CINXE.COM

Sine-Gordon equation - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Sine-Gordon equation - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"dc0044d3-8304-4e3f-90c7-1c3755d164f9","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Sine-Gordon_equation","wgTitle":"Sine-Gordon equation","wgCurRevisionId":1228993777,"wgRevisionId":1228993777,"wgArticleId":306645,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 maint: multiple names: authors list","Articles with short description","Short description is different from Wikidata","Webarchive template wayback links","Articles containing video clips","Solitons","Differential geometry","Surfaces","Exactly solvable models","Equations of physics","Mathematical physics"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Sine-Gordon_equation","wgRelevantArticleId":306645, "wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":30000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q2558473","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"], "GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher", "ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Sine-Gordon equation - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Sine-Gordon_equation"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Sine-Gordon_equation&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Sine-Gordon_equation"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Sine-Gordon_equation rootpage-Sine-Gordon_equation skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Sine-Gordon+equation" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Sine-Gordon+equation" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Sine-Gordon+equation" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Sine-Gordon+equation" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Realizations_of_the_sine-Gordon_equation" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Realizations_of_the_sine-Gordon_equation"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Realizations of the sine-Gordon equation</span> </div> </a> <button aria-controls="toc-Realizations_of_the_sine-Gordon_equation-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Realizations of the sine-Gordon equation subsection</span> </button> <ul id="toc-Realizations_of_the_sine-Gordon_equation-sublist" class="vector-toc-list"> <li id="toc-Differential_geometry" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Differential_geometry"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Differential geometry</span> </div> </a> <ul id="toc-Differential_geometry-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-New_solutions_from_old" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#New_solutions_from_old"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>New solutions from old</span> </div> </a> <ul id="toc-New_solutions_from_old-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Frenkel–Kontorova_model" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Frenkel–Kontorova_model"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3</span> <span>Frenkel–Kontorova model</span> </div> </a> <ul id="toc-Frenkel–Kontorova_model-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-A_mechanical_model" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#A_mechanical_model"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.4</span> <span>A mechanical model</span> </div> </a> <ul id="toc-A_mechanical_model-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Naming" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Naming"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Naming</span> </div> </a> <ul id="toc-Naming-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Soliton_solutions" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Soliton_solutions"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Soliton solutions</span> </div> </a> <button aria-controls="toc-Soliton_solutions-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Soliton solutions subsection</span> </button> <ul id="toc-Soliton_solutions-sublist" class="vector-toc-list"> <li id="toc-1-soliton_solutions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#1-soliton_solutions"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>1-soliton solutions</span> </div> </a> <ul id="toc-1-soliton_solutions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-2-soliton_solutions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#2-soliton_solutions"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>2-soliton solutions</span> </div> </a> <ul id="toc-2-soliton_solutions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-3-soliton_solutions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#3-soliton_solutions"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>3-soliton solutions</span> </div> </a> <ul id="toc-3-soliton_solutions-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Bäcklund_transformation" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Bäcklund_transformation"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Bäcklund transformation</span> </div> </a> <ul id="toc-Bäcklund_transformation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Topological_charge_and_energy" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Topological_charge_and_energy"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Topological charge and energy</span> </div> </a> <ul id="toc-Topological_charge_and_energy-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Zero-curvature_formulation" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Zero-curvature_formulation"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Zero-curvature formulation</span> </div> </a> <ul id="toc-Zero-curvature_formulation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Related_equations" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Related_equations"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Related equations</span> </div> </a> <ul id="toc-Related_equations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Infinite_volume_and_on_a_half_line" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Infinite_volume_and_on_a_half_line"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Infinite volume and on a half line</span> </div> </a> <ul id="toc-Infinite_volume_and_on_a_half_line-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Quantum_sine-Gordon_model" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Quantum_sine-Gordon_model"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Quantum sine-Gordon model</span> </div> </a> <button aria-controls="toc-Quantum_sine-Gordon_model-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Quantum sine-Gordon model subsection</span> </button> <ul id="toc-Quantum_sine-Gordon_model-sublist" class="vector-toc-list"> <li id="toc-Regimes_of_renormalizability" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Regimes_of_renormalizability"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.1</span> <span>Regimes of renormalizability</span> </div> </a> <ul id="toc-Regimes_of_renormalizability-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Stochastic_sine-Gordon_model" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Stochastic_sine-Gordon_model"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Stochastic sine-Gordon model</span> </div> </a> <ul id="toc-Stochastic_sine-Gordon_model-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Supersymmetric_sine-Gordon_model" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Supersymmetric_sine-Gordon_model"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Supersymmetric sine-Gordon model</span> </div> </a> <ul id="toc-Supersymmetric_sine-Gordon_model-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Physical_applications" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Physical_applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>Physical applications</span> </div> </a> <ul id="toc-Physical_applications-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">14</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">15</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Sine-Gordon equation</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 8 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-8" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">8 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Ecuaci%C3%B3n_de_sine-Gordon" title="Ecuación de sine-Gordon – Spanish" lang="es" hreflang="es" data-title="Ecuación de sine-Gordon" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%82%AC%EC%9D%B8-%EA%B3%A0%EB%93%A0_%EB%B0%A9%EC%A0%95%EC%8B%9D" title="사인-고든 방정식 – Korean" lang="ko" hreflang="ko" data-title="사인-고든 방정식" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Equazione_di_sine-Gordon" title="Equazione di sine-Gordon – Italian" lang="it" hreflang="it" data-title="Equazione di sine-Gordon" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Sine-Gordon-vergelijking" title="Sine-Gordon-vergelijking – Dutch" lang="nl" hreflang="nl" data-title="Sine-Gordon-vergelijking" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%B8%E0%A8%BE%E0%A8%88%E0%A8%A8-%E0%A8%9C%E0%A9%8C%E0%A8%B0%E0%A8%A1%E0%A8%A8_%E0%A8%B8%E0%A8%AE%E0%A9%80%E0%A8%95%E0%A8%B0%E0%A8%A8" title="ਸਾਈਨ-ਜੌਰਡਨ ਸਮੀਕਰਨ – Punjabi" lang="pa" hreflang="pa" data-title="ਸਾਈਨ-ਜੌਰਡਨ ਸਮੀਕਰਨ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="Punjabi" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5_%D1%81%D0%B8%D0%BD%D1%83%D1%81-%D0%93%D0%BE%D1%80%D0%B4%D0%BE%D0%BD%D0%B0" title="Уравнение синус-Гордона – Russian" lang="ru" hreflang="ru" data-title="Уравнение синус-Гордона" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A0%D1%96%D0%B2%D0%BD%D1%8F%D0%BD%D0%BD%D1%8F_%D1%81%D0%B8%D0%BD%D1%83%D1%81-%D2%90%D0%BE%D1%80%D0%B4%D0%BE%D0%BD%D0%B0" title="Рівняння синус-Ґордона – Ukrainian" lang="uk" hreflang="uk" data-title="Рівняння синус-Ґордона" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%AD%A3%E5%BC%A6-%E6%88%88%E5%B0%94%E7%99%BB%E6%96%B9%E7%A8%8B" title="正弦-戈尔登方程 – Chinese" lang="zh" hreflang="zh" data-title="正弦-戈尔登方程" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q2558473#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Sine-Gordon_equation" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Sine-Gordon_equation" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Sine-Gordon_equation"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Sine-Gordon_equation&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Sine-Gordon_equation&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Sine-Gordon_equation"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Sine-Gordon_equation&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Sine-Gordon_equation&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Sine-Gordon_equation" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Sine-Gordon_equation" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Sine-Gordon_equation&amp;oldid=1228993777" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Sine-Gordon_equation&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Sine-Gordon_equation&amp;id=1228993777&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSine-Gordon_equation"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSine-Gordon_equation"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Sine-Gordon_equation&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Sine-Gordon_equation&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q2558473" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Nonlinear partial differential equation</div> <p>The <b>sine-Gordon equation</b> is a second-order <a href="/wiki/Nonlinear_partial_differential_equation" title="Nonlinear partial differential equation">nonlinear partial differential equation</a> for a function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> dependent on two variables typically denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span>, involving the <a href="/wiki/Wave_operator" class="mw-redirect" title="Wave operator">wave operator</a> and the <a href="/wiki/Sine_and_cosine" title="Sine and cosine">sine</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span>. </p><p>It was originally introduced by <a href="/wiki/Edmond_Bour" title="Edmond Bour">Edmond&#32;Bour</a>&#160;(<a href="#CITEREFBour1862">1862</a>) in the course of study of <a href="/wiki/Pseudosphere" title="Pseudosphere">surfaces of constant negative curvature</a> as the <a href="/wiki/Gauss%E2%80%93Codazzi_equation" class="mw-redirect" title="Gauss–Codazzi equation">Gauss–Codazzi equation</a> for surfaces of constant <a href="/wiki/Gaussian_curvature" title="Gaussian curvature">Gaussian curvature</a> −1 in <a href="/wiki/3-dimensional_space" class="mw-redirect" title="3-dimensional space">3-dimensional space</a>.<sup id="cite_ref-Bour1862_1-0" class="reference"><a href="#cite_note-Bour1862-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> The equation was rediscovered by Frenkel&#32;and&#32;Kontorova&#160;(<a href="#CITEREFFrenkelKontorova1939">1939</a>) in their study of <a href="/wiki/Crystal_dislocation" class="mw-redirect" title="Crystal dislocation">crystal dislocations</a> known as the <a href="/wiki/Frenkel%E2%80%93Kontorova_model" title="Frenkel–Kontorova model">Frenkel–Kontorova model</a>.<sup id="cite_ref-FrenkelKontorova1939_2-0" class="reference"><a href="#cite_note-FrenkelKontorova1939-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p><p>This equation attracted a lot of attention in the 1970s due to the presence of <a href="/wiki/Soliton" title="Soliton">soliton</a> solutions,<sup id="cite_ref-hirota_3-0" class="reference"><a href="#cite_note-hirota-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> and is an example of an <a href="/wiki/Integrable_system" title="Integrable system">integrable PDE</a>. Among well-known integrable PDEs, the sine-Gordon equation is the only <i>relativistic</i> system due to its <a href="/wiki/Lorentz_invariance" class="mw-redirect" title="Lorentz invariance">Lorentz invariance</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Realizations_of_the_sine-Gordon_equation">Realizations of the sine-Gordon equation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sine-Gordon_equation&amp;action=edit&amp;section=1" title="Edit section: Realizations of the sine-Gordon equation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Differential_geometry">Differential geometry</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sine-Gordon_equation&amp;action=edit&amp;section=2" title="Edit section: Differential geometry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>This is the first derivation of the equation, by Bour (1862). </p><p>There are two equivalent forms of the sine-Gordon equation. In the (<a href="/wiki/Real_number" title="Real number">real</a>) <i>space-time coordinates</i>, denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/baa3647f3b8798f94f0f2ac249637b0b709f3718" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.013ex; height:2.843ex;" alt="{\displaystyle (x,t)}"></span>, the equation reads:<sup id="cite_ref-Rajaraman1989_4-0" class="reference"><a href="#cite_note-Rajaraman1989-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi _{tt}-\varphi _{xx}+\sin \varphi =0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mi>t</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>x</mi> </mrow> </msub> <mo>+</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi _{tt}-\varphi _{xx}+\sin \varphi =0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc58b170649144a87a5d6a9fb7e182a1c8789f06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.924ex; height:2.676ex;" alt="{\displaystyle \varphi _{tt}-\varphi _{xx}+\sin \varphi =0,}"></span></dd></dl> <p>where partial derivatives are denoted by subscripts. Passing to the <a href="/wiki/Light-cone_coordinates" title="Light-cone coordinates">light-cone coordinates</a> (<i>u</i>,&#160;<i>v</i>), akin to <i>asymptotic coordinates</i> where </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u={\frac {x+t}{2}},\quad v={\frac {x-t}{2}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>u</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mo>+</mo> <mi>t</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> <mspace width="1em" /> <mi>v</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>t</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u={\frac {x+t}{2}},\quad v={\frac {x-t}{2}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eaaee2273b7f411c8e48e59021ec7efbef003380" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:24.349ex; height:5.176ex;" alt="{\displaystyle u={\frac {x+t}{2}},\quad v={\frac {x-t}{2}},}"></span></dd></dl> <p>the equation takes the form<sup id="cite_ref-Polyanin2004_5-0" class="reference"><a href="#cite_note-Polyanin2004-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi _{uv}=\sin \varphi .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> <mi>v</mi> </mrow> </msub> <mo>=</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi _{uv}=\sin \varphi .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aff1774b42d6ab04d9d6958183cb457cbb6904b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.998ex; height:2.676ex;" alt="{\displaystyle \varphi _{uv}=\sin \varphi .}"></span></dd></dl> <p>This is the original form of the sine-Gordon equation, as it was considered in the 19th&#160;century in the course of investigation of <a href="/wiki/Differential_geometry_of_surfaces" title="Differential geometry of surfaces">surfaces</a> of constant <a href="/wiki/Gaussian_curvature" title="Gaussian curvature">Gaussian curvature</a> <i>K</i>&#160;=&#160;−1, also called <a href="/wiki/Pseudospherical_surface" class="mw-redirect" title="Pseudospherical surface">pseudospherical surfaces</a>. </p><p>Consider an arbitrary pseudospherical surface. Across every point on the surface there are two <a href="/wiki/Asymptotic_curve" title="Asymptotic curve">asymptotic curves</a>. This allows us to construct a distinguished coordinate system for such a surface, in which <i>u</i>&#160;=&#160;constant, <i>v</i>&#160;=&#160;constant are the asymptotic lines, and the coordinates are incremented by the <a href="/wiki/Arc_length" title="Arc length">arc length</a> on the surface. At every point on the surface, let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> be the angle between the asymptotic lines. </p><p>The <a href="/wiki/First_fundamental_form" title="First fundamental form">first fundamental form</a> of the surface is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ds^{2}=du^{2}+2\cos \varphi \,du\,dv+dv^{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>d</mi> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>2</mn> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mspace width="thinmathspace" /> <mi>d</mi> <mi>u</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mi>v</mi> <mo>+</mo> <mi>d</mi> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ds^{2}=du^{2}+2\cos \varphi \,du\,dv+dv^{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47719e4e6ddcecbad3a8deb87b50bf6d893b9c0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:32.015ex; height:3.176ex;" alt="{\displaystyle ds^{2}=du^{2}+2\cos \varphi \,du\,dv+dv^{2},}"></span></dd></dl> <p>and the <a href="/wiki/Second_fundamental_form" title="Second fundamental form">second fundamental form</a> is<span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L=N=0,M=\sin \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo>=</mo> <mi>N</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mi>M</mi> <mo>=</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L=N=0,M=\sin \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f8736c33e09da115941acf04b6f710179380ce3" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.343ex; height:2.676ex;" alt="{\displaystyle L=N=0,M=\sin \varphi }"></span>and the <a href="/wiki/Gauss%E2%80%93Codazzi_equation" class="mw-redirect" title="Gauss–Codazzi equation">Gauss–Codazzi equation</a> is<span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi _{uv}=\sin \varphi .