CINXE.COM

Chern–Simons theory - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Chern–Simons theory - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"1a01a8fb-2076-4ed5-aab9-4872f9062c7e","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Chern–Simons_theory","wgTitle":"Chern–Simons theory","wgCurRevisionId":1254976211,"wgRevisionId":1254976211,"wgArticleId":391908,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description matches Wikidata","Quantum field theory"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Chern–Simons_theory","wgRelevantArticleId":391908,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{ "status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":30000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q1528019","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready", "site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents", "ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Chern–Simons theory - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Chern%E2%80%93Simons_theory"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Chern%E2%80%93Simons_theory&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Chern%E2%80%93Simons_theory"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Chern–Simons_theory rootpage-Chern–Simons_theory skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Chern%E2%80%93Simons+theory" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Chern%E2%80%93Simons+theory" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Chern%E2%80%93Simons+theory" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Chern%E2%80%93Simons+theory" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-The_classical_theory" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#The_classical_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>The classical theory</span> </div> </a> <button aria-controls="toc-The_classical_theory-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle The classical theory subsection</span> </button> <ul id="toc-The_classical_theory-sublist" class="vector-toc-list"> <li id="toc-Mathematical_origin" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Mathematical_origin"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Mathematical origin</span> </div> </a> <ul id="toc-Mathematical_origin-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Configurations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Configurations"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Configurations</span> </div> </a> <ul id="toc-Configurations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Dynamics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Dynamics"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3</span> <span>Dynamics</span> </div> </a> <ul id="toc-Dynamics-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Quantization" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Quantization"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Quantization</span> </div> </a> <ul id="toc-Quantization-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Observables" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Observables"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Observables</span> </div> </a> <button aria-controls="toc-Observables-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Observables subsection</span> </button> <ul id="toc-Observables-sublist" class="vector-toc-list"> <li id="toc-Wilson_loops" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Wilson_loops"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Wilson loops</span> </div> </a> <ul id="toc-Wilson_loops-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-HOMFLY_and_Jones_polynomials" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#HOMFLY_and_Jones_polynomials"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>HOMFLY and Jones polynomials</span> </div> </a> <ul id="toc-HOMFLY_and_Jones_polynomials-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Relationships_with_other_theories" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Relationships_with_other_theories"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Relationships with other theories</span> </div> </a> <button aria-controls="toc-Relationships_with_other_theories-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Relationships with other theories subsection</span> </button> <ul id="toc-Relationships_with_other_theories-sublist" class="vector-toc-list"> <li id="toc-Topological_string_theories" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Topological_string_theories"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Topological string theories</span> </div> </a> <ul id="toc-Topological_string_theories-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-WZW_and_matrix_models" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#WZW_and_matrix_models"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>WZW and matrix models</span> </div> </a> <ul id="toc-WZW_and_matrix_models-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Chern–Simons_gravity_theory" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Chern–Simons_gravity_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Chern–Simons gravity theory</span> </div> </a> <ul id="toc-Chern–Simons_gravity_theory-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Chern–Simons_matter_theories" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Chern–Simons_matter_theories"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Chern–Simons matter theories</span> </div> </a> <ul id="toc-Chern–Simons_matter_theories-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Four-dimensional_Chern–Simons_theory" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Four-dimensional_Chern–Simons_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.5</span> <span>Four-dimensional Chern–Simons theory</span> </div> </a> <ul id="toc-Four-dimensional_Chern–Simons_theory-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Chern–Simons_terms_in_other_theories" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Chern–Simons_terms_in_other_theories"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Chern–Simons terms in other theories</span> </div> </a> <button aria-controls="toc-Chern–Simons_terms_in_other_theories-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Chern–Simons terms in other theories subsection</span> </button> <ul id="toc-Chern–Simons_terms_in_other_theories-sublist" class="vector-toc-list"> <li id="toc-One-loop_renormalization_of_the_level" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#One-loop_renormalization_of_the_level"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>One-loop renormalization of the level</span> </div> </a> <ul id="toc-One-loop_renormalization_of_the_level-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Chern–Simons theory</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 10 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-10" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">10 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Chern-Simons-Funktional" title="Chern-Simons-Funktional – German" lang="de" hreflang="de" data-title="Chern-Simons-Funktional" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Teor%C3%ADa_de_Chern-Simons" title="Teoría de Chern-Simons – Spanish" lang="es" hreflang="es" data-title="Teoría de Chern-Simons" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Th%C3%A9orie_de_Chern-Simons" title="Théorie de Chern-Simons – French" lang="fr" hreflang="fr" data-title="Théorie de Chern-Simons" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%B2%9C-%EC%82%AC%EC%9D%B4%EB%A8%BC%EC%8A%A4_%EC%9D%B4%EB%A1%A0" title="천-사이먼스 이론 – Korean" lang="ko" hreflang="ko" data-title="천-사이먼스 이론" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Teoria_di_Chern-Simons" title="Teoria di Chern-Simons – Italian" lang="it" hreflang="it" data-title="Teoria di Chern-Simons" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%81%E3%83%A3%E3%83%BC%E3%83%B3%E3%83%BB%E3%82%B5%E3%82%A4%E3%83%A2%E3%83%B3%E3%82%BA%E7%90%86%E8%AB%96" title="チャーン・サイモンズ理論 – Japanese" lang="ja" hreflang="ja" data-title="チャーン・サイモンズ理論" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%9A%E0%A9%87%E0%A8%B0%E0%A8%A8-%E0%A8%B8%E0%A8%BF%E0%A8%AE%E0%A8%A8%E0%A8%B8_%E0%A8%A5%E0%A8%BF%E0%A8%8A%E0%A8%B0%E0%A9%80" title="ਚੇਰਨ-ਸਿਮਨਸ ਥਿਊਰੀ – Punjabi" lang="pa" hreflang="pa" data-title="ਚੇਰਨ-ਸਿਮਨਸ ਥਿਊਰੀ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="Punjabi" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Teoria_de_Chern-Simons" title="Teoria de Chern-Simons – Portuguese" lang="pt" hreflang="pt" data-title="Teoria de Chern-Simons" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D0%A7%D0%B5%D1%80%D0%BD%D0%B0_%E2%80%94_%D0%A1%D0%B0%D0%B9%D0%BC%D0%BE%D0%BD%D1%81%D0%B0" title="Теория Черна — Саймонса – Russian" lang="ru" hreflang="ru" data-title="Теория Черна — Саймонса" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E9%99%B3-%E8%A5%BF%E8%92%99%E6%96%AF%E7%90%86%E8%AB%96" title="陳-西蒙斯理論 – Chinese" lang="zh" hreflang="zh" data-title="陳-西蒙斯理論" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1528019#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Chern%E2%80%93Simons_theory" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Chern%E2%80%93Simons_theory" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Chern%E2%80%93Simons_theory"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Chern%E2%80%93Simons_theory&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Chern%E2%80%93Simons_theory&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Chern%E2%80%93Simons_theory"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Chern%E2%80%93Simons_theory&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Chern%E2%80%93Simons_theory&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Chern%E2%80%93Simons_theory" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Chern%E2%80%93Simons_theory" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Chern%E2%80%93Simons_theory&amp;oldid=1254976211" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Chern%E2%80%93Simons_theory&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Chern%E2%80%93Simons_theory&amp;id=1254976211&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FChern%25E2%2580%2593Simons_theory"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FChern%25E2%2580%2593Simons_theory"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Chern%E2%80%93Simons_theory&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Chern%E2%80%93Simons_theory&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1528019" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Three-dimensional topological quantum field theory whose action is the Chern–Simons form</div> <p>The <b>Chern–Simons theory</b> is a 3-dimensional <a href="/wiki/Topological_quantum_field_theory" title="Topological quantum field theory">topological quantum field theory</a> of <a href="/wiki/Topological_quantum_field_theory#Schwarz-type_TQFTs" title="Topological quantum field theory">Schwarz type</a> developed by <a href="/wiki/Edward_Witten" title="Edward Witten">Edward Witten</a>. It was discovered first by mathematical physicist <a href="/wiki/Albert_Schwarz" title="Albert Schwarz">Albert Schwarz</a>. It is named after mathematicians <a href="/wiki/Shiing-Shen_Chern" title="Shiing-Shen Chern">Shiing-Shen Chern</a> and <a href="/wiki/James_Harris_Simons" class="mw-redirect" title="James Harris Simons">James Harris Simons</a>, who introduced the <a href="/wiki/Chern%E2%80%93Simons_3-form" class="mw-redirect" title="Chern–Simons 3-form">Chern–Simons 3-form</a>. In the Chern–Simons theory, the <a href="/wiki/Action_(physics)" title="Action (physics)">action</a> is proportional to the integral of the Chern–Simons 3-form. </p><p>In <a href="/wiki/Condensed_matter_physics" title="Condensed matter physics">condensed-matter physics</a>, Chern–Simons theory describes the <a href="/wiki/Topological_order" title="Topological order">topological order</a> in <a href="/wiki/Fractional_quantum_Hall_effect" title="Fractional quantum Hall effect">fractional quantum Hall effect</a> states. In mathematics, it has been used to calculate <a href="/wiki/Knot_invariants" class="mw-redirect" title="Knot invariants">knot invariants</a> and <a href="/wiki/Three-manifold" class="mw-redirect" title="Three-manifold">three-manifold</a> invariants such as the <a href="/wiki/Jones_polynomial" title="Jones polynomial">Jones polynomial</a>.