CINXE.COM
Search results for: biomolecular sensing
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: biomolecular sensing</title> <meta name="description" content="Search results for: biomolecular sensing"> <meta name="keywords" content="biomolecular sensing"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="biomolecular sensing" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="biomolecular sensing"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1180</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: biomolecular sensing</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1180</span> Modelling and Simulation of Single Mode Optical Fiber Directional Coupler for Medical Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shilpa%20Kulkarni">Shilpa Kulkarni</a>, <a href="https://publications.waset.org/abstracts/search?q=Sujata%20Patrikar"> Sujata Patrikar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A single-mode fiber directional coupler is modeled and simulated for its application in medical field. Various fiber devices based on evanescent field absorption, interferometry, couplers, resonators, tip coated fibers, etc, have been developed so far, suitable for medical application. This work focuses on the possibility of sensing by single mode fiber directional coupler. In the preset work, a fiber directional coupler is modeled to detect the changes taking place in the surrounding medium optoelectronically. In this work, waveguiding characteristics of the fiber are studied in depth. The sensor is modeled and simulated by finding photocurrent, sensitivity and detection limit by varying various parameters of the directional coupler. The device is optimized for the best possible output. It is found that the directional coupler shows measurable photocurrents and good sensitivity with coupling length in micrometers. It is thus a miniature device, hence, suitable for medical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single%20mode%20fiber%20directional%20coupler" title="single mode fiber directional coupler">single mode fiber directional coupler</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling%20and%20simulation%20of%20fiber%20directional%20coupler%20sensor" title=" modeling and simulation of fiber directional coupler sensor"> modeling and simulation of fiber directional coupler sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=biomolecular%20sensing" title=" biomolecular sensing"> biomolecular sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20sensor%20device" title=" medical sensor device"> medical sensor device</a> </p> <a href="https://publications.waset.org/abstracts/84917/modelling-and-simulation-of-single-mode-optical-fiber-directional-coupler-for-medical-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1179</span> Capacity Optimization in Cooperative Cognitive Radio Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Pirmoradian">Mahdi Pirmoradian</a>, <a href="https://publications.waset.org/abstracts/search?q=Olayinka%20Adigun"> Olayinka Adigun</a>, <a href="https://publications.waset.org/abstracts/search?q=Christos%20Politis"> Christos Politis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cooperative spectrum sensing is a crucial challenge in cognitive radio networks. Cooperative sensing can increase the reliability of spectrum hole detection, optimize sensing time and reduce delay in cooperative networks. In this paper, an efficient central capacity optimization algorithm is proposed to minimize cooperative sensing time in a homogenous sensor network using OR decision rule subject to the detection and false alarm probabilities constraints. The evaluation results reveal significant improvement in the sensing time and normalized capacity of the cognitive sensors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cooperative%20networks" title="cooperative networks">cooperative networks</a>, <a href="https://publications.waset.org/abstracts/search?q=normalized%20capacity" title=" normalized capacity"> normalized capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=sensing%20time" title=" sensing time"> sensing time</a> </p> <a href="https://publications.waset.org/abstracts/25670/capacity-optimization-in-cooperative-cognitive-radio-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">633</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1178</span> Effect of Using a Mixture of Al2O3 Nanoparticles and 3-Aminopropyltriethoxysilane as the Sensing Membrane for Polysilicon Wire on pH Sensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=You-Lin%20Wu">You-Lin Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zong-Xian%20Wu"> Zong-Xian Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jing-Jenn%20Lin"> Jing-Jenn Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Shih-Hung%20Lin"> Shih-Hung Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, a polysilicon wire (PSW) coated with a mixture of 3-aminopropyltriethoxysilane (r-APTES) and Al2O3 nanoparticles as the sensing membrane prepared with various Al2O3/r-APTES and dispersing agent/r-APTES ratios for pH sensing is studied. The r-APTES and dispersed Al2O3 nanoparticles mixture was directly transferred to PSW surface by solution phase deposition (SPD). It is found that using a mixture of Al2O3 nanoparticles and r-APTES as the sensing membrane help in improving the pH sensing of the PSW sensor and a 5 min SPD deposition time is the best. Dispersing agent is found to be necessary for better pH sensing when preparing the mixture of Al2O3 nanoparticles and r-APTES. The optimum condition for preparing the mixture is found to be Al2O3/r-APTES ratio of 2% and dispersing agent/r-APTES ratio of 0.3%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=al2o3%20nanoparticles" title="al2o3 nanoparticles">al2o3 nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=ph%20sensing" title=" ph sensing"> ph sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=polysilicon%20wire%20sensor" title=" polysilicon wire sensor"> polysilicon wire sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=r-aptes" title=" r-aptes"> r-aptes</a> </p> <a href="https://publications.waset.org/abstracts/31242/effect-of-using-a-mixture-of-al2o3-nanoparticles-and-3-aminopropyltriethoxysilane-as-the-sensing-membrane-for-polysilicon-wire-on-ph-sensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31242.