CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–47 of 47 results for author: <span class="mathjax">Lin, M</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-lat" aria-role="search"> Searching in archive <strong>hep-lat</strong>. <a href="/search/?searchtype=author&query=Lin%2C+M">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Lin, M"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Lin%2C+M&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Lin, M"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.05822">arXiv:2210.05822</a> <span> [<a href="https://arxiv.org/pdf/2210.05822">pdf</a>, <a href="https://arxiv.org/format/2210.05822">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> The Future of High Energy Physics Software and Computing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Elvira%2C+V+D">V. Daniel Elvira</a>, <a href="/search/hep-lat?searchtype=author&query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/hep-lat?searchtype=author&query=Gutsche%2C+O">Oliver Gutsche</a>, <a href="/search/hep-lat?searchtype=author&query=Nachman%2C+B">Benjamin Nachman</a>, <a href="/search/hep-lat?searchtype=author&query=Bailey%2C+S">S. Bailey</a>, <a href="/search/hep-lat?searchtype=author&query=Bhimji%2C+W">W. Bhimji</a>, <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P">P. Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Cerati%2C+G">G. Cerati</a>, <a href="/search/hep-lat?searchtype=author&query=Kind%2C+M+C">M. Carrasco Kind</a>, <a href="/search/hep-lat?searchtype=author&query=Cranmer%2C+K">K. Cranmer</a>, <a href="/search/hep-lat?searchtype=author&query=Davies%2C+G">G. Davies</a>, <a href="/search/hep-lat?searchtype=author&query=Elvira%2C+V+D">V. D. Elvira</a>, <a href="/search/hep-lat?searchtype=author&query=Gardner%2C+R">R. Gardner</a>, <a href="/search/hep-lat?searchtype=author&query=Heitmann%2C+K">K. Heitmann</a>, <a href="/search/hep-lat?searchtype=author&query=Hildreth%2C+M">M. Hildreth</a>, <a href="/search/hep-lat?searchtype=author&query=Hopkins%2C+W">W. Hopkins</a>, <a href="/search/hep-lat?searchtype=author&query=Humble%2C+T">T. Humble</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+M">M. Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Onyisi%2C+P">P. Onyisi</a>, <a href="/search/hep-lat?searchtype=author&query=Qiang%2C+J">J. Qiang</a>, <a href="/search/hep-lat?searchtype=author&query=Pedro%2C+K">K. Pedro</a>, <a href="/search/hep-lat?searchtype=author&query=Perdue%2C+G">G. Perdue</a>, <a href="/search/hep-lat?searchtype=author&query=Roberts%2C+A">A. Roberts</a>, <a href="/search/hep-lat?searchtype=author&query=Savage%2C+M">M. Savage</a>, <a href="/search/hep-lat?searchtype=author&query=Shanahan%2C+P">P. Shanahan</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.05822v3-abstract-short" style="display: inline;"> Software and Computing (S&C) are essential to all High Energy Physics (HEP) experiments and many theoretical studies. The size and complexity of S&C are now commensurate with that of experimental instruments, playing a critical role in experimental design, data acquisition/instrumental control, reconstruction, and analysis. Furthermore, S&C often plays a leading role in driving the precision of th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05822v3-abstract-full').style.display = 'inline'; document.getElementById('2210.05822v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.05822v3-abstract-full" style="display: none;"> Software and Computing (S&C) are essential to all High Energy Physics (HEP) experiments and many theoretical studies. The size and complexity of S&C are now commensurate with that of experimental instruments, playing a critical role in experimental design, data acquisition/instrumental control, reconstruction, and analysis. Furthermore, S&C often plays a leading role in driving the precision of theoretical calculations and simulations. Within this central role in HEP, S&C has been immensely successful over the last decade. This report looks forward to the next decade and beyond, in the context of the 2021 Particle Physics Community Planning Exercise ("Snowmass") organized by the Division of Particles and Fields (DPF) of the American Physical Society. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05822v3-abstract-full').style.display = 'none'; document.getElementById('2210.05822v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Computational Frontier Report Contribution to Snowmass 2021; 41 pages, 1 figure. v2: missing ref and added missing topical group conveners. v3: fixed typos</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.10758">arXiv:2209.10758</a> <span> [<a href="https://arxiv.org/pdf/2209.10758">pdf</a>, <a href="https://arxiv.org/format/2209.10758">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Report of the Snowmass 2021 Topical Group on Lattice Gauge Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&query=Bauer%2C+C+W">Christian W. Bauer</a>, <a href="/search/hep-lat?searchtype=author&query=Bhattacharya%2C+T">Tanmoy Bhattacharya</a>, <a href="/search/hep-lat?searchtype=author&query=Blum%2C+T">Thomas Blum</a>, <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P">Peter Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&query=Catterall%2C+S">Simon Catterall</a>, <a href="/search/hep-lat?searchtype=author&query=Christ%2C+N+H">Norman H. Christ</a>, <a href="/search/hep-lat?searchtype=author&query=Cirigliano%2C+V">Vincenzo Cirigliano</a>, <a href="/search/hep-lat?searchtype=author&query=Colangelo%2C+G">Gilberto Colangelo</a>, <a href="/search/hep-lat?searchtype=author&query=DeTar%2C+C">Carleton DeTar</a>, <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Edwards%2C+R+G">Robert G. Edwards</a>, <a href="/search/hep-lat?searchtype=author&query=El-Khadra%2C+A+X">Aida X. El-Khadra</a>, <a href="/search/hep-lat?searchtype=author&query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/hep-lat?searchtype=author&query=Gupta%2C+R">Rajan Gupta</a>, <a href="/search/hep-lat?searchtype=author&query=Hackett%2C+D+C">Daniel C. Hackett</a>, <a href="/search/hep-lat?searchtype=author&query=Hasenfratz%2C+A">Anna Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&query=Izubuchi%2C+T">Taku Izubuchi</a>, <a href="/search/hep-lat?searchtype=author&query=Jay%2C+W+I">William I. Jay</a>, <a href="/search/hep-lat?searchtype=author&query=Jin%2C+L">Luchang Jin</a>, <a href="/search/hep-lat?searchtype=author&query=Kelly%2C+C">Christopher Kelly</a>, <a href="/search/hep-lat?searchtype=author&query=Kronfeld%2C+A+S">Andreas S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&query=Lehner%2C+C">Christoph Lehner</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.10758v1-abstract-short" style="display: inline;"> Lattice gauge theory continues to be a powerful theoretical and computational approach to simulating strongly interacting quantum field theories, whose applications permeate almost all disciplines of modern-day research in High-Energy Physics. Whether it is to enable precision quark- and lepton-flavor physics, to uncover signals of new physics in nucleons and nuclei, to elucidate hadron structure… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10758v1-abstract-full').style.display = 'inline'; document.getElementById('2209.10758v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.10758v1-abstract-full" style="display: none;"> Lattice gauge theory continues to be a powerful theoretical and computational approach to simulating strongly interacting quantum field theories, whose applications permeate almost all disciplines of modern-day research in High-Energy Physics. Whether it is to enable precision quark- and lepton-flavor physics, to uncover signals of new physics in nucleons and nuclei, to elucidate hadron structure and spectrum, to serve as a numerical laboratory to reach beyond the Standard Model, or to invent and improve state-of-the-art computational paradigms, the lattice-gauge-theory program is in a prime position to impact the course of developments and enhance discovery potential of a vibrant experimental program in High-Energy Physics over the coming decade. This projection is based on abundant successful results that have emerged using lattice gauge theory over the years: on continued improvement in theoretical frameworks and algorithmic suits; on the forthcoming transition into the exascale era of high-performance computing; and on a skillful, dedicated, and organized community of lattice gauge theorists in the U.S. and worldwide. The prospects of this effort in pushing the frontiers of research in High-Energy Physics have recently been studied within the U.S. decadal Particle Physics Planning Exercise (Snowmass 2021), and the conclusions are summarized in this Topical Report. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10758v1-abstract-full').style.display = 'none'; document.getElementById('2209.10758v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">57 pages, 1 figure. Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021). Topical Group Report for TF05 - Lattice Gauge Theory</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UMD-PP-022-08, LA-UR-22-29361, FERMILAB-CONF-22-703-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.08868">arXiv:2209.08868</a> <span> [<a href="https://arxiv.org/pdf/2209.08868">pdf</a>, <a href="https://arxiv.org/format/2209.08868">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Snowmass 2021 Computational Frontier CompF4 Topical Group Report: Storage and Processing Resource Access </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Bhimji%2C+W">W. Bhimji</a>, <a href="/search/hep-lat?searchtype=author&query=Carder%2C+D">D. Carder</a>, <a href="/search/hep-lat?searchtype=author&query=Dart%2C+E">E. Dart</a>, <a href="/search/hep-lat?searchtype=author&query=Duarte%2C+J">J. Duarte</a>, <a href="/search/hep-lat?searchtype=author&query=Fisk%2C+I">I. Fisk</a>, <a href="/search/hep-lat?searchtype=author&query=Gardner%2C+R">R. Gardner</a>, <a href="/search/hep-lat?searchtype=author&query=Guok%2C+C">C. Guok</a>, <a href="/search/hep-lat?searchtype=author&query=Jayatilaka%2C+B">B. Jayatilaka</a>, <a href="/search/hep-lat?searchtype=author&query=Lehman%2C+T">T. Lehman</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+M">M. Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Maltzahn%2C+C">C. Maltzahn</a>, <a href="/search/hep-lat?searchtype=author&query=McKee%2C+S">S. McKee</a>, <a href="/search/hep-lat?searchtype=author&query=Neubauer%2C+M+S">M. S. Neubauer</a>, <a href="/search/hep-lat?searchtype=author&query=Rind%2C+O">O. Rind</a>, <a href="/search/hep-lat?searchtype=author&query=Shadura%2C+O">O. Shadura</a>, <a href="/search/hep-lat?searchtype=author&query=Tran%2C+N+V">N. V. Tran</a>, <a href="/search/hep-lat?searchtype=author&query=van+Gemmeren%2C+P">P. van Gemmeren</a>, <a href="/search/hep-lat?searchtype=author&query=Watts%2C+G">G. Watts</a>, <a href="/search/hep-lat?searchtype=author&query=Weaver%2C+B+A">B. A. Weaver</a>, <a href="/search/hep-lat?searchtype=author&query=W%C3%BCrthwein%2C+F">F. W眉rthwein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.08868v2-abstract-short" style="display: inline;"> Computing plays a significant role in all areas of high energy physics. The Snowmass 2021 CompF4 topical group's scope is facilities R&D, where we consider "facilities" as the computing hardware and software infrastructure inside the data centers plus the networking between data centers, irrespective of who owns them, and what policies are applied for using them. In other words, it includes commer… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08868v2-abstract-full').style.display = 'inline'; document.getElementById('2209.08868v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.08868v2-abstract-full" style="display: none;"> Computing plays a significant role in all areas of high energy physics. The Snowmass 2021 CompF4 topical group's scope is facilities R&D, where we consider "facilities" as the computing hardware and software infrastructure inside the data centers plus the networking between data centers, irrespective of who owns them, and what policies are applied for using them. In other words, it includes commercial clouds, federally funded High Performance Computing (HPC) systems for all of science, and systems funded explicitly for a given experimental or theoretical program. This topical group report summarizes the findings and recommendations for the storage, processing, networking and associated software service infrastructures for future high energy physics research, based on the discussions organized through the Snowmass 2021 community study. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08868v2-abstract-full').style.display = 'none'; document.getElementById('2209.08868v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Snowmass 2021 Computational Frontier CompF4 topical group report. v2: Expanded introduction. Updated author list. 52 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.07641">arXiv:2207.07641</a> <span> [<a href="https://arxiv.org/pdf/2207.07641">pdf</a>, <a href="https://arxiv.org/format/2207.07641">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Lattice QCD and Particle Physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Kronfeld%2C+A+S">Andreas S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&query=Bhattacharya%2C+T">Tanmoy Bhattacharya</a>, <a href="/search/hep-lat?searchtype=author&query=Blum%2C+T">Thomas Blum</a>, <a href="/search/hep-lat?searchtype=author&query=Christ%2C+N+H">Norman H. Christ</a>, <a href="/search/hep-lat?searchtype=author&query=DeTar%2C+C">Carleton DeTar</a>, <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Edwards%2C+R">Robert Edwards</a>, <a href="/search/hep-lat?searchtype=author&query=Hasenfratz%2C+A">Anna Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Mukherjee%2C+S">Swagato Mukherjee</a>, <a href="/search/hep-lat?searchtype=author&query=Orginos%2C+K">Konstantinos Orginos</a>, <a href="/search/hep-lat?searchtype=author&query=Brower%2C+R">Richard Brower</a>, <a href="/search/hep-lat?searchtype=author&query=Cirigliano%2C+V">Vincenzo Cirigliano</a>, <a href="/search/hep-lat?searchtype=author&query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&query=J%C3%B3o%2C+B">B谩lint J贸o</a>, <a href="/search/hep-lat?searchtype=author&query=Jung%2C+C">Chulwoo Jung</a>, <a href="/search/hep-lat?searchtype=author&query=Lehner%2C+C">Christoph Lehner</a>, <a href="/search/hep-lat?searchtype=author&query=Meinel%2C+S">Stefan Meinel</a>, <a href="/search/hep-lat?searchtype=author&query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&query=Petreczky%2C+P">Peter Petreczky</a>, <a href="/search/hep-lat?searchtype=author&query=Richards%2C+D+G">David G. Richards</a>, <a href="/search/hep-lat?searchtype=author&query=Bazavov%2C+A">Alexei Bazavov</a>, <a href="/search/hep-lat?searchtype=author&query=Catterall%2C+S">Simon Catterall</a>, <a href="/search/hep-lat?searchtype=author&query=Dudek%2C+J+J">Jozef J. Dudek</a>, <a href="/search/hep-lat?searchtype=author&query=El-Khadra%2C+A+X">Aida X. El-Khadra</a> , et al. (57 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.07641v2-abstract-short" style="display: inline;"> Contribution from the USQCD Collaboration to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021). </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.07641v2-abstract-full" style="display: none;"> Contribution from the USQCD Collaboration to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.07641v2-abstract-full').style.display = 'none'; document.getElementById('2207.07641v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pp. main text, 4 pp. appendices, 29 pp. references, 1 p. index</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-CONF-22-531-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.00039">arXiv:2204.00039</a> <span> [<a href="https://arxiv.org/pdf/2204.00039">pdf</a>, <a href="https://arxiv.org/format/2204.00039">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Lattice QCD and the Computational Frontier </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P">Peter Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Bollweg%2C+D">Dennis Bollweg</a>, <a href="/search/hep-lat?searchtype=author&query=Brower%2C+R">Richard Brower</a>, <a href="/search/hep-lat?searchtype=author&query=Christ%2C+N">Norman Christ</a>, <a href="/search/hep-lat?searchtype=author&query=DeTar%2C+C">Carleton DeTar</a>, <a href="/search/hep-lat?searchtype=author&query=Edwards%2C+R">Robert Edwards</a>, <a href="/search/hep-lat?searchtype=author&query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/hep-lat?searchtype=author&query=Izubuchi%2C+T">Taku Izubuchi</a>, <a href="/search/hep-lat?searchtype=author&query=Joo%2C+B">Balint Joo</a>, <a href="/search/hep-lat?searchtype=author&query=Joswig%2C+F">Fabian Joswig</a>, <a href="/search/hep-lat?searchtype=author&query=Jung%2C+C">Chulwoo Jung</a>, <a href="/search/hep-lat?searchtype=author&query=Kelly%2C+C">Christopher Kelly</a>, <a href="/search/hep-lat?searchtype=author&query=Kronfeld%2C+A">Andreas Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+M">Meifeng Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Osborn%2C+J">James Osborn</a>, <a href="/search/hep-lat?searchtype=author&query=Portelli%2C+A">Antonin Portelli</a>, <a href="/search/hep-lat?searchtype=author&query=Richings%2C+J">James Richings</a>, <a href="/search/hep-lat?searchtype=author&query=Yamaguchi%2C+A">Azusa Yamaguchi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.00039v1-abstract-short" style="display: inline;"> The search for new physics requires a joint experimental and theoretical effort. Lattice QCD is already an essential tool for obtaining precise model-free theoretical predictions of the hadronic processes underlying many key experimental searches, such as those involving heavy flavor physics, the anomalous magnetic moment of the muon, nucleon-neutrino scattering, and rare, second-order electroweak… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.00039v1-abstract-full').style.display = 'inline'; document.getElementById('2204.00039v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.00039v1-abstract-full" style="display: none;"> The search for new physics requires a joint experimental and theoretical effort. Lattice QCD is already an essential tool for obtaining precise model-free theoretical predictions of the hadronic processes underlying many key experimental searches, such as those involving heavy flavor physics, the anomalous magnetic moment of the muon, nucleon-neutrino scattering, and rare, second-order electroweak processes. As experimental measurements become more precise over the next decade, lattice QCD will play an increasing role in providing the needed matching theoretical precision. Achieving the needed precision requires simulations with lattices with substantially increased resolution. As we push to finer lattice spacing we encounter an array of new challenges. They include algorithmic and software-engineering challenges, challenges in computer technology and design, and challenges in maintaining the necessary human resources. In this white paper we describe those challenges and discuss ways they are being dealt with. Overcoming them is key to supporting the community effort required to deliver the needed theoretical support for experiments in the coming decade. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.00039v1-abstract-full').style.display = 'none'; document.getElementById('2204.00039v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to Snowmass 2021. 