unique potential to perform a real-time measurement of solar neutrinos well below the few MeV threshold typical for Water Cherenkov detectors. JUNO&#39;s large target mass and excellent energy resolution are prerequisites for reaching unprecedented&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.03910v1-abstract-full').style.display = 'inline'; document.getElementById('2303.03910v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.03910v1-abstract-full" style="display: none;"> The Jiangmen Underground Neutrino Observatory (JUNO), the first multi-kton liquid scintillator detector, which is under construction in China, will have a unique potential to perform a real-time measurement of solar neutrinos well below the few MeV threshold typical for Water Cherenkov detectors. JUNO&#39;s large target mass and excellent energy resolution are prerequisites for reaching unprecedented levels of precision. In this paper, we provide estimation of the JUNO sensitivity to 7Be, pep, and CNO solar neutrinos that can be obtained via a spectral analysis above the 0.45 MeV threshold. This study is performed assuming different scenarios of the liquid scintillator radiopurity, ranging from the most opti mistic one corresponding to the radiopurity levels obtained by the Borexino experiment, up to the minimum requirements needed to perform the neutrino mass ordering determination with reactor antineutrinos - the main goal of JUNO. Our study shows that in most scenarios, JUNO will be able to improve the current best measurements on 7Be, pep, and CNO solar neutrino fluxes. We also perform a study on the JUNO capability to detect periodical time variations in the solar neutrino flux, such as the day-night modulation induced by neutrino flavor regeneration in Earth, and the modulations induced by temperature changes driven by helioseismic waves. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.03910v1-abstract-full').style.display = 'none'; document.getElementById('2303.03910v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.02886">arXiv:2303.02886</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.02886">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Advanced Analytics on 3D X-ray Tomography of Irradiated Silicon Carbide Claddings </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xu%2C+F">Fei Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Kane%2C+J+J">Joshua J. Kane</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+P">Peng Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Schulthess%2C+J+L">Jason L. Schulthess</a>, <a href="/search/physics?searchtype=author&amp;query=Gonderman%2C+S">Sean Gonderman</a>, <a href="/search/physics?searchtype=author&amp;query=Cordesa%2C+N+L">Nikolaus L. Cordesa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.02886v1-abstract-short" style="display: inline;"> Silicon Carbide (SiC) ceramic matrix composite (CMC) cladding is currently being pursued as one of the leading candidates for accident-tolerant fuels. To enable an improved understanding of SiC-SiC composite performance, the development of non-destructive evaluation techniques to assess critical defects is needed. Three-dimensional (3D) X-ray imaging, also referred to as X-ray computed tomography&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.02886v1-abstract-full').style.display = 'inline'; document.getElementById('2303.02886v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.02886v1-abstract-full" style="display: none;"> Silicon Carbide (SiC) ceramic matrix composite (CMC) cladding is currently being pursued as one of the leading candidates for accident-tolerant fuels. To enable an improved understanding of SiC-SiC composite performance, the development of non-destructive evaluation techniques to assess critical defects is needed. Three-dimensional (3D) X-ray imaging, also referred to as X-ray computed tomography (CT), is a non-destructive, data-rich characterization technique that can provide surface and subsurface spatial information. This paper discusses the design and implementation of a fully automatic workflow to detect and analyze SiC-SiC defects using image processing techniques on 3D X-ray images. The workflow consists of four processing blocks, including data preparation, void/crack detection, visualization, and analysis. In this work, three SiC samples (two irradiated and one unirradiated) provided by General Atomics are investigated. The irradiated samples were exposed in a way that was expected to induce cracking, and indeed, the automated workflow developed in this work was able to successfully identify and characterize the crack formation in the irradiated samples while detecting no observed cracking in the unirradiated sample. These results demonstrate the value of automated XCT tools to better understand the damage and damage propagation in SiC-SiC structures for nuclear applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.02886v1-abstract-full').style.display = 'none'; document.getElementById('2303.02886v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 figures, 4 tables, 17 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.00753">arXiv:2303.00753</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.00753">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.cplett.2023.140646">10.1016/j.cplett.2023.140646 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Molecular dynamics simulation of the transformation of Fe-Co alloy by machine learning force field based on atomic cluster expansion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yongle Li</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+F">Feng Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Hou%2C+L">Long