CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 154 results for author: <span class="mathjax">Boyle, P</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-lat" aria-role="search"> Searching in archive <strong>hep-lat</strong>. <a href="/search/?searchtype=author&query=Boyle%2C+P">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Boyle, P"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Boyle%2C+P&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Boyle, P"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Boyle%2C+P&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Boyle%2C+P&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Boyle%2C+P&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Boyle%2C+P&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Boyle%2C+P&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.20590">arXiv:2410.20590</a> <span> [<a href="https://arxiv.org/pdf/2410.20590">pdf</a>, <a href="https://arxiv.org/format/2410.20590">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> The long-distance window of the hadronic vacuum polarization for the muon g-2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Blum%2C+T">T. Blum</a>, <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P+A">P. A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Bruno%2C+M">M. Bruno</a>, <a href="/search/hep-lat?searchtype=author&query=Chakraborty%2C+B">B. Chakraborty</a>, <a href="/search/hep-lat?searchtype=author&query=Erben%2C+F">F. Erben</a>, <a href="/search/hep-lat?searchtype=author&query=G%C3%BClpers%2C+V">V. G眉lpers</a>, <a href="/search/hep-lat?searchtype=author&query=Hackl%2C+A">A. Hackl</a>, <a href="/search/hep-lat?searchtype=author&query=Hermansson-Truedsson%2C+N">N. Hermansson-Truedsson</a>, <a href="/search/hep-lat?searchtype=author&query=Hill%2C+R+C">R. C. Hill</a>, <a href="/search/hep-lat?searchtype=author&query=Izubuchi%2C+T">T. Izubuchi</a>, <a href="/search/hep-lat?searchtype=author&query=Jin%2C+L">L. Jin</a>, <a href="/search/hep-lat?searchtype=author&query=Jung%2C+C">C. Jung</a>, <a href="/search/hep-lat?searchtype=author&query=Lehner%2C+C">C. Lehner</a>, <a href="/search/hep-lat?searchtype=author&query=McKeon%2C+J">J. McKeon</a>, <a href="/search/hep-lat?searchtype=author&query=Meyer%2C+A+S">A. S. Meyer</a>, <a href="/search/hep-lat?searchtype=author&query=Tomii%2C+M">M. Tomii</a>, <a href="/search/hep-lat?searchtype=author&query=Tsang%2C+J+T">J. T. Tsang</a>, <a href="/search/hep-lat?searchtype=author&query=Tuo%2C+X+-">X. -Y. Tuo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.20590v1-abstract-short" style="display: inline;"> We provide the first ab-initio calculation of the Euclidean long-distance window of the isospin symmetric light-quark connected contribution to the hadronic vacuum polarization for the muon $g-2$ and find $a_渭^{\rm LD,iso,conn,ud} = 411.4(4.3)(2.4) \times 10^{-10}$. We also provide the currently most precise calculation of the total isospin symmetric light-quark connected contribution,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20590v1-abstract-full').style.display = 'inline'; document.getElementById('2410.20590v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.20590v1-abstract-full" style="display: none;"> We provide the first ab-initio calculation of the Euclidean long-distance window of the isospin symmetric light-quark connected contribution to the hadronic vacuum polarization for the muon $g-2$ and find $a_渭^{\rm LD,iso,conn,ud} = 411.4(4.3)(2.4) \times 10^{-10}$. We also provide the currently most precise calculation of the total isospin symmetric light-quark connected contribution, $a_渭^{\rm iso,conn,ud} = 666.2(4.3)(2.5) \times 10^{-10}$, which is more than 4$蟽$ larger compared to the data-driven estimates of Boito et al. 2022 and 1.7$蟽$ larger compared to the lattice QCD result of BMW20. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20590v1-abstract-full').style.display = 'none'; document.getElementById('2410.20590v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.03904">arXiv:2409.03904</a> <span> [<a href="https://arxiv.org/pdf/2409.03904">pdf</a>, <a href="https://arxiv.org/format/2409.03904">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> </div> </div> <p class="title is-5 mathjax"> Multiple right hand side multigrid for domain wall fermions with a multigrid preconditioned block conjugate gradient algorithm </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P+A">Peter A Boyle</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.03904v1-abstract-short" style="display: inline;"> We introduce a class of efficient multiple right-hand side multigrid algorithm for domain wall fermions. The simultaneous solution for a modest number of right hand sides concurrently allows for a significant reduction in the time spent solving the coarse grid operator in a multigrid preconditioner. We introduce a preconditioned block conjuate gradient with a multigrid preconditioner, giving addit… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03904v1-abstract-full').style.display = 'inline'; document.getElementById('2409.03904v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.03904v1-abstract-full" style="display: none;"> We introduce a class of efficient multiple right-hand side multigrid algorithm for domain wall fermions. The simultaneous solution for a modest number of right hand sides concurrently allows for a significant reduction in the time spent solving the coarse grid operator in a multigrid preconditioner. We introduce a preconditioned block conjuate gradient with a multigrid preconditioner, giving additional algorithmic benefit from the multiple right hand sides. There is also a very significant additional to computation rate benefit to multiple right hand sides. This both increases the arithmetic intensity in the coarse space and increases the amount of work being performed in each subroutine call, leading to excellent performance on modern GPU architectures. Further, the software implementation makes use of vendor linear algebra routines (batched GEMM) that can make use of high throughput tensor hardware on recent Nvidia, AMD and Intel GPUs. The cost of the coarse space is made sub-dominant in this algorithm, and benchmarks from the Frontier supercomputer system show up to a factor of twenty speed up over the standard red-black preconditioned conjugate gradient algorithm on a large system with physical quark masses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03904v1-abstract-full').style.display = 'none'; document.getElementById('2409.03904v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.19194">arXiv:2406.19194</a> <span> [<a href="https://arxiv.org/pdf/2406.19194">pdf</a>, <a href="https://arxiv.org/format/2406.19194">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Light and strange vector resonances from lattice QCD at physical quark masses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P">Peter Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Erben%2C+F">Felix Erben</a>, <a href="/search/hep-lat?searchtype=author&query=G%C3%BClpers%2C+V">Vera G眉lpers</a>, <a href="/search/hep-lat?searchtype=author&query=Hansen%2C+M+T">Maxwell T. Hansen</a>, <a href="/search/hep-lat?searchtype=author&query=Joswig%2C+F">Fabian Joswig</a>, <a href="/search/hep-lat?searchtype=author&query=Lachini%2C+N+P">Nelson Pitanga Lachini</a>, <a href="/search/hep-lat?searchtype=author&query=Marshall%2C+M">Michael Marshall</a>, <a href="/search/hep-lat?searchtype=author&query=Portelli%2C+A">Antonin Portelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.19194v1-abstract-short" style="display: inline;"> We present the first ab initio calculation at physical quark masses of scattering amplitudes describing the lightest pseudoscalar mesons interacting via the strong force in the vector channel. Using lattice quantum chromodynamics, we postdict the defining parameters for two short-lived resonances, the $蟻(770)$ and $K^*(892)$, which manifest as complex energy poles in $蟺蟺$ and $K 蟺$ scattering ampl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19194v1-abstract-full').style.display = 'inline'; document.getElementById('2406.19194v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.19194v1-abstract-full" style="display: none;"> We present the first ab initio calculation at physical quark masses of scattering amplitudes describing the lightest pseudoscalar mesons interacting via the strong force in the vector channel. Using lattice quantum chromodynamics, we postdict the defining parameters for two short-lived resonances, the $蟻(770)$ and $K^*(892)$, which manifest as complex energy poles in $蟺蟺$ and $K 蟺$ scattering amplitudes, respectively. The calculation proceeds by first computing the finite-volume energy spectrum of the two-hadron systems, and then determining the amplitudes from the energies using the L眉scher formalism. The error budget includes a data-driven systematic error, obtained by scanning possible fit ranges and fit models to extract the spectrum from Euclidean correlators, as well as the scattering amplitudes from the latter. The final results, obtained by analytically continuing multiple parameterizations into the complex energy plane, are $M_蟻= 796(5)(50)~\mathrm{MeV}$, $螕_蟻= 192(10)(31)~\mathrm{MeV}$, $M_{K^*} = 893(2)(54)~\mathrm{MeV}$ and $螕_{K^*} = 51(2)(11)~\mathrm{MeV}$, where the subscript indicates the resonance and $M$ and $螕$ stand for the mass and width, respectively, and where the first bracket indicates the statistical and the second bracket the systematic uncertainty. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19194v1-abstract-full').style.display = 'none'; document.getElementById('2406.19194v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-TH-2024-088 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.19193">arXiv:2406.19193</a> <span> [<a href="https://arxiv.org/pdf/2406.19193">pdf</a>, <a href="https://arxiv.org/format/2406.19193">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Physical-mass calculation of $蟻(770)$ and $K^*(892)$ resonance parameters via $蟺蟺$ and $K 蟺$ scattering amplitudes from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P">Peter Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Erben%2C+F">Felix Erben</a>, <a href="/search/hep-lat?searchtype=author&query=G%C3%BClpers%2C+V">Vera G眉lpers</a>, <a href="/search/hep-lat?searchtype=author&query=Hansen%2C+M+T">Maxwell T. Hansen</a>, <a href="/search/hep-lat?searchtype=author&query=Joswig%2C+F">Fabian Joswig</a>, <a href="/search/hep-lat?searchtype=author&query=Lachini%2C+N+P">Nelson Pitanga Lachini</a>, <a href="/search/hep-lat?searchtype=author&query=Marshall%2C+M">Michael Marshall</a>, <a href="/search/hep-lat?searchtype=author&query=Portelli%2C+A">Antonin Portelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.19193v1-abstract-short" style="display: inline;"> We present our study of the $蟻(770)$ and $K^*(892)$ resonances from lattice quantum chromodynamics (QCD) employing domain-wall fermions at physical quark masses. We determine the finite-volume energy spectrum in various momentum frames and obtain phase-shift parameterizations via the L眉scher formalism, and as a final step the complex resonance poles of the $蟺蟺$ and $K 蟺$ elastic scattering amplitu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19193v1-abstract-full').style.display = 'inline'; document.getElementById('2406.19193v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.19193v1-abstract-full" style="display: none;"> We present our study of the $蟻(770)$ and $K^*(892)$ resonances from lattice quantum chromodynamics (QCD) employing domain-wall fermions at physical quark masses. We determine the finite-volume energy spectrum in various momentum frames and obtain phase-shift parameterizations via the L眉scher formalism, and as a final step the complex resonance poles of the $蟺蟺$ and $K 蟺$ elastic scattering amplitudes via an analytical continuation of the models. By sampling a large number of representative sets of underlying energy-level fits, we also assign a systematic uncertainty to our final results. This is a significant extension to data-driven analysis methods that have been used in lattice QCD to date, due to the two-step nature of the formalism. Our final pole positions, $M+i螕/2$, with all statistical and systematic errors exposed, are $M_{K^{*}} = 893(2)(8)(54)(2)~\mathrm{MeV}$ and $螕_{K^{*}} = 51(2)(11)(3)(0)~\mathrm{MeV}$ for the $K^*(892)$ resonance and $M_蟻 = 796(5)(15)(48)(2)~\mathrm{MeV}$ and $螕_蟻 = 192(10)(28)(12)(0)~\mathrm{MeV}$ for the $蟻(770)$ resonance. The four differently grouped sources of uncertainties are, in the order of occurrence: statistical, data-driven systematic, an estimation of systematic effects beyond our computation (dominated by the fact that we employ a single lattice spacing), and the error from the scale-setting uncertainty on our ensemble. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19193v1-abstract-full').style.display = 'none'; document.getElementById('2406.19193v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-TH-2024-087 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.20120">arXiv:2405.20120</a> <span> [<a href="https://arxiv.org/pdf/2405.20120">pdf</a>, <a href="https://arxiv.org/format/2405.20120">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP07(2024)211">10.1007/JHEP07(2024)211 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice QCD calculation of the pion distribution amplitude with domain wall fermions at physical pion mass </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Baker%2C+E">Ethan Baker</a>, <a href="/search/hep-lat?searchtype=author&query=Bollweg%2C+D">Dennis Bollweg</a>, <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P">Peter Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Clo%C3%ABt%2C+I">Ian Clo毛t</a>, <a href="/search/hep-lat?searchtype=author&query=Gao%2C+X">Xiang Gao</a>, <a href="/search/hep-lat?searchtype=author&query=Mukherjee%2C+S">Swagato Mukherjee</a>, <a href="/search/hep-lat?searchtype=author&query=Petreczky%2C+P">Peter Petreczky</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+R">Rui Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.20120v2-abstract-short" style="display: inline;"> We present a direct lattice QCD calculation of the $x$-dependence of the pion distribution amplitude (DA), which is performed using the quasi-DA in large momentum effective theory on a domain-wall fermion ensemble at physical quark masses and spacing $a\approx 0.084$ fm. The bare quais-DA matrix elements are renormalized in the hybrid scheme and matched to $\overline{\rm MS}$ with a subtraction of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.20120v2-abstract-full').style.display = 'inline'; document.getElementById('2405.20120v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.20120v2-abstract-full" style="display: none;"> We present a direct lattice QCD calculation of the $x$-dependence of the pion distribution amplitude (DA), which is performed using the quasi-DA in large momentum effective theory on a domain-wall fermion ensemble at physical quark masses and spacing $a\approx 0.084$ fm. The bare quais-DA matrix elements are renormalized in the hybrid scheme and matched to $\overline{\rm MS}$ with a subtraction of the leading renormalon in the Wilson-line mass. For the first time, we include threshold resummation in the perturbative matching onto the light-cone DA, which resums the large logarithms in the soft gluon limit at next-to-next-to-leading log. The resummed results show controlled scale-variation uncertainty within the range of momentum fraction $x\in[0.25,0.75]$ at the largest pion momentum $P_z\approx 1.85$~GeV. In addition, we apply the same analysis to quasi-DAs from a highly-improved-staggered-quark ensemble at physical pion mass and $a=0.076$ fm. By comparison we find with $2蟽$ confidence level that the DA obtained from chiral fermions is flatter and lower near $x=0.5$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.20120v2-abstract-full').style.display = 'none'; document.getElementById('2405.20120v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">update to match the version published in journal</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP07(2024)211 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.02297">arXiv:2404.02297</a> <span> [<a href="https://arxiv.org/pdf/2404.02297">pdf</a>, <a href="https://arxiv.org/format/2404.02297">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Kaon mixing beyond the standard model with physical masses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P+A">Peter A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Erben%2C+F">Felix Erben</a>, <a href="/search/hep-lat?searchtype=author&query=Flynn%2C+J+M">Jonathan M. Flynn</a>, <a href="/search/hep-lat?searchtype=author&query=Garron%2C+N">Nicolas Garron</a>, <a href="/search/hep-lat?searchtype=author&query=Kettle%2C+J">Julia Kettle</a>, <a href="/search/hep-lat?searchtype=author&query=Mukherjee%2C+R">Rajnandini Mukherjee</a>, <a href="/search/hep-lat?searchtype=author&query=Tsang%2C+J+T">J. Tobias Tsang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.02297v1-abstract-short" style="display: inline;"> We present non-perturbative results for beyond the standard model kaon mixing matrix elements in the isospin symmetric limit ($m_u=m_d$) of QCD, including a complete estimate of all dominant sources of systematic error. Our results are obtained from numerical simulations of lattice QCD with $N_f = 2+1$ flavours of dynamical domain wall fermions. For the first time, these quantities are simulated d… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02297v1-abstract-full').style.display = 'inline'; document.getElementById('2404.02297v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.02297v1-abstract-full" style="display: none;"> We present non-perturbative results for beyond the standard model kaon mixing matrix elements in the isospin symmetric limit ($m_u=m_d$) of QCD, including a complete estimate of all dominant sources of systematic error. Our results are obtained from numerical simulations of lattice QCD with $N_f = 2+1$ flavours of dynamical domain wall fermions. For the first time, these quantities are simulated directly at the physical pion mass $m_蟺$~$\sim$~$139\,\mathrm{MeV}$ for two different lattice spacings. We include data at three lattice spacings in the range $a = 0.11 $ - $ 0.07\,\mathrm{fm}$ and with pion masses ranging from the physical value up to 450$\,\mathrm{MeV}$. Compared to our earlier work, we have added both direct calculations at physical quark masses and a third lattice spacing making the removal of discretisation effects significantly more precise and eliminating the need for any significant mass extrapolation beyond