CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;34 of 34 results for author: <span class="mathjax">Vartanyants, I A</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Vartanyants%2C+I+A">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Vartanyants, I A"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Vartanyants%2C+I+A&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Vartanyants, I A"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.04327">arXiv:2409.04327</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.04327">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Theoretical Analysis of the Coherence Properties of a Grating </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Vartanyants%2C+I+A">Ivan A. Vartanyants</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.04327v1-abstract-short" style="display: inline;"> In this work we aim to clarify theoretically the spatial coherence properties of the x-ray beam in the focal plane after interaction with a variable line space (VLS) grating. Assuming that the VLS grating is oriented horizontally, we are interested in the coherence properties of the beam in the vertical dispersion direction. We first consider a fully spatially coherent x-ray beam illuminating the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04327v1-abstract-full').style.display = 'inline'; document.getElementById('2409.04327v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.04327v1-abstract-full" style="display: none;"> In this work we aim to clarify theoretically the spatial coherence properties of the x-ray beam in the focal plane after interaction with a variable line space (VLS) grating. Assuming that the VLS grating is oriented horizontally, we are interested in the coherence properties of the beam in the vertical dispersion direction. We first consider a fully spatially coherent x-ray beam illuminating the grating. We show that the spatial coherence properties in the focal plane depend on the bandwidth of the incoming radiation. Being fully spatially coherent up to the VLS grating, the spatial coherence properties degrade in the focal plane of the VLS grating. We attribute this to coupling of the spatial and frequency components in the focal plane of the grating. Next, we examine partially coherent x-ray beams incident on a VLS grating. We assume that this radiation is of the Gaussian Schell-model type and obtain an analytical expression for the spatial coherence properties of the beam in the focal plane of the VLS grating for such a field. Next, we consider a monochromator setting that is provided by installing slits in the focal plane of the VLS grating and examine the degree of coherence in this case. Finally, we evaluate the degree of coherence at different apertures of the exit slits, assuming coherent illumination of the grating and a bandwidth of 1.7 10^{-4}. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04327v1-abstract-full').style.display = 'none'; document.getElementById('2409.04327v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 4 figures, 28 references</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.05041">arXiv:2408.05041</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.05041">pdf</a>, <a href="https://arxiv.org/format/2408.05041">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Dynamic X-ray coherent diffraction analysis: bridging the timescales between imaging and photon correlation spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hinsley%2C+G+N">Gerard N. Hinsley</a>, <a href="/search/physics?searchtype=author&amp;query=Westermeister%2C+F">Fabian Westermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+B">Bihan Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Ngoi%2C+K+H">Kuan Hoon Ngoi</a>, <a href="/search/physics?searchtype=author&amp;query=Singh%2C+S">Shweta Singh</a>, <a href="/search/physics?searchtype=author&amp;query=Rysov%2C+R">Rustam Rysov</a>, <a href="/search/physics?searchtype=author&amp;query=Sprung%2C+M">Michael Sprung</a>, <a href="/search/physics?searchtype=author&amp;query=Kewish%2C+C+M">Cameron M. Kewish</a>, <a href="/search/physics?searchtype=author&amp;query=van+Riessen%2C+G+A">Grant A. van Riessen</a>, <a href="/search/physics?searchtype=author&amp;query=Vartanyants%2C+I+A">Ivan A. Vartanyants</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.05041v1-abstract-short" style="display: inline;"> The advent of diffraction limited sources and developments in detector technology opens up new possibilities for the study of materials in situ and operando. Coherent X-ray diffraction techniques such as coherent X-ray diffractive imaging (CXDI) and X-ray photon correlation spectroscopy (XPCS) are capable for this purpose and provide complimentary information, although due to signal-to-noise requi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05041v1-abstract-full').style.display = 'inline'; document.getElementById('2408.05041v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.05041v1-abstract-full" style="display: none;"> The advent of diffraction limited sources and developments in detector technology opens up new possibilities for the study of materials in situ and operando. Coherent X-ray diffraction techniques such as coherent X-ray diffractive imaging (CXDI) and X-ray photon correlation spectroscopy (XPCS) are capable for this purpose and provide complimentary information, although due to signal-to-noise requirements, their simultaneous demonstration has been limited. Here, we demonstrate a strategy for the simultaneous use of CXDI and XPCS to study in situ the Brownian motion of colloidal gold nanoparticles of 200 nm diameter suspended in a glycerol-water mixture. We visualise the process of agglomeration, examine the spatiotemporal space accessible with the combination of techniques, and demonstrate CXDI with 22 ms temporal resolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05041v1-abstract-full').style.display = 'none'; document.getElementById('2408.05041v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 12 figures, 40 references</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.05258">arXiv:2305.05258</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.05258">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.214305">10.1103/PhysRevB.107.214305 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> FEL stochastic spectroscopy revealing silicon bond softening dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=De+Angelis%2C+D">Dario De Angelis</a>, <a href="/search/physics?searchtype=author&amp;query=Principi%2C+E">Emiliano Principi</a>, <a href="/search/physics?searchtype=author&amp;query=Bencivenga%2C+F">Filippo Bencivenga</a>, <a href="/search/physics?searchtype=author&amp;query=Fausti%2C+D">Daniele Fausti</a>, <a href="/search/physics?searchtype=author&amp;query=Foglia%2C+L">Laura Foglia</a>, <a href="/search/physics?searchtype=author&amp;query=Klein%2C+Y">Yishay Klein</a>, <a href="/search/physics?searchtype=author&amp;query=Manfredda%2C+M">Michele Manfredda</a>, <a href="/search/physics?searchtype=author&amp;query=Mincigrucci%2C+R">Riccardo Mincigrucci</a>, <a href="/search/physics?searchtype=author&amp;query=Montanaro%2C+A">Angela Montanaro</a>, <a href="/search/physics?searchtype=author&amp;query=Pedersoli%2C+E">Emanuele Pedersoli</a>, <a href="/search/physics?searchtype=author&amp;query=Cresi%2C+J+S+P">Jacopo Stefano Pelli Cresi</a>, <a href="/search/physics?searchtype=author&amp;query=Perosa%2C+G">Giovanni Perosa</a>, <a href="/search/physics?searchtype=author&amp;query=Prince%2C+K+C">Kevin C. Prince</a>, <a href="/search/physics?searchtype=author&amp;query=Razzoli%2C+E">Elia Razzoli</a>, <a href="/search/physics?searchtype=author&amp;query=Shwartz%2C+S">Sharon Shwartz</a>, <a href="/search/physics?searchtype=author&amp;query=Simoncig%2C+A">Alberto Simoncig</a>, <a href="/search/physics?searchtype=author&amp;query=Spampinati%2C+S">Simone Spampinati</a>, <a href="/search/physics?searchtype=author&amp;query=Svetina%2C+C">Cristian Svetina</a>, <a href="/search/physics?searchtype=author&amp;query=Szlachetko%2C+J">Jakub Szlachetko</a>, <a href="/search/physics?searchtype=author&amp;query=Tripathi%2C+A">Alok Tripathi</a>, <a href="/search/physics?searchtype=author&amp;query=Vartanyants%2C+I+A">Ivan A. Vartanyants</a>, <a href="/search/physics?searchtype=author&amp;query=Zangrando%2C+M">Marco Zangrando</a>, <a href="/search/physics?searchtype=author&amp;query=Capotondi%2C+F">Flavio Capotondi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.05258v1-abstract-short" style="display: inline;"> Time-resolved X-ray Emission/Absorption Spectroscopy (Tr-XES/XAS) is an informative experimental tool sensitive to electronic dynamics in materials, widely exploited in diverse research fields. Typically, Tr-XES/XAS requires X-ray pulses with both a narrow bandwidth and sub-picosecond pulse duration, a combination that in principle finds its optimum with Fourier transform-limited pulses. In this w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.05258v1-abstract-full').style.display = 'inline'; document.getElementById('2305.05258v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.05258v1-abstract-full" style="display: none;"> Time-resolved X-ray Emission/Absorption Spectroscopy (Tr-XES/XAS) is an informative experimental tool sensitive to electronic dynamics in materials, widely exploited in diverse research fields. Typically, Tr-XES/XAS requires X-ray pulses with both a narrow bandwidth and sub-picosecond pulse duration, a combination that in principle finds its optimum with Fourier transform-limited pulses. In this work, we explore an alternative xperimental approach, capable of simultaneously retrieving information about unoccupied (XAS) and occupied (XES) states from the stochastic fluctuations of broadband extreme ultraviolet pulses of a free-electron laser. We used this method, in combination with singular value decomposition and Tikhonov regularization procedures, to determine the XAS/XES response from a crystalline silicon sample at the L2,3-edge, with an energy resolution of a few tens of meV. Finally, we combined this spectroscopic method with a pump-probe approach to measure structural and electronic dynamics of a silicon membrane. Tr-XAS/XES data obtained after photoexcitation with an optical laser pulse at 390 nm allowed us to observe perturbations of the band structure, which are compatible with the formation of the predicted precursor state of a non-thermal solid-liquid phase transition associated with a bond softening phenomenon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.05258v1-abstract-full').style.display = 'none'; document.getElementById('2305.05258v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.02739">arXiv:2210.02739</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.02739">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> High energy-resolution transient ghost absorption spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Tripathi%2C+A+K">Alok Kumar Tripathi</a>, <a href="/search/physics?searchtype=author&amp;query=Klein%2C+Y">Yishai Klein</a>, <a href="/search/physics?searchtype=author&amp;query=Strizhevsky%2C+E">Edward Strizhevsky</a>, <a href="/search/physics?searchtype=author&amp;query=Capotondi%2C+F">Flavio Capotondi</a>, <a href="/search/physics?searchtype=author&amp;query=De+Angelis%2C+D">Dario De Angelis</a>, <a href="/search/physics?searchtype=author&amp;query=Giannessi%2C+L">Luca Giannessi</a>, <a href="/search/physics?searchtype=author&amp;query=Pancaldi%2C+M">Matteo Pancaldi</a>, <a href="/search/physics?searchtype=author&amp;query=Pedersoli%2C+E">Emanuele Pedersoli</a>, <a href="/search/physics?searchtype=author&amp;query=Prince%2C+K+C">Kevin C. Prince</a>, <a href="/search/physics?searchtype=author&amp;query=Sefi%2C+O">Or Sefi</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+Y+Y">Young Yong Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Vartanyants%2C+I+A">Ivan A. Vartanyants</a>, <a href="/search/physics?searchtype=author&amp;query=Shwartz%2C+S">Sharon Shwartz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.02739v1-abstract-short" style="display: inline;"> We demonstrate the measurement of ultrafast dynamics using ghost spectroscopy and a pump-probe approach with an optical pump and a short-wavelength radiation probe. The ghost spectroscopy approach is used to overcome the challenge of the strong intensity and spectrum fluctuations at free-electron lasers and to provide high -spectral resolution, which enables the measurement of small energy shifts&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.02739v1-abstract-full').style.display = 'inline'; document.getElementById('2210.02739v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.02739v1-abstract-full" style="display: none;"> We demonstrate the measurement of ultrafast dynamics using ghost spectroscopy and a pump-probe approach with an optical pump and a short-wavelength radiation probe. The ghost spectroscopy approach is used to overcome the challenge of the strong intensity and spectrum fluctuations at free-electron lasers and to provide high -spectral resolution, which enables the measurement of small energy shifts in the absorption spectrum. We exploit the high resolution to explore the dynamics of the charge carrier excitations and relaxations and their impact on the photoinduced structural changes in silicon by measuring the variation of the absorption spectrum of a Si(100) membrane near the silicon L2,3 edge and the accompanying edge shifts in response to the optical illumination. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.02739v1-abstract-full').style.display = 'none'; document.getElementById('2210.02739v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.00339">arXiv:2209.00339</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.00339">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1107/S1600577522011341">10.1107/S1600577522011341 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The structure of Tick-borne Encephalitis virus determined at X-Ray Free-Electron Lasers. Simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Assalauova%2C+D">Dameli Assalauova</a>, <a href="/search/physics?searchtype=author&amp;query=Vartanyants%2C+I+A">Ivan A. Vartanyants</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.00339v1-abstract-short" style="display: inline;"> The study of the structure of viruses by X-ray free-electron lasers (XFEL) attracts more attention in recent decades. Such experiments are based on the collection of two-dimensional diffraction patterns measured at the detector after diffraction of femtosecond X-ray pulses on biological samples. In order to prepare the experiment at the European XFEL we simulated the diffraction data for the tick-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.00339v1-abstract-full').style.display = 'inline'; document.getElementById('2209.00339v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.00339v1-abstract-full" style="display: none;"> The study of the structure of viruses by X-ray free-electron lasers (XFEL) attracts more attention in recent decades. Such experiments are based on the collection of two-dimensional diffraction patterns measured at the detector after diffraction of femtosecond X-ray pulses on biological samples. In order to prepare the experiment at the European XFEL we simulated the diffraction data for the tick-borne encephalitis virus (TBEV) with different parameters and identified their optimal values. Following necessary steps of a well-established data processing pipeline, the structure of TBEV was obtained and the efficiency of the used methods was demonstrated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.00339v1-abstract-full').style.display = 'none'; document.getElementById('2209.00339v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Synchrotron Radiation, 30, 24-34 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.12994">arXiv:2208.12994</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.12994">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Bragg Coherent Modulation Imaging for Highly Strained Nanocrystals-A Numerical Study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+J">Jiangtao Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Vartanyants%2C+I+A">Ivan A. Vartanyants</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+F">Fucai Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.12994v2-abstract-short" style="display: inline;"> Bragg coherent diffraction imaging (BCDI) is a unique and powerful method for tracking three-dimensional strain fields non-destructively. While BCDI has been successfully applied to many scientific research fields and receives high demands, the reconstructed results for highly strained crystals are still subject to big uncertainties. Here, the progress in improving the suitability of BCDI for gene&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.12994v2-abstract-full').style.display = 'inline'; document.getElementById('2208.12994v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.12994v2-abstract-full" style="display: none;"> Bragg coherent diffraction imaging (BCDI) is a unique and powerful method for tracking three-dimensional strain fields non-destructively. While BCDI has been successfully applied to many scientific research fields and receives high demands, the reconstructed results for highly strained crystals are still subject to big uncertainties. Here, the progress in improving the suitability of BCDI for general samples by exploiting wavefront modulation is reported. Extensive numerical simulations demonstrate that significant improvements over the current method for reconstructing highly strained model nanocrystals can be achieved. The proposed method highly suppresses the appearance of ambiguous solutions and exhibits fast convergence and high robustness in phase retrieval. Possible experimental difficulties in implementing this method are discussed in detail. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.12994v2-abstract-full').style.display = 'none'; document.getElementById('2208.12994v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.00688">arXiv:2203.00688</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.00688">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.107.053503">10.1103/PhysRevA.107.053503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-resolution absorption measurements with free-electron lasers using ghost spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Klein%2C+Y">Yishai Klein</a>, <a href="/search/physics?searchtype=author&amp;query=Strizhevsky%2C+E">Edward Strizhevsky</a>, <a href="/search/physics?searchtype=author&amp;query=Capotondi%2C+F">Flavio Capotondi</a>, <a href="/search/physics?searchtype=author&amp;query=De+Angelis%2C+D">Dario De Angelis</a>, <a href="/search/physics?searchtype=author&amp;query=Giannessi%2C+L">Luca Giannessi</a>, <a href="/search/physics?searchtype=author&amp;query=Pancaldi%2C+M">Matteo Pancaldi</a>, <a href="/search/physics?searchtype=author&amp;query=Pedersoli%2C+E">Emanuele Pedersoli</a>, <a href="/search/physics?searchtype=author&amp;query=Penco%2C+G">Giuseppe Penco</a>, <a href="/search/physics?searchtype=author&amp;query=Prince%2C+K+C">Kevin C. Prince</a>, <a href="/search/physics?searchtype=author&amp;query=Sefi%2C+O">Or Sefi</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+Y+Y">Young Yong Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Vartanyants%2C+I+A">Ivan A. Vartanyants</a>, <a href="/search/physics?searchtype=author&amp;query=Shwartz%2C+S">Sharon Shwartz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.00688v1-abstract-short" style="display: inline;"> We demonstrate a simple and robust high-resolution ghost spectroscopy approach for x-ray and extreme ultraviolet absorption spectroscopy at free-electron laser sources. Our approach requires an on-line spectrometer before the sample and a downstream bucket detector. We use this method to measure the absorption spectrum of silicon, silicon carbide and silicon nitride membranes in the vicinity of th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.00688v1-abstract-full').style.display = 'inline'; document.getElementById('2203.00688v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.00688v1-abstract-full" style="display: none;"> We demonstrate a simple and robust high-resolution ghost spectroscopy approach for x-ray and extreme ultraviolet absorption spectroscopy at free-electron laser sources. Our approach requires an on-line spectrometer before the sample and a downstream bucket detector. We use this method to measure the absorption spectrum of silicon, silicon carbide and silicon nitride membranes in the vicinity of the silicon L2,3-edge. We show that ghost spectroscopy allows the high-resolution reconstruction of the sample spectral response using a coarse energy scan with self-amplified spontaneous emission radiation. For the conditions of our experiment the energy resolution of the ghost-spectroscopy reconstruction is higher than the energy resolution reached by scanning the energy range by narrow spectral bandwidth radiation produced by the seeded free-electron laser. When we set the photon energy resolution of the ghost spectroscopy to be equal to the resolution of the measurement with the seeded radiation, the measurement time with the ghost spectroscopy method is shorter than scanning the photon energy with seeded radiation. The exact conditions for which ghost spectroscopy can provide higher resolution at shorter times than measurement with narrow band scans depend on the details of the measurements and on the properties of the samples and should be addressed in future studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.00688v1-abstract-full').style.display = 'none'; document.getElementById('2203.00688v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.09020">arXiv:2112.09020</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.09020">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Classification of diffraction patterns using a convolutional neural network in single particle imaging experiments performed at X-ray free-electron lasers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Assalauova%2C+D">Dameli Assalauova</a>, <a href="/search/physics?searchtype=author&amp;query=Ignatenko%2C+A">Alexandr Ignatenko</a>, <a href="/search/physics?searchtype=author&amp;query=Isensee%2C+F">Fabian Isensee</a>, <a href="/search/physics?searchtype=author&amp;query=Bobkov%2C+S">Sergey Bobkov</a>, <a href="/search/physics?searchtype=author&amp;query=Trofimova%2C+D">Darya Trofimova</a>, <a href="/search/physics?searchtype=author&amp;query=Vartanyants%2C+I+A">Ivan A. Vartanyants</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.09020v1-abstract-short" style="display: inline;"> Single particle imaging (SPI) at X-ray free electron lasers (XFELs) is particularly well suited to determine the 3D structure of particles in their native environment. For a successful reconstruction, diffraction patterns originating from a single hit must be isolated from a large number of acquired patterns. We propose to formulate this task as an image classification problem and solve it using c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.09020v1-abstract-full').style.display = 'inline'; document.getElementById('2112.09020v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.09020v1-abstract-full" style="display: none;"> Single particle imaging (SPI) at X-ray free electron lasers (XFELs) is particularly well suited to determine the 3D structure of particles in their native environment. For a successful reconstruction, diffraction patterns originating from a single hit must be isolated from a large number of acquired patterns. We propose to formulate this task as an image classification problem and solve it using convolutional neural network (CNN) architectures. Two CNN configurations are developed: one that maximises the F1-score and one that emphasises high recall. We also combine the CNNs with expectation maximization (EM) selection as well as size filtering. We observed that our CNN selections have lower contrast in power spectral density functions relative to the EM selection, used in our previous work. However, the reconstruction of our CNN-based selections gives similar results. Introducing CNNs into SPI experiments allows streamlining the reconstruction pipeline, enables researchers to classify patterns on the fly, and, as a consequence, enables them to tightly control the duration of their experiments. We think that bringing non-standard artificial intelligence (AI) based solutions in a well-described SPI analysis workflow may be beneficial for the future development of the SPI experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.09020v1-abstract-full').style.display = 'none'; document.getElementById('2112.09020v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text: 28 pages, 7 figures, Supporting Information: 12 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.11136">arXiv:2104.11136</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.11136">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> High spatial coherence and short pulse duration revealed by the Hanbury Brown and Twiss interferometry at the European XFEL </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Khubbutdinov%2C+R">Ruslan Khubbutdinov</a>, <a href="/search/physics?searchtype=author&amp;query=Gerasimova%2C+N">Natalia Gerasimova</a>, <a href="/search/physics?searchtype=author&amp;query=Mercurio%2C+G">Giuseppe Mercurio</a>, <a href="/search/physics?searchtype=author&amp;query=Assalauova%2C+D">Dameli Assalauova</a>, <a href="/search/physics?searchtype=author&amp;query=Carnis%2C+J">Jerome Carnis</a>, <a href="/search/physics?searchtype=author&amp;query=Gelisio%2C+L">Luca Gelisio</a>, <a href="/search/physics?searchtype=author&amp;query=Guyader%2C+L+l">Lo茂c le Guyader</a>, <a href="/search/physics?searchtype=author&amp;query=Ignatenko%2C+A">Alexandr Ignatenko</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+Y+Y">Young Yong Kim</a>, <a href="/search/physics?searchtype=author&amp;query=van+Kuiken%2C+B">Benjamin van Kuiken</a>, <a href="/search/physics?searchtype=author&amp;query=Kurta%2C+R+P">Ruslan P. Kurta</a>, <a href="/search/physics?searchtype=author&amp;query=Lapkin%2C+D">Dmitry Lapkin</a>, <a href="/search/physics?searchtype=author&amp;query=Teichmann%2C+M">Martin Teichmann</a>, <a href="/search/physics?searchtype=author&amp;query=Yaroslavtsev%2C+A">Alexander Yaroslavtsev</a>, <a href="/search/physics?searchtype=author&amp;query=Gorobtsov%2C+O">Oleg Gorobtsov</a>, <a href="/search/physics?searchtype=author&amp;query=Menushenkov%2C+A+P">Aleksey P. Menushenkov</a>, <a href="/search/physics?searchtype=author&amp;query=Scholz%2C+M">Matthias Scholz</a>, <a href="/search/physics?searchtype=author&amp;query=Scherz%2C+A">Andreas Scherz</a>, <a href="/search/physics?searchtype=author&amp;query=Vartanyants%2C+I+A">Ivan A. Vartanyants</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.11136v1-abstract-short" style="display: inline;"> Second-order intensity interferometry was employed to study the spatial and temporal properties of the European X-ray Free-Electron Laser (EuXFEL). Measurements were performed at the soft X-ray SASE3 undulator beamline at a photon energy of 1.2 keV in the Self-Amplified Spontaneous Emission (SASE) mode. Two high-power regimes of the SASE3 undulator settings, i.e. linear and quadratic tapering at s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.11136v1-abstract-full').style.display = 'inline'; document.getElementById('2104.11136v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.11136v1-abstract-full" style="display: none;"> Second-order intensity interferometry was employed to study the spatial and temporal properties of the European X-ray Free-Electron Laser (EuXFEL). Measurements were performed at the soft X-ray SASE3 undulator beamline at a photon energy of 1.2 keV in the Self-Amplified Spontaneous Emission (SASE) mode. Two high-power regimes of the SASE3 undulator settings, i.e. linear and quadratic tapering at saturation, were studied in detail and compared with the linear gain regime. The statistical analysis showed an exceptionally high degree of spatial coherence up to 90% for the linear undulator tapering. Analysis of the measured data in spectral and spatial domains provided an average pulse duration of about 10 fs in our measurements. The obtained results will be valuable for the experiments requiring and exploiting short pulse duration and utilizing high coherence properties of the EuXFEL. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.11136v1-abstract-full').style.display = 'none'; document.getElementById('2104.11136v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.04249">arXiv:2104.04249</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.04249">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.104.023508">10.1103/PhysRevA.104.023508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Theoretical Analysis of Hanbury Brown and Twiss Interferometry at Soft X-ray Free-Electron Lasers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Vartanyants%2C+I+A">Ivan A. Vartanyants</a>, <a href="/search/physics?searchtype=author&amp;query=Khubbutdinov%2C+R">Ruslan Khubbutdinov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.04249v1-abstract-short" style="display: inline;"> In this work we provide theoretical background for the analysis of second-order correlation functions in experiments performed at the soft x-ray free-electron lasers (XFELs). Typically, soft x-ray beamlines at XFELs are equipped by the variable line spacing (VLS) monochromators. We perform examination of the beam propagation through such VLS monochromator taking specially into account the interpla&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.04249v1-abstract-full').style.display = 'inline'; document.getElementById('2104.04249v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.04249v1-abstract-full" style="display: none;"> In this work we provide theoretical background for the analysis of second-order correlation functions in experiments performed at the soft x-ray free-electron lasers (XFELs). Typically, soft x-ray beamlines at XFELs are equipped by the variable line spacing (VLS) monochromators. We perform examination of the beam propagation through such VLS monochromator taking specially into account the interplay between the finite monochromator resolution and the exit slits width. We then provide general analysis of the second-order correlation intensities in spectral and spatial domains. Finally, we connect these functions with the statistical properties of the beam incoming to the monochromator unit in the limit of Gaussian Schell-model pulses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.04249v1-abstract-full').style.display = 'none'; document.getElementById('2104.04249v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 2 figures, 34 references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 104, 023508 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.07288">arXiv:2008.07288</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.07288">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2632-2153/abd916">10.1088/2632-2153/abd916 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Classification of diffraction patterns in single particle imaging experiments performed at X-ray free-electron lasers using a convolutional neural network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ignatenko%2C+A">Alexandr Ignatenko</a>, <a href="/search/physics?searchtype=author&amp;query=Assalauova%2C+D">Dameli Assalauova</a>, <a href="/search/physics?searchtype=author&amp;query=Bobkov%2C+S+A">Sergey A. Bobkov</a>, <a href="/search/physics?searchtype=author&amp;query=Gelisio%2C+L">Luca Gelisio</a>, <a href="/search/physics?searchtype=author&amp;query=Teslyuk%2C+A+B">Anton B. Teslyuk</a>, <a href="/search/physics?searchtype=author&amp;query=Ilyin%2C+V+A">Viacheslav A. Ilyin</a>, <a href="/search/physics?searchtype=author&amp;query=Vartanyants%2C+I+A">Ivan A. Vartanyants</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.07288v1-abstract-short" style="display: inline;"> Single particle imaging (SPI) is a promising method for native structure determination which has undergone a fast progress with the development of X-ray Free-Electron Lasers. Large amounts of data are collected during SPI experiments, driving the need for automated data analysis. The necessary data analysis pipeline has a number of steps including binary object classification (single versus multip&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.07288v1-abstract-full').style.display = 'inline'; document.getElementById('2008.07288v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.07288v1-abstract-full" style="display: none;"> Single particle imaging (SPI) is a promising method for native structure determination which has undergone a fast progress with the development of X-ray Free-Electron Lasers. Large amounts of data are collected during SPI experiments, driving the need for automated data analysis. The necessary data analysis pipeline has a number of steps including binary object classification (single versus multiple hits). Classification and object detection are areas where deep neural networks currently outperform other approaches. In this work, we use the fast object detector networks YOLOv2 and YOLOv3. By exploiting transfer learning, a moderate amount of data is sufficient for training of the neural network. We demonstrate here that a convolutional neural network (CNN) can be successfully used to classify data from SPI experiments. We compare the results of classification for the two different networks, with different depth and architecture, by applying them to the same SPI data with different data representation. The best results are obtained for YOLOv2 color images linear scale classification, which shows an accuracy of about 97% with the precision and recall of about 52% and 61%, respectively, which is in comparison to manual data classification. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.07288v1-abstract-full').style.display = 'none'; document.getElementById('2008.07288v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 6 figures, 3 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Mach. Learn.: Sci. Technol. 2 (2021) 025014 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.08345">arXiv:2006.08345</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.08345">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> An advanced workflow for single particle imaging with the limited data at an X-ray free-electron laser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Assalauova%2C+D">Dameli Assalauova</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+Y+Y">Young Yong Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Bobkov%2C+S">Sergey Bobkov</a>, <a href="/search/physics?searchtype=author&amp;query=Khubbutdinov%2C+R">Ruslan Khubbutdinov</a>, <a href="/search/physics?searchtype=author&amp;query=Rose%2C+M">Max Rose</a>, <a href="/search/physics?searchtype=author&amp;query=Alvarez%2C+R">Roberto Alvarez</a>, <a href="/search/physics?searchtype=author&amp;query=Andreasson%2C+J">Jakob Andreasson</a>, <a href="/search/physics?searchtype=author&amp;query=Balaur%2C+E">Eugeniu Balaur</a>, <a href="/search/physics?searchtype=author&amp;query=Contreras%2C+A">Alice Contreras</a>, <a href="/search/physics?searchtype=author&amp;query=DeMirci%2C+H">Hasan DeMirci</a>, <a href="/search/physics?searchtype=author&amp;query=Gelisio%2C+L">Luca Gelisio</a>, <a href="/search/physics?searchtype=author&amp;query=Hajdu%2C+J">Janos Hajdu</a>, <a href="/search/physics?searchtype=author&amp;query=Hunter%2C+M+S">Mark S. Hunter</a>, <a href="/search/physics?searchtype=author&amp;query=Kurta%2C+R+P">Ruslan P. Kurta</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Haoyuan Li</a>, <a href="/search/physics?searchtype=author&amp;query=McFadden%2C+M">Matthew McFadden</a>, <a href="/search/physics?searchtype=author&amp;query=Nazari%2C+R">Reza Nazari</a>, <a href="/search/physics?searchtype=author&amp;query=Schwander%2C+P">Peter Schwander</a>, <a href="/search/physics?searchtype=author&amp;query=Teslyuk%2C+A">Anton Teslyuk</a>, <a href="/search/physics?searchtype=author&amp;query=Walter%2C+P">Peter Walter</a>, <a href="/search/physics?searchtype=author&amp;query=Xavier%2C+P+L">P. Lourdu Xavier</a>, <a href="/search/physics?searchtype=author&amp;query=Yoon%2C+C+H">Chun Hong Yoon</a>, <a href="/search/physics?searchtype=author&amp;query=Zaared%2C+S">Sahba Zaared</a>, <a href="/search/physics?searchtype=author&amp;query=Ilyin%2C+V+A">Viacheslav A. Ilyin</a>, <a href="/search/physics?searchtype=author&amp;query=Kirian%2C+R+A">Richard A. Kirian</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.08345v1-abstract-short" style="display: inline;"> An improved analysis for single particle imaging (SPI) experiments, using the limited data, is presented here. Results are based on a study of bacteriophage PR772 performed at the AMO instrument at the Linac Coherent Light Source (LCLS) as part of the SPI initiative. Existing methods were modified to cope with the shortcomings of the experimental data: inaccessibility of information from the half&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.08345v1-abstract-full').style.display = 'inline'; document.getElementById('2006.08345v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.08345v1-abstract-full" style="display: none;"> An improved analysis for single particle imaging (SPI) experiments, using the limited data, is presented here. Results are based on a study of bacteriophage PR772 performed at the AMO instrument at the Linac Coherent Light Source (LCLS) as part of the SPI initiative. Existing methods were modified to cope with the shortcomings of the experimental data: inaccessibility of information from the half of the detector and small fraction of single hits. General SPI analysis workflow was upgraded with the expectation-maximization based classification of diffraction patterns and mode decomposition on the final virus structure determination step. The presented processing pipeline allowed us to determine the three-dimensional structure of the bacteriophage PR772 without symmetry constraints with a spatial resolution of 6.9 nm. The obtained resolution was limited by the scattering intensity during the experiment and the relatively small number of single hits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.08345v1-abstract-full').style.display = 'none'; document.getElementById('2006.08345v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">40 pages, 7 figures (main text), 2 tables (main text), 14 figures (supplementary information), 1 table (supplementary information)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.03752">arXiv:1911.03752</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.03752">pdf</a>, <a href="https://arxiv.org/format/1911.03752">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41598-020-67214-z">10.1038/s41598-020-67214-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Femtosecond laser produced periodic plasma in a colloidal crystal probed by XFEL radiation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Mukharamova%2C+N">Nastasia Mukharamova</a>, <a href="/search/physics?searchtype=author&amp;query=Lazarev%2C+S">Sergey Lazarev</a>, <a href="/search/physics?searchtype=author&amp;query=Meijer%2C+J">Janne-Mieke Meijer</a>, <a href="/search/physics?searchtype=author&amp;query=Gorobtsov%2C+O+Y">Oleg Yu. Gorobtsov</a>, <a href="/search/physics?searchtype=author&amp;query=Singer%2C+A">Andrej Singer</a>, <a href="/search/physics?searchtype=author&amp;query=Chollet%2C+M">Matthieu Chollet</a>, <a href="/search/physics?searchtype=author&amp;query=Bussmann%2C+M">Michael Bussmann</a>, <a href="/search/physics?searchtype=author&amp;query=Dzhigaev%2C+D">Dmitry Dzhigaev</a>, <a href="/search/physics?searchtype=author&amp;query=Feng%2C+Y">Yiping Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Garten%2C+M">Marco Garten</a>, <a href="/search/physics?searchtype=author&amp;query=Huebl%2C+A">Axel Huebl</a>, <a href="/search/physics?searchtype=author&amp;query=Kluge%2C+T">Thomas Kluge</a>, <a href="/search/physics?searchtype=author&amp;query=Kurta%2C+R+P">Ruslan P. Kurta</a>, <a href="/search/physics?searchtype=author&amp;query=Lipp%2C+V">Vladimir Lipp</a>, <a href="/search/physics?searchtype=author&amp;query=Santra%2C+R">Robin Santra</a>, <a href="/search/physics?searchtype=author&amp;query=Sikorski%2C+M">Marcin Sikorski</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+S">Sanghoon Song</a>, <a href="/search/physics?searchtype=author&amp;query=Williams%2C+G">Garth Williams</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+D">Diling Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Ziaja-Motyka%2C+B">Beata Ziaja-Motyka</a>, <a href="/search/physics?searchtype=author&amp;query=Cowan%2C+T">Thomas Cowan</a>, <a href="/search/physics?searchtype=author&amp;query=Petukhov%2C+A+V">Andrei V. Petukhov</a>, <a href="/search/physics?searchtype=author&amp;query=Vartanyants%2C+I+A">Ivan A. Vartanyants</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.03752v1-abstract-short" style="display: inline;"> With the rapid development of short-pulse intense laser sources, studies of matter under extreme irradiation conditions enter further unexplored regimes. In addition, an application of X-ray Free- Electron Lasers (XFELs), delivering intense femtosecond X-ray pulses allows to investigate sample evolution in IR pump - X-ray probe experiments with an unprecedented time resolution. Here we present the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.03752v1-abstract-full').style.display = 'inline'; document.getElementById('1911.03752v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.03752v1-abstract-full" style="display: none;"> With the rapid development of short-pulse intense laser sources, studies of matter under extreme irradiation conditions enter further unexplored regimes. In addition, an application of X-ray Free- Electron Lasers (XFELs), delivering intense femtosecond X-ray pulses allows to investigate sample evolution in IR pump - X-ray probe experiments with an unprecedented time resolution. Here we present the detailed study of periodic plasma created from the colloidal crystal. Both experimental data and theory modeling show that the periodicity in the sample survives to a large extent the extreme excitation and shock wave propagation inside the colloidal crystal. This feature enables probing the excited crystal, using the powerful Bragg peak analysis, in contrast to the conventional studies of dense plasma created from bulk samples for which probing with Bragg diffraction technique is not possible. X-ray diffraction measurements of excited colloidal crystals may then lead towards a better understanding of matter phase transitions under extreme irradiation conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.03752v1-abstract-full').style.display = 'none'; document.getElementById('1911.03752v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">52 pages, 22 figures, 64 references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Scientific Reports 10, 10780 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.03671">arXiv:1907.03671</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.03671">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1107/S1600577519013079">10.1107/S1600577519013079 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coherence properties of the high-energy fourth-generation X-ray synchrotron sources </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Khubbutdinov%2C+R">R. Khubbutdinov</a>, <a href="/search/physics?searchtype=author&amp;query=Menushenkov%2C+A+P">A. P. Menushenkov</a>, <a href="/search/physics?searchtype=author&amp;query=Vartanyants%2C+I+A">I. A. Vartanyants</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.03671v1-abstract-short" style="display: inline;"> We performed an analysis of coherence properties of the 4-th generation high-energy storage rings with emittance values of 10 pmrad. It is presently expected that a storage ring with these low emittance values will reach diffraction limit at hard X-rays. Simulations of coherence properties were performed with the XRT software and analytical approach for different photon energies from 500 eV to 50&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.03671v1-abstract-full').style.display = 'inline'; document.getElementById('1907.03671v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.03671v1-abstract-full" style="display: none;"> We performed an analysis of coherence properties of the 4-th generation high-energy storage rings with emittance values of 10 pmrad. It is presently expected that a storage ring with these low emittance values will reach diffraction limit at hard X-rays. Simulations of coherence properties were performed with the XRT software and analytical approach for different photon energies from 500 eV to 50 keV. It was demonstrated that a minimum photon emittance (diffraction limit) reached at such storage rings is 位/2蟺. Using mode decomposition we showed that at the parameters of the storage ring considered in this work, diffraction limit will be reached for soft X-ray energies of 500 eV. About ten modes will contribute to the radiation field at 12 keV photon energy and even more modes give a contribution at higher photon energies. Energy spread effects of the electron beam in a low emittance storage ring were analysed in detail. Simulations were performed at different relative energy spread values from zero to 0.2%. We observed a decrease of the degree of coherence with an increase of the relative energy spread value. Our analysis shows that to reach diffraction limit for high photon energies electron beam emittance should go down to 1 pmrad and below. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.03671v1-abstract-full').style.display = 'none'; document.getElementById('1907.03671v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text: 33 pages, 5 tables, 6 figures; Supplementary Information: 16 pages, 1 table, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal Synchrotron Radiation 26(6) 1851-1862 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.07973">arXiv:1811.07973</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.07973">pdf</a>, <a href="https://arxiv.org/format/1811.07973">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5086374">10.1063/1.5086374 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultrafast Structural Dynamics of Photo-Reactions Revealed by Model-Independent X-ray Cross-Correlation Analysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Vester%2C+P">Peter Vester</a>, <a href="/search/physics?searchtype=author&amp;query=Zaluzhnyy%2C+I+A">Ivan A. Zaluzhnyy</a>, <a href="/search/physics?searchtype=author&amp;query=Kurta%2C+R+P">Ruslan P. Kurta</a>, <a href="/search/physics?searchtype=author&amp;query=Moeller%2C+K+B">Klaus B. Moeller</a>, <a href="/search/physics?searchtype=author&amp;query=Biasin%2C+E">Elisa Biasin</a>, <a href="/search/physics?searchtype=author&amp;query=Haldrup%2C+K">Kristoffer Haldrup</a>, <a href="/search/physics?searchtype=author&amp;query=Nielsen%2C+M+M">Martin Meedom Nielsen</a>, <a href="/search/physics?searchtype=author&amp;query=Vartanyants%2C+I+A">Ivan A. Vartanyants</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.07973v1-abstract-short" style="display: inline;"> We applied angular X-ray Cross-Correlation analysis (XCCA) to scattering images from a femtosecond resolution LCLS X-ray free-electron laser (XFEL) pump-probe experiment with solvated PtPOP ([Pt$_2$(P$_2$O$_5$H$_2$)$_4$]$^{4-}$) metal complex molecules. The molecules were pumped with linear polarized laser pulses creating an excited state population with a preferred orientational (alignment) direc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.07973v1-abstract-full').style.display = 'inline'; document.getElementById('1811.07973v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.07973v1-abstract-full" style="display: none;"> We applied angular X-ray Cross-Correlation analysis (XCCA) to scattering images from a femtosecond resolution LCLS X-ray free-electron laser (XFEL) pump-probe experiment with solvated PtPOP ([Pt$_2$(P$_2$O$_5$H$_2$)$_4$]$^{4-}$) metal complex molecules. The molecules were pumped with linear polarized laser pulses creating an excited state population with a preferred orientational (alignment) direction. Two time scales of $1.9\pm1.5$ ps and $46\pm10$ ps were revealed by model-independent XCCA, associated with an internal structural changes and rotational dephasing, respectively. Our studies illustrate the potential of XCCA to reveal hidden structural information in a model independent analysis of time evolution of solvated metal complex molecules. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.07973v1-abstract-full').style.display = 'none'; document.getElementById('1811.07973v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures, 50 references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Struct. Dyn., 6, Issue 2, 024301 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.06855">arXiv:1811.06855</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.06855">pdf</a>, <a href="https://arxiv.org/format/1811.06855">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.101.013820">10.1103/PhysRevA.101.013820 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ghost Imaging at an XUV Free-Electron Laser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kim%2C+Y+Y">Young Yong Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Gelisio%2C+L">Luca Gelisio</a>, <a href="/search/physics?searchtype=author&amp;query=Mercurio%2C+G">Giuseppe Mercurio</a>, <a href="/search/physics?searchtype=author&amp;query=Dziarzhytski%2C+S">Siarhei Dziarzhytski</a>, <a href="/search/physics?searchtype=author&amp;query=Beye%2C+M">Martin Beye</a>, <a href="/search/physics?searchtype=author&amp;query=Bocklage%2C+L">Lars Bocklage</a>, <a href="/search/physics?searchtype=author&amp;query=Classen%2C+A">Anton Classen</a>, <a href="/search/physics?searchtype=author&amp;query=David%2C+C">Christian David</a>, <a href="/search/physics?searchtype=author&amp;query=Gorobtsov%2C+O+Y">Oleg Yu. Gorobtsov</a>, <a href="/search/physics?searchtype=author&amp;query=Khubbutdinov%2C+R">Ruslan Khubbutdinov</a>, <a href="/search/physics?searchtype=author&amp;query=Lazarev%2C+S">Sergey Lazarev</a>, <a href="/search/physics?searchtype=author&amp;query=Mukharamova%2C+N">Nastasia Mukharamova</a>, <a href="/search/physics?searchtype=author&amp;query=Obukhov%2C+Y+N">Yury N. Obukhov</a>, <a href="/search/physics?searchtype=author&amp;query=R%7Foesner%2C+B">Benedikt Roesner</a>, <a href="/search/physics?searchtype=author&amp;query=Schlage%2C+K">Kai Schlage</a>, <a href="/search/physics?searchtype=author&amp;query=Zaluzhnyy%2C+I+A">Ivan A. Zaluzhnyy</a>, <a href="/search/physics?searchtype=author&amp;query=Brenner%2C+G">Guenter Brenner</a>, <a href="/search/physics?searchtype=author&amp;query=R%7Foehlsberger%2C+R">Ralf Roehlsberger</a>, <a href="/search/physics?searchtype=author&amp;query=von+Zanthier%2C+J">Joachim von Zanthier</a>, <a href="/search/physics?searchtype=author&amp;query=Wurth%2C+W">Wilfried Wurth</a>, <a href="/search/physics?searchtype=author&amp;query=Vartanyants%2C+I+A">Ivan A. Vartanyants</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.06855v1-abstract-short" style="display: inline;"> Radiation damage is one of the most severe resolution limiting factors in x-ray imaging, especially relevant to biological samples. One way of circumventing this problem is to exploit correlation-based methods developed in quantum imaging. Among these, there is ghost imaging (GI) in which the image is formed by radiation that has never interacted with the sample. Here, we demonstrate GI at an XUV&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.06855v1-abstract-full').style.display = 'inline'; document.getElementById('1811.06855v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.06855v1-abstract-full" style="display: none;"> Radiation damage is one of the most severe resolution limiting factors in x-ray imaging, especially relevant to biological samples. One way of circumventing this problem is to exploit correlation-based methods developed in quantum imaging. Among these, there is ghost imaging (GI) in which the image is formed by radiation that has never interacted with the sample. Here, we demonstrate GI at an XUV free-electron laser by utilizing correlation techniques. We discuss the experimental challenges, optimal setup, and crucial ingredients to maximize the achievable resolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.06855v1-abstract-full').style.display = 'none'; document.getElementById('1811.06855v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 7 figures, 52 references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 101, 013820 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.08177">arXiv:1807.08177</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.08177">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-018-06743-8">10.1038/s41467-018-06743-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Seeded x-ray free-electron laser generating radiation with laser statistical properties </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gorobtsov%2C+O+Y">O. Yu. Gorobtsov</a>, <a href="/search/physics?searchtype=author&amp;query=Mercurio%2C+G">G. Mercurio</a>, <a href="/search/physics?searchtype=author&amp;query=Capotondi%2C+F">F. Capotondi</a>, <a href="/search/physics?searchtype=author&amp;query=Skopintsev%2C+P">P. Skopintsev</a>, <a href="/search/physics?searchtype=author&amp;query=Lazarev%2C+S">S. Lazarev</a>, <a href="/search/physics?searchtype=author&amp;query=Zaluzhnyy%2C+I+A">I. A. Zaluzhnyy</a>, <a href="/search/physics?searchtype=author&amp;query=Danailov%2C+M">M. Danailov</a>, <a href="/search/physics?searchtype=author&amp;query=Dell%60Angela%2C+M">M. Dell`Angela</a>, <a href="/search/physics?searchtype=author&amp;query=Manfredda%2C+M">M. Manfredda</a>, <a href="/search/physics?searchtype=author&amp;query=Pedersoli%2C+E">E. Pedersoli</a>, <a href="/search/physics?searchtype=author&amp;query=Giannessi%2C+L">L. Giannessi</a>, <a href="/search/physics?searchtype=author&amp;query=Kiskinova%2C+M">M. Kiskinova</a>, <a href="/search/physics?searchtype=author&amp;query=Prince%2C+K+C">K. C. Prince</a>, <a href="/search/physics?searchtype=author&amp;query=Wurth%2C+W">W. Wurth</a>, <a href="/search/physics?searchtype=author&amp;query=Vartanyants%2C+I+A">I. A. Vartanyants</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.08177v1-abstract-short" style="display: inline;"> The invention of optical lasers led to a revolution in the field of optics and even to the creation of completely new fields of research such as quantum optics. The reason was their unique statistical and coherence properties. The newly emerging, short-wavelength free-electron lasers (FELs) are sources of very bright coherent extreme-ultraviolet (XUV) and x-ray radiation with pulse durations on th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.08177v1-abstract-full').style.display = 'inline'; document.getElementById('1807.08177v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.08177v1-abstract-full" style="display: none;"> The invention of optical lasers led to a revolution in the field of optics and even to the creation of completely new fields of research such as quantum optics. The reason was their unique statistical and coherence properties. The newly emerging, short-wavelength free-electron lasers (FELs) are sources of very bright coherent extreme-ultraviolet (XUV) and