22 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.09030">arXiv:2203.09030</a> <span> [<a href="https://arxiv.org/pdf/2203.09030">pdf</a>, <a href="https://arxiv.org/format/2203.09030">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6471/adae26">10.1088/1361-6471/adae26 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Theoretical tools for neutrino scattering: interplay between lattice QCD, EFTs, nuclear physics, phenomenology, and neutrino event generators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Ruso%2C+L+A">L. Alvarez Ruso</a>, <a href="/search/hep-lat?searchtype=author&query=Ankowski%2C+A+M">A. M. Ankowski</a>, <a href="/search/hep-lat?searchtype=author&query=Bacca%2C+S">S. Bacca</a>, <a href="/search/hep-lat?searchtype=author&query=Balantekin%2C+A+B">A. B. Balantekin</a>, <a href="/search/hep-lat?searchtype=author&query=Carlson%2C+J">J. Carlson</a>, <a href="/search/hep-lat?searchtype=author&query=Gardiner%2C+S">S. Gardiner</a>, <a href="/search/hep-lat?searchtype=author&query=Gonzalez-Jimenez%2C+R">R. Gonzalez-Jimenez</a>, <a href="/search/hep-lat?searchtype=author&query=Gupta%2C+R">R. Gupta</a>, <a href="/search/hep-lat?searchtype=author&query=Hobbs%2C+T+J">T. J. Hobbs</a>, <a href="/search/hep-lat?searchtype=author&query=Hoferichter%2C+M">M. Hoferichter</a>, <a href="/search/hep-lat?searchtype=author&query=Isaacson%2C+J">J. Isaacson</a>, <a href="/search/hep-lat?searchtype=author&query=Jachowicz%2C+N">N. Jachowicz</a>, <a href="/search/hep-lat?searchtype=author&query=Jay%2C+W+I">W. I. Jay</a>, <a href="/search/hep-lat?searchtype=author&query=Katori%2C+T">T. Katori</a>, <a href="/search/hep-lat?searchtype=author&query=Kling%2C+F">F. Kling</a>, <a href="/search/hep-lat?searchtype=author&query=Kronfeld%2C+A+S">A. S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&query=Li%2C+S+W">S. W. Li</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+H+-">H. -W. Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+K+-">K. -F. Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Lovato%2C+A">A. Lovato</a>, <a href="/search/hep-lat?searchtype=author&query=Mahn%2C+K">K. Mahn</a>, <a href="/search/hep-lat?searchtype=author&query=Menendez%2C+J">J. Menendez</a>, <a href="/search/hep-lat?searchtype=author&query=Meyer%2C+A+S">A. S. Meyer</a>, <a href="/search/hep-lat?searchtype=author&query=Morfin%2C+J">J. Morfin</a>, <a href="/search/hep-lat?searchtype=author&query=Pastore%2C+S">S. Pastore</a> , et al. (36 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.09030v2-abstract-short" style="display: inline;"> Maximizing the discovery potential of increasingly precise neutrino experiments will require an improved theoretical understanding of neutrino-nucleus cross sections over a wide range of energies. Low-energy interactions are needed to reconstruct the energies of astrophysical neutrinos from supernovae bursts and search for new physics using increasingly precise measurement of coherent elastic neut… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.09030v2-abstract-full').style.display = 'inline'; document.getElementById('2203.09030v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.09030v2-abstract-full" style="display: none;"> Maximizing the discovery potential of increasingly precise neutrino experiments will require an improved theoretical understanding of neutrino-nucleus cross sections over a wide range of energies. Low-energy interactions are needed to reconstruct the energies of astrophysical neutrinos from supernovae bursts and search for new physics using increasingly precise measurement of coherent elastic neutrino scattering. Higher-energy interactions involve a variety of reaction mechanisms including quasi-elastic scattering, resonance production, and deep inelastic scattering that must all be included to reliably predict cross sections for energies relevant to DUNE and other accelerator neutrino experiments. This white paper discusses the theoretical status, challenges, required resources, and path forward for achieving precise predictions of neutrino-nucleus scattering and emphasizes the need for a coordinated theoretical effort involved lattice QCD, nuclear effective theories, phenomenological models of the transition region, and event generators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.09030v2-abstract-full').style.display = 'none'; document.getElementById('2203.09030v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">81 pages, contribution to Snowmass 2021</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY-22-05, FERMILAB-FN-1161-T, MITP-22-027 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.00318">arXiv:2112.00318</a> <span> [<a href="https://arxiv.org/pdf/2112.00318">pdf</a>, <a href="https://arxiv.org/format/2112.00318">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22323/1.396.0591">10.22323/1.396.0591 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Correlated Dirac eigenvalues around the transition temperature on $N_蟿=8$ lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Ding%2C+H">Heng-Tong Ding</a>, <a href="/search/hep-lat?searchtype=author&query=Huang%2C+W">Wei-Ping Huang</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+M">Min Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Mukherjee%2C+S">Swagato Mukherjee</a>, <a href="/search/hep-lat?searchtype=author&query=Petreczky%2C+P">Peter Petreczky</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+Y">Yu Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.00318v1-abstract-short" style="display: inline;"> We investigate the criticality of chiral phase transition manifested in the first and second order derivatives of Dirac eigenvalue spectrum with respect to light quark mass in (2+1)-flavor lattice QCD. Simulations are performed at temperatures from about 137 MeV to 176 MeV on $N_蟿=8$ lattices using the highly improved staggered quarks and the tree-level improved Symanzik gauge action. The strange… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.00318v1-abstract-full').style.display = 'inline'; document.getElementById('2112.00318v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.00318v1-abstract-full" style="display: none;"> We investigate the criticality of chiral phase transition manifested in the first and second order derivatives of Dirac eigenvalue spectrum with respect to light quark mass in (2+1)-flavor lattice QCD. Simulations are performed at temperatures from about 137 MeV to 176 MeV on $N_蟿=8$ lattices using the highly improved staggered quarks and the tree-level improved Symanzik gauge action. The strange quark mass is fixed to its physical value $m_s^{\text{phy}}$ and the light quark mass is set to $m_s^{\text{phy}}/40$ which corresponds to a Goldstone pion mass $m_蟺=110$ MeV. We find that in contrast to the case at $T\simeq 205$ MeV $m_l^{-1} \partial 蟻(位, m_l)/\partial m_l$ is no longer equal to $\partial ^2蟻(位, m_l)/\partial m_l^2$ and $\partial ^2蟻(位, m_l)/\partial m_l^2$ even becomes negative at certain low temperatures. This means that as temperature getting closer to $T_c$ $蟻(位, m_l)$ is no longer proportional to $m_l^2$ and thus dilute instanton gas approximation is not valid for these temperatures. We demonstrate the temperature dependence can be factored out in $\partial 蟻(位, m_l)/ \partial m_l$ and $\partial^2 蟻(位, m_l)/ \partial m_l^2$ at $T \in [137, 153]$ MeV, and then we propose a feasible method to estimate the power $c$ given $蟻\propto m_l^{c}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.00318v1-abstract-full').style.display = 'none'; document.getElementById('2112.00318v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Talk presented at the 38th International Symposium on Lattice Field Theory - LATTICE2021, 26th-30th, July, 2021, Zoom/Gather@Massachusetts Institute of Technology</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.03524">arXiv:1911.03524</a> <span> [<a href="https://arxiv.org/pdf/1911.03524">pdf</a>, <a href="https://arxiv.org/format/1911.03524">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.101.034510">10.1103/PhysRevD.101.034510 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nucleon mass and isovector couplings in 2+1-flavor dynamical domain-wall lattice QCD near physical mass </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Abramczyk%2C+M">Michael Abramczyk</a>, <a href="/search/hep-lat?searchtype=author&query=Blum%2C+T">Thomas Blum</a>, <a href="/search/hep-lat?searchtype=author&query=Izubuchi%2C+T">Taku Izubuchi</a>, <a href="/search/hep-lat?searchtype=author&query=Jung%2C+C">Chulwoo Jung</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+M">Meifeng Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Lytle%2C+A">Andrew Lytle</a>, <a href="/search/hep-lat?searchtype=author&query=Ohta%2C+S">Shigemi Ohta</a>, <a href="/search/hep-lat?searchtype=author&query=Shintani%2C+E">Eigo Shintani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.03524v2-abstract-short" style="display: inline;"> We report nucleon mass, isovector vector and axial-vector charges, and tensor and scalar couplings, calculated using two recent 2+1-flavor dynamical domain-wall fermions lattice-QCD ensembles generated jointly by the RIKEN-BNL-Columbia and UKQCD collaborations. These ensembles were generated with Iwasaki $\times$ dislocation-suppressing-determinant-ratio gauge action at inverse lattice spacing of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.03524v2-abstract-full').style.display = 'inline'; document.getElementById('1911.03524v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.03524v2-abstract-full" style="display: none;"> We report nucleon mass, isovector vector and axial-vector charges, and tensor and scalar couplings, calculated using two recent 2+1-flavor dynamical domain-wall fermions lattice-QCD ensembles generated jointly by the RIKEN-BNL-Columbia and UKQCD collaborations. These ensembles were generated with Iwasaki $\times$ dislocation-suppressing-determinant-ratio gauge action at inverse lattice spacing of 1.378(7) GeV and pion mass values of 249.4(3) and 172.3(3) MeV. The nucleon mass extrapolates to a value $m_N = 0.950(5)$ GeV at physical point. The isovector vector charge renormalizes to unity in the chiral limit, narrowly constraining excited-state contamination in the calculation. The ratio of the isovector axial-vector to vector charges shows a deficit of about ten percent. The tensor coupling no longer depends on mass and extrapolates to 1.04(5) in $\overline {\rm MS}$ 2-GeV renormalization at physical point, in a good agreement with the value obtained at the lightest mass in our previous calculations and other calculations that followed. The scalar charge, though noisier, does not show mass dependence and is in agreement with other calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.03524v2-abstract-full').style.display = 'none'; document.getElementById('1911.03524v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Physical Review D, 11 pages, 13 figures and 7 tables. arXiv admin note: text overlap with arXiv:1710.06656</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> KEK-TH-2167, RBRC-1320 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 101, 034510 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.09409">arXiv:1710.09409</a> <span> [<a href="https://arxiv.org/pdf/1710.09409">pdf</a>, <a href="https://arxiv.org/format/1710.09409">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Software">cs.MS</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201817509006">10.1051/epjconf/201817509006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Performance Portability Strategies for Grid C++ Expression Templates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P+A">Peter A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Clark%2C+M+A">M. A. Clark</a>, <a href="/search/hep-lat?searchtype=author&query=DeTar%2C+C">Carleton DeTar</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+M">Meifeng Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Rana%2C+V">Verinder Rana</a>, <a href="/search/hep-lat?searchtype=author&query=Avil%C3%A9s-Casco%2C+A+V">Alejandro Vaquero Avil茅s-Casco</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.09409v1-abstract-short" style="display: inline;"> One of the key requirements for the Lattice QCD Application Development as part of the US Exascale Computing Project is performance portability across multiple architectures. Using the Grid C++ expression template as a starting point, we report on the progress made with regards to the Grid GPU offloading strategies. We present both the successes and issues encountered in using CUDA, OpenACC and Ju… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.09409v1-abstract-full').style.display = 'inline'; document.getElementById('1710.09409v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.09409v1-abstract-full" style="display: none;"> One of the key requirements for the Lattice QCD Application Development as part of the US Exascale Computing Project is performance portability across multiple architectures. Using the Grid C++ expression template as a starting point, we report on the progress made with regards to the Grid GPU offloading strategies. We present both the successes and issues encountered in using CUDA, OpenACC and Just-In-Time compilation. Experimentation and performance on GPUs with a SU(3)$\times$SU(3) streaming test will be reported. We will also report on the challenges of using current OpenMP 4.x for GPU offloading in the same code. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.09409v1-abstract-full').style.display = 'none'; document.getElementById('1710.09409v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures. Talk presented at the 35th International Symposium on Lattice Field Theory, 18-24 June 2017, Granada, Spain</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.09773">arXiv:1610.09773</a> <span> [<a href="https://arxiv.org/pdf/1610.09773">pdf</a>, <a href="https://arxiv.org/format/1610.09773">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Nucleon structure from 2+1-flavor dynamical DWF ensembles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Abramczyk%2C+M">Michael Abramczyk</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+M">Meifeng Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Lytle%2C+A">Andrew Lytle</a>, <a href="/search/hep-lat?searchtype=author&query=Ohta%2C+S">Shigemi Ohta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.09773v1-abstract-short" style="display: inline;"> Nucleon isovector vector- and axialvector-current form factors, the renormalized isovector transversity and scalar charge, and the bare quark momentum and helicity moments of isovector structure functions are reported with improved statistics from two recent RBC+UKQCD 2+1-flavor dynamical domain-wall fermions ensembles: Iwasaki\(\times\)DSDR gauge \(32^3\times64\) at inverse lattice spacing of 1.3… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.09773v1-abstract-full').style.display = 'inline'; document.getElementById('1610.09773v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.09773v1-abstract-full" style="display: none;"> Nucleon isovector vector- and axialvector-current form factors, the renormalized isovector transversity and scalar charge, and the bare quark momentum and helicity moments of isovector structure functions are reported with improved statistics from two recent RBC+UKQCD 2+1-flavor dynamical domain-wall fermions ensembles: Iwasaki\(\times\)DSDR gauge \(32^3\times64\) at inverse lattice spacing of 1.38 GeV and pion mass of 249 and 172 MeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.09773v1-abstract-full').style.display = 'none'; document.getElementById('1610.09773v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures, Lattice 2016, Southampton, UK, July 2016</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> KEK-TH-1939, RBRC-1204 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1512.01542">arXiv:1512.01542</a> <span> [<a href="https://arxiv.org/pdf/1512.01542">pdf</a>, <a href="https://arxiv.org/format/1512.01542">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Optimizing the domain wall fermion Dirac operator using the R-Stream source-to-source compiler </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Lin%2C+M">Meifeng Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Papenhausen%2C+E">Eric Papenhausen</a>, <a href="/search/hep-lat?searchtype=author&query=Langston%2C+M+H">M. Harper Langston</a>, <a href="/search/hep-lat?searchtype=author&query=Meister%2C+B">Benoit Meister</a>, <a href="/search/hep-lat?searchtype=author&query=Baskaran%2C+M">Muthu Baskaran</a>, <a href="/search/hep-lat?searchtype=author&query=Izubuchi%2C+T">Taku Izubuchi</a>, <a href="/search/hep-lat?searchtype=author&query=Jung%2C+C">Chulwoo Jung</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1512.01542v1-abstract-short" style="display: inline;"> The application of the Dirac operator on a spinor field, the Dslash operation, is the most computation-intensive part of the lattice QCD simulations. It is often the key kernel to optimize to achieve maximum performance on various platforms. Here we report on a project to optimize the domain wall fermion Dirac operator in Columbia Physics System (CPS) using the R-Stream source-to-source compiler.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.01542v1-abstract-full').style.display = 'inline'; document.getElementById('1512.01542v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1512.01542v1-abstract-full" style="display: none;"> The application of the Dirac operator on a spinor field, the Dslash operation, is the most computation-intensive part of the lattice QCD simulations. It is often the key kernel to optimize to achieve maximum performance on various platforms. Here we report on a project to optimize the domain wall fermion Dirac operator in Columbia Physics System (CPS) using the R-Stream source-to-source compiler. Our initial target platform is the Intel PC clusters. We discuss the optimization strategies involved before and after the automatic code generation with R-Stream and present some preliminary benchmark results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.01542v1-abstract-full').style.display = 'none'; document.getElementById('1512.01542v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures. Proceedings of the 33rd International Symposium on Lattice Field Theory, July 14 -18, 2015, Kobe, Japan</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS(LATTICE 2015)022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.3175">arXiv:1412.3175</a> <span> [<a href="https://arxiv.org/pdf/1412.3175">pdf</a>, <a href="https://arxiv.org/format/1412.3175">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Initial nucleon structure results with chiral quarks at the physical point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Syritsyn%2C+S">S. Syritsyn</a>, <a href="/search/hep-lat?searchtype=author&query=Blum%2C+T">T. Blum</a>, <a href="/search/hep-lat?searchtype=author&query=Engelhardt%2C+M">M. Engelhardt</a>, <a href="/search/hep-lat?searchtype=author&query=Green%2C+J">J. Green</a>, <a href="/search/hep-lat?searchtype=author&query=Izubuchi%2C+T">T. Izubuchi</a>, <a href="/search/hep-lat?searchtype=author&query=Jung%2C+C">C. Jung</a>, <a href="/search/hep-lat?searchtype=author&query=Krieg%2C+S">S. Krieg</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+M">M. Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Meinel%2C+S">S. Meinel</a>, <a href="/search/hep-lat?searchtype=author&query=Negele%2C+J">J. Negele</a>, <a href="/search/hep-lat?searchtype=author&query=Ohta%2C+S">S. Ohta</a>, <a href="/search/hep-lat?searchtype=author&query=Pochinsky%2C+A">A. Pochinsky</a>, <a href="/search/hep-lat?searchtype=author&query=Shintani%2C+E">E. Shintani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.3175v1-abstract-short" style="display: inline;"> We report initial nucleon structure results computed on lattices with 2+1 dynamical M枚bius domain wall fermions at the physical point generated by the RBC and UKQCD collaborations. At this stage, we evaluate only connected quark contributions. In particular, we discuss the nucleon vector and axial-vector form factors, nucleon axial charge and the isovector quark momentum fraction. From currently a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.3175v1-abstract-full').style.display = 'inline'; document.getElementById('1412.3175v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.3175v1-abstract-full" style="display: none;"> We report initial nucleon structure results computed on lattices with 2+1 dynamical M枚bius domain wall fermions at the physical point generated by the RBC and UKQCD collaborations. At this stage, we evaluate only connected quark contributions. In particular, we discuss the nucleon vector and axial-vector form factors, nucleon axial charge and the isovector quark momentum fraction. From currently available statistics, we estimate the stochastic accuracy of the determination of $g_A$ and $<x>_{u-d}$ to be around 10%, and we expect to reduce that to 5% within the next year. To reduce the computational cost of our calculations, we extensively use acceleration techniques such as low-eigenmode deflation and all-mode-averaging (AMA). We present a method for choosing optimal AMA parameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.3175v1-abstract-full').style.display = 'none'; document.getElementById('1412.3175v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 11 figures; talk presented at the 32nd International Symposium on Lattice Field Theory, 23-28 June, 2014, Columbia University, New York, USA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RBRC 1103, MIT-CTP/4621, KEK-TH-1784 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1405.4752">arXiv:1405.4752</a> <span> [<a href="https://arxiv.org/pdf/1405.4752">pdf</a>, <a href="https://arxiv.org/format/1405.4752">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.90.114502">10.1103/PhysRevD.90.114502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice simulations with eight flavors of domain wall fermions in SU(3) gauge theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Appelquist%2C+T">T. Appelquist</a>, <a href="/search/hep-lat?searchtype=author&query=Brower%2C+R+C">R. C. Brower</a>, <a href="/search/hep-lat?searchtype=author&query=Fleming%2C+G+T">G. T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&query=Kiskis%2C+J">J. Kiskis</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+M+F">M. F. Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Neil%2C+E+T">E. T. Neil</a>, <a href="/search/hep-lat?searchtype=author&query=Osborn%2C+J+C">J. C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&query=Rebbi%2C+C">C. Rebbi</a>, <a href="/search/hep-lat?searchtype=author&query=Rinaldi%2C+E">E. Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">D. Schaich</a>, <a href="/search/hep-lat?searchtype=author&query=Schroeder%2C+C">C. Schroeder</a>, <a href="/search/hep-lat?searchtype=author&query=Syritsyn%2C+S">S. Syritsyn</a>, <a href="/search/hep-lat?searchtype=author&query=Voronov%2C+G">G. Voronov</a>, <a href="/search/hep-lat?searchtype=author&query=Vranas%2C+P">P. Vranas</a>, <a href="/search/hep-lat?searchtype=author&query=Weinberg%2C+E">E. Weinberg</a>, <a href="/search/hep-lat?searchtype=author&query=Witzel%2C+O">O. Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1405.4752v2-abstract-short" style="display: inline;"> We study an SU(3) gauge theory with Nf=8 degenerate flavors of light fermions in the fundamental representation. Using the domain wall fermion formulation, we investigate the light hadron spectrum, chiral condensate and electroweak S parameter. We consider a range of light fermion masses on two lattice volumes at a single gauge coupling chosen so that IR scales approximately match those from our p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.4752v2-abstract-full').style.display = 'inline'; document.getElementById('1405.4752v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1405.4752v2-abstract-full" style="display: none;"> We study an SU(3) gauge theory with Nf=8 degenerate flavors of light fermions in the fundamental representation. Using the domain wall fermion formulation, we investigate the light hadron spectrum, chiral condensate and electroweak S parameter. We consider a range of light fermion masses on two lattice volumes at a single gauge coupling chosen so that IR scales approximately match those from our previous studies of the two- and six-flavor systems. Our results for the Nf=8 spectrum suggest spontaneous chiral symmetry breaking, though fits to the fermion mass dependence of spectral quantities do not strongly disfavor the hypothesis of mass-deformed infrared conformality. Compared to Nf=2 we observe a significant enhancement of the chiral condensate relative to the symmetry breaking scale F, similar to the situation for Nf=6. The reduction of the S parameter, related to parity doubling in the vector and axial-vector channels, is also comparable to our six-flavor results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.4752v2-abstract-full').style.display = 'none'; document.getElementById('1405.4752v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 May, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LLNL-JRNL-665913 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 90, 114502 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1403.2761">arXiv:1403.2761</a> <span> [<a href="https://arxiv.org/pdf/1403.2761">pdf</a>, <a href="https://arxiv.org/format/1403.2761">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.90.014503">10.1103/PhysRevD.90.014503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Maximum-Likelihood Approach to Topological Charge Fluctuations in Lattice Gauge Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Brower%2C+R+C">R. C. Brower</a>, <a href="/search/hep-lat?searchtype=author&query=Cheng%2C+M">M. Cheng</a>, <a href="/search/hep-lat?searchtype=author&query=Fleming%2C+G+T">G. T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+M+F">M. F. Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Neil%2C+E+T">E. T. Neil</a>, <a href="/search/hep-lat?searchtype=author&query=Osborn%2C+J+C">J. C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&query=Rebbi%2C+C">C. Rebbi</a>, <a href="/search/hep-lat?searchtype=author&query=Rinaldi%2C+E">E. Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">D. Schaich</a>, <a href="/search/hep-lat?searchtype=author&query=Schroeder%2C+C">C. Schroeder</a>, <a href="/search/hep-lat?searchtype=author&query=Voronov%2C+G">G. Voronov</a>, <a href="/search/hep-lat?searchtype=author&query=Vranas%2C+P">P. Vranas</a>, <a href="/search/hep-lat?searchtype=author&query=Weinberg%2C+E">E. Weinberg</a>, <a href="/search/hep-lat?searchtype=author&query=Witzel%2C+O">O. Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1403.2761v2-abstract-short" style="display: inline;"> We present a novel technique for the determination of the topological susceptibility (related to the variance of the distribution of global topological charge) from lattice gauge theory simulations, based on maximum-likelihood analysis of the Markov-chain Monte Carlo time series. This technique is expected to be particularly useful in situations where relatively few tunneling events are observed.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.2761v2-abstract-full').style.display = 'inline'; document.getElementById('1403.2761v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1403.2761v2-abstract-full" style="display: none;"> We present a novel technique for the determination of the topological susceptibility (related to the variance of the distribution of global topological charge) from lattice gauge theory simulations, based on maximum-likelihood analysis of the Markov-chain Monte Carlo time series. This technique is expected to be particularly useful in situations where relatively few tunneling events are observed. Restriction to a lattice subvolume on which topological charge is not quantized is explored, and may lead to further improvement when the global topology is poorly sampled. We test our proposed method on a set of lattice data, and compare it to traditional methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.2761v2-abstract-full').style.display = 'none'; document.getElementById('1403.2761v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 March, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures. v2: update to published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LLNL-JRNL-650193 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 90, 014503 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1402.6656">arXiv:1402.6656</a> <span> [<a href="https://arxiv.org/pdf/1402.6656">pdf</a>, <a href="https://arxiv.org/format/1402.6656">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.89.094508">10.1103/PhysRevD.89.094508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Composite bosonic baryon dark matter on the lattice: SU(4) baryon spectrum and the effective Higgs interaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Appelquist%2C+T">Thomas Appelquist</a>, <a href="/search/hep-lat?searchtype=author&query=Berkowitz%2C+E">Evan Berkowitz</a>, <a href="/search/hep-lat?searchtype=author&query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&query=Buchoff%2C+M+I">Michael I. Buchoff</a>, <a href="/search/hep-lat?searchtype=author&query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&query=Kiskis%2C+J">Joe Kiskis</a>, <a href="/search/hep-lat?searchtype=author&query=Kribs%2C+G+D">Graham D. Kribs</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+M">Meifeng Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&query=Osborn%2C+J+C">James C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&query=Rebbi%2C+C">Claudio Rebbi</a>, <a href="/search/hep-lat?searchtype=author&query=Rinaldi%2C+E">Enrico Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&query=Schroeder%2C+C">Chris Schroeder</a>, <a href="/search/hep-lat?searchtype=author&query=Syritsyn%2C+S">Sergey Syritsyn</a>, <a href="/search/hep-lat?searchtype=author&query=Voronov%2C+G">Gennady Voronov</a>, <a href="/search/hep-lat?searchtype=author&query=Vranas%2C+P">Pavlos Vranas</a>, <a href="/search/hep-lat?searchtype=author&query=Weinberg%2C+E">Evan Weinberg</a>, <a href="/search/hep-lat?searchtype=author&query=Witzel%2C+O">Oliver Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1402.6656v1-abstract-short" style="display: inline;"> We present the spectrum of baryons in a new SU(4) gauge theory with fundamental fermion constituents. The spectrum of these bosonic baryons is of significant interest for composite dark matter theories. Here, we compare the spectrum and properties of SU(3) and SU(4) baryons, and then compute the dark-matter direct detection cross section via Higgs boson exchange for TeV-scale composite dark matter… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.6656v1-abstract-full').style.display = 'inline'; document.getElementById('1402.6656v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1402.6656v1-abstract-full" style="display: none;"> We present the spectrum of baryons in a new SU(4) gauge theory with fundamental fermion constituents. The spectrum of these bosonic baryons is of significant interest for composite dark matter theories. Here, we compare the spectrum and properties of SU(3) and SU(4) baryons, and then compute the dark-matter direct detection cross section via Higgs boson exchange for TeV-scale composite dark matter arising from a confining SU(4) gauge sector. Comparison with the latest LUX results leads to tight bounds on the fraction of the constituent-fermion mass that may arise from electroweak symmetry breaking. Lattice calculations of the dark matter mass spectrum and the Higgs-dark matter coupling are performed on quenched $16^{3} \times 32$, $32^{3} \times 64$, $48^{3} \times 96$, and $64^{3} \times128$ lattices with three different lattice spacings, using Wilson fermions with moderate to heavy pseudoscalar meson masses. Our results lay a foundation for future analytic and numerical study of composite baryonic dark matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.6656v1-abstract-full').style.display = 'none'; document.getElementById('1402.6656v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 18 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 89, 094508 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1401.1476">arXiv:1401.1476</a> <span> [<a href="https://arxiv.org/pdf/1401.1476">pdf</a>, <a href="https://arxiv.org/format/1401.1476">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Nucleon Form Factors with 2+1 Flavors of Domain Wall Fermions and All-Mode-Averaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Lin%2C+M">Meifeng Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1401.1476v1-abstract-short" style="display: inline;"> We report recent progress in the calculations of the isovector nucleon electromagnetic form factors using 2+1 flavors of domain wall fermions at pion masses of 170 MeV and 250 MeV. The lattice size is fixed at $32^3\times64$ with a lattice cutoff scale of 1.37(1) GeV. For the calculations with $M_蟺= 170$ MeV, we employed the All-Mode-Averaging (AMA) technique, which led to roughly a factor of 20 i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.1476v1-abstract-full').style.display = 'inline'; document.getElementById('1401.1476v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1401.1476v1-abstract-full" style="display: none;"> We report recent progress in the calculations of the isovector nucleon electromagnetic form factors using 2+1 flavors of domain wall fermions at pion masses of 170 MeV and 250 MeV. The lattice size is fixed at $32^3\times64$ with a lattice cutoff scale of 1.37(1) GeV. For the calculations with $M_蟺= 170$ MeV, we employed the All-Mode-Averaging (AMA) technique, which led to roughly a factor of 20 improvement in computational efficiency and has reduced the statistical errors in our results significantly. We were also able to do calculations at two different source-sink separations, at roughly 1.3 fm and 1.0 fm, without much additional cost by reusing the low eigen-modes stored for the AMA calculations. We will present results for the isovector form factors and their derived quantities, including the Dirac and Pauli radii, anomalous magnetic moment and discuss the effects of possible excited-state contaminations. Connected contributions to the isoscalar Dirac and Pauli form factors will also be shown. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.1476v1-abstract-full').style.display = 'none'; document.getElementById('1401.1476v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 11 figures. Talk presented at the 31st International Symposium on Lattice Field Theory (Lattice 2013), Mainz, Germany, July 29 - August 3, 2013</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RBRC-1055 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS LATTICE 2013, 275 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1311.4889">arXiv:1311.4889</a> <span> [<a href="https://arxiv.org/pdf/1311.4889">pdf</a>, <a href="https://arxiv.org/ps/1311.4889">ps</a>, <a href="https://arxiv.org/format/1311.4889">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.112.111601">10.1103/PhysRevLett.112.111601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two-Color Theory with Novel Infrared Behavior </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Appelquist%2C+T">T. Appelquist</a>, <a href="/search/hep-lat?searchtype=author&query=Brower%2C+R+C">R. C. Brower</a>, <a href="/search/hep-lat?searchtype=author&query=Buchoff%2C+M+I">M. I. Buchoff</a>, <a href="/search/hep-lat?searchtype=author&query=Cheng%2C+M">M. Cheng</a>, <a href="/search/hep-lat?searchtype=author&query=Fleming%2C+G+T">G. T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&query=Kiskis%2C+J">J. Kiskis</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+M+F">M. F. Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Neil%2C+E+T">E. T. Neil</a>, <a href="/search/hep-lat?searchtype=author&query=Osborn%2C+J+C">J. C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&query=Rebbi%2C+C">C. Rebbi</a>, <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">D. Schaich</a>, <a href="/search/hep-lat?searchtype=author&query=Schroeder%2C+C">C. Schroeder</a>, <a href="/search/hep-lat?searchtype=author&query=Syritsyn%2C+S">S. Syritsyn</a>, <a href="/search/hep-lat?searchtype=author&query=Voronov%2C+G">G. Voronov</a>, <a href="/search/hep-lat?searchtype=author&query=Vranas%2C+P">P. Vranas</a>, <a href="/search/hep-lat?searchtype=author&query=Witzel%2C+O">O. Witzel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1311.4889v1-abstract-short" style="display: inline;"> Using lattice simulations, we study the infrared behavior of a particularly interesting SU(2) gauge theory, with six massless Dirac fermions in the fundamental representation. We compute the running gauge coupling derived non-perturbatively from the Schrodinger functional of the theory, finding no evidence for an infrared fixed point up through gauge couplings of order 20. This implies that the th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.4889v1-abstract-full').style.display = 'inline'; document.getElementById('1311.4889v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1311.4889v1-abstract-full" style="display: none;"> Using lattice simulations, we study the infrared behavior of a particularly interesting SU(2) gauge theory, with six massless Dirac fermions in the fundamental representation. We compute the running gauge coupling derived non-perturbatively from the Schrodinger functional of the theory, finding no evidence for an infrared fixed point up through gauge couplings of order 20. This implies that the theory either is governed in the infrared by a fixed point of considerable strength, unseen so far in non-supersymmetric gauge theories, or breaks its global chiral symmetries producing a large number of composite Nambu-Goldstone bosons relative to the number of underlying degrees of freedom. Thus either of these phases exhibits novel behavior. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.4889v1-abstract-full').style.display = 'none'; document.getElementById('1311.4889v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">six pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 112, 111601 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1303.0022">arXiv:1303.0022</a> <span> [<a href="https://arxiv.org/pdf/1303.0022">pdf</a>, <a href="https://arxiv.org/format/1303.0022">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Status of nucleon structure calculations with 2+1 flavors of domain wall fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Lin%2C+M">Meifeng Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1303.0022v2-abstract-short" style="display: inline;"> We report the status of our nucleon structure calculations with 2+1 flavors of domain wall fermions on the RBC-UKQCD $32^3\times64$ gauge ensembles with the Iwasaki+DSDR action. These ensembles have a fixed lattice scale of 1/a = 1.37 GeV, and two pion masses of about 170 and 250 MeV. Preliminary results for the isovector electromagnectic form factors and their corresponding root-mean-squared (r.m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1303.0022v2-abstract-full').style.display = 'inline'; document.getElementById('1303.0022v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1303.0022v2-abstract-full" style="display: none;"> We report the status of our nucleon structure calculations with 2+1 flavors of domain wall fermions on the RBC-UKQCD $32^3\times64$ gauge ensembles with the Iwasaki+DSDR action. These ensembles have a fixed lattice scale of 1/a = 1.37 GeV, and two pion masses of about 170 and 250 MeV. Preliminary results for the isovector electromagnectic form factors and their corresponding root-mean-squared (r.m.s.) radii will be presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1303.0022v2-abstract-full').style.display = 'none'; document.getElementById('1303.0022v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 February, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages. 4 figures. Proceedings of the XXX International Symposium on Lattice Field Theory (Lattice 2012) at Cairns, Australia, June 24-29, 2012. v2: typos corrected</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS (Lattice 2012) 172 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1301.1693">arXiv:1301.1693</a> <span> [<a href="https://arxiv.org/pdf/1301.1693">pdf</a>, <a href="https://arxiv.org/format/1301.1693">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.88.014502">10.1103/PhysRevD.88.014502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice calculation of composite dark matter form factors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Appelquist%2C+T">T. Appelquist</a>, <a href="/search/hep-lat?searchtype=author&query=Brower%2C+R+C">R. C. Brower</a>, <a href="/search/hep-lat?searchtype=author&query=Buchoff%2C+M+I">M. I. Buchoff</a>, <a href="/search/hep-lat?searchtype=author&query=Cheng%2C+M">M. Cheng</a>, <a href="/search/hep-lat?searchtype=author&query=Cohen%2C+S+D">S. D. Cohen</a>, <a href="/search/hep-lat?searchtype=author&query=Fleming%2C+G+T">G. T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&query=Kiskis%2C+J">J. Kiskis</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+M+F">M. F. Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Neil%2C+E+T">E. T. Neil</a>, <a href="/search/hep-lat?searchtype=author&query=Osborn%2C+J+C">J. C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&query=Rebbi%2C+C">C. Rebbi</a>, <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">D. Schaich</a>, <a href="/search/hep-lat?searchtype=author&query=Schroeder%2C+C">C. Schroeder</a>, <a href="/search/hep-lat?searchtype=author&query=Syritsyn%2C+S+N">S. N. Syritsyn</a>, <a href="/search/hep-lat?searchtype=author&query=Voronov%2C+G">G. Voronov</a>, <a href="/search/hep-lat?searchtype=author&query=Vranas%2C+P">P. Vranas</a>, <a href="/search/hep-lat?searchtype=author&query=Wasem%2C+J">J. Wasem</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1301.1693v2-abstract-short" style="display: inline;"> Composite dark matter candidates, which can arise from new strongly-coupled sectors, are well-motivated and phenomenologically interesting, particularly in the context of asymmetric generation of the relic density. In this work, we employ lattice calculations to study the electromagnetic form factors of electroweak-neutral dark-matter baryons for a three-color, QCD-like theory with Nf = 2 and 6 de… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.1693v2-abstract-full').style.display = 'inline'; document.getElementById('1301.1693v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1301.1693v2-abstract-full" style="display: none;"> Composite dark matter candidates, which can arise from new strongly-coupled sectors, are well-motivated and phenomenologically interesting, particularly in the context of asymmetric generation of the relic density. In this work, we employ lattice calculations to study the electromagnetic form factors of electroweak-neutral dark-matter baryons for a three-color, QCD-like theory with Nf = 2 and 6 degenerate fermions in the fundamental representation. We calculate the (connected) charge radius and anomalous magnetic moment, both of which can play a significant role for direct detection of composite dark matter. We find minimal Nf dependence in these quantities. We generate mass-dependent cross-sections for dark matter-nucleon interactions and use them in conjunction with experimental results from XENON100, excluding dark matter candidates of this type with masses below 10 TeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.1693v2-abstract-full').style.display = 'none'; document.getElementById('1301.1693v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 January, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures. v2: update to journal version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LLNL-JRNL-608695; NT-LBL-13-002; UCB-NPAT-13-002; FERMILAB-PUB-13-014-T </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D88, 014502 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1212.3235">arXiv:1212.3235</a> <span> [<a href="https://arxiv.org/pdf/1212.3235">pdf</a>, <a href="https://arxiv.org/format/1212.3235">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Finite-size scaling in nucleon axial charge from 2+1-flavor DWF lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Lin%2C+M">Meifeng Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Ohta%2C+S">Shigemi Ohta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1212.3235v1-abstract-short" style="display: inline;"> We report the current status of the on-going lattice-QCD calculations of nucleon isovector axial charge, g_A, using the RBC/UKQCD 2+1-flavor dynamical domain-wall fermion ensembles at lattice cutoff of about a^{-1}=1.4 GeV in a spatial volume (L = 4.6 fm)^3. The result from the ensemble with m_蟺= 250 MeV pion mass, corresponding to the finite-size scaling parameter m_蟺L \sim 5.8, agrees well with… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.3235v1-abstract-full').style.display = 'inline'; document.getElementById('1212.3235v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1212.3235v1-abstract-full" style="display: none;"> We report the current status of the on-going lattice-QCD calculations of nucleon isovector axial charge, g_A, using the RBC/UKQCD 2+1-flavor dynamical domain-wall fermion ensembles at lattice cutoff of about a^{-1}=1.4 GeV in a spatial volume (L = 4.6 fm)^3. The result from the ensemble with m_蟺= 250 MeV pion mass, corresponding to the finite-size scaling parameter m_蟺L \sim 5.8, agrees well with an earlier result at a^{-1}=1.7 GeV, L = 2.8 fm, and m_蟺= 420 MeV, with similar m_蟺L. This suggests the systematic error from excited-state contamination is small in both ensembles and about 10-% deficit in g_A we are observing is likely a finite-size effect that scales with m_蟺L. We also report the result from the lighter, m_蟺= 170 MeV ensemble. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.3235v1-abstract-full').style.display = 'none'; document.getElementById('1212.3235v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures, talk presented at Lattice 2012, Cairns, QLD, June 24-29, 2012</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> KEK-TH-1594, RBRC-977 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1204.6000">arXiv:1204.6000</a> <span> [<a href="https://arxiv.org/pdf/1204.6000">pdf</a>, <a href="https://arxiv.org/format/1204.6000">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Approaching Conformality with Ten Flavors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Appelquist%2C+T">Thomas Appelquist</a>, <a href="/search/hep-lat?searchtype=author&query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&query=Buchoff%2C+M+I">Michael I. Buchoff</a>, <a href="/search/hep-lat?searchtype=author&query=Cheng%2C+M">Michael Cheng</a>, <a href="/search/hep-lat?searchtype=author&query=Cohen%2C+S+D">Saul D. Cohen</a>, <a href="/search/hep-lat?searchtype=author&query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&query=Kiskis%2C+J">Joe Kiskis</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+M">Meifeng Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Na%2C+H">Heechang Na</a>, <a href="/search/hep-lat?searchtype=author&query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&query=Osborn%2C+J+C">James C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&query=Rebbi%2C+C">Claudio Rebbi</a>, <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&query=Schroeder%2C+C">Chris Schroeder</a>, <a href="/search/hep-lat?searchtype=author&query=Voronov%2C+G">Gennady Voronov</a>, <a href="/search/hep-lat?searchtype=author&query=Vranas%2C+P">Pavlos Vranas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1204.6000v3-abstract-short" style="display: inline;"> We present first results for lattice simulations, on a single volume, of the low-lying spectrum of an SU(3) Yang-Mills gauge theory with ten light fermions in the fundamental representation. Fits to the fermion mass dependence of various observables are found to be globally consistent with the hypothesis that this theory is within or just outside the strongly-coupled edge of the conformal window,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1204.6000v3-abstract-full').style.display = 'inline'; document.getElementById('1204.6000v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1204.6000v3-abstract-full" style="display: none;"> We present first results for lattice simulations, on a single volume, of the low-lying spectrum of an SU(3) Yang-Mills gauge theory with ten light fermions in the fundamental representation. Fits to the fermion mass dependence of various observables are found to be globally consistent with the hypothesis that this theory is within or just outside the strongly-coupled edge of the conformal window, with mass anomalous dimension consistent with 1 over the range of scales simulated. We stress that we cannot rule out the possibility of spontaneous chiral-symmetry breaking at scales well below our infrared cutoff. We discuss important systematic effects, including finite-volume corrections, and consider directions for future improvement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1204.6000v3-abstract-full').style.display = 'none'; document.getElementById('1204.6000v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 April, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures. Submitted to Physical Review Letters. v2: corrected global fits. v3: corrected estimation of confidence intervals</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-12-111-T; LLNL-JRNL-548639; NSF-KITP-12-069 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1201.3977">arXiv:1201.3977</a> <span> [<a href="https://arxiv.org/pdf/1201.3977">pdf</a>, <a href="https://arxiv.org/format/1201.3977">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.85.074505">10.1103/PhysRevD.85.074505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> WW Scattering Parameters via Pseudoscalar Phase Shifts </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Appelquist%2C+T">Thomas Appelquist</a>, <a href="/search/hep-lat?searchtype=author&query=Babich%2C+R">Ron Babich</a>, <a href="/search/hep-lat?searchtype=author&query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&query=Buchoff%2C+M+I">Michael I. Buchoff</a>, <a href="/search/hep-lat?searchtype=author&query=Cheng%2C+M">Michael Cheng</a>, <a href="/search/hep-lat?searchtype=author&query=Clark%2C+M+A">Michael A. Clark</a>, <a href="/search/hep-lat?searchtype=author&query=Cohen%2C+S+D">Saul D. Cohen</a>, <a href="/search/hep-lat?searchtype=author&query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&query=Kiskis%2C+J">Joe Kiskis</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+M">Meifeng Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&query=Osborn%2C+J+C">James C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&query=Rebbi%2C+C">Claudio Rebbi</a>, <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&query=Syritsyn%2C+S">Sergey Syritsyn</a>, <a href="/search/hep-lat?searchtype=author&query=Voronov%2C+G">Gennady Voronov</a>, <a href="/search/hep-lat?searchtype=author&query=Vranas%2C+P">Pavlos Vranas</a>, <a href="/search/hep-lat?searchtype=author&query=Wasem%2C+J">Joseph Wasem</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1201.3977v1-abstract-short" style="display: inline;"> Using domain-wall lattice simulations, we study pseudoscalar-pseudoscalar scattering in the maximal isospin channel for an SU(3) gauge theory with two and six fermion flavors in the fundamental representation. This calculation of the S-wave scattering length is related to the next-to-leading order corrections to WW scattering through the low-energy coefficients of the chiral Lagrangian. While two… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1201.3977v1-abstract-full').style.display = 'inline'; document.getElementById('1201.3977v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1201.3977v1-abstract-full" style="display: none;"> Using domain-wall lattice simulations, we study pseudoscalar-pseudoscalar scattering in the maximal isospin channel for an SU(3) gauge theory with two and six fermion flavors in the fundamental representation. This calculation of the S-wave scattering length is related to the next-to-leading order corrections to WW scattering through the low-energy coefficients of the chiral Lagrangian. While two and six flavor scattering lengths are similar for a fixed ratio of the pseudoscalar mass to its decay constant, six-flavor scattering shows a somewhat less repulsive next-to-leading order interaction than its two-flavor counterpart. Estimates are made for the WW scattering parameters and the plausibility of detection is discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1201.3977v1-abstract-full').style.display = 'none'; document.getElementById('1201.3977v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LLNL-JRNL-499587; FERMILAB-PUB-12-012-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1112.5489">arXiv:1112.5489</a> <span> [<a href="https://arxiv.org/pdf/1112.5489">pdf</a>, <a href="https://arxiv.org/format/1112.5489">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.ppnp.2011.12.021">10.1016/j.ppnp.2011.12.021 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nucleon structure from 2+1-flavor dynamical DWF lattice QCD at nearly physical pion mass </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Lin%2C+M">Meifeng Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Ohta%2C+S">Shigemi Ohta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1112.5489v1-abstract-short" style="display: inline;"> Domain-wall fermions (DWF) is a lattice discretization for Dirac fields that preserves continuum-like chiral and flavor symmetries that are essential in hadron physics. RIKEN-BNL-Columbia (RBC) and UKQCD Collaborations have been generating sets of realistic 2+1-flavor dynamical lattice quantum chromodynamics (QCD) numerical ensembles with DWF quarks with strange mass set almost exactly at its phys… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1112.5489v1-abstract-full').style.display = 'inline'; document.getElementById('1112.5489v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1112.5489v1-abstract-full" style="display: none;"> Domain-wall fermions (DWF) is a lattice discretization for Dirac fields that preserves continuum-like chiral and flavor symmetries that are essential in hadron physics. RIKEN-BNL-Columbia (RBC) and UKQCD Collaborations have been generating sets of realistic 2+1-flavor dynamical lattice quantum chromodynamics (QCD) numerical ensembles with DWF quarks with strange mass set almost exactly at its physical value via reweighing and degenerate up and down mass set as light as practical. In this report the current status of the nucleon-structure calculations using these ensembles are summarized. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1112.5489v1-abstract-full').style.display = 'none'; document.getElementById('1112.5489v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures, talk presented at Erice School "From Quarks and Gluons to Hadrons and Nuclei,'' September 16-24, 2011, Erice, Sicily</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> KEK-TH-1508, RBRC-930 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1106.2148">arXiv:1106.2148</a> <span> [<a href="https://arxiv.org/pdf/1106.2148">pdf</a>, <a href="https://arxiv.org/format/1106.2148">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.84.054501">10.1103/PhysRevD.84.054501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice Simulations and Infrared Conformality </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Appelquist%2C+T">Thomas Appelquist</a>, <a href="/search/hep-lat?searchtype=author&query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+M">Meifeng Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D+A">David A. Schaich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1106.2148v3-abstract-short" style="display: inline;"> We examine several recent lattice-simulation data sets, asking whether they are consistent with infrared conformality. We observe, in particular, that for an SU(3) gauge theory with 12 Dirac fermions in the fundamental representation, recent simulation data can be described assuming infrared conformality. Lattice simulations include a fermion mass m which is then extrapolated to zero, and we note… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1106.2148v3-abstract-full').style.display = 'inline'; document.getElementById('1106.2148v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1106.2148v3-abstract-full" style="display: none;"> We examine several recent lattice-simulation data sets, asking whether they are consistent with infrared conformality. We observe, in particular, that for an SU(3) gauge theory with 12 Dirac fermions in the fundamental representation, recent simulation data can be described assuming infrared conformality. Lattice simulations include a fermion mass m which is then extrapolated to zero, and we note that this data can be fit by a small-m expansion, allowing a controlled extrapolation. We also note that the conformal hypothesis does not work well for two theories that are known or expected to be confining and chirally broken, and that it does work well for another theory expected to be infrared conformal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1106.2148v3-abstract-full').style.display = 'none'; document.getElementById('1106.2148v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 June, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures. v2: added new fit including finite-volume corrections. v3: updated to match published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-11-269-T </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D84:054501,2011 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1011.0892">arXiv:1011.0892</a> <span> [<a href="https://arxiv.org/pdf/1011.0892">pdf</a>, <a href="https://arxiv.org/ps/1011.0892">ps</a>, <a href="https://arxiv.org/format/1011.0892">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.83.074508">10.1103/PhysRevD.83.074508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Continuum Limit Physics from 2+1 Flavor Domain Wall QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Aoki%2C+Y">Y. Aoki</a>, <a href="/search/hep-lat?searchtype=author&query=Arthur%2C+R">R. Arthur</a>, <a href="/search/hep-lat?searchtype=author&query=Blum%2C+T">T. Blum</a>, <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P+A">P. A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Brommel%2C+D">D. Brommel</a>, <a href="/search/hep-lat?searchtype=author&query=Christ%2C+N+H">N. H. Christ</a>, <a href="/search/hep-lat?searchtype=author&query=Dawson%2C+C">C. Dawson</a>, <a href="/search/hep-lat?searchtype=author&query=Flynn%2C+J+M">J. M. Flynn</a>, <a href="/search/hep-lat?searchtype=author&query=Izubuchi%2C+T">T. Izubuchi</a>, <a href="/search/hep-lat?searchtype=author&query=Jin%2C+X">X-Y. Jin</a>, <a href="/search/hep-lat?searchtype=author&query=Jung%2C+C">C. Jung</a>, <a href="/search/hep-lat?searchtype=author&query=Kelly%2C+C">C. Kelly</a>, <a href="/search/hep-lat?searchtype=author&query=Li%2C+M">M. Li</a>, <a href="/search/hep-lat?searchtype=author&query=Lichtl%2C+A">A. Lichtl</a>, <a href="/search/hep-lat?searchtype=author&query=Lightman%2C+M">M. Lightman</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+M+F">M. F. Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Mawhinney%2C+R+D">R. D. Mawhinney</a>, <a href="/search/hep-lat?searchtype=author&query=Maynard%2C+C+M">C. M. Maynard</a>, <a href="/search/hep-lat?searchtype=author&query=Ohta%2C+S">S. Ohta</a>, <a href="/search/hep-lat?searchtype=author&query=Pendleton%2C+B+J">B. J. Pendleton</a>, <a href="/search/hep-lat?searchtype=author&query=Sachrajda%2C+C+T">C. T. Sachrajda</a>, <a href="/search/hep-lat?searchtype=author&query=Scholz%2C+E+E">E. E. Scholz</a>, <a href="/search/hep-lat?searchtype=author&query=Soni%2C+A">A. Soni</a>, <a href="/search/hep-lat?searchtype=author&query=Wennekers%2C+J">J. Wennekers</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">J. M. Zanotti</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1011.0892v2-abstract-short" style="display: inline;"> We present physical results obtained from simulations using 2+1 flavors of domain wall quarks and the Iwasaki gauge action at two values of the lattice spacing $a$, ($a^{-1}$=\,1.73\,(3)\,GeV and $a^{-1}$=\,2.28\,(3)\,GeV). On the coarser lattice, with $24^3\times 64\times 16$ points, the analysis of ref.