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1177</span> Reliability Factors Based Fuzzy Logic Scheme for Spectrum Sensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tallataf%20Rasheed">Tallataf Rasheed</a>, <a href="https://publications.waset.org/abstracts/search?q=Adnan%20Rashdi"> Adnan Rashdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Naeem%20Akhtar"> Ahmad Naeem Akhtar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The accurate spectrum sensing is a fundamental requirement of dynamic spectrum access for deployment of Cognitive Radio Network (CRN). To acheive this requirement a Reliability factors based Fuzzy Logic (RFL) Scheme for Spectrum Sensing has been proposed in this paper. Cognitive Radio User (CRU) predicts the presence or absence of Primary User (PU) using energy detector and calculates the Reliability factors which are SNR of sensing node, threshold of energy detector and decision difference of each node with other nodes in a cooperative spectrum sensing environment. Then the decision of energy detector is combined with Reliability factors of sensing node using Fuzzy Logic. These Reliability Factors used in RFL Scheme describes the reliability of decision made by a CRU to improve the local spectrum sensing. This Fuzzy combining scheme provides the accuracy of decision made by sensornode. The simulation results have shown that the proposed technique provide better PU detection probability than existing Spectrum Sensing Techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cognitive%20radio" title="cognitive radio">cognitive radio</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrum%20sensing" title=" spectrum sensing"> spectrum sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20detector" title=" energy detector"> energy detector</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20factors" title=" reliability factors"> reliability factors</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title=" fuzzy logic"> fuzzy logic</a> </p> <a href="https://publications.waset.org/abstracts/77586/reliability-factors-based-fuzzy-logic-scheme-for-spectrum-sensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77586.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">486</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1176</span> Determination of Biomolecular Interactions Using Microscale Thermophoresis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lynn%20Lehmann">Lynn Lehmann</a>, <a href="https://publications.waset.org/abstracts/search?q=Dinorah%20Leyva"> Dinorah Leyva</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Lazic"> Ana Lazic</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefan%20Duhr"> Stefan Duhr</a>, <a href="https://publications.waset.org/abstracts/search?q=Philipp%20Baaske"> Philipp Baaske</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Characterization of biomolecular interactions, such as protein-protein, protein-nucleic acid or protein-small molecule, provides critical insights into cellular processes and is essential for the development of drug diagnostics and therapeutics. Here we present a novel, label-free, and tether-free technology to analyze picomolar to millimolar affinities of biomolecular interactions by Microscale Thermophoresis (MST). The entropy of the hydration shell surrounding molecules determines thermophoretic movement. MST exploits this principle by measuring interactions using optically generated temperature gradients. MST detects changes in the size, charge and hydration shell of molecules and measures biomolecule interactions under close-to-native conditions: immobilization-free and in bioliquids of choice, including cell lysates and blood serum. Thus, MST measures interactions under close-to-native conditions, and without laborious sample purification. We demonstrate how MST determines the picomolar affinities of antibody::antigen interactions, and protein::protein interactions measured from directly from cell lysates. MST assays are highly adaptable to fit to the diverse requirements of different and complex biomolecules. NanoTemper´s unique technology is ideal for studies requiring flexibility and sensitivity at the experimental scale, making MST suitable for basic research investigations and pharmaceutical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biochemistry" title="biochemistry">biochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=biophysics" title=" biophysics"> biophysics</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20interactions" title=" molecular interactions"> molecular interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=quantitative%20techniques" title=" quantitative techniques"> quantitative techniques</a> </p> <a href="https://publications.waset.org/abstracts/27726/determination-of-biomolecular-interactions-using-microscale-thermophoresis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27726.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">524</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1175</span> Performance of Nakagami Fading Channel over Energy Detection Based Spectrum Sensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ranjeeth">M. Ranjeeth</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Anuradha"> S. Anuradha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spectrum sensing is the main feature of cognitive radio technology. Spectrum sensing gives an idea of detecting the presence of the primary users in a licensed spectrum. In this paper we compare the theoretical results of detection probability of different fading environments like Rayleigh, Rician, Nakagami-m fading channels with the simulation results using energy detection based spectrum sensing. The numerical results are plotted as P_f Vs P_d for different SNR values, fading parameters. It is observed that Nakagami fading channel performance is better than other fading channels by using energy detection in spectrum sensing. A MATLAB simulation test bench has been implemented to know the performance of energy detection in different fading channel environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spectrum%20sensing" title="spectrum sensing">spectrum sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20detection" title=" energy detection"> energy detection</a>, <a href="https://publications.waset.org/abstracts/search?q=fading%20channels" title=" fading channels"> fading channels</a>, <a href="https://publications.waset.org/abstracts/search?q=probability%20of%20detection" title=" probability of detection"> probability of detection</a>, <a href="https://publications.waset.org/abstracts/search?q=probability%20of%20false%20alarm" title=" probability of false alarm"> probability of false alarm</a> </p> <a href="https://publications.waset.org/abstracts/15800/performance-of-nakagami-fading-channel-over-energy-detection-based-spectrum-sensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15800.