x-ray radiation with pulse durations on the order of femtoseconds, and are presently considered to be laser sources at these energies. Most existing FELs are highly spatially coherent but in spite of their name, they behave statistically as chaotic sources. Here, we demonstrate experimentally, by combining Hanbury Brown and Twiss (HBT) interferometry with spectral measurements that the seeded XUV FERMI FEL-2 source does indeed behave statistically as a laser. The first steps have been taken towards exploiting the first-order coherence of FELs, and the present work opens the way to quantum optics experiments that strongly rely on high-order statistical properties of the radiation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.08177v1-abstract-full').style.display = 'none'; document.getElementById('1807.08177v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 10 figures, 37 references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications, 9, 4498 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.01155">arXiv:1710.01155</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.01155">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nphys4301">10.1038/nphys4301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum Imaging with Incoherently Scattered Light from a Free-Electron Laser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Schneider%2C+R">Raimund Schneider</a>, <a href="/search/physics?searchtype=author&amp;query=Mehringer%2C+T">Thomas Mehringer</a>, <a href="/search/physics?searchtype=author&amp;query=Mercurio%2C+G">Giuseppe Mercurio</a>, <a href="/search/physics?searchtype=author&amp;query=Wenthaus%2C+L">Lukas Wenthaus</a>, <a href="/search/physics?searchtype=author&amp;query=Classen%2C+A">Anton Classen</a>, <a href="/search/physics?searchtype=author&amp;query=Brenner%2C+G">G眉nter Brenner</a>, <a href="/search/physics?searchtype=author&amp;query=Gorobtsov%2C+O">Oleg Gorobtsov</a>, <a href="/search/physics?searchtype=author&amp;query=Benz%2C+A">Adrian Benz</a>, <a href="/search/physics?searchtype=author&amp;query=Bhatti%2C+D">Daniel Bhatti</a>, <a href="/search/physics?searchtype=author&amp;query=Bocklage%2C+L">Lars Bocklage</a>, <a href="/search/physics?searchtype=author&amp;query=Fischer%2C+B">Birgit Fischer</a>, <a href="/search/physics?searchtype=author&amp;query=Lazarev%2C+S">Sergey Lazarev</a>, <a href="/search/physics?searchtype=author&amp;query=Obukhov%2C+Y">Yuri Obukhov</a>, <a href="/search/physics?searchtype=author&amp;query=Schlage%2C+K">Kai Schlage</a>, <a href="/search/physics?searchtype=author&amp;query=Skopintsev%2C+P">Petr Skopintsev</a>, <a href="/search/physics?searchtype=author&amp;query=Wagner%2C+J">Jochen Wagner</a>, <a href="/search/physics?searchtype=author&amp;query=Waldmann%2C+F">Felix Waldmann</a>, <a href="/search/physics?searchtype=author&amp;query=Willing%2C+S">Svenja Willing</a>, <a href="/search/physics?searchtype=author&amp;query=Zaluzhnyy%2C+I">Ivan Zaluzhnyy</a>, <a href="/search/physics?searchtype=author&amp;query=Wurth%2C+W">Wilfried Wurth</a>, <a href="/search/physics?searchtype=author&amp;query=Vartanyants%2C+I+A">Ivan A. Vartanyants</a>, <a href="/search/physics?searchtype=author&amp;query=R%C3%B6hlsberger%2C+R">Ralf R枚hlsberger</a>, <a href="/search/physics?searchtype=author&amp;query=von+Zanthier%2C+J">Joachim von Zanthier</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.01155v1-abstract-short" style="display: inline;"> The advent of accelerator-driven free-electron lasers (FEL) has opened new avenues for high-resolution structure determination via diffraction methods that go far beyond conventional x-ray crystallography methods. These techniques rely on coherent scattering processes that require the maintenance of first-order coherence of the radiation field throughout the imaging procedure. Here we show that hi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.01155v1-abstract-full').style.display = 'inline'; document.getElementById('1710.01155v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.01155v1-abstract-full" style="display: none;"> The advent of accelerator-driven free-electron lasers (FEL) has opened new avenues for high-resolution structure determination via diffraction methods that go far beyond conventional x-ray crystallography methods. These techniques rely on coherent scattering processes that require the maintenance of first-order coherence of the radiation field throughout the imaging procedure. Here we show that higher-order degrees of coherence, displayed in the intensity correlations of incoherently scattered x-rays from an FEL, can be used to image two-dimensional objects with a spatial resolution close to or even below the Abbe limit. This constitutes a new approach towards structure determination based on incoherent processes, including Compton scattering, fluorescence emission or wavefront distortions, generally considered detrimental for imaging applications. Our method is an extension of the landmark intensity correlation measurements of Hanbury Brown and Twiss to higher than second-order paving the way towards determination of structure and dynamics of matter in regimes where coherent imaging methods have intrinsic limitations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.01155v1-abstract-full').style.display = 'none'; document.getElementById('1710.01155v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.08828">arXiv:1707.08828</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.08828">pdf</a>, <a href="https://arxiv.org/format/1707.08828">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Diffraction based Hanbury Brown and Twiss interferometry performed at a hard x-ray free-electron laser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gorobtsov%2C+O+Y">O. Yu. Gorobtsov</a>, <a href="/search/physics?searchtype=author&amp;query=Mukharamova%2C+N">N. Mukharamova</a>, <a href="/search/physics?searchtype=author&amp;query=Lazarev%2C+S">S. Lazarev</a>, <a href="/search/physics?searchtype=author&amp;query=Chollet%2C+M">M. Chollet</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+D">D. Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Feng%2C+Y">Y. Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Kurta%2C+R+P">R. P. Kurta</a>, <a href="/search/physics?searchtype=author&amp;query=Meijer%2C+J+-">J. -M. Meijer</a>, <a href="/search/physics?searchtype=author&amp;query=Williams%2C+G">G. Williams</a>, <a href="/search/physics?searchtype=author&amp;query=Sikorski%2C+M">M. Sikorski</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+S">S. Song</a>, <a href="/search/physics?searchtype=author&amp;query=Dzhigaev%2C+D">D. Dzhigaev</a>, <a href="/search/physics?searchtype=author&amp;query=Serkez%2C+S">S. Serkez</a>, <a href="/search/physics?searchtype=author&amp;query=Singer%2C+A">A. Singer</a>, <a href="/search/physics?searchtype=author&amp;query=Petukhov%2C+A+V">A. V. Petukhov</a>, <a href="/search/physics?searchtype=author&amp;query=Vartanyants%2C+I+A">I. A. Vartanyants</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.08828v1-abstract-short" style="display: inline;"> We demonstrate experimentally Hanbury Brown and Twiss (HBT) interferometry at a hard X-ray Free Electron Laser (XFEL) on a sample diffraction patterns. This is different from the traditional approach when HBT interferometry requires direct beam measurements in absence of the sample. HBT analysis was carried out on the Bragg peaks from the colloidal crystals measured at Linac Coherent Light Source&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.08828v1-abstract-full').style.display = 'inline'; document.getElementById('1707.08828v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.08828v1-abstract-full" style="display: none;"> We demonstrate experimentally Hanbury Brown and Twiss (HBT) interferometry at a hard X-ray Free Electron Laser (XFEL) on a sample diffraction patterns. This is different from the traditional approach when HBT interferometry requires direct beam measurements in absence of the sample. HBT analysis was carried out on the Bragg peaks from the colloidal crystals measured at Linac Coherent Light Source (LCLS). We observed high degree (80%) spatial coherence of the full beam and the pulse duration of the monochromatized beam on the order of 11 fs that is significantly shorter than expected from the electron bunch measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.08828v1-abstract-full').style.display = 'none'; document.getElementById('1707.08828v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 10 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.03996">arXiv:1611.03996</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1611.03996">pdf</a>, <a href="https://arxiv.org/format/1611.03996">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.95.023843">10.1103/PhysRevA.95.023843 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Statistical properties of a free-electron laser revealed by the Hanbury Brown and Twiss interferometry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gorobtsov%2C+O+Y">O. Yu. Gorobtsov</a>, <a href="/search/physics?searchtype=author&amp;query=Mercurio%2C+G">G. Mercurio</a>, <a href="/search/physics?searchtype=author&amp;query=Brenner%2C+G">G. Brenner</a>, <a href="/search/physics?searchtype=author&amp;query=Lorenz%2C+U">U. Lorenz</a>, <a href="/search/physics?searchtype=author&amp;query=Gerasimova%2C+N">N. Gerasimova</a>, <a href="/search/physics?searchtype=author&amp;query=Kurta%2C+R+P">R. P. Kurta</a>, <a href="/search/physics?searchtype=author&amp;query=Hieke%2C+F">F. Hieke</a>, <a href="/search/physics?searchtype=author&amp;query=Skopintsev%2C+P">P. Skopintsev</a>, <a href="/search/physics?searchtype=author&amp;query=Zaluzhnyy%2C+I">I. Zaluzhnyy</a>, <a href="/search/physics?searchtype=author&amp;query=Lazarev%2C+S">S. Lazarev</a>, <a href="/search/physics?searchtype=author&amp;query=Dzhigaev%2C+D">D. Dzhigaev</a>, <a href="/search/physics?searchtype=author&amp;query=Rose%2C+M">M. Rose</a>, <a href="/search/physics?searchtype=author&amp;query=Singer%2C+A">A. Singer</a>, <a href="/search/physics?searchtype=author&amp;query=Wurth%2C+W">W. Wurth</a>, <a href="/search/physics?searchtype=author&amp;query=Vartanyants%2C+I+A">I. A. Vartanyants</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.03996v1-abstract-short" style="display: inline;"> We present a comprehensive experimental analysis of statistical properties of the self-amplified spontaneous emission (SASE) free-electron laser (FEL) FLASH at DESY in Hamburg by means of Hanbury Brown and Twiss (HBT) interferometry. The experiments were performed at the FEL wavelengths of 5.5 nm, 13.4 nm, and 20.8 nm. We determined the 2-nd order intensity correlation function for all wavelengths&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.03996v1-abstract-full').style.display = 'inline'; document.getElementById('1611.03996v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.03996v1-abstract-full" style="display: none;"> We present a comprehensive experimental analysis of statistical properties of the self-amplified spontaneous emission (SASE) free-electron laser (FEL) FLASH at DESY in Hamburg by means of Hanbury Brown and Twiss (HBT) interferometry. The experiments were performed at the FEL wavelengths of 5.5 nm, 13.4 nm, and 20.8 nm. We determined the 2-nd order intensity correlation function for all wavelengths and different operation conditions of FLASH. In all experiments a high degree of spatial coherence (above 50%) was obtained. Our analysis performed in spatial and spectral domains provided us with the independent measurements of an average pulse duration of the FEL that were below 60 fs. To explain complicated behaviour of the 2-nd order intensity correlation function we developed advanced theoretical model that includes the presence of multiple beams and external positional jitter of the FEL pulses. By this analysis we determined that in most experiments several beams were present in radiating field and in one of the experiments external positional jitter was about 25% of the beam size. We envision that methods developed in our study will be used widely for analysis and diagnostics of the FEL radiation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.03996v1-abstract-full').style.display = 'none'; document.getElementById('1611.03996v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 14 figures, 3 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 95, 023843 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.02565">arXiv:1610.02565</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1610.02565">pdf</a>, <a href="https://arxiv.org/format/1610.02565">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1742-6596/849/1/012027">10.1088/1742-6596/849/1/012027 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-dynamic-range water window ptychography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Rose%2C+M">Max Rose</a>, <a href="/search/physics?searchtype=author&amp;query=Dzhigaev%2C+D">Dmitry Dzhigaev</a>, <a href="/search/physics?searchtype=author&amp;query=Senkbeil%2C+T">Tobias Senkbeil</a>, <a href="/search/physics?searchtype=author&amp;query=von+Gundlach%2C+A+R">Andreas R. von Gundlach</a>, <a href="/search/physics?searchtype=author&amp;query=Stuhr%2C+S">Susan Stuhr</a>, <a href="/search/physics?searchtype=author&amp;query=Rumancev%2C+C">Christoph Rumancev</a>, <a href="/search/physics?searchtype=author&amp;query=Besedin%2C+I">Ilya Besedin</a>, <a href="/search/physics?searchtype=author&amp;query=Skopintsev%2C+P">Petr Skopintsev</a>, <a href="/search/physics?searchtype=author&amp;query=Viefhaus%2C+J">Jens Viefhaus</a>, <a href="/search/physics?searchtype=author&amp;query=Rosenhahn%2C+A">Axel Rosenhahn</a>, <a href="/search/physics?searchtype=author&amp;query=Vartanyants%2C+I+A">Ivan A. Vartanyants</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.02565v1-abstract-short" style="display: inline;"> Ptychographic imaging with soft X-rays, especially in the water window