[1] is extended to approximately twice the number of configurations. The ensembles on the fine… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.0892v2-abstract-full').style.display = 'inline'; document.getElementById('1011.0892v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1011.0892v2-abstract-full" style="display: none;"> We present physical results obtained from simulations using 2+1 flavors of domain wall quarks and the Iwasaki gauge action at two values of the lattice spacing $a$, ($a^{-1}$=\,1.73\,(3)\,GeV and $a^{-1}$=\,2.28\,(3)\,GeV). On the coarser lattice, with $24^3\times 64\times 16$ points, the analysis of ref.[1] is extended to approximately twice the number of configurations. The ensembles on the finer $32^3\times 64\times 16$ lattice are new. We explain how we use lattice data obtained at several values of the lattice spacing and for a range of quark masses in combined continuum-chiral fits in order to obtain results in the continuum limit and at physical quark masses. We implement this procedure at two lattice spacings, with unitary pion masses in the approximate range 290--420\,MeV (225--420\,MeV for partially quenched pions). We use the masses of the $蟺$ and $K$ mesons and the $惟$ baryon to determine the physical quark masses and the values of the lattice spacing. While our data are consistent with the predictions of NLO SU(2) chiral perturbation theory, they are also consistent with a simple analytic ansatz leading to an inherent uncertainty in how best to perform the chiral extrapolation that we are reluctant to reduce with model-dependent assumptions about higher order corrections. Our main results include $f_蟺=124(2)_{\rm stat}(5)_{\rm syst}$\,MeV, $f_K/f_蟺=1.204(7)(25)$ where $f_K$ is the kaon decay constant, $m_s^{\bar{\textrm{MS}}}(2\,\textrm{GeV})=(96.2\pm 2.7)$\,MeV and $m_{ud}^{\bar{\textrm{MS}}}(2\,\textrm{GeV})=(3.59\pm 0.21)$\,MeV\, ($m_s/m_{ud}=26.8\pm 1.4$) where $m_s$ and $m_{ud}$ are the mass of the strange-quark and the average of the up and down quark masses respectively, $[危^{\msbar}(2 {\rm GeV})]^{1/3} = 256(6)\; {\rm MeV}$, where $危$ is the chiral condensate, the Sommer scale $r_0=0.487(9)$\,fm and $r_1=0.333(9)$\,fm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.0892v2-abstract-full').style.display = 'none'; document.getElementById('1011.0892v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 November, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">129 pages, 59 figures, Published version containing an extended discussion of reweighting and including a new appendix (Appendix C)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D83:074508,2011 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1009.5967">arXiv:1009.5967</a> <span> [<a href="https://arxiv.org/pdf/1009.5967">pdf</a>, <a href="https://arxiv.org/format/1009.5967">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.106.231601">10.1103/PhysRevLett.106.231601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Parity Doubling and the S Parameter Below the Conformal Window </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Appelquist%2C+T">Thomas Appelquist</a>, <a href="/search/hep-lat?searchtype=author&query=Babich%2C+R">Ron Babich</a>, <a href="/search/hep-lat?searchtype=author&query=Brower%2C+R+C">Richard C. Brower</a>, <a href="/search/hep-lat?searchtype=author&query=Cheng%2C+M">Michael Cheng</a>, <a href="/search/hep-lat?searchtype=author&query=Clark%2C+M+A">Michael A. Clark</a>, <a href="/search/hep-lat?searchtype=author&query=Cohen%2C+S+D">Saul D. Cohen</a>, <a href="/search/hep-lat?searchtype=author&query=Fleming%2C+G+T">George T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&query=Kiskis%2C+J">Joe Kiskis</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+M">Meifeng Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&query=Osborn%2C+J+C">James C. Osborn</a>, <a href="/search/hep-lat?searchtype=author&query=Rebbi%2C+C">Claudio Rebbi</a>, <a href="/search/hep-lat?searchtype=author&query=Schaich%2C+D">David Schaich</a>, <a href="/search/hep-lat?searchtype=author&query=Vranas%2C+P">Pavlos Vranas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1009.5967v1-abstract-short" style="display: inline;"> We describe a lattice simulation of the masses and decay constants of the lowest-lying vector and axial resonances, and the electroweak S parameter, in an SU(3) gauge theory with $N_f = 2$ and 6 fermions in the fundamental representation. The spectrum becomes more parity doubled and the S parameter per electroweak doublet decreases when $N_f$ is increased from 2 to 6, motivating study of these tre… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1009.5967v1-abstract-full').style.display = 'inline'; document.getElementById('1009.5967v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1009.5967v1-abstract-full" style="display: none;"> We describe a lattice simulation of the masses and decay constants of the lowest-lying vector and axial resonances, and the electroweak S parameter, in an SU(3) gauge theory with $N_f = 2$ and 6 fermions in the fundamental representation. The spectrum becomes more parity doubled and the S parameter per electroweak doublet decreases when $N_f$ is increased from 2 to 6, motivating study of these trends as $N_f$ is increased further, toward the critical value for transition from confinement to infrared conformality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1009.5967v1-abstract-full').style.display = 'none'; document.getElementById('1009.5967v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 5 figures; to be submitted to PRL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.Lett.106:231601,2011 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1002.3550">arXiv:1002.3550</a> <span> [<a href="https://arxiv.org/pdf/1002.3550">pdf</a>, <a href="https://arxiv.org/ps/1002.3550">ps</a>, <a href="https://arxiv.org/format/1002.3550">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Nucleon electromagnetic form factors with 2+1 flavors of domain wall fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Lin%2C+M+F">M. F. Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Bratt%2C+J+D">J. D. Bratt</a>, <a href="/search/hep-lat?searchtype=author&query=Engelhardt%2C+M">M. Engelhardt</a>, <a href="/search/hep-lat?searchtype=author&query=Hagler%2C+P">Ph. Hagler</a>, <a href="/search/hep-lat?searchtype=author&query=Hemmert%2C+T+R">T. R. Hemmert</a>, <a href="/search/hep-lat?searchtype=author&query=Meyer%2C+H+B">H. B. Meyer</a>, <a href="/search/hep-lat?searchtype=author&query=Negele%2C+J+W">J. W. Negele</a>, <a href="/search/hep-lat?searchtype=author&query=Pochinsky%2C+A+V">A. V. Pochinsky</a>, <a href="/search/hep-lat?searchtype=author&query=Procura%2C+M">M. Procura</a>, <a href="/search/hep-lat?searchtype=author&query=Schroers%2C+W">W. Schroers</a>, <a href="/search/hep-lat?searchtype=author&query=Syritsyn%2C+S">S. Syritsyn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1002.3550v1-abstract-short" style="display: inline;"> We present the recent high-statistics calculations of the nucleon electromagnetic form factors with fully dynamical domain wall fermions on the 32^3x64 lattices generated by the RBC and UKQCD collaborations, with pion masses at roughly 297 MeV, 355 MeV and 403 MeV. We study the phenomenological fits to the momentum transfer dependence of the form factors and investigate chiral extrapolations for… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1002.3550v1-abstract-full').style.display = 'inline'; document.getElementById('1002.3550v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1002.3550v1-abstract-full" style="display: none;"> We present the recent high-statistics calculations of the nucleon electromagnetic form factors with fully dynamical domain wall fermions on the 32^3x64 lattices generated by the RBC and UKQCD collaborations, with pion masses at roughly 297 MeV, 355 MeV and 403 MeV. We study the phenomenological fits to the momentum transfer dependence of the form factors and investigate chiral extrapolations for the Dirac radius, Pauli radius and the anomalous magnetic moment using two variants of chiral effective field theories, the small scale expansion (SSE) and covariant baryon chiral perturbation theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1002.3550v1-abstract-full').style.display = 'none'; document.getElementById('1002.3550v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 February, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Talk given at the XXVII International Symposium on Lattice Field Theory, Beijing, China, July 26-31, 2009. 8 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS(LAT2009)127 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1001.3620">arXiv:1001.3620</a> <span> [<a href="https://arxiv.org/pdf/1001.3620">pdf</a>, <a href="https://arxiv.org/format/1001.3620">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.82.094502">10.1103/PhysRevD.82.094502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nucleon structure from mixed action calculations using 2+1 flavors of asqtad sea and domain wall valence fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=LHPC+Collaboration"> LHPC Collaboration</a>, <a href="/search/hep-lat?searchtype=author&query=Bratt%2C+J+D">Jonathan D. Bratt</a>, <a href="/search/hep-lat?searchtype=author&query=Edwards%2C+R+G">Robert G. Edwards</a>, <a href="/search/hep-lat?searchtype=author&query=Engelhardt%2C+M">Michael Engelhardt</a>, <a href="/search/hep-lat?searchtype=author&query=Hagler%2C+P">Philipp Hagler</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+M">Mei-Feng Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-lat?searchtype=author&query=Musch%2C+B">Bernhard Musch</a>, <a href="/search/hep-lat?searchtype=author&query=Negele%2C+J+W">John W. Negele</a>, <a href="/search/hep-lat?searchtype=author&query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&query=Pochinsky%2C+A+V">Andrew V. Pochinsky</a>, <a href="/search/hep-lat?searchtype=author&query=Procura%2C+M">Massimiliano Procura</a>, <a href="/search/hep-lat?searchtype=author&query=Richards%2C+D+G">David G. Richards</a>, <a href="/search/hep-lat?searchtype=author&query=Schroers%2C+W">Wolfram Schroers</a>, <a href="/search/hep-lat?searchtype=author&query=Syritsyn%2C+S+N">Sergey N. Syritsyn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1001.3620v2-abstract-short" style="display: inline;"> We present high statistics results for the structure of the nucleon from a mixed-action calculation using 2+1 flavors of asqtad sea and domain wall valence fermions. We perform extrapolations of our data based on different chiral effective field theory schemes and compare our results with available information from phenomenology. We discuss vector and axial form factors of the nucleon, moments of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1001.3620v2-abstract-full').style.display = 'inline'; document.getElementById('1001.3620v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1001.3620v2-abstract-full" style="display: none;"> We present high statistics results for the structure of the nucleon from a mixed-action calculation using 2+1 flavors of asqtad sea and domain wall valence fermions. We perform extrapolations of our data based on different chiral effective field theory schemes and compare our results with available information from phenomenology. We discuss vector and axial form factors of the nucleon, moments of generalized parton distributions, including moments of forward parton distributions, and implications for the decomposition of the nucleon spin. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1001.3620v2-abstract-full').style.display = 'none'; document.getElementById('1001.3620v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2010; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 January, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">68 pages, 47 figures. Main revision points: improved discussion of chiral fits and systematic uncertainties, several minor refinements. Accepted for publication in Phys.Rev. D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> TUM/T39-10-01, TUM-EFT 6/10, CERN-PH-TH/2010-005 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D82:094502,2010 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0911.3450">arXiv:0911.3450</a> <span> [<a href="https://arxiv.org/pdf/0911.3450">pdf</a>, <a href="https://arxiv.org/ps/0911.3450">ps</a>, <a href="https://arxiv.org/format/0911.3450">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.81.054510">10.1103/PhysRevD.81.054510 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The finite temperature QCD using 2+1 flavors of domain wall fermions at N_t = 8 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Cheng%2C+M">M. Cheng</a>, <a href="/search/hep-lat?searchtype=author&query=Christ%2C+N+H">N. H. Christ</a>, <a href="/search/hep-lat?searchtype=author&query=Hegde%2C+P">P. Hegde</a>, <a href="/search/hep-lat?searchtype=author&query=Karsch%2C+F">F. Karsch</a>, <a href="/search/hep-lat?searchtype=author&query=Li%2C+M">Min Li</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+M+F">M. F. Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Mawhinney%2C+R+D">R. D. Mawhinney</a>, <a href="/search/hep-lat?searchtype=author&query=Renfrew%2C+D">D. Renfrew</a>, <a href="/search/hep-lat?searchtype=author&query=Vranas%2C+P">P. Vranas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0911.3450v1-abstract-short" style="display: inline;"> We study the region of the QCD phase transition using 2+1 flavors of domain wall fermions (DWF) and a $16^3 \times 8$ lattice volume with a fifth dimension of $L_s = 32$. The disconnected light quark chiral susceptibility, quark number susceptibility and the Polyakov loop suggest a chiral and deconfining crossover transition lying between 155 and 185 MeV for our choice of quark mass and lattice… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0911.3450v1-abstract-full').style.display = 'inline'; document.getElementById('0911.3450v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0911.3450v1-abstract-full" style="display: none;"> We study the region of the QCD phase transition using 2+1 flavors of domain wall fermions (DWF) and a $16^3 \times 8$ lattice volume with a fifth dimension of $L_s = 32$. The disconnected light quark chiral susceptibility, quark number susceptibility and the Polyakov loop suggest a chiral and deconfining crossover transition lying between 155 and 185 MeV for our choice of quark mass and lattice spacing. In this region the lattice scale deduced from the Sommer parameter $r_0$ is $a^{-1} \approx 1.3$ GeV, the pion mass is $\approx 300$ MeV and the kaon mass is approximately physical. The peak in the chiral susceptibility implies a pseudo critical temperature $T_c = 171(10)(17)$ MeV where the first error is associated with determining the peak location and the second with our unphysical light quark mass and non-zero lattice spacing. The effects of residual chiral symmetry breaking on the chiral condensate and disconnected chiral susceptibility are studied using several values of the valence $L_s$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0911.3450v1-abstract-full').style.display = 'none'; document.getElementById('0911.3450v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">41 pages, 10 tables, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D81:054510,2010 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0910.3816">arXiv:0910.3816</a> <span> [<a href="https://arxiv.org/pdf/0910.3816">pdf</a>, <a href="https://arxiv.org/ps/0910.3816">ps</a>, <a href="https://arxiv.org/format/0910.3816">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Nucleon form factors from high statistics mixed-action calculations with 2+1 flavors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=LHPC+Collaboration"> LHPC Collaboration</a>, <a href="/search/hep-lat?searchtype=author&query=Schroers%2C+W">Wolfram Schroers</a>, <a href="/search/hep-lat?searchtype=author&query=Bratt%2C+J+D">Jonathan D. Bratt</a>, <a href="/search/hep-lat?searchtype=author&query=Edwards%2C+R+G">Robert G. Edwards</a>, <a href="/search/hep-lat?searchtype=author&query=Engelhardt%2C+M">Michael Engelhardt</a>, <a href="/search/hep-lat?searchtype=author&query=Fleming%2C+G+T">George Taminga Fleming</a>, <a href="/search/hep-lat?searchtype=author&query=Hagler%2C+P">Philipp Hagler</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+M">Mei-Feng Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-lat?searchtype=author&query=Musch%2C+B">Bernhard Musch</a>, <a href="/search/hep-lat?searchtype=author&query=Negele%2C+J+W">John W. Negele</a>, <a href="/search/hep-lat?searchtype=author&query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&query=Pochinsky%2C+A+V">Andrew V. Pochinsky</a>, <a href="/search/hep-lat?searchtype=author&query=Procura%2C+M">Massimiliano Procura</a>, <a href="/search/hep-lat?searchtype=author&query=Renner%2C+D+B">Dru B. Renner</a>, <a href="/search/hep-lat?searchtype=author&query=Richards%2C+D+G">David G. Richards</a>, <a href="/search/hep-lat?searchtype=author&query=Syritsyn%2C+S+N">Sergey N. Syritsyn</a>, <a href="/search/hep-lat?searchtype=author&query=Walker-Loud%2C+A+P">Andre P. Walker-Loud</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0910.3816v1-abstract-short" style="display: inline;"> We present new high-statistics results for nucleon form factors at pion masses of approximately 290, 350, 500, and 600 MeV using a mixed action of domain wall valence quarks on an improved staggered sea. We perform chiral fits to both vector and axial form factors and compare our results to experiment. </span> <span class="abstract-full has-text-grey-dark mathjax" id="0910.3816v1-abstract-full" style="display: none;"> We present new high-statistics results for nucleon form factors at pion masses of approximately 290, 350, 500, and 600 MeV using a mixed action of domain wall valence quarks on an improved staggered sea. We perform chiral fits to both vector and axial form factors and compare our results to experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0910.3816v1-abstract-full').style.display = 'none'; document.getElementById('0910.3816v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures; contribution to the proceedings of the XXVII International Symposium on Lattice Field Theory - LAT2009, July 26-31, 2009, Peking University, Beijing, China. To appear as PoS(LAT2009)142</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS LAT2009:142,2009 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0907.4194">arXiv:0907.4194</a> <span> [<a href="https://arxiv.org/pdf/0907.4194">pdf</a>, <a href="https://arxiv.org/ps/0907.4194">ps</a>, <a href="https://arxiv.org/format/0907.4194">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.81.034507">10.1103/PhysRevD.81.034507 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nucleon Electromagnetic Form Factors from Lattice QCD using 2+1 Flavor Domain Wall Fermions on Fine Lattices and Chiral Perturbation Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Syritsyn%2C+S+N">S. N. Syritsyn</a>, <a href="/search/hep-lat?searchtype=author&query=Bratt%2C+J+D">J. D. Bratt</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+M+F">M. F. Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Meyer%2C+H+B">H. B. Meyer</a>, <a href="/search/hep-lat?searchtype=author&query=Negele%2C+J+W">J. W. Negele</a>, <a href="/search/hep-lat?searchtype=author&query=Pochinsky%2C+A+V">A. V. Pochinsky</a>, <a href="/search/hep-lat?searchtype=author&query=Procura%2C+M">M. Procura</a>, <a href="/search/hep-lat?searchtype=author&query=Engelhardt%2C+M">M. Engelhardt</a>, <a href="/search/hep-lat?searchtype=author&query=Hagler%2C+P">Ph. Hagler</a>, <a href="/search/hep-lat?searchtype=author&query=Hemmert%2C+T+R">T. R. Hemmert</a>, <a href="/search/hep-lat?searchtype=author&query=Schroers%2C+W">W. Schroers</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0907.4194v1-abstract-short" style="display: inline;"> We present a high-statistics calculation of nucleon electromagnetic form factors in $N_f=2+1$ lattice QCD using domain wall quarks on fine lattices, to attain a new level of precision in systematic and statistical errors. Our calculations use $32^3 \times 64$ lattices with lattice spacing a=0.084 fm for pion masses of 297, 355, and 403 MeV, and we perform an overdetermined analysis using on the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0907.4194v1-abstract-full').style.display = 'inline'; document.getElementById('0907.4194v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0907.4194v1-abstract-full" style="display: none;"> We present a high-statistics calculation of nucleon electromagnetic form factors in $N_f=2+1$ lattice QCD using domain wall quarks on fine lattices, to attain a new level of precision in systematic and statistical errors. Our calculations use $32^3 \times 64$ lattices with lattice spacing a=0.084 fm for pion masses of 297, 355, and 403 MeV, and we perform an overdetermined analysis using on the order of 3600 to 7000 measurements to calculate nucleon electric and magnetic form factors up to $Q^2 \approx$ 1.05 GeV$^2$. Results are shown to be consistent with those obtained using valence domain wall quarks with improved staggered sea quarks, and using coarse domain wall lattices. We determine the isovector Dirac radius $r_1^v$, Pauli radius $r_2^v$ and anomalous magnetic moment $魏_v$. We also determine connected contributions to the corresponding isoscalar observables. We extrapolate these observables to the physical pion mass using two different formulations of two-flavor chiral effective field theory at one loop: the heavy baryon Small Scale Expansion (SSE) and covariant baryon chiral perturbation theory. The isovector results and the connected contributions to the isoscalar results are compared with experiment, and the need for calculations at smaller pion masses is discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0907.4194v1-abstract-full').style.display = 'none'; document.getElementById('0907.4194v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">44 pages, 40 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP-4032 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D81:034507,2010 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0903.3063">arXiv:0903.3063</a> <span> [<a href="https://arxiv.org/pdf/0903.3063">pdf</a>, <a href="https://arxiv.org/ps/0903.3063">ps</a>, <a href="https://arxiv.org/format/0903.3063">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Nucleon Structure with Domain Wall Fermions at a = 0.084 fm </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Syritsyn%2C+S+N">S. N. Syritsyn</a>, <a href="/search/hep-lat?searchtype=author&query=Bratt%2C+J+D">J. D. Bratt</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+M+F">M. F. Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Meyer%2C+H+B">H. B. Meyer</a>, <a href="/search/hep-lat?searchtype=author&query=Negele%2C+J+W">J. W. Negele</a>, <a href="/search/hep-lat?searchtype=author&query=Pochinsky%2C+A+V">A. V. Pochinsky</a>, <a href="/search/hep-lat?searchtype=author&query=Procura%2C+M">M. Procura</a>, <a href="/search/hep-lat?searchtype=author&query=Edwards%2C+R+G">R. G. Edwards</a>, <a href="/search/hep-lat?searchtype=author&query=Orginos%2C+K">K. Orginos</a>, <a href="/search/hep-lat?searchtype=author&query=Richards%2C+D+G">D. G. Richards</a>, <a href="/search/hep-lat?searchtype=author&query=Engelhardt%2C+M">M. Engelhardt</a>, <a href="/search/hep-lat?searchtype=author&query=Fleming%2C+G+T">G. T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&query=H%C3%A4gler%2C+P">Ph. H盲gler</a>, <a href="/search/hep-lat?searchtype=author&query=Musch%2C+B">B. Musch</a>, <a href="/search/hep-lat?searchtype=author&query=Renner%2C+D+B">D. B. Renner</a>, <a href="/search/hep-lat?searchtype=author&query=Schroers%2C+W">W. Schroers</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0903.3063v1-abstract-short" style="display: inline;"> We present initial calculations of nucleon matrix elements of twist-two operators with 2+1 flavors of domain wall fermions at a lattice spacing a = 0.084 fm for pion masses down to 300 MeV. We also compare the results with the domain wall calculations on a coarser lattice. </span> <span class="abstract-full has-text-grey-dark mathjax" id="0903.3063v1-abstract-full" style="display: none;"> We present initial calculations of nucleon matrix elements of twist-two operators with 2+1 flavors of domain wall fermions at a lattice spacing a = 0.084 fm for pion masses down to 300 MeV. We also compare the results with the domain wall calculations on a coarser lattice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0903.3063v1-abstract-full').style.display = 'none'; document.getElementById('0903.3063v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 10 figures. Talks presented at the XXVI International Symposium on Lattice Field Theory, July 14 - 19 2008, Williamsburg, Virginia, USA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS LATTICE2008:169,2008 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0810.1933">arXiv:0810.1933</a> <span> [<a href="https://arxiv.org/pdf/0810.1933">pdf</a>, <a href="https://arxiv.org/ps/0810.1933">ps</a>, <a href="https://arxiv.org/format/0810.1933">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Aspects of Precision Calculations of Nucleon Generalized Form Factors with Domain Wall Fermions on an Asqtad Sea </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Bratt%2C+J+D">J. D. Bratt</a>, <a href="/search/hep-lat?searchtype=author&query=Edwards%2C+R+G">R. G. Edwards</a>, <a href="/search/hep-lat?searchtype=author&query=Engelhardt%2C+M">M. Engelhardt</a>, <a href="/search/hep-lat?searchtype=author&query=Fleming%2C+G+T">G. T. Fleming</a>, <a href="/search/hep-lat?searchtype=author&query=Hagler%2C+P">Ph. Hagler</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+M+F">M. F. Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Meyer%2C+H+B">H. B. Meyer</a>, <a href="/search/hep-lat?searchtype=author&query=Musch%2C+B">B. Musch</a>, <a href="/search/hep-lat?searchtype=author&query=Negele%2C+J+W">J. W. Negele</a>, <a href="/search/hep-lat?searchtype=author&query=Orginos%2C+K">K. Orginos</a>, <a href="/search/hep-lat?searchtype=author&query=Pochinsky%2C+A+V">A. V. Pochinsky</a>, <a href="/search/hep-lat?searchtype=author&query=Procura%2C+M">M. Procura</a>, <a href="/search/hep-lat?searchtype=author&query=Renner%2C+D+B">D. B. Renner</a>, <a href="/search/hep-lat?searchtype=author&query=Richards%2C+D+G">D. G. Richards</a>, <a href="/search/hep-lat?searchtype=author&query=Schroers%2C+W">W. Schroers</a>, <a href="/search/hep-lat?searchtype=author&query=Syritsyn%2C+S">S. Syritsyn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0810.1933v1-abstract-short" style="display: inline;"> In order to advance lattice calculations of moments of unpolarized, helicity, and transversity distributions, electromagnetic form factors, and generalized form factors of the nucleon to a new level of precision, this work investigates several key aspects of precision lattice calculations. We calculate the number of configurations required for constant statistical errors as a function of pion ma… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0810.1933v1-abstract-full').style.display = 'inline'; document.getElementById('0810.1933v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0810.1933v1-abstract-full" style="display: none;"> In order to advance lattice calculations of moments of unpolarized, helicity, and transversity distributions, electromagnetic form factors, and generalized form factors of the nucleon to a new level of precision, this work investigates several key aspects of precision lattice calculations. We calculate the number of configurations required for constant statistical errors as a function of pion mass, describe the coherent sink method to help achieve these statistics, examine the statistical correlations between separate measurements, study correlations in the behavior of form factors at different momentum transfer, examine volume dependence, and compare mixed action results with those using comparable dynamical domain wall configurations. We also show selected form factor results and comment on the QCD evolution of our calculations of the flavor non-singlet nucleon angular momentum. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0810.1933v1-abstract-full').style.display = 'none'; document.getElementById('0810.1933v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2008. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 17 figures. Talks presented at the XXVI International Symposium on Lattice Field Theory, July 14 - 19 2008, Williamsburg, Virginia, USA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP 3991 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS LATTICE2008:141,2008 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0808.3264">arXiv:0808.3264</a> <span> [<a href="https://arxiv.org/pdf/0808.3264">pdf</a>, <a href="https://arxiv.org/ps/0808.3264">ps</a>, <a href="https://arxiv.org/format/0808.3264">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.78.094505">10.1103/PhysRevD.78.094505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> K to pi and K to 0 in 2+1 Flavor Partially Quenched Chiral Perturbation Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Aubin%2C+C">C. Aubin</a>, <a href="/search/hep-lat?searchtype=author&query=Laiho%2C+J">J. Laiho</a>, <a href="/search/hep-lat?searchtype=author&query=Li%2C+S">S. Li</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+M+F">M. F. Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0808.3264v2-abstract-short" style="display: inline;"> We calculate results for K to pi and K to 0 matrix elements to next-to-leading order in 2+1 flavor partially quenched chiral perturbation theory. Results are presented for both the Delta I=1/2 and 3/2 channels, for chiral operators corresponding to current-current, gluonic penguin, and electroweak penguin 4-quark operators. These formulas are useful for studying the chiral behavior of currently… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0808.3264v2-abstract-full').style.display = 'inline'; document.getElementById('0808.3264v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0808.3264v2-abstract-full" style="display: none;"> We calculate results for K to pi and K to 0 matrix elements to next-to-leading order in 2+1 flavor partially quenched chiral perturbation theory. Results are presented for both the Delta I=1/2 and 3/2 channels, for chiral operators corresponding to current-current, gluonic penguin, and electroweak penguin 4-quark operators. These formulas are useful for studying the chiral behavior of currently available 2+1 flavor lattice QCD results, from which the low energy constants of the chiral effective theory can be determined. The low energy constants of these matrix elements are necessary for an understanding of the Delta I=1/2 rule, and for calculations of epsilon'/epsilon using current lattice QCD simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0808.3264v2-abstract-full').style.display = 'none'; document.getElementById('0808.3264v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2008; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 August, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2008. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">43 pages, 2 figures, uses RevTeX, added and updated references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D78:094505,2008 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0806.4549">arXiv:0806.4549</a> <span> [<a href="https://arxiv.org/pdf/0806.4549">pdf</a>, <a href="https://arxiv.org/ps/0806.4549">ps</a>, <a href="https://arxiv.org/format/0806.4549">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.79.054502">10.1103/PhysRevD.79.054502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Light hadron spectroscopy using domain wall valence quarks on an Asqtad sea </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Walker-Loud%2C+A">Andre Walker-Loud</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&query=Richards%2C+D+G">D. G. Richards</a>, <a href="/search/hep-lat?searchtype=author&query=Edwards%2C+R+G">R. G. Edwards</a>, <a href="/search/hep-lat?searchtype=author&query=Engelhardt%2C+M">M. Engelhardt</a>, <a href="/search/hep-lat?searchtype=author&query=Flemming%2C+G+T">G. T. Flemming</a>, <a href="/search/hep-lat?searchtype=author&query=Hagler%2C+P">Ph. Hagler</a>, <a href="/search/hep-lat?searchtype=author&query=Musch%2C+B">B. Musch</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+M+F">M. F. Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Meyer%2C+H+B">Harvey B. Meyer</a>, <a href="/search/hep-lat?searchtype=author&query=Negele%2C+J+W">John W. Negele</a>, <a href="/search/hep-lat?searchtype=author&query=Pochinsky%2C+A+V">A. V. Pochinsky</a>, <a href="/search/hep-lat?searchtype=author&query=Procura%2C+M">Massimiliano Procura</a>, <a href="/search/hep-lat?searchtype=author&query=Syritsyn%2C+S">Sergey Syritsyn</a>, <a href="/search/hep-lat?searchtype=author&query=Morningstar%2C+C+J">C. J. Morningstar</a>, <a href="/search/hep-lat?searchtype=author&query=Renner%2C+D+B">D. B. Renner</a>, <a href="/search/hep-lat?searchtype=author&query=Schroers%2C+W">W. Schroers</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0806.4549v2-abstract-short" style="display: inline;"> We calculate the light hadron spectrum in full QCD using two plus one flavor Asqtad sea quarks and domain wall valence quarks. Meson and baryon masses are calculated on a lattice of spatial size $L \approx 2.5$\texttt{fm}, and a lattice spacing of $a \approx 0.124$\texttt{fm}, for pion masses as light as $m_蟺\approx 300$\texttt{MeV}, and compared with the results by the MILC collaboration with A… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0806.4549v2-abstract-full').style.display = 'inline'; document.getElementById('0806.4549v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0806.4549v2-abstract-full" style="display: none;"> We calculate the light hadron spectrum in full QCD using two plus one flavor Asqtad sea quarks and domain wall valence quarks. Meson and baryon masses are calculated on a lattice of spatial size $L \approx 2.5$\texttt{fm}, and a lattice spacing of $a \approx 0.124$\texttt{fm}, for pion masses as light as $m_蟺\approx 300$\texttt{MeV}, and compared with the results by the MILC collaboration with Asqtad valence quarks at the same lattice spacing. Two- and three-flavor chiral extrapolations of the baryon masses are performed using both continuum and mixed-action heavy baryon chiral perturbation theory. Both the three-flavor and two-flavor functional forms describe our lattice results, although the low-energy constants from the next-to-leading order SU(3) fits are inconsistent with their phenomenological values. Next-to-next-to-leading order SU(2) continuum formulae provide a good fit to the data and yield and extrapolated nucleon mass consistent with experiment, but the convergence pattern indicates that even our lightest pion mass may be at the upper end of the chiral regime. Surprisingly, our nucleon masses are essentially lineaer in $m_蟺$ over our full range of pion masses, and we show this feature is common to all recent dynamical calculations of the nucleon mass. The origin of this linearity is not presently understood, and lighter pion masses and increased control of systematic errors will be needed to resolve this puzzling behavior. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0806.4549v2-abstract-full').style.display = 'none'; document.getElementById('0806.4549v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 March, 2009; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 June, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2008. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">version published in PRD, 41 pages, 16 figures, 20 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP 3954, TUM-T39-08-11, UMD-40762-412 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D79:054502,2009 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0804.0473">arXiv:0804.0473</a> <span> [<a href="https://arxiv.org/pdf/0804.0473">pdf</a>, <a href="https://arxiv.org/ps/0804.0473">ps</a>, <a href="https://arxiv.org/format/0804.0473">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.78.114509">10.1103/PhysRevD.78.114509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Physical Results from 2+1 Flavor Domain Wall QCD and SU(2) Chiral Perturbation Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Allton%2C+C">C. Allton</a>, <a href="/search/hep-lat?searchtype=author&query=Antonio%2C+D+J">D. J. Antonio</a>, <a href="/search/hep-lat?searchtype=author&query=Aoki%2C+Y">Y. Aoki</a>, <a href="/search/hep-lat?searchtype=author&query=Blum%2C+T">T. Blum</a>, <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P+A">P. A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Christ%2C+N+H">N. H. Christ</a>, <a href="/search/hep-lat?searchtype=author&query=Cohen%2C+S+D">S. D. Cohen</a>, <a href="/search/hep-lat?searchtype=author&query=Clark%2C+M+A">M. A. Clark</a>, <a href="/search/hep-lat?searchtype=author&query=Dawson%2C+C">C. Dawson</a>, <a href="/search/hep-lat?searchtype=author&query=Donnellan%2C+M+A">M. A. Donnellan</a>, <a href="/search/hep-lat?searchtype=author&query=Flynn%2C+J+M">J. M. Flynn</a>, <a href="/search/hep-lat?searchtype=author&query=Hart%2C+A">A. Hart</a>, <a href="/search/hep-lat?searchtype=author&query=Izubuchi%2C+T">T. Izubuchi</a>, <a href="/search/hep-lat?searchtype=author&query=Juttner%2C+A">A. Juttner</a>, <a href="/search/hep-lat?searchtype=author&query=Jung%2C+C">C. Jung</a>, <a href="/search/hep-lat?searchtype=author&query=Kennedy%2C+A+D">A. D. Kennedy</a>, <a href="/search/hep-lat?searchtype=author&query=Kenway%2C+R+D">R. D. Kenway</a>, <a href="/search/hep-lat?searchtype=author&query=Li%2C+M">M. Li</a>, <a href="/search/hep-lat?searchtype=author&query=Li%2C+S">S. Li</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+M+F">M. F. Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Mawhinney%2C+R+D">R. D. Mawhinney</a>, <a href="/search/hep-lat?searchtype=author&query=Maynard%2C+C+M">C. M. Maynard</a>, <a href="/search/hep-lat?searchtype=author&query=Ohta%2C+S">S. Ohta</a>, <a href="/search/hep-lat?searchtype=author&query=Pendleton%2C+B+J">B. J. Pendleton</a>, <a href="/search/hep-lat?searchtype=author&query=Sachrajda%2C+C+T">C. T. Sachrajda</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0804.0473v1-abstract-short" style="display: inline;"> We have simulated QCD using 2+1 flavors of domain wall quarks on a $(2.74 {\rm fm})^3$ volume with an inverse lattice scale of $a^{-1} = 1.729(28)$ GeV. The up and down (light) quarks are degenerate in our calculations and we have used four values for the ratio of light quark masses to the strange (heavy) quark mass in our simulations: 0.217, 0.350, 0.617 and 0.884. We have measured pseudoscalar… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0804.0473v1-abstract-full').style.display = 'inline'; document.getElementById('0804.0473v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0804.0473v1-abstract-full" style="display: none;"> We have simulated QCD using 2+1 flavors of domain wall quarks on a $(2.74 {\rm fm})^3$ volume with an inverse lattice scale of $a^{-1} = 1.729(28)$ GeV. The up and down (light) quarks are degenerate in our calculations and we have used four values for the ratio of light quark masses to the strange (heavy) quark mass in our simulations: 0.217, 0.350, 0.617 and 0.884. We have measured pseudoscalar meson masses and decay constants, the kaon bag parameter $B_K$ and vector meson couplings. We have used SU(2) chiral perturbation theory, which assumes only the up and down quark masses are small, and SU(3) chiral perturbation theory to extrapolate to the physical values for the light quark masses. While next-to-leading order formulae from both approaches fit our data for light quarks, we find the higher order corrections for SU(3) very large, making such fits unreliable. We also find that SU(3) does not fit our data when the quark masses are near the physical strange quark mass. Thus, we rely on SU(2) chiral perturbation theory for accurate results. We use the masses of the $惟$ baryon, and the $蟺$ and $K$ mesons to set the lattice scale and determine the quark masses. We then find $f_蟺= 124.1(3.6)_{\rm stat}(6.9)_{\rm syst} {\rm MeV}$, $f_K = 149.6(3.6)_{\rm stat}(6.3)_{\rm syst} {\rm MeV}$ and $f_K/f_蟺= 1.205(0.018)_{\rm stat}(0.062)_{\rm syst}$. Using non-perturbative renormalization to relate lattice regularized quark masses to RI-MOM masses, and perturbation theory to relate these to $\bar{\rm MS}$ we find $ m_{ud}^{\bar{\rm MS}}(2 {\rm GeV}) = 3.72(0.16)_{\rm stat}(0.33)_{\rm ren}(0.18)_{\rm syst} {\rm MeV}$ and $m_{s}^{\bar{\rm MS}}(2 {\rm GeV}) = 107.3(4.4)_{\rm stat}(9.7)_{\rm ren}(4.9)_{\rm syst} {\rm MeV}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0804.0473v1-abstract-full').style.display = 'none'; document.getElementById('0804.0473v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2008. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">133 pages, 25 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> BNL-HET-08/5, CU-TP-1182, Edinburgh 2008/06, KEK-TH-1232, RBRC-730, SHEP-0812 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D78:114509,2008 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0801.4016">arXiv:0801.4016</a> <span> [<a href="https://arxiv.org/pdf/0801.4016">pdf</a>, <a href="https://arxiv.org/ps/0801.4016">ps</a>, <a href="https://arxiv.org/format/0801.4016">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.100.171602">10.1103/PhysRevLett.100.171602 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nucleon axial charge in 2+1 flavor dynamical lattice QCD with domain wall fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Yamazaki%2C+T">T. Yamazaki</a>, <a href="/search/hep-lat?searchtype=author&query=Aoki%2C+Y">Y. Aoki</a>, <a href="/search/hep-lat?searchtype=author&query=Blum%2C+T">T. Blum</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+H+W">H. W. Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+M+F">M. F. Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Ohta%2C+S">S. Ohta</a>, <a href="/search/hep-lat?searchtype=author&query=Sasaki%2C+S">S. Sasaki</a>, <a href="/search/hep-lat?searchtype=author&query=Tweedie%2C+R+J">R. J. Tweedie</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">J. M. Zanotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0801.4016v2-abstract-short" style="display: inline;"> We present results for the nucleon axial charge g_A at a fixed lattice spacing of 1/a=1.73(3) GeV using 2+1 flavors of domain wall fermions on size 16^3x32 and 24^3x64lattices (L=1.8 and 2.7 fm) with length 16 in the fifth dimension. The length of the Monte Carlo trajectory at the lightest m_蟺is 7360 units, including 900 for thermalization. We find finite volume effects are larger than the pion… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0801.4016v2-abstract-full').style.display = 'inline'; document.getElementById('0801.4016v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0801.4016v2-abstract-full" style="display: none;"> We present results for the nucleon axial charge g_A at a fixed lattice spacing of 1/a=1.73(3) GeV using 2+1 flavors of domain wall fermions on size 16^3x32 and 24^3x64lattices (L=1.8 and 2.7 fm) with length 16 in the fifth dimension. The length of the Monte Carlo trajectory at the lightest m_蟺is 7360 units, including 900 for thermalization. We find finite volume effects are larger than the pion mass dependence at m_蟺= 330 MeV. We also find that g_A exhibits a scaling with the single variable m_蟺L which can also be seen in previous two-flavor domain wall and Wilson fermion calculati ons. Using this scaling to eliminate the finite-volume effect, we obtain g_A = 1.20(6)(4) at the physical pion mass, m_蟺= 135 MeV, where the first and second errors are statistical and systematic. The observed finite-volume scaling also appears in similar quenched simulations, but disappear when V\ge (2.4 fm)^3. We argue this is a dynamical quark effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0801.4016v2-abstract-full').style.display = 'none'; document.getElementById('0801.4016v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2008; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 January, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2008. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages and 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Edinburgh 2007/44, KEK-TH-1192, RBRC-693 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.Lett.100:171602,2008 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0710.0536">arXiv:0710.0536</a> <span> [<a href="https://arxiv.org/pdf/0710.0536">pdf</a>, <a href="https://arxiv.org/ps/0710.0536">ps</a>, <a href="https://arxiv.org/format/0710.0536">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Chiral Limit and Light Quark Masses in 2+1 Flavor Domain Wall QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Collaboration%2C+R">RBC-UKQCD Collaboration</a>, <a href="/search/hep-lat?searchtype=author&query=%3A"> :</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+M+F">M. F. Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Scholz%2C+E+E">E. E. Scholz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0710.0536v1-abstract-short" style="display: inline;"> We present results for meson masses and decay constants measured on 24^3x64 lattices using the domain wall fermion formulation with an extension of the fifth dimension of L_s=16 for N_f=2+1 dynamical quark flavors. The lightest dynamical meson mass in our set-up is around 331 MeV, while partially quenched mesons reach masses as low as 250 MeV. The applicability of SU(3)xSU(3) and SU(2)xSU(2) (pa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0710.0536v1-abstract-full').style.display = 'inline'; document.getElementById('0710.0536v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0710.0536v1-abstract-full" style="display: none;"> We present results for meson masses and decay constants measured on 24^3x64 lattices using the domain wall fermion formulation with an extension of the fifth dimension of L_s=16 for N_f=2+1 dynamical quark flavors. The lightest dynamical meson mass in our set-up is around 331 MeV, while partially quenched mesons reach masses as low as 250 MeV. The applicability of SU(3)xSU(3) and SU(2)xSU(2) (partially quenched) chiral perturbation theory will be compared and we quote values for the low-energy constants from both approaches. We will extract the average light quark and strange quark masses and use a non-perturbative renormalization technique (RI/MOM) to quote their physical values. The pion and kaon decay constants are determined at those values from our chiral fits and their ratio is used to obtain the CKM-matrix element |V_us|. The results presented here include statistical errors only. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0710.0536v1-abstract-full').style.display = 'none'; document.getElementById('0710.0536v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2007; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2007. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 6 figures, 3 tables, joint proceedings for talks presented at the XXV International Symposium on Lattice Field Theory, July 30 - August 4 2007, Regensburg, Germany</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> BNL-HET-07/17 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS LAT2007:120,2007 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0705.2340">arXiv:0705.2340</a> <span> [<a href="https://arxiv.org/pdf/0705.2340">pdf</a>, <a href="https://arxiv.org/ps/0705.2340">ps</a>, <a href="https://arxiv.org/format/0705.2340">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.77.014509">10.1103/PhysRevD.77.014509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Localization and chiral symmetry in 2+1 flavor domain wall QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Antonio%2C+D+J">David J. Antonio</a>, <a href="/search/hep-lat?searchtype=author&query=Bowler%2C+K+C">Kenneth C. Bowler</a>, <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P+A">Peter A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Christ%2C+N+H">Norman H. Christ</a>, <a href="/search/hep-lat?searchtype=author&query=Clark%2C+M+A">Michael A. Clark</a>, <a href="/search/hep-lat?searchtype=author&query=Cohen%2C+S+D">Saul D. Cohen</a>, <a href="/search/hep-lat?searchtype=author&query=Dawson%2C+C">Chris Dawson</a>, <a href="/search/hep-lat?searchtype=author&query=Hart%2C+A">Alistair Hart</a>, <a href="/search/hep-lat?searchtype=author&query=Jo%C3%B3%2C+B">Balint Jo贸</a>, <a href="/search/hep-lat?searchtype=author&query=Jung%2C+C">Chulwoo Jung</a>, <a href="/search/hep-lat?searchtype=author&query=Kenway%2C+R+D">Richard D. Kenway</a>, <a href="/search/hep-lat?searchtype=author&query=Li%2C+S">Shu Li</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+M">Meifeng Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Mawhinney%2C+R+D">Robert D. Mawhinney</a>, <a href="/search/hep-lat?searchtype=author&query=Maynard%2C+C+M">Christopher M. Maynard</a>, <a href="/search/hep-lat?searchtype=author&query=Ohta%2C+S">Shigemi Ohta</a>, <a href="/search/hep-lat?searchtype=author&query=Tweedie%2C+R+J">Robert J. Tweedie</a>, <a href="/search/hep-lat?searchtype=author&query=Yamaguchi%2C+A">Azusa Yamaguchi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0705.2340v4-abstract-short" style="display: inline;"> We present results for the dependence of the residual mass of domain wall fermions (DWF) on the size of the fifth dimension and its relation to the density and localization properties of low-lying eigenvectors of the corresponding hermitian Wilson Dirac operator relevant to simulations of 2+1 flavor domain wall QCD. Using the DBW2 and Iwasaki gauge actions, we generate ensembles of configuration… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0705.2340v4-abstract-full').style.display = 'inline'; document.getElementById('0705.2340v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0705.2340v4-abstract-full" style="display: none;"> We present results for the dependence of the residual mass of domain wall fermions (DWF) on the size of the fifth dimension and its relation to the density and localization properties of low-lying eigenvectors of the corresponding hermitian Wilson Dirac operator relevant to simulations of 2+1 flavor domain wall QCD. Using the DBW2 and Iwasaki gauge actions, we generate ensembles of configurations with a $16^3\times 32$ space-time volume and an extent of 8 in the fifth dimension for the sea quarks. We demonstrate the existence of a regime where the degree of locality, the size of chiral symmetry breaking and the rate of topology change can be acceptable for inverse lattice spacings $a^{-1} \ge 1.6$ GeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0705.2340v4-abstract-full').style.display = 'none'; document.getElementById('0705.2340v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2007; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 May, 2007; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2007. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">59 Pages, 23 figures, 1 MPG linked</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CU-TP-1160, Edinburgh 2007/3, RBRC-649, KEK-TH-1138 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D77:014509,2008 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/hep-ph/0702042">arXiv:hep-ph/0702042</a> <span> [<a href="https://arxiv.org/pdf/hep-ph/0702042">pdf</a>, <a href="https://arxiv.org/ps/hep-ph/0702042">ps</a>, <a href="https://arxiv.org/format/hep-ph/0702042">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.100.032001">10.1103/PhysRevLett.100.032001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neutral kaon mixing from 2+1 flavor Domain Wall QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Antonio%2C+D+J">D. J. Antonio</a>, <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P+A">P. A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Blum%2C+T">T. Blum</a>, <a href="/search/hep-lat?searchtype=author&query=Christ%2C+N+H">N. H. Christ</a>, <a href="/search/hep-lat?searchtype=author&query=Cohen%2C+S+D">S. D. Cohen</a>, <a href="/search/hep-lat?searchtype=author&query=Dawson%2C+C">C. Dawson</a>, <a href="/search/hep-lat?searchtype=author&query=Izubuchi%2C+T">T. Izubuchi</a>, <a href="/search/hep-lat?searchtype=author&query=Kenway%2C+R+D">R. D. Kenway</a>, <a href="/search/hep-lat?searchtype=author&query=Jung%2C+C">C. Jung</a>, <a href="/search/hep-lat?searchtype=author&query=Li%2C+S">S. Li</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+M+F">M. F. Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Mawhinney%2C+R+D">R. D. Mawhinney</a>, <a href="/search/hep-lat?searchtype=author&query=Noaki%2C+J">J. Noaki</a>, <a href="/search/hep-lat?searchtype=author&query=Ohta%2C+S">S. Ohta</a>, <a href="/search/hep-lat?searchtype=author&query=Pendleton%2C+B+J">B. J. Pendleton</a>, <a href="/search/hep-lat?searchtype=author&query=Scholz%2C+E+E">E. E. Scholz</a>, <a href="/search/hep-lat?searchtype=author&query=Soni%2C+A">A. Soni</a>, <a href="/search/hep-lat?searchtype=author&query=Tweedie%2C+R+J">R. J. Tweedie</a>, <a href="/search/hep-lat?searchtype=author&query=Yamaguchi%2C+A">A. Yamaguchi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="hep-ph/0702042v4-abstract-short" style="display: inline;"> We present the first results for neutral kaon mixing using 2+1 flavors of domain wall fermions. A new approach is used to extrapolate to the physical up and down quark masses from our numerical studies with pion masses in the range 240 -- 420 MeV; only $SU(2)_L \times SU(2)_R$ chiral symmetry is assumed and the kaon is not assumed to be light. Our main result is… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('hep-ph/0702042v4-abstract-full').style.display = 'inline'; document.getElementById('hep-ph/0702042v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="hep-ph/0702042v4-abstract-full" style="display: none;"> We present the first results for neutral kaon mixing using 2+1 flavors of domain wall fermions. A new approach is used to extrapolate to the physical up and down quark masses from our numerical studies with pion masses in the range 240 -- 420 MeV; only $SU(2)_L \times SU(2)_R$ chiral symmetry is assumed and the kaon is not assumed to be light. Our main result is $B_K^{\bar{\rm MS}}(2 \mathrm{GeV}) = 0.524(10)(28)$ where the first error is statistical and the second incorporates estimates for all systematic errors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('hep-ph/0702042v4-abstract-full').style.display = 'none'; document.getElementById('hep-ph/0702042v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2007; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 February, 2007; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2007. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 4 figures. RBC and UKQCD collaborations</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Edinburgh 2007/2, RBRC-638,CU-TP-1174,KEK-TH-1131 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.Lett.100:032001,2008 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/hep-lat/0701013">arXiv:hep-lat/0701013</a> <span> [<a href="https://arxiv.org/pdf/hep-lat/0701013">pdf</a>, <a href="https://arxiv.org/ps/hep-lat/0701013">ps</a>, <a href="https://arxiv.org/format/hep-lat/0701013">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.76.014504">10.1103/PhysRevD.76.014504 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> 2+1 flavor domain wall QCD on a (2 fm)^3 lattice: light meson spectroscopy with Ls = 16 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Allton%2C+C">C. Allton</a>, <a href="/search/hep-lat?searchtype=author&query=Antonio%2C+D+J">D. J. Antonio</a>, <a href="/search/hep-lat?searchtype=author&query=Blum%2C+T">T. Blum</a>, <a href="/search/hep-lat?searchtype=author&query=Bowler%2C+K+C">K. C. Bowler</a>, <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P+A">P. A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Christ%2C+N+H">N. H. Christ</a>, <a href="/search/hep-lat?searchtype=author&query=Cohen%2C+S+D">S. D. Cohen</a>, <a href="/search/hep-lat?searchtype=author&query=Clark%2C+M+A">M. A. Clark</a>, <a href="/search/hep-lat?searchtype=author&query=Dawson%2C+C">C. Dawson</a>, <a href="/search/hep-lat?searchtype=author&query=Hart%2C+A">A. Hart</a>, <a href="/search/hep-lat?searchtype=author&query=Hashimoto%2C+K">K. Hashimoto</a>, <a href="/search/hep-lat?searchtype=author&query=Izubuchi%2C+T">T. Izubuchi</a>, <a href="/search/hep-lat?searchtype=author&query=Juttner%2C+A">A. Juttner</a>, <a href="/search/hep-lat?searchtype=author&query=Jung%2C+C">C. Jung</a>, <a href="/search/hep-lat?searchtype=author&query=Kennedy%2C+A+D">A. D. Kennedy</a>, <a href="/search/hep-lat?searchtype=author&query=Kenway%2C+R+D">R. D. Kenway</a>, <a href="/search/hep-lat?searchtype=author&query=Li%2C+M">M. Li</a>, <a href="/search/hep-lat?searchtype=author&query=Li%2C+S">S. Li</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+M+F">M. F. Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Mawhinney%2C+R+D">R. D. Mawhinney</a>, <a href="/search/hep-lat?searchtype=author&query=Maynard%2C+C+M">C. M. Maynard</a>, <a href="/search/hep-lat?searchtype=author&query=Noaki%2C+J">J. Noaki</a>, <a href="/search/hep-lat?searchtype=author&query=Ohta%2C+S">S. Ohta</a>, <a href="/search/hep-lat?searchtype=author&query=Pendleton%2C+B+J">B. J. Pendleton</a>, <a href="/search/hep-lat?searchtype=author&query=Sasaki%2C+S">S. Sasaki</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="hep-lat/0701013v2-abstract-short" style="display: inline;"> We present results for light meson masses and pseudoscalar decay constants from the first of a series of lattice calculations with 2+1 dynamical flavors of domain wall fermions and the Iwasaki gauge action. The work reported here was done at a fixed lattice spacing of about 0.12 fm on a 16^3\times32 lattice, which amounts to a spatial volume of (2 fm)^3 in physical units. The number of sites in… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('hep-lat/0701013v2-abstract-full').style.display = 'inline'; document.getElementById('hep-lat/0701013v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="hep-lat/0701013v2-abstract-full" style="display: none;"> We present results for light meson masses and pseudoscalar decay constants from the first of a series of lattice calculations with 2+1 dynamical flavors of domain wall fermions and the Iwasaki gauge action. The work reported here was done at a fixed lattice spacing of about 0.12 fm on a 16^3\times32 lattice, which amounts to a spatial volume of (2 fm)^3 in physical units. The number of sites in the fifth dimension is 16, which gives m_{res} = 0.00308(4) in these simulations. Three values of input light sea quark masses, m_l^{sea} \approx 0.85 m_s, 0.59 m_s and 0.33 m_s were used to allow for extrapolations to the physical light quark limit, whilst the heavier sea quark mass was fixed to approximately the physical strange quark mass m_s. The exact rational hybrid Monte Carlo algorithm was used to evaluate the fractional powers of the fermion determinants in the ensemble generation. We have found that f_蟺= 127(4) MeV, f_K = 157(5) MeV and f_K/f_蟺= 1.24(2), where the errors are statistical only, which are in good agreement with the experimental values. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('hep-lat/0701013v2-abstract-full').style.display = 'none'; document.getElementById('hep-lat/0701013v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2007; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 January, 2007; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2007. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">RBC and UKQCD Collaborations. 17 pages, 14 figures. Typeset with ReVTEX4. v2: replaced with the version published in PRD with improved introduction</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> BNL-HET-07/1, CU-TP-1175, Edinburgh 2007/1, KEK-TH-1132, RBRC-637, SHEP-0701, SWAT/07/502 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D76:014504,2007 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/hep-lat/0612005">arXiv:hep-lat/0612005</a> <span> [<a href="https://arxiv.org/pdf/hep-lat/0612005">pdf</a>, <a href="https://arxiv.org/ps/hep-lat/0612005">ps</a>, <a href="https://arxiv.org/format/hep-lat/0612005">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.75.114501">10.1103/PhysRevD.75.114501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First results from 2+1-Flavor Domain Wall QCD: Mass Spectrum, Topology Change and Chiral Symmetry with $L_s=8$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Antonio%2C+D+J">D. J. Antonio</a>, <a href="/search/hep-lat?searchtype=author&query=Blum%2C+T">T. Blum</a>, <a href="/search/hep-lat?searchtype=author&query=Bowler%2C+K+C">K. C. Bowler</a>, <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P+A">P. A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Christ%2C+N+H">N. H. Christ</a>, <a href="/search/hep-lat?searchtype=author&query=Cohen%2C+S+D">S. D. Cohen</a>, <a href="/search/hep-lat?searchtype=author&query=Clark%2C+M+A">M. A. Clark</a>, <a href="/search/hep-lat?searchtype=author&query=Dawson%2C+C">C. Dawson</a>, <a href="/search/hep-lat?searchtype=author&query=Hart%2C+A">A. Hart</a>, <a href="/search/hep-lat?searchtype=author&query=Hashimoto%2C+K">K. Hashimoto</a>, <a href="/search/hep-lat?searchtype=author&query=Izubuchi%2C+T">T. Izubuchi</a>, <a href="/search/hep-lat?searchtype=author&query=Jo%C3%B3%2C+B">B. Jo贸</a>, <a href="/search/hep-lat?searchtype=author&query=Jung%2C+C">C. Jung</a>, <a href="/search/hep-lat?searchtype=author&query=Kennedy%2C+A+D">A. D. Kennedy</a>, <a href="/search/hep-lat?searchtype=author&query=Kenway%2C+R+D">R. D. Kenway</a>, <a href="/search/hep-lat?searchtype=author&query=Li%2C+S">S. Li</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+H+W">H. W. Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+M+F">M. F. Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Mawhinney%2C+R+D">R. D. Mawhinney</a>, <a href="/search/hep-lat?searchtype=author&query=Maynard%2C+C+M">C. M. Maynard</a>, <a href="/search/hep-lat?searchtype=author&query=Noaki%2C+J">J. Noaki</a>, <a href="/search/hep-lat?searchtype=author&query=Ohta%2C+S">S. Ohta</a>, <a href="/search/hep-lat?searchtype=author&query=Sasaki%2C+S">S. Sasaki</a>, <a href="/search/hep-lat?searchtype=author&query=Soni%2C+A">A. Soni</a>, <a href="/search/hep-lat?searchtype=author&query=Tweedie%2C+R+J">R. J. Tweedie</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="hep-lat/0612005v3-abstract-short" style="display: inline;"> We present results for the static interquark potential, light meson and baryon masses, and light pseudoscalar meson decay constants obtained from simulations of domain wall QCD with one dynamical flavour approximating the $s$ quark, and two degenerate dynamical flavours with input bare masses ranging from $m_s$ to $m_s/4$ approximating the $u$ and $d$ quarks. We compare these quantities obtained… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('hep-lat/0612005v3-abstract-full').style.display = 'inline'; document.getElementById('hep-lat/0612005v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="hep-lat/0612005v3-abstract-full" style="display: none;"> We present results for the static interquark potential, light meson and baryon masses, and light pseudoscalar meson decay constants obtained from simulations of domain wall QCD with one dynamical flavour approximating the $s$ quark, and two degenerate dynamical flavours with input bare masses ranging from $m_s$ to $m_s/4$ approximating the $u$ and $d$ quarks. We compare these quantities obtained using the Iwasaki and DBW2 improved gauge actions, and actions with larger rectangle coefficients, on $16^3\times32$ lattices. We seek parameter values at which both the chiral symmetry breaking residual mass due to the finite lattice extent in the fifth dimension and the Monte Carlo time history for topological charge are acceptable for this set of quark masses at lattice spacings above 0.1 fm. We find that the Iwasaki gauge action is best, demonstrating the feasibility of using QCDOC to generate ensembles which are good representations of the QCD path integral on lattices of up to 3 fm in spatial extent with lattice spacings in the range 0.09-0.13 fm. Despite large residual masses and a limited number of sea quark mass values with which to perform chiral extrapolations, our results for light hadronic physics scale and agree with experimental measurements within our statistical uncertainties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('hep-lat/0612005v3-abstract-full').style.display = 'none'; document.getElementById('hep-lat/0612005v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2006; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 December, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2006. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">RBC and UKQCD Collaborations. 82 pages, 34 figures Typos corrected</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> BNL-HET-06/17, CU-TP-1159, Edinburgh 2006/39, KEK-TH-1115, RBRC-631 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D75:114501,2007 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/hep-lat/0610119">arXiv:hep-lat/0610119</a> <span> [<a href="https://arxiv.org/pdf/hep-lat/0610119">pdf</a>, <a href="https://arxiv.org/ps/hep-lat/0610119">ps</a>, <a href="https://arxiv.org/format/hep-lat/0610119">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Light meson masses and non-perturbative renormalisation in 2+1 flavour domain wall QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Allton%2C+C">C. Allton</a>, <a href="/search/hep-lat?searchtype=author&query=Antonio%2C+D+J">D. J. Antonio</a>, <a href="/search/hep-lat?searchtype=author&query=Boyle%2C+P+A">P. A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&query=Dawson%2C+C">C. Dawson</a>, <a href="/search/hep-lat?searchtype=author&query=J%C3%BCttner%2C+A">A. J眉ttner</a>, <a href="/search/hep-lat?searchtype=author&query=Kenway%2C+R+D">R. D. Kenway</a>, <a href="/search/hep-lat?searchtype=author&query=Li%2C+S">S. Li</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+M">M. Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Maynard%2C+C+M">C. M. Maynard</a>, <a href="/search/hep-lat?searchtype=author&query=Noaki%2C+J">J. Noaki</a>, <a href="/search/hep-lat?searchtype=author&query=Pendleton%2C+B+J">B. J. Pendleton</a>, <a href="/search/hep-lat?searchtype=author&query=Tweedie%2C+R+J">R. J. Tweedie</a>, <a href="/search/hep-lat?searchtype=author&query=Yamaguchi%2C+A">A. Yamaguchi</a>, <a href="/search/hep-lat?searchtype=author&query=Zanotti%2C+J+M">J. M. Zanotti</a>, <a href="/search/hep-lat?searchtype=author&query=Collaboration%2C+R">RBC Collaboration</a>, <a href="/search/hep-lat?searchtype=author&query=Collaboration%2C+U">UKQCD Collaboration</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="hep-lat/0610119v1-abstract-short" style="display: inline;"> We present results for the light meson masses, the bare strange quark mass and preliminary non-perturbative renormalisation of B_K in 2+1 flavour domain wall QCD. The ensembles used were generated with the Iwasaki gauge action and have a volume of 16^3 x 32 with a fifth dimension size of 16 and an inverse lattice spacing of 1.6 GeV. These ensembles have u and d masses as low as one quarter of th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('hep-lat/0610119v1-abstract-full').style.display = 'inline'; document.getElementById('hep-lat/0610119v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="hep-lat/0610119v1-abstract-full" style="display: none;"> We present results for the light meson masses, the bare strange quark mass and preliminary non-perturbative renormalisation of B_K in 2+1 flavour domain wall QCD. The ensembles used were generated with the Iwasaki gauge action and have a volume of 16^3 x 32 with a fifth dimension size of 16 and an inverse lattice spacing of 1.6 GeV. These ensembles have u and d masses as low as one quarter of the strange quark mass. All data were generated jointly by the UKQCD and RBC collaborations on QCDOC machines. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('hep-lat/0610119v1-abstract-full').style.display = 'none'; document.getElementById('hep-lat/0610119v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2006. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, contribution to Lattice 2006</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Edinburgh 2006/35, SWAT 05/476, SHEP-0634 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS LAT2006:096,2006 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/hep-lat/0610052">arXiv:hep-lat/0610052</a> <span> [<a href="https://arxiv.org/pdf/hep-lat/0610052">pdf</a>, <a href="https://arxiv.org/ps/hep-lat/0610052">ps</a>, <a href="https://arxiv.org/format/hep-lat/0610052">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Chiral extrapolations in 2+1 flavor domain wall fermion simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Lin%2C+M">Meifeng Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="hep-lat/0610052v1-abstract-short" style="display: inline;"> Simulations with 2+1 flavors of domain wall fermions provide us with the opportunity to compare the lattice data directly to the predictions of continuum chiral perturbation theory, up to corrections from the residual chiral symmetry breaking, $m_{res}$, and $O(a)$ lattice artefacts, which are relatively small for domain wall fermions. We present preliminary results for the pseudoscalar meson ma… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('hep-lat/0610052v1-abstract-full').style.display = 'inline'; document.getElementById('hep-lat/0610052v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="hep-lat/0610052v1-abstract-full" style="display: none;"> Simulations with 2+1 flavors of domain wall fermions provide us with the opportunity to compare the lattice data directly to the predictions of continuum chiral perturbation theory, up to corrections from the residual chiral symmetry breaking, $m_{res}$, and $O(a)$ lattice artefacts, which are relatively small for domain wall fermions. We present preliminary results for the pseudoscalar meson masses and decay constants from partially quenched simulations and examine the next-to-leading order chiral extrapolations at small quark masses. The simulations were carried out on two lattice volumes : $16^3\times 32$ and $24^3\times 64$, with the lattice spacing fixed at about 0.1 fm. The subtleties of the chiral fits are discussed. We also explore the roles of $m_{res}$ and $O(a)$ terms in the NLO chiral expansions and their effects on the chiral extrapolations for the pseudoscalar masses and decay constants. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('hep-lat/0610052v1-abstract-full').style.display = 'none'; document.getElementById('hep-lat/0610052v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2006. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures. Talk presented at XXIVth International Symposium on Lattice Field Theory, July 23-28, 2006, Tuscon, Arizona, USA. To appear in PoS(LAT2006)185</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS LAT2006:185,2006 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/hep-lat/0509178">arXiv:hep-lat/0509178</a> <span> [<a href="https://arxiv.org/pdf/hep-lat/0509178">pdf</a>, <a href="https://arxiv.org/ps/hep-lat/0509178">ps</a>, <a href="https://arxiv.org/format/hep-lat/0509178">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Probing the chiral limit of M_pi and f_pi in 2+1 flavor QCD with domain wall fermions from QCDOC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Lin%2C+M">Meifeng Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="hep-lat/0509178v1-abstract-short" style="display: inline;"> We present results for the pseudoscalar meson masses and decay constants on 2+1 flavor DWF configurations with different sea quark masses and an inverse lattice spacing of 1.6(1) GeV, with a focus on chiral fits at small quark masses. The calculation is done on 16^3x32x8 lattices generated with the DBW2 gauge action. </span> <span class="abstract-full has-text-grey-dark mathjax" id="hep-lat/0509178v1-abstract-full" style="display: none;"> We present results for the pseudoscalar meson masses and decay constants on 2+1 flavor DWF configurations with different sea quark masses and an inverse lattice spacing of 1.6(1) GeV, with a focus on chiral fits at small quark masses. The calculation is done on 16^3x32x8 lattices generated with the DBW2 gauge action. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('hep-lat/0509178v1-abstract-full').style.display = 'none'; document.getElementById('hep-lat/0509178v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2005. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 6 figures. typeset with PoS.cls. Talk presented at Lattice 2005 (Hadron Spectrum), Dublin, Ireland, July 25-30</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS LAT2005 (2005) 094 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/hep-lat/0411006">arXiv:hep-lat/0411006</a> <span> [<a href="https://arxiv.org/pdf/hep-lat/0411006">pdf</a>, <a href="https://arxiv.org/ps/hep-lat/0411006">ps</a>, <a href="https://arxiv.org/format/hep-lat/0411006">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.72.114505">10.1103/PhysRevD.72.114505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice QCD with two dynamical flavors of domain wall quarks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Aoki%2C+Y">Y. Aoki</a>, <a href="/search/hep-lat?searchtype=author&query=Blum%2C+T">T. Blum</a>, <a href="/search/hep-lat?searchtype=author&query=Christ%2C+N">N. Christ</a>, <a href="/search/hep-lat?searchtype=author&query=Dawson%2C+C">C. Dawson</a>, <a href="/search/hep-lat?searchtype=author&query=Hashimoto%2C+K">K. Hashimoto</a>, <a href="/search/hep-lat?searchtype=author&query=Izubuchi%2C+T">T. Izubuchi</a>, <a href="/search/hep-lat?searchtype=author&query=Laiho%2C+J+W">J. W. Laiho</a>, <a href="/search/hep-lat?searchtype=author&query=Levkova%2C+L">L. Levkova</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+M">M. Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Mawhinney%2C+R">R. Mawhinney</a>, <a href="/search/hep-lat?searchtype=author&query=Noaki%2C+J">J. Noaki</a>, <a href="/search/hep-lat?searchtype=author&query=Ohta%2C+S">S. Ohta</a>, <a href="/search/hep-lat?searchtype=author&query=Orginos%2C+K">K. Orginos</a>, <a href="/search/hep-lat?searchtype=author&query=Soni%2C+A">A. Soni</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="hep-lat/0411006v1-abstract-short" style="display: inline;"> We present results from the first large-scale study of two flavor QCD using domain wall fermions (DWF), a chirally symmetric fermion formulation which has proven to be very effective in the quenched approximation. We work on lattices of size 16^3x32, with a lattice cut-off of a^{-1}\approx 1.7 GeV, and dynamical (or sea) quark masses in the range m_{strange}/2 \simle m_{sea} \simle m_{strange}.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('hep-lat/0411006v1-abstract-full').style.display = 'inline'; document.getElementById('hep-lat/0411006v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="hep-lat/0411006v1-abstract-full" style="display: none;"> We present results from the first large-scale study of two flavor QCD using domain wall fermions (DWF), a chirally symmetric fermion formulation which has proven to be very effective in the quenched approximation. We work on lattices of size 16^3x32, with a lattice cut-off of a^{-1}\approx 1.7 GeV, and dynamical (or sea) quark masses in the range m_{strange}/2 \simle m_{sea} \simle m_{strange}. After discussing the algorithmic and implementation issues involved in simulating dynamical DWF, we report on the low-lying hadron spectrum, decay constants, static quark potential, and the important kaon weak matrix element describing indirect CP violation in the Standard Model, B_K. In the latter case we include the effect of non-degenerate quark masses (m_s \neq m_u = m_d), finding B_K(MS-bar, 2 GeV) = 0.495(18). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('hep-lat/0411006v1-abstract-full').style.display = 'none'; document.getElementById('hep-lat/0411006v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2004; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2004. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">99 pages, 38 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> BNL-HET-04/11, CU-TP-1115, KANAZAWA-04-14, KEK-TH-992, MIT-CTP-3548, RBRC-426, WUB-04-14 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D72:114505,2005 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/hep-lat/0409115">arXiv:hep-lat/0409115</a> <span> [<a href="https://arxiv.org/pdf/hep-lat/0409115">pdf</a>, <a href="https://arxiv.org/ps/hep-lat/0409115">ps</a>, <a href="https://arxiv.org/format/hep-lat/0409115">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysbps.2004.11.308">10.1016/j.nuclphysbps.2004.11.308 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Rough Gauge Fields, Smearing and Domain Wall Fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Lin%2C+M">Meifeng Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="hep-lat/0409115v1-abstract-short" style="display: inline;"> At a fixed lattice spacing, as determined by say m_蟻, adding additional fermion flavors to a dynamical simulation produces rougher gauge field configurations at the lattice scale. For domain wall fermions, these rough configurations lead to larger residual chiral symmetry breaking and larger values for the residual masses, m_{res}. We discuss ongoing attempts to reduce chiral symmetry breaking f… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('hep-lat/0409115v1-abstract-full').style.display = 'inline'; document.getElementById('hep-lat/0409115v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="hep-lat/0409115v1-abstract-full" style="display: none;"> At a fixed lattice spacing, as determined by say m_蟻, adding additional fermion flavors to a dynamical simulation produces rougher gauge field configurations at the lattice scale. For domain wall fermions, these rough configurations lead to larger residual chiral symmetry breaking and larger values for the residual masses, m_{res}. We discuss ongoing attempts to reduce chiral symmetry breaking for N_f = 3 dynamical domain wall fermion simulations by different smoothing choices for the gauge fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('hep-lat/0409115v1-abstract-full').style.display = 'none'; document.getElementById('hep-lat/0409115v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2004; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2004. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 pages, 2 figures. Talk presented at Lattice2004(chiral), Fermilab, June 21-26, 2004</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl.Phys.Proc.Suppl.140:692,2005 </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>