<sup id="cite_ref-wittenjonespolynomial_1-0" class="reference"><a href="#cite_note-wittenjonespolynomial-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p><p>Particularly, Chern–Simons theory is specified by a choice of simple <a href="/wiki/Lie_group" title="Lie group">Lie group</a> G known as the gauge group of the theory and also a number referred to as the <i>level</i> of the theory, which is a constant that multiplies the action. The action is gauge dependent, however the <a href="/wiki/Partition_function_(quantum_field_theory)" title="Partition function (quantum field theory)">partition function</a> of the <a href="/wiki/Quantum_field_theory" title="Quantum field theory">quantum</a> theory is <a href="/wiki/Well-defined" class="mw-redirect" title="Well-defined">well-defined</a> when the level is an integer and the gauge <a href="/wiki/Field_strength" title="Field strength">field strength</a> vanishes on all <a href="/wiki/Boundary_(topology)" title="Boundary (topology)">boundaries</a> of the 3-dimensional spacetime. </p><p>It is also the central mathematical object in theoretical models for <a href="/wiki/Topological_quantum_computer" title="Topological quantum computer">topological quantum computers</a> (TQC). Specifically, an SU(2) Chern–Simons theory describes the simplest non-abelian <a href="/wiki/Anyon" title="Anyon">anyonic</a> model of a TQC, the Yang–Lee–Fibonacci model.<sup id="cite_ref-FK02_2-0" class="reference"><a href="#cite_note-FK02-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-WangTQCreview_3-0" class="reference"><a href="#cite_note-WangTQCreview-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p><p>The dynamics of Chern–Simons theory on the 2-dimensional boundary of a 3-manifold is closely related to <a href="/wiki/Fusion_rules" title="Fusion rules">fusion rules</a> and <a href="/wiki/Virasoro_conformal_block" title="Virasoro conformal block">conformal blocks</a> in <a href="/wiki/Conformal_field_theory" title="Conformal field theory">conformal field theory</a>, and in particular <a href="/wiki/Wess%E2%80%93Zumino%E2%80%93Witten_model" title="Wess–Zumino–Witten model">WZW theory</a>.<sup id="cite_ref-wittenjonespolynomial_1-1" class="reference"><a href="#cite_note-wittenjonespolynomial-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-EMSS89_4-0" class="reference"><a href="#cite_note-EMSS89-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="The_classical_theory">The classical theory</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Chern%E2%80%93Simons_theory&amp;action=edit&amp;section=1" title="Edit section: The classical theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Mathematical_origin">Mathematical origin</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Chern%E2%80%93Simons_theory&amp;action=edit&amp;section=2" title="Edit section: Mathematical origin"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In the 1940s <a href="/wiki/Shiing-Shen_Chern" title="Shiing-Shen Chern">S. S. Chern</a> and <a href="/wiki/Andr%C3%A9_Weil" title="André Weil">A. Weil</a> studied the global curvature properties of smooth manifolds <i>M</i> as <a href="/wiki/De_Rham_cohomology" title="De Rham cohomology">de Rham cohomology</a> (<a href="/wiki/Chern%E2%80%93Weil_theory" class="mw-redirect" title="Chern–Weil theory">Chern–Weil theory</a>), which is an important step in the theory of <a href="/wiki/Characteristic_classes" class="mw-redirect" title="Characteristic classes">characteristic classes</a> in <a href="/wiki/Differential_geometry" title="Differential geometry">differential geometry</a>. Given a flat <i>G</i>-<a href="/wiki/Principal_bundle" title="Principal bundle">principal bundle</a> <i>P</i> on <i>M</i> there exists a unique homomorphism, called the <a href="/wiki/Chern%E2%80%93Weil_homomorphism" title="Chern–Weil homomorphism">Chern–Weil homomorphism</a>, from the algebra of <i>G</i>-adjoint invariant polynomials on <i>g</i> (Lie algebra of <i>G</i>) to the cohomology <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H^{*}(M,\mathbb {R} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>M</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H^{*}(M,\mathbb {R} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f395151b51136ae59f0d10189c2d6d8b6a1a57dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.121ex; height:2.843ex;" alt="{\displaystyle H^{*}(M,\mathbb {R} )}"></span>. If the invariant polynomial is homogeneous one can write down concretely any <i>k</i>-form of the closed connection <i>ω</i> as some 2<i>k</i>-form of the associated curvature form Ω of <i>ω</i>. </p><p>In 1974 S. S. Chern and <a href="/wiki/James_Harris_Simons" class="mw-redirect" title="James Harris Simons">J. H. Simons</a> had concretely constructed a (2<i>k</i>&#160;&#8722;&#160;1)-form <i>df</i>(<i>ω</i>) such that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle dTf(\omega )=f(\Omega ^{k}),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>T</mi> <mi>f</mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <msup> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle dTf(\omega )=f(\Omega ^{k}),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/380a460b40fd710f9ecad7119a1d37a825baa6f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.986ex; height:3.176ex;" alt="{\displaystyle dTf(\omega )=f(\Omega ^{k}),}"></span></dd></dl> <p>where <i>T</i> is the Chern–Weil homomorphism. This form is called <a href="/wiki/Chern%E2%80%93Simons_form" title="Chern–Simons form">Chern–Simons form</a>. If <i>df</i>(<i>ω</i>) is closed one can integrate the above formula </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Tf(\omega )=\int _{C}f(\Omega ^{k}),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mi>f</mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <msup> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Tf(\omega )=\int _{C}f(\Omega ^{k}),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef5a07866e30d6406a0bb52c5be427d221005620" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:18.931ex; height:5.676ex;" alt="{\displaystyle Tf(\omega )=\int _{C}f(\Omega ^{k}),}"></span></dd></dl> <p>where <i>C</i> is a (2<i>k</i>&#160;&#8722;&#160;1)-dimensional cycle on <i>M</i>. This invariant is called <b>Chern–Simons invariant</b>. As pointed out in the introduction of the Chern–Simons paper, the Chern–Simons invariant CS(<i>M</i>) is the boundary term that cannot be determined by any pure combinatorial formulation. It also can be defined as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {CS} (M)=\int _{s(M)}{\tfrac {1}{2}}Tp_{1}\in \mathbb {R} /\mathbb {Z} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>CS</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mi>T</mi> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {CS} (M)=\int _{s(M)}{\tfrac {1}{2}}Tp_{1}\in \mathbb {R} /\mathbb {Z} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55a75adffcb84a741cb77335fa253a39633ace82" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:29.406ex; height:6.009ex;" alt="{\displaystyle \operatorname {CS} (M)=\int _{s(M)}{\tfrac {1}{2}}Tp_{1}\in \mathbb {R} /\mathbb {Z} ,}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9b58f22283ca46dd5da309cc34303b06a797783" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:2.313ex; height:2.009ex;" alt="{\displaystyle p_{1}}"></span> is the first Pontryagin number and <i>s</i>(<i>M</i>) is the section of the normal orthogonal bundle <i>P</i>. Moreover, the Chern–Simons term is described as the <a href="/wiki/Eta_invariant" title="Eta invariant">eta invariant</a> defined by Atiyah, Patodi and Singer. </p><p>The gauge invariance and the metric invariance can be viewed as the invariance under the adjoint Lie group action in the Chern–Weil theory. The <a href="/wiki/Action_integral" class="mw-redirect" title="Action integral">action integral</a> (<a href="/wiki/Path_integral_formulation" title="Path integral formulation">path integral</a>) of the <a href="/wiki/Quantum_field_theory" title="Quantum field theory">field theory</a> in physics is viewed as the <a href="/wiki/Lagrangian_(field_theory)" title="Lagrangian (field theory)">Lagrangian</a> integral of the Chern–Simons form and Wilson loop, holonomy of vector bundle on <i>M</i>. These explain why the Chern–Simons theory is closely related to <a href="/wiki/Topological_field_theory" class="mw-redirect" title="Topological field theory">topological field theory</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Configurations">Configurations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Chern%E2%80%93Simons_theory&amp;action=edit&amp;section=3" title="Edit section: Configurations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Chern–Simons theories can be defined on any <a href="/wiki/Topological_manifold" title="Topological manifold">topological</a> <a href="/wiki/3-manifold" title="3-manifold">3-manifold</a> <i>M</i>, with or without boundary. As these theories are Schwarz-type topological theories, no <a href="/wiki/Metric_tensor" title="Metric tensor">metric</a> needs to be introduced on <i>M</i>. </p><p>Chern–Simons theory is a <a href="/wiki/Gauge_theory" title="Gauge theory">gauge theory</a>, which means that a <a href="/wiki/Classical_physics" title="Classical physics">classical</a> configuration in the Chern–Simons theory on <i>M</i> with <a href="/wiki/Gauge_group" class="mw-redirect" title="Gauge group">gauge group</a> <i>G</i> is described by a <a href="/wiki/Principal_bundle" title="Principal bundle">principal <i>G</i>-bundle</a> on <i>M</i>. The <a href="/wiki/Connection_(principal_bundle)" title="Connection (principal bundle)">connection</a> of this bundle is characterized by a <a href="/wiki/Connection_one-form" class="mw-redirect" title="Connection one-form">connection one-form</a> <i>A</i> which is <a href="/wiki/Vector-valued_differential_form#Lie_algebra-valued_forms" title="Vector-valued differential form">valued</a> in the <a href="/wiki/Lie_algebra" title="Lie algebra">Lie algebra</a> <b>g</b> of the <a href="/wiki/Lie_group" title="Lie group">Lie group</a> <i>G</i>. In general the connection <i>A</i> is only defined on individual <a href="/wiki/Coordinate_patch" class="mw-redirect" title="Coordinate patch">coordinate patches</a>, and the values of <i>A</i> on different patches are related by maps known as <a href="/wiki/Gauge_symmetry" class="mw-redirect" title="Gauge symmetry">gauge transformations</a>. These are characterized by the assertion that the <a href="/wiki/Gauge_covariant_derivative" title="Gauge covariant derivative">covariant derivative</a>, which is the sum of the <a href="/wiki/Exterior_derivative" title="Exterior derivative">exterior derivative</a> operator <i>d</i> and the connection <i>A</i>, transforms in the <a href="/wiki/Adjoint_representation_of_a_Lie_group" class="mw-redirect" title="Adjoint representation of a Lie group">adjoint representation</a> of the gauge group <i>G</i>. The square of the covariant derivative with itself can be interpreted as a <b>g</b>-valued 2-form <i>F</i> called the <a href="/wiki/Curvature_form" title="Curvature form">curvature form</a> or <a href="/wiki/Field_strength" title="Field strength">field strength</a>. It also transforms in the adjoint representation. </p> <div class="mw-heading mw-heading3"><h3 id="Dynamics">Dynamics</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Chern%E2%80%93Simons_theory&amp;action=edit&amp;section=4" title="Edit section: Dynamics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Action_(physics)" title="Action (physics)">action</a> <i>S</i> of Chern–Simons theory is proportional to the integral of the <a href="/wiki/Chern%E2%80%93Simons_3-form" class="mw-redirect" title="Chern–Simons 3-form">Chern–Simons 3-form</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S={\frac {k}{4\pi }}\int _{M}{\text{tr}}\,(A\wedge dA+{\tfrac {2}{3}}A\wedge A\wedge A).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>k</mi> <mrow> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mtext>tr</mtext> </mrow> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>d</mi> <mi>A</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> </mstyle> </mrow> <mi>A</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>A</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S={\frac {k}{4\pi }}\int _{M}{\text{tr}}\,(A\wedge dA+{\tfrac {2}{3}}A\wedge A\wedge A).