Hou</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+L">Luchao Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+H">Haijun Su</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xi Li</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Wei Ren</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.00753v1-abstract-short" style="display: inline;"> The force field describing the calculated interaction between atoms or molecules is the key to the accuracy of many molecular dynamics (MD) simulation results. Compared with traditional or semi-empirical force fields, machine learning force fields have the advantages of faster speed and higher precision. We have employed the method of atomic cluster expansion (ACE) combined with first-principles d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.00753v1-abstract-full').style.display = 'inline'; document.getElementById('2303.00753v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.00753v1-abstract-full" style="display: none;"> The force field describing the calculated interaction between atoms or molecules is the key to the accuracy of many molecular dynamics (MD) simulation results. Compared with traditional or semi-empirical force fields, machine learning force fields have the advantages of faster speed and higher precision. We have employed the method of atomic cluster expansion (ACE) combined with first-principles density functional theory (DFT) calculations for machine learning, and successfully obtained the force field of the binary Fe-Co alloy. Molecular dynamics simulations of Fe-Co alloy carried out using this ACE force field predicted the correct phase transition range of Fe-Co alloy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.00753v1-abstract-full').style.display = 'none'; document.getElementById('2303.00753v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.14645">arXiv:2302.14645</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.14645">pdf</a>, <a href="https://arxiv.org/format/2302.14645">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0137823">10.1063/5.0137823 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Free-running 4H-SiC single-photon detector with ultralow afterpulse probability at 266 nm </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yu%2C+C">Chao Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+T">Tianyi Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+X">Xian-Song Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Hai Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+R">Rong Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+F">Feihu Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jun Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Pan%2C+J">Jian-Wei Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.14645v1-abstract-short" style="display: inline;"> Ultraviolet single-photon detector (UVSPD) provides a key tool for the applications requiring ultraweak light detection in the wavelength band. Here, we report a 4H-SiC single-photon avalanche diode (SPAD) based free-running UVSPD with ultralow afterpulse probability. We design and fabricate the 4H-SiC SPAD with a beveled mesa structure, which exhibits the characteristic of ultralow dark current.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.14645v1-abstract-full').style.display = 'inline'; document.getElementById('2302.14645v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.14645v1-abstract-full" style="display: none;"> Ultraviolet single-photon detector (UVSPD) provides a key tool for the applications requiring ultraweak light detection in the wavelength band. Here, we report a 4H-SiC single-photon avalanche diode (SPAD) based free-running UVSPD with ultralow afterpulse probability. We design and fabricate the 4H-SiC SPAD with a beveled mesa structure, which exhibits the characteristic of ultralow dark current. We further develop a readout circuit of passive quenching and active reset with tunable hold-off time setting to considerably suppress the afterpulsing effect. The nonuniformity of photon detection efficiency (PDE) across the SPAD active area with a diameter of $\sim$ 180 $渭$m is investigated for performance optimization. The compact UVSPD is then characterized, exhibiting a typical performance of 10.3% PDE, 133 kcps dark count rate and 0.3% afterpulse probability at 266 nm. Such performance indicates that the compact UVSPD could be used for practical ultraviolet photon-counting applications <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.14645v1-abstract-full').style.display = 'none'; document.getElementById('2302.14645v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures, accepted for publication in Review of Scientific Instruments</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Review of Scientific Instruments 94, 033101 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.09786">arXiv:2302.09786</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.09786">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Human-Computer Interaction">cs.HC</span> </div> </div> <p class="title is-5 mathjax"> Ultra-conformable Liquid Metal Particle Monolayer on Air/water Interface for Substrate-free E-tattoo </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+F">Fali Li</a>, <a href="/search/physics?searchtype=author&amp;query=Lei%2C+W">Wenjuan Lei</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yuwei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+X">Xingjian Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+S">Shengbin Li</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+F">Feng