the range of simulated data. We renormalise the lattice operators non-perturbatively using RI-SMOM off-shell schemes. These schemes eliminate the need to model and subtract non-perturbative pion poles that arises in the RI-MOM scheme and, since the calculations are performed with domain wall fermions, the unphysical mixing between chirality sectors is suppressed. Our results for the bag parameters in the $\overline{\mathrm{MS}}$ scheme at $3\,\mathrm{GeV}$ are $B_K~\equiv~\mathcal{B}_1 = 0.5240(17)(54)$, $\mathcal{B}_2 = 0.4794(25)(35)$, $\mathcal{B}_3 = 0.746(13)(17)$, $\mathcal{B}_4 = 0.897(02)(10)$ and $\mathcal{B}_5 = 0.6882(78)(94)$, where the first error is from lattice uncertainties and the second is the uncertainty due to the perturbative matching to $\overline{\mathrm{MS}}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02297v1-abstract-full').style.display = 'none'; document.getElementById('2404.02297v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 18 figures, 21 tables, 2 ancillary files</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-TH-2024-040, LTH 1366 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.16620">arXiv:2401.16620</a> <span> [<a href="https://arxiv.org/pdf/2401.16620">pdf</a>, <a href="https://arxiv.org/format/2401.16620">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Advances in algorithms for solvers and gauge generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P+A">Peter A Boyle</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.16620v1-abstract-short" style="display: inline;"> I review recent research and advances in algorithms for solvers and gauge generation, with an emphasis on practical algorithms for four dimensional simulations. Particular consideration is given to advances in multigrid solvers, fourier acceleration and field transformation approaches to accelerating evolution dynamics, and to parallel tempering approaches to solving the topological tunneling prob… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.16620v1-abstract-full').style.display = 'inline'; document.getElementById('2401.16620v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.16620v1-abstract-full" style="display: none;"> I review recent research and advances in algorithms for solvers and gauge generation, with an emphasis on practical algorithms for four dimensional simulations. Particular consideration is given to advances in multigrid solvers, fourier acceleration and field transformation approaches to accelerating evolution dynamics, and to parallel tempering approaches to solving the topological tunneling problem. Particular consideration is given to the interaction between rapidly evolving computer architecture and optimal algorithms that exploit these. In this conference, nascent machine learning algorithms were separately reviewed <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.16620v1-abstract-full').style.display = 'none'; document.getElementById('2401.16620v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Lattice 2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.02111">arXiv:2310.02111</a> <span> [<a href="https://arxiv.org/pdf/2310.02111">pdf</a>, <a href="https://arxiv.org/format/2310.02111">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Lattice studies of Sp(2N) gauge theories using GRID </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Forzano%2C+N">Niccol貌 Forzano</a>, <a href="/search/hep-lat?searchtype=author&query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P">Peter Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Del+Debbio%2C+L">Luigi Del Debbio</a>, <a href="/search/hep-lat?searchtype=author&query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&query=Lenz%2C+J">Julian Lenz</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&query=Lupo%2C+A">Alessandro Lupo</a>, <a href="/search/hep-lat?searchtype=author&query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&query=Vadacchino%2C+D">Davide Vadacchino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.02111v1-abstract-short" style="display: inline;"> Four-dimensional gauge theories based on symplectic Lie groups provide elegant realisations of the microscopic origin of several new physics models. Numerical studies pursued on the lattice provide quantitative information necessary for phenomenological applications. To this purpose, we implemented Sp(2N) gauge theories using Monte Carlo techniques within Grid, a performant framework designed for… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.02111v1-abstract-full').style.display = 'inline'; document.getElementById('2310.02111v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.02111v1-abstract-full" style="display: none;"> Four-dimensional gauge theories based on symplectic Lie groups provide elegant realisations of the microscopic origin of several new physics models. Numerical studies pursued on the lattice provide quantitative information necessary for phenomenological applications. To this purpose, we implemented Sp(2N) gauge theories using Monte Carlo techniques within Grid, a performant framework designed for the numerical study of quantum field theories on the lattice. We show the first results obtained using this library, focusing on the case-study provided by the Sp(4) theory coupled to Nas = 4 Wilson-Dirac fermions transforming in the 2-index antisymmetric representation. In particular, we discuss preliminary tests of the algorithm and we test some of its main functionalities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.02111v1-abstract-full').style.display = 'none'; document.getElementById('2310.02111v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures, contribution for the 40th International Symposium on Lattice Field Theory (Lattice 2023), July 31st - August 4th, 2023, Fermi National Accelerator Laboratory, presenting the results of the paper: arXiv:2306.11649</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> PNUTP-23/A03, CTPU-PTC-23-26 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.11649">arXiv:2306.11649</a> <span> [<a href="https://arxiv.org/pdf/2306.11649">pdf</a>, <a href="https://arxiv.org/format/2306.11649">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Symplectic lattice gauge theories on Grid: approaching the conformal window </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Bennett%2C+E">Ed Bennett</a>, <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P+A">Peter A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Del+Debbio%2C+L">Luigi Del Debbio</a>, <a href="/search/hep-lat?searchtype=author&query=Forzano%2C+N">Niccol貌 Forzano</a>, <a href="/search/hep-lat?searchtype=author&query=Hong%2C+D+K">Deog Ki Hong</a>, <a href="/search/hep-lat?searchtype=author&query=Lee%2C+J">Jong-Wan Lee</a>, <a href="/search/hep-lat?searchtype=author&query=Lenz%2C+J">Julian Lenz</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+C+-+D">C. -J. David Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Lucini%2C+B">Biagio Lucini</a>, <a href="/search/hep-lat?searchtype=author&query=Lupo%2C+A">Alessandro Lupo</a>, <a href="/search/hep-lat?searchtype=author&query=Piai%2C+M">Maurizio Piai</a>, <a href="/search/hep-lat?searchtype=author&query=Vadacchino%2C+D">Davide Vadacchino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.11649v3-abstract-short" style="display: inline;"> Symplectic gauge theories coupled to matter fields lead to symmetry enhancement phenomena that have potential applications in such diverse contexts as composite Higgs, top partial compositeness, strongly interacting dark matter, and dilaton-Higgs models. These theories are also interesting on theoretical grounds, for example in reference to the approach to the large-N limit. A particularly compell… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.11649v3-abstract-full').style.display = 'inline'; document.getElementById('2306.11649v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.11649v3-abstract-full" style="display: none;"> Symplectic gauge theories coupled to matter fields lead to symmetry enhancement phenomena that have potential applications in such diverse contexts as composite Higgs, top partial compositeness, strongly interacting dark matter, and dilaton-Higgs models. These theories are also interesting on theoretical grounds, for example in reference to the approach to the large-N limit. A particularly compelling research aim is the determination of the extent of the conformal window in gauge theories with symplectic groups coupled to matter, for different groups and for field content consisting of fermions transforming in different representations. Such determination would have far-reaching implications, but requires overcoming huge technical challenges. Numerical studies based on lattice field theory can provide the quantitative information necessary to this endeavour. We developed new software to implement symplectic groups in the Monte Carlo algorithms within the Grid framework. In this paper, we focus most of our attention on the Sp(4) lattice gauge theory coupled to four (Wilson-Dirac) fermions transforming in the 2-index antisymmetric representation, as a case study. We discuss an extensive catalogue of technical tests of the algorithms and present preliminary measurements to set the stage for future large-scale numerical investigations. We also include the scan of parameter space of all asymptotically free Sp(4) lattice gauge theories coupled to varying number of fermions transforming in the antisymmetric representation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.11649v3-abstract-full').style.display = 'none'; document.getElementById('2306.11649v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">42 pages, 16 figures. Version accepted for publication</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> PNUTP-23/A03, CTPU-PTC-23-26 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.06781">arXiv:2306.06781</a> <span> [<a href="https://arxiv.org/pdf/2306.06781">pdf</a>, <a href="https://arxiv.org/format/2306.06781">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.094517">10.1103/PhysRevD.108.094517 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $螖I = 3/2$ and $螖I = 1/2$ channels of $K\to蟺蟺$ decay at the physical point with periodic boundary conditions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Blum%2C+T">Thomas Blum</a>, <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P+A">Peter A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Hoying%2C+D">Daniel Hoying</a>, <a href="/search/hep-lat?searchtype=author&query=Izubuchi%2C+T">Taku Izubuchi</a>, <a href="/search/hep-lat?searchtype=author&query=Jin%2C+L">Luchang Jin</a>, <a href="/search/hep-lat?searchtype=author&query=Jung%2C+C">Chulwoo Jung</a>, <a href="/search/hep-lat?searchtype=author&query=Kelly%2C+C">Christopher Kelly</a>, <a href="/search/hep-lat?searchtype=author&query=Lehner%2C+C">Christoph Lehner</a>, <a href="/search/hep-lat?searchtype=author&query=Soni%2C+A">Amarjit Soni</a>, <a href="/search/hep-lat?searchtype=author&query=Tomii%2C+M">Masaaki Tomii</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.06781v3-abstract-short" style="display: inline;"> We present a lattice calculation of the $K\to蟺蟺$ matrix elements and amplitudes with both the $螖I = 3/2$ and 1/2 channels and $\varepsilon'$, the measure of direct $CP$ violation. We use periodic boundary conditions (PBC), where the correct kinematics of $K\to蟺蟺$ can be achieved via an excited two-pion final state. To overcome the difficulty associated with the extraction of excited states, our pr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06781v3-abstract-full').style.display = 'inline'; document.getElementById('2306.06781v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.06781v3-abstract-full" style="display: none;"> We present a lattice calculation of the $K\to蟺蟺$ matrix elements and amplitudes with both the $螖I = 3/2$ and 1/2 channels and $\varepsilon'$, the measure of direct $CP$ violation. We use periodic boundary conditions (PBC), where the correct kinematics of $K\to蟺蟺$ can be achieved via an excited two-pion final state. To overcome the difficulty associated with the extraction of excited states, our previous work \cite{Bai:2015nea,RBC:2020kdj} successfully employed G-parity boundary conditions, where pions are forced to have non-zero momentum enabling the $I=0$ two-pion ground state to express the on-shell kinematics of the $K\to蟺蟺$ decay. Here instead we overcome the problem using the variational method which allows us to resolve the two-pion spectrum and matrix elements up to the relevant energy where the decay amplitude is on-shell. In this paper we report an exploratory calculation of $K\to蟺蟺$ decay amplitudes and $\varepsilon'$ using PBC on a coarser lattice size of $24^3\times64$ with inverse lattice spacing $a^{-1}=1.023$ GeV and the physical pion and kaon masses. The results are promising enough to motivate us to continue our measurements on finer lattice ensembles in order to improve the precision in the near future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06781v3-abstract-full').style.display = 'none'; document.getElementById('2306.06781v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys,Rev,D.,108,094517 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.09286">arXiv:2301.09286</a> <span> [<a href="https://arxiv.org/pdf/2301.09286">pdf</a>, <a href="https://arxiv.org/format/2301.09286">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.094512">10.1103/PhysRevD.107.094512 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Isospin 0 and 2 two-pion scattering at physical pion mass using all-to-all propagators with periodic boundary conditions in lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Blum%2C+T">Thomas Blum</a>, <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P+A">Peter A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Bruno%2C+M">Mattia Bruno</a>, <a href="/search/hep-lat?searchtype=author&query=Hoying%2C+D">Daniel Hoying</a>, <a href="/search/hep-lat?searchtype=author&query=Izubuchi%2C+T">Taku Izubuchi</a>, <a href="/search/hep-lat?searchtype=author&query=Jin%2C+L">Luchang Jin</a>, <a href="/search/hep-lat?searchtype=author&query=Jung%2C+C">Chulwoo Jung</a>, <a href="/search/hep-lat?searchtype=author&query=Kelly%2C+C">Christopher Kelly</a>, <a href="/search/hep-lat?searchtype=author&query=Lehner%2C+C">Christoph Lehner</a>, <a href="/search/hep-lat?searchtype=author&query=Meyer%2C+A+S">Aaron S. Meyer</a>, <a href="/search/hep-lat?searchtype=author&query=Soni%2C+A">Amarjit Soni</a>, <a href="/search/hep-lat?searchtype=author&query=Tomii%2C+M">Masaaki Tomii</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.09286v2-abstract-short" style="display: inline;"> A study of two-pion scattering for the isospin channels, $I=0$ and $I=2$, using lattice QCD is presented. M枚bius domain wall fermions on top of the Iwasaki-DSDR gauge action for gluons with periodic boundary conditions are used for the lattice computations which are carried out on two ensembles of gauge field configurations generated by the RBC and UKQCD collaborations with physical masses, invers… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.09286v2-abstract-full').style.display = 'inline'; document.getElementById('2301.09286v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.09286v2-abstract-full" style="display: none;"> A study of two-pion scattering for the isospin channels, $I=0$ and $I=2$, using lattice QCD is presented. M枚bius domain wall fermions on top of the Iwasaki-DSDR gauge action for gluons with periodic boundary conditions are used for the lattice computations which are carried out on two ensembles of gauge field configurations generated by the RBC and UKQCD collaborations with physical masses, inverse lattice spacings of 1.023 and 1.378 GeV, and spatial extents of $L=4.63$ and 4.58 fm, respectively. The all-to-all propagator method is employed to compute a matrix of correlation functions of two-pion operators. The generalized eigenvalue problem (GEVP) is solved for a matrix of correlation functions to extract phase shifts with multiple states, two pions with a non-zero relative momentum as well as two pions at rest. Our results for phase shifts for both $I=0$ and $I=2$ channels are consistent with and the Roy Equation and chiral perturbation theory, though at this preliminary stage our errors for $I=0$ are large. An important outcome of this work is that we are successful in extracting two-pion excited states, which are useful for studying $K\to蟺蟺$ decay, on physical-mass ensembles using GEVP. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.09286v2-abstract-full').style.display = 'none'; document.getElementById('2301.09286v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.08696">arXiv:2301.08696</a> <span> [<a href="https://arxiv.org/pdf/2301.08696">pdf</a>, <a href="https://arxiv.org/format/2301.08696">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> An update of Euclidean windows of the hadronic vacuum polarization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Blum%2C+T">T. Blum</a>, <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P+A">P. A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Bruno%2C+M">M. Bruno</a>, <a href="/search/hep-lat?searchtype=author&query=Giusti%2C+D">D. Giusti</a>, <a href="/search/hep-lat?searchtype=author&query=G%C3%BClpers%2C+V">V. G眉lpers</a>, <a href="/search/hep-lat?searchtype=author&query=Hill%2C+R+C">R. C. Hill</a>, <a href="/search/hep-lat?searchtype=author&query=Izubuchi%2C+T">T. Izubuchi</a>, <a href="/search/hep-lat?searchtype=author&query=Jang%2C+Y+-">Y. -C. Jang</a>, <a href="/search/hep-lat?searchtype=author&query=Jin%2C+L">L. Jin</a>, <a href="/search/hep-lat?searchtype=author&query=Jung%2C+C">C. Jung</a>, <a href="/search/hep-lat?searchtype=author&query=J%C3%BCttner%2C+A">A. J眉ttner</a>, <a href="/search/hep-lat?searchtype=author&query=Kelly%2C+C">C. Kelly</a>, <a href="/search/hep-lat?searchtype=author&query=Lehner%2C+C">C. Lehner</a>, <a href="/search/hep-lat?searchtype=author&query=Matsumoto%2C+N">N. Matsumoto</a>, <a href="/search/hep-lat?searchtype=author&query=Mawhinney%2C+R+D">R. D. Mawhinney</a>, <a href="/search/hep-lat?searchtype=author&query=Meyer%2C+A+S">A. S. Meyer</a>, <a href="/search/hep-lat?searchtype=author&query=Tsang%2C+J+T">J. T. Tsang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.08696v1-abstract-short" style="display: inline;"> We compute the standard Euclidean window of the hadronic vacuum polarization using multiple independent blinded analyses. We improve the continuum and infinite-volume extrapolations of the dominant quark-connected light-quark isospin-symmetric contribution and address additional sub-leading systematic effects from sea-charm quarks and residual chiral-symmetry breaking from first principles. We fin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.08696v1-abstract-full').style.display = 'inline'; document.getElementById('2301.08696v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.08696v1-abstract-full" style="display: none;"> We compute the standard Euclidean window of the hadronic vacuum polarization using multiple independent blinded analyses. We improve the continuum and infinite-volume extrapolations of the dominant quark-connected light-quark isospin-symmetric contribution and address additional sub-leading systematic effects from sea-charm quarks and residual chiral-symmetry breaking from first principles. We find $a_渭^{\rm W} = 235.56(65)(50) \times 10^{-10}$, which is in $3.8蟽$ tension with the recently published dispersive result of Colangelo et al., $a_渭^{\rm W} = 229.4(1.4) \times 10^{-10}$, and in agreement with other recent lattice determinations. We also provide a result for the standard short-distance window. The results reported here are unchanged compared to our presentation at the Edinburgh workshop of the g-2 Theory Initiative in 2022. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.08696v1-abstract-full').style.display = 'none'; document.getElementById('2301.08696v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.11387">arXiv:2212.11387</a> <span> [<a href="https://arxiv.org/pdf/2212.11387">pdf</a>, <a href="https://arxiv.org/format/2212.11387">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Use of Schwinger-Dyson equation in constructing an approximate trivializing map </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P">Peter Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Izubuchi%2C+T">Taku Izubuchi</a>, <a href="/search/hep-lat?searchtype=author&query=Jin%2C+L">Luchang Jin</a>, <a href="/search/hep-lat?searchtype=author&query=Jung%2C+C">Chulwoo Jung</a>, <a href="/search/hep-lat?searchtype=author&query=Lehner%2C+C">Christoph Lehner</a>, <a href="/search/hep-lat?searchtype=author&query=Matsumoto%2C+N">Nobuyuki Matsumoto</a>, <a href="/search/hep-lat?searchtype=author&query=Tomiya%2C+A">Akio Tomiya</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.11387v1-abstract-short" style="display: inline;"> We construct an approximate trivializing map by using a Schwinger-Dyson equation. The advantage of this method is that: (1) The basis for the flow kernel can be chosen arbitrarily by hand. (2) It can be applied to the general action of interest. (3) The coefficients in the kernel are determined by lattice estimates of the observables, which does not require analytic calculations beforehand. We per… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.11387v1-abstract-full').style.display = 'inline'; document.getElementById('2212.11387v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.11387v1-abstract-full" style="display: none;"> We construct an approximate trivializing map by using a Schwinger-Dyson equation. The advantage of this method is that: (1) The basis for the flow kernel can be chosen arbitrarily by hand. (2) It can be applied to the general action of interest. (3) The coefficients in the kernel are determined by lattice estimates of the observables, which does not require analytic calculations beforehand. We perform the HMC with the effective action obtained by the Schwinger-Dyson method, and show that we can have better control of the effective action than the known $t$-expansion construction. However, the algorithmic overhead is still large and overwhelming the gain though faster decorrelation is observed for long-range observables in some cases. This contribution reports the preliminary results of this attempt. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.11387v1-abstract-full').style.display = 'none'; document.getElementById('2212.11387v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 12 figures, talk presented at the 39th International Symposium on Lattice Field Theory (Lattice 2022)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.04709">arXiv:2212.04709</a> <span> [<a href="https://arxiv.org/pdf/2212.04709">pdf</a>, <a href="https://arxiv.org/format/2212.04709">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Isospin-breaking corrections to light leptonic decays in lattice QCD+QED at the physical point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P">Peter Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Di+Carlo%2C+M">Matteo Di Carlo</a>, <a href="/search/hep-lat?searchtype=author&query=Erben%2C+F">Felix Erben</a>, <a href="/search/hep-lat?searchtype=author&query=G%C3%BClpers%2C+V">Vera G眉lpers</a>, <a href="/search/hep-lat?searchtype=author&query=Hansen%2C+M+T">Maxwell T. Hansen</a>, <a href="/search/hep-lat?searchtype=author&query=Harris%2C+T">Tim Harris</a>, <a href="/search/hep-lat?searchtype=author&query=Hermansson-Truedsson%2C+N">Nils Hermansson-Truedsson</a>, <a href="/search/hep-lat?searchtype=author&query=Hodgson%2C+R">Raoul Hodgson</a>, <a href="/search/hep-lat?searchtype=author&query=J%C3%BCttner%2C+A">Andreas J眉ttner</a>, <a href="/search/hep-lat?searchtype=author&query=h%C3%93g%C3%A1in%2C+F+%C3%93">Fionn 脫 h脫g谩in</a>, <a href="/search/hep-lat?searchtype=author&query=Portelli%2C+A">Antonin Portelli</a>, <a href="/search/hep-lat?searchtype=author&query=Richings%2C+J">James Richings</a>, <a href="/search/hep-lat?searchtype=author&query=Yong%2C+A+Z+N">Andrew Z. N. Yong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.04709v1-abstract-short" style="display: inline;"> We report on the physical-point RBC/UKQCD calculation of the leading isospin-breaking corrections to light-meson leptonic decays. This is highly relevant for future precision tests in the flavour physics sector, in particular the first-row unitarity of the Cabibbo-Kobayashi-Maskawa matrix containing the elements $V_{us}$ and $V_{ud}$. The simulations were performed using Domain-Wall fermions for… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.04709v1-abstract-full').style.display = 'inline'; document.getElementById('2212.04709v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.04709v1-abstract-full" style="display: none;"> We report on the physical-point RBC/UKQCD calculation of the leading isospin-breaking corrections to light-meson leptonic decays. This is highly relevant for future precision tests in the flavour physics sector, in particular the first-row unitarity of the Cabibbo-Kobayashi-Maskawa matrix containing the elements $V_{us}$ and $V_{ud}$. The simulations were performed using Domain-Wall fermions for $2+1$ flavours, and with isospin-breaking effects included perturbatively in the path integral through order $伪$ and $(m_u - m_d)/螞_{\mathrm{QCD}}$. We use QED$_{\mathrm{L}}$ for the inclusion of electromagnetism, and discuss here the non-locality of this prescription which has significant impact on the infinite-volume extrapolation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.04709v1-abstract-full').style.display = 'none'; document.getElementById('2212.04709v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings for The 39th International Symposium on Lattice Field Theory, 8th-13th August, 2022, Rheinische Friedrich-Wilhelms-Universit盲t Bonn, Bonn, Germany</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.16601">arXiv:2211.16601</a> <span> [<a href="https://arxiv.org/pdf/2211.16601">pdf</a>, <a href="https://arxiv.org/format/2211.16601">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Towards $K蟺$ scattering with domain-wall fermions at the physical point using distillation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Lachini%2C+N+P">Nelson Pitanga Lachini</a>, <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P">Peter Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Erben%2C+F">Felix Erben</a>, <a href="/search/hep-lat?searchtype=author&query=Marshall%2C+M">Michael Marshall</a>, <a href="/search/hep-lat?searchtype=author&query=Portelli%2C+A">Antonin Portelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.16601v1-abstract-short" style="display: inline;"> Resonances play an important role in Standard Model phenomenology. In particular, hadronic resonances feature in $B$ and $D$ decays, which can be central for New Physics searches. Lattice QCD simulations combined with the finite-volume method can nowadays be used to reliably study strongly coupled scattering processes such as $K蟺$ and thus the hadronic resonance $K^*$. In this work, we approach… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.16601v1-abstract-full').style.display = 'inline'; document.getElementById('2211.16601v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.16601v1-abstract-full" style="display: none;"> Resonances play an important role in Standard Model phenomenology. In particular, hadronic resonances feature in $B$ and $D$ decays, which can be central for New Physics searches. Lattice QCD simulations combined with the finite-volume method can nowadays be used to reliably study strongly coupled scattering processes such as $K蟺$ and thus the hadronic resonance $K^*$. In this work, we approach $K蟺$ scattering on a domain-wall $N_f = 2+1$ RBC-UKQCD ensemble at a physical pion mass. We use the distillation method within Grid and Hadrons software to compute sets of operator basis. That allows solving an eigenvalue problem to extract the low-energy finite-volume spectra, which are then translated into scattering information. We update the state of the calculation by reviewing the smearing process, outlining the variational analysis and concluding by showing preliminary data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.16601v1-abstract-full').style.display = 'none'; document.getElementById('2211.16601v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: substantial text overlap with arXiv:2112.09804</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.12865">arXiv:2211.12865</a> <span> [<a href="https://arxiv.org/pdf/2211.12865">pdf</a>, <a href="https://arxiv.org/format/2211.12865">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP02(2023)242">10.1007/JHEP02(2023)242 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Isospin-breaking corrections to light-meson leptonic decays from lattice simulations at physical quark masses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P">Peter Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Di+Carlo%2C+M">Matteo Di Carlo</a>, <a href="/search/hep-lat?searchtype=author&query=Erben%2C+F">Felix Erben</a>, <a href="/search/hep-lat?searchtype=author&query=G%C3%BClpers%2C+V">Vera G眉lpers</a>, <a href="/search/hep-lat?searchtype=author&query=Hansen%2C+M+T">Maxwell T. Hansen</a>, <a href="/search/hep-lat?searchtype=author&query=Harris%2C+T">Tim Harris</a>, <a href="/search/hep-lat?searchtype=author&query=Hermansson-Truedsson%2C+N">Nils Hermansson-Truedsson</a>, <a href="/search/hep-lat?searchtype=author&query=Hodgson%2C+R">Raoul Hodgson</a>, <a href="/search/hep-lat?searchtype=author&query=J%C3%BCttner%2C+A">Andreas J眉ttner</a>, <a href="/search/hep-lat?searchtype=author&query=h%C3%93g%C3%A1in%2C+F+%C3%93">Fionn 脫 h脫g谩in</a>, <a href="/search/hep-lat?searchtype=author&query=Portelli%2C+A">Antonin Portelli</a>, <a href="/search/hep-lat?searchtype=author&query=Richings%2C+J">James Richings</a>, <a href="/search/hep-lat?searchtype=author&query=Yong%2C+A+Z+N">Andrew Zhen Ning Yong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.12865v1-abstract-short" style="display: inline;"> The decreasing uncertainties in theoretical predictions and experimental measurements of several hadronic observables related to weak processes, which in many cases are now smaller than $\mathrm{O}(1\%)$, require theoretical calculations to include subleading corrections that were neglected so far. Precise determinations of leptonic and semi-leptonic decay rates, including QED and strong isospin-b… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.12865v1-abstract-full').style.display = 'inline'; document.getElementById('2211.12865v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.12865v1-abstract-full" style="display: none;"> The decreasing uncertainties in theoretical predictions and experimental measurements of several hadronic observables related to weak processes, which in many cases are now smaller than $\mathrm{O}(1\%)$, require theoretical calculations to include subleading corrections that were neglected so far. Precise determinations of leptonic and semi-leptonic decay rates, including QED and strong isospin-breaking effects, can play a central role in solving the current tensions in the first-row unitarity of the CKM matrix. In this work we present the first RBC/UKQCD lattice calculation of the isospin-breaking corrections to the ratio of leptonic decay rates of kaons and pions into muons and neutrinos. The calculation is performed with $N_\mathrm{f}=2+1$ dynamical quarks close to the physical point and domain wall fermions in the M枚bius formulation are employed. Long-distance QED interactions are included according to the $\mathrm{QED_L}$ prescription and the crucial role of finite-volume electromagnetic corrections in the determination of leptonic decay rates, which produce a large systematic uncertainty, is extensively discussed. Finally, we study the different sources of uncertainty on $|V_\mathrm{us}|/|V_\mathrm{ud}|$ and observe that, if finite-volume systematics can be reduced, the error from isospin-breaking corrections is potentially sub-dominant in the final precision of the ratio of the CKM matrix elements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.12865v1-abstract-full').style.display = 'none'; document.getElementById('2211.12865v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">66 pages, 23 figures and 4 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-TH-2022-193, LU-TP 22-59 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.05822">arXiv:2210.05822</a> <span> [<a href="https://arxiv.org/pdf/2210.05822">pdf</a>, <a href="https://arxiv.org/format/2210.05822">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> The Future of High Energy Physics Software and Computing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Elvira%2C+V+D">V. Daniel Elvira</a>, <a href="/search/hep-lat?searchtype=author&query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/hep-lat?searchtype=author&query=Gutsche%2C+O">Oliver Gutsche</a>, <a href="/search/hep-lat?searchtype=author&query=Nachman%2C+B">Benjamin Nachman</a>, <a href="/search/hep-lat?searchtype=author&query=Bailey%2C+S">S. Bailey</a>, <a href="/search/hep-lat?searchtype=author&query=Bhimji%2C+W">W. Bhimji</a>, <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P">P. Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Cerati%2C+G">G. Cerati</a>, <a href="/search/hep-lat?searchtype=author&query=Kind%2C+M+C">M. Carrasco Kind</a>, <a href="/search/hep-lat?searchtype=author&query=Cranmer%2C+K">K. Cranmer</a>, <a href="/search/hep-lat?searchtype=author&query=Davies%2C+G">G. Davies</a>, <a href="/search/hep-lat?searchtype=author&query=Elvira%2C+V+D">V. D. Elvira</a>, <a href="/search/hep-lat?searchtype=author&query=Gardner%2C+R">R. Gardner</a>, <a href="/search/hep-lat?searchtype=author&query=Heitmann%2C+K">K. Heitmann</a>, <a href="/search/hep-lat?searchtype=author&query=Hildreth%2C+M">M. Hildreth</a>, <a href="/search/hep-lat?searchtype=author&query=Hopkins%2C+W">W. Hopkins</a>, <a href="/search/hep-lat?searchtype=author&query=Humble%2C+T">T. Humble</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+M">M. Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Onyisi%2C+P">P. Onyisi</a>, <a href="/search/hep-lat?searchtype=author&query=Qiang%2C+J">J. Qiang</a>, <a href="/search/hep-lat?searchtype=author&query=Pedro%2C+K">K. Pedro</a>, <a href="/search/hep-lat?searchtype=author&query=Perdue%2C+G">G. Perdue</a>, <a href="/search/hep-lat?searchtype=author&query=Roberts%2C+A">A. Roberts</a>, <a href="/search/hep-lat?searchtype=author&query=Savage%2C+M">M. Savage</a>, <a href="/search/hep-lat?searchtype=author&query=Shanahan%2C+P">P. Shanahan</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.05822v3-abstract-short" style="display: inline;"> Software and Computing (S&C) are essential to all High Energy Physics (HEP) experiments and many theoretical studies. The size and complexity of S&C are now commensurate with that of experimental instruments, playing a critical role in experimental design, data acquisition/instrumental control, reconstruction, and analysis. Furthermore, S&C often plays a leading role in driving the precision of th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05822v3-abstract-full').style.display = 'inline'; document.getElementById('2210.05822v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.05822v3-abstract-full" style="display: none;"> Software and Computing (S&C) are essential to all High Energy Physics (HEP) experiments and many theoretical studies. The size and complexity of S&C are now commensurate with that of experimental instruments, playing a critical role in experimental design, data acquisition/instrumental control, reconstruction, and analysis. Furthermore, S&C often plays a leading role in driving the precision of theoretical calculations and simulations. Within this central role in HEP, S&C has been immensely successful over the last decade. This report looks forward to the next decade and beyond, in the context of the 2021 Particle Physics Community Planning Exercise ("Snowmass") organized by the Division of Particles and Fields (DPF) of the American Physical Society. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05822v3-abstract-full').style.display = 'none'; document.getElementById('2210.05822v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Computational Frontier Report Contribution to Snowmass 2021; 41 pages, 1 figure. v2: missing ref and added missing topical group conveners. v3: fixed typos</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.10758">arXiv:2209.10758</a> <span> [<a href="https://arxiv.org/pdf/2209.10758">pdf</a>, <a href="https://arxiv.org/format/2209.10758">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Report of the Snowmass 2021 Topical Group on Lattice Gauge Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&query=Bauer%2C+C+W">Christian W. Bauer</a>, <a href="/search/hep-lat?searchtype=author&query=Bhattacharya%2C+T">Tanmoy Bhattacharya</a>, <a href="/search/hep-lat?searchtype=author&query=Blum%2C+T">Thomas Blum</a>, <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P">Peter Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&query=Catterall%2C+S">Simon Catterall</a>, <a href="/search/hep-lat?searchtype=author&query=Christ%2C+N+H">Norman H. Christ</a>, <a href="/search/hep-lat?searchtype=author&query=Cirigliano%2C+V">Vincenzo Cirigliano</a>, <a href="/search/hep-lat?searchtype=author&query=Colangelo%2C+G">Gilberto Colangelo</a>, <a href="/search/hep-lat?searchtype=author&query=DeTar%2C+C">Carleton DeTar</a>, <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Edwards%2C+R+G">Robert G. Edwards</a>, <a href="/search/hep-lat?searchtype=author&query=El-Khadra%2C+A+X">Aida X. El-Khadra</a>, <a href="/search/hep-lat?searchtype=author&query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/hep-lat?searchtype=author&query=Gupta%2C+R">Rajan Gupta</a>, <a href="/search/hep-lat?searchtype=author&query=Hackett%2C+D+C">Daniel C. Hackett</a>, <a href="/search/hep-lat?searchtype=author&query=Hasenfratz%2C+A">Anna Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&query=Izubuchi%2C+T">Taku Izubuchi</a>, <a href="/search/hep-lat?searchtype=author&query=Jay%2C+W+I">William I. Jay</a>, <a href="/search/hep-lat?searchtype=author&query=Jin%2C+L">Luchang Jin</a>, <a href="/search/hep-lat?searchtype=author&query=Kelly%2C+C">Christopher Kelly</a>, <a href="/search/hep-lat?searchtype=author&query=Kronfeld%2C+A+S">Andreas S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&query=Lehner%2C+C">Christoph Lehner</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.10758v1-abstract-short" style="display: inline;"> Lattice gauge theory continues to be a powerful theoretical and computational approach to simulating strongly interacting quantum field theories, whose applications permeate almost all disciplines of modern-day research in High-Energy Physics. Whether it is to enable precision quark- and lepton-flavor physics, to uncover signals of new physics in nucleons and nuclei, to elucidate hadron structure… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10758v1-abstract-full').style.display = 'inline'; document.getElementById('2209.10758v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.10758v1-abstract-full" style="display: none;"> Lattice gauge theory continues to be a powerful theoretical and computational approach to simulating strongly interacting quantum field theories, whose applications permeate almost all disciplines of modern-day research in High-Energy Physics. Whether it is to enable precision quark- and lepton-flavor physics, to uncover signals of new physics in nucleons and nuclei, to elucidate hadron structure and spectrum, to serve as a numerical laboratory to reach beyond the Standard Model, or to invent and improve state-of-the-art computational paradigms, the lattice-gauge-theory program is in a prime position to impact the course of developments and enhance discovery potential of a vibrant experimental program in High-Energy Physics over the coming decade. This projection is based on abundant successful results that have emerged using lattice gauge theory over the years: on continued improvement in theoretical frameworks and algorithmic suits; on the forthcoming transition into the exascale era of high-performance computing; and on a skillful, dedicated, and organized community of lattice gauge theorists in the U.S. and worldwide. The prospects of this effort in pushing the frontiers of research in High-Energy Physics have recently been studied within the U.S. decadal Particle Physics Planning Exercise (Snowmass 2021), and the conclusions are summarized in this Topical Report. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10758v1-abstract-full').style.display = 'none'; document.getElementById('2209.10758v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">57 pages, 1 figure. Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021). Topical Group Report for TF05 - Lattice Gauge Theory</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UMD-PP-022-08, LA-UR-22-29361, FERMILAB-CONF-22-703-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.07641">arXiv:2207.07641</a> <span> [<a href="https://arxiv.org/pdf/2207.07641">pdf</a>, <a href="https://arxiv.org/format/2207.07641">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Lattice QCD and Particle Physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Kronfeld%2C+A+S">Andreas S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&query=Bhattacharya%2C+T">Tanmoy Bhattacharya</a>, <a href="/search/hep-lat?searchtype=author&query=Blum%2C+T">Thomas Blum</a>, <a href="/search/hep-lat?searchtype=author&query=Christ%2C+N+H">Norman H. Christ</a>, <a href="/search/hep-lat?searchtype=author&query=DeTar%2C+C">Carleton DeTar</a>, <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Edwards%2C+R">Robert Edwards</a>, <a href="/search/hep-lat?searchtype=author&query=Hasenfratz%2C+A">Anna Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Mukherjee%2C+S">Swagato Mukherjee</a>, <a href="/search/hep-lat?searchtype=author&query=Orginos%2C+K">Konstantinos Orginos</a>, <a href="/search/hep-lat?searchtype=author&query=Brower%2C+R">Richard Brower</a>, <a href="/search/hep-lat?searchtype=author&query=Cirigliano%2C+V">Vincenzo Cirigliano</a>, <a href="/search/hep-lat?searchtype=author&query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&query=J%C3%B3o%2C+B">B谩lint J贸o</a>, <a href="/search/hep-lat?searchtype=author&query=Jung%2C+C">Chulwoo Jung</a>, <a href="/search/hep-lat?searchtype=author&query=Lehner%2C+C">Christoph Lehner</a>, <a href="/search/hep-lat?searchtype=author&query=Meinel%2C+S">Stefan Meinel</a>, <a href="/search/hep-lat?searchtype=author&query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&query=Petreczky%2C+P">Peter Petreczky</a>, <a href="/search/hep-lat?searchtype=author&query=Richards%2C+D+G">David G. Richards</a>, <a href="/search/hep-lat?searchtype=author&query=Bazavov%2C+A">Alexei Bazavov</a>, <a href="/search/hep-lat?searchtype=author&query=Catterall%2C+S">Simon Catterall</a>, <a href="/search/hep-lat?searchtype=author&query=Dudek%2C+J+J">Jozef J. Dudek</a>, <a href="/search/hep-lat?searchtype=author&query=El-Khadra%2C+A+X">Aida X. El-Khadra</a> , et al. (57 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.07641v2-abstract-short" style="display: inline;"> Contribution from the USQCD Collaboration to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021). </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.07641v2-abstract-full" style="display: none;"> Contribution from the USQCD Collaboration to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.07641v2-abstract-full').style.display = 'none'; document.getElementById('2207.07641v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pp. main text, 4 pp. appendices, 29 pp. references, 1 p. index</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-CONF-22-531-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.15373">arXiv:2205.15373</a> <span> [<a href="https://arxiv.org/pdf/2205.15373">pdf</a>, <a href="https://arxiv.org/format/2205.15373">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> A lattice QCD perspective on weak decays of b and c quarks Snowmass 2022 White Paper </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P+A">Peter A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Chakraborty%2C+B">Bipasha Chakraborty</a>, <a href="/search/hep-lat?searchtype=author&query=Davies%2C+C+T+H">Christine T. H. Davies</a>, <a href="/search/hep-lat?searchtype=author&query=DeGrand%2C+T">Thomas DeGrand</a>, <a href="/search/hep-lat?searchtype=author&query=DeTar%2C+C">Carleton DeTar</a>, <a href="/search/hep-lat?searchtype=author&query=Del+Debbio%2C+L">Luigi Del Debbio</a>, <a href="/search/hep-lat?searchtype=author&query=El-Khadra%2C+A+X">Aida X. El-Khadra</a>, <a href="/search/hep-lat?searchtype=author&query=Erben%2C+F">Felix Erben</a>, <a href="/search/hep-lat?searchtype=author&query=Flynn%2C+J+M">Jonathan M. Flynn</a>, <a href="/search/hep-lat?searchtype=author&query=G%C3%A1miz%2C+E">Elvira G谩miz</a>, <a href="/search/hep-lat?searchtype=author&query=Giusti%2C+D">Davide Giusti</a>, <a href="/search/hep-lat?searchtype=author&query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/hep-lat?searchtype=author&query=Hansen%2C+M+T">Maxwell T. Hansen</a>, <a href="/search/hep-lat?searchtype=author&query=Heitger%2C+J">Jochen Heitger</a>, <a href="/search/hep-lat?searchtype=author&query=Hill%2C+R">Ryan Hill</a>, <a href="/search/hep-lat?searchtype=author&query=Jay%2C+W+I">William I. Jay</a>, <a href="/search/hep-lat?searchtype=author&query=J%C3%BCttner%2C+A">Andreas J眉ttner</a>, <a href="/search/hep-lat?searchtype=author&query=Koponen%2C+J">Jonna Koponen</a>, <a href="/search/hep-lat?searchtype=author&query=Kronfeld%2C+A">Andreas Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&query=Lehner%2C+C">Christoph Lehner</a>, <a href="/search/hep-lat?searchtype=author&query=Lytle%2C+A+T">Andrew T. Lytle</a>, <a href="/search/hep-lat?searchtype=author&query=Martinelli%2C+G">Guido Martinelli</a>, <a href="/search/hep-lat?searchtype=author&query=Meinel%2C+S">Stefan Meinel</a>, <a href="/search/hep-lat?searchtype=author&query=Monahan%2C+C+J">Christopher J. Monahan</a>, <a href="/search/hep-lat?searchtype=author&query=Neil%2C+E+T">Ethan T. Neil</a> , et al. (10 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.15373v2-abstract-short" style="display: inline;"> Lattice quantum chromodynamics has proven to be an indispensable method to determine nonperturbative strong contributions to weak decay processes. In this white paper for the Snowmass community planning process we highlight achievements and future avenues of research for lattice calculations of weak $b$ and $c$ quark decays, and point out how these calculations will help to address the anomalies c… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.15373v2-abstract-full').style.display = 'inline'; document.getElementById('2205.15373v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.15373v2-abstract-full" style="display: none;"> Lattice quantum chromodynamics has proven to be an indispensable method to determine nonperturbative strong contributions to weak decay processes. In this white paper for the Snowmass community planning process we highlight achievements and future avenues of research for lattice calculations of weak $b$ and $c$ quark decays, and point out how these calculations will help to address the anomalies currently in the spotlight of the particle physics community. With future increases in computational resources and algorithmic improvements, percent level (and below) lattice determinations will play a central role in constraining the standard model or identifying new physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.15373v2-abstract-full').style.display = 'none'; document.getElementById('2205.15373v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">contribution to Snowmass 2021; 19 pages; v2 corrected typo and added references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-TH-2022-036, FERMILAB-CONF-22-433-SCD-T, JLAB-THY-22-3582, MITP-22-020, MIT-CTP/5413, MS-TP-22-07, SI-HEP-2022-11 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.00039">arXiv:2204.00039</a> <span> [<a href="https://arxiv.org/pdf/2204.00039">pdf</a>, <a href="https://arxiv.org/format/2204.00039">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Lattice QCD and the Computational Frontier </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P">Peter Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Bollweg%2C+D">Dennis Bollweg</a>, <a href="/search/hep-lat?searchtype=author&query=Brower%2C+R">Richard Brower</a>, <a href="/search/hep-lat?searchtype=author&query=Christ%2C+N">Norman Christ</a>, <a href="/search/hep-lat?searchtype=author&query=DeTar%2C+C">Carleton DeTar</a>, <a href="/search/hep-lat?searchtype=author&query=Edwards%2C+R">Robert Edwards</a>, <a href="/search/hep-lat?searchtype=author&query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/hep-lat?searchtype=author&query=Izubuchi%2C+T">Taku Izubuchi</a>, <a href="/search/hep-lat?searchtype=author&query=Joo%2C+B">Balint Joo</a>, <a href="/search/hep-lat?searchtype=author&query=Joswig%2C+F">Fabian Joswig</a>, <a href="/search/hep-lat?searchtype=author&query=Jung%2C+C">Chulwoo Jung</a>, <a href="/search/hep-lat?searchtype=author&query=Kelly%2C+C">Christopher Kelly</a>, <a href="/search/hep-lat?searchtype=author&query=Kronfeld%2C+A">Andreas Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+M">Meifeng Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Osborn%2C+J">James Osborn</a>, <a href="/search/hep-lat?searchtype=author&query=Portelli%2C+A">Antonin Portelli</a>, <a href="/search/hep-lat?searchtype=author&query=Richings%2C+J">James Richings</a>, <a href="/search/hep-lat?searchtype=author&query=Yamaguchi%2C+A">Azusa Yamaguchi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.00039v1-abstract-short" style="display: inline;"> The search for new physics requires a joint experimental and theoretical effort. Lattice QCD is already an essential tool for obtaining precise model-free theoretical predictions of the hadronic processes underlying many key experimental searches, such as those involving heavy flavor physics, the anomalous magnetic moment of the muon, nucleon-neutrino scattering, and rare, second-order electroweak… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.00039v1-abstract-full').style.display = 'inline'; document.getElementById('2204.00039v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.00039v1-abstract-full" style="display: none;"> The search for new physics requires a joint experimental and theoretical effort. Lattice QCD is already an essential tool for obtaining precise model-free theoretical predictions of the hadronic processes underlying many key experimental searches, such as those involving heavy flavor physics, the anomalous magnetic moment of the muon, nucleon-neutrino scattering, and rare, second-order electroweak processes. As experimental measurements become more precise over the next decade, lattice QCD will play an increasing role in providing the needed matching theoretical precision. Achieving the needed precision requires simulations with lattices with substantially increased resolution. As we push to finer lattice spacing we encounter an array of new challenges. They include algorithmic and software-engineering challenges, challenges in computer technology and design, and challenges in maintaining the necessary human resources. In this white paper we describe those challenges and discuss ways they are being dealt with. Overcoming them is key to supporting the community effort required to deliver the needed theoretical support for experiments in the coming decade. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.00039v1-abstract-full').style.display = 'none'; document.getElementById('2204.00039v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to Snowmass 2021. 22 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.17119">arXiv:2203.17119</a> <span> [<a href="https://arxiv.org/pdf/2203.17119">pdf</a>, <a href="https://arxiv.org/format/2203.17119">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Algorithms for Domain Wall Fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P+A">Peter A Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Bollweg%2C+D">Dennis Bollweg</a>, <a href="/search/hep-lat?searchtype=author&query=Kelly%2C+C">Christopher Kelly</a>, <a href="/search/hep-lat?searchtype=author&query=Yamaguchi%2C+A">Azusa Yamaguchi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.17119v1-abstract-short" style="display: inline;"> We discuss algorithms for domain wall fermions focussing on accelerating Hybrid Monte Carlo sampling of gauge configurations. Firstly a new multigrid algorithm for domain wall solvers and secondly a domain decomposed hybrid monte carlo approach applied to large subvolumes and optimised for GPU accelerated nodes. We propose a formulation of DD-RHMC that is suitable for the simulation of odd numbers… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.17119v1-abstract-full').style.display = 'inline'; document.getElementById('2203.17119v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.17119v1-abstract-full" style="display: none;"> We discuss algorithms for domain wall fermions focussing on accelerating Hybrid Monte Carlo sampling of gauge configurations. Firstly a new multigrid algorithm for domain wall solvers and secondly a domain decomposed hybrid monte carlo approach applied to large subvolumes and optimised for GPU accelerated nodes. We propose a formulation of DD-RHMC that is suitable for the simulation of odd numbers of fermions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.17119v1-abstract-full').style.display = 'none'; document.getElementById('2203.17119v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.15810">arXiv:2203.15810</a> <span> [<a href="https://arxiv.org/pdf/2203.15810">pdf</a>, <a href="https://arxiv.org/format/2203.15810">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Prospects for precise predictions of $a_渭$ in the Standard Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Colangelo%2C+G">G. Colangelo</a>, <a href="/search/hep-lat?searchtype=author&query=Davier%2C+M">M. Davier</a>, <a href="/search/hep-lat?searchtype=author&query=El-Khadra%2C+A+X">A. X. El-Khadra</a>, <a href="/search/hep-lat?searchtype=author&query=Hoferichter%2C+M">M. Hoferichter</a>, <a href="/search/hep-lat?searchtype=author&query=Lehner%2C+C">C. Lehner</a>, <a href="/search/hep-lat?searchtype=author&query=Lellouch%2C+L">L. Lellouch</a>, <a href="/search/hep-lat?searchtype=author&query=Mibe%2C+T">T. Mibe</a>, <a href="/search/hep-lat?searchtype=author&query=Roberts%2C+B+L">B. L. Roberts</a>, <a href="/search/hep-lat?searchtype=author&query=Teubner%2C+T">T. Teubner</a>, <a href="/search/hep-lat?searchtype=author&query=Wittig%2C+H">H. Wittig</a>, <a href="/search/hep-lat?searchtype=author&query=Ananthanarayan%2C+B">B. Ananthanarayan</a>, <a href="/search/hep-lat?searchtype=author&query=Bashir%2C+A">A. Bashir</a>, <a href="/search/hep-lat?searchtype=author&query=Bijnens%2C+J">J. Bijnens</a>, <a href="/search/hep-lat?searchtype=author&query=Blum%2C+T">T. Blum</a>, <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P">P. Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Bray-Ali%2C+N">N. Bray-Ali</a>, <a href="/search/hep-lat?searchtype=author&query=Caprini%2C+I">I. Caprini</a>, <a href="/search/hep-lat?searchtype=author&query=Calame%2C+C+M+C">C. M. Carloni Calame</a>, <a href="/search/hep-lat?searchtype=author&query=Cat%C3%A0%2C+O">O. Cat脿</a>, <a href="/search/hep-lat?searchtype=author&query=C%C3%A8%2C+M">M. C猫</a>, <a href="/search/hep-lat?searchtype=author&query=Charles%2C+J">J. Charles</a>, <a href="/search/hep-lat?searchtype=author&query=Christ%2C+N+H">N. H. Christ</a>, <a href="/search/hep-lat?searchtype=author&query=Curciarello%2C+F">F. Curciarello</a>, <a href="/search/hep-lat?searchtype=author&query=Danilkin%2C+I">I. Danilkin</a>, <a href="/search/hep-lat?searchtype=author&query=Das%2C+D">D. Das</a> , et al. (57 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.15810v1-abstract-short" style="display: inline;"> We discuss the prospects for improving the precision on the hadronic corrections to the anomalous magnetic moment of the muon, and the plans of the Muon $g-2$ Theory Initiative to update the Standard Model prediction. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.15810v1-abstract-full" style="display: none;"> We discuss the prospects for improving the precision on the hadronic corrections to the anomalous magnetic moment of the muon, and the plans of the Muon $g-2$ Theory Initiative to update the Standard Model prediction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.15810v1-abstract-full').style.display = 'none'; document.getElementById('2203.15810v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to the US Community Study on the Future of Particle Physics (Snowmass 2021)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-CONF-22-236-T, LTH 1303, MITP-22-030 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.10998">arXiv:2203.10998</a> <span> [<a href="https://arxiv.org/pdf/2203.10998">pdf</a>, <a href="https://arxiv.org/ps/2203.10998">ps</a>, <a href="https://arxiv.org/format/2203.10998">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Discovering new physics in rare kaon decays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Blum%2C+T">Thomas Blum</a>, <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P">Peter Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Bruno%2C+M">Mattia Bruno</a>, <a href="/search/hep-lat?searchtype=author&query=Christ%2C+N">Norman Christ</a>, <a href="/search/hep-lat?searchtype=author&query=Erben%2C+F">Felix Erben</a>, <a href="/search/hep-lat?searchtype=author&query=Feng%2C+X">Xu Feng</a>, <a href="/search/hep-lat?searchtype=author&query=Guelpers%2C+V">Vera Guelpers</a>, <a href="/search/hep-lat?searchtype=author&query=Hill%2C+R">Ryan Hill</a>, <a href="/search/hep-lat?searchtype=author&query=Hodgson%2C+R">Raoul Hodgson</a>, <a href="/search/hep-lat?searchtype=author&query=Hoying%2C+D">Danel Hoying</a>, <a href="/search/hep-lat?searchtype=author&query=Izubuchi%2C+T">Taku Izubuchi</a>, <a href="/search/hep-lat?searchtype=author&query=Jang%2C+Y">Yong-Chull Jang</a>, <a href="/search/hep-lat?searchtype=author&query=Jin%2C+L">Luchang Jin</a>, <a href="/search/hep-lat?searchtype=author&query=Jung%2C+C">Chulwoo Jung</a>, <a href="/search/hep-lat?searchtype=author&query=Karpie%2C+J">Joe Karpie</a>, <a href="/search/hep-lat?searchtype=author&query=Kelly%2C+C">Christopher Kelly</a>, <a href="/search/hep-lat?searchtype=author&query=Lehner%2C+C">Christoph Lehner</a>, <a href="/search/hep-lat?searchtype=author&query=Portelli%2C+A">Antonin Portelli</a>, <a href="/search/hep-lat?searchtype=author&query=Sachrajda%2C+C">Christopher Sachrajda</a>, <a href="/search/hep-lat?searchtype=author&query=Soni%2C+A">Amarjit Soni</a>, <a href="/search/hep-lat?searchtype=author&query=Tomii%2C+M">Masaaki Tomii</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+B">Bigeng Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+T">Tianle Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.10998v1-abstract-short" style="display: inline;"> The decays and mixing of $K$ mesons are remarkably sensitive to the weak interactions of quarks and leptons at high energies. They provide important tests of the standard model at both first and second order in the Fermi constant $G_F$ and offer a window into possible new phenomena at energies as high as 1,000 TeV. These possibilities become even more compelling as the growing capabilities of latt… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.10998v1-abstract-full').style.display = 'inline'; document.getElementById('2203.10998v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.10998v1-abstract-full" style="display: none;"> The decays and mixing of $K$ mesons are remarkably sensitive to the weak interactions of quarks and leptons at high energies. They provide important tests of the standard model at both first and second order in the Fermi constant $G_F$ and offer a window into possible new phenomena at energies as high as 1,000 TeV. These possibilities become even more compelling as the growing capabilities of lattice QCD make high-precision standard model predictions possible. Here we discuss and attempt to forecast some of these capabilities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.10998v1-abstract-full').style.display = 'none'; document.getElementById('2203.10998v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted to the Rare Processes and Precision, Theory and Computational Frontiers for the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.06777">arXiv:2203.06777</a> <span> [<a href="https://arxiv.org/pdf/2203.06777">pdf</a>, <a href="https://arxiv.org/format/2203.06777">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Grid: OneCode and FourAPIs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P">Peter Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Cossu%2C+G">Guido Cossu</a>, <a href="/search/hep-lat?searchtype=author&query=Filaci%2C+G">Gianluca Filaci</a>, <a href="/search/hep-lat?searchtype=author&query=Lehner%2C+C">Christoph Lehner</a>, <a href="/search/hep-lat?searchtype=author&query=Portelli%2C+A">Antonin Portelli</a>, <a href="/search/hep-lat?searchtype=author&query=Yamaguchi%2C+A">Azusa Yamaguchi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.06777v1-abstract-short" style="display: inline;"> We discuss a substantial update to the Grid software library for Lattice QCD, enabling it to port to multiple GPU architectures while retaining CPU vectorisation and SIMD execution within OpenMP threads. The GPU environments supported include vendor specific Nvidia CUDA and AMD HIP environments and a (mostly) standards based SYCL implementation. This is performed by an internal abstraction interfa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.06777v1-abstract-full').style.display = 'inline'; document.getElementById('2203.06777v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.06777v1-abstract-full" style="display: none;"> We discuss a substantial update to the Grid software library for Lattice QCD, enabling it to port to multiple GPU architectures while retaining CPU vectorisation and SIMD execution within OpenMP threads. The GPU environments supported include vendor specific Nvidia CUDA and AMD HIP environments and a (mostly) standards based SYCL implementation. This is performed by an internal abstraction interface giving single source cross-platform performance portability across all number of planned Exascale architectures, and all those planned by the US Department of Energy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.06777v1-abstract-full').style.display = 'none'; document.getElementById('2203.06777v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.08795">arXiv:2202.08795</a> <span> [<a href="https://arxiv.org/pdf/2202.08795">pdf</a>, <a href="https://arxiv.org/format/2202.08795">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.L011503">10.1103/PhysRevD.107.L011503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Simulating rare kaon decays $K^{+}\to蟺^{+}\ell^{+}\ell^{-}$ using domain wall lattice QCD with physical light quark masses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P+A">P. A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Erben%2C+F">F. Erben</a>, <a href="/search/hep-lat?searchtype=author&query=Flynn%2C+J+M">J. M. Flynn</a>, <a href="/search/hep-lat?searchtype=author&query=G%C3%BClpers%2C+V">V. G眉lpers</a>, <a href="/search/hep-lat?searchtype=author&query=Hill%2C+R+C">R. C. Hill</a>, <a href="/search/hep-lat?searchtype=author&query=Hodgson%2C+R">R. Hodgson</a>, <a href="/search/hep-lat?searchtype=author&query=J%C3%BCttner%2C+A">A. J眉ttner</a>, <a href="/search/hep-lat?searchtype=author&query=h%C3%93g%C3%A1in%2C+F+%C3%93">F. 脫 h脫g谩in</a>, <a href="/search/hep-lat?searchtype=author&query=Portelli%2C+A">A. Portelli</a>, <a href="/search/hep-lat?searchtype=author&query=Sachrajda%2C+C+T">C. T. Sachrajda</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.08795v4-abstract-short" style="display: inline;"> We report the first calculation using physical light-quark masses of the electromagnetic form factor $V(z)$ describing the long-distance contributions to the $K^+\to蟺^+\ell^+\ell^-$ decay amplitude. The calculation is performed on a 2+1 flavor domain wall fermion ensemble with inverse lattice spacing $a^{-1}=1.730(4)$GeV. We implement a Glashow-Iliopoulos-Maiani cancellation by extrapolating to th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.08795v4-abstract-full').style.display = 'inline'; document.getElementById('2202.08795v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.08795v4-abstract-full" style="display: none;"> We report the first calculation using physical light-quark masses of the electromagnetic form factor $V(z)$ describing the long-distance contributions to the $K^+\to蟺^+\ell^+\ell^-$ decay amplitude. The calculation is performed on a 2+1 flavor domain wall fermion ensemble with inverse lattice spacing $a^{-1}=1.730(4)$GeV. We implement a Glashow-Iliopoulos-Maiani cancellation by extrapolating to the physical charm-quark mass from three below-charm masses. We obtain $V(z=0.013(2))=-0.87(4.44)$, achieving a bound for the value. The large statistical error arises from stochastically estimated quark loops. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.08795v4-abstract-full').style.display = 'none'; document.getElementById('2202.08795v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 107, L011503 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.02680">arXiv:2201.02680</a> <span> [<a href="https://arxiv.org/pdf/2201.02680">pdf</a>, <a href="https://arxiv.org/format/2201.02680">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Semileptonic $D \rightarrow 蟺\ell 谓$, $D \rightarrow K \ell 谓$ and $D_s \rightarrow K \ell 谓$ decays with 2+1f domain wall fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P">Peter Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Del+Debbio%2C+L">Luigi Del Debbio</a>, <a href="/search/hep-lat?searchtype=author&query=Erben%2C+F">Felix Erben</a>, <a href="/search/hep-lat?searchtype=author&query=Flynn%2C+J">Jonathan Flynn</a>, <a href="/search/hep-lat?searchtype=author&query=J%C3%BCttner%2C+A">Andreas J眉ttner</a>, <a href="/search/hep-lat?searchtype=author&query=Marshall%2C+M">Michael Marshall</a>, <a href="/search/hep-lat?searchtype=author&query=Portelli%2C+A">Antonin Portelli</a>, <a href="/search/hep-lat?searchtype=author&query=Tsang%2C+J+T">J. Tobias Tsang</a>, <a href="/search/hep-lat?searchtype=author&query=Witzel%2C+O">Oliver Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.02680v1-abstract-short" style="display: inline;"> We present the status of our project to calculate $D \to 蟺\ell 谓$, $D \to K \ell 谓$ and $D_s \to K \ell 谓$ semileptonic form factors using domain wall fermions for both heavy and light quarks. Our computations are performed using RBC/UKQCD's set of 2+1 flavour domain wall fermion and Iwasaki gauge field ensembles. We plan to calculate three-point functions covering the full, physically allowed kin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.02680v1-abstract-full').style.display = 'inline'; document.getElementById('2201.02680v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.02680v1-abstract-full" style="display: none;"> We present the status of our project to calculate $D \to 蟺\ell 谓$, $D \to K \ell 谓$ and $D_s \to K \ell 谓$ semileptonic form factors using domain wall fermions for both heavy and light quarks. Our computations are performed using RBC/UKQCD's set of 2+1 flavour domain wall fermion and Iwasaki gauge field ensembles. We plan to calculate three-point functions covering the full, physically allowed kinematic range. Given that the signal decays faster than the noise, unambiguously and reliably extracting the ground state is critical for success. We include an analysis of operator diagonalisation within several possible $2 \times 2$ operator bases and find an admixture of gauged fixed wall and $\mathbb{Z} \left( 2 \right)$ wall sources to be acceptable at both zero and non-zero momentum. Initial results for semileptonic form factors are presented for first ensembles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.02680v1-abstract-full').style.display = 'none'; document.getElementById('2201.02680v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 9 figures, to be published in Proceedings of Science, The 38th International Symposium on Lattice Field Theory</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.11823">arXiv:2112.11823</a> <span> [<a href="https://arxiv.org/pdf/2112.11823">pdf</a>, <a href="https://arxiv.org/format/2112.11823">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Near-Physical Point Lattice Calculation of Isospin-Breaking Corrections to $K_{\ell2}/蟺_{\ell2}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Yong%2C+A+Z+N">Andrew Zhen Ning Yong</a>, <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P">Peter Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Di+Carlo%2C+M">Matteo Di Carlo</a>, <a href="/search/hep-lat?searchtype=author&query=Erben%2C+F">Felix Erben</a>, <a href="/search/hep-lat?searchtype=author&query=G%C3%BClpers%2C+V">Vera G眉lpers</a>, <a href="/search/hep-lat?searchtype=author&query=Hansen%2C+M+T">Maxwell T. Hansen</a>, <a href="/search/hep-lat?searchtype=author&query=Harris%2C+T">Tim Harris</a>, <a href="/search/hep-lat?searchtype=author&query=Hermansson-Truedsson%2C+N">Nils Hermansson-Truedsson</a>, <a href="/search/hep-lat?searchtype=author&query=Hodgson%2C+R">Raoul Hodgson</a>, <a href="/search/hep-lat?searchtype=author&query=J%C3%BCttner%2C+A">Andreas J眉ttner</a>, <a href="/search/hep-lat?searchtype=author&query=Portelli%2C+A">Antonin Portelli</a>, <a href="/search/hep-lat?searchtype=author&query=Richings%2C+J">James Richings</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.11823v2-abstract-short" style="display: inline;"> In recent years, lattice determinations of non-perturbative quantities such as $f_K$ and $f_蟺$, which are relevant for $V_{us}$ and $V_{ud}$, have reached an impressive precision of $\mathcal{O}(1\%)$ or better. To make further progress, electromagnetic and strong isospin breaking effects must be included in lattice QCD simulations. We present the status of the RBC/UKQCD lattice calculation of i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.11823v2-abstract-full').style.display = 'inline'; document.getElementById('2112.11823v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.11823v2-abstract-full" style="display: none;"> In recent years, lattice determinations of non-perturbative quantities such as $f_K$ and $f_蟺$, which are relevant for $V_{us}$ and $V_{ud}$, have reached an impressive precision of $\mathcal{O}(1\%)$ or better. To make further progress, electromagnetic and strong isospin breaking effects must be included in lattice QCD simulations. We present the status of the RBC/UKQCD lattice calculation of isospin-breaking corrections to light meson leptonic decays. This computation is performed in a (2+1)-flavor QCD simulation using Domain Wall Fermions with near-physical quark masses. The isospin-breaking effects are implemented via a perturbative expansion of the action in $伪$ and $(m_u-m_d)$. In this calculation, we work in the electro-quenched approximation and the photons are implemented in the Feynman gauge and $\text{QED}_\text{L}$ formulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.11823v2-abstract-full').style.display = 'none'; document.getElementById('2112.11823v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures; Updated Author(s) metadata</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.09804">arXiv:2112.09804</a> <span> [<a href="https://arxiv.org/pdf/2112.09804">pdf</a>, <a href="https://arxiv.org/format/2112.09804">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> $K 蟺$ scattering at physical pion mass using distillation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Lachini%2C+N+P">Nelson Pitanga Lachini</a>, <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P">Peter Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Erben%2C+F">Felix Erben</a>, <a href="/search/hep-lat?searchtype=author&query=Marshall%2C+M">Michael Marshall</a>, <a href="/search/hep-lat?searchtype=author&query=Portelli%2C+A">Antonin Portelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.09804v1-abstract-short" style="display: inline;"> Scattering at physical pion mass is still an exploratory field in lattice QCD. This generally involves the extraction of excited states through multi-particle correlators on systems with resonances. In that context, distillation has been demonstrated to be effective both as a smearing kernel and a computational tool. Motivated by the study of the smearing profile of the distillation operator, we c… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.09804v1-abstract-full').style.display = 'inline'; document.getElementById('2112.09804v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.09804v1-abstract-full" style="display: none;"> Scattering at physical pion mass is still an exploratory field in lattice QCD. This generally involves the extraction of excited states through multi-particle correlators on systems with resonances. In that context, distillation has been demonstrated to be effective both as a smearing kernel and a computational tool. Motivated by the study of the smearing profile of the distillation operator, we compare stochastic and exact distillation cases for different numbers of Laplacian eigenvectors using an RBC-UKQCD $N_f=2+1$ domain-wall fermion lattice with a physical pion mass. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.09804v1-abstract-full').style.display = 'none'; document.getElementById('2112.09804v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.04556">arXiv:2112.04556</a> <span> [<a href="https://arxiv.org/pdf/2112.04556">pdf</a>, <a href="https://arxiv.org/format/2112.04556">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Riemannian manifold hybrid Monte Carlo in lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Nguyen%2C+T">Tuan Nguyen</a>, <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P">Peter Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Christ%2C+N">Norman Christ</a>, <a href="/search/hep-lat?searchtype=author&query=Jang%2C+Y">Yong-Chull Jang</a>, <a href="/search/hep-lat?searchtype=author&query=Jung%2C+C">Chulwoo Jung</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.04556v1-abstract-short" style="display: inline;"> Critical slowing down presents a critical obstacle to lattice QCD calculation at the smaller lattice spacings made possible by Exascale computers. Inspired by the concept of Fourier acceleration, we study a version of the Riemannian Manifold HMC (RMHMC) algorithm in which the canonical mass term of the HMC algorithm is replaced by a rational function of the SU(3) gauge covariant Laplacian. We have… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.04556v1-abstract-full').style.display = 'inline'; document.getElementById('2112.04556v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.04556v1-abstract-full" style="display: none;"> Critical slowing down presents a critical obstacle to lattice QCD calculation at the smaller lattice spacings made possible by Exascale computers. Inspired by the concept of Fourier acceleration, we study a version of the Riemannian Manifold HMC (RMHMC) algorithm in which the canonical mass term of the HMC algorithm is replaced by a rational function of the SU(3) gauge covariant Laplacian. We have developed a suite of tools using Chebyshev filters based on the SU(3) gauge covariant Laplacian that provides the power spectra of both the gauge and fermion forces and determines the spectral dependence of the resulting RMHMC evolution of long- and short-distance QCD observables. These tools can be used to optimize the RMHMC mass term and to monitor the resulting acceleration mode-wise. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.04556v1-abstract-full').style.display = 'none'; document.getElementById('2112.04556v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures, 2021 Lattice Proceedings</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.11287">arXiv:2111.11287</a> <span> [<a href="https://arxiv.org/pdf/2111.11287">pdf</a>, <a href="https://arxiv.org/format/2111.11287">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> BSM $B - \bar{B}$ mixing on JLQCD and RBC/UKQCD $N_f=2+1$ DWF ensembles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P">Peter Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Del+Debbio%2C+L">Luigi Del Debbio</a>, <a href="/search/hep-lat?searchtype=author&query=Erben%2C+F">Felix Erben</a>, <a href="/search/hep-lat?searchtype=author&query=J%C3%BCttner%2C+A">Andreas J眉ttner</a>, <a href="/search/hep-lat?searchtype=author&query=Kaneko%2C+T">Takashi Kaneko</a>, <a href="/search/hep-lat?searchtype=author&query=Marshall%2C+M">Michael Marshall</a>, <a href="/search/hep-lat?searchtype=author&query=Portelli%2C+A">Antonin Portelli</a>, <a href="/search/hep-lat?searchtype=author&query=Tsang%2C+J+T">J Tobias Tsang</a>, <a href="/search/hep-lat?searchtype=author&query=Witzel%2C+O">Oliver Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.11287v1-abstract-short" style="display: inline;"> We are presenting our ongoing Lattice QCD study on $B - \bar{B}$ mixing on several RBC/UKQCD and JLQCD ensembles with 2+1 dynamical-flavour domain-wall fermions, including physical-pion-mass ensembles. We are extracting bag parameters $B_{B_d}$ and $B_{B_s}$ using the full 5-mixing-operator basis to study both Standard-Model mixing as well as Beyond the Standard Model mixing, using a fully correla… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.11287v1-abstract-full').style.display = 'inline'; document.getElementById('2111.11287v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.11287v1-abstract-full" style="display: none;"> We are presenting our ongoing Lattice QCD study on $B - \bar{B}$ mixing on several RBC/UKQCD and JLQCD ensembles with 2+1 dynamical-flavour domain-wall fermions, including physical-pion-mass ensembles. We are extracting bag parameters $B_{B_d}$ and $B_{B_s}$ using the full 5-mixing-operator basis to study both Standard-Model mixing as well as Beyond the Standard Model mixing, using a fully correlated combined fit to two-point functions and ratios of three-point and two-point functions. Using 15 different lattice ensembles we are simulating a range of heavy-quark masses from below the charm-quark mass to just below the bottom-quark mass. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.11287v1-abstract-full').style.display = 'none'; document.getElementById('2111.11287v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.01608">arXiv:2111.01608</a> <span> [<a href="https://arxiv.org/pdf/2111.01608">pdf</a>, <a href="https://arxiv.org/format/2111.01608">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.074501">10.1103/PhysRevD.105.074501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Proton decay matrix elements on the lattice at physical pion mass </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Yoo%2C+J">Jun-Sik Yoo</a>, <a href="/search/hep-lat?searchtype=author&query=Aoki%2C+Y">Yasumichi Aoki</a>, <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P">Peter Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Izubuchi%2C+T">Taku Izubuchi</a>, <a href="/search/hep-lat?searchtype=author&query=Soni%2C+A">Amarjit Soni</a>, <a href="/search/hep-lat?searchtype=author&query=Syritsyn%2C+S">Sergey Syritsyn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.01608v1-abstract-short" style="display: inline;"> Proton decay is a major prediction of Grand-Unified Theories (GUT) and its observation would indicate baryon number violation that is required for baryogenesis. Many decades of searching for proton decay have constrained its rate and ruled out some of the simplest GUT models. Apart from the baryon number-violating interactions, this rate also depends on transition amplitudes between the proton and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.01608v1-abstract-full').style.display = 'inline'; document.getElementById('2111.01608v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.01608v1-abstract-full" style="display: none;"> Proton decay is a major prediction of Grand-Unified Theories (GUT) and its observation would indicate baryon number violation that is required for baryogenesis. Many decades of searching for proton decay have constrained its rate and ruled out some of the simplest GUT models. Apart from the baryon number-violating interactions, this rate also depends on transition amplitudes between the proton and mesons or leptons produced in the decay, which are matrix elements of three-quark operators. We report nonperturbative calculation of these matrix elements for the most studied two-body decay channels into a meson and antilepton done on a lattice with physical light and strange quark masses and lattice spacings $a\approx0.14$ and 0.20 fm. We perform nonperturbative renormalization and excited state analysis to control associated systematic effects. Our results largely agree with previous lattice calculations done with heavier quark masses and thus remove ambiguity in ruling out some simple GUT theories due to quark mass dependence of hadron structure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.01608v1-abstract-full').style.display = 'none'; document.getElementById('2111.01608v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 18 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RBRC-1333, KEK-CP-0385 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.15131">arXiv:2103.15131</a> <span> [<a href="https://arxiv.org/pdf/2103.15131">pdf</a>, <a href="https://arxiv.org/format/2103.15131">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.114506">10.1103/PhysRevD.104.114506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice determination of $I= 0$ and 2 $蟺蟺$ scattering phase shifts with a physical pion mass </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Blum%2C+T">T. Blum</a>, <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P+A">P. A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Bruno%2C+M">M. Bruno</a>, <a href="/search/hep-lat?searchtype=author&query=Christ%2C+N+H">N. H. Christ</a>, <a href="/search/hep-lat?searchtype=author&query=Hoying%2C+D">D. Hoying</a>, <a href="/search/hep-lat?searchtype=author&query=Kelly%2C+C">C. Kelly</a>, <a href="/search/hep-lat?searchtype=author&query=Lehner%2C+C">C. Lehner</a>, <a href="/search/hep-lat?searchtype=author&query=Mawhinney%2C+R+D">R. D. Mawhinney</a>, <a href="/search/hep-lat?searchtype=author&query=Meyer%2C+A+S">A. S. Meyer</a>, <a href="/search/hep-lat?searchtype=author&query=Murphy%2C+D+J">D. J. Murphy</a>, <a href="/search/hep-lat?searchtype=author&query=Sachrajda%2C+C+T">C. T. Sachrajda</a>, <a href="/search/hep-lat?searchtype=author&query=Soni%2C+A">A. Soni</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+T">T. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.15131v3-abstract-short" style="display: inline;"> Phase shifts for $s$-wave $蟺蟺$ scattering in both the $I=0$ and $I=2$ channels are determined from a lattice QCD calculation performed on 741 gauge configurations obeying G-parity boundary conditions with a physical pion mass and lattice size of $32^3\times 64$. These results support our recent study of direct CP violation in $K\to蟺蟺$ decay \cite{Abbott:2020hxn}, improving our earlier 2015 calcula… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.15131v3-abstract-full').style.display = 'inline'; document.getElementById('2103.15131v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.15131v3-abstract-full" style="display: none;"> Phase shifts for $s$-wave $蟺蟺$ scattering in both the $I=0$ and $I=2$ channels are determined from a lattice QCD calculation performed on 741 gauge configurations obeying G-parity boundary conditions with a physical pion mass and lattice size of $32^3\times 64$. These results support our recent study of direct CP violation in $K\to蟺蟺$ decay \cite{Abbott:2020hxn}, improving our earlier 2015 calculation \cite{Bai:2015nea}. The phase shifts are determined for both stationary and moving $蟺蟺$ systems, at three ($I=0$) and four ($I=2$) different total momenta. We implement several $蟺蟺$ interpolating operators including a scalar bilinear "$蟽$" operator and paired single-pion bilinear operators with the constituent pions carrying various relative momenta. Several techniques, including correlated fitting and a bootstrap determination of p-values have been used to refine the results and a comparison with the generalized eigenvalue problem (GEVP) method is given. A detailed systematic error analysis is performed which allows phase shift results to be presented at a fixed energy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.15131v3-abstract-full').style.display = 'none'; document.getElementById('2103.15131v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v3: Add a subsection "Higher partial wave correction", and correct the unit of scattering length. 88 pages and 14 figures v2: 1). Add reference 29 as an example of pipi scattering calculation above 4mpi threshold. 2). Modify the wording on page 3 for the footage. 3). Correct the 蟽operator on page 17</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-TH-2021-039 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.05034">arXiv:2103.05034</a> <span> [<a href="https://arxiv.org/pdf/2103.05034">pdf</a>, <a href="https://arxiv.org/format/2103.05034">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Comparison of Domain Wall Fermion Multigrid Methods </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P">Peter Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Yamaguchi%2C+A">Azusa Yamaguchi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.05034v1-abstract-short" style="display: inline;"> We present a detailed comparison of several recent and new approaches to multigrid solver algorithms suitable for the solution of 5d chiral fermion actions such as Domain Wall fermions in the Shamir formulation, and also for the Partial Fraction and Continued Fraction overlap. Our focus is on the acceleration of gauge configuration sampling, and a compact nearest neighbour stencil is required to l… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.05034v1-abstract-full').style.display = 'inline'; document.getElementById('2103.05034v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.05034v1-abstract-full" style="display: none;"> We present a detailed comparison of several recent and new approaches to multigrid solver algorithms suitable for the solution of 5d chiral fermion actions such as Domain Wall fermions in the Shamir formulation, and also for the Partial Fraction and Continued Fraction overlap. Our focus is on the acceleration of gauge configuration sampling, and a compact nearest neighbour stencil is required to limit the calculational cost of obtaining a coarse operator. This necessitates the coarsening of a nearest neighbour operator to preserve sparsity in coarsened grids, unlike HDCG. We compare the approaches of HDCR and the Multigrid algorithm and also several new hybrid schemes. In this work we introduce a new recursive Chebyshev polynomial based setup scheme. We find that the HDCR approach, can both setup, and solve standard Shamir Domain Wall Fermions faster than a single solve with red-black preconditioned Conjugate Gradients on large volumes and for modern GPU systems such as the Summit supercomputer. This is promising for the acceleration of HMC, particularly if setup costs are shared across multiple Hasenbusch determinant factors. The setup scheme is likely generally applicable to other Fermion actions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.05034v1-abstract-full').style.display = 'none'; document.getElementById('2103.05034v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.09440">arXiv:2004.09440</a> <span> [<a href="https://arxiv.org/pdf/2004.09440">pdf</a>, <a href="https://arxiv.org/format/2004.09440">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.102.054509">10.1103/PhysRevD.102.054509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct CP violation and the $螖I=1/2$ rule in $K\to蟺蟺$ decay from the Standard Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Abbott%2C+R">Ryan Abbott</a>, <a href="/search/hep-lat?searchtype=author&query=Blum%2C+T">Thomas Blum</a>, <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P+A">Peter A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Bruno%2C+M">Mattia Bruno</a>, <a href="/search/hep-lat?searchtype=author&query=Christ%2C+N+H">Norman H. Christ</a>, <a href="/search/hep-lat?searchtype=author&query=Hoying%2C+D">Daniel Hoying</a>, <a href="/search/hep-lat?searchtype=author&query=Jung%2C+C">Chulwoo Jung</a>, <a href="/search/hep-lat?searchtype=author&query=Kelly%2C+C">Christopher Kelly</a>, <a href="/search/hep-lat?searchtype=author&query=Lehner%2C+C">Christoph Lehner</a>, <a href="/search/hep-lat?searchtype=author&query=Mawhinney%2C+R+D">Robert D. Mawhinney</a>, <a href="/search/hep-lat?searchtype=author&query=Murphy%2C+D+J">David J. Murphy</a>, <a href="/search/hep-lat?searchtype=author&query=Sachrajda%2C+C+T">Christopher T. Sachrajda</a>, <a href="/search/hep-lat?searchtype=author&query=Soni%2C+A">Amarjit Soni</a>, <a href="/search/hep-lat?searchtype=author&query=Tomii%2C+M">Masaaki Tomii</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+T">Tianle Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.09440v2-abstract-short" style="display: inline;"> We present a lattice QCD calculation of the $螖I=1/2$, $K\to蟺蟺$ decay amplitude $A_0$ and $\varepsilon'$, the measure of direct CP-violation in $K\to蟺蟺$ decay, improving our 2015 calculation of these quantities. Both calculations were performed with physical kinematics on a $32^3\times 64$ lattice with an inverse lattice spacing of $a^{-1}=1.3784(68)$ GeV. However, the current calculation includes… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.09440v2-abstract-full').style.display = 'inline'; document.getElementById('2004.09440v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.09440v2-abstract-full" style="display: none;"> We present a lattice QCD calculation of the $螖I=1/2$, $K\to蟺蟺$ decay amplitude $A_0$ and $\varepsilon'$, the measure of direct CP-violation in $K\to蟺蟺$ decay, improving our 2015 calculation of these quantities. Both calculations were performed with physical kinematics on a $32^3\times 64$ lattice with an inverse lattice spacing of $a^{-1}=1.3784(68)$ GeV. However, the current calculation includes nearly four times the statistics and numerous technical improvements allowing us to more reliably isolate the $蟺蟺$ ground-state and more accurately relate the lattice operators to those defined in the Standard Model. We find ${\rm Re}(A_0)=2.99(0.32)(0.59)\times 10^{-7}$ GeV and ${\rm Im}(A_0)=-6.98(0.62)(1.44)\times 10^{-11}$ GeV, where the errors are statistical and systematic, respectively. The former agrees well with the experimental result ${\rm Re}(A_0)=3.3201(18)\times 10^{-7}$ GeV. These results for $A_0$ can be combined with our earlier lattice calculation of $A_2$ to obtain ${\rm Re}(\varepsilon'/\varepsilon)=21.7(2.6)(6.2)(5.0) \times 10^{-4}$, where the third error represents omitted isospin breaking effects, and Re$(A_0)$/Re$(A_2) = 19.9(2.3)(4.4)$. The first agrees well with the experimental result of ${\rm Re}(\varepsilon'/\varepsilon)=16.6(2.3)\times 10^{-4}$. A comparison of the second with the observed ratio Re$(A_0)/$Re$(A_2) = 22.45(6)$, demonstrates the Standard Model origin of this "$螖I = 1/2$ rule" enhancement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.09440v2-abstract-full').style.display = 'none'; document.getElementById('2004.09440v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Updated to published version. 