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c10d9d4b2d6d5e52a38c04ccbc42b434ea72941b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:38.791ex; height:5.843ex;" alt="{\displaystyle S={\frac {k}{4\pi }}\int _{M}{\text{tr}}\,(A\wedge dA+{\tfrac {2}{3}}A\wedge A\wedge A).}"></span></dd></dl> <p>The constant <i>k</i> is called the <i>level</i> of the theory. The classical physics of Chern–Simons theory is independent of the choice of level <i>k</i>. </p><p>Classically the system is characterized by its equations of motion which are the extrema of the action with respect to variations of the field <i>A</i>. In terms of the field curvature </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F=dA+A\wedge A\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo>=</mo> <mi>d</mi> <mi>A</mi> <mo>+</mo> <mi>A</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>A</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F=dA+A\wedge A\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bfa12ea3f0ebdb6372bd401b27f80e6a93ee7241" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:17.095ex; height:2.343ex;" alt="{\displaystyle F=dA+A\wedge A\,}"></span></dd></dl> <p>the <a href="/wiki/Field_equation" title="Field equation">field equation</a> is explicitly </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0={\frac {\delta S}{\delta A}}={\frac {k}{2\pi }}F.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B4;<!-- δ --></mi> <mi>S</mi> </mrow> <mrow> <mi>&#x03B4;<!-- δ --></mi> <mi>A</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>k</mi> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> <mi>F</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0={\frac {\delta S}{\delta A}}={\frac {k}{2\pi }}F.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/006225edc2bc862cdf8118267d7010789b4a0e52" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:16.705ex; height:5.509ex;" alt="{\displaystyle 0={\frac {\delta S}{\delta A}}={\frac {k}{2\pi }}F.}"></span></dd></dl> <p>The classical equations of motion are therefore satisfied if and only if the curvature vanishes everywhere, in which case the connection is said to be <i>flat</i>. Thus the classical solutions to <i>G</i> Chern–Simons theory are the flat connections of principal <i>G</i>-bundles on <i>M</i>. Flat connections are determined entirely by holonomies around noncontractible cycles on the base <i>M</i>. More precisely, they are in one-to-one correspondence with equivalence classes of homomorphisms from the <a href="/wiki/Fundamental_group" title="Fundamental group">fundamental group</a> of <i>M</i> to the gauge group <i>G</i> up to conjugation. </p><p>If <i>M</i> has a boundary <i>N</i> then there is additional data which describes a choice of trivialization of the principal <i>G</i>-bundle on <i>N</i>. Such a choice characterizes a map from <i>N</i> to <i>G</i>. The dynamics of this map is described by the <a href="/wiki/Wess%E2%80%93Zumino%E2%80%93Witten_model" title="Wess–Zumino–Witten model">Wess–Zumino–Witten</a> (WZW) model on <i>N</i> at level <i>k</i>. </p> <div class="mw-heading mw-heading2"><h2 id="Quantization">Quantization</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Chern%E2%80%93Simons_theory&amp;action=edit&amp;section=5" title="Edit section: Quantization"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>To <a href="/wiki/Canonical_quantization" title="Canonical quantization">canonically quantize</a> Chern–Simons theory one defines a state on each 2-dimensional surface Σ in M. As in any quantum field theory, the states correspond to rays in a <a href="/wiki/Hilbert_space" title="Hilbert space">Hilbert space</a>. There is no preferred notion of time in a Schwarz-type topological field theory and so one can require that Σ be a <a href="/wiki/Cauchy_surface" title="Cauchy surface">Cauchy surface</a>, in fact, a state can be defined on any surface. </p><p>Σ is of codimension one, and so one may cut M along Σ. After such a cutting M will be a manifold with boundary and in particular classically the dynamics of Σ will be described by a WZW model. <a href="/wiki/Edward_Witten" title="Edward Witten">Witten</a> has shown that this correspondence holds even quantum mechanically. More precisely, he demonstrated that the Hilbert space of states is always finite-dimensional and can be canonically identified with the space of <a href="/wiki/Virasoro_conformal_block#Larger_symmetry_algebras" title="Virasoro conformal block">conformal blocks</a> of the G WZW model at level k. </p><p>For example, when Σ is a 2-sphere, this Hilbert space is one-dimensional and so there is only one state. When Σ is a 2-torus the states correspond to the integrable <a href="/wiki/Group_representation" title="Group representation">representations</a> of the <a href="/wiki/Affine_Lie_algebra" title="Affine Lie algebra">affine Lie algebra</a> corresponding to g at level k. Characterizations of the conformal blocks at higher genera are not necessary for Witten's solution of Chern–Simons theory. </p> <div class="mw-heading mw-heading2"><h2 id="Observables">Observables</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Chern%E2%80%93Simons_theory&amp;action=edit&amp;section=6" title="Edit section: Observables"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Wilson_loops">Wilson loops</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Chern%E2%80%93Simons_theory&amp;action=edit&amp;section=7" title="Edit section: Wilson loops"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Observable" title="Observable">observables</a> of Chern–Simons theory are the <i>n</i>-point <a href="/wiki/Correlation_function" title="Correlation function">correlation functions</a> of gauge-invariant operators. The most often studied class of gauge invariant operators are <a href="/wiki/Wilson_loops" class="mw-redirect" title="Wilson loops">Wilson loops</a>. A Wilson loop is the holonomy around a loop in <i>M</i>, traced in a given <a href="/wiki/Representation_of_a_Lie_group" title="Representation of a Lie group">representation</a> <i>R</i> of <i>G</i>. As we will be interested in products of Wilson loops, without loss of generality we may restrict our attention to <a href="/wiki/Representation_theory#Subrepresentations,_quotients,_and_irreducible_representations" title="Representation theory">irreducible representations</a> <i>R</i>. </p><p>More concretely, given an irreducible representation <i>R</i> and a loop <i>K</i> in <i>M</i>, one may define the Wilson loop <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W_{R}(K)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>W</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W_{R}(K)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02296556da7b787cd8934de73d18168775842a15" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.549ex; height:2.843ex;" alt="{\displaystyle W_{R}(K)}"></span> by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W_{R}(K)=\operatorname {Tr} _{R}\,{\mathcal {P}}\exp \left(i\oint _{K}A\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>W</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>Tr</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mi>i</mi> <msub> <mo>&#x222E;<!-- ∮ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>K</mi> </mrow> </msub> <mi>A</mi> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W_{R}(K)=\operatorname {Tr} _{R}\,{\mathcal {P}}\exp \left(i\oint _{K}A\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4356c4579bafdfacef8a1c2256946791bc6b8f1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:30.86ex; height:6.176ex;" alt="{\displaystyle W_{R}(K)=\operatorname {Tr} _{R}\,{\mathcal {P}}\exp \left(i\oint _{K}A\right)}"></span></dd></dl> <p>where <i>A</i> is the connection 1-form and we take the <a href="/wiki/Cauchy_principal_value" title="Cauchy principal value">Cauchy principal value</a> of the <a href="/wiki/Contour_integral" class="mw-redirect" title="Contour integral">contour integral</a> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {P}}\exp }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> <mi>exp</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {P}}\exp }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e615a0ebe4610661520b3eb9186d5c8d9c1364cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.643ex; height:2.509ex;" alt="{\displaystyle {\mathcal {P}}\exp }"></span> is the <a href="/wiki/Path-ordered_exponential" class="mw-redirect" title="Path-ordered exponential">path-ordered exponential</a>. </p> <div class="mw-heading mw-heading3"><h3 id="HOMFLY_and_Jones_polynomials">HOMFLY and Jones polynomials</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Chern%E2%80%93Simons_theory&amp;action=edit&amp;section=8" title="Edit section: HOMFLY and Jones polynomials"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Consider a link <i>L</i> in <i>M</i>, which is a collection of <i>ℓ</i> disjoint loops. A particularly interesting observable is the <i>ℓ</i>-point correlation function formed from the product of the Wilson loops around each disjoint loop, each traced in the <a href="/wiki/Fundamental_representation" title="Fundamental representation">fundamental representation</a> of <i>G</i>. One may form a normalized correlation function by dividing this observable by the <a href="/wiki/Partition_function_(quantum_field_theory)" title="Partition function (quantum field theory)">partition function</a> <i>Z</i>(<i>M</i>), which is just the 0-point correlation function. </p><p>In the special case in which M is the 3-sphere, Witten has shown that these normalized correlation functions are proportional to known <a href="/wiki/Knot_polynomials" class="mw-redirect" title="Knot polynomials">knot polynomials</a>. For example, in <i>G</i>&#160;=&#160;<i>U</i>(<i>N</i>) Chern–Simons theory at level <i>k</i> the normalized correlation function is, up to a phase, equal to </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\sin(\pi /(k+N))}{\sin(\pi N/(k+N))}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mi>N</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C0;<!-- π --></mi> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mi>N</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\sin(\pi /(k+N))}{\sin(\pi N/(k+N))}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/311d5e511a76c60de12e4877620fbcede4b431dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:17.984ex; height:6.509ex;" alt="{\displaystyle {\frac {\sin(\pi /(k+N))}{\sin(\pi N/(k+N))}}}"></span></dd></dl> <p>times the <a href="/wiki/HOMFLY_polynomial" title="HOMFLY polynomial">HOMFLY polynomial</a>. In particular when <i>N</i>&#160;=&#160;2 the HOMFLY polynomial reduces to the <a href="/wiki/Jones_polynomial" title="Jones polynomial">Jones polynomial</a>. In the SO(<i>N</i>) case, one finds a similar expression with the <a href="/wiki/Kauffman_polynomial" title="Kauffman polynomial">Kauffman polynomial</a>. </p><p>The phase ambiguity reflects the fact that, as Witten has shown, the quantum correlation functions are not fully defined by the classical data. The <a href="/wiki/Linking_number" title="Linking number">linking number</a> of a loop with itself enters into the calculation of the partition function, but this number is not invariant under small deformations and in particular, is not a topological invariant. This number can be rendered well defined if one chooses a framing for each loop, which is a choice of preferred nonzero <a href="/wiki/Normal_vector" class="mw-redirect" title="Normal vector">normal vector</a> at each point along which one deforms the loop to calculate its self-linking number. This procedure is an example of the <a href="/w/index.php?title=Point-splitting&amp;action=edit&amp;redlink=1" class="new" title="Point-splitting (page does not exist)">point-splitting</a> <a href="/wiki/Regularization_(physics)" title="Regularization (physics)">regularization</a> procedure introduced by <a href="/wiki/Paul_Dirac" title="Paul Dirac">Paul Dirac</a> and <a href="/wiki/Rudolf_Peierls" title="Rudolf Peierls">Rudolf Peierls</a> to define apparently divergent quantities in <a href="/wiki/Quantum_field_theory" title="Quantum field theory">quantum field theory</a> in 1934. </p><p><a href="/wiki/Sir_Michael_Atiyah" class="mw-redirect" title="Sir Michael Atiyah">Sir Michael Atiyah</a> has shown that there exists a canonical choice of 2-framing,<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> which is generally used in the literature today and leads to a well-defined linking number. With the canonical framing the above phase is the exponential of 2π<i>i</i>/(<i>k</i>&#160;+&#160;<i>N</i>) times the linking number of <i>L</i> with itself. </p> <dl><dt>Problem (Extension of Jones polynomial to general 3-manifolds) </dt></dl> <p>"The original Jones polynomial was defined for 1-links in the 3-sphere (the 3-ball, the 3-space R3). Can you define the Jones polynomial for 1-links in any 3-manifold?" </p><p>See section 1.1 of this paper<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> for the background and the history of this problem. Kauffman submitted a solution in the case of the product manifold of closed oriented surface and the closed interval, by introducing virtual 1-knots.