Xu</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+Z">Zidong He</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Jinyun Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+H">Huali Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+Y">Yuanzhao Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Shang%2C+J">Jie Shang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yiwei Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+R">Run-Wei Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.09786v1-abstract-short" style="display: inline;"> Gallium-based liquid metal is getting increased attention in conformal flexible electronics for its high electrical conductivity, intrinsic deformability and biocompatibility. A series of flexible devices are developed based on the micro-particles of liquid metal. But it is still challenging to fabricate conformal liquid metal film with a large area and high uniformity. Interfacial self-assembly i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.09786v1-abstract-full').style.display = 'inline'; document.getElementById('2302.09786v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.09786v1-abstract-full" style="display: none;"> Gallium-based liquid metal is getting increased attention in conformal flexible electronics for its high electrical conductivity, intrinsic deformability and biocompatibility. A series of flexible devices are developed based on the micro-particles of liquid metal. But it is still challenging to fabricate conformal liquid metal film with a large area and high uniformity. Interfacial self-assembly is a competitive candidate method. Traditional interfacial self-assembly methods have difficulties assembling liquid metal particles because the floating state of the high-density microparticles could be easily disturbed by gravity. Here, we realized the multi-size universal self-assembly (MUS) for liquid metal particles with various diameters (0~500渭m). By introducing a simple z-axis undisturbed interfacial material releasing strategy, the interference of gravitational energy on the stability of floating particles is avoided. Benefits from this, the ultra-conformable monolayer film, with large area (&gt;100 cm2) and high floating yield (50%~90%), can be fabricated by liquid metal particles. Furthermore, the monolayer can be conformally transferred to any interesting complex surface such as human skin and plant leaf, to fabricate substrate-free flexible devices. Without interference from the mechanical response of traditional substrate, the liquid metal e-tattoo is more user-friendly and can realize feel-less continuous monitoring. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.09786v1-abstract-full').style.display = 'none'; document.getElementById('2302.09786v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.06982">arXiv:2301.06982</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.06982">pdf</a>, <a href="https://arxiv.org/format/2301.06982">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/18/04/P04006">10.1088/1748-0221/18/04/P04006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Research of radon diffusion behavior in liquid scintillator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Z+F">Z. F. Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+C">C. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J+C">J. C. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y+P">Y. P. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+P">P. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+C+G">C. G. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Q">Q. Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Y. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+C">C. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Guan%2C+T+Y">T. Y. Guan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.06982v2-abstract-short" style="display: inline;"> The background caused by radon and its daughters is an important background in the low background liquid scintillator (LS) detectors. The study of the diffusion behaviour of radon in the LS contributes to the analysis of the related background caused by radon. Methodologies and devices for measuring the diffusion coefficient and solubility of radon in materials are developed and described. The rad&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.06982v2-abstract-full').style.display = 'inline'; document.getElementById('2301.06982v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.06982v2-abstract-full" style="display: none;"> The background caused by radon and its daughters is an important background in the low background liquid scintillator (LS) detectors. The study of the diffusion behaviour of radon in the LS contributes to the analysis of the related background caused by radon. Methodologies and devices for measuring the diffusion coefficient and solubility of radon in materials are developed and described. The radon diffusion coefficient of the LS was measured for the first time and in addition the solubility coefficient was also obtained. In addition, the radon diffusion coefficient of the polyolefine film which is consistent with data in the literature was measured to verify the reliability of the diffusion device. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.06982v2-abstract-full').style.display = 'none'; document.getElementById('2301.06982v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.00959">arXiv:2301.00959</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.00959">pdf</a>, <a href="https://arxiv.org/ps/2301.00959">ps</a>, <a href="https://arxiv.org/format/2301.00959">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> System upgrade for $渭$Bq/m$^3$ level $^{222}$Rn concentration measurement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Y. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y+P">Y. P. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J+C">J. C. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+C">C. Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+C+G+Y+P">C. G. Yang. P. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Q">Q. Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Z+F">Z. F. Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+C">C. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Guan%2C+T+Y">T. Y. Guan</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+S+B">S. B. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.00959v2-abstract-short" style="display: inline;"> The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multipurpose underground liquid scintillator detector, was proposed for the determination of the neutrino mass hierarchy as primary physics goal. The central detector will be submerged in a water Cherenkov detector to lower the background from the environment and cosmic muons. Radon is one of the primary background sources. Nitrogen w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.00959v2-abstract-full').style.display = 'inline'; document.getElementById('2301.00959v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.00959v2-abstract-full" style="display: none;"> The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multipurpose underground liquid scintillator detector, was proposed for the determination of the neutrino mass hierarchy as primary physics goal. The central detector will be submerged in a water Cherenkov detector to lower the background from the environment and cosmic muons. Radon is one of the primary background sources. Nitrogen will be used in several sub-systems, and a highly sensitive radon detector has to be developed to measure its radon concentration. A system has been developed based on $^{222}$Rn enrichment of activated carbon and $^{222}$Rn detection based on the electrostatic collection. This paper presents the detail of a $渭$Bq/m$^3$ level $^{222}$Rn concentration measurement system and gives detailed information about how the adsorption coefficient was measured and how the temperature, flow rate, and $^{222}$Rn concentration affect the adsorption coefficient. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.00959v2-abstract-full').style.display = 'none'; document.getElementById('2301.00959v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.12905">arXiv:2212.12905</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.12905">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Tunable Quantum Anomalous Hall Effects in Ferromagnetic van der Waals Heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xue%2C+F">Feng Xue</a>, <a href="/search/physics?searchtype=author&amp;query=Hou%2C+Y">Yusheng Hou</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhe Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Z">Zhiming Xu</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+K">Ke He</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+R">Ruqian Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Y">Yong Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Duan%2C+W">Wenhui Duan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.12905v2-abstract-short" style="display: inline;"> The quantum anomalous Hall effect (QAHE) has unique advantages in topotronic applications, but it is still challenging to realize the QAHE with tunable magnetic and topological properties for building functional devices. Through systematic first-principles calculations, we predict that the in-plane magnetization induced QAHE with Chern numbers C = $\pm$1 and the out-of-plane magnetization induced&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.12905v2-abstract-full').style.display = 'inline'; document.getElementById('2212.12905v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.12905v2-abstract-full" style="display: none;"> The quantum anomalous Hall effect (QAHE) has unique advantages in topotronic applications, but it is still challenging to realize the QAHE with tunable magnetic and topological properties for building functional devices. Through systematic first-principles calculations, we predict that the in-plane magnetization induced QAHE with Chern numbers C = $\pm$1 and the out-of-plane magnetization induced QAHE with high Chern numbers C = $\pm$3 can be realized in a single material candidate, which is composed of van der Waals (vdW) coupled Bi and MnBi$_2$Te$_4$ monolayers. The switching between different phases of QAHE can be controllable by multiple ways, such as applying strain or (weak) magnetic field or twisting the vdW materials. The prediction of an experimentally available material system hosting robust, highly tunable QAHE will stimulate great research interest in the field. Our work opens a new avenue for the realization of tunable QAHE and provides a practical material platform for the development of topological electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.12905v2-abstract-full').style.display = 'none'; document.getElementById('2212.12905v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.13737">arXiv:2210.13737</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.13737">pdf</a>, <a href="https://arxiv.org/format/2210.13737">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.cma.2022.115742">10.1016/j.cma.2022.115742 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct Immersogeometric Fluid Flow and Heat Transfer Analysis of Objects