95 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-TH-2020-058, MIT-CTP/5197 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 102, 054509 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.07563">arXiv:1912.07563</a> <span> [<a href="https://arxiv.org/pdf/1912.07563">pdf</a>, <a href="https://arxiv.org/format/1912.07563">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> An exploratory study of heavy-light semileptonic form factors using distillation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P">Peter Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Erben%2C+F">Felix Erben</a>, <a href="/search/hep-lat?searchtype=author&query=Marshall%2C+M">Michael Marshall</a>, <a href="/search/hep-lat?searchtype=author&query=h%C3%93g%C3%A1in%2C+F+%C3%93">Fionn 脫 h脫g谩in</a>, <a href="/search/hep-lat?searchtype=author&query=Portelli%2C+A">Antonin Portelli</a>, <a href="/search/hep-lat?searchtype=author&query=Tsang%2C+J+T">Justus Tobias Tsang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.07563v1-abstract-short" style="display: inline;"> We present our exploratory study with the aim of simulating heavy-light semileptonic form factors as part of the RBC-UKQCD charm (to bottom) physics programme. We are using a distillation-based setup as a strategy to get optimised plateaus in semileptonic $D_{(s)}$ and $B_{(s)}$ decays, and compare our results to form factors obtained from sequential $Z_2$-Wall propagators. The study is done in a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.07563v1-abstract-full').style.display = 'inline'; document.getElementById('1912.07563v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.07563v1-abstract-full" style="display: none;"> We present our exploratory study with the aim of simulating heavy-light semileptonic form factors as part of the RBC-UKQCD charm (to bottom) physics programme. We are using a distillation-based setup as a strategy to get optimised plateaus in semileptonic $D_{(s)}$ and $B_{(s)}$ decays, and compare our results to form factors obtained from sequential $Z_2$-Wall propagators. The study is done in a centre-of-mass frame as well as in several moving frames. We use an $N_f=2+1$ domain wall fermion ensemble with a pion mass of $340$ MeV, with the aim of extending the study to a variety of other domain-wall ensembles, including physical-pion mass ensembles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.07563v1-abstract-full').style.display = 'none'; document.getElementById('1912.07563v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.08678">arXiv:1904.08678</a> <span> [<a href="https://arxiv.org/pdf/1904.08678">pdf</a>, <a href="https://arxiv.org/format/1904.08678">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Multigrid for Wilson Clover Fermions in Grid </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Richtmann%2C+D">Daniel Richtmann</a>, <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P+A">Peter A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Wettig%2C+T">Tilo Wettig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.08678v1-abstract-short" style="display: inline;"> With the ever-growing number of computing architectures, performance portability is an important aspect of (Lattice QCD) software. The Grid library provides a good framework for writing such code, as it thoroughly separates hardware-specific code from algorithmic functionality and already supports many modern architectures. We describe the implementation of a multigrid solver for Wilson clover fer… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.08678v1-abstract-full').style.display = 'inline'; document.getElementById('1904.08678v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.08678v1-abstract-full" style="display: none;"> With the ever-growing number of computing architectures, performance portability is an important aspect of (Lattice QCD) software. The Grid library provides a good framework for writing such code, as it thoroughly separates hardware-specific code from algorithmic functionality and already supports many modern architectures. We describe the implementation of a multigrid solver for Wilson clover fermions in Grid by the RQCD group. We present the features included in our implementation, discuss initial optimization efforts, and compare the performance with another multigrid implementation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.08678v1-abstract-full').style.display = 'none'; document.getElementById('1904.08678v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures, Proceedings of Lattice 2018</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.00295">arXiv:1902.00295</a> <span> [<a href="https://arxiv.org/pdf/1902.00295">pdf</a>, <a href="https://arxiv.org/format/1902.00295">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> QED corrections to leptonic decay rates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P+A">P. A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Guelpers%2C+V">V. Guelpers</a>, <a href="/search/hep-lat?searchtype=author&query=Juettner%2C+A">A. Juettner</a>, <a href="/search/hep-lat?searchtype=author&query=Lehner%2C+C">C. Lehner</a>, <a href="/search/hep-lat?searchtype=author&query=hOgain%2C+F+O">F. O hOgain</a>, <a href="/search/hep-lat?searchtype=author&query=Portelli%2C+A">A. Portelli</a>, <a href="/search/hep-lat?searchtype=author&query=Richings%2C+J+P">J. P. Richings</a>, <a href="/search/hep-lat?searchtype=author&query=Sachrajda%2C+C+T">C. T. Sachrajda</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.00295v2-abstract-short" style="display: inline;"> RBC/UKQCD is preparing a calculation of leptonic decay rates including isospin breaking corrections using a perturbative approach to include NLO contributions from QED effects. We present preliminary numerical results for a contribution to the leptonic pion decay rate and report on exploratory studies of computational techniques based on all-to-all propagators. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.00295v2-abstract-full" style="display: none;"> RBC/UKQCD is preparing a calculation of leptonic decay rates including isospin breaking corrections using a perturbative approach to include NLO contributions from QED effects. We present preliminary numerical results for a contribution to the leptonic pion decay rate and report on exploratory studies of computational techniques based on all-to-all propagators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.00295v2-abstract-full').style.display = 'none'; document.getElementById('1902.00295v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.08791">arXiv:1812.08791</a> <span> [<a href="https://arxiv.org/pdf/1812.08791">pdf</a>, <a href="https://arxiv.org/format/1812.08791">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> SU(3)-breaking ratios for $D_{(s)}$ and $B_{(s)}$ mesons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P+A">Peter A Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Del+Debbio%2C+L">Luigi Del Debbio</a>, <a href="/search/hep-lat?searchtype=author&query=Garron%2C+N">Nicolas Garron</a>, <a href="/search/hep-lat?searchtype=author&query=Juttner%2C+A">Andreas Juttner</a>, <a href="/search/hep-lat?searchtype=author&query=Soni%2C+A">Amarjit Soni</a>, <a href="/search/hep-lat?searchtype=author&query=Tsang%2C+J+T">Justus Tobias Tsang</a>, <a href="/search/hep-lat?searchtype=author&query=Witzel%2C+O">Oliver Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.08791v2-abstract-short" style="display: inline;"> We present results for the $SU(3)$ breaking ratios of decay constants $f_{D_s}/f_D$ and $f_{B_s}/f_B$ and - for the first time with physical pion masses - the ratio of bag parameters $B_{B_s}/B_{B_d}$, as well as the ratio $尉$, forming the ratio of the nonpeturbative contributions to neutral $B_{(s)}$ meson mixing. Our results are based on Lattice QCD simulations with chirally symmetric 2+1 dynami… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.08791v2-abstract-full').style.display = 'inline'; document.getElementById('1812.08791v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.08791v2-abstract-full" style="display: none;"> We present results for the $SU(3)$ breaking ratios of decay constants $f_{D_s}/f_D$ and $f_{B_s}/f_B$ and - for the first time with physical pion masses - the ratio of bag parameters $B_{B_s}/B_{B_d}$, as well as the ratio $尉$, forming the ratio of the nonpeturbative contributions to neutral $B_{(s)}$ meson mixing. Our results are based on Lattice QCD simulations with chirally symmetric 2+1 dynamical flavors of domain wall fermions. Eight ensembles at three different lattice spacing in the range $a = 0.11 - 0.07\,\mathrm{fm}$ enter the analysis two of which feature physical light quark masses. Multiple heavy quark masses are simulated ranging from below the charm quark mass to half the bottom quark mass. The $SU(3)$ breaking ratios display a very benign heavy mass behaviour allowing for extrapolation to the physical bottom quark mass. The results in the continuum limit including all sources of systematic errors are $f_{D_s}/f_D = 1.1740(51)_\mathrm{stat}(^{+68}_{-68})_\mathrm{sys}$, $f_{B_s}/f_B = 1.1949(60)_\mathrm{stat}(^{+\hphantom{0}95}_{-175})_\mathrm{sys}$, $B_{B_s}/B_{B_d} = 0.9984(45)_\mathrm{stat}(^{+80}_{-63})_\mathrm{sys}$ and $尉= 1.1939(67)_\mathrm{stat}(^{+\hphantom{0}95}_{-177})_\mathrm{sys}$. Combining these with experimentally measured values we extract the ratios of CKM matrix elements $|V_{cd}/V_{cs}| = 0.2164(57)_\mathrm{exp}(^{+12}_{-12})_\mathrm{lat}$ and $|V_{td}/V_{ts}| = 0.20329(41)_\mathrm{exp}(^{+162}_{-301})_\mathrm{lat}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.08791v2-abstract-full').style.display = 'none'; document.getElementById('1812.08791v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">*temporary entry* 42 pages, 23 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.04981">arXiv:1812.04981</a> <span> [<a href="https://arxiv.org/pdf/1812.04981">pdf</a>, <a href="https://arxiv.org/format/1812.04981">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Beyond the Standard Model Kaon Mixing with Physical Masses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P">Peter Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Garron%2C+N">Nicolas Garron</a>, <a href="/search/hep-lat?searchtype=author&query=Hudspith%2C+R+J">Renwick James Hudspith</a>, <a href="/search/hep-lat?searchtype=author&query=Juttner%2C+A">Andreas Juttner</a>, <a href="/search/hep-lat?searchtype=author&query=Kettle%2C+J">Julia Kettle</a>, <a href="/search/hep-lat?searchtype=author&query=Khamseh%2C+A">Ava Khamseh</a>, <a href="/search/hep-lat?searchtype=author&query=Tsang%2C+J+T">Justus Tobias Tsang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.04981v2-abstract-short" style="display: inline;"> We present results from a calculation of beyond the standard model (BSM) kaon mixing including data physical with light quark masses. We simulate $N_f=2+1$ QCD with Iwasaki gauge and domain wall fermion action on 8 ensembles, spanning 3 lattice spacings and pion masses from the physical value up to 430MeV. The ratio of the BSM to standard model (SM) matrix elements are extracted from the correlati… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.04981v2-abstract-full').style.display = 'inline'; document.getElementById('1812.04981v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.04981v2-abstract-full" style="display: none;"> We present results from a calculation of beyond the standard model (BSM) kaon mixing including data physical with light quark masses. We simulate $N_f=2+1$ QCD with Iwasaki gauge and domain wall fermion action on 8 ensembles, spanning 3 lattice spacings and pion masses from the physical value up to 430MeV. The ratio of the BSM to standard model (SM) matrix elements are extracted from the correlation functions and renormalised using the RI-SMOM Rome-Southampton method with non-exceptional kinematics. The results at the physical point continuum limit are found by performing a simultaneous continuum chiral extrapolation. In this work we gain consistency with our previous results and achieve a reduction in both the statistical and systematic error. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.04981v2-abstract-full').style.display = 'none'; document.getElementById('1812.04981v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The 36th Annual International Symposium on Lattice Field</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.07228">arXiv:1803.07228</a> <span> [<a href="https://arxiv.org/pdf/1803.07228">pdf</a>, <a href="https://arxiv.org/ps/1803.07228">ps</a>, <a href="https://arxiv.org/format/1803.07228">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Novel $|V_{us}|$ Determination Using Inclusive Strange $蟿$ Decay and Lattice HVPs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P">Peter Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Hudspith%2C+R+J">Renwick James Hudspith</a>, <a href="/search/hep-lat?searchtype=author&query=Izubuchi%2C+T">Taku Izubuchi</a>, <a href="/search/hep-lat?searchtype=author&query=J%C3%BCttner%2C+A">Andreas J眉ttner</a>, <a href="/search/hep-lat?searchtype=author&query=Lehner%2C+C">Christoph Lehner</a>, <a href="/search/hep-lat?searchtype=author&query=Lewis%2C+R">Randy Lewis</a>, <a href="/search/hep-lat?searchtype=author&query=Maltman%2C+K">Kim Maltman</a>, <a href="/search/hep-lat?searchtype=author&query=Ohki%2C+H">Hiroshi Ohki</a>, <a href="/search/hep-lat?searchtype=author&query=Portelli%2C+A">Antonin Portelli</a>, <a href="/search/hep-lat?searchtype=author&query=Spraggs%2C+M">Matthew Spraggs</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.07228v2-abstract-short" style="display: inline;"> We propose and apply a new approach to determining $|V_{us}|$ using dispersion relations with weight functions having poles at Euclidean (space-like) momentum which relate strange hadronic $蟿$ decay distributions to hadronic vacuum polarization functions (HVPs) obtained from lattice QCD. We show examples where spectral integral contributions from the region where experimental data have large error… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.07228v2-abstract-full').style.display = 'inline'; document.getElementById('1803.07228v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.07228v2-abstract-full" style="display: none;"> We propose and apply a new approach to determining $|V_{us}|$ using dispersion relations with weight functions having poles at Euclidean (space-like) momentum which relate strange hadronic $蟿$ decay distributions to hadronic vacuum polarization functions (HVPs) obtained from lattice QCD. We show examples where spectral integral contributions from the region where experimental data have large errors or do not exist are strongly suppressed but accurate determinations of the relevant lattice HVP combinations remain possible. The resulting $|V_{us}|$ agrees well with determinations from $K$ physics and 3-family CKM unitarity. Advantages of this new approach over the conventional hadronic $蟿$ decay determination employing flavor-breaking sum rules are also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.07228v2-abstract-full').style.display = 'none'; document.getElementById('1803.07228v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 11 figures. References added and minor modifications. Accepted for publication in Physical Review Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 121, 202003 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.07224">arXiv:1801.07224</a> <span> [<a href="https://arxiv.org/pdf/1801.07224">pdf</a>, <a href="https://arxiv.org/format/1801.07224">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.022003">10.1103/PhysRevLett.121.022003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Calculation of the hadronic vacuum polarization contribution to the muon anomalous magnetic moment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Blum%2C+T">T. Blum</a>, <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P+A">P. A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=G%C3%BClpers%2C+V">V. G眉lpers</a>, <a href="/search/hep-lat?searchtype=author&query=Izubuchi%2C+T">T. Izubuchi</a>, <a href="/search/hep-lat?searchtype=author&query=Jin%2C+L">L. Jin</a>, <a href="/search/hep-lat?searchtype=author&query=Jung%2C+C">C. Jung</a>, <a href="/search/hep-lat?searchtype=author&query=J%C3%BCttner%2C+A">A. J眉ttner</a>, <a href="/search/hep-lat?searchtype=author&query=Lehner%2C+C">C. Lehner</a>, <a href="/search/hep-lat?searchtype=author&query=Portelli%2C+A">A. Portelli</a>, <a href="/search/hep-lat?searchtype=author&query=Tsang%2C+J+T">J. T. Tsang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.07224v1-abstract-short" style="display: inline;"> We present a first-principles lattice QCD+QED calculation at physical pion mass of the leading-order hadronic vacuum polarization contribution to the muon anomalous magnetic moment. The total contribution of up, down, strange, and charm quarks including QED and strong isospin breaking effects is found to be $a_渭^{\rm HVP~LO}=715.4(16.3)(9.2) \times 10^{-10}$, where the first error is statistical a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.07224v1-abstract-full').style.display = 'inline'; document.getElementById('1801.07224v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.07224v1-abstract-full" style="display: none;"> We present a first-principles lattice QCD+QED calculation at physical pion mass of the leading-order hadronic vacuum polarization contribution to the muon anomalous magnetic moment. The total contribution of up, down, strange, and charm quarks including QED and strong isospin breaking effects is found to be $a_渭^{\rm HVP~LO}=715.4(16.3)(9.2) \times 10^{-10}$, where the first error is statistical and the second is systematic. By supplementing lattice data for very short and long distances with experimental R-ratio data using the compilation of Ref. [1], we significantly improve the precision of our calculation and find $a_渭^{\rm HVP~LO} = 692.5(1.4)(0.5)(0.7)(2.1) \times 10^{-10}$ with lattice statistical, lattice systematic, R-ratio statistical, and R-ratio systematic errors given separately. This is the currently most precise determination of the leading-order hadronic vacuum polarization contribution to the muon anomalous magnetic moment. In addition, we present the first lattice calculation of the light-quark QED correction at physical pion mass. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.07224v1-abstract-full').style.display = 'none'; document.getElementById('1801.07224v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 121, 022003 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.00862">arXiv:1712.00862</a> <span> [<a href="https://arxiv.org/pdf/1712.00862">pdf</a>, <a href="https://arxiv.org/format/1712.00862">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201817513013">10.1051/epjconf/201817513013 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Heavy Domain Wall Fermions: The RBC and UKQCD charm physics program </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P+A">P. A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Del+Debbio%2C+L">L. Del Debbio</a>, <a href="/search/hep-lat?searchtype=author&query=Juttner%2C+A">A. Juttner</a>, <a href="/search/hep-lat?searchtype=author&query=Khamseh%2C+A">A. Khamseh</a>, <a href="/search/hep-lat?searchtype=author&query=Tsang%2C+J+T">J. T. Tsang</a>, <a href="/search/hep-lat?searchtype=author&query=Witzel%2C+O">O. Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.00862v1-abstract-short" style="display: inline;"> We review the domain wall charm physics program of the RBC and UKQCD collaborations based on simulations including ensembles with physical pion mass. We summarise our current set-up and present a status update on the decay constants $f_D$, $f_{D_s}$, the charm quark mass, heavy-light and heavy-strange bag parameters and the ratio $尉$. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.00862v1-abstract-full" style="display: none;"> We review the domain wall charm physics program of the RBC and UKQCD collaborations based on simulations including ensembles with physical pion mass. We summarise our current set-up and present a status update on the decay constants $f_D$, $f_{D_s}$, the charm quark mass, heavy-light and heavy-strange bag parameters and the ratio $尉$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.00862v1-abstract-full').style.display = 'none'; document.getElementById('1712.00862v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pagers, 4 figures, conference proceedings for Lattice2017 submitted to EPJ Web of Conferences</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.04883">arXiv:1711.04883</a> <span> [<a href="https://arxiv.org/pdf/1711.04883">pdf</a>, <a href="https://arxiv.org/format/1711.04883">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Accelerating HPC codes on Intel(R) Omni-Path Architecture networks: From particle physics to Machine Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P">Peter Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Chuvelev%2C+M">Michael Chuvelev</a>, <a href="/search/hep-lat?searchtype=author&query=Cossu%2C+G">Guido Cossu</a>, <a href="/search/hep-lat?searchtype=author&query=Kelly%2C+C">Christopher Kelly</a>, <a href="/search/hep-lat?searchtype=author&query=Lehner%2C+C">Christoph Lehner</a>, <a href="/search/hep-lat?searchtype=author&query=Meadows%2C+L">Lawrence Meadows</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.04883v1-abstract-short" style="display: inline;"> We discuss practical methods to ensure near wirespeed performance from clusters with either one or two Intel(R) Omni-Path host fabric interfaces (HFI) per node, and Intel(R) Xeon Phi(TM) 72xx (Knight's Landing) processors, and using the Linux operating system. The study evaluates the performance improvements achievable and the required programming approaches in two distinct example problems: fir… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.04883v1-abstract-full').style.display = 'inline'; document.getElementById('1711.04883v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.04883v1-abstract-full" style="display: none;"> We discuss practical methods to ensure near wirespeed performance from clusters with either one or two Intel(R) Omni-Path host fabric interfaces (HFI) per node, and Intel(R) Xeon Phi(TM) 72xx (Knight's Landing) processors, and using the Linux operating system. The study evaluates the performance improvements achievable and the required programming approaches in two distinct example problems: firstly in Cartesian communicator halo exchange problems, appropriate for structured grid PDE solvers that arise in quantum chromodynamics simulations of particle physics, and secondly in gradient reduction appropriate to synchronous stochastic gradient descent for machine learning. As an example, we accelerate a published Baidu Research reduction code and obtain a factor of ten speedup over the original code using the techniques discussed in this paper. This displays how a factor of ten speedup in strongly scaled distributed machine learning could be achieved when synchronous stochastic gradient descent is massively parallelised with a fixed mini-batch size. We find a significant improvement in performance robustness when memory is obtained using carefully allocated 2MB "huge" virtual memory pages, implying that either non-standard allocation routines should be used for communication buffers. These can be accessed via a LD\_PRELOAD override in the manner suggested by libhugetlbfs. We make use of a the Intel(R) MPI 2019 library "Technology Preview" and underlying software to enable thread concurrency throughout the communication software stake via multiple PSM2 endpoints per process and use of multiple independent MPI communicators. When using a single MPI process per node, we find that this greatly accelerates delivered bandwidth in many core Intel(R) Xeon Phi processors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.04883v1-abstract-full').style.display = 'none'; document.getElementById('1711.04883v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.09409">arXiv:1710.09409</a> <span> [<a href="https://arxiv.org/pdf/1710.09409">pdf</a>, <a href="https://arxiv.org/format/1710.09409">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Software">cs.MS</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201817509006">10.1051/epjconf/201817509006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Performance Portability Strategies for Grid C++ Expression Templates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P+A">Peter A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Clark%2C+M+A">M. A. Clark</a>, <a href="/search/hep-lat?searchtype=author&query=DeTar%2C+C">Carleton DeTar</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+M">Meifeng Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Rana%2C+V">Verinder Rana</a>, <a href="/search/hep-lat?searchtype=author&query=Avil%C3%A9s-Casco%2C+A+V">Alejandro Vaquero Avil茅s-Casco</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.09409v1-abstract-short" style="display: inline;"> One of the key requirements for the Lattice QCD Application Development as part of the US Exascale Computing Project is performance portability across multiple architectures. Using the Grid C++ expression template as a starting point, we report on the progress made with regards to the Grid GPU offloading strategies. We present both the successes and issues encountered in using CUDA, OpenACC and Ju… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.09409v1-abstract-full').style.display = 'inline'; document.getElementById('1710.09409v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.09409v1-abstract-full" style="display: none;"> One of the key requirements for the Lattice QCD Application Development as part of the US Exascale Computing Project is performance portability across multiple architectures. Using the Grid C++ expression template as a starting point, we report on the progress made with regards to the Grid GPU offloading strategies. We present both the successes and issues encountered in using CUDA, OpenACC and Just-In-Time compilation. Experimentation and performance on GPUs with a SU(3)$\times$SU(3) streaming test will be reported. We will also report on the challenges of using current OpenMP 4.x for GPU offloading in the same code. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.09409v1-abstract-full').style.display = 'none'; document.getElementById('1710.09409v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures. Talk presented at the 35th International Symposium on Lattice Field Theory, 18-24 June 2017, Granada, Spain</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.09176">arXiv:1710.09176</a> <span> [<a href="https://arxiv.org/pdf/1710.09176">pdf</a>, <a href="https://arxiv.org/format/1710.09176">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201817513010">10.1051/epjconf/201817513010 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> BSM Kaon Mixing at the Physical Point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P">Peter Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Garron%2C+N">Nicolas Garron</a>, <a href="/search/hep-lat?searchtype=author&query=Kettle%2C+J">Julia Kettle</a>, <a href="/search/hep-lat?searchtype=author&query=Khamseh%2C+A">Ava Khamseh</a>, <a href="/search/hep-lat?searchtype=author&query=Tsang%2C+J+T">Justus Tobias Tsang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.09176v2-abstract-short" style="display: inline;"> We present a progress update on the calculation of beyond the standard model (BSM) kaon mixing matrix elements at the physical point. Simulations are performed using 2+1 flavour domain wall lattice QCD with the Iwasaki gauge action at 3 lattice spacings and with pion masses ranging from 430 MeV to the physical pion mass. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.09176v2-abstract-full" style="display: none;"> We present a progress update on the calculation of beyond the standard model (BSM) kaon mixing matrix elements at the physical point. Simulations are performed using 2+1 flavour domain wall lattice QCD with the Iwasaki gauge action at 3 lattice spacings and with pion masses ranging from 430 MeV to the physical pion mass. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.09176v2-abstract-full').style.display = 'none'; document.getElementById('1710.09176v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, Lattice 2017</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.07190">arXiv:1710.07190</a> <span> [<a href="https://arxiv.org/pdf/1710.07190">pdf</a>, <a href="https://arxiv.org/format/1710.07190">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201817506024">10.1051/epjconf/201817506024 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Isospin Breaking Corrections to the HVP with Domain Wall Fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P">Peter Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=G%C3%BClpers%2C+V">Vera G眉lpers</a>, <a href="/search/hep-lat?searchtype=author&query=Harrison%2C+J">James Harrison</a>, <a href="/search/hep-lat?searchtype=author&query=J%C3%BCttner%2C+A">Andreas J眉ttner</a>, <a href="/search/hep-lat?searchtype=author&query=Lehner%2C+C">Christoph Lehner</a>, <a href="/search/hep-lat?searchtype=author&query=Portelli%2C+A">Antonin Portelli</a>, <a href="/search/hep-lat?searchtype=author&query=Sachrajda%2C+C">Christopher Sachrajda</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.07190v1-abstract-short" style="display: inline;"> We present results for the QED and strong isospin breaking corrections to the hadronic vacuum polarization using $N_f=2+1$ Domain Wall fermions. QED is included in an electro-quenched setup using two different methods, a stochastic and a perturbative approach. Results and statistical errors from both methods are directly compared with each other. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.07190v1-abstract-full" style="display: none;"> We present results for the QED and strong isospin breaking corrections to the hadronic vacuum polarization using $N_f=2+1$ Domain Wall fermions. QED is included in an electro-quenched setup using two different methods, a stochastic and a perturbative approach. Results and statistical errors from both methods are directly compared with each other. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.07190v1-abstract-full').style.display = 'none'; document.getElementById('1710.07190v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures, presented at the 35th International Symposium on Lattice Field Theory (Lattice 2017), Granada, Spain, June 18-24, 2017</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.07036">arXiv:1710.07036</a> <span> [<a href="https://arxiv.org/pdf/1710.07036">pdf</a>, <a href="https://arxiv.org/format/1710.07036">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201817502008">10.1051/epjconf/201817502008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Testing algorithms for critical slowing down </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Cossu%2C+G">Guido Cossu</a>, <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P">Peter Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Christ%2C+N">Norman Christ</a>, <a href="/search/hep-lat?searchtype=author&query=Jung%2C+C">Chulwoo Jung</a>, <a href="/search/hep-lat?searchtype=author&query=J%C3%BCttner%2C+A">Andreas J眉ttner</a>, <a href="/search/hep-lat?searchtype=author&query=Sanfilippo%2C+F">Francesco Sanfilippo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.07036v1-abstract-short" style="display: inline;"> We present the preliminary tests on two modifications of the Hybrid Monte Carlo (HMC) algorithm. Both algorithms are designed to travel much farther in the Hamiltonian phase space for each trajectory and reduce the autocorrelations among physical observables thus tackling the critical slowing down towards the continuum limit. We present a comparison of costs of the new algorithms with the standard… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.07036v1-abstract-full').style.display = 'inline'; document.getElementById('1710.07036v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.07036v1-abstract-full" style="display: none;"> We present the preliminary tests on two modifications of the Hybrid Monte Carlo (HMC) algorithm. Both algorithms are designed to travel much farther in the Hamiltonian phase space for each trajectory and reduce the autocorrelations among physical observables thus tackling the critical slowing down towards the continuum limit. We present a comparison of costs of the new algorithms with the standard HMC evolution for pure gauge fields, studying the autocorrelation times for various quantities including the topological charge. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.07036v1-abstract-full').style.display = 'none'; document.getElementById('1710.07036v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 2 figures, Lattice 2017 conference proceedings</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.03552">arXiv:1708.03552</a> <span> [<a href="https://arxiv.org/pdf/1708.03552">pdf</a>, <a href="https://arxiv.org/format/1708.03552">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP10(2017)054">10.1007/JHEP10(2017)054 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neutral kaon mixing beyond the Standard Model with nf=2+1 chiral fermions part II: Non Perturbative Renormalisation of the $螖F=2$ four-quark operators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P+A">P. A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Garron%2C+N">N. Garron</a>, <a href="/search/hep-lat?searchtype=author&query=Hudspith%2C+R+J">R. J. Hudspith</a>, <a href="/search/hep-lat?searchtype=author&query=Lehner%2C+C">C. Lehner</a>, <a href="/search/hep-lat?searchtype=author&query=Lytle%2C+A+T">A. T. Lytle</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.03552v1-abstract-short" style="display: inline;"> We compute the renormalisation factors (Z-matrices) of the $螖F=2$ four-quark operators needed for Beyond the Standard Model (BSM) kaon mixing. We work with nf=2+1 flavours of Domain-Wall fermions whose chiral-flavour properties are essential to maintain a continuum-like mixing pattern. We introduce new RI-SMOM renormalisation schemes, which we argue are better behaved compared to the commonly-used… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.03552v1-abstract-full').style.display = 'inline'; document.getElementById('1708.03552v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.03552v1-abstract-full" style="display: none;"> We compute the renormalisation factors (Z-matrices) of the $螖F=2$ four-quark operators needed for Beyond the Standard Model (BSM) kaon mixing. We work with nf=2+1 flavours of Domain-Wall fermions whose chiral-flavour properties are essential to maintain a continuum-like mixing pattern. We introduce new RI-SMOM renormalisation schemes, which we argue are better behaved compared to the commonly-used corresponding RI-MOM one. We find that, once converted to MS, the Z-factors computed through these RI-SMOM schemes are in good agreement but differ significantly from the ones computed through the RI-MOM scheme. The RI-SMOM Z-factors presented here have been used to compute the BSM neutral kaon mixing matrix elements in the companion paper [1]. We argue that the renormalisation procedure is responsible for the discrepancies observed by different collaborations, we will investigate and elucidate the origin of these differences throughout this work. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.03552v1-abstract-full').style.display = 'none'; document.getElementById('1708.03552v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1706.05293">arXiv:1706.05293</a> <span> [<a href="https://arxiv.org/pdf/1706.05293">pdf</a>, <a href="https://arxiv.org/format/1706.05293">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP09(2017)153">10.1007/JHEP09(2017)153 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Isospin breaking corrections to meson masses and the hadronic vacuum polarization: a comparative study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P">P. Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=G%C3%BClpers%2C+V">V. G眉lpers</a>, <a href="/search/hep-lat?searchtype=author&query=Harrison%2C+J">J. Harrison</a>, <a href="/search/hep-lat?searchtype=author&query=J%C3%BCttner%2C+A">A. J眉ttner</a>, <a href="/search/hep-lat?searchtype=author&query=Lehner%2C+C">C. Lehner</a>, <a href="/search/hep-lat?searchtype=author&query=Portelli%2C+A">A. Portelli</a>, <a href="/search/hep-lat?searchtype=author&query=Sachrajda%2C+C+T">C. T. Sachrajda</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1706.05293v1-abstract-short" style="display: inline;"> We calculate the strong isospin breaking and QED corrections to meson masses and the hadronic vacuum polarization in an exploratory study on a $64\times24^3$ lattice with an inverse lattice spacing of $a^{-1}=1.78$ GeV and an isospin symmetric pion mass of $m_蟺=340$ MeV. We include QED in an electro-quenched setup using two different methods, a stochastic and a perturbative approach. We find that… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.05293v1-abstract-full').style.display = 'inline'; document.getElementById('1706.05293v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1706.05293v1-abstract-full" style="display: none;"> We calculate the strong isospin breaking and QED corrections to meson masses and the hadronic vacuum polarization in an exploratory study on a $64\times24^3$ lattice with an inverse lattice spacing of $a^{-1}=1.78$ GeV and an isospin symmetric pion mass of $m_蟺=340$ MeV. We include QED in an electro-quenched setup using two different methods, a stochastic and a perturbative approach. We find that the electromagnetic correction to the leading hadronic contribution to the anomalous magnetic moment of the muon is smaller than $1\%$ for the up quark and $0.1\%$ for the strange quark, although it should be noted that this is obtained using unphysical light quark masses. In addition to the results themselves, we compare the precision which can be reached for the same computational cost using each method. Such a comparison is also made for the meson electromagnetic mass-splittings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.05293v1-abstract-full').style.display = 'none'; document.getElementById('1706.05293v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">49 pages, 20 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Boyle%2C+P&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Boyle%2C+P&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Boyle%2C+P&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Boyle%2C+P&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Boyle%2C+P&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>