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">532</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1174</span> Constructing Orthogonal De Bruijn and Kautz Sequences and Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yaw-Ling%20Lin">Yaw-Ling Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A de Bruijn graph of order k is a graph whose vertices representing all length-k sequences with edges joining pairs of vertices whose sequences have maximum possible overlap (length k−1). Every Hamiltonian cycle of this graph defines a distinct, minimum length de Bruijn sequence containing all k-mers exactly once. A Kautz sequence is the minimal generating sequence so as the sequence of minimal length that produces all possible length-k sequences with the restriction that every two consecutive alphabets in the sequences must be different. A collection of de Bruijn/Kautz sequences are orthogonal if any two sequences are of maximally differ in sequence composition; that is, the maximum length of their common substring is k. In this paper, we discuss how such a collection of (maximal) orthogonal de Bruijn/Kautz sequences can be made and use the algorithm to build up a web application service for the synthesized DNA and other related biomolecular sequences. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomolecular%20sequence%20synthesis" title="biomolecular sequence synthesis">biomolecular sequence synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=de%20Bruijn%20sequences" title=" de Bruijn sequences"> de Bruijn sequences</a>, <a href="https://publications.waset.org/abstracts/search?q=Eulerian%20cycle" title=" Eulerian cycle"> Eulerian cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamiltonian%20cycle" title=" Hamiltonian cycle"> Hamiltonian cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=Kautz%20sequences" title=" Kautz sequences"> Kautz sequences</a>, <a href="https://publications.waset.org/abstracts/search?q=orthogonal%20sequences" title=" orthogonal sequences"> orthogonal sequences</a> </p> <a href="https://publications.waset.org/abstracts/121912/constructing-orthogonal-de-bruijn-and-kautz-sequences-and-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121912.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1173</span> Radio-Frequency Technologies for Sensing and Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cam%20Nguyen">Cam Nguyen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rapid, accurate, and safe sensing and imaging of physical quantities or structures finds many applications and is of significant interest to society. Sensing and imaging using radio-frequency (RF) techniques, particularly, has gone through significant development and subsequently established itself as a unique territory in the sensing world. RF sensing and imaging has played a critical role in providing us many sensing and imaging abilities beyond our human capabilities, benefiting both civilian and military applications - for example, from sensing abnormal conditions underneath some structures’ surfaces to detection and classification of concealed items, hidden activities, and buried objects. We present the developments of several sensing and imaging systems implementing RF technologies like ultra-wide band (UWB), synthetic-pulse, and interferometry. These systems are fabricated completely using RF integrated circuits. The UWB impulse system operates over multiple pulse durations from 450 to 1170 ps with 5.5-GHz RF bandwidth. It performs well through tests of various samples, demonstrating its usefulness for subsurface sensing. The synthetic-pulse system operating from 0.6 to 5.6 GHz can assess accurately subsurface structures. The synthetic-pulse system operating from 29.72-37.7 GHz demonstrates abilities for various surface and near-surface sensing such as profile mapping, liquid-level monitoring, and anti-personnel mine locating. The interferometric system operating at 35.6 GHz demonstrates its multi-functional capability for measurement of displacements and slow velocities. These RF sensors are attractive and useful for various surface and subsurface sensing applications. This paper was made possible by NPRP grant # 6-241-2-102 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RF%20sensors" title="RF sensors">RF sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=radars" title=" radars"> radars</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20sensing" title=" surface sensing"> surface sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=subsurface%20sensing" title=" subsurface sensing"> subsurface sensing</a> </p> <a href="https://publications.waset.org/abstracts/73251/radio-frequency-technologies-for-sensing-and-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1172</span> Highly Sensitive and Selective H2 Gas Sensor Based on Pd-Pt Decorated Nanostructured Silicon Carbide Thin Films for Extreme Environment Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Satyendra%20Mourya">Satyendra Mourya</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyoti%20Jaiswal"> Jyoti Jaiswal</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaurav%20Malik"> Gaurav Malik</a>, <a href="https://publications.waset.org/abstracts/search?q=Brijesh%20Kumar"> Brijesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramesh%20Chandra"> Ramesh