CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 61 results for author: <span class="mathjax">Su, H</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Su%2C+H">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Su, H"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Su%2C+H&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Su, H"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Su%2C+H&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Su%2C+H&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Su%2C+H&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.02485">arXiv:2502.02485</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.02485">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Flexible radio-frequency transistors exceeding 100 GHz </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xia%2C+F">Fan Xia</a>, <a href="/search/physics?searchtype=author&amp;query=Xia%2C+T">Tian Xia</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+H">Haotian Su</a>, <a href="/search/physics?searchtype=author&amp;query=Gan%2C+L">Lanyue Gan</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+Q">Qianlan Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+W">Wanyi Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+R">Ruyi Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+T">Tianshun Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yufan Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+C">Chao Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Long%2C+G">Guanhua Long</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+S+X">Shan X. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Pop%2C+E">Eric Pop</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+L">Lian-Mao Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+Y">Youfan Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.02485v2-abstract-short" style="display: inline;"> The advent of 6G communication demands seamlessly integrated terminals operating above 100 GHz with low power consumption for human-centric applications. In this work, we report high-performance, flexible radio-frequency (RF) transistors based on aligned carbon nanotube (CNT) arrays, achieving, for the first time, as-measured current gain cutoff frequency ($f_{\mathrm{T}}$) and power gain cutoff f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02485v2-abstract-full').style.display = 'inline'; document.getElementById('2502.02485v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.02485v2-abstract-full" style="display: none;"> The advent of 6G communication demands seamlessly integrated terminals operating above 100 GHz with low power consumption for human-centric applications. In this work, we report high-performance, flexible radio-frequency (RF) transistors based on aligned carbon nanotube (CNT) arrays, achieving, for the first time, as-measured current gain cutoff frequency ($f_{\mathrm{T}}$) and power gain cutoff frequency ($f_{\mathrm{max}}$) both exceeding 100 GHz. Electro-thermal co-design improves both heat dissipation and RF performance, despite the low thermal conductivity of the flexible substrate. The transistors deliver 0.947 mA/ $\mathrm渭$m on-state current and 0.728 mS/ $\mathrm渭$m transconductance. Peak extrinsic $f_{\mathrm{T}}$ and $f_{\mathrm{max}}$ reach 152 GHz and 102 GHz, with low power consumption of 199 mW/mm and 147 mW/mm, respectively, setting new performance records for flexible CNT-based RF transistors by nearly 100$\times$, outperforming all other flexible RF devices. Additionally, flexible RF amplifiers achieve output power of 64 mW/mm and power gain of 11 dB in the K-band (18 GHz), marking a significant milestone in the development of flexible RF technologies for next-generation wireless communication systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02485v2-abstract-full').style.display = 'none'; document.getElementById('2502.02485v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.17367">arXiv:2501.17367</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.17367">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> High-field Breakdown and Thermal Characterization of Indium Tin Oxide Transistors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Su%2C+H">Haotian Su</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+Y">Yuan-Mau Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Pe%C3%B1a%2C+T">Tara Pe帽a</a>, <a href="/search/physics?searchtype=author&amp;query=Fultz-Waters%2C+S">Sydney Fultz-Waters</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+J">Jimin Kang</a>, <a href="/search/physics?searchtype=author&amp;query=K%C3%B6ro%C4%9Flu%2C+%C3%87">脟a臒谋l K枚ro臒lu</a>, <a href="/search/physics?searchtype=author&amp;query=Wahid%2C+S">Sumaiya Wahid</a>, <a href="/search/physics?searchtype=author&amp;query=Newcomb%2C+C+J">Christina J. Newcomb</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+Y+S">Young Suh Song</a>, <a href="/search/physics?searchtype=author&amp;query=Wong%2C+H+-+P">H. -S. Philip Wong</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+S+X">Shan X. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Pop%2C+E">Eric Pop</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.17367v1-abstract-short" style="display: inline;"> Amorphous oxide semiconductors are gaining interest for logic and memory transistors compatible with low-temperature fabrication. However, their low thermal conductivity and heterogeneous interfaces suggest that their performance may be severely limited by self-heating, especially at higher power and device densities. Here, we investigate the high-field breakdown of amorphous indium tin oxide (ITO&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.17367v1-abstract-full').style.display = 'inline'; document.getElementById('2501.17367v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.17367v1-abstract-full" style="display: none;"> Amorphous oxide semiconductors are gaining interest for logic and memory transistors compatible with low-temperature fabrication. However, their low thermal conductivity and heterogeneous interfaces suggest that their performance may be severely limited by self-heating, especially at higher power and device densities. Here, we investigate the high-field breakdown of amorphous indium tin oxide (ITO) transistors with scanning thermal microscopy (SThM) and multiphysics simulations. The ITO devices break irreversibly at channel temperatures of ~180 掳C and ~340 掳C on SiO${_2}$ and HfO${_2}$ substrates, respectively, but failure appears primarily caused by thermally-induced compressive strain near the device contacts. Combining SThM measurements with simulations allows us to estimate a thermal boundary conductance (TBC) of 35 ${\pm}$ 12 MWm${^-}$${^2}$K${^-}$${^1}$ for ITO on SiO${_2}$, and 51 ${\pm}$ 14 MWm${^-}$${^2}$K${^-}$${^1}$ for ITO on HfO${_2}$. The latter also enables significantly higher breakdown power due to better heat dissipation and closer thermal expansion matching. These findings provide valuable insights into the thermo-mechanical limitations of ITO devices, paving the way for more reliable and high-performance amorphous oxide transistors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.17367v1-abstract-full').style.display = 'none'; document.getElementById('2501.17367v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.03288">arXiv:2412.03288</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.03288">pdf</a>, <a href="https://arxiv.org/format/2412.03288">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6633/ad99e6">10.1088/1361-6633/ad99e6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Searches for exotic spin-dependent interactions with spin sensors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+M">Min Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+H">Haowen Su</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yifan Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Jiao%2C+M">Man Jiao</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Ying Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yuanhong Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Rong%2C+X">Xing Rong</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+X">Xinhua Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Du%2C+J">Jiangfeng Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.03288v2-abstract-short" style="display: inline;"> Numerous theories have postulated the existence of exotic spin-dependent interactions beyond the Standard Model of particle physics. Spin-based quantum sensors, which utilize the quantum properties of spins to enhance measurement precision, emerge as powerful tools for probing these exotic interactions. These sensors encompass a wide range of technologies, such as optically pumped magnetometers, a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03288v2-abstract-full').style.display = 'inline'; document.getElementById('2412.03288v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.03288v2-abstract-full" style="display: none;"> Numerous theories have postulated the existence of exotic spin-dependent interactions beyond the Standard Model of particle physics. Spin-based quantum sensors, which utilize the quantum properties of spins to enhance measurement precision, emerge as powerful tools for probing these exotic interactions. These sensors encompass a wide range of technologies, such as optically pumped magnetometers, atomic comagnetometers, spin masers, nuclear magnetic resonance, spin amplifiers, and nitrogen-vacancy centers. These technologies stand out for their ultrahigh sensitivity, compact tabletop design, and cost-effectiveness, offering complementary approaches to the large-scale particle colliders and astrophysical observations. This article reviews the underlying physical principles of various spin sensors and highlights the recent theoretical and experimental progress in the searches for exotic spin-dependent interactions with these quantum sensors. Investigations covered include the exotic interactions of spins with ultralight dark matter, exotic spin-dependent forces, electric dipole moment, spin-gravity interactions, and among others. Ongoing and forthcoming experiments using advanced spin-based sensors to investigate exotic spin-dependent interactions are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03288v2-abstract-full').style.display = 'none'; document.getElementById('2412.03288v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 13 figures, accepted for publication in Reports on Progress in Physics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Rep. Prog. Phys. 88 (2025) 016401 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.16616">arXiv:2409.16616</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.16616">pdf</a>, <a href="https://arxiv.org/format/2409.16616">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Broadband measurement of Feibelman&#39;s quantum surface response functions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z">Zeling Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+S">Shu Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z">Zetao Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J">Jinbing Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+X">Xudong Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Xia%2C+Y">Yipu Xia</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+Y">Yonggen Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+H">Huirong Su</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+M">Maohai Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Christensen%2C+T">Thomas Christensen</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Y">Yi Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.16616v2-abstract-short" style="display: inline;"> The Feibelman $d$-parameter, a mesoscopic complement to the local bulk permittivity, describes quantum optical surface responses for interfaces, including nonlocality, spill-in and-out, and surface-enabled Landau damping. It has been incorporated into the macroscopic Maxwellian framework for convenient modeling and understanding of nanoscale electromagnetic phenomena, calling for the compilation o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16616v2-abstract-full').style.display = 'inline'; document.getElementById('2409.16616v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.16616v2-abstract-full" style="display: none;"> The Feibelman $d$-parameter, a mesoscopic complement to the local bulk permittivity, describes quantum optical surface responses for interfaces, including nonlocality, spill-in and-out, and surface-enabled Landau damping. It has been incorporated into the macroscopic Maxwellian framework for convenient modeling and understanding of nanoscale electromagnetic phenomena, calling for the compilation of a $d$-parameter database for interfaces of interest in nano-optics. However, accurate first-principles calculations of $d$-parameters face computational challenges, whereas existing measurements of $d$-parameters are scarce and restricted to narrow spectral windows. We demonstrate a general broadband ellipsometric approach to measure $d$-parameters at a gold--air interface across the visible--ultraviolet regimes. Gold is found to spill in and spill out at different frequencies. We also observe gold&#39;s Bennett mode, a surface-dipole resonance associated with a pole of the $d$-parameter, around 2.5 eV. Our measurements give rise to and are further validated by the passivity and Kramers--Kronig causality analysis of $d$-parameters. Our work advances the understanding of quantum surface response and may enable applications like enhanced electron field emission. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16616v2-abstract-full').style.display = 'none'; document.getElementById('2409.16616v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.15534">arXiv:2407.15534</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.15534">pdf</a>, <a href="https://arxiv.org/format/2407.15534">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> One-dimensional quantum dot array integrated with charge sensors in an InAs nanowire </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Luo%2C+Y">Yi Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xiao-Fei Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhi-Hai Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Weijie Li</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+S">Shili Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+H">Han Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+H">Haitian Su</a>, <a href="/search/physics?searchtype=author&amp;query=Pan%2C+D">Dong Pan</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+J">Jianhua Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">Ji-Yin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+H+Q">H. Q. Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.15534v1-abstract-short" style="display: inline;"> We report an experimental study of a one-dimensional quintuple-quantum-dot array integrated with two quantum dot charge sensors in an InAs nanowire. The device is studied by measuring double quantum dots formed consecutively in the array and corresponding charge stability diagrams are revealed with both direct current measurements and charge sensor signals. The one-dimensional quintuple-quantum-do&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15534v1-abstract-full').style.display = 'inline'; document.getElementById('2407.15534v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.15534v1-abstract-full" style="display: none;"> We report an experimental study of a one-dimensional quintuple-quantum-dot array integrated with two quantum dot charge sensors in an InAs nanowire. The device is studied by measuring double quantum dots formed consecutively in the array and corresponding charge stability diagrams are revealed with both direct current measurements and charge sensor signals. The one-dimensional quintuple-quantum-dot array are then tuned up and its charge configurations are fully mapped out with the two charge sensors. The energy level of each dot in the array can be controlled individually by using a compensated gate architecture (i.e., &#34;virtual gate&#34;). After that, four dots in the array are selected to form two double quantum dots and ultra strong inter-double-dot interaction is obtained. A theoretical simulation based on a 4-dimensional Hamiltonian confirms the strong coupling strength between the two double quantum dots. The highly controllable one-dimensional quantum dot array achieved in this work is expected to be valuable for employing InAs nanowires to construct advanced quantum hardware in the future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15534v1-abstract-full').style.display = 'none'; document.getElementById('2407.15534v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.19133">arXiv:2406.19133</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.19133">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> Multiphase buffering by ammonia sustains sulfate production in atmospheric aerosols </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+G">Guangjie Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+H">Hang Su</a>, <a href="/search/physics?searchtype=author&amp;query=Andreae%2C+M+O">Meinrat O. Andreae</a>, <a href="/search/physics?searchtype=author&amp;query=P%C3%B6schl%2C+U">Ulrich P枚schl</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Y">Yafang Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.19133v1-abstract-short" style="display: inline;"> Multiphase oxidation of sulfur dioxide (SO2) is an important source of sulfate in the atmosphere. There are, however, concerns that protons produced during SO2 oxidation may cause rapid acidification of aerosol water and thereby quickly shut down the fast reactions favored at high pH. Here, we show that the sustainability of sulfate production is controlled by the competing effects of multiphase b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19133v1-abstract-full').style.display = 'inline'; document.getElementById('2406.19133v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.19133v1-abstract-full" style="display: none;"> Multiphase oxidation of sulfur dioxide (SO2) is an important source of sulfate in the atmosphere. There are, however, concerns that protons produced during SO2 oxidation may cause rapid acidification of aerosol water and thereby quickly shut down the fast reactions favored at high pH. Here, we show that the sustainability of sulfate production is controlled by the competing effects of multiphase buffering and acidification, which can be well described by a characteristic buffering time, 蟿buff. We find that globally, 蟿buff is long enough (days) to sustain sulfate production over most populated regions, where the acidification of aerosol water is counteracted by the strong buffering effect of NH4+/NH3. Our results highlight the importance of anthropogenic ammonia emissions and pervasive human influences in shaping the chemical environment of the atmosphere. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19133v1-abstract-full').style.display = 'none'; document.getElementById('2406.19133v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.04652">arXiv:2406.04652</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.04652">pdf</a>, <a href="https://arxiv.org/format/2406.04652">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Quantum state preparation for a velocity field based on the spherical Clebsch wave function </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Su%2C+H">Hao Su</a>, <a href="/search/physics?searchtype=author&amp;query=Xiong%2C+S">Shiying Xiong</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Y">Yue Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.04652v1-abstract-short" style="display: inline;"> We propose a method for preparing the quantum state for a given velocity field, e.g., in fluid dynamics, via the spherical Clebsch wave function (SCWF). Using the pointwise normalization constraint for the SCWF, we develop a variational ansatz comprising parameterized controlled rotation gates. Employing the variational quantum algorithm, we iteratively optimize the circuit parameters to transform&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.04652v1-abstract-full').style.display = 'inline'; document.getElementById('2406.04652v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.04652v1-abstract-full" style="display: none;"> We propose a method for preparing the quantum state for a given velocity field, e.g., in fluid dynamics, via the spherical Clebsch wave function (SCWF). Using the pointwise normalization constraint for the SCWF, we develop a variational ansatz comprising parameterized controlled rotation gates. Employing the variational quantum algorithm, we iteratively optimize the circuit parameters to transform the target velocity field into the SCWF and its corresponding discrete quantum state, enabling subsequent quantum simulation of fluid dynamics. Validations for one- and two-dimensional flow fields confirm the accuracy and robustness of our method, emphasizing its effectiveness in handling multiscale and multidimensional velocity fields. Our method is able to capture critical flow features like sources, sinks, and saddle points. Furthermore, it enables the generation of SCWFs for various vector fields, which can then be applied in quantum simulations through SCWF evolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.04652v1-abstract-full').style.display = 'none'; document.getElementById('2406.04652v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.18551">arXiv:2404.18551</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.18551">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Absolute light yield measurement of NaI:Tl crystals for dark matter search </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Luan%2C+N+T">Nguyen Thanh Luan</a>, <a href="/search/physics?searchtype=author&amp;query=Joo%2C+K+H">Kim Hong Joo</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+L+H">Lee Hyun Su</a>, <a href="/search/physics?searchtype=author&amp;query=Jegal%2C+J">Jin Jegal</a>, <a href="/search/physics?searchtype=author&amp;query=Truc%2C+L+T">Lam Tan Truc</a>, <a href="/search/physics?searchtype=author&amp;query=Arshad%2C+K">Khan Arshad</a>, <a href="/search/physics?searchtype=author&amp;query=Ton%2C+N+D">Nguyen Duc Ton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.18551v1-abstract-short" style="display: inline;"> The NaI:Tl crystals were early investigated and used for wide application fields due to high light yield and crystal growth advantages. So far, the absolute light yields of NaI:Tl crystal have typically been known to be 40 ph/keV. However, it varies widely, far from the theoretical estimation. Since the high light yield and better sensitivity of NaI:Tl crystal is important for low mass dark matter&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.18551v1-abstract-full').style.display = 'inline'; document.getElementById('2404.18551v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.18551v1-abstract-full" style="display: none;"> The NaI:Tl crystals were early investigated and used for wide application fields due to high light yield and crystal growth advantages. So far, the absolute light yields of NaI:Tl crystal have typically been known to be 40 ph/keV. However, it varies widely, far from the theoretical estimation. Since the high light yield and better sensitivity of NaI:Tl crystal is important for low mass dark matter search. Therefore, it is necessary to use high light NaI:Tl crystal, and absolute light yield should be measured with accuracy. In this work, we use the single photoelectron technique for measuring the absolute light yield of 35 NaI:Tl crystals with various sizes from different vendors. There are several high-quality crystals from the COSINE-100 experiment and commercial companies in these crystals. The theoretical estimation and GEANT4 optical simulation have been studied to investigate the PMT optics. Results show the essential role of this correction in avoiding overrated light yield values. The SPE technique using different PMT was compared to the photodiode and avalanche photodiode methods. A 10% systematic error was obtained. Our results show the excellent absolute light yield of NaI:Tl, at 59.4 +- 5.9 ph/keV, while the theoretical predicted light yield is around 70 ph/keV. The evaluation with NaI:Tl crystals in the COSINE-100 experiment has been performed. The six crystals in the COSINE-100 experiment have a high light yield. Based on our results, the light loss of encapsulation needs to be improved, especially for the big-size crystals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.18551v1-abstract-full').style.display = 'none'; document.getElementById('2404.18551v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 16 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.17017">arXiv:2402.17017</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.17017">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Reprogrammable and reconfigurable mechanical computing metastructures with stable and high-density memory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yanbin Li</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+S">Shuangyue Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Qing%2C+H">Haitao Qing</a>, <a href="/search/physics?searchtype=author&amp;query=Hong%2C+Y">Yaoye Hong</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Y">Yao Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Qi%2C+F">Fangjie Qi</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+H">Hao Su</a>, <a href="/search/physics?searchtype=author&amp;query=Yin%2C+J">Jie Yin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.17017v1-abstract-short" style="display: inline;"> Previous mechanical meta-structures used for mechanical memory storage, computing and information processing are severely constrained by low information density and/or non-robust structural stiffness to stably protect the maintained information. To address these challenges, we proposed a novel reprogrammable multifunctional mechanical metastructure made by an unprecedented building block based on&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.17017v1-abstract-full').style.display = 'inline'; document.getElementById('2402.17017v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.17017v1-abstract-full" style="display: none;"> Previous mechanical meta-structures used for mechanical memory storage, computing and information processing are severely constrained by low information density and/or non-robust structural stiffness to stably protect the maintained information. To address these challenges, we proposed a novel reprogrammable multifunctional mechanical metastructure made by an unprecedented building block based on kinematic mechanism. The proposed meta-structure can achieve all abovementioned functionalities accompanying with high information density and promising structural stability. We attribute all these merits to the intrinsic kinematic bifurcations of structural units, which enable the periodic meta-structure with additional and independently deformable bi-stable structural segments, and multi-layered deformed configurations to significantly enlarge the available information bits. We validate the stable information storage are originated from the compatible deformations of local structural segments before and after bifurcations. We illustrated the stored information can be feasibly reprogrammed by magnetic poles. Our design strategy paves new way for creating novel functional mechanical metastuctures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.17017v1-abstract-full').style.display = 'none'; document.getElementById('2402.17017v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.18055">arXiv:2311.18055</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.18055">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geometric Topology">math.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Adaptive Hierarchical Origami Metastructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yanbin Li</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Lallo%2C+A">Antonio Di Lallo</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+J">Junxi Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Chi%2C+Y">Yinding Chi</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+H">Hao Su</a>, <a href="/search/physics?searchtype=author&amp;query=Yin%2C+J">Jie Yin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.18055v1-abstract-short" style="display: inline;"> Shape-morphing capabilities are crucial for enabling multifunctionality in both biological and artificial systems. Various strategies for shape morphing have been proposed for applications in metamaterials and robotics. However, few of these approaches have achieved the ability to seamlessly transform into a multitude of volumetric shapes post-fabrication using a relatively simple actuation and co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.18055v1-abstract-full').style.display = 'inline'; document.getElementById('2311.18055v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.18055v1-abstract-full" style="display: none;"> Shape-morphing capabilities are crucial for enabling multifunctionality in both biological and artificial systems. Various strategies for shape morphing have been proposed for applications in metamaterials and robotics. However, few of these approaches have achieved the ability to seamlessly transform into a multitude of volumetric shapes post-fabrication using a relatively simple actuation and control mechanism. Taking inspiration from thick origami and hierarchies in nature, we present a new hierarchical construction method based on polyhedrons to create an extensive library of compact origami metastructures. We show that a single hierarchical origami structure can autonomously adapt to over 103 versatile architectural configurations, achieved with the utilization of fewer than 3 actuation degrees of freedom and employing simple transition kinematics. We uncover the fundamental principles governing theses shape transformation through theoretical models. Furthermore, we also demonstrate the wide-ranging potential applications of these transformable hierarchical structures. These include their uses as untethered and autonomous robotic transformers capable of various gait-shifting and multidirectional locomotion, as well as rapidly self-deployable and self-reconfigurable architecture, exemplifying its scalability up to the meter scale. Lastly, we introduce the concept of multitask reconfigurable and deployable space robots and habitats, showcasing the adaptability and versatility of these metastructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.18055v1-abstract-full').style.display = 'none'; document.getElementById('2311.18055v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.15212">arXiv:2310.15212</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.15212">pdf</a>, <a href="https://arxiv.org/format/2310.15212">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Photoemission study and band alignment of GaN passivation layers on GaInP heterointerface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shekarabi%2C+S">S. Shekarabi</a>, <a href="/search/physics?searchtype=author&amp;query=Pour%2C+M+A+Z">M. A. Zare Pour</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+H">H. Su</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+W">W. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+C">C. He</a>, <a href="/search/physics?searchtype=author&amp;query=Romanyuk%2C+O">O. Romanyuk</a>, <a href="/search/physics?searchtype=author&amp;query=Paszuk%2C+A">A. Paszuk</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+S">S. Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Hannappel%2C+T">T. Hannappel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.15212v1-abstract-short" style="display: inline;"> III-V semiconductor-based photoelectrochemical (PEC) devices show the highest solar-to-electricity or solar-to-fuel conversion efficiencies. GaInP is a relevant top photoabsorber layer or a charge-selective contact in PEC for integrated and direct solar fuel production, due to its tunable lattice constant, electronic band structure, and favorable optical properties. To enhance the stability of its&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.15212v1-abstract-full').style.display = 'inline'; document.getElementById('2310.15212v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.15212v1-abstract-full" style="display: none;"> III-V semiconductor-based photoelectrochemical (PEC) devices show the highest solar-to-electricity or solar-to-fuel conversion efficiencies. GaInP is a relevant top photoabsorber layer or a charge-selective contact in PEC for integrated and direct solar fuel production, due to its tunable lattice constant, electronic band structure, and favorable optical properties. To enhance the stability of its surface against chemical corrosion which leads to decomposition, we deposit a GaN protection and passivation layer. The n-doped GaInP(100) epitaxial layers were grown by metalorganic chemical vapor deposition on top of GaAs(100) substrate. Subsequently, thin 1-20 nm GaN films were grown on top of the oxidized GaInP surfaces by atomic layer deposition. We studied the band alignment of these multi-junction heterostructures by X-ray and ultraviolet photoelectron spectroscopy. Due to the limited emission depth of photoelectrons, we determined the band alignment by a series of separate measurements in which we either modified the GaInP(100) surface termination or the film thickness of the grown GaN on GaInP(100) buffer layers. On n-GaInP(100) surfaces prepared with the well-known phosphorus-rich (2x2)/c(4x2) reconstruction we found up-ward surface band bending (BB) of 0.34 eV, and Fermi level pinning due to the present surface states. Upon oxidation, the surface states are partially passivated resulting in a reduction of BB to 0.12 eV and a valence band offset (VBO) between GaInP and oxide bands of 2.0 eV. Between the GaInP(100) buffer layer and the GaN passivation layer, we identified a VBO of 1.8 eV. The corresponding conduction band offset of -0.2 eV is found to be rather small. Therefore, we evaluate the application of the GaN passivation layer as a promising technological step not only to reduce surface states but also to increase the stability of the surfaces of photoelectrochemical devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.15212v1-abstract-full').style.display = 'none'; document.getElementById('2310.15212v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.12651">arXiv:2310.12651</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.12651">pdf</a>, <a href="https://arxiv.org/format/2310.12651">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> </div> <p class="title is-5 mathjax"> Accelerating the force-coupling method for hydrodynamic interactions in periodic domains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Su%2C+H">Hang Su</a>, <a href="/search/physics?searchtype=author&amp;query=Keaveny%2C+E+E">Eric E Keaveny</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.12651v2-abstract-short" style="display: inline;"> The efficient simulation of fluid-structure interactions at zero Reynolds number requires the use of fast summation techniques in order to rapidly compute the long-ranged hydrodynamic interactions between the structures. One approach for periodic domains involves utilising a compact or exponentially decaying kernel function to spread the force on the structure to a regular grid where the resulting&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.12651v2-abstract-full').style.display = 'inline'; document.getElementById('2310.12651v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.12651v2-abstract-full" style="display: none;"> The efficient simulation of fluid-structure interactions at zero Reynolds number requires the use of fast summation techniques in order to rapidly compute the long-ranged hydrodynamic interactions between the structures. One approach for periodic domains involves utilising a compact or exponentially decaying kernel function to spread the force on the structure to a regular grid where the resulting flow and interactions can be computed efficiently using an FFT-based solver. A limitation to this approach is that the grid spacing must be chosen to resolve the kernel and thus, these methods can become inefficient when the separation between the structures is large compared to the kernel width. In this paper, we address this issue for the force-coupling method (FCM) by introducing a modified kernel that can be resolved on a much coarser grid, and subsequently correcting the resulting interactions in a pairwise fashion. The modified kernel is constructed to ensure rapid convergence to the exact hydrodynamic interactions and a positive-splitting of the associated mobility matrix. We provide a detailed computational study of the methodology and establish the optimal choice of the modified kernel width, which we show plays a similar role to the splitting parameter in Ewald summation. Finally, we perform example simulations of rod sedimentation and active filament coordination to demonstrate the performance of fast FCM in application. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.12651v2-abstract-full').style.display = 'none'; document.getElementById('2310.12651v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.04668">arXiv:2308.04668</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.04668">pdf</a>, <a href="https://arxiv.org/format/2308.04668">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Controlled Ion Transport in the Subsurface: A Coupled Advection-Diffusion-Electromigration System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Tang%2C+K">Kunning Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Bo%2C+Z">Zhenkai Bo</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z">Zhe Li</a>, <a href="/search/physics?searchtype=author&amp;query=Da+Wang%2C+Y">Ying Da Wang</a>, <a href="/search/physics?searchtype=author&amp;query=McClure%2C+J">James McClure</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+H">Hongli Su</a>, <a href="/search/physics?searchtype=author&amp;query=Mostaghimi%2C+P">Peyman Mostaghimi</a>, <a href="/search/physics?searchtype=author&amp;query=Armstrong%2C+R">Ryan Armstrong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.04668v1-abstract-short" style="display: inline;"> Groundwater pollution poses a significant threat to environmental sustainability during urbanization. Existing remediation methods like pump-and-treat and electrokinetics have limited ion transport control. This study introduces a coupled advection-diffusion-electromigration system for controlled ion transport in the subsurface. Using the Lattice-Boltzmann-Poisson method, we simulate ion transport&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.04668v1-abstract-full').style.display = 'inline'; document.getElementById('2308.04668v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.04668v1-abstract-full" style="display: none;"> Groundwater pollution poses a significant threat to environmental sustainability during urbanization. Existing remediation methods like pump-and-treat and electrokinetics have limited ion transport control. This study introduces a coupled advection-diffusion-electromigration system for controlled ion transport in the subsurface. Using the Lattice-Boltzmann-Poisson method, we simulate ion transport in various two- and three-dimensional porous media. We establish an ion transport regime classification based on the Peclet number (Pe) and a novel Electrodiffusivity index (EDI). By manipulating the electric potential, hydrostatic pressure, and ion concentration, we identify four transport regimes: large channeling, uniform flow, small channeling, and no flow. Large channeling occurs when advection dominates, while uniform flow arises when diffusion and electromigration are more prevalent. Small channeling happens when the advection opposes electromigration and diffusion, and no flow occurs when the advection or electromigration impedes ion transport via diffusion. Simulations in heterogeneous models confirm these transport regimes, highlighting the influence of pore size variation on transport regimes. Consequently, $Pe$ and $EDI$ must be tailored for optimal transport control. These findings enable better control over ion transport, optimizing processes such as heavy metal removal, bioremediation, and contaminant degradation in groundwater management. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.04668v1-abstract-full').style.display = 'none'; document.getElementById('2308.04668v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.08827">arXiv:2306.08827</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.08827">pdf</a>, <a href="https://arxiv.org/format/2306.08827">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> PINNacle: A Comprehensive Benchmark of Physics-Informed Neural Networks for Solving PDEs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hao%2C+Z">Zhongkai Hao</a>, <a href="/search/physics?searchtype=author&amp;query=Yao%2C+J">Jiachen Yao</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+C">Chang Su</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+H">Hang Su</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Ziao Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+F">Fanzhi Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Xia%2C+Z">Zeyu Xia</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yichi Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Songming Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+L">Lu Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+J">Jun Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.08827v2-abstract-short" style="display: inline;"> While significant progress has been made on Physics-Informed Neural Networks (PINNs), a comprehensive comparison of these methods across a wide range of Partial Differential Equations (PDEs) is still lacking. This study introduces PINNacle, a benchmarking tool designed to fill this gap. PINNacle provides a diverse dataset, comprising over 20 distinct PDEs from various domains, including heat condu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.08827v2-abstract-full').style.display = 'inline'; document.getElementById('2306.08827v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.08827v2-abstract-full" style="display: none;"> While significant progress has been made on Physics-Informed Neural Networks (PINNs), a comprehensive comparison of these methods across a wide range of Partial Differential Equations (PDEs) is still lacking. This study introduces PINNacle, a benchmarking tool designed to fill this gap. PINNacle provides a diverse dataset, comprising over 20 distinct PDEs from various domains, including heat conduction, fluid dynamics, biology, and electromagnetics. These PDEs encapsulate key challenges inherent to real-world problems, such as complex geometry, multi-scale phenomena, nonlinearity, and high dimensionality. PINNacle also offers a user-friendly toolbox, incorporating about 10 state-of-the-art PINN methods for systematic evaluation and comparison. We have conducted extensive experiments with these methods, offering insights into their strengths and weaknesses. In addition to providing a standardized means of assessing performance, PINNacle also offers an in-depth analysis to guide future research, particularly in areas such as domain decomposition methods and loss reweighting for handling multi-scale problems and complex geometry. To the best of our knowledge, it is the largest benchmark with a diverse and comprehensive evaluation that will undoubtedly foster further research in PINNs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.08827v2-abstract-full').style.display = 'none'; document.getElementById('2306.08827v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.17150">arXiv:2303.17150</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.17150">pdf</a>, <a href="https://arxiv.org/format/2303.17150">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> A pore-scale model for electrokinetic in situ recovery of copper: the Influence of mineral occurrence, zeta potential, and electric potential </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Tang%2C+K">Kunning Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z">Zhe Li</a>, <a href="/search/physics?searchtype=author&amp;query=Da+Wang%2C+Y">Ying Da Wang</a>, <a href="/search/physics?searchtype=author&amp;query=McClure%2C+J">James McClure</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+H">Hongli Su</a>, <a href="/search/physics?searchtype=author&amp;query=Mostaghimi%2C+P">Peyman Mostaghimi</a>, <a href="/search/physics?searchtype=author&amp;query=Armstrong%2C+R">Ryan Armstrong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.17150v1-abstract-short" style="display: inline;"> Electrokinetic in-situ recovery is an alternative to conventional mining, relying on the application of an electric potential to enhance the subsurface flow of ions. Understanding the pore-scale flow and ion transport under electric potential is essential for petrophysical properties estimation and flow behavior characterization. The governing physics of electrokinetic transport is electromigratio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.17150v1-abstract-full').style.display = 'inline'; document.getElementById('2303.17150v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.17150v1-abstract-full" style="display: none;"> Electrokinetic in-situ recovery is an alternative to conventional mining, relying on the application of an electric potential to enhance the subsurface flow of ions. Understanding the pore-scale flow and ion transport under electric potential is essential for petrophysical properties estimation and flow behavior characterization. The governing physics of electrokinetic transport is electromigration and electroosmotic flow, which depend on the electric potential gradient, mineral occurrence, domain morphology, and electrolyte properties. Herein, mineral occurrence and its associated zeta potential are investigated for EK transport. The governing model includes three coupled equations: (1) Poisson equation, (2) Nernst--Planck equation, and (3) Navier--Stokes equation. These equations were solved using the lattice Boltzmann method within X-ray computed microtomography images. The proposed model is validated against COMSOL Multiphysics in a 2-dimensional microchannel in terms of fluid flow behavior when the electrical double layer is both resolvable and unresolvable. A more complex chalcopyrite-silica system is then obtained by micro-CT scanning to evaluate the model performance. The effects of mineral occurrence, zeta potential, and electric potential on the 3-dimensional chalcopyrite-silica system were evaluated. Although the positive zeta potential of chalcopyrite can induce a flow of ferric ion counter to the direction of electromigration, the net effect is dependent on the occurrence of chalcopyrite. However, the ion flux induced by electromigration was the dominant transport mechanism, whereas advection induced by electroosmosis made a lower contribution. Overall, a pore-scale EK model is proposed for direct simulation on pore-scale images. The proposed model can be coupled with other geochemical models for full physicochemical transport simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.17150v1-abstract-full').style.display = 'none'; document.getElementById('2303.17150v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.00753">arXiv:2303.00753</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.00753">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.cplett.2023.140646">10.1016/j.cplett.2023.140646 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Molecular dynamics simulation of the transformation of Fe-Co alloy by machine learning force field based on atomic cluster expansion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yongle Li</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+F">Feng Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Hou%2C+L">Long Hou</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+L">Luchao Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+H">Haijun Su</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xi Li</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+W">Wei Ren</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.00753v1-abstract-short" style="display: inline;"> The force field describing the calculated interaction between atoms or molecules is the key to the accuracy of many molecular dynamics (MD) simulation results. Compared with traditional or semi-empirical force fields, machine learning force fields have the advantages of faster speed and higher precision. We have employed the method of atomic cluster expansion (ACE) combined with first-principles d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.00753v1-abstract-full').style.display = 'inline'; document.getElementById('2303.00753v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.00753v1-abstract-full" style="display: none;"> The force field describing the calculated interaction between atoms or molecules is the key to the accuracy of many molecular dynamics (MD) simulation results. Compared with traditional or semi-empirical force fields, machine learning force fields have the advantages of faster speed and higher precision. We have employed the method of atomic cluster expansion (ACE) combined with first-principles density functional theory (DFT) calculations for machine learning, and successfully obtained the force field of the binary Fe-Co alloy. Molecular dynamics simulations of Fe-Co alloy carried out using this ACE force field predicted the correct phase transition range of Fe-Co alloy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.00753v1-abstract-full').style.display = 'none'; document.getElementById('2303.00753v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.14376">arXiv:2302.14376</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.14376">pdf</a>, <a href="https://arxiv.org/format/2302.14376">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> GNOT: A General Neural Operator Transformer for Operator Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hao%2C+Z">Zhongkai Hao</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhengyi Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+H">Hang Su</a>, <a href="/search/physics?searchtype=author&amp;query=Ying%2C+C">Chengyang Ying</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+Y">Yinpeng Dong</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Songming Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Z">Ze Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+J">Jian Song</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+J">Jun Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.14376v3-abstract-short" style="display: inline;"> Learning partial differential equations&#39; (PDEs) solution operators is an essential problem in machine learning. However, there are several challenges for learning operators in practical applications like the irregular mesh, multiple input functions, and complexity of the PDEs&#39; solution. To address these challenges, we propose a general neural operator transformer (GNOT), a scalable and effective t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.14376v3-abstract-full').style.display = 'inline'; document.getElementById('2302.14376v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.14376v3-abstract-full" style="display: none;"> Learning partial differential equations&#39; (PDEs) solution operators is an essential problem in machine learning. However, there are several challenges for learning operators in practical applications like the irregular mesh, multiple input functions, and complexity of the PDEs&#39; solution. To address these challenges, we propose a general neural operator transformer (GNOT), a scalable and effective transformer-based framework for learning operators. By designing a novel heterogeneous normalized attention layer, our model is highly flexible to handle multiple input functions and irregular meshes. Besides, we introduce a geometric gating mechanism which could be viewed as a soft domain decomposition to solve the multi-scale problems. The large model capacity of the transformer architecture grants our model the possibility to scale to large datasets and practical problems. We conduct extensive experiments on multiple challenging datasets from different domains and achieve a remarkable improvement compared with alternative methods. Our code and data are publicly available at \url{https://github.com/thu-ml/GNOT}. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.14376v3-abstract-full').style.display = 'none'; document.getElementById('2302.14376v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.12660">arXiv:2302.12660</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.12660">pdf</a>, <a href="https://arxiv.org/format/2302.12660">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OPTCON.498692">10.1364/OPTCON.498692 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optimizing Population Accumulation in Quantum States Using Microwave Spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liou%2C+J">Jia-You Liou</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+C">Chi-En Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+H">Hsuan-Jui Su</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yi-Hsin Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.12660v1-abstract-short" style="display: inline;"> We present an all-optical method for efficiently preparing cold atoms in a desired Zeeman state, either on the magnetically insensitive clock state (m_F=0) or a particular state suitable for processing or storing quantum information. By applying the theoretical fitting model to a single microwave spectrum, we can individually determine the population distribution, microwave polarization ratio, and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.12660v1-abstract-full').style.display = 'inline'; document.getElementById('2302.12660v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.12660v1-abstract-full" style="display: none;"> We present an all-optical method for efficiently preparing cold atoms in a desired Zeeman state, either on the magnetically insensitive clock state (m_F=0) or a particular state suitable for processing or storing quantum information. By applying the theoretical fitting model to a single microwave spectrum, we can individually determine the population distribution, microwave polarization ratio, and microwave Rabi frequency. We can dynamically track the population distribution during the optical pumping process using this real-time microwave spectrum. In a steady-state condition, a simplified model, which considers resonant and off-resonant transitions, indicates that there is an upper limit to the purity under a weak optical pumping field. The population purity up to 96(2)% or 98(1)% on the desired quantum state has been achieved after optimizing the intensity and polarization of the optical pumping field. Our study provides valuable information and potential applications in precision measurement and quantum computation research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.12660v1-abstract-full').style.display = 'none'; document.getElementById('2302.12660v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optics Continuum 2, 2017 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.00940">arXiv:2302.00940</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.00940">pdf</a>, <a href="https://arxiv.org/format/2302.00940">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.130.070801">10.1103/PhysRevLett.130.070801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unconditional and robust quantum metrological advantage beyond NOON states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Qin%2C+J">Jian Qin</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Y">Yu-Hao Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Zhong%2C+H">Han-Sen Zhong</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+L">Li-Chao Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+H">Hao Su</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+Y">Yi-Han Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+J">Jia-Min Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+D">Dian Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+S">Si-Qiu Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+H">Hua-Liang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Hui Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">Ming-Cheng Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+L">Li Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+N">Nai-Le Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+C">Chao-Yang Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Pan%2C+J">Jian-Wei Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.00940v2-abstract-short" style="display: inline;"> Quantum metrology employs quantum resources to enhance the measurement sensitivity beyond that can be achieved classically. While multi-photon entangled NOON states can in principle beat the shot-noise limit and reach the Heisenberg limit, high NOON states are difficult to prepare and fragile to photon loss which hinders it from reaching unconditional quantum metrological advantages. Here, we comb&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.00940v2-abstract-full').style.display = 'inline'; document.getElementById('2302.00940v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.00940v2-abstract-full" style="display: none;"> Quantum metrology employs quantum resources to enhance the measurement sensitivity beyond that can be achieved classically. While multi-photon entangled NOON states can in principle beat the shot-noise limit and reach the Heisenberg limit, high NOON states are difficult to prepare and fragile to photon loss which hinders it from reaching unconditional quantum metrological advantages. Here, we combine the idea of unconventional nonlinear interferometers and stimulated emission of squeezed light, previously developed for photonic quantum computer Jiuzhang, to propose and realize a new scheme that achieves a scalable, unconditional, and robust quantum metrological advantage. We observe a 5.8(1)-fold enhancement above the shot-noise limit in the Fisher information extracted per photon, without discounting for photon loss and imperfections, which outperforms ideal 5-NOON states. The Heisenberg-limited scaling, the robustness to external photon loss, and the ease-to-use of our method make it applicable in practical quantum metrology at low photon flux regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.00940v2-abstract-full').style.display = 'none'; document.getElementById('2302.00940v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To be published, with an independent and simultaneous submission on arXiv:2111.09756</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.17037">arXiv:2211.17037</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.17037">pdf</a>, <a href="https://arxiv.org/format/2211.17037">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.032012">10.1103/PhysRevD.107.032012 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neutron detection and application with a novel 3D-projection scintillator tracker in the future long-baseline neutrino oscillation experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gwon%2C+S">S. Gwon</a>, <a href="/search/physics?searchtype=author&amp;query=Granger%2C+P">P. Granger</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+G">G. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Bolognesi%2C+S">S. Bolognesi</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+T">T. Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Danilov%2C+M">M. Danilov</a>, <a href="/search/physics?searchtype=author&amp;query=Delbart%2C+A">A. Delbart</a>, <a href="/search/physics?searchtype=author&amp;query=De+Roeck%2C+A">A. De Roeck</a>, <a href="/search/physics?searchtype=author&amp;query=Dolan%2C+S">S. Dolan</a>, <a href="/search/physics?searchtype=author&amp;query=Eurin%2C+G">G. Eurin</a>, <a href="/search/physics?searchtype=author&amp;query=Razakamiandra%2C+R+F">R. F. Razakamiandra</a>, <a href="/search/physics?searchtype=author&amp;query=Fedotov%2C+S">S. Fedotov</a>, <a href="/search/physics?searchtype=author&amp;query=Aguirre%2C+G+F">G. Fiorentini Aguirre</a>, <a href="/search/physics?searchtype=author&amp;query=Flight%2C+R">R. Flight</a>, <a href="/search/physics?searchtype=author&amp;query=Gran%2C+R">R. Gran</a>, <a href="/search/physics?searchtype=author&amp;query=Ha%2C+C">C. Ha</a>, <a href="/search/physics?searchtype=author&amp;query=Jung%2C+C+K">C. K. Jung</a>, <a href="/search/physics?searchtype=author&amp;query=Jung%2C+K+Y">K. Y. Jung</a>, <a href="/search/physics?searchtype=author&amp;query=Kettell%2C+S">S. Kettell</a>, <a href="/search/physics?searchtype=author&amp;query=Khabibullin%2C+M">M. Khabibullin</a>, <a href="/search/physics?searchtype=author&amp;query=Khotjantsev%2C+A">A. Khotjantsev</a>, <a href="/search/physics?searchtype=author&amp;query=Kordosky%2C+M">M. Kordosky</a>, <a href="/search/physics?searchtype=author&amp;query=Kudenko%2C+Y">Y. Kudenko</a>, <a href="/search/physics?searchtype=author&amp;query=Kutter%2C+T">T. Kutter</a>, <a href="/search/physics?searchtype=author&amp;query=Maneira%2C+J">J. Maneira</a> , et al. (25 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.17037v1-abstract-short" style="display: inline;"> Neutrino oscillation experiments require a precise measurement of the neutrino energy. However, the kinematic detection of the final-state neutron in the neutrino interaction is missing in current neutrino oscillation experiments. The missing neutron kinematic detection results in a feed-down of the detected neutrino energy compared to the true neutrino energy. A novel 3D\textcolor{black}{-}projec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.17037v1-abstract-full').style.display = 'inline'; document.getElementById('2211.17037v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.17037v1-abstract-full" style="display: none;"> Neutrino oscillation experiments require a precise measurement of the neutrino energy. However, the kinematic detection of the final-state neutron in the neutrino interaction is missing in current neutrino oscillation experiments. The missing neutron kinematic detection results in a feed-down of the detected neutrino energy compared to the true neutrino energy. A novel 3D\textcolor{black}{-}projection scintillator tracker, which consists of roughly ten million active cubes covered with an optical reflector, is capable of measuring the neutron kinetic energy and direction on an event-by-event basis using the time-of-flight technique thanks to the fast timing, fine granularity, and high light yield. The $\bar谓_渭$ interactions tend to produce neutrons in the final state. By inferring the neutron kinetic energy, the $\bar谓_渭$ energy can be reconstructed better, allowing a tighter incoming neutrino flux constraint. This paper shows the detector&#39;s ability to reconstruct neutron kinetic energy and the $\bar谓_渭$ flux constraint achieved by selecting the charged-current interactions without mesons or protons in the final state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.17037v1-abstract-full').style.display = 'none'; document.getElementById('2211.17037v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 107, 032012, 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.04260">arXiv:2209.04260</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.04260">pdf</a>, <a href="https://arxiv.org/format/2209.04260">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.063026">10.1103/PhysRevD.106.063026 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for relativistic fractionally charged particles in space </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DAMPE+Collaboration"> DAMPE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Alemanno%2C+F">F. Alemanno</a>, <a href="/search/physics?searchtype=author&amp;query=Altomare%2C+C">C. Altomare</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/physics?searchtype=author&amp;query=Azzarello%2C+P">P. Azzarello</a>, <a href="/search/physics?searchtype=author&amp;query=Barbato%2C+F+C+T">F. C. T. Barbato</a>, <a href="/search/physics?searchtype=author&amp;query=Bernardini%2C+P">P. Bernardini</a>, <a href="/search/physics?searchtype=author&amp;query=Bi%2C+X+J">X. J. Bi</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+M+S">M. S. Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Casilli%2C+E">E. Casilli</a>, <a href="/search/physics?searchtype=author&amp;query=Catanzani%2C+E">E. Catanzani</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J">J. Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+D+Y">D. Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J+L">J. L. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z+F">Z. F. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+M+Y">M. Y. Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+T+S">T. S. Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+Y+X">Y. X. Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+H+T">H. T. Dai</a>, <a href="/search/physics?searchtype=author&amp;query=De-Benedittis%2C+A">A. De-Benedittis</a>, <a href="/search/physics?searchtype=author&amp;query=De+Mitri%2C+I">I. De Mitri</a>, <a href="/search/physics?searchtype=author&amp;query=de+Palma%2C+F">F. de Palma</a>, <a href="/search/physics?searchtype=author&amp;query=Deliyergiyev%2C+M">M. Deliyergiyev</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Giovanni%2C+A">A. Di Giovanni</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Santo%2C+M">M. Di Santo</a> , et al. (126 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.04260v1-abstract-short" style="display: inline;"> More than a century after the performance of the oil drop experiment, the possible existence of fractionally charged particles FCP still remains unsettled. The search for FCPs is crucial for some extensions of the Standard Model in particle physics. Most of the previously conducted searches for FCPs in cosmic rays were based on experiments underground or at high altitudes. However, there have been&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.04260v1-abstract-full').style.display = 'inline'; document.getElementById('2209.04260v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.04260v1-abstract-full" style="display: none;"> More than a century after the performance of the oil drop experiment, the possible existence of fractionally charged particles FCP still remains unsettled. The search for FCPs is crucial for some extensions of the Standard Model in particle physics. Most of the previously conducted searches for FCPs in cosmic rays were based on experiments underground or at high altitudes. However, there have been few searches for FCPs in cosmic rays carried out in orbit other than AMS-01 flown by a space shuttle and BESS by a balloon at the top of the atmosphere. In this study, we conduct an FCP search in space based on on-orbit data obtained using the DArk Matter Particle Explorer (DAMPE) satellite over a period of five years. Unlike underground experiments, which require an FCP energy of the order of hundreds of GeV, our FCP search starts at only a few GeV. An upper limit of $6.2\times 10^{-10}~~\mathrm{cm^{-2}sr^{-1} s^{-1}}$ is obtained for the flux. Our results demonstrate that DAMPE exhibits higher sensitivity than experiments of similar types by three orders of magnitude that more stringently restricts the conditions for the existence of FCP in primary cosmic rays. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.04260v1-abstract-full').style.display = 'none'; document.getElementById('2209.04260v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 6 figures, accepted by PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> 106, 063026 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review D 106.6 (2022): 063026 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.12982">arXiv:2207.12982</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.12982">pdf</a>, <a href="https://arxiv.org/format/2207.12982">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Scintillator ageing of the T2K near detectors from 2010 to 2021 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=The+T2K+Collaboration"> The T2K Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Akhlaq%2C+N">N. Akhlaq</a>, <a href="/search/physics?searchtype=author&amp;query=Akutsu%2C+R">R. Akutsu</a>, <a href="/search/physics?searchtype=author&amp;query=Ali%2C+A">A. Ali</a>, <a href="/search/physics?searchtype=author&amp;query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Antonova%2C+M">M. Antonova</a>, <a href="/search/physics?searchtype=author&amp;query=Aoki%2C+S">S. Aoki</a>, <a href="/search/physics?searchtype=author&amp;query=Arihara%2C+T">T. Arihara</a>, <a href="/search/physics?searchtype=author&amp;query=Asada%2C+Y">Y. Asada</a>, <a href="/search/physics?searchtype=author&amp;query=Ashida%2C+Y">Y. Ashida</a>, <a href="/search/physics?searchtype=author&amp;query=Atkin%2C+E+T">E. T. Atkin</a>, <a href="/search/physics?searchtype=author&amp;query=Ban%2C+S">S. Ban</a>, <a href="/search/physics?searchtype=author&amp;query=Barbi%2C+M">M. Barbi</a>, <a href="/search/physics?searchtype=author&amp;query=Barker%2C+G+J">G. J. Barker</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+D">D. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Batkiewicz-Kwasniak%2C+M">M. Batkiewicz-Kwasniak</a>, <a href="/search/physics?searchtype=author&amp;query=Bench%2C+F">F. Bench</a>, <a href="/search/physics?searchtype=author&amp;query=Berardi%2C+V">V. Berardi</a>, <a href="/search/physics?searchtype=author&amp;query=Berns%2C+L">L. Berns</a>, <a href="/search/physics?searchtype=author&amp;query=Bhadra%2C+S">S. Bhadra</a>, <a href="/search/physics?searchtype=author&amp;query=Blanchet%2C+A">A. Blanchet</a>, <a href="/search/physics?searchtype=author&amp;query=Blondel%2C+A">A. Blondel</a> , et al. (333 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.12982v1-abstract-short" style="display: inline;"> The T2K experiment widely uses plastic scintillator as a target for neutrino interactions and an active medium for the measurement of charged particles produced in neutrino interactions at its near detector complex. Over 10 years of operation the measured light yield recorded by the scintillator based subsystems has been observed to degrade by 0.9--2.2\% per year. Extrapolation of the degradation&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.12982v1-abstract-full').style.display = 'inline'; document.getElementById('2207.12982v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.12982v1-abstract-full" style="display: none;"> The T2K experiment widely uses plastic scintillator as a target for neutrino interactions and an active medium for the measurement of charged particles produced in neutrino interactions at its near detector complex. Over 10 years of operation the measured light yield recorded by the scintillator based subsystems has been observed to degrade by 0.9--2.2\% per year. Extrapolation of the degradation rate through to 2040 indicates the recorded light yield should remain above the lower threshold used by the current reconstruction algorithms for all subsystems. This will allow the near detectors to continue contributing to important physics measurements during the T2K-II and Hyper-Kamiokande eras. Additionally, work to disentangle the degradation of the plastic scintillator and wavelength shifting fibres shows that the reduction in light yield can be attributed to the ageing of the plastic scintillator. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.12982v1-abstract-full').style.display = 'none'; document.getElementById('2207.12982v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 18 figures. Prepared for submission to JINST</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.01196">arXiv:2207.01196</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.01196">pdf</a>, <a href="https://arxiv.org/format/2207.01196">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0127828">10.1063/5.0127828 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optical pumping effects on the Rydberg EIT spectrum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Su%2C+H">Hsuan-Jui Su</a>, <a href="/search/physics?searchtype=author&amp;query=Liou%2C+J">Jia-You Liou</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+I">I-Chun Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yi-Hsin Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.01196v1-abstract-short" style="display: inline;"> We provide a universal discussion of the interplay between Rydberg-state electromagnetically induced transparency (EIT) and optical pumping (OP) in a thermal Rb87 medium. By pumping the population to one single Hyperfine/Zeeman state, we can enhance the interaction strength and, in principle, amplify the EIT peak. According to our measurements, the EIT peak height can be improved by a factor of tw&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.01196v1-abstract-full').style.display = 'inline'; document.getElementById('2207.01196v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.01196v1-abstract-full" style="display: none;"> We provide a universal discussion of the interplay between Rydberg-state electromagnetically induced transparency (EIT) and optical pumping (OP) in a thermal Rb87 medium. By pumping the population to one single Hyperfine/Zeeman state, we can enhance the interaction strength and, in principle, amplify the EIT peak. According to our measurements, the EIT peak height can be improved by a factor of two or reduced by one order of magnitude, and linewidth was slightly narrowed by the pumping effect. Similar behavior is also seen by increasing the optical density (OD) of the medium. The EIT feature is predicted quantitatively using a Doppler-free non-perturbation numerical calculation. With and without the optical pumping field, the EIT peak heights collapse onto the same theoretical curve, showing that OP and varying OD have the same effect. In both simulations and measurements, Rydberg EIT enhancement through OP is dependent on the intensity of the probe field and the OD. Our work clarifies the underlying mechanisms of optical pumping and advances Rydberg-atom research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.01196v1-abstract-full').style.display = 'none'; document.getElementById('2207.01196v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.01176">arXiv:2205.01176</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.01176">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-39550-x">10.1038/s41467-023-39550-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultrafast imaging of polariton propagation and interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xu%2C+D">Ding Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Mandal%2C+A">Arkajit Mandal</a>, <a href="/search/physics?searchtype=author&amp;query=Baxter%2C+J+M">James M. Baxter</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+S">Shan-Wen Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+I">Inki Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+H">Haowen Su</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Song Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Reichman%2C+D+R">David R. Reichman</a>, <a href="/search/physics?searchtype=author&amp;query=Delor%2C+M">Milan Delor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.01176v2-abstract-short" style="display: inline;"> Semiconductor excitations can hybridize with cavity photons to form exciton-polaritons (EPs) with remarkable properties, including light-like energy flow combined with matter-like interactions. To fully harness these properties, EPs must retain ballistic, coherent transport despite matter-mediated interactions with lattice phonons. Here we develop a nonlinear momentum-resolved optical approach tha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.01176v2-abstract-full').style.display = 'inline'; document.getElementById('2205.01176v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.01176v2-abstract-full" style="display: none;"> Semiconductor excitations can hybridize with cavity photons to form exciton-polaritons (EPs) with remarkable properties, including light-like energy flow combined with matter-like interactions. To fully harness these properties, EPs must retain ballistic, coherent transport despite matter-mediated interactions with lattice phonons. Here we develop a nonlinear momentum-resolved optical approach that directly images EPs in real space on femtosecond scales in a range of polaritonic architectures. We focus our analysis on EP propagation in layered halide perovskite microcavities. We reveal that EP-phonon interactions lead to a large renormalization of EP velocities at high excitonic fractions at room temperature. Despite these strong EP-phonon interactions, ballistic transport is maintained for up to half-exciton EPs, in agreement with quantum simulations of dynamic disorder shielding through light-matter hybridization. Above 50% excitonic character, rapid decoherence leads to diffusive transport. Our work provides a general framework to precisely balance EP coherence, velocity, and nonlinear interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.01176v2-abstract-full').style.display = 'none'; document.getElementById('2205.01176v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.05786">arXiv:2203.05786</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.05786">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> </div> </div> <p class="title is-5 mathjax"> Free energy landscape of two-state protein Acylphosphatase with large contact order revealed by force-dependent folding and unfolding dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ma%2C+X">Xuening Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+H">Hao Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Hong%2C+H">Haiyan Hong</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Z">Zilong Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+H">Huanhuan Su</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H">Hu Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.05786v1-abstract-short" style="display: inline;"> Acylphosphatase (AcP) is a small protein with 98 amino acid residues that catalyzes the hydrolysis of carboxyl-phosphate bonds. AcP is a typical two-state protein with slow folding rate due to its relatively large contact order in the native structure. The mechanical properties and unfolding behavior of AcP has been studied by atomic force microscope. But the folding and unfolding dynamics at low&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.05786v1-abstract-full').style.display = 'inline'; document.getElementById('2203.05786v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.05786v1-abstract-full" style="display: none;"> Acylphosphatase (AcP) is a small protein with 98 amino acid residues that catalyzes the hydrolysis of carboxyl-phosphate bonds. AcP is a typical two-state protein with slow folding rate due to its relatively large contact order in the native structure. The mechanical properties and unfolding behavior of AcP has been studied by atomic force microscope. But the folding and unfolding dynamics at low forces has not been reported. Here using stable magnetic tweezers, we measured the force-dependent folding rates within a force range from 1 pN to 3 pN, and unfolding rates from 15 pN to 40 pN. The obtained unfolding rates show different force sensitivities at forces below and above ~27 pN, which determines a free energy landscape with two energy barriers. Our results indicate that the free energy landscape of small globule proteins have general Bactrian camel shape, and large contact order of the native state produces a high barrier dominate at low forces. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.05786v1-abstract-full').style.display = 'none'; document.getElementById('2203.05786v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.11847">arXiv:2201.11847</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.11847">pdf</a>, <a href="https://arxiv.org/format/2201.11847">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.129.051801">10.1103/PhysRevLett.129.051801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Limits on axions and axionlike particles within the axion window using a spin-based amplifier </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yuanhong Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+H">Haowen Su</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+M">Min Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Huan%2C+Y">Ying Huan</a>, <a href="/search/physics?searchtype=author&amp;query=Qin%2C+Y">Yushu Qin</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+C">Chang Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zehao Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+D">Dongdong Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Ji%2C+W">Wei Ji</a>, <a href="/search/physics?searchtype=author&amp;query=Fadeev%2C+P">Pavel Fadeev</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+X">Xinhua Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Budker%2C+D">Dmitry Budker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.11847v1-abstract-short" style="display: inline;"> Searches for the axion and axionlike particles may hold the key to unlocking some of the deepest puzzles about our universe, such as dark matter and dark energy. Here we use the recently demonstrated spin-based amplifier to constrain such hypothetical particles within the well-motivated ``axion window&#39;&#39; (1 $渭$eV-1 meV) through searching for an exotic spin-spin interaction between polarized electro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.11847v1-abstract-full').style.display = 'inline'; document.getElementById('2201.11847v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.11847v1-abstract-full" style="display: none;"> Searches for the axion and axionlike particles may hold the key to unlocking some of the deepest puzzles about our universe, such as dark matter and dark energy. Here we use the recently demonstrated spin-based amplifier to constrain such hypothetical particles within the well-motivated ``axion window&#39;&#39; (1 $渭$eV-1 meV) through searching for an exotic spin-spin interaction between polarized electron and neutron spins. The key ingredient is the use of hyperpolarized long-lived $^{129}$Xe nuclear spins as an amplifier for the pseudomagnetic field generated by the exotic interaction. Using such a spin sensor, we obtain a direct upper bound on the product of coupling constants $g_p^e g_p^n$. The spin-based amplifier technique can be extended to searches for a wide variety of hypothetical particles beyond the Standard Model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.11847v1-abstract-full').style.display = 'none'; document.getElementById('2201.11847v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.02523">arXiv:2201.02523</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.02523">pdf</a>, <a href="https://arxiv.org/format/2201.02523">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/17/08/T08013">10.1088/1748-0221/17/08/T08013 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Vertex finding in neutrino-nucleus interaction: A Model Architecture Comparison </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&amp;query=Ghosh%2C+A">A. Ghosh</a>, <a href="/search/physics?searchtype=author&amp;query=Young%2C+S">S. Young</a>, <a href="/search/physics?searchtype=author&amp;query=Akhter%2C+S">S. Akhter</a>, <a href="/search/physics?searchtype=author&amp;query=Dar%2C+Z+A">Z. Ahmad Dar</a>, <a href="/search/physics?searchtype=author&amp;query=Ansari%2C+V">V. Ansari</a>, <a href="/search/physics?searchtype=author&amp;query=Ascencio%2C+M+V">M. V. Ascencio</a>, <a href="/search/physics?searchtype=author&amp;query=Athar%2C+M+S">M. Sajjad Athar</a>, <a href="/search/physics?searchtype=author&amp;query=Bodek%2C+A">A. Bodek</a>, <a href="/search/physics?searchtype=author&amp;query=Bonilla%2C+J+L">J. L. Bonilla</a>, <a href="/search/physics?searchtype=author&amp;query=Bravar%2C+A">A. Bravar</a>, <a href="/search/physics?searchtype=author&amp;query=Budd%2C+H">H. Budd</a>, <a href="/search/physics?searchtype=author&amp;query=Caceres%2C+G">G. Caceres</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+T">T. Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Carneiro%2C+M+F">M. F. Carneiro</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%ADaz%2C+G+A">G. A. D铆az</a>, <a href="/search/physics?searchtype=author&amp;query=Felix%2C+J">J. Felix</a>, <a href="/search/physics?searchtype=author&amp;query=Fields%2C+L">L. Fields</a>, <a href="/search/physics?searchtype=author&amp;query=Filkins%2C+A">A. Filkins</a>, <a href="/search/physics?searchtype=author&amp;query=Fine%2C+R">R. Fine</a>, <a href="/search/physics?searchtype=author&amp;query=Gaura%2C+P+K">P. K. Gaura</a>, <a href="/search/physics?searchtype=author&amp;query=Gran%2C+R">R. Gran</a>, <a href="/search/physics?searchtype=author&amp;query=Harris%2C+D+A">D. A. Harris</a>, <a href="/search/physics?searchtype=author&amp;query=Jena%2C+D">D. Jena</a>, <a href="/search/physics?searchtype=author&amp;query=Jena%2C+S">S. Jena</a> , et al. (26 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.02523v1-abstract-short" style="display: inline;"> We compare different neural network architectures for Machine Learning (ML) algorithms designed to identify the neutrino interaction vertex position in the MINERvA detector. The architectures developed and optimized by hand are compared with the architectures developed in an automated way using the package &#34;Multi-node Evolutionary Neural Networks for Deep Learning&#34; (MENNDL), developed at Oak Ridge&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.02523v1-abstract-full').style.display = 'inline'; document.getElementById('2201.02523v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.02523v1-abstract-full" style="display: none;"> We compare different neural network architectures for Machine Learning (ML) algorithms designed to identify the neutrino interaction vertex position in the MINERvA detector. The architectures developed and optimized by hand are compared with the architectures developed in an automated way using the package &#34;Multi-node Evolutionary Neural Networks for Deep Learning&#34; (MENNDL), developed at Oak Ridge National Laboratory (ORNL). The two architectures resulted in a similar performance which suggests that the systematics associated with the optimized network architecture are small. Furthermore, we find that while the domain expert hand-tuned network was the best performer, the differences were negligible and the auto-generated networks performed well. There is always a trade-off between human, and computer resources for network optimization and this work suggests that automated optimization, assuming resources are available, provides a compelling way to save significant expert time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.02523v1-abstract-full').style.display = 'none'; document.getElementById('2201.02523v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.06190">arXiv:2112.06190</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.06190">pdf</a>, <a href="https://arxiv.org/format/2112.06190">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.128.233201">10.1103/PhysRevLett.128.233201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Floquet Spin Amplification </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+M">Min Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Qin%2C+Y">Yushu Qin</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yuanhong Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+H">Haowen Su</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+X">Xinhua Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Budker%2C+D">Dmitry Budker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.06190v1-abstract-short" style="display: inline;"> Detection of weak electromagnetic waves and hypothetical particles aided by quantum amplification is important for fundamental physics and applications. However, demonstrations of quantum amplification are still limited; in particular, the physics of quantum amplification is not fully explored in periodically driven (Floquet) systems, which are generally defined by time-periodic Hamiltonians and e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.06190v1-abstract-full').style.display = 'inline'; document.getElementById('2112.06190v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.06190v1-abstract-full" style="display: none;"> Detection of weak electromagnetic waves and hypothetical particles aided by quantum amplification is important for fundamental physics and applications. However, demonstrations of quantum amplification are still limited; in particular, the physics of quantum amplification is not fully explored in periodically driven (Floquet) systems, which are generally defined by time-periodic Hamiltonians and enable observation of many exotic quantum phenomena such as time crystals. Here we investigate the magnetic-field signal amplification by periodically driven $^{129}$Xe spins and observe signal amplification at frequencies of transitions between Floquet spin states. This &#34;Floquet amplification&#34; allows to simultaneously enhance and measure multiple magnetic fields with at least one order of magnitude improvement, offering the capability of femtotesla-level measurements. Our findings extend the physics of quantum amplification to Floquet systems and can be generalized to a wide variety of existing amplifiers, enabling a previously unexplored class of &#34;Floquet amplifiers&#34;. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.06190v1-abstract-full').style.display = 'none'; document.getElementById('2112.06190v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.13408">arXiv:2111.13408</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.13408">pdf</a>, <a href="https://arxiv.org/format/2111.13408">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.444894">10.1364/OE.444894 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optimizing the Rydberg EIT spectrum in a thermal vapor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Su%2C+H">Hsuan-Jui Su</a>, <a href="/search/physics?searchtype=author&amp;query=Liou%2C+J">Jia-You Liou</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+I">I-Chun Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yi-Hsin Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.13408v1-abstract-short" style="display: inline;"> We present Rydberg-state electromagnetically-induced-transparency (EIT) measurements examining the effects of laser polarization, magnetic fields, laser intensities, and the optical density of the thermal $^{87}$Rb medium. Two counter-propagating laser beams with wavelengths of 480 nm and 780 nm were employed to sweep the spectrum across the Rydberg states $|33D_{3/2}\rangle$ and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.13408v1-abstract-full').style.display = 'inline'; document.getElementById('2111.13408v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.13408v1-abstract-full" style="display: none;"> We present Rydberg-state electromagnetically-induced-transparency (EIT) measurements examining the effects of laser polarization, magnetic fields, laser intensities, and the optical density of the thermal $^{87}$Rb medium. Two counter-propagating laser beams with wavelengths of 480 nm and 780 nm were employed to sweep the spectrum across the Rydberg states $|33D_{3/2}\rangle$ and $|33D_{5/2}\rangle$. An analytic transmission expression well fits the Rydberg-EIT spectra with multiple transitions under different magnetic fields and laser polarization after accounting for the relevant Clebsch-Gordan coefficients, Zeeman splittings, and Doppler shifts. In addition, the high-contrast Rydberg EIT can be optimized with the probe laser intensity and optical density. Rydberg EIT peak height was achieved at $13\%$, which is more than twice as high as the maximum peak height at room temperature. A quantitative theoretical model is employed to represent the spectra properties and to predict well the optimization conditions. A Rydberg EIT spectrum with high contrast in real-time can be served as a quantum sensor to detect the electromagnetic field within an environment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.13408v1-abstract-full').style.display = 'none'; document.getElementById('2111.13408v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optics Express 30(2), 1499-1510 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.15126">arXiv:2110.15126</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.15126">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Water-Superstructured Solid Fuel Cells </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+W">Wei Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+S">Siyuan Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+H">Hanrui Su</a>, <a href="/search/physics?searchtype=author&amp;query=Hao%2C+W">Wei Hao</a>, <a href="/search/physics?searchtype=author&amp;query=Yoon%2C+B">Bohak Yoon</a>, <a href="/search/physics?searchtype=author&amp;query=Hwang%2C+G+S">Gyeong S. Hwang</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+K">Kai Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+C">Chung-Fu Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+Y">Yu Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+Y+H">Yun Hang Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.15126v1-abstract-short" style="display: inline;"> Protonic ceramic fuel cells can be operated at low temperatures, but their performances relying on bulk ion transfer in solid electrolytes are usually limited by much lower proton conductivity than 0.1 S/cm below 600 掳C. Herein, however, we report a strategy for Al2O3 insulator to become a protonic superconductor, namely, in-situ generation of superstructured-water in porous Al2O3 layer could real&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.15126v1-abstract-full').style.display = 'inline'; document.getElementById('2110.15126v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.15126v1-abstract-full" style="display: none;"> Protonic ceramic fuel cells can be operated at low temperatures, but their performances relying on bulk ion transfer in solid electrolytes are usually limited by much lower proton conductivity than 0.1 S/cm below 600 掳C. Herein, however, we report a strategy for Al2O3 insulator to become a protonic superconductor, namely, in-situ generation of superstructured-water in porous Al2O3 layer could realize the unprecedented water-mediated proton transfer on Al2O3 surface, attaining ultrahigh proton conductivity of 0.13 S/cm at 550 掳C. With such a water-superstructured proton-superconductor, we created water-superstructured solid fuel cell, achieving very high power density of 1036 mW/cm2 and high open circuit voltage above 1.1 V at 550 掳C with H2 fuel. This provides a general approach to develop protonic superconductors and solid fuel cells. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.15126v1-abstract-full').style.display = 'none'; document.getElementById('2110.15126v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.12309">arXiv:2109.12309</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.12309">pdf</a>, <a href="https://arxiv.org/format/2109.12309">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TNSE.2023.3266381">10.1109/TNSE.2023.3266381 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Scaling properties of scale-free networks in degree-thresholding renormalization flows </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+D">Dan Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+D">Defu Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+H">Housheng Su</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.12309v2-abstract-short" style="display: inline;"> We study the statistical properties of observables of scale-free networks in the degree-thresholding renormalization (DTR) flows. For BA scale-free networks with different sizes, we find that their structural and dynamical observables have similar scaling behavior in the DTR flow. The finite-size scaling analysis confirms this view and reveals a scaling function with a single scaling exponent that&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.12309v2-abstract-full').style.display = 'inline'; document.getElementById('2109.12309v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.12309v2-abstract-full" style="display: none;"> We study the statistical properties of observables of scale-free networks in the degree-thresholding renormalization (DTR) flows. For BA scale-free networks with different sizes, we find that their structural and dynamical observables have similar scaling behavior in the DTR flow. The finite-size scaling analysis confirms this view and reveals a scaling function with a single scaling exponent that collectively captures the changes of these observables. Furthermore, for the scale-free network with a single initial size, we use its DTR snapshots as the original networks in the DTR flows, then perform a similar finite-size scaling analysis. Interestingly, the initial network and its snapshots share the same scaling exponent as the BA synthetic network. Our findings have important guiding significance for analyzing the structure and dynamic behavior of large-scale networks. Such as, in large-scale simulation scenarios with high time complexity, the DTR snapshot could serve as a substitute or guide for the initial network and then quickly explore the scaling behavior of initial networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.12309v2-abstract-full').style.display = 'none'; document.getElementById('2109.12309v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2023, IEEE Transactions on Network Science and Engineering </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.15534">arXiv:2106.15534</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.15534">pdf</a>, <a href="https://arxiv.org/format/2106.15534">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.127.180502">10.1103/PhysRevLett.127.180502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phase-Programmable Gaussian Boson Sampling Using Stimulated Squeezed Light </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhong%2C+H">Han-Sen Zhong</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Y">Yu-Hao Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Qin%2C+J">Jian Qin</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Hui Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">Ming-Cheng Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+L">Li-Chao Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+Y">Yi-Han Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+D">Dian Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+S">Si-Qiu Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+H">Hao Su</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+Y">Yi Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+P">Peng Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+X">Xiao-Yan Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+W">Wei-Jun Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Hao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yuxuan Li</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+X">Xiao Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Gan%2C+L">Lin Gan</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+G">Guangwen Yang</a>, <a href="/search/physics?searchtype=author&amp;query=You%2C+L">Lixing You</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhen Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+L">Li Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+N">Nai-Le Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Renema%2C+J">Jelmer Renema</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+C">Chao-Yang Lu</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.15534v2-abstract-short" style="display: inline;"> The tantalizing promise of quantum computational speedup in solving certain problems has been strongly supported by recent experimental evidence from a high-fidelity 53-qubit superconducting processor1 and Gaussian boson sampling (GBS) with up to 76 detected photons. Analogous to the increasingly sophisticated Bell tests that continued to refute local hidden variable theories, quantum computationa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.15534v2-abstract-full').style.display = 'inline'; document.getElementById('2106.15534v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.15534v2-abstract-full" style="display: none;"> The tantalizing promise of quantum computational speedup in solving certain problems has been strongly supported by recent experimental evidence from a high-fidelity 53-qubit superconducting processor1 and Gaussian boson sampling (GBS) with up to 76 detected photons. Analogous to the increasingly sophisticated Bell tests that continued to refute local hidden variable theories, quantum computational advantage tests are expected to provide increasingly compelling experimental evidence against the Extended Church-Turing thesis. In this direction, continued competition between upgraded quantum hardware and improved classical simulations is required. Here, we report a new GBS experiment that produces up to 113 detection events out of a 144-mode photonic circuit. We develop a new high-brightness and scalable quantum light source, exploring the idea of stimulated squeezed photons, which has simultaneously near-unity purity and efficiency. This GBS is programmable by tuning the phase of the input squeezed states. We demonstrate a new method to efficiently validate the samples by inferring from computationally friendly subsystems, which rules out hypotheses including distinguishable photons and thermal states. We show that our noisy GBS experiment passes the nonclassicality test using an inequality, and we reveal non-trivial genuine high-order correlation in the GBS samples, which are evidence of robustness against possible classical simulation schemes. The photonic quantum computer, Jiuzhang 2.0, yields a Hilbert space dimension up to $10^{43}$, and a sampling rate $10^{24}$ faster than using brute-force simulation on supercomputers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.15534v2-abstract-full').style.display = 'none'; document.getElementById('2106.15534v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 6 figures. Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.08677">arXiv:2103.08677</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.08677">pdf</a>, <a href="https://arxiv.org/format/2103.08677">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/202125103046">10.1051/epjconf/202125103046 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An Error Analysis Toolkit for Binned Counting Experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Messerly%2C+B">B. Messerly</a>, <a href="/search/physics?searchtype=author&amp;query=Fine%2C+R">R. Fine</a>, <a href="/search/physics?searchtype=author&amp;query=Olivier%2C+A">A. Olivier</a>, <a href="/search/physics?searchtype=author&amp;query=Dar%2C+Z+A">Z. Ahmad Dar</a>, <a href="/search/physics?searchtype=author&amp;query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&amp;query=Ascencio%2C+M+V">M. V. Ascencio</a>, <a href="/search/physics?searchtype=author&amp;query=Bashyal%2C+A">A. Bashyal</a>, <a href="/search/physics?searchtype=author&amp;query=Bellantoni%2C+L">L. Bellantoni</a>, <a href="/search/physics?searchtype=author&amp;query=Bercellie%2C+A">A. Bercellie</a>, <a href="/search/physics?searchtype=author&amp;query=Bonilla%2C+J+L">J. L. Bonilla</a>, <a href="/search/physics?searchtype=author&amp;query=Caceres%2C+G">G. Caceres</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+T">T. Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Carneiro%2C+M+F">M. F. Carneiro</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%ADaz%2C+G+A">G. A. D铆az</a>, <a href="/search/physics?searchtype=author&amp;query=Felix%2C+J">J. Felix</a>, <a href="/search/physics?searchtype=author&amp;query=Fields%2C+L">L. Fields</a>, <a href="/search/physics?searchtype=author&amp;query=Filkins%2C+A">A. Filkins</a>, <a href="/search/physics?searchtype=author&amp;query=Ghosh%2C+A">A. Ghosh</a>, <a href="/search/physics?searchtype=author&amp;query=Gilligan%2C+S">S. Gilligan</a>, <a href="/search/physics?searchtype=author&amp;query=Gran%2C+R">R. Gran</a>, <a href="/search/physics?searchtype=author&amp;query=Haider%2C+H">H. Haider</a>, <a href="/search/physics?searchtype=author&amp;query=Harris%2C+D+A">D. A. Harris</a>, <a href="/search/physics?searchtype=author&amp;query=Henry%2C+S">S. Henry</a>, <a href="/search/physics?searchtype=author&amp;query=Jena%2C+S">S. Jena</a>, <a href="/search/physics?searchtype=author&amp;query=Jena%2C+D">D. Jena</a> , et al. (20 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.08677v1-abstract-short" style="display: inline;"> We introduce the MINERvA Analysis Toolkit (MAT), a utility for centralizing the handling of systematic uncertainties in HEP analyses. The fundamental utilities of the toolkit are the MnvHnD, a powerful histogram container class, and the systematic Universe classes, which provide a modular implementation of the many universe error analysis approach. These products can be used stand-alone or as part&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.08677v1-abstract-full').style.display = 'inline'; document.getElementById('2103.08677v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.08677v1-abstract-full" style="display: none;"> We introduce the MINERvA Analysis Toolkit (MAT), a utility for centralizing the handling of systematic uncertainties in HEP analyses. The fundamental utilities of the toolkit are the MnvHnD, a powerful histogram container class, and the systematic Universe classes, which provide a modular implementation of the many universe error analysis approach. These products can be used stand-alone or as part of a complete error analysis prescription. They support the propagation of systematic uncertainty through all stages of analysis, and provide flexibility for an arbitrary level of user customization. This extensible solution to error analysis enables the standardization of systematic uncertainty definitions across an experiment and a transparent user interface to lower the barrier to entry for new analyzers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.08677v1-abstract-full').style.display = 'none'; document.getElementById('2103.08677v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.06992">arXiv:2103.06992</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.06992">pdf</a>, <a href="https://arxiv.org/format/2103.06992">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/07/P07060">10.1088/1748-0221/16/07/P07060 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neutral pion reconstruction using machine learning in the MINERvA experiment at $\langle E_谓\rangle \sim 6$ GeV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ghosh%2C+A">A. Ghosh</a>, <a href="/search/physics?searchtype=author&amp;query=Yaeggy%2C+B">B. Yaeggy</a>, <a href="/search/physics?searchtype=author&amp;query=Galindo%2C+R">R. Galindo</a>, <a href="/search/physics?searchtype=author&amp;query=Dar%2C+Z+A">Z. Ahmad Dar</a>, <a href="/search/physics?searchtype=author&amp;query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&amp;query=Ascencio%2C+M+V">M. V. Ascencio</a>, <a href="/search/physics?searchtype=author&amp;query=Bashyal%2C+A">A. Bashyal</a>, <a href="/search/physics?searchtype=author&amp;query=Bercellie%2C+A">A. Bercellie</a>, <a href="/search/physics?searchtype=author&amp;query=Bonilla%2C+J+L">J. L. Bonilla</a>, <a href="/search/physics?searchtype=author&amp;query=Caceres%2C+G">G. Caceres</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+T">T. Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Carneiro%2C+M+F">M. F. Carneiro</a>, <a href="/search/physics?searchtype=author&amp;query=da+Motta%2C+H">H. da Motta</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%ADaz%2C+G+A">G. A. D铆az</a>, <a href="/search/physics?searchtype=author&amp;query=Felix%2C+J">J. Felix</a>, <a href="/search/physics?searchtype=author&amp;query=Filkins%2C+A">A. Filkins</a>, <a href="/search/physics?searchtype=author&amp;query=Fine%2C+R">R. Fine</a>, <a href="/search/physics?searchtype=author&amp;query=Gago%2C+A+M">A. M. Gago</a>, <a href="/search/physics?searchtype=author&amp;query=Golan%2C+T">T. Golan</a>, <a href="/search/physics?searchtype=author&amp;query=Gran%2C+R">R. Gran</a>, <a href="/search/physics?searchtype=author&amp;query=Harris%2C+D+A">D. A. Harris</a>, <a href="/search/physics?searchtype=author&amp;query=Henry%2C+S">S. Henry</a>, <a href="/search/physics?searchtype=author&amp;query=Jena%2C+S">S. Jena</a>, <a href="/search/physics?searchtype=author&amp;query=Jena%2C+D">D. Jena</a>, <a href="/search/physics?searchtype=author&amp;query=Kleykamp%2C+J">J. Kleykamp</a> , et al. (31 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.06992v3-abstract-short" style="display: inline;"> This paper presents a novel neutral-pion reconstruction that takes advantage of the machine learning technique of semantic segmentation using MINERvA data collected between 2013-2017, with an average neutrino energy of $6$ GeV. Semantic segmentation improves the purity of neutral pion reconstruction from two gammas from 71\% to 89\% and improves the efficiency of the reconstruction by approximatel&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.06992v3-abstract-full').style.display = 'inline'; document.getElementById('2103.06992v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.06992v3-abstract-full" style="display: none;"> This paper presents a novel neutral-pion reconstruction that takes advantage of the machine learning technique of semantic segmentation using MINERvA data collected between 2013-2017, with an average neutrino energy of $6$ GeV. Semantic segmentation improves the purity of neutral pion reconstruction from two gammas from 71\% to 89\% and improves the efficiency of the reconstruction by approximately 40\%. We demonstrate our method in a charged current neutral pion production analysis where a single neutral pion is reconstructed. This technique is applicable to modern tracking calorimeters, such as the new generation of liquid-argon time projection chambers, exposed to neutrino beams with $\langle E_谓\rangle$ between 1-10 GeV. In such experiments it can facilitate the identification of ionization hits which are associated with electromagnetic showers, thereby enabling improved reconstruction of charged-current $谓_e$ events arising from $谓_渭 \rightarrow 谓_{e}$ appearance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.06992v3-abstract-full').style.display = 'none'; document.getElementById('2103.06992v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, v2 matches published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 16 P07060 2021 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.01448">arXiv:2102.01448</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.01448">pdf</a>, <a href="https://arxiv.org/format/2102.01448">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-021-01392-z">10.1038/s41567-021-01392-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for axion-like dark matter with spin-based amplifiers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+M">Min Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+H">Haowen Su</a>, <a href="/search/physics?searchtype=author&amp;query=Garcon%2C+A">Antoine Garcon</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+X">Xinhua Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Budker%2C+D">Dmitry Budker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.01448v1-abstract-short" style="display: inline;"> Ultralight axion-like particles (ALPs) are well-motivated dark matter candidates introduced by theories beyond the standard model. However, the constraints on the existence of ALPs through existing laboratory experiments are hindered by their current sensitivities, which are usually weaker than astrophysical limits. Here, we demonstrate a new quantum sensor to search for ALPs in the mass range tha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.01448v1-abstract-full').style.display = 'inline'; document.getElementById('2102.01448v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.01448v1-abstract-full" style="display: none;"> Ultralight axion-like particles (ALPs) are well-motivated dark matter candidates introduced by theories beyond the standard model. However, the constraints on the existence of ALPs through existing laboratory experiments are hindered by their current sensitivities, which are usually weaker than astrophysical limits. Here, we demonstrate a new quantum sensor to search for ALPs in the mass range that spans about two decades from 8.3 feV to 744 feV. Our sensor makes use of hyperpolarized long-lived nuclear spins as a pre-amplifier that effectively enhances coherently oscillating axion-like dark-matter field by a factor of &gt;100. Using spin-based amplifiers, we achieve an ultrahigh magnetic sensitivity of 18 fT/Hz$^{1/2}$, which is significantly better than state-of-the-art nuclear-spin magnetometers. Our experiment constrains the parameter space describing the coupling of ALPs to nucleons over our mass range, at 67.5 feV reaching $2.9\times 10^{-9}~\textrm{GeV}^{-1}$ ($95\%$ confidence level), improving over previous laboratory limits by at least five orders of magnitude. Our measurements also constrain the ALP-nucleon quadratic interaction and dark photon-nucleon interaction with new limits beyond the astrophysical ones <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.01448v1-abstract-full').style.display = 'none'; document.getElementById('2102.01448v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics. 2021 Dec;17(12):1402-7 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.05886">arXiv:2101.05886</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.05886">pdf</a>, <a href="https://arxiv.org/format/2101.05886">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Reformulated dissipation for the free-stream preserving of the conservative finite difference schemes on curvilinear grids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Su%2C+H">Hongmin Su</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+J">Jinsheng Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Pan%2C+S">Shucheng Pan</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+X">Xiangyu Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.05886v1-abstract-short" style="display: inline;"> In this paper, we develop a new free-stream preserving (FP) method for high-order upwind conservative finite-difference (FD) schemes on the curvilinear grids. This FP method is constrcuted by subtracting a reference cell-face flow state from each cell-center value in the local stencil of the original upwind conservative FD schemes, which effectively leads to a reformulated dissipation. It is conve&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.05886v1-abstract-full').style.display = 'inline'; document.getElementById('2101.05886v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.05886v1-abstract-full" style="display: none;"> In this paper, we develop a new free-stream preserving (FP) method for high-order upwind conservative finite-difference (FD) schemes on the curvilinear grids. This FP method is constrcuted by subtracting a reference cell-face flow state from each cell-center value in the local stencil of the original upwind conservative FD schemes, which effectively leads to a reformulated dissipation. It is convenient to implement this method, as it does not require to modify the original forms of the upwind schemes. In addition, the proposed method removes the constraint in the traditional FP conservative FD schemes that require a consistent discretization of the mesh metrics and the fluxes. With this, the proposed method is more flexible in simulating the engineering problems which usually require a low-order scheme for their low-quality mesh, while the high-order schemes can be applied to approximate the flow states to improve the resolution. After demonstrating the strict FP property and the order of accuracy by two simple test cases, we consider various validation cases, including the supersonic flow around the cylinder, the subsonic flow past the three-element airfoil, and the transonic flow around the ONERA M6 wing, etc., to show that the method is suitable for a wide range of fluid dynamic problems containing complex geometries. Moreover, these test cases also indicate that the discretization order of the metrics have no significant influences on the numerical results if the mesh resolution is not sufficiently large. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.05886v1-abstract-full').style.display = 'none'; document.getElementById('2101.05886v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.14945">arXiv:2011.14945</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.14945">pdf</a>, <a href="https://arxiv.org/format/2011.14945">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Zero- to ultralow-field nuclear magnetic resonance and its applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+M">Min Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Bian%2C+J">Ji Bian</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Q">Qing Li</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+Z">Ze Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+H">Haowen Su</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+M">Minxiang Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yuanhong Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+X">Xinhua Peng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.14945v1-abstract-short" style="display: inline;"> As a complementary analysis tool to conventional high-field NMR, zero- to ultralow-field (ZULF) NMR detects nuclear magnetization signals in the sub-microtesla regime. Spin-exchange relaxation-free (SERF) atomic magnetometers provide a new generation of sensitive detector for ZULF NMR. Due to the features such as low-cost, high-resolution and potability, ZULF NMR has recently attracted considerabl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.14945v1-abstract-full').style.display = 'inline'; document.getElementById('2011.14945v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.14945v1-abstract-full" style="display: none;"> As a complementary analysis tool to conventional high-field NMR, zero- to ultralow-field (ZULF) NMR detects nuclear magnetization signals in the sub-microtesla regime. Spin-exchange relaxation-free (SERF) atomic magnetometers provide a new generation of sensitive detector for ZULF NMR. Due to the features such as low-cost, high-resolution and potability, ZULF NMR has recently attracted considerable attention in chemistry, biology, medicine, and tests of fundamental physics. This review describes the basic principles, methodology and recent experimental and theoretical development of ZULF NMR, as well as its applications in spectroscopy, quantum control, imaging, NMR-based quantum devices, and tests of fundamental physics. The future prospects of ZULF NMR are also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.14945v1-abstract-full').style.display = 'none'; document.getElementById('2011.14945v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.03802">arXiv:2009.03802</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.03802">pdf</a>, <a href="https://arxiv.org/format/2009.03802">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> A sufficient condition for free-stream preserving in the nonlinear conservative finite difference schemes on curvilinear grids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Su%2C+H">Hongmin Su</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+J">Jinsheng Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Qu%2C+K">Kun Qu</a>, <a href="/search/physics?searchtype=author&amp;query=Pan%2C+S">Shucheng Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.03802v2-abstract-short" style="display: inline;"> In simulations of compressible flows, the conservative finite difference method (FDM) based on the nonlinear upwind schemes, e.g. WENO5, might violate free-stream preserving (FP), due to the loss of the geometric conservation law (GCL) identity when applied on the curvilinear grids. Although some techniques on FP have been proposed previously, no general rule is given for this issue. In this paper&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.03802v2-abstract-full').style.display = 'inline'; document.getElementById('2009.03802v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.03802v2-abstract-full" style="display: none;"> In simulations of compressible flows, the conservative finite difference method (FDM) based on the nonlinear upwind schemes, e.g. WENO5, might violate free-stream preserving (FP), due to the loss of the geometric conservation law (GCL) identity when applied on the curvilinear grids. Although some techniques on FP have been proposed previously, no general rule is given for this issue. In this paper, by rearranging the upwind dissipation of the nonlinear schemes as a combination of sub-stencil reconstructions (taking WENO5 as an example), it can be proved that the upwind dissipation diminishes under the uniform flow condition if the metrics yield an identical value under the same schemes with these reconstructions, making the free-stream condition be preserved. According to this sufficient condition, the novel FP metrics are constructed for WENO5 and WENO7. By this means the original forms of these WENO schemes can be kept. In addition, the accuracy of these schemes can be retained as well with a simple accuracy compensation by replacing the central part fluxes with a high-order one. Various validations indicate that the present FP schemes retain the great capability to resolve the smooth regions accurately and capture the discontinuities robustly. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.03802v2-abstract-full').style.display = 'none'; document.getElementById('2009.03802v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.02481">arXiv:2007.02481</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.02481">pdf</a>, <a href="https://arxiv.org/ps/2007.02481">ps</a>, <a href="https://arxiv.org/format/2007.02481">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11433-021-1750-2">10.1007/s11433-021-1750-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detection of quantum geometric tensor by nonlinear optical response </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z">Zhi Li</a>, <a href="/search/physics?searchtype=author&amp;query=Tohyama%2C+T">Takami Tohyama</a>, <a href="/search/physics?searchtype=author&amp;query=Iitaka%2C+T">Toshiaki Iitaka</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+H">Haibin Su</a>, <a href="/search/physics?searchtype=author&amp;query=Zeng%2C+H">Haibo Zeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.02481v1-abstract-short" style="display: inline;"> Quantum geometric tensor (QGT), including a symmetric real part defined as quantum metric and an antisymmetric part defined as Berry curvature, is essential for understanding many phenomena. We studied the photogalvanic effect of a multiple-band system with time-reversal-invariant symmetry by theoretical analysis in this work. We concluded that the integral of gradient of the symmetric part of QGT&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.02481v1-abstract-full').style.display = 'inline'; document.getElementById('2007.02481v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.02481v1-abstract-full" style="display: none;"> Quantum geometric tensor (QGT), including a symmetric real part defined as quantum metric and an antisymmetric part defined as Berry curvature, is essential for understanding many phenomena. We studied the photogalvanic effect of a multiple-band system with time-reversal-invariant symmetry by theoretical analysis in this work. We concluded that the integral of gradient of the symmetric part of QGT in momentum space is related to the linearly photogalvanic effect, while the integral of gradient of Berry curvature is related to the circularly photogalvanic effect. Our work afforded an alternative interpretation for the photogalvanic effect in the view of QGT, and a simple approach to detect the QGT by nonlinear optical response. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.02481v1-abstract-full').style.display = 'none'; document.getElementById('2007.02481v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Comments are welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science China Physics, Mechanics &amp; Astronomy, 64, Article number: 107211 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.09585">arXiv:2004.09585</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.09585">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.2007513117">10.1073/pnas.2007513117 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Natural gas shortages during the &#34;coal-to-gas&#34; transition in China have caused a large redistribution of air pollution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+S">Siwen Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+H">Hang Su</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+C">Chuchu Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Tao%2C+W">Wei Tao</a>, <a href="/search/physics?searchtype=author&amp;query=Streets%2C+D+G">David G. Streets</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+Z">Zifeng Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+B">Bo Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Carmichael%2C+G+R">Gregory R. Carmichael</a>, <a href="/search/physics?searchtype=author&amp;query=Lelieveld%2C+J">Jos Lelieveld</a>, <a href="/search/physics?searchtype=author&amp;query=P%C3%B6schl%2C+U">Ulrich P枚schl</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Y">Yafang Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.09585v1-abstract-short" style="display: inline;"> The Chinese &#34;coal-to-gas&#34; strategy aims at reducing coal consumption and related air pollution by promoting the use of clean and low carbon fuels in northern China. Here we show that on top of meteorological influences, these measures achieved an average decrease of fine particulate matter (PM2.5) concentrations of ~14% during winter 2017 in Beijing and surrounding areas (the &#34;2+26&#34; pilot cities).&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.09585v1-abstract-full').style.display = 'inline'; document.getElementById('2004.09585v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.09585v1-abstract-full" style="display: none;"> The Chinese &#34;coal-to-gas&#34; strategy aims at reducing coal consumption and related air pollution by promoting the use of clean and low carbon fuels in northern China. Here we show that on top of meteorological influences, these measures achieved an average decrease of fine particulate matter (PM2.5) concentrations of ~14% during winter 2017 in Beijing and surrounding areas (the &#34;2+26&#34; pilot cities). However, the localized air quality improvement was accompanied by a contemporaneous ~15% upsurge of PM2.5 concentrations over large areas in southern China. We find that the pollution transfer that resulted from a shift in emissions was caused by a natural gas shortage in the south due to the &#34;coal-to-gas&#34; transition in the north. The overall shortage of natural gas greatly jeopardized the air quality benefits of the &#34;coal-to-gas&#34; strategy in winter 2017 and reflects structural challenges and potential threats in China&#39;s clean energy transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.09585v1-abstract-full').style.display = 'none'; document.getElementById('2004.09585v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">39 pages, 11 figures, and 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc. Natl. Acad. Sci. U.S.A 2020 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.08442">arXiv:2004.08442</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.08442">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Spring Festival points the way to cleaner air in China </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+S">Siwen Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+H">Hang Su</a>, <a href="/search/physics?searchtype=author&amp;query=Streets%2C+D+G">David G. Streets</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Q">Qiang Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+Z">Zifeng Lu</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+K">Kebin He</a>, <a href="/search/physics?searchtype=author&amp;query=Andreae%2C+M+O">Meinrat O. Andreae</a>, <a href="/search/physics?searchtype=author&amp;query=P%C3%B6schl%2C+U">Ulrich P枚schl</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Y">Yafang Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.08442v2-abstract-short" style="display: inline;"> Human migration during the Chinese Spring Festival (SF) is the largest collective human activity of its kind in the modern era-involving about one-tenth of the world population and over six percent of the earth&#39;s land surface area. The festival results in a drop of air pollutant emissions that causes dramatic changes of atmospheric composition over China&#39;s most polluted regions. Based on satellite&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.08442v2-abstract-full').style.display = 'inline'; document.getElementById('2004.08442v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.08442v2-abstract-full" style="display: none;"> Human migration during the Chinese Spring Festival (SF) is the largest collective human activity of its kind in the modern era-involving about one-tenth of the world population and over six percent of the earth&#39;s land surface area. The festival results in a drop of air pollutant emissions that causes dramatic changes of atmospheric composition over China&#39;s most polluted regions. Based on satellite and in-situ measurements for the years 2005-2019 over 50 cities in eastern China, we find that the atmospheric NO2 pollution dropped by ~40% during the SF week, and fine particulate matter (PM2.5) decreased by ~30% in the following week, reflecting the effectiveness of precursor emission controls on the mitigation of secondary PM2.5 formation. However, although human activity and emissions are at the lowest level, air pollution over eastern China during the SF still far exceeds that over other worldwide pollution hotspots. Our analyses suggest that measures based solely on end-of-pipe controls and industry upgrades may not suffice to meet air quality goals. Further cleaning of the air in China depends fundamentally on sustainable advances in both heavy industry upgrades and clean energy transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.08442v2-abstract-full').style.display = 'none'; document.getElementById('2004.08442v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">41 pages, 9 figures, and 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.09875">arXiv:2001.09875</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.09875">pdf</a>, <a href="https://arxiv.org/format/2001.09875">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.104.034304">10.1103/PhysRevE.104.034304 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Finite-size scaling of geometric renormalization flows in complex networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+D">Dan Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+H">Housheng Su</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xiaofan Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Pan%2C+G">Gui-Jun Pan</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+G">Guanrong Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.09875v2-abstract-short" style="display: inline;"> Recently, the concept of geometric renormalization group provides a good approach for studying the structural symmetry and functional invariance of complex networks. Along this line, we systematically investigate the finite-size scaling of structural and dynamical observables in geometric renormalization flows of synthetic and real evolutionary networks. Our results show that these observables can&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.09875v2-abstract-full').style.display = 'inline'; document.getElementById('2001.09875v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.09875v2-abstract-full" style="display: none;"> Recently, the concept of geometric renormalization group provides a good approach for studying the structural symmetry and functional invariance of complex networks. Along this line, we systematically investigate the finite-size scaling of structural and dynamical observables in geometric renormalization flows of synthetic and real evolutionary networks. Our results show that these observables can be well characterized by a certain scaling function. Specifically, we show that the critical exponent implied by the scaling function is independent of these observables but only depends on the small-world properties of the network, namely, all networks located in the small-world phase have a uniform scaling exponent, while those located in the non-small-world phase and in their critical regions have another uniform scaling. More importantly, we perform extensive experiments on real evolutionary networks with small-world characteristics, and our results show that these observables also have uniform scaling in their geometric renormalization flows. Therefore, in a sense this exponent can be used as an effective measure for classifying universal small-world and non-small-world network models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.09875v2-abstract-full').style.display = 'none'; document.getElementById('2001.09875v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 104, 034304 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.07839">arXiv:2001.07839</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.07839">pdf</a>, <a href="https://arxiv.org/ps/2001.07839">ps</a>, <a href="https://arxiv.org/format/2001.07839">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Nonlinear optical response from quantum kinetic equation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z">Zhi Li</a>, <a href="/search/physics?searchtype=author&amp;query=Tohyama%2C+T">Takami Tohyama</a>, <a href="/search/physics?searchtype=author&amp;query=Iitaka%2C+T">Toshiaki Iitaka</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+H">Haibin Su</a>, <a href="/search/physics?searchtype=author&amp;query=Zeng%2C+H">Haibo Zeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.07839v1-abstract-short" style="display: inline;"> Motivated by the nonlinear Hall effect observed in topological semimetals, we studied the photocurrent by the quantum kinetic equation. We recovered the shift current and injection current discovered by Sipe et al., and the nonlinear Hall current induced by Berry curvature dipole (BCD) proposed by Inti Sodemann and Liang Fu. Especially, we further proposed that 3-form tensor can also induce photoc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.07839v1-abstract-full').style.display = 'inline'; document.getElementById('2001.07839v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.07839v1-abstract-full" style="display: none;"> Motivated by the nonlinear Hall effect observed in topological semimetals, we studied the photocurrent by the quantum kinetic equation. We recovered the shift current and injection current discovered by Sipe et al., and the nonlinear Hall current induced by Berry curvature dipole (BCD) proposed by Inti Sodemann and Liang Fu. Especially, we further proposed that 3-form tensor can also induce photocurrent, in addition to the Berry curvature and BCD. This work will supplement the existing mechanisms for photocurrent. In contrast to the shift current induced by shift vector, all photocurrents induced by gradient/curl of Berry curvature, and high rank tensor require circularly polarized light and topologically non-trivial band structure, viz. non-vanishing Berry curvature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.07839v1-abstract-full').style.display = 'none'; document.getElementById('2001.07839v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">No figure. Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.04315">arXiv:1903.04315</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.04315">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Pressure-controlled Structural Symmetry Transition in Layered InSe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Su%2C+H">Huimin Su</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xuan Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wei%2C+C">Chengrong Wei</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Junning Li</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+Z">Zeyuan Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Qiye Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+X">Xuefeng Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+J">Junhong Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Yi%2C+H">Huan Yi</a>, <a href="/search/physics?searchtype=author&amp;query=Hao%2C+Q">Qiaoyan Hao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Y">Yusheng Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+S">Shanmin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+L">Li Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+S">Shiwei Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+W">Wenjing Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+G">Guixin Li</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+J">Jun-Feng Dai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.04315v1-abstract-short" style="display: inline;"> Structural symmetry of crystals plays important roles in physical properties of two-dimensional (2D) materials, particularly in the nonlinear optics regime. It has been a long-term exploration on the physical properties in 2D materials with various stacking structures, which correspond to different structural symmetries. Usually, the manipulation of rotational alignment between layers in 2D hetero&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.04315v1-abstract-full').style.display = 'inline'; document.getElementById('1903.04315v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.04315v1-abstract-full" style="display: none;"> Structural symmetry of crystals plays important roles in physical properties of two-dimensional (2D) materials, particularly in the nonlinear optics regime. It has been a long-term exploration on the physical properties in 2D materials with various stacking structures, which correspond to different structural symmetries. Usually, the manipulation of rotational alignment between layers in 2D heterostructures has been realized at the synthetic stage through artificial stacking like assembling Lego bricks. However, the reconfigurable control of translational symmetry of crystalline structure is still challenging. High pressure, as a powerful external control knob, provides a very promising route to circumvent this constraint. Here, we experimentally demonstrate a pressure-controlled symmetry transition in layered InSe. The continuous and reversible evolution of structural symmetries can be in-situ monitored by using the polarization-resolved second harmonic generation (SHG) spectroscopy. As pressure changes, the reconfigurable symmetry transition of the SHG pattern from three-fold rotational symmetry to mirror symmetry was experimentally observed in a layered InSe samples and was successfully explained by the proposed interlayer-translation model. This opens new routes towards potential applications of manipulating crystal symmetry of 2D materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.04315v1-abstract-full').style.display = 'none'; document.getElementById('1903.04315v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.00970">arXiv:1901.00970</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.00970">pdf</a>, <a href="https://arxiv.org/format/1901.00970">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.abe0719">10.1126/sciadv.abe0719 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Floquet maser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+M">Min Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+H">Haowen Su</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+Z">Ze Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+X">Xinhua Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Budker%2C+D">Dmitry Budker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.00970v2-abstract-short" style="display: inline;"> The invention of the maser stimulated many revolutionary technologies such as lasers and atomic clocks. Despite enormous progress, the realizations of masers are still confined to a limited variety of systems, in particular, the physics of masers remains unexplored in periodically driven (Floquet) systems, which are generally defined by time-periodic Hamiltonians and enable to observe many exotic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.00970v2-abstract-full').style.display = 'inline'; document.getElementById('1901.00970v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.00970v2-abstract-full" style="display: none;"> The invention of the maser stimulated many revolutionary technologies such as lasers and atomic clocks. Despite enormous progress, the realizations of masers are still confined to a limited variety of systems, in particular, the physics of masers remains unexplored in periodically driven (Floquet) systems, which are generally defined by time-periodic Hamiltonians and enable to observe many exotic phenomena such as time crystals. Here we investigate the Floquet system of periodically driven 129Xe gas under damping feedback, and surprisingly observe a multi-mode maser that oscillates at frequencies of transitions between Floquet states. Our findings extend maser techniques to Floquet systems, and open a new avenue to probe Floquet phenomena unaffected by decoherence, enabling a new class of maser sensors. As a first application, our maser offers a unique capability of measuring low-frequency (1-100 mHz) magnetic fields with femtotesla-level sensitivity, which is significantly better than state-of-the-art magnetometers, and can be immediately applied to, for example, ultralight dark matter searches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.00970v2-abstract-full').style.display = 'none'; document.getElementById('1901.00970v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.06263">arXiv:1812.06263</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1812.06263">pdf</a>, <a href="https://arxiv.org/format/1812.06263">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.122.233903">10.1103/PhysRevLett.122.233903 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Visualization of higher-order topological insulating phases in two-dimensional dielectric photonic crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xie%2C+B">Bi-Ye Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+G">Guang-Xu Su</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Hong-Fei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+H">Hai Su</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+X">Xiao-Peng Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Zhan%2C+P">Peng Zhan</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+M">Ming-Hui Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhen-Lin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yan-Feng Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.06263v2-abstract-short" style="display: inline;"> The studies of topological phases of matter have been extended from condensed matter physics to photonic systems, resulting in fascinating designs of robust photonic devices. Recently, higher-order topological insulators (HOTIs) have been investigated as a novel topological phase of matter beyond the conventional bulk-boundary correspondence. Previous studies of HOTIs have been mainly focused on t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.06263v2-abstract-full').style.display = 'inline'; document.getElementById('1812.06263v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.06263v2-abstract-full" style="display: none;"> The studies of topological phases of matter have been extended from condensed matter physics to photonic systems, resulting in fascinating designs of robust photonic devices. Recently, higher-order topological insulators (HOTIs) have been investigated as a novel topological phase of matter beyond the conventional bulk-boundary correspondence. Previous studies of HOTIs have been mainly focused on the topological multipole systems with negative coupling between lattice sites. Here we experimentally demonstrate that second-order topological insulating phases without negative coupling can be realized in two-dimensional dielectric photonic crystals (PCs). We visualize both one-dimensional topological edge states and zero-dimensional topological corner states by using near-field scanning technique. To characterize the topological properties of PCs, we define a novel topological invariant based on the bulk polarizations. Our findings open new research frontiers for searching HOTIs in dielectric PCs and provide a new mechanism for light-manipulating in a hierarchical way. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.06263v2-abstract-full').style.display = 'none'; document.getElementById('1812.06263v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 122, 233903 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.08005">arXiv:1811.08005</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.08005">pdf</a>, <a href="https://arxiv.org/format/1811.08005">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Implicit High-Order Gas Kinetic Scheme for Turbulence Simulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G">Guiyu Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+H">Hongmin Su</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+J">Jinxiu Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+K">Kun Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.08005v2-abstract-short" style="display: inline;"> In recent years, coupled with traditional turbulence models, the second-order gas-kinetic scheme (GKS) has been used in the turbulent flow simulations. At the same time, high-order GKS has been developed, such as the two-stage fourth-order scheme (S2O4) GKS, and used for laminar flow calculations. In this paper, targeting on the high-Reynolds number engineering turbulent flows, an implicit high-or&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.08005v2-abstract-full').style.display = 'inline'; document.getElementById('1811.08005v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.08005v2-abstract-full" style="display: none;"> In recent years, coupled with traditional turbulence models, the second-order gas-kinetic scheme (GKS) has been used in the turbulent flow simulations. At the same time, high-order GKS has been developed, such as the two-stage fourth-order scheme (S2O4) GKS, and used for laminar flow calculations. In this paper, targeting on the high-Reynolds number engineering turbulent flows, an implicit high-order GKS with Lower-Upper Symmetric Gauss-Seidel (LU-SGS) technique is developed under the S2O4 framework. Based on Vreman-type LES model and $k - 蠅$ SST model, a turbulent relaxation time is obtained and used for an enlarged particle collision time in the implicit high-order GKS for the high-Reynolds number turbulent flows. Numerical experiments include incompressible decaying homogeneous isotropic turbulence, incompressible high-Reynolds number flat plate turbulent flow, incompressible turbulence around NACA0012 airfoil, transonic turbulence around RAE2822 airfoil, and transonic high-Reynolds number ARA M100 wing-body turbulence. Comparisons among the numerical solutions from current implicit high-order GKS, the explicit high-order GKS, the implicit second-order GKS, and experimental measurements have been conducted. Through these examples, it is concluded that the high-order GKS has high accuracy in space and time, especially for smooth flows, obtaining more accurate turbulent flow fields on coarse grids compared with second-order GKS. In addition, significant acceleration on computational efficiency, as well as super robustness in simulating complex flows are confirmed for current implicit high-order GKS. This study also indicates that turbulence modeling plays a dominant role in the capturing physical solution, such as in the transonic three-dimensional complex RANS simulation, in comparison with numerical discretization errors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.08005v2-abstract-full').style.display = 'none'; document.getElementById('1811.08005v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">implict high-order GKS, LU-SGS, two-stage fourth-order scheme, computational efficiency, time-relaxation turbulence simulation. arXiv admin note: text overlap with arXiv:1810.04486</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.07446">arXiv:1811.07446</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.07446">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsaelm.0c00466">10.1021/acsaelm.0c00466 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Carbon nanotube-copper fibers produced by electrospinning: electrical conductivity measurements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Daneshvar%2C+F">Farhad Daneshvar</a>, <a href="/search/physics?searchtype=author&amp;query=Sue%2C+H">Hung-Jue Sue</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.07446v1-abstract-short" style="display: inline;"> Recent advances in nanotechnology have provided new materials which have the potential to surpass copper and aluminum alloys in electrical conductivity, weight and ampacity [2-6]. Among these carbon nanotubes (CNTs) stand out due to their remarkable thermal and electrical conductivity and ampacity (103 times of copper), low density, abundance of precursor materials and supreme mechanical propertie&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.07446v1-abstract-full').style.display = 'inline'; document.getElementById('1811.07446v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.07446v1-abstract-full" style="display: none;"> Recent advances in nanotechnology have provided new materials which have the potential to surpass copper and aluminum alloys in electrical conductivity, weight and ampacity [2-6]. Among these carbon nanotubes (CNTs) stand out due to their remarkable thermal and electrical conductivity and ampacity (103 times of copper), low density, abundance of precursor materials and supreme mechanical properties. However, making these materials into a continuous fiber or macrostructures has remained the main obstacle. A promising approach to tackle this issue is employing CNTs as nanofillers in copper matrixes. Subramaniam et al. [5] combined several simple fabrication to produce high density CNT (45 vol%)-Cu composite films with specific conductivity 26% greater than copper. These results show that by improving the interfacial interactions between the CNTs and the copper matrix strong and highly conductive nanocomposites can be made. In this research continuous CNT-Cu nanocomposite is produced using electrospinning method. For improving the interfacial interaction the surface of the CNTs were first coated with a thin layer of copper using electroless deposition methods (the process is explained in details in [7]). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.07446v1-abstract-full').style.display = 'none'; document.getElementById('1811.07446v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Presented at PTIC meeting on October 2018</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.08571">arXiv:1810.08571</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.08571">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.aaz6912">10.1126/sciadv.aaz6912 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Leveraging Elastic instabilities for Amplified Performance: spine-inspired high-speed and high-force soft robots </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Y">Yichao Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Chi%2C+Y">Yinding Chi</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+J">Jiefeng Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+T">Tzu-Hao Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Maghsoudi%2C+O+H">Omid H. Maghsoudi</a>, <a href="/search/physics?searchtype=author&amp;query=Spence%2C+A">Andrew Spence</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+J">Jianguo Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+H">Hao Su</a>, <a href="/search/physics?searchtype=author&amp;query=Yin%2C+J">Jie Yin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.08571v2-abstract-short" style="display: inline;"> Soft machines typically exhibit slow locomotion speed and low manipulation strength because of intrinsic limitations of soft materials. Here, we present a generic design principle that harnesses mechanical instability for a variety of spine-inspired fast and strong soft machines. Unlike most current soft robots that are designed as inherently and unimodally stable, our design leverages tunable sna&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.08571v2-abstract-full').style.display = 'inline'; document.getElementById('1810.08571v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.08571v2-abstract-full" style="display: none;"> Soft machines typically exhibit slow locomotion speed and low manipulation strength because of intrinsic limitations of soft materials. Here, we present a generic design principle that harnesses mechanical instability for a variety of spine-inspired fast and strong soft machines. Unlike most current soft robots that are designed as inherently and unimodally stable, our design leverages tunable snap-through bistability to fully explore the ability of soft robots to rapidly store and release energy within tens of milliseconds. We demonstrate this generic design principle with three high-performance soft machines: High-speed cheetah-like galloping crawlers with locomotion speeds of 2.68 body length/s, high-speed underwater swimmers (0.78 body length/s), and tunable low-to-high-force soft grippers with over 1 to 103 stiffness modulation (maximum load capacity is 11.4 kg). Our study establishes a new generic design paradigm of next-generation high-performance soft robots that are applicable for multifunctionality, different actuation methods, and materials at multiscales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.08571v2-abstract-full').style.display = 'none'; document.getElementById('1810.08571v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.08332">arXiv:1808.08332</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.08332">pdf</a>, <a href="https://arxiv.org/format/1808.08332">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/13/11/P11020">10.1088/1748-0221/13/11/P11020 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reducing model bias in a deep learning classifier using domain adversarial neural networks in the MINERvA experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Perdue%2C+G+N">G. N. Perdue</a>, <a href="/search/physics?searchtype=author&amp;query=Ghosh%2C+A">A. Ghosh</a>, <a href="/search/physics?searchtype=author&amp;query=Wospakrik%2C+M">M. Wospakrik</a>, <a href="/search/physics?searchtype=author&amp;query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&amp;query=Andrade%2C+D+A">D. A. Andrade</a>, <a href="/search/physics?searchtype=author&amp;query=Ascencio%2C+M">M. Ascencio</a>, <a href="/search/physics?searchtype=author&amp;query=Bellantoni%2C+L">L. Bellantoni</a>, <a href="/search/physics?searchtype=author&amp;query=Bercellie%2C+A">A. Bercellie</a>, <a href="/search/physics?searchtype=author&amp;query=Betancourt%2C+M">M. Betancourt</a>, <a href="/search/physics?searchtype=author&amp;query=Vera%2C+G+F+R+C">G. F. R. Caceres Vera</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+T">T. Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Carneiro%2C+M+F">M. F. Carneiro</a>, <a href="/search/physics?searchtype=author&amp;query=Chaves%2C+J">J. Chaves</a>, <a href="/search/physics?searchtype=author&amp;query=Coplowe%2C+D">D. Coplowe</a>, <a href="/search/physics?searchtype=author&amp;query=da+Motta%2C+H">H. da Motta</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%ADaz%2C+G+A">G. A. D铆az</a>, <a href="/search/physics?searchtype=author&amp;query=Felix%2C+J">J. Felix</a>, <a href="/search/physics?searchtype=author&amp;query=Fields%2C+L">L. Fields</a>, <a href="/search/physics?searchtype=author&amp;query=Fine%2C+R">R. Fine</a>, <a href="/search/physics?searchtype=author&amp;query=Gago%2C+A+M">A. M. Gago</a>, <a href="/search/physics?searchtype=author&amp;query=Galindo%2C+R">R. Galindo</a>, <a href="/search/physics?searchtype=author&amp;query=Golan%2C+T">T. Golan</a>, <a href="/search/physics?searchtype=author&amp;query=Gran%2C+R">R. Gran</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+J+Y">J. Y. Han</a>, <a href="/search/physics?searchtype=author&amp;query=Harris%2C+D+A">D. A. Harris</a> , et al. (31 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.08332v4-abstract-short" style="display: inline;"> We present a simulation-based study using deep convolutional neural networks (DCNNs) to identify neutrino interaction vertices in the MINERvA passive targets region, and illustrate the application of domain adversarial neural networks (DANNs) in this context. DANNs are designed to be trained in one domain (simulated data) but tested in a second domain (physics data) and utilize unlabeled data from&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.08332v4-abstract-full').style.display = 'inline'; document.getElementById('1808.08332v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.08332v4-abstract-full" style="display: none;"> We present a simulation-based study using deep convolutional neural networks (DCNNs) to identify neutrino interaction vertices in the MINERvA passive targets region, and illustrate the application of domain adversarial neural networks (DANNs) in this context. DANNs are designed to be trained in one domain (simulated data) but tested in a second domain (physics data) and utilize unlabeled data from the second domain so that during training only features which are unable to discriminate between the domains are promoted. MINERvA is a neutrino-nucleus scattering experiment using the NuMI beamline at Fermilab. $A$-dependent cross sections are an important part of the physics program, and these measurements require vertex finding in complicated events. To illustrate the impact of the DANN we used a modified set of simulation in place of physics data during the training of the DANN and then used the label of the modified simulation during the evaluation of the DANN. We find that deep learning based methods offer significant advantages over our prior track-based reconstruction for the task of vertex finding, and that DANNs are able to improve the performance of deep networks by leveraging available unlabeled data and by mitigating network performance degradation rooted in biases in the physics models used for training. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.08332v4-abstract-full').style.display = 'none'; document.getElementById('1808.08332v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">41 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Instrumentation, Volume 13, Number 11, 2018 </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Su%2C+H&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Su%2C+H&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Su%2C+H&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10