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> <mi>v</mi> </mrow> </msub> <mo>=</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi _{uv}=\sin \varphi .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aff1774b42d6ab04d9d6958183cb457cbb6904b4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.998ex; height:2.676ex;" alt="{\displaystyle \varphi _{uv}=\sin \varphi .}"></span>Thus, any pseudospherical surface gives rise to a solution of the sine-Gordon equation, although with some caveats: if the surface is complete, it is necessarily <a href="/wiki/Singular_curve" class="mw-redirect" title="Singular curve">singular</a> due to the <a href="/wiki/Hilbert%27s_theorem_(differential_geometry)" title="Hilbert&#39;s theorem (differential geometry)">Hilbert embedding theorem</a>. In the simplest case, <i>the</i> <a href="/wiki/Pseudosphere" title="Pseudosphere">pseudosphere</a>, also known as the tractroid, corresponds to a static one-soliton, but the tractroid has a singular cusp at its equator. </p><p>Conversely, one can start with a solution to the sine-Gordon equation to obtain a pseudosphere uniquely up to <a href="/wiki/Rigid_transformation" title="Rigid transformation">rigid transformations</a>. There is a theorem, sometimes called the <i>fundamental theorem of surfaces</i>, that if a pair of matrix-valued bilinear forms satisfy the Gauss–Codazzi equations, then they are the first and second fundamental forms of an embedded surface in 3-dimensional space. Solutions to the sine-Gordon equation can be used to construct such matrices by using the forms obtained above. </p> <figure class="mw-halign-center" typeof="mw:File/Thumb"><a href="/wiki/File:Deforming_a_pseudosphere_to_Dini%27s_surface.gif" class="mw-file-description"><img alt="A pseudosphere is deformed to a Dini surface through the Lie transform" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/Deforming_a_pseudosphere_to_Dini%27s_surface.gif/500px-Deforming_a_pseudosphere_to_Dini%27s_surface.gif" decoding="async" width="500" height="281" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/f/fe/Deforming_a_pseudosphere_to_Dini%27s_surface.gif 1.5x" data-file-width="600" data-file-height="337" /></a><figcaption>Lie transform applied to pseudosphere to obtain a <a href="/wiki/Dini%27s_surface" title="Dini&#39;s surface">Dini surface</a></figcaption></figure> <div class="mw-heading mw-heading3"><h3 id="New_solutions_from_old">New solutions from old</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sine-Gordon_equation&amp;action=edit&amp;section=3" title="Edit section: New solutions from old"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The study of this equation and of the associated transformations of pseudospherical surfaces in the 19th&#160;century by <a href="/wiki/Luigi_Bianchi" title="Luigi Bianchi">Bianchi</a> and <a href="/wiki/Albert_Victor_B%C3%A4cklund" title="Albert Victor Bäcklund">Bäcklund</a> led to the discovery of <a href="/wiki/B%C3%A4cklund_transformation" class="mw-redirect" title="Bäcklund transformation">Bäcklund transformations</a>. Another transformation of pseudospherical surfaces is the <a href="/wiki/Squeeze_mapping#Lie_transform" title="Squeeze mapping">Lie transform</a> introduced by <a href="/wiki/Sophus_Lie" title="Sophus Lie">Sophus Lie</a> in 1879, which corresponds to <a href="/wiki/Lorentz_boost" class="mw-redirect" title="Lorentz boost">Lorentz boosts</a> for solutions of the sine-Gordon equation.<sup id="cite_ref-terng_6-0" class="reference"><a href="#cite_note-terng-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p><p>There are also some more straightforward ways to construct new solutions but which do not give new surfaces. Since the sine-Gordon equation is odd, the negative of any solution is another solution. However this does not give a new surface, as the sign-change comes down to a choice of direction for the normal to the surface. New solutions can be found by translating the solution: if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> is a solution, then so is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi +2n\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> <mo>+</mo> <mn>2</mn> <mi>n</mi> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi +2n\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56e4eb280aaa44c22c6db1dbad8f879908848974" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.25ex; height:2.676ex;" alt="{\displaystyle \varphi +2n\pi }"></span> for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> an integer. </p> <div class="mw-heading mw-heading3"><h3 id="Frenkel–Kontorova_model"><span id="Frenkel.E2.80.93Kontorova_model"></span>Frenkel–Kontorova model</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sine-Gordon_equation&amp;action=edit&amp;section=4" title="Edit section: Frenkel–Kontorova model"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Frenkel%E2%80%93Kontorova_model" title="Frenkel–Kontorova model">Frenkel–Kontorova model</a></div> <div class="mw-heading mw-heading3"><h3 id="A_mechanical_model">A mechanical model</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sine-Gordon_equation&amp;action=edit&amp;section=5" title="Edit section: A mechanical model"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Sine_gordon_5.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d5/Sine_gordon_5.gif/220px-Sine_gordon_5.gif" decoding="async" width="220" height="163" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d5/Sine_gordon_5.gif/330px-Sine_gordon_5.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/d/d5/Sine_gordon_5.gif 2x" data-file-width="388" data-file-height="288" /></a><figcaption>A line of pendula, with a "breather pattern" oscillating in the middle. Unfortunately, the picture is drawn with gravity pointing <i>up</i>.</figcaption></figure> <p>Consider a line of pendula, hanging on a straight line, in constant gravity. Connect the bobs of the pendula together by a string in constant tension. Let the angle of the pendulum at location <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> be <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span>, then schematically, the dynamics of the line of pendulum follows Newton's second law:<span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \underbrace {m\varphi _{tt}} _{\text{mass times acceleration}}=\underbrace {T\varphi _{xx}} _{\text{tension}}-\underbrace {mg\sin \varphi } _{\text{gravity}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <mi>m</mi> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mi>t</mi> </mrow> </msub> </mrow> <mo>&#x23DF;<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>mass times acceleration</mtext> </mrow> </munder> <mo>=</mo> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <mi>T</mi> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>x</mi> </mrow> </msub> </mrow> <mo>&#x23DF;<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>tension</mtext> </mrow> </munder> <mo>&#x2212;<!-- − --></mo> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <mi>m</mi> <mi>g</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mrow> <mo>&#x23DF;<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>gravity</mtext> </mrow> </munder> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \underbrace {m\varphi _{tt}} _{\text{mass times acceleration}}=\underbrace {T\varphi _{xx}} _{\text{tension}}-\underbrace {mg\sin \varphi } _{\text{gravity}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7a4498f6ba13026ce2672500829b29f28938f5a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.505ex; margin-right: -0.028ex; width:36.533ex; height:6.343ex;" alt="{\displaystyle \underbrace {m\varphi _{tt}} _{\text{mass times acceleration}}=\underbrace {T\varphi _{xx}} _{\text{tension}}-\underbrace {mg\sin \varphi } _{\text{gravity}}}"></span>and this is the sine-Gordon equation, after scaling time and distance appropriately. </p><p>Note that this is not exactly correct, since the net force on a pendulum due to the tension is not precisely <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T\varphi _{xx}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>x</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T\varphi _{xx}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6ccb280596f99f10f47e1b69e2f0e9c77631973a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.269ex; height:2.676ex;" alt="{\displaystyle T\varphi _{xx}}"></span>, but more accurately <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T\varphi _{xx}(1+\varphi _{x}^{2})^{-3/2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>x</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <msubsup> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T\varphi _{xx}(1+\varphi _{x}^{2})^{-3/2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe964e2a7f73c8f5a86f12fedeb638ed616d288f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.751ex; height:3.343ex;" alt="{\displaystyle T\varphi _{xx}(1+\varphi _{x}^{2})^{-3/2}}"></span>. However this does give an intuitive picture for the sine-gordon equation. One can produce exact mechanical realizations of the sine-gordon equation by more complex methods.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Naming">Naming</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sine-Gordon_equation&amp;action=edit&amp;section=6" title="Edit section: Naming"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The name "sine-Gordon equation" is a pun on the well-known <a href="/wiki/Klein%E2%80%93Gordon_equation" title="Klein–Gordon equation">Klein–Gordon equation</a> in physics:<sup id="cite_ref-Rajaraman1989_4-1" class="reference"><a href="#cite_note-Rajaraman1989-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi _{tt}-\varphi _{xx}+\varphi =0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mi>t</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>x</mi> </mrow> </msub> <mo>+</mo> <mi>&#x03C6;<!-- φ --></mi> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi _{tt}-\varphi _{xx}+\varphi =0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42e021e25764fc696568de1e4015aaa7eb5bc082" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.681ex; height:2.676ex;" alt="{\displaystyle \varphi _{tt}-\varphi _{xx}+\varphi =0.}"></span></dd></dl> <p>The sine-Gordon equation is the <a href="/wiki/Euler%E2%80%93Lagrange_equation" title="Euler–Lagrange equation">Euler–Lagrange equation</a> of the field whose <a href="/wiki/Lagrangian_density" class="mw-redirect" title="Lagrangian density">Lagrangian density</a> is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}_{\text{SG}}(\varphi )={\frac {1}{2}}(\varphi _{t}^{2}-\varphi _{x}^{2})-1+\cos \varphi .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>SG</mtext> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <msubsup> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>+</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}_{\text{SG}}(\varphi )={\frac {1}{2}}(\varphi _{t}^{2}-\varphi _{x}^{2})-1+\cos \varphi .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a478426bbe4d0fa566c582675da893c5bfdfd85" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:34.892ex; height:5.176ex;" alt="{\displaystyle {\mathcal {L}}_{\text{SG}}(\varphi )={\frac {1}{2}}(\varphi _{t}^{2}-\varphi _{x}^{2})-1+\cos \varphi .}"></span></dd></dl> <p>Using the <a href="/wiki/Taylor_series" title="Taylor series">Taylor series</a> expansion of the <a href="/wiki/Cosine" class="mw-redirect" title="Cosine">cosine</a> in the Lagrangian, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos(\varphi )=\sum _{n=0}^{\infty }{\frac {(-\varphi ^{2})^{n}}{(2n)!}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos(\varphi )=\sum _{n=0}^{\infty }{\frac {(-\varphi ^{2})^{n}}{(2n)!}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8323a8ef51abcf384daee81fde7eb0c82908ba08" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:22.174ex; height:7.009ex;" alt="{\displaystyle \cos(\varphi )=\sum _{n=0}^{\infty }{\frac {(-\varphi ^{2})^{n}}{(2n)!}},}"></span></dd></dl> <p>it can be rewritten as the <a href="/wiki/Scalar_field_theory#Linear_.28free.29_theory" title="Scalar field theory">Klein–Gordon Lagrangian</a> plus higher-order terms: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\mathcal {L}}_{\text{SG}}(\varphi )&amp;={\frac {1}{2}}(\varphi _{t}^{2}-\varphi _{x}^{2})-{\frac {\varphi ^{2}}{2}}+\sum _{n=2}^{\infty }{\frac {(-\varphi ^{2})^{n}}{(2n)!}}\\&amp;={\mathcal {L}}_{\text{KG}}(\varphi )+\sum _{n=2}^{\infty }{\frac {(-\varphi ^{2})^{n}}{(2n)!}}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>SG</mtext> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <msubsup> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>KG</mtext> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mo>+</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\mathcal {L}}_{\text{SG}}(\varphi )&amp;={\frac {1}{2}}(\varphi _{t}^{2}-\varphi _{x}^{2})-{\frac {\varphi ^{2}}{2}}+\sum _{n=2}^{\infty }{\frac {(-\varphi ^{2})^{n}}{(2n)!}}\\&amp;={\mathcal {L}}_{\text{KG}}(\varphi )+\sum _{n=2}^{\infty }{\frac {(-\varphi ^{2})^{n}}{(2n)!}}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bfce1430ead5842bf343b5614773d971002c0cc8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.505ex; width:44.214ex; height:14.176ex;" alt="{\displaystyle {\begin{aligned}{\mathcal {L}}_{\text{SG}}(\varphi )&amp;={\frac {1}{2}}(\varphi _{t}^{2}-\varphi _{x}^{2})-{\frac {\varphi ^{2}}{2}}+\sum _{n=2}^{\infty }{\frac {(-\varphi ^{2})^{n}}{(2n)!}}\\&amp;={\mathcal {L}}_{\text{KG}}(\varphi )+\sum _{n=2}^{\infty }{\frac {(-\varphi ^{2})^{n}}{(2n)!}}.\end{aligned}}}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Soliton_solutions">Soliton solutions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sine-Gordon_equation&amp;action=edit&amp;section=7" title="Edit section: Soliton solutions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>An interesting feature of the sine-Gordon equation is the existence of <a href="/wiki/Soliton" title="Soliton">soliton</a> and multisoliton solutions. </p> <div class="mw-heading mw-heading3"><h3 id="1-soliton_solutions">1-soliton solutions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sine-Gordon_equation&amp;action=edit&amp;section=8" title="Edit section: 1-soliton solutions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The sine-Gordon equation has the following 1-<a href="/wiki/Soliton" title="Soliton">soliton</a> solutions: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi _{\text{soliton}}(x,t):=4\arctan \left(e^{m\gamma (x-vt)+\delta }\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>soliton</mtext> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>:=</mo> <mn>4</mn> <mi>arctan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mi>&#x03B3;<!-- γ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>v</mi> <mi>t</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>&#x03B4;<!-- δ --></mi> </mrow> </msup> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi _{\text{soliton}}(x,t):=4\arctan \left(e^{m\gamma (x-vt)+\delta }\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4928ec052e8b0b3283d56b317347dc104f413e7e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:37.269ex; height:4.843ex;" alt="{\displaystyle \varphi _{\text{soliton}}(x,t):=4\arctan \left(e^{m\gamma (x-vt)+\delta }\right),}"></span></dd></dl> <p>where </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma ^{2}={\frac {1}{1-v^{2}}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma ^{2}={\frac {1}{1-v^{2}}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b218de62f8789dbcdc521514b131082474d28c62" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:13.1ex; height:5.676ex;" alt="{\displaystyle \gamma ^{2}={\frac {1}{1-v^{2}}},}"></span></dd></dl> <p>and the slightly more general form of the equation is assumed: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi _{tt}-\varphi _{xx}+m^{2}\sin \varphi =0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mi>t</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>x</mi> </mrow> </msub> <mo>+</mo> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi _{tt}-\varphi _{xx}+m^{2}\sin \varphi =0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81c3758e771f53122b458fbac6693cbaa43f2bd1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.406ex; height:3.176ex;" alt="{\displaystyle \varphi _{tt}-\varphi _{xx}+m^{2}\sin \varphi =0.}"></span></dd></dl> <p>The 1-soliton solution for which we have chosen the positive root for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B3;<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span> is called a <i>kink</i> and represents a twist in the variable <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> which takes the system from one constant solution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/192287b02f5764a18fe39f37b8199d72000aa220" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.781ex; height:2.676ex;" alt="{\displaystyle \varphi =0}"></span> to an adjacent constant solution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi =2\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> <mo>=</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi =2\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffb1052bf46b51a691a80a88b2524e4973314776" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.113ex; height:2.676ex;" alt="{\displaystyle \varphi =2\pi }"></span>. The states <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi \cong 2\pi n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2245;<!-- ≅ --></mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi \cong 2\pi n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11bfad57e16bbe3c4537baa36126b64b64b2ea78" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.508ex; height:2.676ex;" alt="{\displaystyle \varphi \cong 2\pi n}"></span> are known as vacuum states, as they are constant solutions of zero energy. The 1-soliton solution in which we take the negative root for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B3;<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span> is called an <i>antikink</i>. The form of the 1-soliton solutions can be obtained through application of a <a href="/wiki/B%C3%A4cklund_transform" title="Bäcklund transform">Bäcklund transform</a> to the trivial (vacuum) solution and the integration of the resulting first-order differentials: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi '_{u}=\varphi _{u}+2\beta \sin {\frac {\varphi '+\varphi }{2}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> <mo>&#x2032;</mo> </msubsup> <mo>=</mo> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msub> <mo>+</mo> <mn>2</mn> <mi>&#x03B2;<!-- β --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2032;</mo> </msup> <mo>+</mo> <mi>&#x03C6;<!