Chandra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Present work describes the fabrication and sensing characteristics of the Pd-Pt decorated nanostructured silicon carbide (SiC) thin films on anodized porous silicon (PSi) substrate by RF magnetron sputtering. The gas sensing performance of Pd-Pt/SiC/PSi sensing electrode towards H2 gas under low (10–400 ppm) detection limit and high operating temperature regime (25–600 °C) were studied in detail. The chemiresistive sensor exhibited high selectivity, good sensing response, fast response/recovery time with excellent stability towards H2 at high temperature. The selectivity measurement of the sensing electrode was done towards different oxidizing and reducing gases and proposed sensing mechanism discussed in detail. Therefore, the investigated Pd-Pt/SiC/PSi structure may be a highly sensitive and selective hydrogen gas sensing electrode for deployment in extreme environment applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RF%20Sputtering" title="RF Sputtering">RF Sputtering</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20carbide" title=" silicon carbide"> silicon carbide</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20silicon" title=" porous silicon"> porous silicon</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20gas%20sensor" title=" hydrogen gas sensor"> hydrogen gas sensor</a> </p> <a href="https://publications.waset.org/abstracts/93164/highly-sensitive-and-selective-h2-gas-sensor-based-on-pd-pt-decorated-nanostructured-silicon-carbide-thin-films-for-extreme-environment-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1171</span> Applying Computer Simulation Methods to a Molecular Understanding of Flaviviruses Proteins towards Differential Serological Diagnostics and Therapeutic Intervention</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sergio%20Alejandro%20Cuevas">Sergio Alejandro Cuevas</a>, <a href="https://publications.waset.org/abstracts/search?q=Catherine%20Etchebest"> Catherine Etchebest</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernando%20Luis%20Barroso%20Da%20Silva"> Fernando Luis Barroso Da Silva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The flavivirus genus has several organisms responsible for generating various diseases in humans. Special in Brazil, Zika (ZIKV), Dengue (DENV) and Yellow Fever (YFV) viruses have raised great health concerns due to the high number of cases affecting the area during the last years. Diagnostic is still a difficult issue since the clinical symptoms are highly similar. The understanding of their common structural/dynamical and biomolecular interactions features and differences might suggest alternative strategies towards differential serological diagnostics and therapeutic intervention. Due to their immunogenicity, the primary focus of this study was on the ZIKV, DENV and YFV non-structural proteins 1 (NS1) protein. By means of computational studies, we calculated the main physical chemical properties of this protein from different strains that are directly responsible for the biomolecular interactions and, therefore, can be related to the differential infectivity of the strains. We also mapped the electrostatic differences at both the sequence and structural levels for the strains from Uganda to Brazil that could suggest possible molecular mechanisms for the increase of the virulence of ZIKV. It is interesting to note that despite the small changes in the protein sequence due to the high sequence identity among the studied strains, the electrostatic properties are strongly impacted by the pH which also impact on their biomolecular interactions with partners and, consequently, the molecular viral biology. African and Asian strains are distinguishable. Exploring the interfaces used by NS1 to self-associate in different oligomeric states, and to interact with membranes and the antibody, we could map the strategy used by the ZIKV during its evolutionary process. This indicates possible molecular mechanisms that can explain the different immunological response. By the comparison with the known antibody structure available for the West Nile virus, we demonstrated that the antibody would have difficulties to neutralize the NS1 from the Brazilian strain. The present study also opens up perspectives to computationally design high specificity antibodies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=zika" title="zika">zika</a>, <a href="https://publications.waset.org/abstracts/search?q=biomolecular%20interactions" title=" biomolecular interactions"> biomolecular interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=electrostatic%20interactions" title=" electrostatic interactions"> electrostatic interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20mechanisms" title=" molecular mechanisms"> molecular mechanisms</a> </p> <a href="https://publications.waset.org/abstracts/97399/applying-computer-simulation-methods-to-a-molecular-understanding-of-flaviviruses-proteins-towards-differential-serological-diagnostics-and-therapeutic-intervention" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97399.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1170</span> Multifunctional Composite Structural Elements for Sensing and Energy Harvesting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20H.