Represented by Point Clouds </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Balu%2C+A">Aditya Balu</a>, <a href="/search/physics?searchtype=author&amp;query=Rajanna%2C+M+R">Manoj R. Rajanna</a>, <a href="/search/physics?searchtype=author&amp;query=Khristy%2C+J">Joel Khristy</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+F">Fei Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Krishnamurthy%2C+A">Adarsh Krishnamurthy</a>, <a href="/search/physics?searchtype=author&amp;query=Hsu%2C+M">Ming-Chen Hsu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.13737v1-abstract-short" style="display: inline;"> Immersogeometric analysis (IMGA) is a geometrically flexible method that enables one to perform multiphysics analysis directly using complex computer-aided design (CAD) models. In this paper, we develop a novel IMGA approach for simulating incompressible and compressible flows around complex geometries represented by point clouds. The point cloud object&#39;s geometry is represented using a set of uns&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.13737v1-abstract-full').style.display = 'inline'; document.getElementById('2210.13737v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.13737v1-abstract-full" style="display: none;"> Immersogeometric analysis (IMGA) is a geometrically flexible method that enables one to perform multiphysics analysis directly using complex computer-aided design (CAD) models. In this paper, we develop a novel IMGA approach for simulating incompressible and compressible flows around complex geometries represented by point clouds. The point cloud object&#39;s geometry is represented using a set of unstructured points in the Euclidean space with (possible) orientation information in the form of surface normals. Due to the absence of topological information in the point cloud model, there are no guarantees for the geometric representation to be watertight or 2-manifold or to have consistent normals. To perform IMGA directly using point cloud geometries, we first develop a method for estimating the inside-outside information and the surface normals directly from the point cloud. We also propose a method to compute the Jacobian determinant for the surface integration (over the point cloud) necessary for the weak enforcement of Dirichlet boundary conditions. We validate these geometric estimation methods by comparing the geometric quantities computed from the point cloud with those obtained from analytical geometry and tessellated CAD models. In this work, we also develop thermal IMGA to simulate heat transfer in the presence of flow over complex geometries. The proposed framework is tested for a wide range of Reynolds and Mach numbers on benchmark problems of geometries represented by point clouds, showing the robustness and accuracy of the method. Finally, we demonstrate the applicability of our approach by performing IMGA on large industrial-scale construction machinery represented using a point cloud of more than 12 million points. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.13737v1-abstract-full').style.display = 'none'; document.getElementById('2210.13737v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages + references; Accepted in Computer Methods in Applied Mechanics and Engineering</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.10899">arXiv:2209.10899</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.10899">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Single-crystal elastic moduli, anisotropy and the B1-B2 phase transition of NaCl at high pressures: Experiment vs. ab-initio calculations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xu%2C+F">Feng Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Belliard%2C+L">Laurent Belliard</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+C">Chenhui Li</a>, <a href="/search/physics?searchtype=author&amp;query=Djemia%2C+P">Philippe Djemia</a>, <a href="/search/physics?searchtype=author&amp;query=Becerra%2C+L">Lo茂c Becerra</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+H">Haijun Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Perrin%2C+B">Bernard Perrin</a>, <a href="/search/physics?searchtype=author&amp;query=Zerr%2C+A">Andreas Zerr</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.10899v1-abstract-short" style="display: inline;"> Single-crystal elastic moduli, Cij, and the B1-B2 phase transition of NaCl were investigated experimentally, using time-domain Brillouin scattering (TDBS), and theoretically, via density-functional-theory (DFT), to 41 GPa. Thus, we largely extended pressure range where Cij and elastic anisotropy of the solid are measured, including the first experimental data for the high-pressure B2 phase, NaCl-B&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10899v1-abstract-full').style.display = 'inline'; document.getElementById('2209.10899v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.10899v1-abstract-full" style="display: none;"> Single-crystal elastic moduli, Cij, and the B1-B2 phase transition of NaCl were investigated experimentally, using time-domain Brillouin scattering (TDBS), and theoretically, via density-functional-theory (DFT), to 41 GPa. Thus, we largely extended pressure range where Cij and elastic anisotropy of the solid are measured, including the first experimental data for the high-pressure B2 phase, NaCl-B2. NaCl-B1 exhibits a strong and growing with pressure anisotropy, in contrast to NaCl-B2. Theoretical values obtained using different advanced DFT functionals were compared with our measurements but no one could satisfactorily reproduce our experimental data for NaCl-B1 and NaCl-B2 simultaneously. For all available DFT results on the principal shear moduli and anisotropy, the deviation became pronounced when the degree of compression increased significantly. Similar deviations could be also recognized for other cubic solids having the same B1-type structure and similar bonding, such as CaO, MgO, or (Mg1-x,Fex)O. Furthermore, the available experimental data suggest that the B1-B2 phase transition of NaCl and the above mentioned compounds are governed by the Born stability criterion C44(P) - P &gt; 0. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10899v1-abstract-full').style.display = 'none'; document.getElementById('2209.10899v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages and 5 figures for the Manuscript, 10 pages and 7 figures for the Supplement</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.04260">arXiv:2209.04260</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.04260">pdf</a>, <a href="https://arxiv.org/format/2209.04260">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.063026">10.1103/PhysRevD.106.063026 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for relativistic fractionally charged particles in space </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DAMPE+Collaboration"> DAMPE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Alemanno%2C+F">F. Alemanno</a>, <a href="/search/physics?searchtype=author&amp;query=Altomare%2C+C">C. Altomare</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/physics?searchtype=author&amp;query=Azzarello%2C+P">P. Azzarello</a>, <a href="/search/physics?searchtype=author&amp;query=Barbato%2C+F+C+T">F. C. T. Barbato</a>, <a href="/search/physics?searchtype=author&amp;query=Bernardini%2C+P">P. Bernardini</a>, <a href="/search/physics?searchtype=author&amp;query=Bi%2C+X+J">X. J. Bi</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+M+S">M. S. Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Casilli%2C+E">E. Casilli</a>, <a href="/search/physics?searchtype=author&amp;query=Catanzani%2C+E">E. Catanzani</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J">J. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+D+Y">D. Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J+L">J. L. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z+F">Z. F. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+M+Y">M. Y. Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+T+S">T. S. Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+Y+X">Y. X. Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+H+T">H. T. Dai</a>, <a href="/search/physics?searchtype=author&amp;query=De-Benedittis%2C+A">A. De-Benedittis</a>, <a href="/search/physics?searchtype=author&amp;query=De+Mitri%2C+I">I. De Mitri</a>, <a href="/search/physics?searchtype=author&amp;query=de+Palma%2C+F">F. de Palma</a>, <a href="/search/physics?searchtype=author&amp;query=Deliyergiyev%2C+M">M. Deliyergiyev</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Giovanni%2C+A">A. Di Giovanni</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Santo%2C+M">M. Di Santo</a> , et al. (126 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.04260v1-abstract-short" style="display: inline;"> More than a century after the performance of the oil drop experiment, the possible existence of fractionally charged particles FCP still remains unsettled. The search for FCPs is crucial for some extensions of the Standard Model in particle physics. Most of the previously conducted searches for FCPs in cosmic rays were based on experiments underground or at high altitudes. However, there have been&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.04260v1-abstract-full').style.display = 'inline'; document.getElementById('2209.04260v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.04260v1-abstract-full" style="display: none;"> More than a century after the performance of the oil drop experiment, the possible existence of fractionally charged particles FCP still remains unsettled. The search for FCPs is crucial for some extensions of the Standard Model in particle physics. Most of the previously conducted searches for FCPs in cosmic rays were based on experiments underground or at high altitudes. However, there have been few searches for FCPs in cosmic rays carried out in orbit other than AMS-01 flown by a space shuttle and BESS by a balloon at the top of the atmosphere. In this study, we conduct an FCP search in space based on on-orbit data obtained using the DArk Matter Particle Explorer (DAMPE) satellite over a period of five years. Unlike underground experiments, which require an FCP energy of the order of hundreds of GeV, our FCP search starts at only a few GeV. An upper limit of $6.2\times 10^{-10}~~\mathrm{cm^{-2}sr^{-1} s^{-1}}$ is obtained for the flux. Our results demonstrate that DAMPE exhibits higher sensitivity than experiments of similar types by three orders of magnitude that more stringently restricts the conditions for the existence of FCP in primary cosmic rays. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.04260v1-abstract-full').style.display = 'none'; document.getElementById('2209.04260v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 6 figures, accepted by PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> 106, 063026 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review D 106.6 (2022): 063026 </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Xu%2C+F&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Xu%2C+F&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Xu%2C+F&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Xu%2C+F&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10