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> It is open in the other cases. Witten's path integral for Jones polynomial is written for links in any compact 3-manifold formally, but the calculus is not done even in physics level in any case other than the 3-sphere (the 3-ball, the 3-space <b>R</b><sup>3</sup>). This problem is also open in physics level. In the case of Alexander polynomial, this problem is solved. </p> <div class="mw-heading mw-heading2"><h2 id="Relationships_with_other_theories">Relationships with other theories</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Chern%E2%80%93Simons_theory&amp;action=edit&amp;section=9" title="Edit section: Relationships with other theories"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Topological_string_theories">Topological string theories</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Chern%E2%80%93Simons_theory&amp;action=edit&amp;section=10" title="Edit section: Topological string theories"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Topological_string_theory" title="Topological string theory">Topological string theory</a></div> <p>In the context of <a href="/wiki/String_theory" title="String theory">string theory</a>, a <i>U</i>(<i>N</i>) Chern–Simons theory on an oriented Lagrangian 3-submanifold M of a 6-manifold <i>X</i> arises as the <a href="/wiki/String_field_theory" title="String field theory">string field theory</a> of open strings ending on a <a href="/wiki/D-brane" title="D-brane">D-brane</a> wrapping <i>X</i> in the <a href="/wiki/Topological_string_theory#A-model" title="Topological string theory">A-model</a> topological string theory on <i>X</i>. The <a href="/wiki/Topological_string_theory#B-model" title="Topological string theory">B-model</a> topological open string field theory on the spacefilling worldvolume of a stack of D5-branes is a 6-dimensional variant of Chern–Simons theory known as holomorphic Chern–Simons theory. </p> <div class="mw-heading mw-heading3"><h3 id="WZW_and_matrix_models">WZW and matrix models</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Chern%E2%80%93Simons_theory&amp;action=edit&amp;section=11" title="Edit section: WZW and matrix models"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Chern–Simons theories are related to many other field theories. For example, if one considers a Chern–Simons theory with gauge group G on a manifold with boundary then all of the 3-dimensional propagating degrees of freedom may be gauged away, leaving a <a href="/wiki/Two-dimensional_conformal_field_theory" title="Two-dimensional conformal field theory">two-dimensional conformal field theory</a> known as a G <a href="/wiki/Wess%E2%80%93Zumino%E2%80%93Witten_model" title="Wess–Zumino–Witten model">Wess–Zumino–Witten model</a> on the boundary. In addition the <i>U</i>(<i>N</i>) and SO(<i>N</i>) Chern–Simons theories at large <i>N</i> are well approximated by <a href="/wiki/Matrix_theory_(physics)" title="Matrix theory (physics)">matrix models</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Chern–Simons_gravity_theory"><span id="Chern.E2.80.93Simons_gravity_theory"></span>Chern–Simons gravity theory</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Chern%E2%80%93Simons_theory&amp;action=edit&amp;section=12" title="Edit section: Chern–Simons gravity theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/(2%2B1)-dimensional_topological_gravity" title="(2+1)-dimensional topological gravity">(2+1)-dimensional topological gravity</a></div> <p>In 1982, <a href="/wiki/Stanley_Deser" title="Stanley Deser">S. Deser</a>, <a href="/wiki/Roman_Jackiw" title="Roman Jackiw">R. Jackiw</a> and S. Templeton proposed the Chern–Simons gravity theory in three dimensions, in which the <a href="/wiki/Einstein%E2%80%93Hilbert_action" title="Einstein–Hilbert action">Einstein–Hilbert action</a> in gravity theory is modified by adding the Chern–Simons term. (<a href="#CITEREFDeserJackiwTempleton1982">Deser, Jackiw &amp; Templeton (1982)</a>) </p><p>In 2003, R. Jackiw and S. Y. Pi extended this theory to four dimensions (<a href="#CITEREFJackiwPi2003">Jackiw &amp; Pi (2003)</a>) and Chern–Simons gravity theory has some considerable effects not only to fundamental physics but also condensed matter theory and astronomy. </p><p>The four-dimensional case is very analogous to the three-dimensional case. In three dimensions, the gravitational Chern–Simons term is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {CS} (\Gamma )={\frac {1}{2\pi ^{2}}}\int d^{3}x\varepsilon ^{ijk}{\biggl (}\Gamma _{iq}^{p}\partial _{j}\Gamma _{kp}^{q}+{\frac {2}{3}}\Gamma _{iq}^{p}\Gamma _{jr}^{q}\Gamma _{kp}^{r}{\biggr )}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>CS</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>&#x222B;<!-- ∫ --></mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mi>x</mi> <msup> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> <mi>k</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> </mrow> <msubsup> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>q</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msubsup> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <msubsup> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msubsup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> </mrow> <msubsup> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>q</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msubsup> <msubsup> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mi>r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msubsup> <msubsup> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {CS} (\Gamma )={\frac {1}{2\pi ^{2}}}\int d^{3}x\varepsilon ^{ijk}{\biggl (}\Gamma _{iq}^{p}\partial _{j}\Gamma _{kp}^{q}+{\frac {2}{3}}\Gamma _{iq}^{p}\Gamma _{jr}^{q}\Gamma _{kp}^{r}{\biggr )}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0075fd8f2a25a546317665e0498d0d921231a35" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:50.615ex; height:6.176ex;" alt="{\displaystyle \operatorname {CS} (\Gamma )={\frac {1}{2\pi ^{2}}}\int d^{3}x\varepsilon ^{ijk}{\biggl (}\Gamma _{iq}^{p}\partial _{j}\Gamma _{kp}^{q}+{\frac {2}{3}}\Gamma _{iq}^{p}\Gamma _{jr}^{q}\Gamma _{kp}^{r}{\biggr )}.}"></span></dd></dl> <p>This variation gives the <a href="/wiki/Cotton_tensor" title="Cotton tensor">Cotton tensor</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle =-{\frac {1}{2{\sqrt {g}}}}{\bigl (}\varepsilon ^{mij}D_{i}R_{j}^{n}+\varepsilon ^{nij}D_{i}R_{j}^{m}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>g</mi> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <msup> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mi>i</mi> <mi>j</mi> </mrow> </msup> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msubsup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo>+</mo> <msup> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mi>i</mi> <mi>j</mi> </mrow> </msup> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msubsup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msubsup> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle =-{\frac {1}{2{\sqrt {g}}}}{\bigl (}\varepsilon ^{mij}D_{i}R_{j}^{n}+\varepsilon ^{nij}D_{i}R_{j}^{m}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9bd75b443f9e7da2a55ae6a72a82fcd78fb30b42" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:34.188ex; height:6.176ex;" alt="{\displaystyle =-{\frac {1}{2{\sqrt {g}}}}{\bigl (}\varepsilon ^{mij}D_{i}R_{j}^{n}+\varepsilon ^{nij}D_{i}R_{j}^{m}).}"></span></dd></dl> <p>Then, Chern–Simons modification of three-dimensional gravity is made by adding the above Cotton tensor to the field equation, which can be obtained as the vacuum solution by varying the Einstein–Hilbert action. </p> <div class="mw-heading mw-heading3"><h3 id="Chern–Simons_matter_theories"><span id="Chern.E2.80.93Simons_matter_theories"></span>Chern–Simons matter theories</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Chern%E2%80%93Simons_theory&amp;action=edit&amp;section=13" title="Edit section: Chern–Simons matter theories"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 2013 Kenneth A. Intriligator and <a href="/wiki/Nathan_Seiberg" title="Nathan Seiberg">Nathan Seiberg</a> solved these 3d Chern–Simons gauge theories and their phases using <a href="/wiki/Seiberg-Witten_monopole" class="mw-redirect" title="Seiberg-Witten monopole">monopoles</a> carrying extra degrees of freedom. The <a href="/wiki/Witten_index" title="Witten index">Witten index</a> of the many <a href="/wiki/Vacuum_state" class="mw-redirect" title="Vacuum state">vacua</a> discovered was computed by compactifying the space by turning on mass parameters and then computing the index. In some vacua, <a href="/wiki/Supersymmetry" title="Supersymmetry">supersymmetry</a> was computed to be broken. These monopoles were related to <a href="/wiki/Condensed_matter_physics" title="Condensed matter physics">condensed matter</a> <a href="/wiki/Quantum_vortex" title="Quantum vortex">vortices</a>. (<a href="#CITEREFIntriligatorSeiberg2013">Intriligator &amp; Seiberg (2013)</a>) </p><p>The <i>N</i>&#160;=&#160;6 Chern–Simons matter theory is the <a href="/wiki/AdS/CFT_correspondence" title="AdS/CFT correspondence">holographic dual</a> of M-theory on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle AdS_{4}\times S_{7}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>d</mi> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>&#x00D7;<!-- × --></mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle AdS_{4}\times S_{7}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/101afc2877d7978a4538886779d4debbe5efa115" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.758ex; height:2.509ex;" alt="{\displaystyle AdS_{4}\times S_{7}}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Four-dimensional_Chern–Simons_theory"><span id="Four-dimensional_Chern.E2.80.93Simons_theory"></span>Four-dimensional Chern–Simons theory</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Chern%E2%80%93Simons_theory&amp;action=edit&amp;section=14" title="Edit section: Four-dimensional Chern–Simons theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Four-dimensional_Chern%E2%80%93Simons_theory" title="Four-dimensional Chern–Simons theory">Four-dimensional Chern–Simons theory</a></div> <p>In 2013 <a href="/wiki/Kevin_Costello" title="Kevin Costello">Kevin Costello</a> defined a closely related theory defined on a four-dimensional manifold consisting of the product of a two-dimensional 'topological plane' and a two-dimensional (or one complex dimensional) complex curve.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> He later studied the theory in more detail together with Witten and Masahito Yamazaki,<sup id="cite_ref-CWY1_9-0" class="reference"><a href="#cite_note-CWY1-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-CWY2_10-0" class="reference"><a href="#cite_note-CWY2-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-CY_11-0" class="reference"><a href="#cite_note-CY-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> demonstrating how the gauge theory could be related to many notions in <a href="/wiki/Integrable_system" title="Integrable system">integrable systems</a> theory, including exactly solvable lattice models (like the <a href="/wiki/Six-vertex_model" class="mw-redirect" title="Six-vertex model">six-vertex model</a> or the <a href="/wiki/Quantum_Heisenberg_model" title="Quantum Heisenberg model">XXZ spin chain</a>), integrable quantum field theories (such as the <a href="/wiki/Gross%E2%80%93Neveu_model" title="Gross–Neveu model">Gross–Neveu model</a>, <a href="/wiki/Chiral_model" title="Chiral model">principal chiral model</a> and symmetric space coset <a href="/wiki/Sigma_model" title="Sigma model">sigma models</a>), the <a href="/wiki/Yang%E2%80%93Baxter_equation" title="Yang–Baxter equation">Yang–Baxter equation</a> and <a href="/wiki/Quantum_groups" class="mw-redirect" title="Quantum groups">quantum groups</a> such as the <a href="/wiki/Yangian" title="Yangian">Yangian</a> which describe symmetries underpinning the integrability of the aforementioned systems. </p><p>The action on the 4-manifold <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M=\Sigma \times C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>=</mo> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> <mo>&#x00D7;<!