%20Alavi">Amir H. Alavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaveh%20%20Barri"> Kaveh Barri</a>, <a href="https://publications.waset.org/abstracts/search?q=Qianyun%20Zhang"> Qianyun Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents a new generation of lightweight and mechanically tunable structural composites with sensing and energy harvesting functionalities. This goal is achieved by integrating metamaterial and triboelectric energy harvesting concepts. Proof-of-concept polymeric beam prototypes are fabricated using 3D printing methods based on the proposed concept. Experiments and theoretical analyses are conducted to quantitatively investigate the mechanical and electrical properties of the designed multifunctional beams. The results show that these integrated structural elements can serve as nanogenerators and distributed sensing mediums without a need to incorporating any external sensing modules and electronics. The feasibility of design self-sensing and self-powering structural elements at multiscale for next generation infrastructure systems is further discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multifunctional%20structures" title="multifunctional structures">multifunctional structures</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a>, <a href="https://publications.waset.org/abstracts/search?q=metamaterial" title=" metamaterial"> metamaterial</a>, <a href="https://publications.waset.org/abstracts/search?q=triboelectric%20nanogenerator" title=" triboelectric nanogenerator"> triboelectric nanogenerator</a>, <a href="https://publications.waset.org/abstracts/search?q=sensors" title=" sensors"> sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20health%20monitoring" title=" structural health monitoring"> structural health monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20harvesting" title=" energy harvesting"> energy harvesting</a> </p> <a href="https://publications.waset.org/abstracts/139372/multifunctional-composite-structural-elements-for-sensing-and-energy-harvesting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1169</span> Condition Monitoring of Railway Earthworks using Distributed Rayleigh Sensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Hall">Andrew Hall</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Clarkson"> Paul Clarkson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate change is predicted to increase the number of extreme weather events intensifying the strain on Railway Earthworks. This paper describes the use of Distributed Rayleigh Sensing to monitor low frequency activity on a vulnerable earthworks sectionprone to landslides alongside a railway line in Northern Spain. The vulnerable slope is instrumented with conventional slope stability sensors allowing an assessment to be conducted of the application of Distributed Rayleigh Sensing as an earthwork condition monitoring tool to enhance the resilience of railway networks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=condition%20monitoring" title="condition monitoring">condition monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=railway%20earthworks" title=" railway earthworks"> railway earthworks</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20rayleigh%20sensing" title=" distributed rayleigh sensing"> distributed rayleigh sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a> </p> <a href="https://publications.waset.org/abstracts/141052/condition-monitoring-of-railway-earthworks-using-distributed-rayleigh-sensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1168</span> DNA PLA: A Nano-Biotechnological Programmable Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hafiz%20Md.%20HasanBabu">Hafiz Md. HasanBabu</a>, <a href="https://publications.waset.org/abstracts/search?q=Khandaker%20Mohammad%20Mohi%20Uddin"> Khandaker Mohammad Mohi Uddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20IstiakJaman%20Ami"> Md. IstiakJaman Ami</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahat%20Hossain%20Faisal"> Rahat Hossain Faisal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Computing in biomolecular programming performs through the different types of reactions. Proteins and nucleic acids are used to store the information generated by biomolecular programming. DNA (Deoxyribose Nucleic Acid) can be used to build a molecular computing system and operating system for its predictable molecular behavior property. The DNA device has clear advantages over conventional devices when applied to problems that can be divided into separate, non-sequential tasks. The reason is that DNA strands can hold so much data in memory and conduct multiple operations at once, thus solving decomposable problems much faster. Programmable Logic Array, abbreviated as PLA is a programmable device having programmable AND operations and OR operations. In this paper, a DNA PLA is designed by different molecular operations using DNA molecules with the proposed algorithms. The molecular PLA could take advantage of DNA's physical properties to store information and perform calculations. These include extremely dense information storage, enormous parallelism, and extraordinary energy efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biological%20systems" title="biological systems">biological systems</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20computing" title=" DNA computing"> DNA computing</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20computing" title=" parallel computing"> parallel computing</a>, <a href="https://publications.waset.org/abstracts/search?q=programmable%20logic%20array" title=" programmable logic array"> programmable logic array</a>, <a href="https://publications.waset.org/abstracts/search?q=PLA" title=" PLA"> PLA</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA" title=" DNA"> DNA</a> </p> <a href="https://publications.waset.org/abstracts/141070/dna-pla-a-nano-biotechnological-programmable-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1167</span> Optimal Sensing Technique for Estimating Stress Distribution of 2-D Steel Frame Structure Using Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jun%20Su%20Park">Jun Su Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Byung%20Kwan%20Oh"> Byung Kwan Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20Woo%20Hwang"> Jin Woo Hwang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yousok%20Kim"> Yousok Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyo%20Seon%20Park"> Hyo Seon Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For the structural safety, the maximum stress calculated from the stress distribution of a structure is widely used. The stress distribution can be estimated by deformed shape of the structure obtained from measurement. Although the estimation of stress is strongly affected by the location and number of sensing points, most studies have conducted the stress estimation without reasonable basis on sensing plan such as the location and number of sensors. In this paper, an optimal sensing technique for estimating the stress distribution is proposed. This technique proposes the optimal location