-- φ --></mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi '_{u}=\varphi _{u}+2\beta \sin {\frac {\varphi '+\varphi }{2}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6ac72e2b3a596ef32d8ad57a5cd6e30470f12ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:25.497ex; height:5.509ex;" alt="{\displaystyle \varphi &#039;_{u}=\varphi _{u}+2\beta \sin {\frac {\varphi &#039;+\varphi }{2}},}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi '_{v}=-\varphi _{v}+{\frac {2}{\beta }}\sin {\frac {\varphi '-\varphi }{2}}{\text{ with }}\varphi =\varphi _{0}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> <mo>&#x2032;</mo> </msubsup> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mi>&#x03B2;<!-- β --></mi> </mfrac> </mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2032;</mo> </msup> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C6;<!-- φ --></mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;with&#xA0;</mtext> </mrow> <mi>&#x03C6;<!-- φ --></mi> <mo>=</mo> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi '_{v}=-\varphi _{v}+{\frac {2}{\beta }}\sin {\frac {\varphi '-\varphi }{2}}{\text{ with }}\varphi =\varphi _{0}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/739f57e4ef5ae9fd36d62c570fd167d2f5436170" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:43.183ex; height:6.009ex;" alt="{\displaystyle \varphi &#039;_{v}=-\varphi _{v}+{\frac {2}{\beta }}\sin {\frac {\varphi &#039;-\varphi }{2}}{\text{ with }}\varphi =\varphi _{0}=0}"></span></dd></dl> <p>for all time. </p><p>The 1-soliton solutions can be visualized with the use of the elastic ribbon sine-Gordon model introduced by Julio Rubinstein in 1970.<sup id="cite_ref-Rubinstein1970_8-0" class="reference"><a href="#cite_note-Rubinstein1970-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> Here we take a clockwise (<a href="/wiki/Right-hand_rule" title="Right-hand rule">left-handed</a>) twist of the elastic ribbon to be a kink with topological charge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta _{\text{K}}=-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>K</mtext> </mrow> </msub> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta _{\text{K}}=-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05a9879f3a10c20efe55756ee0c46f6fec4070e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.67ex; height:2.509ex;" alt="{\displaystyle \theta _{\text{K}}=-1}"></span>. The alternative counterclockwise (<a href="/wiki/Right-hand_rule" title="Right-hand rule">right-handed</a>) twist with topological charge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta _{\text{AK}}=+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>AK</mtext> </mrow> </msub> <mo>=</mo> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta _{\text{AK}}=+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43d13bcdad4ca837ba2f9e3e2a04ec6518221db9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.903ex; height:2.509ex;" alt="{\displaystyle \theta _{\text{AK}}=+1}"></span> will be an antikink. </p> <table> <tbody><tr> <td><figure typeof="mw:File/Frame"><a href="/wiki/File:Sine_gordon_1.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/3/3f/Sine_gordon_1.gif" decoding="async" width="388" height="288" class="mw-file-element" data-file-width="388" data-file-height="288" /></a><figcaption>Traveling <i>kink</i> soliton represents a propagating clockwise twist.<sup id="cite_ref-Georgiev2004_9-0" class="reference"><a href="#cite_note-Georgiev2004-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure> </td> <td><figure typeof="mw:File/Frame"><a href="/wiki/File:Sine_gordon_2.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/c/c2/Sine_gordon_2.gif" decoding="async" width="388" height="288" class="mw-file-element" data-file-width="388" data-file-height="288" /></a><figcaption>Traveling <i>antikink</i> soliton represents a propagating counterclockwise twist.<sup id="cite_ref-Georgiev2004_9-1" class="reference"><a href="#cite_note-Georgiev2004-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure> </td></tr></tbody></table> <figure class="mw-halign-none" typeof="mw:File/Thumb"><a href="/wiki/File:Static_one-soliton.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/de/Static_one-soliton.png/474px-Static_one-soliton.png" decoding="async" width="474" height="300" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/de/Static_one-soliton.png/711px-Static_one-soliton.png 1.5x, //upload.wikimedia.org/wikipedia/commons/d/de/Static_one-soliton.png 2x" data-file-width="720" data-file-height="456" /></a><figcaption>Static 1-soliton solution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 4\arctan e^{x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>4</mn> <mi>arctan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 4\arctan e^{x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dfb7f71f006aebf8129738b9e1f7d17f756fd630" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.659ex; height:2.343ex;" alt="{\displaystyle 4\arctan e^{x}}"></span></figcaption></figure> <div class="mw-heading mw-heading3"><h3 id="2-soliton_solutions">2-soliton solutions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sine-Gordon_equation&amp;action=edit&amp;section=9" title="Edit section: 2-soliton solutions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Multi-<a href="/wiki/Soliton" title="Soliton">soliton</a> solutions can be obtained through continued application of the <a href="/wiki/B%C3%A4cklund_transform" title="Bäcklund transform">Bäcklund transform</a> to the 1-soliton solution, as prescribed by a <a href="/w/index.php?title=Bianchi_lattice&amp;action=edit&amp;redlink=1" class="new" title="Bianchi lattice (page does not exist)">Bianchi lattice</a> relating the transformed results.<sup id="cite_ref-Rogers2002_10-0" class="reference"><a href="#cite_note-Rogers2002-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> The 2-soliton solutions of the sine-Gordon equation show some of the characteristic features of the solitons. The traveling sine-Gordon kinks and/or antikinks pass through each other as if perfectly permeable, and the only observed effect is a <a href="/wiki/Phase_(waves)" title="Phase (waves)">phase shift</a>. Since the colliding solitons recover their <a href="/wiki/Velocity" title="Velocity">velocity</a> and <a href="/wiki/Shape" title="Shape">shape</a>, such an interaction is called an <a href="/wiki/Elastic_collision" title="Elastic collision">elastic collision</a>. </p><p>The kink-kink solution is given by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi _{K/K}(x,t)=4\arctan \left({\frac {v\sinh {\frac {x}{\sqrt {1-v^{2}}}}}{\cosh {\frac {vt}{\sqrt {1-v^{2}}}}}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>K</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>4</mn> <mi>arctan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>v</mi> <mi>sinh</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mrow> <mrow> <mi>cosh</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>v</mi> <mi>t</mi> </mrow> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi _{K/K}(x,t)=4\arctan \left({\frac {v\sinh {\frac {x}{\sqrt {1-v^{2}}}}}{\cosh {\frac {vt}{\sqrt {1-v^{2}}}}}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/095aec0aad57491110aa42bf9006a3403dfa6abe" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.338ex; width:38.784ex; height:9.843ex;" alt="{\displaystyle \varphi _{K/K}(x,t)=4\arctan \left({\frac {v\sinh {\frac {x}{\sqrt {1-v^{2}}}}}{\cosh {\frac {vt}{\sqrt {1-v^{2}}}}}}\right)}"></span> </p><p>while the kink-antikink solution is given by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi _{K/AK}(x,t)=4\arctan \left({\frac {v\cosh {\frac {x}{\sqrt {1-v^{2}}}}}{\sinh {\frac {vt}{\sqrt {1-v^{2}}}}}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>A</mi> <mi>K</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>4</mn> <mi>arctan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>v</mi> <mi>cosh</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mrow> <mrow> <mi>sinh</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>v</mi> <mi>t</mi> </mrow> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi _{K/AK}(x,t)=4\arctan \left({\frac {v\cosh {\frac {x}{\sqrt {1-v^{2}}}}}{\sinh {\frac {vt}{\sqrt {1-v^{2}}}}}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5191e8ba6a3157c40b483ab700a203436fe9bcc6" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.338ex; width:40.272ex; height:9.843ex;" alt="{\displaystyle \varphi _{K/AK}(x,t)=4\arctan \left({\frac {v\cosh {\frac {x}{\sqrt {1-v^{2}}}}}{\sinh {\frac {vt}{\sqrt {1-v^{2}}}}}}\right)}"></span> </p> <table> <tbody><tr> <td><figure typeof="mw:File/Frame"><a href="/wiki/File:Sine_gordon_3.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/d/d3/Sine_gordon_3.gif" decoding="async" width="388" height="288" class="mw-file-element" data-file-width="388" data-file-height="288" /></a><figcaption><i>Antikink-kink</i> collision.<sup id="cite_ref-Georgiev2004_9-2" class="reference"><a href="#cite_note-Georgiev2004-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure> </td> <td><figure typeof="mw:File/Frame"><a href="/wiki/File:Sine_gordon_4.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/d/dd/Sine_gordon_4.gif" decoding="async" width="388" height="288" class="mw-file-element" data-file-width="388" data-file-height="288" /></a><figcaption><i>Kink-kink</i> collision.<sup id="cite_ref-Georgiev2004_9-3" class="reference"><a href="#cite_note-Georgiev2004-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure> </td></tr></tbody></table> <p>Another interesting 2-soliton solutions arise from the possibility of coupled kink-antikink behaviour known as a <i><a href="/wiki/Breather" title="Breather">breather</a></i>. There are known three types of breathers: <i>standing breather</i>, <i>traveling large-amplitude breather</i>, and <i>traveling small-amplitude breather</i>.<sup id="cite_ref-mir_11-0" class="reference"><a href="#cite_note-mir-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> </p><p>The standing breather solution is given by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi (x,t)=4\arctan \left({\frac {{\sqrt {1-\omega ^{2}}}\;\cos(\omega t)}{\omega \;\cosh({\sqrt {1-\omega ^{2}}}\;x)}}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>4</mn> <mi>arctan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mspace width="thickmathspace" /> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>&#x03C9;<!-- ω --></mi> <mspace width="thickmathspace" /> <mi>cosh</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mspace width="thickmathspace" /> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi (x,t)=4\arctan \left({\frac {{\sqrt {1-\omega ^{2}}}\;\cos(\omega t)}{\omega \;\cosh({\sqrt {1-\omega ^{2}}}\;x)}}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eeb7300d39df60dcd4b94fc9a194a091b9e31c57" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:42.304ex; height:7.509ex;" alt="{\displaystyle \varphi (x,t)=4\arctan \left({\frac {{\sqrt {1-\omega ^{2}}}\;\cos(\omega t)}{\omega \;\cosh({\sqrt {1-\omega ^{2}}}\;x)}}\right).}"></span> </p> <table> <tbody><tr> <td><figure typeof="mw:File/Frame"><a href="/wiki/File:Sine_gordon_5.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/d/d5/Sine_gordon_5.gif" decoding="async" width="388" height="288" class="mw-file-element" data-file-width="388" data-file-height="288" /></a><figcaption>The <i>standing breather</i> is an oscillating coupled kink-antikink soliton.<sup id="cite_ref-Georgiev2004_9-4" class="reference"><a href="#cite_note-Georgiev2004-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure> </td> <td><figure typeof="mw:File/Frame"><a href="/wiki/File:Sine_gordon_6.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/2/24/Sine_gordon_6.gif" decoding="async" width="388" height="288" class="mw-file-element" data-file-width="388" data-file-height="288" /></a><figcaption><i>Large-amplitude moving breather</i>.<sup id="cite_ref-Georgiev2004_9-5" class="reference"><a href="#cite_note-Georgiev2004-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure> </td></tr></tbody></table> <table> <tbody><tr> <td><figure typeof="mw:File/Frame"><a href="/wiki/File:Sine_gordon_7.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/4/47/Sine_gordon_7.gif" decoding="async" width="388" height="288" class="mw-file-element" data-file-width="388" data-file-height="288" /></a><figcaption><i>Small-amplitude moving breather</i>&#160;&#8211;&#32; looks exotic, but essentially has a breather envelope.<sup id="cite_ref-Georgiev2004_9-6" class="reference"><a href="#cite_note-Georgiev2004-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure> </td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="3-soliton_solutions">3-soliton solutions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sine-Gordon_equation&amp;action=edit&amp;section=10" title="Edit section: 3-soliton solutions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>3-soliton collisions between a traveling kink and a standing breather or a traveling antikink and a standing breather results in a phase shift of the standing breather. In the process of collision between a moving kink and a standing breather, the shift of the breather <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta _{\text{B}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>B</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta _{\text{B}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b280feedc7f871327a45c27148156b135ff4b43" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.332ex; height:2.509ex;" alt="{\displaystyle \Delta _{\text{B}}}"></span> is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta _{\text{B}}={\frac {2\operatorname {artanh} {\sqrt {(1-\omega ^{2})(1-v_{\text{K}}^{2})}}}{\sqrt {1-\omega ^{2}}}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>B</mtext> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>artanh</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>K</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo stretchy="false">)</mo> </msqrt> </mrow> </mrow> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta _{\text{B}}={\frac {2\operatorname {artanh} {\sqrt {(1-\omega ^{2})(1-v_{\text{K}}^{2})}}}{\sqrt {1-\omega ^{2}}}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c90b59a9ac368a0ea543eec070df76106036ebcc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:35.663ex; height:9.009ex;" alt="{\displaystyle \Delta _{\text{B}}={\frac {2\operatorname {artanh} {\sqrt {(1-\omega ^{2})(1-v_{\text{K}}^{2})}}}{\sqrt {1-\omega ^{2}}}},}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{\text{K}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>K</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{\text{K}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4cfe0135a8b80e1c05127cb8cdec869ad45d6359" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.638ex; height:2.009ex;" alt="{\displaystyle v_{\text{K}}}"></span> is the velocity of the kink, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48eff443f9de7a985bb94ca3bde20813ea737be8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.446ex; height:1.676ex;" alt="{\displaystyle \omega }"></span> is the breather's frequency.<sup id="cite_ref-mir_11-1" class="reference"><a href="#cite_note-mir-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> If the old position of the standing breather is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span>, after the collision the new position will be <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}+\Delta _{\text{B}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <msub> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>B</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}+\Delta _{\text{B}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4215d15669ab7390355f31b1bff556dcb09aef5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.556ex; height:2.509ex;" alt="{\displaystyle x_{0}+\Delta _{\text{B}}}"></span>. </p> <table> <tbody><tr> <td><figure typeof="mw:File/Frame"><a href="/wiki/File:Sine_gordon_8.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/8/8a/Sine_gordon_8.gif" decoding="async" width="388" height="288" class="mw-file-element" data-file-width="388" data-file-height="288" /></a><figcaption>Collision of <i>moving kink</i> and <i>standing breather</i>.<sup id="cite_ref-Georgiev2004_9-7" class="reference"><a href="#cite_note-Georgiev2004-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure> </td> <td><figure typeof="mw:File/Frame"><a href="/wiki/File:Sine_gordon_9.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/a/aa/Sine_gordon_9.gif" decoding="async" width="388" height="288" class="mw-file-element" data-file-width="388" data-file-height="288" /></a><figcaption>Collision of <i>moving antikink</i> and <i>standing breather</i>.<sup id="cite_ref-Georgiev2004_9-8" class="reference"><a href="#cite_note-Georgiev2004-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure> </td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="Bäcklund_transformation"><span id="B.C3.A4cklund_transformation"></span>Bäcklund transformation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sine-Gordon_equation&amp;action=edit&amp;section=11" title="Edit section: Bäcklund transformation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/B%C3%A4cklund_transform" title="Bäcklund transform">Bäcklund transform</a></div> <p>Suppose that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> is a solution of the sine-Gordon equation </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi _{uv}=\sin \varphi .\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> <mi>v</mi> </mrow> </msub> <mo>=</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>.</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi _{uv}=\sin \varphi .\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81a68841d7773ffd6854524f147a93199cf1da7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.385ex; height:2.676ex;" alt="{\displaystyle \varphi _{uv}=\sin \varphi .\,}"></span></dd></dl> <p>Then the system </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\psi _{u}&amp;=\varphi _{u}+2a\sin {\Bigl (}{\frac {\psi +\varphi }{2}}{\Bigr )}\\\psi _{v}&amp;=-\varphi _{v}+{\frac {2}{a}}\sin {\Bigl (}{\frac {\psi -\varphi }{2}}{\Bigr )}\end{aligned}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msub> <mo>+</mo> <mn>2</mn> <mi>a</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.623em" minsize="1.623em">(</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03C8;<!-- ψ --></mi> <mo>+</mo> <mi>&#x03C6;<!-- φ --></mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.623em" minsize="1.623em">)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mi>a</mi> </mfrac> </mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.623em" minsize="1.623em">(</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03C8;<!-- ψ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C6;<!-- φ --></mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.623em" minsize="1.623em">)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\psi _{u}&amp;=\varphi _{u}+2a\sin {\Bigl (}{\frac {\psi +\varphi }{2}}{\Bigr )}\\\psi _{v}&amp;=-\varphi _{v}+{\frac {2}{a}}\sin {\Bigl (}{\frac {\psi -\varphi }{2}}{\Bigr )}\end{aligned}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e7782f68eb41b8921ed2612611014f3b2771438" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.005ex; margin-right: -0.387ex; width:29.302ex; height:11.176ex;" alt="{\displaystyle {\begin{aligned}\psi _{u}&amp;=\varphi _{u}+2a\sin {\Bigl (}{\frac {\psi +\varphi }{2}}{\Bigr )}\\\psi _{v}&amp;=-\varphi _{v}+{\frac {2}{a}}\sin {\Bigl (}{\frac {\psi -\varphi }{2}}{\Bigr )}\end{aligned}}\,\!