-- × --></mo> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M=\Sigma \times C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5656bd4f68eec969acf1747e84dcbd58a1e5c184" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.825ex; height:2.176ex;" alt="{\displaystyle M=\Sigma \times C}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e1f558f53cda207614abdf90162266c70bc5c1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Sigma }"></span> is a two-dimensional manifold and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> is a complex curve is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S=\int _{M}\omega \wedge CS(A)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </msub> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>C</mi> <mi>S</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S=\int _{M}\omega \wedge CS(A)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aaad5c75890a03104e3730e1ee7ccf8bd46fced3" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:19.083ex; height:5.676ex;" alt="{\displaystyle S=\int _{M}\omega \wedge CS(A)}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48eff443f9de7a985bb94ca3bde20813ea737be8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.446ex; height:1.676ex;" alt="{\displaystyle \omega }"></span> is a <a href="/wiki/Meromorphic" class="mw-redirect" title="Meromorphic">meromorphic</a> <a href="/wiki/One-form" class="mw-redirect" title="One-form">one-form</a> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Chern–Simons_terms_in_other_theories"><span id="Chern.E2.80.93Simons_terms_in_other_theories"></span>Chern–Simons terms in other theories</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Chern%E2%80%93Simons_theory&amp;action=edit&amp;section=15" title="Edit section: Chern–Simons terms in other theories"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Chern–Simons term can also be added to models which aren't topological quantum field theories. In 3D, this gives rise to a massive <a href="/wiki/Photon" title="Photon">photon</a> if this term is added to the action of Maxwell's theory of <a href="/wiki/Electrodynamics" class="mw-redirect" title="Electrodynamics">electrodynamics</a>. This term can be induced by integrating over a massive charged <a href="/wiki/Fermionic_field#Dirac_fields" title="Fermionic field">Dirac field</a>. It also appears for example in the <a href="/wiki/Quantum_Hall_effect" title="Quantum Hall effect">quantum Hall effect</a>. The addition of the Chern–Simons term to various theories gives rise to vortex- or soliton-type solutions<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> Ten- and eleven-dimensional generalizations of Chern–Simons terms appear in the actions of all ten- and eleven-dimensional <a href="/wiki/Supergravity" title="Supergravity">supergravity</a> theories. </p> <div class="mw-heading mw-heading3"><h3 id="One-loop_renormalization_of_the_level">One-loop renormalization of the level</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Chern%E2%80%93Simons_theory&amp;action=edit&amp;section=16" title="Edit section: One-loop renormalization of the level"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If one adds matter to a Chern–Simons gauge theory then, in general it is no longer topological. However, if one adds n <a href="/wiki/Majorana_fermion" title="Majorana fermion">Majorana fermions</a> then, due to the <a href="/wiki/Parity_anomaly" title="Parity anomaly">parity anomaly</a>, when integrated out they lead to a pure Chern–Simons theory with a one-loop <a href="/wiki/Renormalization" title="Renormalization">renormalization</a> of the Chern–Simons level by &#8722;<i>n</i>/2, in other words the level k theory with n fermions is equivalent to the level <i>k</i>&#160;&#8722;&#160;<i>n</i>/2 theory without fermions. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Chern%E2%80%93Simons_theory&amp;action=edit&amp;section=17" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Gauge_theory_(mathematics)" title="Gauge theory (mathematics)">Gauge theory (mathematics)</a></li> <li><a href="/wiki/Chern%E2%80%93Simons_form" title="Chern–Simons form">Chern–Simons form</a></li> <li><a href="/wiki/Topological_quantum_field_theory" title="Topological quantum field theory">Topological quantum field theory</a></li> <li><a href="/wiki/Alexander_polynomial" title="Alexander polynomial">Alexander polynomial</a></li> <li><a href="/wiki/Jones_polynomial" title="Jones polynomial">Jones polynomial</a></li> <li><a href="/wiki/2%2B1D_topological_gravity" class="mw-redirect" title="2+1D topological gravity">2+1D topological gravity</a></li> <li><a href="/wiki/Skyrmion" title="Skyrmion">Skyrmion</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Chern%E2%80%93Simons_theory&amp;action=edit&amp;section=18" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFArthurTchrakianY.-S.1996" class="citation journal cs1"><a href="/w/index.php?title=K._Arthur&amp;action=edit&amp;redlink=1" class="new" title="K. Arthur (page does not exist)">Arthur, K.</a>; Tchrakian, D.H.; Y.-S., Yang (1996). "Topological and nontopological selfdual Chern-Simons solitons in a gauged O(3) sigma model". <i><a href="/wiki/Physical_Review_D" class="mw-redirect" title="Physical Review D">Physical Review D</a></i>. <b>54</b> (8): 5245–5258. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1996PhRvD..54.5245A">1996PhRvD..54.5245A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevD.54.5245">10.1103/PhysRevD.54.5245</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/10021215">10021215</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+D&amp;rft.atitle=Topological+and+nontopological+selfdual+Chern-Simons+solitons+in+a+gauged+O%283%29+sigma+model&amp;rft.volume=54&amp;rft.issue=8&amp;rft.pages=5245-5258&amp;rft.date=1996&amp;rft_id=info%3Apmid%2F10021215&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevD.54.5245&amp;rft_id=info%3Abibcode%2F1996PhRvD..54.5245A&amp;rft.aulast=Arthur&amp;rft.aufirst=K.&amp;rft.au=Tchrakian%2C+D.H.&amp;rft.au=Y.-S.%2C+Yang&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AChern%E2%80%93Simons+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChernSimons1974" class="citation journal cs1"><a href="/wiki/S.-S._Chern" class="mw-redirect" title="S.-S. Chern">Chern, S.-S.</a> &amp; Simons, J. (1974). "Characteristic forms and geometric invariants". <i><a href="/wiki/Annals_of_Mathematics" title="Annals of Mathematics">Annals of Mathematics</a></i>. <b>99</b> (1): 48–69. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F1971013">10.2307/1971013</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/1971013">1971013</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Annals+of+Mathematics&amp;rft.atitle=Characteristic+forms+and+geometric+invariants&amp;rft.volume=99&amp;rft.issue=1&amp;rft.pages=48-69&amp;rft.date=1974&amp;rft_id=info%3Adoi%2F10.2307%2F1971013&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F1971013%23id-name%3DJSTOR&amp;rft.aulast=Chern&amp;rft.aufirst=S.-S.&amp;rft.au=Simons%2C+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AChern%E2%80%93Simons+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDeserJackiwTempleton1982" class="citation journal cs1">Deser, Stanley; Jackiw, Roman; Templeton, S. (1982). <a rel="nofollow" class="external text" href="https://authors.library.caltech.edu/85895/1/PhysRevLett.48.975.pdf">"Three-Dimensional Massive Gauge Theories"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Physical_Review_Letters" title="Physical Review Letters">Physical Review Letters</a></i>. <b>48</b> (15): 975–978. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1982PhRvL..48..975D">1982PhRvL..48..975D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.48.975">10.1103/PhysRevLett.48.975</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:122537043">122537043</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+Letters&amp;rft.atitle=Three-Dimensional+Massive+Gauge+Theories&amp;rft.volume=48&amp;rft.issue=15&amp;rft.pages=975-978&amp;rft.date=1982&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A122537043%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.48.975&amp;rft_id=info%3Abibcode%2F1982PhRvL..48..975D&amp;rft.aulast=Deser&amp;rft.aufirst=Stanley&amp;rft.au=Jackiw%2C+Roman&amp;rft.au=Templeton%2C+S.&amp;rft_id=https%3A%2F%2Fauthors.library.caltech.edu%2F85895%2F1%2FPhysRevLett.48.975.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AChern%E2%80%93Simons+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIntriligatorSeiberg2013" class="citation journal cs1">Intriligator, Kenneth; Seiberg, Nathan (2013). "Aspects of 3d <i>N</i>&#160;=&#160;2 Chern–Simons Matter Theories". <i><a href="/wiki/Journal_of_High_Energy_Physics" title="Journal of High Energy Physics">Journal of High Energy Physics</a></i>. <b>2013</b>: 79. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1305.1633">1305.1633</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013JHEP...07..079I">2013JHEP...07..079I</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FJHEP07%282013%29079">10.1007/JHEP07(2013)079</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119106931">119106931</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+High+Energy+Physics&amp;rft.atitle=Aspects+of+3d+N+%3D+2+Chern%E2%80%93Simons+Matter+Theories&amp;rft.volume=2013&amp;rft.pages=79&amp;rft.date=2013&amp;rft_id=info%3Aarxiv%2F1305.1633&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119106931%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2FJHEP07%282013%29079&amp;rft_id=info%3Abibcode%2F2013JHEP...07..079I&amp;rft.aulast=Intriligator&amp;rft.aufirst=Kenneth&amp;rft.au=Seiberg%2C+Nathan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AChern%E2%80%93Simons+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJackiwPi2003" class="citation journal cs1"><a href="/wiki/Roman_Jackiw" title="Roman Jackiw">Jackiw, Roman</a>; <a href="/wiki/So-Young_Pi" title="So-Young Pi">Pi, S.-Y</a> (2003). "Chern–Simons modification of general relativity". <i><a href="/wiki/Physical_Review_D" class="mw-redirect" title="Physical Review D">Physical Review D</a></i>. <b>68</b> (10): 104012. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/gr-qc/0308071">gr-qc/0308071</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003PhRvD..68j4012J">2003PhRvD..68j4012J</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevD.68.104012">10.1103/PhysRevD.68.104012</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:2243511">2243511</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+D&amp;rft.atitle=Chern%E2%80%93Simons+modification+of+general+relativity&amp;rft.volume=68&amp;rft.issue=10&amp;rft.pages=104012&amp;rft.date=2003&amp;rft_id=info%3Aarxiv%2Fgr-qc%2F0308071&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A2243511%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevD.68.104012&amp;rft_id=info%3Abibcode%2F2003PhRvD..68j4012J&amp;rft.aulast=Jackiw&amp;rft.aufirst=Roman&amp;rft.au=Pi%2C+S.-Y&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AChern%E2%80%93Simons+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKulshreshthaKulshreshthaMueller-KirstenVary2009" class="citation journal cs1">Kulshreshtha, Usha; Kulshreshtha, D.S.; Mueller-Kirsten, H. J. W.; Vary, J. P. (2009). "Hamiltonian, path integral and BRST formulations of the Chern-Simons-Higgs theory under appropriate gauge fixing". <i><a href="/wiki/Physica_Scripta" title="Physica Scripta">Physica Scripta </a></i>. <b>79</b> (4): 045001. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009PhyS...79d5001K">2009PhyS...79d5001K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0031-8949%2F79%2F04%2F045001">10.1088/0031-8949/79/04/045001</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:120594654">120594654</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physica+Scripta&amp;rft.atitle=Hamiltonian%2C+path+integral+and+BRST+formulations+of+the+Chern-Simons-Higgs+theory+under+appropriate+gauge+fixing&amp;rft.volume=79&amp;rft.issue=4&amp;rft.pages=045001&amp;rft.date=2009&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A120594654%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1088%2F0031-8949%2F79%2F04%2F045001&amp;rft_id=info%3Abibcode%2F2009PhyS...79d5001K&amp;rft.aulast=Kulshreshtha&amp;rft.aufirst=Usha&amp;rft.au=Kulshreshtha%2C+D.S.&amp;rft.au=Mueller-Kirsten%2C+H.+J.+W.&amp;rft.au=Vary%2C+J.+P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AChern%E2%80%93Simons+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKulshreshthaKulshreshthaVary2010" class="citation journal cs1">Kulshreshtha, Usha; Kulshreshtha, D.S.; Vary, J. P. (2010). "Light-front Hamiltonian, path integral and BRST formulations of the Chern-Simons-Higgs theory under appropriate gauge fixing". <i><a href="/wiki/Physica_Scripta" title="Physica Scripta">Physica Scripta</a></i>. <b>82</b> (5): 055101. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2010PhyS...82e5101K">2010PhyS...82e5101K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0031-8949%2F82%2F05%2F055101">10.1088/0031-8949/82/05/055101</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:54602971">54602971</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physica+Scripta&amp;rft.atitle=Light-front+Hamiltonian%2C+path+integral+and+BRST+formulations+of+the+Chern-Simons-Higgs+theory+under+appropriate+gauge+fixing&amp;rft.volume=82&amp;rft.issue=5&amp;rft.pages=055101&amp;rft.date=2010&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A54602971%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1088%2F0031-8949%2F82%2F05%2F055101&amp;rft_id=info%3Abibcode%2F2010PhyS...82e5101K&amp;rft.aulast=Kulshreshtha&amp;rft.aufirst=Usha&amp;rft.au=Kulshreshtha%2C+D.S.&amp;rft.au=Vary%2C+J.+P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AChern%E2%80%93Simons+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLopezFradkin1991" class="citation journal cs1">Lopez, Ana; <a href="/wiki/Eduardo_Fradkin" title="Eduardo Fradkin">Fradkin, Eduardo</a> (1991). "Fractional quantum Hall effect and Chern-Simons gauge theories". <i><a href="/wiki/Physical_Review_B" title="Physical Review B">Physical Review B</a></i>. <b>44</b> (10): 5246–5262. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1991PhRvB..44.5246L">1991PhRvB..44.5246L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevB.44.5246">10.1103/PhysRevB.44.5246</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/9998334">9998334</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+B&amp;rft.atitle=Fractional+quantum+Hall+effect+and+Chern-Simons+gauge+theories&amp;rft.volume=44&amp;rft.issue=10&amp;rft.pages=5246-5262&amp;rft.date=1991&amp;rft_id=info%3Apmid%2F9998334&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevB.44.5246&amp;rft_id=info%3Abibcode%2F1991PhRvB..44.5246L&amp;rft.aulast=Lopez&amp;rft.aufirst=Ana&amp;rft.au=Fradkin%2C+Eduardo&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AChern%E2%80%93Simons+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMarino2005" class="citation journal cs1"><a href="/w/index.php?title=Marcos_Marino&amp;action=edit&amp;redlink=1" class="new" title="Marcos Marino (page does not exist)">Marino, Marcos</a> (2005). "Chern–Simons Theory and Topological Strings". <i><a href="/wiki/Reviews_of_Modern_Physics" title="Reviews of Modern Physics">Reviews of Modern Physics</a></i>. <b>77</b> (2): 675–720. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/hep-th/0406005">hep-th/0406005</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005RvMP...77..675M">2005RvMP...77..675M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FRevModPhys.77.675">10.1103/RevModPhys.77.675</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:6207500">6207500</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Reviews+of+Modern+Physics&amp;rft.atitle=Chern%E2%80%93Simons+Theory+and+Topological+Strings&amp;rft.volume=77&amp;rft.issue=2&amp;rft.pages=675-720&amp;rft.date=2005&amp;rft_id=info%3Aarxiv%2Fhep-th%2F0406005&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A6207500%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1103%2FRevModPhys.77.675&amp;rft_id=info%3Abibcode%2F2005RvMP...77..675M&amp;rft.aulast=Marino&amp;rft.aufirst=Marcos&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AChern%E2%80%93Simons+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMarino2005" class="citation book cs1">Marino, Marcos (2005). <i>Chern–Simons Theory, Matrix Models, And Topological Strings</i>. International Series of Monographs on Physics. <a href="/wiki/Oxford_University_Press" title="Oxford University Press">Oxford University Press</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Chern%E2%80%93Simons+Theory%2C+Matrix+Models%2C+And+Topological+Strings&amp;rft.series=International+Series+of+Monographs+on+Physics&amp;rft.pub=Oxford+University+Press&amp;rft.date=2005&amp;rft.aulast=Marino&amp;rft.aufirst=Marcos&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AChern%E2%80%93Simons+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWitten1988" class="citation journal cs1"><a href="/wiki/Edward_Witten" title="Edward Witten">Witten, Edward</a> (1988). <a rel="nofollow" class="external text" href="http://projecteuclid.org/DPubS/Repository/1.0/Disseminate?view=body&amp;id=pdf_1&amp;handle=euclid.cmp/1104161738">"Topological Quantum Field Theory"</a>. <i><a href="/wiki/Communications_in_Mathematical_Physics" title="Communications in Mathematical Physics">Communications in Mathematical Physics</a></i>. <b>117</b> (3): 353–386. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1988CMaPh.117..353W">1988CMaPh.117..353W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01223371">10.1007/BF01223371</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:43230714">43230714</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Communications+in+Mathematical+Physics&amp;rft.atitle=Topological+Quantum+Field+Theory&amp;rft.volume=117&amp;rft.issue=3&amp;rft.pages=353-386&amp;rft.date=1988&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A43230714%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2FBF01223371&amp;rft_id=info%3Abibcode%2F1988CMaPh.117..353W&amp;rft.aulast=Witten&amp;rft.aufirst=Edward&amp;rft_id=http%3A%2F%2Fprojecteuclid.org%2FDPubS%2FRepository%2F1.0%2FDisseminate%3Fview%3Dbody%26id%3Dpdf_1%26handle%3Deuclid.cmp%2F1104161738&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AChern%E2%80%93Simons+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWitten1995" class="citation journal cs1">Witten, Edward (1995). "Chern–Simons Theory as a String Theory". <i><a href="/w/index.php?title=Progress_in_Mathematics&amp;action=edit&amp;redlink=1" class="new" title="Progress in Mathematics (page does not exist)">Progress in Mathematics</a></i>. <b>133</b>: 637–678. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/hep-th/9207094">hep-th/9207094</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1992hep.th....7094W">1992hep.th....7094W</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Progress+in+Mathematics&amp;rft.atitle=Chern%E2%80%93Simons+Theory+as+a+String+Theory&amp;rft.volume=133&amp;rft.pages=637-678&amp;rft.date=1995&amp;rft_id=info%3Aarxiv%2Fhep-th%2F9207094&amp;rft_id=info%3Abibcode%2F1992hep.th....7094W&amp;rft.aulast=Witten&amp;rft.aufirst=Edward&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AChern%E2%80%93Simons+theory" class="Z3988"></span></li></ul> <dl><dt>Specific</dt></dl> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-wittenjonespolynomial-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-wittenjonespolynomial_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-wittenjonespolynomial_1-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWitten1989" class="citation journal cs1"><a href="/wiki/Edward_Witten" title="Edward Witten">Witten, Edward</a> (1989). <a rel="nofollow" class="external text" href="http://projecteuclid.org/euclid.cmp/1104178138">"Quantum Field Theory and the Jones Polynomial"</a>. <i><a href="/wiki/Communications_in_Mathematical_Physics" title="Communications in Mathematical Physics">Communications in Mathematical Physics</a></i>. <b>121</b> (3): 351–399. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1989CMaPh.121..351W">1989CMaPh.121..351W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01217730">10.1007/BF01217730</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0990772">0990772</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:14951363">14951363</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Communications+in+Mathematical+Physics&amp;rft.atitle=Quantum+Field+Theory+and+the+Jones+Polynomial&amp;rft.volume=121&amp;rft.issue=3&amp;rft.pages=351-399&amp;rft.date=1989&amp;rft_id=info%3Adoi%2F10.1007%2FBF01217730&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0990772%23id-name%3DMR&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A14951363%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F1989CMaPh.121..351W&amp;rft.aulast=Witten&amp;rft.aufirst=Edward&amp;rft_id=http%3A%2F%2Fprojecteuclid.org%2Feuclid.cmp%2F1104178138&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AChern%E2%80%93Simons+theory" class="Z3988"></span></span> </li> <li id="cite_note-FK02-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-FK02_2-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFreedmanKitaevLarsenWang2002" class="citation arxiv cs1">Freedman, Michael H.; Kitaev, Alexei; Larsen, Michael J.; Wang, Zhenghan (2002-09-20). "Topological Quantum Computation". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0101025">quant-ph/0101025</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=Topological+Quantum+Computation&amp;rft.date=2002-09-20&amp;rft_id=info%3Aarxiv%2Fquant-ph%2F0101025&amp;rft.aulast=Freedman&amp;rft.aufirst=Michael+H.&amp;rft.au=Kitaev%2C+Alexei&amp;rft.au=Larsen%2C+Michael+J.&amp;rft.au=Wang%2C+Zhenghan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AChern%E2%80%93Simons+theory" class="Z3988"></span></span> </li> <li id="cite_note-WangTQCreview-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-WangTQCreview_3-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWang" class="citation web cs1">Wang, Zhenghan. <a rel="nofollow" class="external text" href="http://web.math.ucsb.edu/~zhenghwa/data/course/cbms.pdf">"Topological Quantum Computation"</a> <span class="cs1-format">(PDF)</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Topological+Quantum+Computation&amp;rft.aulast=Wang&amp;rft.aufirst=Zhenghan&amp;rft_id=http%3A%2F%2Fweb.math.ucsb.edu%2F~zhenghwa%2Fdata%2Fcourse%2Fcbms.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AChern%E2%80%93Simons+theory" class="Z3988"></span></span> </li> <li id="cite_note-EMSS89-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-EMSS89_4-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFElitzurMooreSchwimmerSeiberg1989" class="citation journal cs1"><a href="/w/index.php?title=Shmuel_Elitzur&amp;action=edit&amp;redlink=1" class="new" title="Shmuel Elitzur (page does not exist)">Elitzur, Shmuel</a>; <a href="/w/index.php?title=Gregory_Moore_(physicist)&amp;action=edit&amp;redlink=1" class="new" title="Gregory Moore (physicist) (page does not exist)">Moore, Gregory</a>; <a href="/w/index.php?title=Adam_Schwimmer&amp;action=edit&amp;redlink=1" class="new" title="Adam Schwimmer (page does not exist)">Schwimmer, Adam</a>; <a href="/wiki/Nathan_Seiberg" title="Nathan Seiberg">Seiberg, Nathan</a> (30 October 1989). "Remarks on the canonical quantization of the Chern-Simons-Witten theory". <i><a href="/wiki/Nuclear_Physics_B" class="mw-redirect" title="Nuclear Physics B">Nuclear Physics B</a></i>. <b>326</b> (1): 108–134. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1989NuPhB.326..108E">1989NuPhB.326..108E</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0550-3213%2889%2990436-7">10.1016/0550-3213(89)90436-7</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nuclear+Physics+B&amp;rft.atitle=Remarks+on+the+canonical+quantization+of+the+Chern-Simons-Witten+theory&amp;rft.volume=326&amp;rft.issue=1&amp;rft.pages=108-134&amp;rft.date=1989-10-30&amp;rft_id=info%3Adoi%2F10.1016%2F0550-3213%2889%2990436-7&amp;rft_id=info%3Abibcode%2F1989NuPhB.326..108E&amp;rft.aulast=Elitzur&amp;rft.aufirst=Shmuel&amp;rft.au=Moore%2C+Gregory&amp;rft.au=Schwimmer%2C+Adam&amp;rft.au=Seiberg%2C+Nathan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AChern%E2%80%93Simons+theory" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAtiyah1990" class="citation journal cs1">Atiyah, Michael (1990). <a rel="nofollow" class="external text" href="https://doi.org/10.1016/0040-9383(90)90021-b">"On framings of 3-manifolds"</a>. <i>Topology</i>. <b>29</b> (1): 1–7. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0040-9383%2890%2990021-b">10.1016/0040-9383(90)90021-b</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0040-9383">0040-9383</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Topology&amp;rft.atitle=On+framings+of+3-manifolds&amp;rft.volume=29&amp;rft.issue=1&amp;rft.pages=1-7&amp;rft.date=1990&amp;rft_id=info%3Adoi%2F10.1016%2F0040-9383%2890%2990021-b&amp;rft.issn=0040-9383&amp;rft.aulast=Atiyah&amp;rft.aufirst=Michael&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%2F0040-9383%2890%2990021-b&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AChern%E2%80%93Simons+theory" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKauffmanOgasaSchneider2018" class="citation arxiv cs1">Kauffman, L.H; Ogasa, E; Schneider, J (2018). "A spinning construction for virtual 1-knots and 2-knots, and the fiberwise and welded equivalence of virtual 1-knots". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1808.03023">1808.03023</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/math.GT">math.GT</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=A+spinning+construction+for+virtual+1-knots+and+2-knots%2C+and+the+fiberwise+and+welded+equivalence+of+virtual+1-knots&amp;rft.date=2018&amp;rft_id=info%3Aarxiv%2F1808.03023&amp;rft.aulast=Kauffman&amp;rft.aufirst=L.H&amp;rft.au=Ogasa%2C+E&amp;rft.au=Schneider%2C+J&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AChern%E2%80%93Simons+theory" class="Z3988"></span> </span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKauffman1998" class="citation arxiv cs1">Kauffman, L.E. (1998). "Virtual Knot Theory". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math/9811028">math/9811028</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=Virtual+Knot+Theory&amp;rft.date=1998&amp;rft_id=info%3Aarxiv%2Fmath%2F9811028&amp;rft.aulast=Kauffman&amp;rft.aufirst=L.E.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AChern%E2%80%93Simons+theory" class="Z3988"></span> </span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCostello2013" class="citation arxiv cs1">Costello, Kevin (2013). "Supersymmetric gauge theory and the Yangian". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1303.2632">1303.2632</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/hep-th">hep-th</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=Supersymmetric+gauge+theory+and+the+Yangian&amp;rft.date=2013&amp;rft_id=info%3Aarxiv%2F1303.2632&amp;rft.aulast=Costello&amp;rft.aufirst=Kevin&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AChern%E2%80%93Simons+theory" class="Z3988"></span></span> </li> <li id="cite_note-CWY1-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-CWY1_9-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCostelloWittenYamazaki2018" class="citation journal cs1">Costello, Kevin; Witten, Edward; Yamazaki, Masahito (2018). "Gauge Theory And Integrability, I". <i>Notices of the International Congress of Chinese Mathematicians</i>. <b>6</b> (1): 46–119. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1709.09993">1709.09993</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.4310%2FICCM.2018.v6.n1.a6">10.4310/ICCM.2018.v6.n1.a6</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Notices+of+the+International+Congress+of+Chinese+Mathematicians&amp;rft.atitle=Gauge+Theory+And+Integrability%2C+I&amp;rft.volume=6&amp;rft.issue=1&amp;rft.pages=46-119&amp;rft.date=2018&amp;rft_id=info%3Aarxiv%2F1709.09993&amp;rft_id=info%3Adoi%2F10.4310%2FICCM.2018.v6.n1.a6&amp;rft.aulast=Costello&amp;rft.aufirst=Kevin&amp;rft.au=Witten%2C+Edward&amp;rft.au=Yamazaki%2C+Masahito&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AChern%E2%80%93Simons+theory" class="Z3988"></span></span> </li> <li id="cite_note-CWY2-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-CWY2_10-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCostelloWittenYamazaki2018" class="citation journal cs1">Costello, Kevin; Witten, Edward; Yamazaki, Masahito (2018). "Gauge Theory And Integrability, II". <i>Notices of the International Congress of Chinese Mathematicians</i>. <b>6</b> (1): 120–146. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1802.01579">1802.01579</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.4310%2FICCM.2018.v6.n1.a7">10.4310/ICCM.2018.v6.n1.a7</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119592177">119592177</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Notices+of+the+International+Congress+of+Chinese+Mathematicians&amp;rft.atitle=Gauge+Theory+And+Integrability%2C+II&amp;rft.volume=6&amp;rft.issue=1&amp;rft.pages=120-146&amp;rft.date=2018&amp;rft_id=info%3Aarxiv%2F1802.01579&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119592177%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.4310%2FICCM.2018.v6.n1.a7&amp;rft.aulast=Costello&amp;rft.aufirst=Kevin&amp;rft.au=Witten%2C+Edward&amp;rft.au=Yamazaki%2C+Masahito&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AChern%E2%80%93Simons+theory" class="Z3988"></span></span> </li> <li id="cite_note-CY-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-CY_11-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCostelloYamazaki2019" class="citation arxiv cs1">Costello, Kevin; Yamazaki, Masahito (2019). "Gauge Theory And Integrability, III". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1908.02289">1908.02289</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/hep-th">hep-th</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=Gauge+Theory+And+Integrability%2C+III&amp;rft.date=2019&amp;rft_id=info%3Aarxiv%2F1908.02289&amp;rft.aulast=Costello&amp;rft.aufirst=Kevin&amp;rft.au=Yamazaki%2C+Masahito&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AChern%E2%80%93Simons+theory" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKimKim2002" class="citation journal cs1">Kim, Seongtag; Kim, Yoonbai (2002). "Self-dual Chern–Simons vortices on Riemann surfaces". <i>Journal of Mathematical Physics</i>. <b>43</b> (5): 2355–2362. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math-ph/0012045">math-ph/0012045</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2002JMP....43.2355K">2002JMP....43.2355K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.1471365">10.1063/1.1471365</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:9916364">9916364</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Mathematical+Physics&amp;rft.atitle=Self-dual+Chern%E2%80%93Simons+vortices+on+Riemann+surfaces&amp;rft.volume=43&amp;rft.issue=5&amp;rft.pages=2355-2362&amp;rft.date=2002&amp;rft_id=info%3Aarxiv%2Fmath-ph%2F0012045&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A9916364%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1063%2F1.1471365&amp;rft_id=info%3Abibcode%2F2002JMP....43.2355K&amp;rft.aulast=Kim&amp;rft.aufirst=Seongtag&amp;rft.au=Kim%2C+Yoonbai&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AChern%E2%80%93Simons+theory" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNavarro-LéridaRaduTchrakian2017" class="citation journal cs1">Navarro-Lérida, Francisco; Radu, Eugen; Tchrakian, D. H. (2017). "Effect of Chern-Simons dynamics on the energy of electrically charged and spinning vortices". <i>Physical Review D</i>. <b>95</b> (8): 085016. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1612.05835">1612.05835</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017PhRvD..95h5016N">2017PhRvD..95h5016N</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevD.95.085016">10.1103/PhysRevD.95.085016</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:62882649">62882649</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+D&amp;rft.atitle=Effect+of+Chern-Simons+dynamics+on+the+energy+of+electrically+charged+and+spinning+vortices&amp;rft.volume=95&amp;rft.issue=8&amp;rft.pages=085016&amp;rft.date=2017&amp;rft_id=info%3Aarxiv%2F1612.05835&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A62882649%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevD.95.085016&amp;rft_id=info%3Abibcode%2F2017PhRvD..95h5016N&amp;rft.aulast=Navarro-L%C3%A9rida&amp;rft.aufirst=Francisco&amp;rft.au=Radu%2C+Eugen&amp;rft.au=Tchrakian%2C+D.+H.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AChern%E2%80%93Simons+theory" class="Z3988"></span></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Chern%E2%80%93Simons_theory&amp;action=edit&amp;section=19" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs1"><a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Chern-Simons_functional">"Chern-Simons functional"</a>. <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>. <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a>. 2001 [1994].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Chern-Simons+functional&amp;rft.btitle=Encyclopedia+of+Mathematics&amp;rft.pub=EMS+Press&amp;rft.date=2001&amp;rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DChern-Simons_functional&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AChern%E2%80%93Simons+theory" class="Z3988"></span></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Quantum_field_theories" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Quantum_field_theories" title="Template:Quantum field theories"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Quantum_field_theories" title="Template talk:Quantum field theories"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Quantum_field_theories" title="Special:EditPage/Template:Quantum field theories"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Quantum_field_theories" style="font-size:114%;margin:0 4em"><a href="/wiki/Quantum_field_theory" title="Quantum field theory">Quantum field theories</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Theories</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Algebraic_quantum_field_theory" title="Algebraic quantum field theory">Algebraic QFT</a></li> <li><a href="/wiki/Axiomatic_quantum_field_theory" title="Axiomatic quantum field theory">Axiomatic QFT</a></li> <li><a href="/wiki/Conformal_field_theory" title="Conformal field theory">Conformal field theory</a></li> <li><a href="/wiki/Lattice_field_theory" title="Lattice field theory">Lattice field theory</a></li> <li><a href="/wiki/Noncommutative_quantum_field_theory" title="Noncommutative quantum field theory">Noncommutative QFT</a></li> <li><a href="/wiki/Gauge_theory" title="Gauge theory">Gauge theory</a></li> <li><a href="/wiki/Quantum_field_theory_in_curved_spacetime" title="Quantum field theory in curved spacetime">QFT in curved spacetime</a></li> <li><a href="/wiki/String_theory" title="String theory">String theory</a></li> <li><a href="/wiki/Supergravity" title="Supergravity">Supergravity</a></li> <li><a href="/wiki/Thermal_quantum_field_theory" title="Thermal quantum field theory">Thermal QFT</a></li> <li><a href="/wiki/Topological_quantum_field_theory" title="Topological quantum field theory">Topological QFT</a></li> <li><a href="/wiki/Two-dimensional_conformal_field_theory" title="Two-dimensional conformal field theory">Two-dimensional conformal field theory</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Models</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;text-align: center;">Regular</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Born%E2%80%93Infeld_model" title="Born–Infeld model">Born–Infeld</a></li> <li><a href="/wiki/Euler%E2%80%93Heisenberg_Lagrangian" title="Euler–Heisenberg Lagrangian">Euler–Heisenberg</a></li> <li><a href="/wiki/Ginzburg%E2%80%93Landau_theory" title="Ginzburg–Landau theory">Ginzburg–Landau</a></li> <li><a href="/wiki/Non-linear_sigma_model" title="Non-linear sigma model">Non-linear sigma</a></li> <li><a href="/wiki/Proca_action" title="Proca action">Proca</a></li> <li><a