and number of sensing points for a 2-D frame structure while minimizing the error of stress distribution between analytical model and estimation by cubic smoothing splines using genetic algorithm. To verify the proposed method, the optimal sensor measurement technique is applied to simulation tests on 2-D steel frame structure. The simulation tests are performed under various loading scenarios. Through those tests, the optimal sensing plan for the structure is suggested and verified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title="genetic algorithm">genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20sensing" title=" optimal sensing"> optimal sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=optimizing%20sensor%20placements" title=" optimizing sensor placements"> optimizing sensor placements</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20frame%20structure" title=" steel frame structure"> steel frame structure</a> </p> <a href="https://publications.waset.org/abstracts/25426/optimal-sensing-technique-for-estimating-stress-distribution-of-2-d-steel-frame-structure-using-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25426.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">531</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1166</span> PSRR Enhanced LDO Regulator Using Noise Sensing Circuit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Min-ju%20Kwon">Min-ju Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Chae-won%20Kim"> Chae-won Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeong-yun%20Seo"> Jeong-yun Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hee-guk%20Chae"> Hee-guk Chae</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong-seo%20Koo"> Yong-seo Koo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we presented the LDO (low-dropout) regulator which enhanced the PSRR by applying the constant current source generation technique through the BGR (Band Gap Reference) to form the noise sensing circuit. The current source through the BGR has a constant current value even if the applied voltage varies. Then, the noise sensing circuit, which is composed of the current source through the BGR, operated between the error amplifier and the pass transistor gate of the LDO regulator. As a result, the LDO regulator has a PSRR of -68.2 dB at 1k Hz, -45.85 dB at 1 MHz and -45 dB at 10 MHz. the other performance of the proposed LDO was maintained at the same level of the conventional LDO regulator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LDO%20regulator" title="LDO regulator">LDO regulator</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20sensing%20circuit" title=" noise sensing circuit"> noise sensing circuit</a>, <a href="https://publications.waset.org/abstracts/search?q=current%20reference" title=" current reference"> current reference</a>, <a href="https://publications.waset.org/abstracts/search?q=pass%20transistor" title=" pass transistor"> pass transistor</a> </p> <a href="https://publications.waset.org/abstracts/78192/psrr-enhanced-ldo-regulator-using-noise-sensing-circuit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78192.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1165</span> Elevating Environmental Impact Assessment through Remote Sensing in Engineering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Spoorthi%20Srupad">Spoorthi Srupad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environmental Impact Assessment (EIA) stands as a critical engineering application facilitated by Earth Resources and Environmental Remote Sensing. Employing advanced technologies, this process enables a systematic evaluation of potential environmental impacts arising from engineering projects. Remote sensing techniques, including satellite imagery and geographic information systems (GIS), play a pivotal role in providing comprehensive data for assessing changes in land cover, vegetation, water bodies, and air quality. This abstract delves into the significance of EIA in engineering, emphasizing its role in ensuring sustainable and environmentally responsible practices. The integration of remote sensing technologies enhances the accuracy and efficiency of impact assessments, contributing to informed decision-making and the mitigation of adverse environmental consequences associated with engineering endeavors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20impact%20assessment" title="environmental impact assessment">environmental impact assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20applications" title=" engineering applications"> engineering applications</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20monitoring" title=" environmental monitoring"> environmental monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=geographic%20information%20systems" title=" geographic information systems"> geographic information systems</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20management" title=" environmental management"> environmental management</a> </p> <a href="https://publications.waset.org/abstracts/179151/elevating-environmental-impact-assessment-through-remote-sensing-in-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1164</span> Integration of GIS with Remote Sensing and GPS for Disaster Mitigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sikander%20Nawaz%20Khan">Sikander Nawaz Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural disasters like flood, earthquake, cyclone, volcanic eruption and others are causing immense losses to the property and lives every year. Current status and actual loss information of natural hazards can be determined and also prediction for next probable disasters can be made using different remote sensing and mapping technologies. Global Positioning System (GPS) calculates the exact position of damage. It can also communicate with wireless sensor nodes embedded in potentially dangerous places. GPS provide precise and accurate locations and other related information like speed, track, direction and distance of target object to emergency responders. Remote Sensing facilitates to map damages without having physical contact with target area. Now with the addition of more remote sensing