}"></span></dd></dl> <p>where <i>a</i> is an arbitrary parameter, is solvable for a function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C8;<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45e5789e5d9c8f7c79744f43ecaaf8ba42a8553a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.513ex; height:2.509ex;" alt="{\displaystyle \psi }"></span> which will also satisfy the sine-Gordon equation. This is an example of an auto-Bäcklund transform, as both <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C8;<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45e5789e5d9c8f7c79744f43ecaaf8ba42a8553a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.513ex; height:2.509ex;" alt="{\displaystyle \psi }"></span> are solutions to the same equation, that is, the sine-Gordon equation. </p><p>By using a matrix system, it is also possible to find a linear Bäcklund transform for solutions of sine-Gordon equation. </p><p>For example, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> is the trivial solution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi \equiv 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2261;<!-- ≡ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi \equiv 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d06f4ce465ef11eabac7e87ba2482474301707f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.781ex; height:2.676ex;" alt="{\displaystyle \varphi \equiv 0}"></span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C8;<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45e5789e5d9c8f7c79744f43ecaaf8ba42a8553a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.513ex; height:2.509ex;" alt="{\displaystyle \psi }"></span> is the one-soliton solution with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> related to the boost applied to the soliton. </p> <div class="mw-heading mw-heading2"><h2 id="Topological_charge_and_energy">Topological charge and energy</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sine-Gordon_equation&amp;action=edit&amp;section=12" title="Edit section: Topological charge and energy"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <b>topological charge</b> or <b>winding number</b> of a solution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N={\frac {1}{2\pi }}\int _{\mathbb {R} }d\varphi ={\frac {1}{2\pi }}\left[\varphi (x=\infty ,t)-\varphi (x=-\infty ,t)\right].}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mrow> </msub> <mi>d</mi> <mi>&#x03C6;<!-- φ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> <mrow> <mo>[</mo> <mrow> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>=</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N={\frac {1}{2\pi }}\int _{\mathbb {R} }d\varphi ={\frac {1}{2\pi }}\left[\varphi (x=\infty ,t)-\varphi (x=-\infty ,t)\right].}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0119482d90c6139c5146d3c2429cdac0ddf28218" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:52.416ex; height:5.676ex;" alt="{\displaystyle N={\frac {1}{2\pi }}\int _{\mathbb {R} }d\varphi ={\frac {1}{2\pi }}\left[\varphi (x=\infty ,t)-\varphi (x=-\infty ,t)\right].}"></span> The <b>energy</b> of a solution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E=\int _{\mathbb {R} }dx\left({\frac {1}{2}}(\varphi _{t}^{2}+\varphi _{x}^{2})+m^{2}(1-\cos \varphi )\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mrow> </msub> <mi>d</mi> <mi>x</mi> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <msubsup> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo stretchy="false">)</mo> <mo>+</mo> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E=\int _{\mathbb {R} }dx\left({\frac {1}{2}}(\varphi _{t}^{2}+\varphi _{x}^{2})+m^{2}(1-\cos \varphi )\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad5c2cf8acc77ae5d2fd3611d17cee39624710e0" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:43.007ex; height:6.176ex;" alt="{\displaystyle E=\int _{\mathbb {R} }dx\left({\frac {1}{2}}(\varphi _{t}^{2}+\varphi _{x}^{2})+m^{2}(1-\cos \varphi )\right)}"></span>where a constant energy density has been added so that the potential is non-negative. With it the first two terms in the Taylor expansion of the potential coincide with the potential of a massive scalar field, as mentioned in the naming section; the higher order terms can be thought of as interactions. </p><p>The topological charge is conserved if the energy is finite. The topological charge does not determine the solution, even up to Lorentz boosts. Both the trivial solution and the soliton-antisoliton pair solution have <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bac661e6a8863869cdec476a5f7923be96ee0e97" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.325ex; height:2.176ex;" alt="{\displaystyle N=0}"></span>. </p><p><br /> </p> <div class="mw-heading mw-heading2"><h2 id="Zero-curvature_formulation">Zero-curvature formulation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sine-Gordon_equation&amp;action=edit&amp;section=13" title="Edit section: Zero-curvature formulation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The sine-Gordon equation is equivalent to the <a href="/wiki/Curvature_form" title="Curvature form">curvature</a> of a particular <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {su}}(2)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">u</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {su}}(2)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/369267d5eae15a7478ebb52c71fcec1449a10dc9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.041ex; width:5.244ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {su}}(2)}"></span>-<a href="/wiki/Principal_connection" class="mw-redirect" title="Principal connection">connection</a> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e150115ab9f63023215109595b76686a1ff890fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{2}}"></span> being equal to zero.<sup id="cite_ref-SIT_12-0" class="reference"><a href="#cite_note-SIT-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> </p><p>Explicitly, with coordinates <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (u,v)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (u,v)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eadf12294edccd7a29c99cfc1765e4a14bf47e58" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.301ex; height:2.843ex;" alt="{\displaystyle (u,v)}"></span> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e150115ab9f63023215109595b76686a1ff890fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{2}}"></span>, the connection components <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{\mu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{\mu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9277f5286335ab99c040c9c9151ab752d3bedc49" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.967ex; height:2.843ex;" alt="{\displaystyle A_{\mu }}"></span> are given by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{u}={\begin{pmatrix}i\lambda &amp;{\frac {i}{2}}\varphi _{u}\\{\frac {i}{2}}\varphi _{u}&amp;-i\lambda \end{pmatrix}}={\frac {1}{2}}\varphi _{u}i\sigma _{1}+\lambda i\sigma _{3},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>i</mi> <mi>&#x03BB;<!-- λ --></mi> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>i</mi> <mn>2</mn> </mfrac> </mrow> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>i</mi> <mn>2</mn> </mfrac> </mrow> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msub> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>&#x03BB;<!-- λ --></mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msub> <mi>i</mi> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mi>&#x03BB;<!-- λ --></mi> <mi>i</mi> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{u}={\begin{pmatrix}i\lambda &amp;{\frac {i}{2}}\varphi _{u}\\{\frac {i}{2}}\varphi _{u}&amp;-i\lambda \end{pmatrix}}={\frac {1}{2}}\varphi _{u}i\sigma _{1}+\lambda i\sigma _{3},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92cf3ba0d3901069a5fc35b59709bbdc6986e0d5" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:40.471ex; height:7.509ex;" alt="{\displaystyle A_{u}={\begin{pmatrix}i\lambda &amp;{\frac {i}{2}}\varphi _{u}\\{\frac {i}{2}}\varphi _{u}&amp;-i\lambda \end{pmatrix}}={\frac {1}{2}}\varphi _{u}i\sigma _{1}+\lambda i\sigma _{3},}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{v}={\begin{pmatrix}-{\frac {i}{4\lambda }}\cos \varphi &amp;-{\frac {1}{4\lambda }}\sin \varphi \\{\frac {1}{4\lambda }}\sin \varphi &amp;{\frac {i}{4\lambda }}\cos \varphi \end{pmatrix}}=-{\frac {1}{4\lambda }}i\sin \varphi \sigma _{2}-{\frac {1}{4\lambda }}i\cos \varphi \sigma _{3},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>i</mi> <mrow> <mn>4</mn> <mi>&#x03BB;<!-- λ --></mi> </mrow> </mfrac> </mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>4</mn> <mi>&#x03BB;<!-- λ --></mi> </mrow> </mfrac> </mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>4</mn> <mi>&#x03BB;<!-- λ --></mi> </mrow> </mfrac> </mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>i</mi> <mrow> <mn>4</mn> <mi>&#x03BB;<!-- λ --></mi> </mrow> </mfrac> </mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>4</mn> <mi>&#x03BB;<!-- λ --></mi> </mrow> </mfrac> </mrow> <mi>i</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>4</mn> <mi>&#x03BB;<!-- λ --></mi> </mrow> </mfrac> </mrow> <mi>i</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{v}={\begin{pmatrix}-{\frac {i}{4\lambda }}\cos \varphi &amp;-{\frac {1}{4\lambda }}\sin \varphi \\{\frac {1}{4\lambda }}\sin \varphi &amp;{\frac {i}{4\lambda }}\cos \varphi \end{pmatrix}}=-{\frac {1}{4\lambda }}i\sin \varphi \sigma _{2}-{\frac {1}{4\lambda }}i\cos \varphi \sigma _{3},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf179bbd8861eacf7de7e430d75d87050d5f558f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:64.056ex; height:7.843ex;" alt="{\displaystyle A_{v}={\begin{pmatrix}-{\frac {i}{4\lambda }}\cos \varphi &amp;-{\frac {1}{4\lambda }}\sin \varphi \\{\frac {1}{4\lambda }}\sin \varphi &amp;{\frac {i}{4\lambda }}\cos \varphi \end{pmatrix}}=-{\frac {1}{4\lambda }}i\sin \varphi \sigma _{2}-{\frac {1}{4\lambda }}i\cos \varphi \sigma _{3},}"></span> where the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6ab3208a7d0c634ef720e03ff5a9949e8310edc4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.127ex; height:2.009ex;" alt="{\displaystyle \sigma _{i}}"></span> are the <a href="/wiki/Pauli_matrices" title="Pauli matrices">Pauli matrices</a>. Then the zero-curvature equation <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \partial _{v}A_{u}-\partial _{u}A_{v}+[A_{u},A_{v}]=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msub> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msub> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msub> <mo>+</mo> <mo stretchy="false">[</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \partial _{v}A_{u}-\partial _{u}A_{v}+[A_{u},A_{v}]=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a1df78e5436db77fbcade01f1384a9b8215a448b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.317ex; height:2.843ex;" alt="{\displaystyle \partial _{v}A_{u}-\partial _{u}A_{v}+[A_{u},A_{v}]=0}"></span> </p><p>is equivalent to the sine-Gordon equation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi _{uv}=\sin \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> <mi>v</mi> </mrow> </msub> <mo>=</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi _{uv}=\sin \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c59d0752d87183dc929aa2221b61f159f9d83c9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.351ex; height:2.676ex;" alt="{\displaystyle \varphi _{uv}=\sin \varphi }"></span>. The zero-curvature equation is so named as it corresponds to the curvature being equal to zero if it is defined <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{\mu \nu }=[\partial _{\mu }-A_{\mu },\partial _{\nu }-A_{\nu }]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> <mo>=</mo> <mo stretchy="false">[</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msub> <mo>,</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{\mu \nu }=[\partial _{\mu }-A_{\mu },\partial _{\nu }-A_{\nu }]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f2f7a703f38b35504f21319fbc4ee6a75dfd35d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:25.305ex; height:3.009ex;" alt="{\displaystyle F_{\mu \nu }=[\partial _{\mu }-A_{\mu },\partial _{\nu }-A_{\nu }]}"></span>. </p><p>The pair of matrices <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{u}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{u}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9fa2f64881642cb91a4cb47410d4a2abc46a639" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.916ex; height:2.509ex;" alt="{\displaystyle A_{u}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{v}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{v}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3cd85529417776f1ae43598d068b5ed468a4b704" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.773ex; height:2.509ex;" alt="{\displaystyle A_{v}}"></span> are also known as a <a href="/wiki/Lax_pair" title="Lax pair">Lax pair</a> for the sine-Gordon equation, in the sense that the zero-curvature equation recovers the PDE rather than them satisfying Lax's equation. </p> <div class="mw-heading mw-heading2"><h2 id="Related_equations">Related equations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sine-Gordon_equation&amp;action=edit&amp;section=14" title="Edit section: Related equations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <b><style data-mw-deduplicate="TemplateStyles:r1238216509">.mw-parser-output .vanchor>:target~.vanchor-text{background-color:#b1d2ff}@media screen{html.skin-theme-clientpref-night .mw-parser-output .vanchor>:target~.vanchor-text{background-color:#0f4dc9}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .vanchor>:target~.vanchor-text{background-color:#0f4dc9}}</style><span class="vanchor"><span id="sinh-Gordon_equation"></span><span class="vanchor-text">sinh-Gordon equation</span></span></b> is given by<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi _{xx}-\varphi _{tt}=\sinh \varphi .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>x</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mi>sinh</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi _{xx}-\varphi _{tt}=\sinh \varphi .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/953437b55f6e28b04610c7042b346679e8a595fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.214ex; height:2.676ex;" alt="{\displaystyle \varphi _{xx}-\varphi _{tt}=\sinh \varphi .}"></span></dd></dl> <p>This is the <a href="/wiki/Euler%E2%80%93Lagrange_equation" title="Euler–Lagrange equation">Euler–Lagrange equation</a> of the <a href="/wiki/Lagrangian_(field_theory)" title="Lagrangian (field theory)">Lagrangian</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}={\frac {1}{2}}(\varphi _{t}^{2}-\varphi _{x}^{2})-\cosh \varphi .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <msubsup> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>cosh</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}={\frac {1}{2}}(\varphi _{t}^{2}-\varphi _{x}^{2})-\cosh \varphi .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eea05c2a0a19e1cb19de817a56be8f0c1f37e416" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:26.416ex; height:5.176ex;" alt="{\displaystyle {\mathcal {L}}={\frac {1}{2}}(\varphi _{t}^{2}-\varphi _{x}^{2})-\cosh \varphi .}"></span></dd></dl> <p>Another closely related equation is the <b>elliptic sine-Gordon equation</b> or <b>Euclidean sine-Gordon equation</b>, given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi _{xx}+\varphi _{yy}=\sin \varphi ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>x</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> <mi>y</mi> </mrow> </msub> <mo>=</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi _{xx}+\varphi _{yy}=\sin \varphi ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e43260807fdf3754d75dbe28612537325a53ff4a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:18.368ex; height:2.843ex;" alt="{\displaystyle \varphi _{xx}+\varphi _{yy}=\sin \varphi ,}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> is now a function of the variables <i>x</i> and <i>y</i>. This is no longer a soliton equation, but it has many similar properties, as it is related to the sine-Gordon equation by the <a href="/wiki/Analytic_continuation" title="Analytic continuation">analytic continuation</a> (or <a href="/wiki/Wick_rotation" title="Wick rotation">Wick rotation</a>) <i>y</i>&#160;=&#160;i<i>t</i>. </p><p>The <b>elliptic sinh-Gordon equation</b> may be defined in a similar way. </p><p>Another similar equation comes from the Euler–Lagrange equation for <a href="/wiki/Liouville_field_theory" title="Liouville field theory">Liouville field theory</a> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi _{xx}-\varphi _{tt}=2e^{2\varphi }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>x</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mn>2</mn> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi _{xx}-\varphi _{tt}=2e^{2\varphi }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff9a62a2b228cea25d0dcad66b7194839bca2577" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.533ex; height:3.176ex;" alt="{\displaystyle \varphi _{xx}-\varphi _{tt}=2e^{2\varphi }.}"></span> </p><p>A generalization is given by <a href="/wiki/Toda_field_theory" title="Toda field theory">Toda field theory</a>.<sup id="cite_ref-Yuanxi_14-0" class="reference"><a href="#cite_note-Yuanxi-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> More precisely, Liouville field theory is the Toda field theory for the finite <a href="/wiki/Kac%E2%80%93Moody_algebra" title="Kac–Moody algebra">Kac–Moody algebra</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {sl}}_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">l</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {sl}}_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d39fbc95eae134384e3b799cc509e1708b643cc9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.041ex; width:2.776ex; height:2.509ex;" alt="{\displaystyle {\mathfrak {sl}}_{2}}"></span>, while sin(h)-Gordon is the Toda field theory for the <a href="/wiki/Affine_Kac%E2%80%93Moody_algebra" class="mw-redirect" title="Affine Kac–Moody algebra">affine Kac–Moody algebra</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\mathfrak {sl}}}_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">l</mi> </mrow> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {\mathfrak {sl}}}_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1713b74df7c26254685797c67d1ad3f9a32de2eb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.041ex; width:2.776ex; height:3.176ex;" alt="{\displaystyle {\hat {\mathfrak {sl}}}_{2}}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Infinite_volume_and_on_a_half_line">Infinite volume and on a half line</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sine-Gordon_equation&amp;action=edit&amp;section=15" title="Edit section: Infinite volume and on a half line"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>One can also consider the sine-Gordon model on a circle,<sup id="cite_ref-McKean1981_15-0" class="reference"><a href="#cite_note-McKean1981-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> on a line segment, or on a half line.<sup id="cite_ref-Bowcock2007_16-0" class="reference"><a href="#cite_note-Bowcock2007-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> It is possible to find boundary conditions which preserve the integrability of the model.