energy range, suffers from limited detector dynamic range that directly influences the maximum spatial resolution achievable. High-dynamic-range data can be obtained by multiple exposures. By this approach we have increased the dynamic range of a ptychographic data set by a factor of 76 and obtained diffraction signal till the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.02565v1-abstract-full').style.display = 'inline'; document.getElementById('1610.02565v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.02565v1-abstract-full" style="display: none;"> Ptychographic imaging with soft X-rays, especially in the water window energy range, suffers from limited detector dynamic range that directly influences the maximum spatial resolution achievable. High-dynamic-range data can be obtained by multiple exposures. By this approach we have increased the dynamic range of a ptychographic data set by a factor of 76 and obtained diffraction signal till the corners of the detector. The real space half period resolution was improved from 50 nm for the single exposure data to 18 nm for the high-dynamic-range data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.02565v1-abstract-full').style.display = 'none'; document.getElementById('1610.02565v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 3 figures, Proceedings of XRM-2016 Conference, Oxford, UK</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1504.07376">arXiv:1504.07376</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1504.07376">pdf</a>, <a href="https://arxiv.org/ps/1504.07376">ps</a>, <a href="https://arxiv.org/format/1504.07376">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.91.062712">10.1103/PhysRevE.91.062712 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Theoretical study of electronic damage in single particle imaging experiments at XFELs for pulse durations 0.1 - 10 fs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gorobtsov%2C+O+Y">O. Yu. Gorobtsov</a>, <a href="/search/physics?searchtype=author&amp;query=Lorenz%2C+U">U. Lorenz</a>, <a href="/search/physics?searchtype=author&amp;query=Kabachnik%2C+N+M">N. M. Kabachnik</a>, <a href="/search/physics?searchtype=author&amp;query=Vartanyants%2C+I+A">I. A. Vartanyants</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1504.07376v1-abstract-short" style="display: inline;"> X-ray free-electron lasers (XFELs) may allow to employ the single particle imaging (SPI) method to determine the structure of macromolecules that do not form stable crystals. Ultrashort pulses of 10 fs and less allow to outrun complete disintegration by Coulomb explosion and minimize radiation damage due to nuclear motion, but electronic damage is still present. The major contribution to the elect&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.07376v1-abstract-full').style.display = 'inline'; document.getElementById('1504.07376v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1504.07376v1-abstract-full" style="display: none;"> X-ray free-electron lasers (XFELs) may allow to employ the single particle imaging (SPI) method to determine the structure of macromolecules that do not form stable crystals. Ultrashort pulses of 10 fs and less allow to outrun complete disintegration by Coulomb explosion and minimize radiation damage due to nuclear motion, but electronic damage is still present. The major contribution to the electronic damage comes from the plasma generated in the sample that is strongly dependent on the amount of Auger ionization. Since the Auger process has a characteristic time scale on the order of femtoseconds, one may expect that its contribution will be significantly reduced for attosecond pulses. Here, we study the effect of electronic damage on the SPI at pulse durations from 0.1 fs to 10 fs and in a large range of XFEL fluences to determine optimal conditions for imaging of biological samples. We analyzed the contribution of different electronic excitation processes and found that at fluences higher than $10^{13}$-$10^{15}$ photons/$渭$m$^2$ (depending on the photon energy and pulse duration) the diffracted signal saturates and does not increase further. A significant gain in the signal is obtained by reducing the pulse duration from 10 fs to 1 fs. Pulses below 1 fs duration do not give a significant gain in the scattering signal in comparison with 1 fs pulses. We also study the limits imposed on SPI by Compton scattering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.07376v1-abstract-full').style.display = 'none'; document.getElementById('1504.07376v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 9 figures, 1 table, 2 appendixes, 45 references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 91, No.6, 062712/1- 13 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1402.6135">arXiv:1402.6135</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1402.6135">pdf</a>, <a href="https://arxiv.org/format/1402.6135">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1107/S1600577514006857">10.1107/S1600577514006857 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Characterization of Spatial Coherence of Synchrotron Radiation with Non-Redundant Arrays of Apertures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Skopintsev%2C+P">P. Skopintsev</a>, <a href="/search/physics?searchtype=author&amp;query=Singer%2C+A">A. Singer</a>, <a href="/search/physics?searchtype=author&amp;query=Bach%2C+J">J. Bach</a>, <a href="/search/physics?searchtype=author&amp;query=M%7Fuller%2C+L">L. Muller</a>, <a href="/search/physics?searchtype=author&amp;query=Beyersdorf%2C+B">B. Beyersdorf</a>, <a href="/search/physics?searchtype=author&amp;query=Schleitzer%2C+S">S. Schleitzer</a>, <a href="/search/physics?searchtype=author&amp;query=Gorobtsov%2C+O">O. Gorobtsov</a>, <a href="/search/physics?searchtype=author&amp;query=Shabalin%2C+A">A. Shabalin</a>, <a href="/search/physics?searchtype=author&amp;query=Kurta%2C+R">R. Kurta</a>, <a href="/search/physics?searchtype=author&amp;query=Dzhigaev%2C+D">D. Dzhigaev</a>, <a href="/search/physics?searchtype=author&amp;query=Yefanov%2C+O+M">O. M. Yefanov</a>, <a href="/search/physics?searchtype=author&amp;query=Glaser%2C+L">L. Glaser</a>, <a href="/search/physics?searchtype=author&amp;query=Sakdinawat%2C+A">A. Sakdinawat</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Y. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Gr%7Fubel%2C+G">G. Grubel</a>, <a href="/search/physics?searchtype=author&amp;query=Fr%7Fomter%2C+R">R. Fromter</a>, <a href="/search/physics?searchtype=author&amp;query=Oepen%2C+H+P">H. P. Oepen</a>, <a href="/search/physics?searchtype=author&amp;query=Viefhaus%2C+J">J. Viefhaus</a>, <a href="/search/physics?searchtype=author&amp;query=Vartanyants%2C+I+A">I. A. Vartanyants</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1402.6135v1-abstract-short" style="display: inline;"> We present a method to characterize the spatial coherence of soft X-ray radiation from a single diffraction pattern. The technique is based on scattering from non-redundant arrays (NRA) of slits and records the degree of spatial coherence at several relative separations from one to 15 microns, simultaneously. Using NRAs we measured the transverse coherence of the X-ray beam at the XUV X-ray beamli&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.6135v1-abstract-full').style.display = 'inline'; document.getElementById('1402.6135v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1402.6135v1-abstract-full" style="display: none;"> We present a method to characterize the spatial coherence of soft X-ray radiation from a single diffraction pattern. The technique is based on scattering from non-redundant arrays (NRA) of slits and records the degree of spatial coherence at several relative separations from one to 15 microns, simultaneously. Using NRAs we measured the transverse coherence of the X-ray beam at the XUV X-ray beamline P04 of the PETRA III synchrotron storage ring as a function of different beam parameters. To verify the results obtained with the NRAs additional Young&#39;s double pinhole experiments were conducted and show good agreement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.6135v1-abstract-full').style.display = 'none'; document.getElementById('1402.6135v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 February, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 6 figures, 2 tables, 42 references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Synchrotron Rad. 21 Part 4, pages 722-728. (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1402.3092">arXiv:1402.3092</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1402.3092">pdf</a>, <a href="https://arxiv.org/format/1402.3092">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.113.064801">10.1103/PhysRevLett.113.064801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Intensity interferometry of single x-ray pulses from a synchrotron storage ring </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Singer%2C+A">A. Singer</a>, <a href="/search/physics?searchtype=author&amp;query=Lorenz%2C+U">U. Lorenz</a>, <a href="/search/physics?searchtype=author&amp;query=Marras%2C+A">A. Marras</a>, <a href="/search/physics?searchtype=author&amp;query=Klyuev%2C+A">A. Klyuev</a>, <a href="/search/physics?searchtype=author&amp;query=Becker%2C+J">J. Becker</a>, <a href="/search/physics?searchtype=author&amp;query=Schlage%2C+K">K. Schlage</a>, <a href="/search/physics?searchtype=author&amp;query=Skopintsev%2C+P">P. Skopintsev</a>, <a href="/search/physics?searchtype=author&amp;query=Gorobtsov%2C+O">O. Gorobtsov</a>, <a href="/search/physics?searchtype=author&amp;query=Shabalin%2C+A">A. Shabalin</a>, <a href="/search/physics?searchtype=author&amp;query=Wille%2C+H+-">H. -C. Wille</a>, <a href="/search/physics?searchtype=author&amp;query=Franz%2C+H">H. Franz</a>, <a href="/search/physics?searchtype=author&amp;query=Graafsma%2C+H">H. Graafsma</a>, <a href="/search/physics?searchtype=author&amp;query=Vartanyants%2C+I+A">I. A. Vartanyants</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1402.3092v1-abstract-short" style="display: inline;"> We report on measurements of second-order intensity correlations at the high brilliance storage ring PETRA III using a prototype of the newly developed Adaptive Gain Integrating Pixel Detector (AGIPD). The detector recorded individual synchrotron radiation pulses with an x-ray photon energy of 14.4 keV and repetition rate of about 5 MHz. The second-order intensity correlation function was measured&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.3092v1-abstract-full').style.display = 'inline'; document.getElementById('1402.3092v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1402.3092v1-abstract-full" style="display: none;"> We report on measurements of second-order intensity correlations at the high brilliance storage ring PETRA III using a prototype of the newly developed Adaptive Gain Integrating Pixel Detector (AGIPD). The detector recorded individual synchrotron radiation pulses with an x-ray photon energy of 14.4 keV and repetition rate of about 5 MHz. The second-order intensity correlation function was measured simultaneously at different spatial separations that allowed to determine the transverse coherence length at these x-ray energies. The measured values are in a good agreement with theoretical simulations based on the Gaussian Schell-model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.3092v1-abstract-full').style.display = 'none'; document.getElementById('1402.3092v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 6 figures, 42 references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 113, 064801, /1-4 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1311.1374">arXiv:1311.1374</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1311.1374">pdf</a>, <a href="https://arxiv.org/format/1311.1374">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1742-6596/499/1/012020">10.1088/1742-6596/499/1/012020 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ptychography imaging of the phase vortices in the x-ray beam formed by nanofocusing lenses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Dzhigaev%2C+D">D. Dzhigaev</a>, <a href="/search/physics?searchtype=author&amp;query=Lorenz%2C+U">U. Lorenz</a>, <a href="/search/physics?searchtype=author&amp;query=Kurta%2C+R">R. Kurta</a>, <a href="/search/physics?searchtype=author&amp;query=Seiboth%2C+F">F. Seiboth</a>, <a href="/search/physics?searchtype=author&amp;query=Stankevic%2C+T">T. Stankevic</a>, <a href="/search/physics?searchtype=author&amp;query=Mickevicius%2C+S">S. Mickevicius</a>, <a href="/search/physics?searchtype=author&amp;query=Singer%2C+A">A. Singer</a>, <a href="/search/physics?searchtype=author&amp;query=Shabalin%2C+A">A. Shabalin</a>, <a href="/search/physics?searchtype=author&amp;query=Yefanov%2C+O">O. Yefanov</a>, <a href="/search/physics?searchtype=author&amp;query=Strikhanov%2C+M+N">M. N. Strikhanov</a>, <a href="/search/physics?searchtype=author&amp;query=Falkenberg%2C+G">G. Falkenberg</a>, <a href="/search/physics?searchtype=author&amp;query=Schroer%2C+C+G">C. G. Schroer</a>, <a href="/search/physics?searchtype=author&amp;query=Feidenhans%60l%2C+R">R. Feidenhans`l</a>, <a href="/search/physics?searchtype=author&amp;query=Vartanyants%2C+I+A">I. A. Vartanyants</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1311.1374v1-abstract-short" style="display: inline;"> We present the ptychography reconstruction of the x-ray beam formed by nanofocusing lenses (NFLs) containing a number of phase singularities (vortices) in the vicinity of the focal plane. As a test object Siemens star pattern was used with the finest features of 50 nm for ptychography measurements. The extended ptychography iterative engine (ePIE) algorithm was applied to retrieve both complex ill&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.1374v1-abstract-full').style.display = 'inline'; document.getElementById('1311.1374v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1311.1374v1-abstract-full" style="display: none;"> We present the ptychography reconstruction of the x-ray beam formed by nanofocusing lenses (NFLs) containing a number of phase singularities (vortices) in the vicinity of the focal plane. As a test object Siemens star pattern was used with the finest features of 50 nm for ptychography measurements. The extended ptychography iterative engine (ePIE) algorithm was applied to retrieve both complex illumination and object functions from the set of diffraction patterns. The reconstruction revealed the focus size of 91.4$\pm$1.1 nm in horizontal and 70$\pm$0.3 nm in vertical direction at full width at half maximum (FWHM). The complex probe function was propagated along the optical axis of the beam revealing the evolution of the phase singularities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.1374v1-abstract-full').style.display = 'none'; document.getElementById('1311.1374v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures, Proceedings of ICXOM22 Conference, 2-6 September 2013, Hamburg, Germany</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys.: Conf. Series 499 012020 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1306.3569">arXiv:1306.3569</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1306.3569">pdf</a>, <a href="https://arxiv.org/format/1306.3569">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1107/S1600577513023850">10.1107/S1600577513023850 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coherence properties of focused X-ray beams at high brilliance synchrotron sources </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Singer%2C+A">A. Singer</a>, <a href="/search/physics?searchtype=author&amp;query=Vartanyants%2C+I+A">I. A. Vartanyants</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1306.3569v1-abstract-short" style="display: inline;"> An analytical approach describing properties of focused partially coherent X-ray beams is presented. The method is based on the results of statistical optics and gives both the beam size and transverse coherence length at any distance behind an optical element. In particular, here we consider Gaussian Schell-model beams and thin optical elements. Limiting cases of incoherent and fully coherent ill&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.3569v1-abstract-full').style.display = 'inline'; document.getElementById('1306.3569v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1306.3569v1-abstract-full" style="display: none;"> An analytical approach describing properties of focused partially coherent X-ray beams is presented. The method is based on the results of statistical optics and gives both the beam size and transverse coherence length at any distance behind an optical element. In particular, here we consider Gaussian Schell-model beams and thin optical elements. Limiting cases of incoherent and fully coherent illumination of the focusing element are discussed. The effect of the beam defining aperture, typically used in combination with focusing elements at synchrotron sources to improve transverse coherence, is also analyzed in detail. As an example the coherence properties in the focal region of compound refractive lenses at the PETRA III synchrotron source are analyzed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.3569v1-abstract-full').style.display = 'none'; document.getElementById('1306.3569v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 10 figures, 4 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Synchrotron Rad. 21, Part 1, 5-15 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1302.5730">arXiv:1302.5730</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1302.5730">pdf</a>, <a href="https://arxiv.org/format/1302.5730">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0953-4075/46/16/164013">10.1088/0953-4075/46/16/164013 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Orientation Determination in Single Particle X-ray Coherent Diffraction Imaging Experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yefanov%2C+O+M">O. M. Yefanov</a>, <a href="/search/physics?searchtype=author&amp;query=Vartanyants%2C+I+A">I. A. Vartanyants</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1302.5730v1-abstract-short" style="display: inline;"> Single particle diffraction imaging experiments at free-electron lasers (FEL) have a great potential for structure determination of reproducible biological specimens that can not be crystallized. One of the challenges in processing the data from such an experiment is to determine correct orientation of each diffraction pattern from samples randomly injected in the FEL beam. We propose an algorithm&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1302.5730v1-abstract-full').style.display = 'inline'; document.getElementById('1302.5730v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1302.5730v1-abstract-full" style="display: none;"> Single particle diffraction imaging experiments at free-electron lasers (FEL) have a great potential for structure determination of reproducible biological specimens that can not be crystallized. One of the challenges in processing the data from such an experiment is to determine correct orientation of each diffraction pattern from samples randomly injected in the FEL beam. We propose an algorithm (see also O. Yefanov et al., Photon Science - HASYLAB Annual Report 2010) that can solve this problem and can be applied to samples from tens of nanometers to microns in size, measured with sub-nanometer resolution in the presence of noise. This is achieved by the simultaneous analysis of a large number of diffraction patterns corresponding to different orientations of the particles. The algorithms efficiency is demonstrated for two biological samples, an artificial protein structure without any symmetry and a virus with icosahedral symmetry. Both structures are few tens of nanometers in size and consist of more than 100 000 non-hydrogen atoms. More than 10 000 diffraction patterns with Poisson noise were simulated and analyzed for each structure. Our simulations indicate the possibility to achieve resolution of about 3.3 脜 at 3 脜 wavelength and incoming flux of 10^{12} photons per pulse focused to 100\times 100 nm^2. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1302.5730v1-abstract-full').style.display = 'none'; document.getElementById('1302.5730v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 10 figures, 40 references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. B: At. Mol. Opt. Phys. v. 46, 164013 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1301.6654">arXiv:1301.6654</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1301.6654">pdf</a>, <a href="https://arxiv.org/ps/1301.6654">ps</a>, <a href="https://arxiv.org/format/1301.6654">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.111.034802">10.1103/PhysRevLett.111.034802 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hanbury Brown and Twiss interferometry at a free-electron laser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Singer%2C+A">A. Singer</a>, <a href="/search/physics?searchtype=author&amp;query=Lorenz%2C+U">U. Lorenz</a>, <a href="/search/physics?searchtype=author&amp;query=Sorgenfrei%2C+F">F. Sorgenfrei</a>, <a href="/search/physics?searchtype=author&amp;query=Gerasimova%2C+N">N. Gerasimova</a>, <a href="/search/physics?searchtype=author&amp;query=Gulden%2C+J">J. Gulden</a>, <a href="/search/physics?searchtype=author&amp;query=Yefanov%2C+O+M">O. M. Yefanov</a>, <a href="/search/physics?searchtype=author&amp;query=Kurta%2C+R+P">R. P. Kurta</a>, <a href="/search/physics?searchtype=author&amp;query=Shabalin%2C+A">A. Shabalin</a>, <a href="/search/physics?searchtype=author&amp;query=Dronyak%2C+R">R. Dronyak</a>, <a href="/search/physics?searchtype=author&amp;query=Treusch%2C+R">R. Treusch</a>, <a href="/search/physics?searchtype=author&amp;query=Kocharyan%2C+V">V. Kocharyan</a>, <a href="/search/physics?searchtype=author&amp;query=Weckert%2C+E">E. Weckert</a>, <a href="/search/physics?searchtype=author&amp;query=Wurth%2C+W">W. Wurth</a>, <a href="/search/physics?searchtype=author&amp;query=Vartanyants%2C+I+A">I. A. Vartanyants</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1301.6654v1-abstract-short" style="display: inline;"> We present measurements of second- and higher-order intensity correlation functions (so-called Hanbury Brown and Twiss experiment) performed at the free-electron laser (FEL) FLASH in the non-linear regime of its operation. We demonstrate the high transverse coherence properties of the FEL beam with a degree of transverse coherence of about 80% and degeneracy parameter of the order 10^9 that makes&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.6654v1-abstract-full').style.display = 'inline'; document.getElementById('1301.6654v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1301.6654v1-abstract-full" style="display: none;"> We present measurements of second- and higher-order intensity correlation functions (so-called Hanbury Brown and Twiss experiment) performed at the free-electron laser (FEL) FLASH in the non-linear regime of its operation. We demonstrate the high transverse coherence properties of the FEL beam with a degree of transverse coherence of about 80% and degeneracy parameter of the order 10^9 that makes it similar to laser sources. Intensity correlation measurements in spatial and frequency domain gave an estimate of the FEL average pulse duration of 50 fs. Our measurements of the higher-order correlation functions indicate that FEL radiation obeys Gaussian statistics, which is characteristic to chaotic sources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.6654v1-abstract-full').style.display = 'none'; document.getElementById('1301.6654v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 6 figures, 1 table, 40 references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. v. 111, 034802 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1211.3723">arXiv:1211.3723</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1211.3723">pdf</a>, <a href="https://arxiv.org/ps/1211.3723">ps</a>, <a href="https://arxiv.org/format/1211.3723">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1107/S0909049513000903">10.1107/S0909049513000903 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spectrometer for Hard X-Ray Free Electron Laser Based on Diffraction Focusing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kohn%2C+V+G">V. G. Kohn</a>, <a href="/search/physics?searchtype=author&amp;query=Gorobtsov%2C+O+Y">O. Y. Gorobtsov</a>, <a href="/search/physics?searchtype=author&amp;query=Vartanyants%2C+I+A">I. A. Vartanyants</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1211.3723v1-abstract-short" style="display: inline;"> X-ray free electron lasers (XFELs) generate sequences of ultra-short, spatially coherent pulses of x-ray radiation. We propose the diffraction focusing spectrometer (DFS), which is able to measure the whole energy spectrum of the radiation of a single XFEL pulse with an energy resolution of $螖E/E\approx 2\times 10^{-6}$. This is much better than for most modern x-ray spectrometers. Such resolution&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.3723v1-abstract-full').style.display = 'inline'; document.getElementById('1211.3723v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1211.3723v1-abstract-full" style="display: none;"> X-ray free electron lasers (XFELs) generate sequences of ultra-short, spatially coherent pulses of x-ray radiation. We propose the diffraction focusing spectrometer (DFS), which is able to measure the whole energy spectrum of the radiation of a single XFEL pulse with an energy resolution of $螖E/E\approx 2\times 10^{-6}$. This is much better than for most modern x-ray spectrometers. Such resolution allows one to resolve the fine spectral structure of the XFEL pulse. The effect of diffraction focusing occurs in a single crystal plate due to dynamical scattering, and is similar to focusing in a Pendry lens made from the metamaterial with a negative refraction index. Such a spectrometer is easier to operate than those based on bent crystals. We show that the DFS can be used in a wide energy range from 5 keV to 20 keV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.3723v1-abstract-full').style.display = 'none'; document.getElementById('1211.3723v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 8 figures, 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Synchrotron Rad., vol.20, part 2, 258-265 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1206.6960">arXiv:1206.6960</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1206.6960">pdf</a>, <a href="https://arxiv.org/format/1206.6960">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.86.051911">10.1103/PhysRevE.86.051911 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Impact of ultrafast electronic damage in single particle x-ray imaging experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lorenz%2C+U">U. Lorenz</a>, <a href="/search/physics?searchtype=author&amp;query=Kabachnik%2C+N+M">N. M. Kabachnik</a>, <a href="/search/physics?searchtype=author&amp;query=Weckert%2C+E">E. Weckert</a>, <a href="/search/physics?searchtype=author&amp;query=Vartanyants%2C+I+A">I. A. Vartanyants</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1206.6960v1-abstract-short" style="display: inline;"> In single particle coherent x-ray diffraction imaging experiments, performed at x-ray free-electron lasers (XFELs), samples are exposed to intense x-ray pulses to obtain single-shot diffraction patterns. The high intensity induces electronic dynamics on the femtosecond time scale in the system, which can reduce the contrast of the obtained diffraction patterns and adds an isotropic background. We&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1206.6960v1-abstract-full').style.display = 'inline'; document.getElementById('1206.6960v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1206.6960v1-abstract-full" style="display: none;"> In single particle coherent x-ray diffraction imaging experiments, performed at x-ray free-electron lasers (XFELs), samples are exposed to intense x-ray pulses to obtain single-shot diffraction patterns. The high intensity induces electronic dynamics on the femtosecond time scale in the system, which can reduce the contrast of the obtained diffraction patterns and adds an isotropic background. We quantify the degradation of the diffraction pattern from ultrafast electronic damage by performing simulations on a biological sample exposed to x-ray pulses with different parameters. We find that the contrast is substantially reduced and the background is considerably strong only if almost all electrons are removed from their parent atoms. This happens at fluences of at least one order of magnitude larger than provided at currently available XFEL sources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1206.6960v1-abstract-full').style.display = 'none'; document.getElementById('1206.6960v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 3 figures submitted to PRL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 86, No.5, 051911/1-7 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1206.1091">arXiv:1206.1091</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1206.1091">pdf</a>, <a href="https://arxiv.org/ps/1206.1091">ps</a>, <a href="https://arxiv.org/format/1206.1091">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.20.017480">10.1364/OE.20.017480 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spatial and temporal coherence properties of single free-electron laser pulses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Singer%2C+A">A. Singer</a>, <a href="/search/physics?searchtype=author&amp;query=Sorgenfrei%2C+F">F. Sorgenfrei</a>, <a href="/search/physics?searchtype=author&amp;query=Mancuso%2C+A+P">A. P. Mancuso</a>, <a href="/search/physics?searchtype=author&amp;query=Gerasimova%2C+N">N. Gerasimova</a>, <a href="/search/physics?searchtype=author&amp;query=Yefanov%2C+O+M">O. M. Yefanov</a>, <a href="/search/physics?searchtype=author&amp;query=Gulden%2C+J">J. Gulden</a>, <a href="/search/physics?searchtype=author&amp;query=Gorniak%2C+T">T. Gorniak</a>, <a href="/search/physics?searchtype=author&amp;query=Senkbeil%2C+T">T. Senkbeil</a>, <a href="/search/physics?searchtype=author&amp;query=Sakdinawat%2C+A">A. Sakdinawat</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Y. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Attwood%2C+D">D. Attwood</a>, <a href="/search/physics?searchtype=author&amp;query=Dziarzhytski%2C+S">S. Dziarzhytski</a>, <a href="/search/physics?searchtype=author&amp;query=Mai%2C+D+D">D. D. Mai</a>, <a href="/search/physics?searchtype=author&amp;query=Treusch%2C+R">R. Treusch</a>, <a href="/search/physics?searchtype=author&amp;query=Weckert%2C+E">E. Weckert</a>, <a href="/search/physics?searchtype=author&amp;query=Salditt%2C+T">T. Salditt</a>, <a href="/search/physics?searchtype=author&amp;query=Rosenhahn%2C+A">A. Rosenhahn</a>, <a href="/search/physics?searchtype=author&amp;query=Wurth%2C+W">W. Wurth</a>, <a href="/search/physics?searchtype=author&amp;query=Vartanyants%2C+I+A">I. A. Vartanyants</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1206.1091v1-abstract-short" style="display: inline;"> The experimental characterization of the spatial and temporal coherence properties of the free-electron laser in Hamburg (FLASH) at a wavelength of 8.0 nm is presented. Double pinhole diffraction patterns of single femtosecond pulses focused to a size of about 10 microns by 10 microns were measured. A transverse coherence length of 6.2 microns in the horizontal and 8.7 microns in the vertical dire&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1206.1091v1-abstract-full').style.display = 'inline'; document.getElementById('1206.1091v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1206.1091v1-abstract-full" style="display: none;"> The experimental characterization of the spatial and temporal coherence properties of the free-electron laser in Hamburg (FLASH) at a wavelength of 8.0 nm is presented. Double pinhole diffraction patterns of single femtosecond pulses focused to a size of about 10 microns by 10 microns were measured. A transverse coherence length of 6.2 microns in the horizontal and 8.7 microns in the vertical direction was determined from the most coherent pulses. Using a split and delay unit the coherence time of the pulses produced in the same operation conditions of FLASH was measured to be 1.75 fs. From our experiment we estimated the degeneracy parameter of the FLASH beam to be on the order of $10^{10}$ to $10^{11}$, which exceeds the values of this parameter at any other source in the same energy range by many orders of magnitude. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1206.1091v1-abstract-full').style.display = 'none'; document.getElementById('1206.1091v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 7 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1108.6008">arXiv:1108.6008</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1108.6008">pdf</a>, <a href="https://arxiv.org/format/1108.6008">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.893618">10.1117/12.893618 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Modelling of partially coherent radiation based on the coherent mode decomposition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Singer%2C+A">Andrej Singer</a>, <a href="/search/physics?searchtype=author&amp;query=Vartanyants%2C+I+A">Ivan A. Vartanyants</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1108.6008v1-abstract-short" style="display: inline;"> We present a method for the propagation of partially coherent radiation using coherent mode decomposition and wavefront propagation. The radiation field is decomposed into a sum of independent coherent modes. Each mode is then propagated separately using conventional wavefront propagation techniques. The summation of these modes in the plane of observation gives the coherence properties of the pro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1108.6008v1-abstract-full').style.display = 'inline'; document.getElementById('1108.6008v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1108.6008v1-abstract-full" style="display: none;"> We present a method for the propagation of partially coherent radiation using coherent mode decomposition and wavefront propagation. The radiation field is decomposed into a sum of independent coherent modes. Each mode is then propagated separately using conventional wavefront propagation techniques. The summation of these modes in the plane of observation gives the coherence properties of the propagated radiation. As an example, we analyze propagation of partially coherent radiation transmitted through a single circular aperture. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1108.6008v1-abstract-full').style.display = 'none'; document.getElementById('1108.6008v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 5 figures, Proceedings of SPIE Conference &#34;Advances in Computational Methods for X-ray Optics II&#34;, San Diego, August 2011</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1105.3898">arXiv:1105.3898</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1105.3898">pdf</a>, <a href="https://arxiv.org/ps/1105.3898">ps</a>, <a href="https://arxiv.org/format/1105.3898">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.107.144801">10.1103/PhysRevLett.107.144801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coherence Properties of Individual Femtosecond Pulses of an X-ray Free-Electron Laser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Vartanyants%2C+I+A">I. A. Vartanyants</a>, <a href="/search/physics?searchtype=author&amp;query=Singer%2C+A">A. Singer</a>, <a href="/search/physics?searchtype=author&amp;query=Mancuso%2C+A+P">A. P. Mancuso</a>, <a href="/search/physics?searchtype=author&amp;query=Yefanov%2C+O">O. Yefanov</a>, <a href="/search/physics?searchtype=author&amp;query=Sakdinawat%2C+A">A. Sakdinawat</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Y. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Bang%2C+E">E. Bang</a>, <a href="/search/physics?searchtype=author&amp;query=Williams%2C+G+J">G. J. Williams</a>, <a href="/search/physics?searchtype=author&amp;query=Cadenazzi%2C+G">G. Cadenazzi</a>, <a href="/search/physics?searchtype=author&amp;query=Abbey%2C+B">B. Abbey</a>, <a href="/search/physics?searchtype=author&amp;query=Sinn%2C+H">H. Sinn</a>, <a href="/search/physics?searchtype=author&amp;query=Attwood%2C+D">D. Attwood</a>, <a href="/search/physics?searchtype=author&amp;query=Nugent%2C+K+A">K. A. Nugent</a>, <a href="/search/physics?searchtype=author&amp;query=Weckert%2C+E">E. Weckert</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+T">T. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+D">D. Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+B">B. Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Graves%2C+C">C. Graves</a>, <a href="/search/physics?searchtype=author&amp;query=Scherz%2C+A">A. Scherz</a>, <a href="/search/physics?searchtype=author&amp;query=Turner%2C+J+J">J. J. Turner</a>, <a href="/search/physics?searchtype=author&amp;query=Schlotter%2C+W+F">W. F. Schlotter</a>, <a href="/search/physics?searchtype=author&amp;query=Messerschmidt%2C+M">M. Messerschmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Luning%2C+J">J. Luning</a>, <a href="/search/physics?searchtype=author&amp;query=Acremann%2C+Y">Y. Acremann</a>, <a href="/search/physics?searchtype=author&amp;query=Heimann%2C+P">P. Heimann</a> , et al. (11 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1105.3898v1-abstract-short" style="display: inline;"> Measurements of the spatial and temporal coherence of single, femtosecond x-ray pulses generated by the first hard x-ray free-electron laser (FEL), the Linac Coherent Light Source (LCLS), are presented. Single shot measurements were performed at 780 eV x-ray photon energy using apertures containing double pinholes in &#34;diffract and destroy&#34; mode. We determined a coherence length of 17 micrometers i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1105.3898v1-abstract-full').style.display = 'inline'; document.getElementById('1105.3898v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1105.3898v1-abstract-full" style="display: none;"> Measurements of the spatial and temporal coherence of single, femtosecond x-ray pulses generated by the first hard x-ray free-electron laser (FEL), the Linac Coherent Light Source (LCLS), are presented. Single shot measurements were performed at 780 eV x-ray photon energy using apertures containing double pinholes in &#34;diffract and destroy&#34; mode. We determined a coherence length of 17 micrometers in the vertical direction, which is approximately the size of the focused LCLS beam in the same direction. The analysis of the diffraction patterns produced by the pinholes with the largest separation yields an estimate of the temporal coherence time of 0.6 fs. We find that the total degree of transverse coherence is 56% and that the x-ray pulses are adequately described by two transverse coherent modes in each direction. This leads us to the conclusion that 78% of the total power is contained in the dominant mode. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1105.3898v1-abstract-full').style.display = 'none'; document.getElementById('1105.3898v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0907.4009">arXiv:0907.4009</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0907.4009">pdf</a>, <a href="https://arxiv.org/format/0907.4009">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/12/3/035004">10.1088/1367-2630/12/3/035004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Analysis of Coherence Properties of 3-rd Generation Synchrotron Sources and Free-Electron Lasers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Vartanyants%2C+I+A">I. A. Vartanyants</a>, <a href="/search/physics?searchtype=author&amp;query=Singer%2C+A">A. Singer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0907.4009v1-abstract-short" style="display: inline;"> A general theoretical approach based on the results of statistical optics is used for the analysis of the transverse coherence properties of 3-rd generation synchrotron sources and x-ray free-electron lasers (XFEL). Correlation properties of the wavefields are calculated at different distances from an equivalent Gaussian Schell-model source. This model is used to describe coherence properties of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0907.4009v1-abstract-full').style.display = 'inline'; document.getElementById('0907.4009v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0907.4009v1-abstract-full" style="display: none;"> A general theoretical approach based on the results of statistical optics is used for the analysis of the transverse coherence properties of 3-rd generation synchrotron sources and x-ray free-electron lasers (XFEL). Correlation properties of the wavefields are calculated at different distances from an equivalent Gaussian Schell-model source. This model is used to describe coherence properties of the five meter undulator source at the synchrotron storage ring PETRA III. In the case of XFEL sources the decomposition of the statistical fields into a sum of independently propagating transverse modes is used for the analysis of the coherence properties of these new sources. A detailed calculation is performed for the parameters of the SASE1 undulator at the European XFEL. It is demonstrated that only a few modes contribute significantly to the total radiation field of that source. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0907.4009v1-abstract-full').style.display = 'none'; document.getElementById('0907.4009v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY 09-114 </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10