satellites and other advancements, early warning system is used very efficiently. Remote sensing is being used both at local and global scale. High Resolution Satellite Imagery (HRSI), airborne remote sensing and space-borne remote sensing is playing vital role in disaster management. Early on Geographic Information System (GIS) was used to collect, arrange, and map the spatial information but now it has capability to analyze spatial data. This analytical ability of GIS is the main cause of its adaption by different emergency services providers like police and ambulance service. Full potential of these so called 3S technologies cannot be used in alone. Integration of GPS and other remote sensing techniques with GIS has pointed new horizons in modeling of earth science activities. Many remote sensing cases including Asian Ocean Tsunami in 2004, Mount Mangart landslides and Pakistan-India earthquake in 2005 are described in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disaster%20mitigation" title="disaster mitigation">disaster mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=GPS" title=" GPS"> GPS</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a> </p> <a href="https://publications.waset.org/abstracts/11085/integration-of-gis-with-remote-sensing-and-gps-for-disaster-mitigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">481</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1163</span> Advancing Horizons: Standardized Future Trends in LiDAR and Remote Sensing Technologies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Spoorthi%20Sripad">Spoorthi Sripad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rapid advancements in LiDAR (Light Detection and Ranging) technology, coupled with the synergy of remote sensing, have revolutionized Earth observation methodologies. This paper delves into the transformative impact of integrated LiDAR and remote sensing systems. Focusing on miniaturization, cost reduction, and improved resolution, the study explores the evolving landscape of terrestrial and aquatic environmental monitoring. The integration of multi-wavelength and dual-mode LiDAR systems, alongside collaborative efforts with other remote sensing technologies, presents a comprehensive approach. The paper highlights the pivotal role of LiDAR in environmental assessment, urban planning, and infrastructure development. As the amalgamation of LiDAR and remote sensing reshapes Earth observation, this research anticipates a paradigm shift in our understanding of dynamic planetary processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LiDAR" title="LiDAR">LiDAR</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=earth%20observation" title=" earth observation"> earth observation</a>, <a href="https://publications.waset.org/abstracts/search?q=advancements" title=" advancements"> advancements</a>, <a href="https://publications.waset.org/abstracts/search?q=integration" title=" integration"> integration</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20monitoring" title=" environmental monitoring"> environmental monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-wavelength" title=" multi-wavelength"> multi-wavelength</a>, <a href="https://publications.waset.org/abstracts/search?q=dual-mode" title=" dual-mode"> dual-mode</a>, <a href="https://publications.waset.org/abstracts/search?q=technology" title=" technology"> technology</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20planning" title=" urban planning"> urban planning</a>, <a href="https://publications.waset.org/abstracts/search?q=infrastructure" title=" infrastructure"> infrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=resolution" title=" resolution"> resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=miniaturization" title=" miniaturization"> miniaturization</a> </p> <a href="https://publications.waset.org/abstracts/179167/advancing-horizons-standardized-future-trends-in-lidar-and-remote-sensing-technologies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1162</span> Fe-Doped Graphene Nanoparticles for Gas Sensing Applications </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shivani%20A.%20Singh">Shivani A. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Pravin%20S.%20More"> Pravin S. More</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present inspection, we indicate the falsification of Fe-doped graphene nanoparticles by modified Hummers method. Structural and physiochemical properties of the resulting pallets were explored with the help of ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD) and scanning electron microscopy (SEM), Photoluminescence spectroscopy (PL) for graphene sample exhibits absorption peaks ~248nm. Pure graphene shows PL peak at 348 nm. After doping of Fe with graphene the PL peak shifted from 348 nm to 332 nm. The oxidation degree, i.e. the relative amount of oxygen functional groups was estimated from the relative intensities of the oxygen related bands (ORB) in the FTIR measurements. These analyses show that this modified material can be useful for gas sensing applications and to be used in diverse areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20doping" title="chemical doping">chemical doping</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20sensing" title=" gas sensing"> gas sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=sensing" title=" sensing"> sensing</a> </p> <a href="https://publications.waset.org/abstracts/79785/fe-doped-graphene-nanoparticles-for-gas-sensing-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1161</span> Cooperative Spectrum Sensing Using Hybrid IWO/PSO Algorithm in Cognitive Radio Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deepa%20Das">Deepa Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Susmita%20Das"> Susmita Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cognitive Radio (CR) is an emerging technology to combat the spectrum scarcity issues. This is achieved by consistently sensing the spectrum, and detecting the under-utilized frequency bands without causing undue interference to the primary user (PU). In soft decision fusion (SDF) based cooperative spectrum sensing, various evolutionary algorithms have been discussed, which