<sup id="cite_ref-Bowcock2007_16-1" class="reference"><a href="#cite_note-Bowcock2007-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> On a half line the spectrum contains <i>boundary bound states</i> in addition to the solitons and breathers.<sup id="cite_ref-Bowcock2007_16-2" class="reference"><a href="#cite_note-Bowcock2007-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Quantum_sine-Gordon_model">Quantum sine-Gordon model</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sine-Gordon_equation&amp;action=edit&amp;section=16" title="Edit section: Quantum sine-Gordon model"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In <a href="/wiki/Quantum_field_theory" title="Quantum field theory">quantum field theory</a> the sine-Gordon model contains a parameter that can be identified with the <a href="/wiki/Planck_constant" title="Planck constant">Planck constant</a>. The particle spectrum consists of a soliton, an anti-soliton and a finite (possibly zero) number of <a href="/wiki/Breather" title="Breather">breathers</a>.<sup id="cite_ref-Korepin1979_17-0" class="reference"><a href="#cite_note-Korepin1979-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Takada1981_18-0" class="reference"><a href="#cite_note-Takada1981-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Bogoliubov1985_19-0" class="reference"><a href="#cite_note-Bogoliubov1985-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> The number of the breathers depends on the value of the parameter. Multiparticle production cancels on mass shell. </p><p>Semi-classical quantization of the sine-Gordon model was done by <a href="/wiki/Ludwig_Faddeev" class="mw-redirect" title="Ludwig Faddeev">Ludwig Faddeev</a> and <a href="/wiki/Vladimir_Korepin" title="Vladimir Korepin">Vladimir Korepin</a>.<sup id="cite_ref-Faddeev1978_20-0" class="reference"><a href="#cite_note-Faddeev1978-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> The exact quantum <a href="/wiki/Scattering_matrix" class="mw-redirect" title="Scattering matrix">scattering matrix</a> was discovered by <a href="/wiki/Alexander_Zamolodchikov" title="Alexander Zamolodchikov">Alexander Zamolodchikov</a>.<sup id="cite_ref-Zamolodchikov1978_21-0" class="reference"><a href="#cite_note-Zamolodchikov1978-21"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> This model is <a href="/wiki/S-duality" title="S-duality">S-dual</a> to the <a href="/wiki/Thirring_model" title="Thirring model">Thirring model</a>, as discovered by <a href="/wiki/Sidney_Coleman" title="Sidney Coleman">Coleman</a>. <sup id="cite_ref-coleman_22-0" class="reference"><a href="#cite_note-coleman-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> This is sometimes known as the Coleman correspondence and serves as an example of boson-fermion correspondence in the interacting case. This article also showed that the constants appearing in the model behave nicely under <a href="/wiki/Renormalization" title="Renormalization">renormalization</a>: there are three parameters <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha _{0},\beta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mi>&#x03B2;<!-- β --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha _{0},\beta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87413edba87917e376c099d3686b30d5f3b80084" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.908ex; height:2.509ex;" alt="{\displaystyle \alpha _{0},\beta }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma _{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma _{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/407f2fbc64e21bb432f397fdb816de0f5083d900" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.259ex; height:2.176ex;" alt="{\displaystyle \gamma _{0}}"></span>. Coleman showed <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha _{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha _{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a214eff2fcc322f780dd8837e7472b0edb994a13" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.542ex; height:2.009ex;" alt="{\displaystyle \alpha _{0}}"></span> receives only a multiplicative correction, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma _{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma _{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/407f2fbc64e21bb432f397fdb816de0f5083d900" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.259ex; height:2.176ex;" alt="{\displaystyle \gamma _{0}}"></span> receives only an additive correction, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B2;<!-- β --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ed48a5e36207156fb792fa79d29925d2f7901e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.332ex; height:2.509ex;" alt="{\displaystyle \beta }"></span> is not renormalized. Further, for a critical, non-zero value <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta ={\sqrt {4\pi }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B2;<!-- β --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta ={\sqrt {4\pi }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b14bace1099a327e1422cdef4a4d15c6dc3e8a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.861ex; height:3.009ex;" alt="{\displaystyle \beta ={\sqrt {4\pi }}}"></span>, the theory is in fact dual to a <i>free</i> massive <a href="/wiki/Dirac_equation#Lagrangian_formulation" title="Dirac equation">Dirac field theory</a>. </p><p>The quantum sine-Gordon equation should be modified so the exponentials become <a href="/wiki/Vertex_operator" class="mw-redirect" title="Vertex operator">vertex operators</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}_{QsG}={\frac {1}{2}}\partial _{\mu }\varphi \partial ^{\mu }\varphi +{\frac {1}{2}}m_{0}^{2}\varphi ^{2}-\alpha (V_{\beta }+V_{-\beta })}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>Q</mi> <mi>s</mi> <mi>G</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msub> <mi>&#x03C6;<!-- φ --></mi> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msup> <mi>&#x03C6;<!-- φ --></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msubsup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <msup> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">(</mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <mo>+</mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}_{QsG}={\frac {1}{2}}\partial _{\mu }\varphi \partial ^{\mu }\varphi +{\frac {1}{2}}m_{0}^{2}\varphi ^{2}-\alpha (V_{\beta }+V_{-\beta })}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa3110faf23e7261c450784e3a47eb84cdc0d78d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:44.183ex; height:5.176ex;" alt="{\displaystyle {\mathcal {L}}_{QsG}={\frac {1}{2}}\partial _{\mu }\varphi \partial ^{\mu }\varphi +{\frac {1}{2}}m_{0}^{2}\varphi ^{2}-\alpha (V_{\beta }+V_{-\beta })}"></span></dd></dl> <p>with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V_{\beta }=:e^{i\beta \varphi }:}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <mo>=:</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msup> <mo>:</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V_{\beta }=:e^{i\beta \varphi }:}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c9b34a0119d769c9247097f1378ffc11b3cb580" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.467ex; height:3.343ex;" alt="{\displaystyle V_{\beta }=:e^{i\beta \varphi }:}"></span>, where the semi-colons denote <a href="/wiki/Normal_ordering" class="mw-redirect" title="Normal ordering">normal ordering</a>. A possible mass term is included. </p> <div class="mw-heading mw-heading3"><h3 id="Regimes_of_renormalizability">Regimes of renormalizability</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sine-Gordon_equation&amp;action=edit&amp;section=17" title="Edit section: Regimes of renormalizability"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For different values of the parameter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a79f17c76984dead8b0c072b4fdf537b13895e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.391ex; height:3.009ex;" alt="{\displaystyle \beta ^{2}}"></span>, the <a href="/wiki/Renormalization" title="Renormalization">renormalizability</a> properties of the sine-Gordon theory change.<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> The identification of these regimes is attributed to <a href="/wiki/J%C3%BCrg_Fr%C3%B6hlich" title="Jürg Fröhlich">Jürg Fröhlich</a>. </p><p>The <b>finite regime</b> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta ^{2}&lt;4\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&lt;</mo> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta ^{2}&lt;4\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c657eeceaa04ae7bce987b3c2f7916d13e3a0fcc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.984ex; height:3.009ex;" alt="{\displaystyle \beta ^{2}&lt;4\pi }"></span>, where no <a href="/wiki/Counterterm" class="mw-redirect" title="Counterterm">counterterms</a> are needed to render the theory well-posed. The <b>super-renormalizable regime</b> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 4\pi &lt;\beta ^{2}&lt;8\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <mo>&lt;</mo> <msup> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&lt;</mo> <mn>8</mn> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 4\pi &lt;\beta ^{2}&lt;8\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46296712400fcae10f6e5fac3cfb002602868601" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.577ex; height:3.009ex;" alt="{\displaystyle 4\pi &lt;\beta ^{2}&lt;8\pi }"></span>, where a finite number of counterterms are needed to render the theory well-posed. More counterterms are needed for each threshold <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {n}{n+1}}8\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mn>8</mn> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {n}{n+1}}8\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c36bb8c20ca11b761ab2987da1b6166648323593" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:8.728ex; height:4.843ex;" alt="{\displaystyle {\frac {n}{n+1}}8\pi }"></span> passed.<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> For <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta ^{2}&gt;8\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&gt;</mo> <mn>8</mn> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta ^{2}&gt;8\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85c9dbe2207b5d1f4afc9f067b4189c09c3a7592" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.984ex; height:3.009ex;" alt="{\displaystyle \beta ^{2}&gt;8\pi }"></span>, the theory becomes ill-defined (Coleman&#160;<a href="#CITEREFColeman1975">1975</a>). The boundary values are <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta ^{2}=4\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta ^{2}=4\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ac0cdbaa36ab9358f89c1fb7a05f591fe2917e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.984ex; height:3.009ex;" alt="{\displaystyle \beta ^{2}=4\pi }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta ^{2}=8\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>8</mn> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta ^{2}=8\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/96a3bb8d8e052835208e95af0d659535fd6b644d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.984ex; height:3.009ex;" alt="{\displaystyle \beta ^{2}=8\pi }"></span>, which are respectively the free fermion point, as the theory is dual to a free fermion via the Coleman correspondence, and the self-dual point, where the vertex operators form an <a href="/wiki/Affine_Kac%E2%80%93Moody_algebra" class="mw-redirect" title="Affine Kac–Moody algebra">affine sl<sub>2</sub> subalgebra</a>, and the theory becomes strictly renormalizable (renormalizable, but not super-renormalizable). </p> <div class="mw-heading mw-heading2"><h2 id="Stochastic_sine-Gordon_model">Stochastic sine-Gordon model</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sine-Gordon_equation&amp;action=edit&amp;section=18" title="Edit section: Stochastic sine-Gordon model"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <b>stochastic</b> or <b>dynamical sine-Gordon model</b> has been studied by <a href="/wiki/Martin_Hairer" title="Martin Hairer">Martin Hairer</a> and Hao Shen <sup id="cite_ref-hairer-shen_25-0" class="reference"><a href="#cite_note-hairer-shen-25"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup> allowing heuristic results from the quantum sine-Gordon theory to be proven in a statistical setting. </p><p>The equation is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \partial _{t}u={\frac {1}{2}}\Delta u+c\sin(\beta u+\theta )+\xi ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mi>u</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>u</mi> <mo>+</mo> <mi>c</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03B2;<!-- β --></mi> <mi>u</mi> <mo>+</mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \partial _{t}u={\frac {1}{2}}\Delta u+c\sin(\beta u+\theta )+\xi ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8fe26ebe17fff5a2036c83938a7fe16603498235" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:31.762ex; height:5.176ex;" alt="{\displaystyle \partial _{t}u={\frac {1}{2}}\Delta u+c\sin(\beta u+\theta )+\xi ,}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c,\beta ,\theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>,</mo> <mi>&#x03B2;<!-- β --></mi> <mo>,</mo> <mi>&#x03B8;<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c,\beta ,\theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc2bea911a086ba700b9c6ebd39be59e05edf17c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.497ex; height:2.509ex;" alt="{\displaystyle c,\beta ,\theta }"></span> are real-valued constants, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \xi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BE;<!-- ξ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \xi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0b461aaf61091abd5d2c808931c48b8ff9647db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.03ex; height:2.509ex;" alt="{\displaystyle \xi }"></span> is space-time <a href="/wiki/White_noise" title="White noise">white noise</a>. The space dimension is fixed to 2. In the proof of existence of solutions, the thresholds <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta ^{2}={\frac {n}{n+1}}8\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mn>8</mn> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta ^{2}={\frac {n}{n+1}}8\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27d2bcc4c94761e3765108d4f529de45801e49c9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:14.218ex; height:4.843ex;" alt="{\displaystyle \beta ^{2}={\frac {n}{n+1}}8\pi }"></span> again play a role in determining convergence of certain terms. </p> <div class="mw-heading mw-heading2"><h2 id="Supersymmetric_sine-Gordon_model">Supersymmetric sine-Gordon model</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sine-Gordon_equation&amp;action=edit&amp;section=19" title="Edit section: Supersymmetric sine-Gordon model"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A supersymmetric extension of the sine-Gordon model also exists.<sup id="cite_ref-Inami1995_26-0" class="reference"><a href="#cite_note-Inami1995-26"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup> Integrability preserving boundary conditions for this extension can be found as well.<sup id="cite_ref-Inami1995_26-1" class="reference"><a href="#cite_note-Inami1995-26"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Physical_applications">Physical applications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sine-Gordon_equation&amp;action=edit&amp;section=20" title="Edit section: Physical applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The sine-Gordon model arises as the continuum limit of the <a href="/wiki/Frenkel%E2%80%93Kontorova_model" title="Frenkel–Kontorova model">Frenkel–Kontorova model</a> which models crystal dislocations. </p><p>Dynamics in <a href="/wiki/Long_Josephson_junction" title="Long Josephson junction">long Josephson junctions</a> are well-described by the sine-Gordon equations, and conversely provide a useful experimental system for studying the sine-Gordon model.<sup id="cite_ref-MU_27-0" class="reference"><a href="#cite_note-MU-27"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup> </p><p>The sine-Gordon model is in the same <a href="/wiki/Universality_class" title="Universality class">universality class</a> as the <a href="/wiki/Effective_action" title="Effective action">effective action</a> for a <a href="/wiki/Coulomb_gas" title="Coulomb gas">Coulomb gas</a> of <a href="/wiki/Quantum_vortex" title="Quantum vortex">vortices</a> and anti-vortices in the continuous <a href="/wiki/Classical_XY_model" title="Classical XY model">classical XY model</a>, which is a model of magnetism.<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> The <a href="/wiki/Kosterlitz%E2%80%93Thouless_transition" class="mw-redirect" title="Kosterlitz–Thouless transition">Kosterlitz–Thouless transition</a> for vortices can therefore be derived from a <a href="/wiki/Renormalization_group" title="Renormalization group">renormalization group</a> analysis of the sine-Gordon field theory.<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup> </p><p>The sine-Gordon equation also arises as the formal continuum limit of a different model of magnetism, the <a href="/wiki/Quantum_Heisenberg_model" title="Quantum Heisenberg model">quantum Heisenberg model</a>, in particular the XXZ model.<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sine-Gordon_equation&amp;action=edit&amp;section=21" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Josephson_effect" title="Josephson effect">Josephson effect</a></li> <li><a href="/wiki/Fluxon" title="Fluxon">Fluxon</a></li> <li><a href="/wiki/Shape_waves" title="Shape waves">Shape waves</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sine-Gordon_equation&amp;action=edit&amp;section=22" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width reflist-columns-2"> <ol class="references"> <li id="cite_note-Bour1862-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-Bour1862_1-0">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFBour1862" class="citation journal cs1">Bour, Edmond (1862). <a rel="nofollow" class="external text" href="https://gallica.bnf.fr/ark:/12148/bpt6k433694t">"Theorie de la deformation des surfaces"</a>. <i>Journal de l'École impériale polytechnique</i>. <b>22</b> (39): 1–148. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/55567842">55567842</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+de+l%27%C3%89cole+imp%C3%A9riale+polytechnique&amp;rft.atitle=Theorie+de+la+deformation+des+surfaces&amp;rft.volume=22&amp;rft.issue=39&amp;rft.pages=1-148&amp;rft.date=1862&amp;rft_id=info%3Aoclcnum%2F55567842&amp;rft.aulast=Bour&amp;rft.aufirst=Edmond&amp;rft_id=https%3A%2F%2Fgallica.bnf.fr%2Fark%3A%2F12148%2Fbpt6k433694t&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASine-Gordon+equation" class="Z3988"></span></span> </li> <li id="cite_note-FrenkelKontorova1939-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-FrenkelKontorova1939_2-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFrenkelKontorova1939" class="citation journal cs1">Frenkel J, Kontorova T (1939). "On the theory of plastic deformation and twinning". <i>Izvestiya Akademii Nauk SSSR, Seriya Fizicheskaya</i>. <b>1</b>: 137–149.