href="/wiki/Quantum_electrodynamics" title="Quantum electrodynamics">Quantum electrodynamics</a></li> <li><a href="/wiki/Quantum_chromodynamics" title="Quantum chromodynamics">Quantum chromodynamics</a></li> <li><a href="/wiki/Quartic_interaction" title="Quartic interaction">Quartic interaction</a></li> <li><a href="/wiki/Scalar_electrodynamics" title="Scalar electrodynamics">Scalar electrodynamics</a></li> <li><a href="/wiki/Scalar_chromodynamics" title="Scalar chromodynamics">Scalar chromodynamics</a></li> <li><a href="/wiki/Soler_model" title="Soler model">Soler</a></li> <li><a href="/wiki/Yang%E2%80%93Mills_theory" title="Yang–Mills theory">Yang–Mills</a></li> <li><a href="/wiki/Yang%E2%80%93Mills%E2%80%93Higgs_equations" title="Yang–Mills–Higgs equations">Yang–Mills–Higgs</a></li> <li><a href="/wiki/Yukawa_interaction" title="Yukawa interaction">Yukawa</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align: center;">Low dimensional</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Two-dimensional_Yang%E2%80%93Mills_theory" title="Two-dimensional Yang–Mills theory">2D Yang–Mills</a></li> <li><a href="/wiki/Bullough%E2%80%93Dodd_model" title="Bullough–Dodd model">Bullough–Dodd</a></li> <li><a href="/wiki/Gross%E2%80%93Neveu_model" title="Gross–Neveu model">Gross–Neveu</a></li> <li><a href="/wiki/Schwinger_model" title="Schwinger model">Schwinger</a></li> <li><a href="/wiki/Sine-Gordon_equation" title="Sine-Gordon equation">Sine-Gordon</a></li> <li><a href="/wiki/Thirring_model" title="Thirring model">Thirring</a></li> <li><a href="/wiki/Thirring%E2%80%93Wess_model" title="Thirring–Wess model">Thirring–Wess</a></li> <li><a href="/wiki/Toda_field_theory" title="Toda field theory">Toda</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align: center;">Conformal</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Massless_free_scalar_bosons_in_two_dimensions" title="Massless free scalar bosons in two dimensions">2D free massless scalar</a></li> <li><a href="/wiki/Liouville_field_theory" title="Liouville field theory">Liouville</a></li> <li><a href="/wiki/Minimal_model_(physics)" title="Minimal model (physics)">Minimal</a></li> <li><a href="/wiki/Polyakov_action" title="Polyakov action">Polyakov</a></li> <li><a href="/wiki/Wess%E2%80%93Zumino%E2%80%93Witten_model" title="Wess–Zumino–Witten model">Wess–Zumino–Witten</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align: center;">Supersymmetric</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/4D_N_%3D_1_global_supersymmetry" title="4D N = 1 global supersymmetry">4D N = 1</a></li> <li><a href="/wiki/N_%3D_1_supersymmetric_Yang%E2%80%93Mills_theory" title="N = 1 supersymmetric Yang–Mills theory">N = 1 super Yang–Mills</a></li> <li><a href="/wiki/Seiberg%E2%80%93Witten_theory" title="Seiberg–Witten theory">Seiberg–Witten</a></li> <li><a href="/wiki/Super_QCD" title="Super QCD">Super QCD</a></li> <li><a href="/wiki/Wess%E2%80%93Zumino_model" title="Wess–Zumino model">Wess–Zumino</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align: center;">Superconformal</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/6D_(2,0)_superconformal_field_theory" title="6D (2,0) superconformal field theory">6D (2,0)</a></li> <li><a href="/wiki/ABJM_superconformal_field_theory" title="ABJM superconformal field theory">ABJM</a></li> <li><a href="/wiki/N_%3D_4_supersymmetric_Yang%E2%80%93Mills_theory" title="N = 4 supersymmetric Yang–Mills theory">N = 4 super Yang–Mills</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align: center;">Supergravity</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Pure_4D_N_%3D_1_supergravity" title="Pure 4D N = 1 supergravity">Pure 4D N = 1</a></li> <li><a href="/wiki/4D_N_%3D_1_supergravity" title="4D N = 1 supergravity">4D N = 1</a></li> <li><a href="/wiki/N_%3D_8_supergravity" title="N = 8 supergravity">4D N = 8</a></li> <li><a href="/wiki/Higher-dimensional_supergravity" title="Higher-dimensional supergravity">Higher dimensional</a></li> <li><a href="/wiki/Type_I_supergravity" title="Type I supergravity">Type I</a></li> <li><a href="/wiki/Type_IIA_supergravity" title="Type IIA supergravity">Type IIA</a></li> <li><a href="/wiki/Type_IIB_supergravity" title="Type IIB supergravity">Type IIB</a></li> <li><a href="/wiki/Eleven-dimensional_supergravity" title="Eleven-dimensional supergravity">11D</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align: center;">Topological</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/BF_model" title="BF model">BF</a></li> <li><a class="mw-selflink selflink">Chern–Simons</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align: center;">Particle theory</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Chiral_model" title="Chiral model">Chiral</a></li> <li><a href="/wiki/Fermi%27s_interaction" title="Fermi&#39;s interaction">Fermi</a></li> <li><a href="/wiki/Minimal_Supersymmetric_Standard_Model" title="Minimal Supersymmetric Standard Model">MSSM</a></li> <li><a href="/wiki/Nambu%E2%80%93Jona-Lasinio_model" title="Nambu–Jona-Lasinio model">Nambu–Jona-Lasinio</a></li> <li><a href="/wiki/Next-to-Minimal_Supersymmetric_Standard_Model" title="Next-to-Minimal Supersymmetric Standard Model">NMSSM</a></li> <li><a href="/wiki/Standard_Model" title="Standard Model">Standard Model</a></li> <li><a href="/wiki/Stueckelberg_action" title="Stueckelberg action">Stueckelberg</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Casimir_effect" title="Casimir effect">Casimir effect</a></li> <li><a href="/wiki/Cosmic_string" title="Cosmic string">Cosmic string</a></li> <li><a href="/wiki/History_of_quantum_field_theory" title="History of quantum field theory">History</a></li> <li><a href="/wiki/Loop_quantum_gravity" title="Loop quantum gravity">Loop quantum gravity</a></li> <li><a href="/wiki/Loop_quantum_cosmology" title="Loop quantum cosmology">Loop quantum cosmology</a></li> <li><a href="/wiki/On_shell_and_off_shell" title="On shell and off shell">On shell and off shell</a></li> <li><a href="/wiki/Quantum_chaos" title="Quantum chaos">Quantum chaos</a></li> <li><a href="/wiki/Quantum_dynamics" title="Quantum dynamics">Quantum dynamics</a></li> <li><a href="/wiki/Quantum_foam" title="Quantum foam">Quantum foam</a></li> <li><a href="/wiki/Quantum_fluctuation" title="Quantum fluctuation">Quantum fluctuations</a> <ul><li><a href="/wiki/Template:Quantum_electrodynamics" title="Template:Quantum electrodynamics">links</a></li></ul></li> <li><a href="/wiki/Quantum_gravity" title="Quantum gravity">Quantum gravity</a> <ul><li><a href="/wiki/Template:Quantum_gravity" title="Template:Quantum gravity">links</a></li></ul></li> <li><a href="/wiki/Quantum_hadrodynamics" title="Quantum hadrodynamics">Quantum hadrodynamics</a></li> <li><a href="/wiki/Quantum_hydrodynamics" title="Quantum hydrodynamics">Quantum hydrodynamics</a></li> <li><a href="/wiki/Quantum_information" title="Quantum information">Quantum information</a></li> <li><a href="/wiki/Quantum_information_science" title="Quantum information science">Quantum information science</a> <ul><li><a href="/wiki/Template:Quantum_information" title="Template:Quantum information">links</a></li></ul></li> <li><a href="/wiki/Quantum_logic" title="Quantum logic">Quantum logic</a></li> <li><a href="/wiki/Quantum_thermodynamics" title="Quantum thermodynamics">Quantum thermodynamics</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div><i>See also:</i> <span class="noviewer" typeof="mw:File"><span title="Template"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/16px-Symbol_template_class_pink.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/23px-Symbol_template_class_pink.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/31px-Symbol_template_class_pink.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Template:Quantum_mechanics_topics" title="Template:Quantum mechanics topics">Template:Quantum mechanics topics</a></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐d465dfd78‐wrzs6 Cached time: 20241126134410 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.564 seconds Real time usage: 0.755 seconds Preprocessor visited node count: 2056/1000000 Post‐expand include size: 92829/2097152 bytes Template argument size: 1227/2097152 bytes Highest expansion depth: 8/100 Expensive parser function count: 4/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 86871/5000000 bytes Lua time usage: 0.359/10.000 seconds Lua memory usage: 6665840/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 530.278 1 -total 36.87% 195.488 18 Template:Cite_journal 18.29% 96.971 1 Template:Quantum_field_theories 18.14% 96.187 2 Template:Navbox 15.28% 81.036 1 Template:Short_description 10.07% 53.407 2 Template:Pagetype 7.85% 41.618 3 Template:Harvtxt 6.02% 31.938 5 Template:Cite_arXiv 4.15% 22.019 1 Template:Further 3.11% 16.496 3 Template:Main_other --> <!-- Saved in parser cache with key enwiki:pcache:idhash:391908-0!canonical and timestamp 20241126134410 and revision id 1254976211. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Chern–Simons_theory&amp;oldid=1254976211">https://en.wikipedia.org/w/index.php?title=Chern–Simons_theory&amp;oldid=1254976211</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Category</a>: <ul><li><a href="/wiki/Category:Quantum_field_theory" title="Category:Quantum field theory">Quantum field theory</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 2 November 2024, at 15:17<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Chern%E2%80%93Simons_theory&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-5cd4cd96d5-c7jhw","wgBackendResponseTime":210,"wgPageParseReport":{"limitreport":{"cputime":"0.564","walltime":"0.755","ppvisitednodes":{"value":2056,"limit":1000000},"postexpandincludesize":{"value":92829,"limit":2097152},"templateargumentsize":{"value":1227,"limit":2097152},"expansiondepth":{"value":8,"limit":100},"expensivefunctioncount":{"value":4,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":86871,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 530.278 1 -total"," 36.87% 195.488 18 Template:Cite_journal"," 18.29% 96.971 1 Template:Quantum_field_theories"," 18.14% 96.187 2 Template:Navbox"," 15.28% 81.036 1 Template:Short_description"," 10.07% 53.407 2 Template:Pagetype"," 7.85% 41.618 3 Template:Harvtxt"," 6.02% 31.938 5 Template:Cite_arXiv"," 4.15% 22.019 1 Template:Further"," 3.11% 16.496 3 Template:Main_other"]},"scribunto":{"limitreport-timeusage":{"value":"0.359","limit":"10.000"},"limitreport-memusage":{"value":6665840,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFArthurTchrakianY.-S.1996\"] = 1,\n [\"CITEREFAtiyah1990\"] = 1,\n [\"CITEREFChernSimons1974\"] = 1,\n [\"CITEREFCostello2013\"] = 1,\n [\"CITEREFCostelloWittenYamazaki2018\"] = 2,\n [\"CITEREFCostelloYamazaki2019\"] = 1,\n [\"CITEREFDeserJackiwTempleton1982\"] = 1,\n [\"CITEREFElitzurMooreSchwimmerSeiberg1989\"] = 1,\n [\"CITEREFFreedmanKitaevLarsenWang2002\"] = 1,\n [\"CITEREFIntriligatorSeiberg2013\"] = 1,\n [\"CITEREFJackiwPi2003\"] = 1,\n [\"CITEREFKauffman1998\"] = 1,\n [\"CITEREFKauffmanOgasaSchneider2018\"] = 1,\n [\"CITEREFKimKim2002\"] = 1,\n [\"CITEREFKulshreshthaKulshreshthaMueller-KirstenVary2009\"] = 1,\n [\"CITEREFKulshreshthaKulshreshthaVary2010\"] = 1,\n [\"CITEREFLopezFradkin1991\"] = 1,\n [\"CITEREFMarino2005\"] = 2,\n [\"CITEREFNavarro-LéridaRaduTchrakian2017\"] = 1,\n [\"CITEREFWang\"] = 1,\n [\"CITEREFWitten1988\"] = 1,\n [\"CITEREFWitten1989\"] = 1,\n [\"CITEREFWitten1995\"] = 1,\n}\ntemplate_list = table#1 {\n [\"Cite arXiv\"] = 5,\n [\"Cite book\"] = 1,\n [\"Cite journal\"] = 18,\n [\"Cite web\"] = 1,\n [\"DEFAULTSORT:Chern-Simons theory\"] = 1,\n [\"Further\"] = 1,\n [\"Harvtxt\"] = 3,\n [\"Quantum field theories\"] = 1,\n [\"See also\"] = 2,\n [\"Short description\"] = 1,\n [\"Springer\"] = 1,\n}\narticle_whitelist = table#1 {\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-d465dfd78-wrzs6","timestamp":"20241126134410","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Chern\u2013Simons theory","url":"https:\/\/en.wikipedia.org\/wiki\/Chern%E2%80%93Simons_theory","sameAs":"http:\/\/www.wikidata.org\/entity\/Q1528019","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q1528019","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-12-07T13:16:57Z","dateModified":"2024-11-02T15:17:47Z","headline":"three-dimensional topological quantum field theory whose action is the Chern\u2013Simons form"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10