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Izvestiya+Akademii+Nauk+SSSR%2C+Seriya+Fizicheskaya&amp;rft.atitle=On+the+theory+of+plastic+deformation+and+twinning&amp;rft.volume=1&amp;rft.pages=137-149&amp;rft.date=1939&amp;rft.aulast=Frenkel&amp;rft.aufirst=J&amp;rft.au=Kontorova%2C+T&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASine-Gordon+equation" class="Z3988"></span></span> </li> <li id="cite_note-hirota-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-hirota_3-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHirota1972" class="citation journal cs1">Hirota, Ryogo (November 1972). "Exact Solution of the Sine-Gordon Equation for Multiple Collisions of Solitons". <i>Journal of the Physical Society of Japan</i>. <b>33</b> (5): 1459–1463. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1972JPSJ...33.1459H">1972JPSJ...33.1459H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1143%2FJPSJ.33.1459">10.1143/JPSJ.33.1459</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+the+Physical+Society+of+Japan&amp;rft.atitle=Exact+Solution+of+the+Sine-Gordon+Equation+for+Multiple+Collisions+of+Solitons&amp;rft.volume=33&amp;rft.issue=5&amp;rft.pages=1459-1463&amp;rft.date=1972-11&amp;rft_id=info%3Adoi%2F10.1143%2FJPSJ.33.1459&amp;rft_id=info%3Abibcode%2F1972JPSJ...33.1459H&amp;rft.aulast=Hirota&amp;rft.aufirst=Ryogo&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASine-Gordon+equation" class="Z3988"></span></span> </li> <li id="cite_note-Rajaraman1989-4"><span class="mw-cite-backlink">^ <a href="#cite_ref-Rajaraman1989_4-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Rajaraman1989_4-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRajaraman1989" class="citation book cs1">Rajaraman, R. (1989). <i>Solitons and Instantons: An Introduction to Solitons and Instantons in Quantum Field Theory</i>. North-Holland Personal Library. Vol.&#160;15. North-Holland. pp.&#160;34–45. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-444-87047-6" title="Special:BookSources/978-0-444-87047-6"><bdi>978-0-444-87047-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Solitons+and+Instantons%3A+An+Introduction+to+Solitons+and+Instantons+in+Quantum+Field+Theory&amp;rft.series=North-Holland+Personal+Library&amp;rft.pages=34-45&amp;rft.pub=North-Holland&amp;rft.date=1989&amp;rft.isbn=978-0-444-87047-6&amp;rft.aulast=Rajaraman&amp;rft.aufirst=R.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASine-Gordon+equation" class="Z3988"></span></span> </li> <li id="cite_note-Polyanin2004-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-Polyanin2004_5-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPolyaninValentin_F._Zaitsev2004" class="citation book cs1">Polyanin, Andrei D.; Valentin F. Zaitsev (2004). <i>Handbook of Nonlinear Partial Differential Equations</i>. Chapman &amp; Hall/CRC Press. pp.&#160;470–492. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-58488-355-5" title="Special:BookSources/978-1-58488-355-5"><bdi>978-1-58488-355-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Handbook+of+Nonlinear+Partial+Differential+Equations&amp;rft.pages=470-492&amp;rft.pub=Chapman+%26+Hall%2FCRC+Press&amp;rft.date=2004&amp;rft.isbn=978-1-58488-355-5&amp;rft.aulast=Polyanin&amp;rft.aufirst=Andrei+D.&amp;rft.au=Valentin+F.+Zaitsev&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASine-Gordon+equation" class="Z3988"></span></span> </li> <li id="cite_note-terng-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-terng_6-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTerng,_C._L.,_&amp;_Uhlenbeck,_K.2000" class="citation journal cs1">Terng, C. L., &amp; Uhlenbeck, K. (2000). <a rel="nofollow" class="external text" href="https://www.ams.org/journals/notices/200001/fea-terng.pdf">"Geometry of solitons"</a> <span class="cs1-format">(PDF)</span>. <i>Notices of the AMS</i>. <b>47</b> (1): 17–25.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Notices+of+the+AMS&amp;rft.atitle=Geometry+of+solitons&amp;rft.volume=47&amp;rft.issue=1&amp;rft.pages=17-25&amp;rft.date=2000&amp;rft.au=Terng%2C+C.+L.%2C+%26+Uhlenbeck%2C+K.&amp;rft_id=https%3A%2F%2Fwww.ams.org%2Fjournals%2Fnotices%2F200001%2Ffea-terng.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASine-Gordon+equation" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_journal" title="Template:Cite journal">cite journal</a>}}</code>: CS1 maint: multiple names: authors list (<a href="/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">link</a>)</span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMalomed2014" class="citation cs2">Malomed, Boris A. (2014), Cuevas-Maraver, Jesús; Kevrekidis, Panayotis G.; Williams, Floyd (eds.), <a rel="nofollow" class="external text" href="https://link.springer.com/10.1007/978-3-319-06722-3_1">"The sine-Gordon Model: General Background, Physical Motivations, Inverse Scattering, and Solitons"</a>, <i>The sine-Gordon Model and its Applications</i>, vol.&#160;10, Cham: Springer International Publishing, pp.&#160;1–30, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-319-06722-3_1">10.1007/978-3-319-06722-3_1</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-319-06721-6" title="Special:BookSources/978-3-319-06721-6"><bdi>978-3-319-06721-6</bdi></a><span class="reference-accessdate">, retrieved <span class="nowrap">2023-11-17</span></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+sine-Gordon+Model+and+its+Applications&amp;rft.atitle=The+sine-Gordon+Model%3A+General+Background%2C+Physical+Motivations%2C+Inverse+Scattering%2C+and+Solitons&amp;rft.volume=10&amp;rft.pages=1-30&amp;rft.date=2014&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-319-06722-3_1&amp;rft.isbn=978-3-319-06721-6&amp;rft.aulast=Malomed&amp;rft.aufirst=Boris+A.&amp;rft_id=https%3A%2F%2Flink.springer.com%2F10.1007%2F978-3-319-06722-3_1&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASine-Gordon+equation" class="Z3988"></span></span> </li> <li id="cite_note-Rubinstein1970-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-Rubinstein1970_8-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRubinstein1970" class="citation journal cs1">Rubinstein, Julio (1970). "Sine-Gordon equation". <i>Journal of Mathematical Physics</i>. <b>11</b> (1): 258–266. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1970JMP....11..258R">1970JMP....11..258R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.1665057">10.1063/1.1665057</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Mathematical+Physics&amp;rft.atitle=Sine-Gordon+equation&amp;rft.volume=11&amp;rft.issue=1&amp;rft.pages=258-266&amp;rft.date=1970&amp;rft_id=info%3Adoi%2F10.1063%2F1.1665057&amp;rft_id=info%3Abibcode%2F1970JMP....11..258R&amp;rft.aulast=Rubinstein&amp;rft.aufirst=Julio&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASine-Gordon+equation" class="Z3988"></span></span> </li> <li id="cite_note-Georgiev2004-9"><span class="mw-cite-backlink">^ <a href="#cite_ref-Georgiev2004_9-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Georgiev2004_9-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Georgiev2004_9-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Georgiev2004_9-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Georgiev2004_9-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Georgiev2004_9-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Georgiev2004_9-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-Georgiev2004_9-7"><sup><i><b>h</b></i></sup></a> <a href="#cite_ref-Georgiev2004_9-8"><sup><i><b>i</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGeorgiev_D._D.Papaioanou_S._N.Glazebrook_J._F.2004" class="citation journal cs1">Georgiev D. D.; Papaioanou S. N.; Glazebrook J. F. (2004). <a rel="nofollow" class="external text" href="http://cogprints.org/4364/">"Neuronic system inside neurons: molecular biology and biophysics of neuronal microtubules"</a>. <i>Biomedical Reviews</i>. <b>15</b>: 67–75. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.14748%2Fbmr.v15.103">10.14748/bmr.v15.103</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Biomedical+Reviews&amp;rft.atitle=Neuronic+system+inside+neurons%3A+molecular+biology+and+biophysics+of+neuronal+microtubules&amp;rft.volume=15&amp;rft.pages=67-75&amp;rft.date=2004&amp;rft_id=info%3Adoi%2F10.14748%2Fbmr.v15.103&amp;rft.au=Georgiev+D.+D.&amp;rft.au=Papaioanou+S.+N.&amp;rft.au=Glazebrook+J.+F.&amp;rft_id=http%3A%2F%2Fcogprints.org%2F4364%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASine-Gordon+equation" class="Z3988"></span></span> </li> <li id="cite_note-Rogers2002-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-Rogers2002_10-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRogersW._K._Schief2002" class="citation book cs1">Rogers, C.; W. K. Schief (2002). <i>Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory</i>. Cambridge Texts in Applied Mathematics. New York: <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-01288-1" title="Special:BookSources/978-0-521-01288-1"><bdi>978-0-521-01288-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=B%C3%A4cklund+and+Darboux+Transformations%3A+Geometry+and+Modern+Applications+in+Soliton+Theory&amp;rft.place=New+York&amp;rft.series=Cambridge+Texts+in+Applied+Mathematics&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2002&amp;rft.isbn=978-0-521-01288-1&amp;rft.aulast=Rogers&amp;rft.aufirst=C.&amp;rft.au=W.+K.+Schief&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASine-Gordon+equation" class="Z3988"></span></span> </li> <li id="cite_note-mir-11"><span class="mw-cite-backlink">^ <a href="#cite_ref-mir_11-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-mir_11-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Miroshnichenko A. E., Vasiliev A. A., Dmitriev S. V. <i><a rel="nofollow" class="external text" href="http://homepages.tversu.ru/~s000154/collision/main.html">Solitons and Soliton Collisions</a></i>.</span> </li> <li id="cite_note-SIT-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-SIT_12-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDunajski2010" class="citation book cs1">Dunajski, Maciej (2010). <i>Solitons, instantons, and twistors</i>. Oxford: Oxford University Press. p.&#160;49. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-19-857063-9" title="Special:BookSources/978-0-19-857063-9"><bdi>978-0-19-857063-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Solitons%2C+instantons%2C+and+twistors&amp;rft.place=Oxford&amp;rft.pages=49&amp;rft.pub=Oxford+University+Press&amp;rft.date=2010&amp;rft.isbn=978-0-19-857063-9&amp;rft.aulast=Dunajski&amp;rft.aufirst=Maciej&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASine-Gordon+equation" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPolyaninZaitsev2011" class="citation book cs1">Polyanin, Andrei D.; Zaitsev, Valentin F. (16 December 2011). <i>Handbook of Nonlinear Partial Differential Equations</i> (Second&#160;ed.). Boca Raton: CRC Press. p.&#160;485. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4200-8723-9" title="Special:BookSources/978-1-4200-8723-9"><bdi>978-1-4200-8723-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Handbook+of+Nonlinear+Partial+Differential+Equations&amp;rft.place=Boca+Raton&amp;rft.pages=485&amp;rft.edition=Second&amp;rft.pub=CRC+Press&amp;rft.date=2011-12-16&amp;rft.isbn=978-1-4200-8723-9&amp;rft.aulast=Polyanin&amp;rft.aufirst=Andrei+D.&amp;rft.au=Zaitsev%2C+Valentin+F.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASine-Gordon+equation" class="Z3988"></span></span> </li> <li id="cite_note-Yuanxi-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-Yuanxi_14-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYuanxiTang,_Jiashi2006" class="citation journal cs1">Yuanxi, Xie; Tang, Jiashi (February 2006). "A unified method for solving sinh-Gordon–type equations". <i>Il Nuovo Cimento B</i>. <b>121</b> (2): 115–121. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006NCimB.121..115X">2006NCimB.121..115X</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1393%2Fncb%2Fi2005-10164-6">10.1393/ncb/i2005-10164-6</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Il+Nuovo+Cimento+B&amp;rft.atitle=A+unified+method+for+solving+sinh-Gordon%E2%80%93type+equations&amp;rft.volume=121&amp;rft.issue=2&amp;rft.pages=115-121&amp;rft.date=2006-02&amp;rft_id=info%3Adoi%2F10.1393%2Fncb%2Fi2005-10164-6&amp;rft_id=info%3Abibcode%2F2006NCimB.121..115X&amp;rft.aulast=Yuanxi&amp;rft.aufirst=Xie&amp;rft.au=Tang%2C+Jiashi&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASine-Gordon+equation" class="Z3988"></span></span> </li> <li id="cite_note-McKean1981-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-McKean1981_15-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMcKean1981" class="citation journal cs1">McKean, H. P. (1981). "The sine-Gordon and sinh-Gordon equations on the circle". <i>Communications on Pure and Applied Mathematics</i>. <b>34</b> (2): 197–257. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fcpa.3160340204">10.1002/cpa.3160340204</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Communications+on+Pure+and+Applied+Mathematics&amp;rft.atitle=The+sine-Gordon+and+sinh-Gordon+equations+on+the+circle&amp;rft.volume=34&amp;rft.issue=2&amp;rft.pages=197-257&amp;rft.date=1981&amp;rft_id=info%3Adoi%2F10.1002%2Fcpa.3160340204&amp;rft.aulast=McKean&amp;rft.aufirst=H.+P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASine-Gordon+equation" class="Z3988"></span></span> </li> <li id="cite_note-Bowcock2007-16"><span class="mw-cite-backlink">^ <a href="#cite_ref-Bowcock2007_16-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Bowcock2007_16-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Bowcock2007_16-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBowcockTzamtzis2007" class="citation journal cs1">Bowcock, Peter; Tzamtzis, Georgios (2007). "The complex sine-Gordon model on a half line". <i>Journal of High Energy Physics</i>. <b>2007</b> (3): 047. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/hep-th/0203139">hep-th/0203139</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2007JHEP...03..047B">2007JHEP...03..047B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1126-6708%2F2007%2F03%2F047">10.1088/1126-6708/2007/03/047</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119501952">119501952</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+High+Energy+Physics&amp;rft.atitle=The+complex+sine-Gordon+model+on+a+half+line&amp;rft.volume=2007&amp;rft.issue=3&amp;rft.pages=047&amp;rft.date=2007&amp;rft_id=info%3Aarxiv%2Fhep-th%2F0203139&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119501952%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1088%2F1126-6708%2F2007%2F03%2F047&amp;rft_id=info%3Abibcode%2F2007JHEP...03..047B&amp;rft.aulast=Bowcock&amp;rft.aufirst=Peter&amp;rft.au=Tzamtzis%2C+Georgios&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASine-Gordon+equation" class="Z3988"></span></span> </li> <li id="cite_note-Korepin1979-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-Korepin1979_17-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKorepin1979" class="citation journal cs1">Korepin, V. E. (1979). "Direct calculation of the S matrix in the massive Thirring model". <i>Theoretical and Mathematical Physics</i>. <b>41</b> (2): 953–967. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1979TMP....41..953K">1979TMP....41..953K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fbf01028501">10.1007/bf01028501</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:121527379">121527379</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Theoretical+and+Mathematical+Physics&amp;rft.atitle=Direct+calculation+of+the+S+matrix+in+the+massive+Thirring+model&amp;rft.volume=41&amp;rft.issue=2&amp;rft.pages=953-967&amp;rft.date=1979&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A121527379%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2Fbf01028501&amp;rft_id=info%3Abibcode%2F1979TMP....41..953K&amp;rft.aulast=Korepin&amp;rft.aufirst=V.+E.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASine-Gordon+equation" class="Z3988"></span></span> </li> <li id="cite_note-Takada1981-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-Takada1981_18-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTakadaMisawa1981" class="citation journal cs1">Takada, Satoshi; Misawa, Susumu (1981). "The Quantum Sine-Gordon Model and the Fermi-Bose Relation". <i>Progress of Theoretical Physics</i>. <b>66</b> (1): 101–117. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1981PThPh..66..101T">1981PThPh..66..101T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1143%2Fptp.66.101">10.1143/ptp.66.101</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Progress+of+Theoretical+Physics&amp;rft.atitle=The+Quantum+Sine-Gordon+Model+and+the+Fermi-Bose+Relation&amp;rft.volume=66&amp;rft.issue=1&amp;rft.pages=101-117&amp;rft.date=1981&amp;rft_id=info%3Adoi%2F10.1143%2Fptp.66.101&amp;rft_id=info%3Abibcode%2F1981PThPh..66..101T&amp;rft.aulast=Takada&amp;rft.aufirst=Satoshi&amp;rft.au=Misawa%2C+Susumu&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASine-Gordon+equation" class="Z3988"></span></span> </li> <li id="cite_note-Bogoliubov1985-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-Bogoliubov1985_19-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBogoliubovKorepinIzergin1985" class="citation journal cs1">Bogoliubov, N. M.; Korepin, V. E.; Izergin, A. G. (1985). "Structure of the vacuum in the quantum sine-Gordon model". <i>Physics Letters B</i>. <b>159</b> (4): 345–347. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1985PhLB..159..345B">1985PhLB..159..345B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0370-2693%2885%2990264-3">10.1016/0370-2693(85)90264-3</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physics+Letters+B&amp;rft.atitle=Structure+of+the+vacuum+in+the+quantum+sine-Gordon+model&amp;rft.volume=159&amp;rft.issue=4&amp;rft.pages=345-347&amp;rft.date=1985&amp;rft_id=info%3Adoi%2F10.1016%2F0370-2693%2885%2990264-3&amp;rft_id=info%3Abibcode%2F1985PhLB..159..345B&amp;rft.aulast=Bogoliubov&amp;rft.aufirst=N.+M.&amp;rft.au=Korepin%2C+V.+E.&amp;rft.au=Izergin%2C+A.+G.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASine-Gordon+equation" class="Z3988"></span></span> </li> <li id="cite_note-Faddeev1978-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-Faddeev1978_20-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFaddeevKorepin1978" class="citation journal cs1">Faddeev, L. D.; Korepin, V. E. (1978). "Quantum theory of solitons". <i>Physics Reports</i>. <b>42</b> (1): 1–87. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1978PhR....42....1F">1978PhR....42....1F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0370-1573%2878%2990058-3">10.1016/0370-1573(78)90058-3</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physics+Reports&amp;rft.atitle=Quantum+theory+of+solitons&amp;rft.volume=42&amp;rft.issue=1&amp;rft.pages=1-87&amp;rft.date=1978&amp;rft_id=info%3Adoi%2F10.1016%2F0370-1573%2878%2990058-3&amp;rft_id=info%3Abibcode%2F1978PhR....42....1F&amp;rft.aulast=Faddeev&amp;rft.aufirst=L.+D.&amp;rft.au=Korepin%2C+V.+E.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASine-Gordon+equation" class="Z3988"></span></span> </li> <li id="cite_note-Zamolodchikov1978-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-Zamolodchikov1978_21-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZamolodchikovZamolodchikov1978" class="citation journal cs1">Zamolodchikov, Alexander B.; Zamolodchikov, Alexey B. (1978). "Relativistic factorized S-matrix in two dimensions having O(N) isotopic symmetry". <i>Nuclear Physics B</i>. <b>133</b> (3): 525–535. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1978NuPhB.133..525Z">1978NuPhB.133..525Z</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0550-3213%2878%2990239-0">10.1016/0550-3213(78)90239-0</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nuclear+Physics+B&amp;rft.atitle=Relativistic+factorized+S-matrix+in+two+dimensions+having+O%28N%29+isotopic+symmetry&amp;rft.volume=133&amp;rft.issue=3&amp;rft.pages=525-535&amp;rft.date=1978&amp;rft_id=info%3Adoi%2F10.1016%2F0550-3213%2878%2990239-0&amp;rft_id=info%3Abibcode%2F1978NuPhB.133..525Z&amp;rft.aulast=Zamolodchikov&amp;rft.aufirst=Alexander+B.&amp;rft.au=Zamolodchikov%2C+Alexey+B.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASine-Gordon+equation" class="Z3988"></span></span> </li> <li id="cite_note-coleman-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-coleman_22-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFColeman1975" class="citation journal cs1">Coleman, Sidney (15 April 1975). <a rel="nofollow" class="external text" href="https://journals.aps.org/prd/abstract/10.1103/PhysRevD.11.2088">"Quantum sine-Gordon equation as the massive Thirring model"</a>. <i>Physical Review D</i>. <b>11</b> (8): 2088–2097. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1975PhRvD..11.2088C">1975PhRvD..11.2088C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevD.11.2088">10.1103/PhysRevD.11.2088</a><span class="reference-accessdate">. Retrieved <span class="nowrap">27 January</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+D&amp;rft.atitle=Quantum+sine-Gordon+equation+as+the+massive+Thirring+model&amp;rft.volume=11&amp;rft.issue=8&amp;rft.pages=2088-2097&amp;rft.date=1975-04-15&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevD.11.2088&amp;rft_id=info%3Abibcode%2F1975PhRvD..11.2088C&amp;rft.aulast=Coleman&amp;rft.aufirst=Sidney&amp;rft_id=https%3A%2F%2Fjournals.aps.org%2Fprd%2Fabstract%2F10.1103%2FPhysRevD.11.2088&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASine-Gordon+equation" class="Z3988"></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFröbCadamuro2022" class="citation arxiv cs1">Fröb, Markus B.; Cadamuro, Daniela (2022). "Local operators in the Sine-Gordon model: $\partial_μϕ\, \partial_νϕ$ and the stress tensor". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2205.09223">2205.09223</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/math-ph">math-ph</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=Local+operators+in+the+Sine-Gordon+model%3A+%24%5Cpartial_%CE%BC%CF%95%5C%2C+%5Cpartial_%CE%BD%CF%95%24+and+the+stress+tensor&amp;rft.date=2022&amp;rft_id=info%3Aarxiv%2F2205.09223&amp;rft.aulast=Fr%C3%B6b&amp;rft.aufirst=Markus+B.&amp;rft.au=Cadamuro%2C+Daniela&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASine-Gordon+equation" class="Z3988"></span></span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChandraHairerShen2018" class="citation arxiv cs1">Chandra, Ajay; Hairer, Martin; Shen, Hao (2018). "The dynamical sine-Gordon model in the full subcritical regime". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1808.02594">1808.02594</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/math.PR">math.PR</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=The+dynamical+sine-Gordon+model+in+the+full+subcritical+regime&amp;rft.date=2018&amp;rft_id=info%3Aarxiv%2F1808.02594&amp;rft.aulast=Chandra&amp;rft.aufirst=Ajay&amp;rft.au=Hairer%2C+Martin&amp;rft.au=Shen%2C+Hao&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASine-Gordon+equation" class="Z3988"></span></span> </li> <li id="cite_note-hairer-shen-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-hairer-shen_25-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHairerShen2016" class="citation journal cs1">Hairer, Martin; Shen, Hao (February 2016). <a rel="nofollow" class="external text" href="https://link.springer.com/article/10.1007/s00220-015-2525-3">"The Dynamical Sine-Gordon Model"</a>. <i>Communications in Mathematical Physics</i>. <b>341</b> (3): 933–989. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1409.5724">1409.5724</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016CMaPh.341..933H">2016CMaPh.341..933H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00220-015-2525-3">10.1007/s00220-015-2525-3</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:253750515">253750515</a><span class="reference-accessdate">. Retrieved <span class="nowrap">14 May</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Communications+in+Mathematical+Physics&amp;rft.atitle=The+Dynamical+Sine-Gordon+Model&amp;rft.volume=341&amp;rft.issue=3&amp;rft.pages=933-989&amp;rft.date=2016-02&amp;rft_id=info%3Aarxiv%2F1409.5724&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A253750515%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2Fs00220-015-2525-3&amp;rft_id=info%3Abibcode%2F2016CMaPh.341..933H&amp;rft.aulast=Hairer&amp;rft.aufirst=Martin&amp;rft.au=Shen%2C+Hao&amp;rft_id=https%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2Fs00220-015-2525-3&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASine-Gordon+equation" class="Z3988"></span></span> </li> <li id="cite_note-Inami1995-26"><span class="mw-cite-backlink">^ <a href="#cite_ref-Inami1995_26-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Inami1995_26-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFInamiOdakeZhang1995" class="citation journal cs1">Inami, Takeo; Odake, Satoru; Zhang, Yao-Zhong (1995). "Supersymmetric extension of the sine-Gordon theory with integrable boundary interactions". <i>Physics Letters B</i>. <b>359</b> (1): 118–124. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/hep-th/9506157">hep-th/9506157</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1995PhLB..359..118I">1995PhLB..359..118I</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0370-2693%2895%2901072-X">10.1016/0370-2693(95)01072-X</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:18230581">18230581</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physics+Letters+B&amp;rft.atitle=Supersymmetric+extension+of+the+sine-Gordon+theory+with+integrable+boundary+interactions&amp;rft.volume=359&amp;rft.issue=1&amp;rft.pages=118-124&amp;rft.date=1995&amp;rft_id=info%3Aarxiv%2Fhep-th%2F9506157&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A18230581%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2F0370-2693%2895%2901072-X&amp;rft_id=info%3Abibcode%2F1995PhLB..359..118I&amp;rft.aulast=Inami&amp;rft.aufirst=Takeo&amp;rft.au=Odake%2C+Satoru&amp;rft.au=Zhang%2C+Yao-Zhong&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASine-Gordon+equation" class="Z3988"></span></span> </li> <li id="cite_note-MU-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-MU_27-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMazoUstinov2014" class="citation book cs1">Mazo, Juan J.; Ustinov, Alexey V. (2014). "The sine-Gordon Equation in Josephson-Junction Arrays". <a rel="nofollow" class="external text" href="https://link.springer.com/chapter/10.1007/978-3-319-06722-3_7"><i>The sine-Gordon Model and its Applications: From Pendula and Josephson Junctions to Gravity and High-Energy Physics</i></a>. Springer International Publishing. pp.&#160;155–175. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-319-06722-3" title="Special:BookSources/978-3-319-06722-3"><bdi>978-3-319-06722-3</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">22 August</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=The+sine-Gordon+Equation+in+Josephson-Junction+Arrays&amp;rft.btitle=The+sine-Gordon+Model+and+its+Applications%3A+From+Pendula+and+Josephson+Junctions+to+Gravity+and+High-Energy+Physics&amp;rft.pages=155-175&amp;rft.pub=Springer+International+Publishing&amp;rft.date=2014&amp;rft.isbn=978-3-319-06722-3&amp;rft.aulast=Mazo&amp;rft.aufirst=Juan+J.&amp;rft.au=Ustinov%2C+Alexey+V.&amp;rft_id=https%3A%2F%2Flink.springer.com%2Fchapter%2F10.1007%2F978-3-319-06722-3_7&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASine-Gordon+equation" class="Z3988"></span></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJosé1976" class="citation journal cs1">José, Jorge (15 November 1976). "Sine-Gordon theory and the classical two-dimensional x − y model". <i>Physical Review D</i>. <b>14</b> (10): 2826–2829. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1976PhRvD..14.2826J">1976PhRvD..14.2826J</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevD.14.2826">10.1103/PhysRevD.14.2826</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+D&amp;rft.atitle=Sine-Gordon+theory+and+the+classical+two-dimensional+x+%E2%88%92+y+model&amp;rft.volume=14&amp;rft.issue=10&amp;rft.pages=2826-2829&amp;rft.date=1976-11-15&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevD.14.2826&amp;rft_id=info%3Abibcode%2F1976PhRvD..14.2826J&amp;rft.aulast=Jos%C3%A9&amp;rft.aufirst=Jorge&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASine-Gordon+equation" class="Z3988"></span></span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFröhlich1976" class="citation journal cs1">Fröhlich, Jürg (October 1976). <a rel="nofollow" class="external text" href="http://projecteuclid.org/euclid.cmp/1103899760">"Classical and quantum statistical mechanics in one and two dimensions: Two-component Yukawa — and Coulomb systems"</a>. <i>Communications in Mathematical Physics</i>. <b>47</b> (3): 233–268. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1976CMaPh..47..233F">1976CMaPh..47..233F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01609843">10.1007/BF01609843</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:120798940">120798940</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Communications+in+Mathematical+Physics&amp;rft.atitle=Classical+and+quantum+statistical+mechanics+in+one+and+two+dimensions%3A+Two-component+Yukawa+%E2%80%94+and+Coulomb+systems&amp;rft.volume=47&amp;rft.issue=3&amp;rft.pages=233-268&amp;rft.date=1976-10&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A120798940%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2FBF01609843&amp;rft_id=info%3Abibcode%2F1976CMaPh..47..233F&amp;rft.aulast=Fr%C3%B6hlich&amp;rft.aufirst=J%C3%BCrg&amp;rft_id=http%3A%2F%2Fprojecteuclid.org%2Feuclid.cmp%2F1103899760&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASine-Gordon+equation" class="Z3988"></span></span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOhtaKawasaki1978" class="citation journal cs1">Ohta, T.; Kawasaki, K. (1 August 1978). <a rel="nofollow" class="external text" href="https://doi.org/10.1143%2FPTP.60.365">"Renormalization Group Theory of the Interfacial Roughening Transition"</a>. <i>Progress of Theoretical Physics</i>. <b>60</b> (2): 365–379. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1978PThPh..60..365O">1978PThPh..60..365O</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1143%2FPTP.60.365">10.1143/PTP.60.365</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Progress+of+Theoretical+Physics&amp;rft.atitle=Renormalization+Group+Theory+of+the+Interfacial+Roughening+Transition&amp;rft.volume=60&amp;rft.issue=2&amp;rft.pages=365-379&amp;rft.date=1978-08-01&amp;rft_id=info%3Adoi%2F10.1143%2FPTP.60.365&amp;rft_id=info%3Abibcode%2F1978PThPh..60..365O&amp;rft.aulast=Ohta&amp;rft.aufirst=T.&amp;rft.au=Kawasaki%2C+K.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1143%252FPTP.60.365&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASine-Gordon+equation" class="Z3988"></span></span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKogut1979" class="citation journal cs1">Kogut, John B. (1 October 1979). "An introduction to lattice gauge theory and spin systems". <i>Reviews of Modern Physics</i>. <b>51</b> (4): 659–713. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1979RvMP...51..659K">1979RvMP...51..659K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FRevModPhys.51.659">10.1103/RevModPhys.51.659</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Reviews+of+Modern+Physics&amp;rft.atitle=An+introduction+to+lattice+gauge+theory+and+spin+systems&amp;rft.volume=51&amp;rft.issue=4&amp;rft.pages=659-713&amp;rft.date=1979-10-01&amp;rft_id=info%3Adoi%2F10.1103%2FRevModPhys.51.659&amp;rft_id=info%3Abibcode%2F1979RvMP...51..659K&amp;rft.aulast=Kogut&amp;rft.aufirst=John+B.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASine-Gordon+equation" class="Z3988"></span></span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFaddeev1996" class="citation arxiv cs1">Faddeev, L. D. (1996). "How Algebraic Bethe Ansatz works for integrable model". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/hep-th/9605187">hep-th/9605187</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=How+Algebraic+Bethe+Ansatz+works+for+integrable+model&amp;rft.date=1996&amp;rft_id=info%3Aarxiv%2Fhep-th%2F9605187&amp;rft.aulast=Faddeev&amp;rft.aufirst=L.+D.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASine-Gordon+equation" class="Z3988"></span></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sine-Gordon_equation&amp;action=edit&amp;section=23" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="http://eqworld.ipmnet.ru/en/solutions/npde/npde2106.pdf">sine-Gordon equation</a> at EqWorld: The World of Mathematical Equations.</li> <li><a rel="nofollow" class="external text" href="http://eqworld.ipmnet.ru/en/solutions/npde/npde2105.pdf">Sinh-Gordon Equation</a> at EqWorld: The World of Mathematical Equations.</li> <li><a rel="nofollow" class="external text" href="http://www.primat.mephi.ru/wiki/ow.asp?Sine-Gordon_equation">sine-Gordon equation</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20120316101044/http://www.primat.mephi.ru/wiki/ow.asp?Sine%2DGordon%5Fequation">Archived</a> 2012-03-16 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a> at NEQwiki, the nonlinear equations encyclopedia.</li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Quantum_field_theories" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Quantum_field_theories" title="Template:Quantum field theories"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Quantum_field_theories" title="Template talk:Quantum field theories"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Quantum_field_theories" title="Special:EditPage/Template:Quantum field theories"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Quantum_field_theories" style="font-size:114%;margin:0 4em"><a href="/wiki/Quantum_field_theory" title="Quantum field theory">Quantum field theories</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Theories</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Algebraic_quantum_field_theory" title="Algebraic quantum field theory">Algebraic QFT</a></li> <li><a href="/wiki/Axiomatic_quantum_field_theory" title="Axiomatic quantum field theory">Axiomatic QFT</a></li> <li><a href="/wiki/Conformal_field_theory" title="Conformal field theory">Conformal field theory</a></li> <li><a href="/wiki/Lattice_field_theory" title="Lattice field theory">Lattice field theory</a></li> <li><a href="/wiki/Noncommutative_quantum_field_theory" title="Noncommutative quantum field theory">Noncommutative QFT</a></li> <li><a href="/wiki/Gauge_theory" title="Gauge theory">Gauge theory</a></li> <li><a href="/wiki/Quantum_field_theory_in_curved_spacetime" title="Quantum field theory in curved spacetime">QFT in curved spacetime</a></li> <li><a href="/wiki/String_theory" title="String theory">String theory</a></li> <li><a href="/wiki/Supergravity" title="Supergravity">Supergravity</a></li> <li><a href="/wiki/Thermal_quantum_field_theory" title="Thermal quantum field theory">Thermal QFT</a></li> <li><a href="/wiki/Topological_quantum_field_theory" title="Topological quantum field theory">Topological QFT</a></li> <li><a href="/wiki/Two-dimensional_conformal_field_theory" title="Two-dimensional conformal field theory">Two-dimensional conformal field theory</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Models</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;text-align: center;">Regular</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Born%E2%80%93Infeld_model" title="Born–Infeld model">Born–Infeld</a></li> <li><a href="/wiki/Euler%E2%80%93Heisenberg_Lagrangian" title="Euler–Heisenberg Lagrangian">Euler–Heisenberg</a></li> <li><a href="/wiki/Ginzburg%E2%80%93Landau_theory" title="Ginzburg–Landau theory">Ginzburg–Landau</a></li> <li><a href="/wiki/Non-linear_sigma_model" title="Non-linear sigma model">Non-linear sigma</a></li> <li><a href="/wiki/Proca_action" title="Proca action">Proca</a></li> <li><a href="/wiki/Quantum_electrodynamics" title="Quantum electrodynamics">Quantum electrodynamics</a></li> <li><a href="/wiki/Quantum_chromodynamics" title="Quantum chromodynamics">Quantum chromodynamics</a></li> <li><a href="/wiki/Quartic_interaction" title="Quartic interaction">Quartic interaction</a></li> <li><a href="/wiki/Scalar_electrodynamics" title="Scalar electrodynamics">Scalar electrodynamics</a></li> <li><a href="/wiki/Scalar_chromodynamics" title="Scalar chromodynamics">Scalar chromodynamics</a></li> <li><a href="/wiki/Soler_model" title="Soler model">Soler</a></li> <li><a href="/wiki/Yang%E2%80%93Mills_theory" title="Yang–Mills theory">Yang–Mills</a></li> <li><a href="/wiki/Yang%E2%80%93Mills%E2%80%93Higgs_equations" title="Yang–Mills–Higgs equations">Yang–Mills–Higgs</a></li> <li><a href="/wiki/Yukawa_interaction" title="Yukawa interaction">Yukawa</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align: center;">Low dimensional</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Two-dimensional_Yang%E2%80%93Mills_theory" title="Two-dimensional Yang–Mills theory">2D Yang–Mills</a></li> <li><a href="/wiki/Bullough%E2%80%93Dodd_model" title="Bullough–Dodd model">Bullough–Dodd</a></li> <li><a href="/wiki/Gross%E2%80%93Neveu_model" title="Gross–Neveu model">Gross–Neveu</a></li> <li><a href="/wiki/Schwinger_model" title="Schwinger model">Schwinger</a></li> <li><a class="mw-selflink selflink">Sine-Gordon</a></li> <li><a href="/wiki/Thirring_model" title="Thirring model">Thirring</a></li> <li><a href="/wiki/Thirring%E2%80%93Wess_model" title="Thirring–Wess model">Thirring–Wess</a></li> <li><a href="/wiki/Toda_field_theory" title="Toda field theory">Toda</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align: center;">Conformal</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Massless_free_scalar_bosons_in_two_dimensions" title="Massless free scalar bosons in two dimensions">2D free massless scalar</a></li> <li><a href="/wiki/Liouville_field_theory" title="Liouville field theory">Liouville</a></li> <li><a href="/wiki/Minimal_model_(physics)" title="Minimal model (physics)">Minimal</a></li> <li><a href="/wiki/Polyakov_action" title="Polyakov action">Polyakov</a></li> <li><a href="/wiki/Wess%E2%80%93Zumino%E2%80%93Witten_model" title="Wess–Zumino–Witten model">Wess–Zumino–Witten</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align: center;">Supersymmetric</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/4D_N_%3D_1_global_supersymmetry" title="4D N = 1 global supersymmetry">4D N = 1</a></li> <li><a href="/wiki/N_%3D_1_supersymmetric_Yang%E2%80%93Mills_theory" title="N = 1 supersymmetric Yang–Mills theory">N = 1 super Yang–Mills</a></li> <li><a href="/wiki/Seiberg%E2%80%93Witten_theory" title="Seiberg–Witten theory">Seiberg–Witten</a></li> <li><a href="/wiki/Super_QCD" title="Super QCD">Super QCD</a></li> <li><a href="/wiki/Wess%E2%80%93Zumino_model" title="Wess–Zumino model">Wess–Zumino</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align: center;">Superconformal</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/6D_(2,0)_superconformal_field_theory" title="6D (2,0) superconformal field theory">6D (2,0)</a></li> <li><a href="/wiki/ABJM_superconformal_field_theory" title="ABJM superconformal field theory">ABJM</a></li> <li><a href="/wiki/N_%3D_4_supersymmetric_Yang%E2%80%93Mills_theory" title="N = 4 supersymmetric Yang–Mills theory">N = 4 super Yang–Mills</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align: center;">Supergravity</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Pure_4D_N_%3D_1_supergravity" title="Pure 4D N = 1 supergravity">Pure 4D N = 1</a></li> <li><a href="/wiki/4D_N_%3D_1_supergravity" title="4D N = 1 supergravity">4D N = 1</a></li> <li><a href="/wiki/N_%3D_8_supergravity" title="N = 8 supergravity">4D N = 8</a></li> <li><a href="/wiki/Higher-dimensional_supergravity" title="Higher-dimensional supergravity">Higher dimensional</a></li> <li><a href="/wiki/Type_I_supergravity" title="Type I supergravity">Type I</a></li> <li><a href="/wiki/Type_IIA_supergravity" title="Type IIA supergravity">Type IIA</a></li> <li><a href="/wiki/Type_IIB_supergravity" title="Type IIB supergravity">Type IIB</a></li> <li><a href="/wiki/Eleven-dimensional_supergravity" title="Eleven-dimensional supergravity">11D</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align: center;">Topological</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/BF_model" title="BF model">BF</a></li> <li><a href="/wiki/Chern%E2%80%93Simons_theory" title="Chern–Simons theory">Chern–Simons</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align: center;">Particle theory</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Chiral_model" title="Chiral model">Chiral</a></li> <li><a href="/wiki/Fermi%27s_interaction" title="Fermi&#39;s interaction">Fermi</a></li> <li><a href="/wiki/Minimal_Supersymmetric_Standard_Model" title="Minimal Supersymmetric Standard Model">MSSM</a></li> <li><a href="/wiki/Nambu%E2%80%93Jona-Lasinio_model" title="Nambu–Jona-Lasinio model">Nambu–Jona-Lasinio</a></li> <li><a href="/wiki/Next-to-Minimal_Supersymmetric_Standard_Model" title="Next-to-Minimal Supersymmetric Standard Model">NMSSM</a></li> <li><a href="/wiki/Standard_Model" title="Standard Model">Standard Model</a></li> <li><a href="/wiki/Stueckelberg_action" title="Stueckelberg action">Stueckelberg</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Casimir_effect" title="Casimir effect">Casimir effect</a></li> <li><a href="/wiki/Cosmic_string" title="Cosmic string">Cosmic string</a></li> <li><a href="/wiki/History_of_quantum_field_theory" title="History of quantum field theory">History</a></li> <li><a href="/wiki/Loop_quantum_gravity" title="Loop quantum gravity">Loop quantum gravity</a></li> <li><a href="/wiki/Loop_quantum_cosmology" title="Loop quantum cosmology">Loop quantum cosmology</a></li> <li><a href="/wiki/On_shell_and_off_shell" title="On shell and off shell">On shell and off shell</a></li> <li><a href="/wiki/Quantum_chaos" title="Quantum chaos">Quantum chaos</a></li> <li><a href="/wiki/Quantum_dynamics" title="Quantum dynamics">Quantum dynamics</a></li> <li><a href="/wiki/Quantum_foam" title="Quantum foam">Quantum foam</a></li> <li><a href="/wiki/Quantum_fluctuation" title="Quantum fluctuation">Quantum fluctuations</a> <ul><li><a href="/wiki/Template:Quantum_electrodynamics" title="Template:Quantum electrodynamics">links</a></li></ul></li> <li><a href="/wiki/Quantum_gravity" title="Quantum gravity">Quantum gravity</a> <ul><li><a href="/wiki/Template:Quantum_gravity" title="Template:Quantum gravity">links</a></li></ul></li> <li><a href="/wiki/Quantum_hadrodynamics" title="Quantum hadrodynamics">Quantum hadrodynamics</a></li> <li><a href="/wiki/Quantum_hydrodynamics" title="Quantum hydrodynamics">Quantum hydrodynamics</a></li> <li><a href="/wiki/Quantum_information" title="Quantum information">Quantum information</a></li> <li><a href="/wiki/Quantum_information_science" title="Quantum information science">Quantum information science</a> <ul><li><a href="/wiki/Template:Quantum_information" title="Template:Quantum information">links</a></li></ul></li> <li><a href="/wiki/Quantum_logic" title="Quantum logic">Quantum logic</a></li> <li><a href="/wiki/Quantum_thermodynamics" title="Quantum thermodynamics">Quantum thermodynamics</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div><i>See also:</i> <span class="noviewer" typeof="mw:File"><span title="Template"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/16px-Symbol_template_class_pink.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/23px-Symbol_template_class_pink.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/31px-Symbol_template_class_pink.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Template:Quantum_mechanics_topics" title="Template:Quantum mechanics topics">Template:Quantum mechanics topics</a></div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Integrable_systems" style="padding:3px"><table class="nowraplinks mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2" style="text-align:center;"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Integrable_systems" title="Template:Integrable systems"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Integrable_systems" title="Template talk:Integrable systems"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Integrable_systems" title="Special:EditPage/Template:Integrable systems"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Integrable_systems" style="font-size:114%;margin:0 4em"><a href="/wiki/Integrable_system" title="Integrable system">Integrable systems</a></div></th></tr><tr><th scope="row" class="navbox-group" style="text-align:center;;width:1%">Geometric integrability</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Frobenius_integrability" class="mw-redirect" title="Frobenius integrability">Frobenius integrability</a> <ul><li><a href="/wiki/Foliation" title="Foliation">Foliation</a></li></ul></li> <li><a href="/wiki/Liouville%E2%80%93Arnold_theorem" title="Liouville–Arnold theorem"> Liouville integrability</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="text-align:center;;width:1%">In classical mechanics</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">Examples</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Harmonic_oscillator" title="Harmonic oscillator">Harmonic oscillator</a></li> <li><a href="/wiki/Central_force" title="Central force">Central force systems</a> <ul><li><a href="/wiki/Kepler_problem" title="Kepler problem">Kepler system</a></li> <li><a href="/wiki/Two_body_problem" class="mw-redirect" title="Two body problem">Two body problem</a></li></ul></li> <li><a href="/wiki/Lagrange,_Euler_and_Kovalevskaya_tops" class="mw-redirect" title="Lagrange, Euler and Kovalevskaya tops">Integrable tops</a> <ul><li><a href="/wiki/Euler_top" class="mw-redirect" title="Euler top">Euler</a></li> <li><a href="/wiki/Kovalevskaya_top" class="mw-redirect" title="Kovalevskaya top">Kovalevskaya</a></li> <li><a href="/wiki/Lagrange_top" class="mw-redirect" title="Lagrange top">Lagrange</a></li></ul></li> <li><a href="/wiki/Garnier_integrable_system" title="Garnier integrable system">Garnier integrable system</a></li> <li><a href="/wiki/Hitchin_system" title="Hitchin system">Hitchin system</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Theory</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Liouville%E2%80%93Arnold_theorem" title="Liouville–Arnold theorem">Liouville–Arnold theorem</a></li> <li><a href="/wiki/Action-angle_variables" class="mw-redirect" title="Action-angle variables">Action-angle variables</a></li> <li><a href="/wiki/Superintegrable_Hamiltonian_system" title="Superintegrable Hamiltonian system">Superintegrable Hamiltonian system</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="text-align:center;;width:1%">In quantum mechanics</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Quantum_harmonic_oscillator" title="Quantum harmonic oscillator">Quantum harmonic oscillator</a></li> <li><a href="/wiki/Hydrogen_atom" title="Hydrogen atom">Hydrogen atom</a></li> <li><a href="/wiki/P%C3%B6schl%E2%80%93Teller_potential" title="Pöschl–Teller potential">Pöschl–Teller potential</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="text-align:center;;width:1%">Integrable PDEs/Classical integrable field theories</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">Examples</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/KdV_equation" class="mw-redirect" title="KdV equation">KdV equation</a> <ul><li><a href="/wiki/KdV_hierarchy" title="KdV hierarchy">KdV hierarchy</a></li></ul></li> <li><a class="mw-selflink selflink">Sine-Gordon equation</a></li> <li><a href="/wiki/Nonlinear_Schr%C3%B6dinger_equation" title="Nonlinear Schrödinger equation">Nonlinear Schrödinger equation</a></li> <li><a href="/wiki/Gross%E2%80%93Neveu_model" title="Gross–Neveu model">Gross–Neveu model</a></li> <li><a href="/wiki/Thirring_model" title="Thirring model">Thirring model</a></li> <li><a href="/wiki/Kadomtsev%E2%80%93Petviashvili_equation" title="Kadomtsev–Petviashvili equation">Kadomtsev–Petviashvili equation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Theory</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/B%C3%A4cklund_transformation" class="mw-redirect" title="Bäcklund transformation">Bäcklund transformation</a></li> <li><a href="/wiki/Lax_pairs" class="mw-redirect" title="Lax pairs">Lax pairs</a></li> <li>Infinitely many <a href="/wiki/Integral_of_motion" class="mw-redirect" title="Integral of motion">integrals of motion</a></li> <li><a href="/wiki/Soliton" title="Soliton">Soliton solutions</a> <ul><li><a href="/wiki/Topological_soliton" class="mw-redirect" title="Topological soliton">Topological soliton</a></li></ul></li> <li><a href="/wiki/Inverse_scattering_transform" title="Inverse scattering transform">Inverse scattering transform</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">ASDYM as a master theory</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Yang%E2%80%93Mills_equations#Anti-self-duality_equations" title="Yang–Mills equations">Anti-self-dual Yang–Mills equations</a></li> <li><a href="/wiki/Twistor_correspondence" title="Twistor correspondence">Twistor correspondence</a></li> <li><a href="/wiki/Ward_conjecture" class="mw-redirect" title="Ward conjecture">Ward conjecture</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="text-align:center;;width:1%">Integrable Quantum Field theories</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a class="mw-selflink-fragment" href="#Quantum_version"> Quantum Sine-Gordon</a></li> <li><a href="/w/index.php?title=Quantum_KdV&amp;action=edit&amp;redlink=1" class="new" title="Quantum KdV (page does not exist)">Quantum KdV</a></li> <li><a href="/wiki/Liouville_field_theory" title="Liouville field theory">Quantum Liouville</a></li> <li><a href="/wiki/Thirring_model" title="Thirring model">Thirring model</a></li> <li><a href="/wiki/Toda_field_theory" title="Toda field theory">Toda field theory</a></li> <li><a href="/wiki/Principal_chiral_model" class="mw-redirect" title="Principal chiral model">Principal chiral model</a></li></ul> </div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th id="Master_theories" scope="row" class="navbox-group" style="width:1%">Master theories</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Four-dimensional_Chern%E2%80%93Simons_theory" title="Four-dimensional Chern–Simons theory">Four-dimensional Chern–Simons theory</a> (Lagrangian)</li> <li><a href="/wiki/Garnier_integrable_system" title="Garnier integrable system">Affine Gaudin models</a> (Hamiltonian)</li> <li><a href="/wiki/Six-dimensional_holomorphic_Chern%E2%80%93Simons_theory" title="Six-dimensional holomorphic Chern–Simons theory">Six-dimensional holomorphic Chern–Simons theory</a></li></ul> </div></td></tr></tbody></table><div> </div></td></tr><tr><th scope="row" class="navbox-group" style="text-align:center;;width:1%">Exactly solvable statistical <a href="/wiki/Lattice_models" class="mw-redirect" title="Lattice models">lattice models</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Ising_model" title="Ising model">Ising model</a> in one- and two-dimensions</li> <li><a href="/wiki/Ice-type_model" title="Ice-type model">Square ice model</a></li> <li><a href="/wiki/Eight-vertex_model" title="Eight-vertex model">Eight-vertex model</a></li> <li><a href="/wiki/Hard_hexagon_model" title="Hard hexagon model">Hard hexagon model</a></li> <li><a href="/wiki/Chiral_Potts_model" title="Chiral Potts model">Chiral Potts model</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="text-align:center;;width:1%">Exactly solvable quantum spin chains</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">Examples</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Quantum_Heisenberg_model" title="Quantum Heisenberg model">Quantum Heisenberg model</a></li> <li><a href="/wiki/Gaudin_model" title="Gaudin model">Gaudin model</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Theory</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li>Algebraic <a href="/wiki/Bethe_ansatz" title="Bethe ansatz">Bethe ansatz</a></li> <li><a href="/wiki/Quantum_inverse_scattering_method" title="Quantum inverse scattering method">Quantum inverse scattering method</a></li> <li><a href="/wiki/Yang%E2%80%93Baxter_equation" title="Yang–Baxter equation">Yang–Baxter equation</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="text-align:center;;width:1%">Contributors</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">Classical mechanics and geometry</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Vladimir_Arnold" title="Vladimir Arnold">Vladimir Arnold</a></li> <li><a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a></li> <li><a href="/wiki/Ferdinand_Georg_Frobenius" title="Ferdinand Georg Frobenius">Ferdinand Georg Frobenius</a></li> <li><a href="/wiki/Nigel_Hitchin" title="Nigel Hitchin">Nigel Hitchin</a></li> <li><a href="/wiki/Sofia_Kovalevskaya" class="mw-redirect" title="Sofia Kovalevskaya">Sofia Kovalevskaya</a></li> <li><a href="/wiki/Joseph-Louis_Lagrange" title="Joseph-Louis Lagrange">Joseph-Louis Lagrange</a></li> <li><a href="/wiki/Joseph_Liouville" title="Joseph Liouville">Joseph Liouville</a></li> <li><a href="/wiki/Sim%C3%A9on_Denis_Poisson" title="Siméon Denis Poisson">Siméon Denis Poisson</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">PDEs</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Clifford_S._Gardner" title="Clifford S. Gardner">Clifford S. Gardner</a></li> <li><a href="/wiki/John_M._Greene" title="John M. Greene">John M. Greene</a></li> <li><a href="/wiki/Martin_David_Kruskal" title="Martin David Kruskal">Martin David Kruskal</a></li> <li><a href="/wiki/Peter_Lax" title="Peter Lax">Peter Lax</a></li> <li><a href="/wiki/Robert_Miura" class="mw-redirect" title="Robert Miura">Robert Miura</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">IQFTs</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Alexander_Zamolodchikov" title="Alexander Zamolodchikov">Alexander Zamolodchikov</a></li> <li><a href="/wiki/Alexei_Zamolodchikov" title="Alexei Zamolodchikov">Alexei Zamolodchikov</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Classical and quantum statistical lattices</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Rodney_Baxter" title="Rodney Baxter">Rodney Baxter</a></li> <li><a href="/wiki/Ludvig_Faddeev" title="Ludvig Faddeev">Ludvig Faddeev</a></li> <li><a href="/wiki/Elliott_H._Lieb" title="Elliott H. Lieb">Elliott H. Lieb</a></li> <li><a href="/wiki/Yang_Chen-Ning" title="Yang Chen-Ning">Yang Chen-Ning</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐5dc468848‐rnl2r Cached time: 20241122143652 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.619 seconds Real time usage: 1.062 seconds Preprocessor visited node count: 3566/1000000 Post‐expand include size: 133008/2097152 bytes Template argument size: 1084/2097152 bytes Highest expansion depth: 9/100 Expensive parser function count: 3/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 140282/5000000 bytes Lua time usage: 0.308/10.000 seconds Lua memory usage: 5444562/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 662.795 1 -total 40.04% 265.408 1 Template:Reflist 26.07% 172.773 21 Template:Cite_journal 25.94% 171.896 1 Template:Quantum_field_theories 19.33% 128.140 8 Template:Navbox 16.74% 110.932 1 Template:Short_description 10.74% 71.168 2 Template:Pagetype 4.62% 30.593 1 Template:Main 4.14% 27.470 6 Template:Cite_book 3.73% 24.702 3 Template:Main_other --> <!-- Saved in parser cache with key enwiki:pcache:idhash:306645-0!canonical and timestamp 20241122143652 and revision id 1228993777. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Sine-Gordon_equation&amp;oldid=1228993777">https://en.wikipedia.org/w/index.php?title=Sine-Gordon_equation&amp;oldid=1228993777</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Solitons" title="Category:Solitons">Solitons</a></li><li><a href="/wiki/Category:Differential_geometry" title="Category:Differential geometry">Differential geometry</a></li><li><a href="/wiki/Category:Surfaces" title="Category:Surfaces">Surfaces</a></li><li><a href="/wiki/Category:Exactly_solvable_models" title="Category:Exactly solvable models">Exactly solvable models</a></li><li><a href="/wiki/Category:Equations_of_physics" title="Category:Equations of physics">Equations of physics</a></li><li><a href="/wiki/Category:Mathematical_physics" title="Category:Mathematical physics">Mathematical physics</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">CS1 maint: multiple names: authors list</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li><li><a href="/wiki/Category:Articles_containing_video_clips" title="Category:Articles containing video clips">Articles containing video clips</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 14 June 2024, at 07:49<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Sine-Gordon_equation&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-z58hw","wgBackendResponseTime":147,"wgPageParseReport":{"limitreport":{"cputime":"0.619","walltime":"1.062","ppvisitednodes":{"value":3566,"limit":1000000},"postexpandincludesize":{"value":133008,"limit":2097152},"templateargumentsize":{"value":1084,"limit":2097152},"expansiondepth":{"value":9,"limit":100},"expensivefunctioncount":{"value":3,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":140282,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 662.795 1 -total"," 40.04% 265.408 1 Template:Reflist"," 26.07% 172.773 21 Template:Cite_journal"," 25.94% 171.896 1 Template:Quantum_field_theories"," 19.33% 128.140 8 Template:Navbox"," 16.74% 110.932 1 Template:Short_description"," 10.74% 71.168 2 Template:Pagetype"," 4.62% 30.593 1 Template:Main"," 4.14% 27.470 6 Template:Cite_book"," 3.73% 24.702 3 Template:Main_other"]},"scribunto":{"limitreport-timeusage":{"value":"0.308","limit":"10.000"},"limitreport-memusage":{"value":5444562,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-5dc468848-rnl2r","timestamp":"20241122143652","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Sine-Gordon equation","url":"https:\/\/en.wikipedia.org\/wiki\/Sine-Gordon_equation","sameAs":"http:\/\/www.wikidata.org\/entity\/Q2558473","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q2558473","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-08-28T17:24:50Z","dateModified":"2024-06-14T07:49:27Z","headline":"nonlinear hyperbolic partial differential equation in 1 + 1 dimensions"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10