optimize the weight coefficient vector for maximizing the detection performance. In this paper, we propose the hybrid invasive weed optimization and particle swarm optimization (IWO/PSO) algorithm as a fast and global optimization method, which improves the detection probability with a lesser sensing time. Then, the efficiency of this algorithm is compared with the standard invasive weed optimization (IWO), particle swarm optimization (PSO), genetic algorithm (GA) and other conventional SDF based methods on the basis of convergence and detection probability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cognitive%20radio" title="cognitive radio">cognitive radio</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrum%20sensing" title=" spectrum sensing"> spectrum sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20decision%20fusion" title=" soft decision fusion"> soft decision fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=GA" title=" GA"> GA</a>, <a href="https://publications.waset.org/abstracts/search?q=PSO" title=" PSO"> PSO</a>, <a href="https://publications.waset.org/abstracts/search?q=IWO" title=" IWO"> IWO</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20IWO%2FPSO" title=" hybrid IWO/PSO"> hybrid IWO/PSO</a> </p> <a href="https://publications.waset.org/abstracts/9362/cooperative-spectrum-sensing-using-hybrid-iwopso-algorithm-in-cognitive-radio-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1160</span> 2D Nanomaterials-Based Geopolymer as-Self-Sensing Buildings in Construction Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Kiani">Maryam Kiani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The self-sensing capability opens up new possibilities for structural health monitoring, offering real-time information on the condition and performance of constructions. The synthesis and characterization of these functional 2D material geopolymers will be explored in this study. Various fabrication techniques, including mixing, dispersion, and coating methods, will be employed to ensure uniform distribution and integration of the 2D materials within the geopolymers. The resulting composite materials will be evaluated for their mechanical strength, electrical conductivity, and sensing capabilities through rigorous testing and analysis. The potential applications of these self-sensing geopolymers are vast. They can be used in infrastructure projects, such as bridges, tunnels, and buildings, to provide continuous monitoring and early detection of structural damage or degradation. This proactive approach to maintenance and safety can significantly improve the lifespan and efficiency of constructions, ultimately reducing maintenance costs and enhancing overall sustainability. In conclusion, the development of functional 2D material geopolymers as self-sensing materials presents an exciting advancement in the construction industry. By integrating these innovative materials into structures, we can create a new generation of intelligent, self-monitoring constructions that can adapt and respond to their environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2D%20materials" title="2D materials">2D materials</a>, <a href="https://publications.waset.org/abstracts/search?q=geopolymers" title=" geopolymers"> geopolymers</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20properties" title=" electrical properties"> electrical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=self-sensing" title=" self-sensing"> self-sensing</a> </p> <a href="https://publications.waset.org/abstracts/178632/2d-nanomaterials-based-geopolymer-as-self-sensing-buildings-in-construction-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1159</span> Exploring the Gas Sensing Performance of Cu-Doped Iron Oxide Derived from Metal-Organic Framework</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Annu%20Sheokand">Annu Sheokand</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinay%20Kumar"> Vinay Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrogen sulfide (H₂S) detection is essential for environmental monitoring and industrial safety due to its high toxicity, even at low concentrations. This study explores the H₂S gas sensing properties of Cu-doped Fe₂O₃ materials derived from metal-organic frameworks (MOFs), which offer high surface area and controlled porosity for optimized gas sensing. The structural and morphological characteristics of the synthesized material were thoroughly analyzed using techniques such as X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), and UV-Vis Spectroscopy. The resulting sensor exhibited remarkable sensitivity and selectivity, achieving a detection limit at the ppb level for H₂S. The study indicates that Cu doping significantly enhances the gas sensing performance of Fe₂O₃ by introducing abundant active sites within the material. These enhanced sensing properties emphasize the potential of MOF-derived Cu-doped Fe₂O₃ as a highly effective material for H₂S gas sensors in various applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=detection%20limit" title="detection limit">detection limit</a>, <a href="https://publications.waset.org/abstracts/search?q=doping" title=" doping"> doping</a>, <a href="https://publications.waset.org/abstracts/search?q=MOF" title=" MOF"> MOF</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity" title=" sensitivity"> sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor"> sensor</a> </p> <a href="https://publications.waset.org/abstracts/193481/exploring-the-gas-sensing-performance-of-cu-doped-iron-oxide-derived-from-metal-organic-framework" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193481.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">13</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1158</span> Uniform Porous Multilayer-Junction Thin Film for Enhanced Gas-Sensing Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ping-Ping%20Zhang">Ping-Ping Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui-Zhang"> Hui-Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xu-Hui%20Sun"> Xu-Hui Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Highly-uniform In2O3/CuO bilayer and multilayer porous thin films were successfully fabricated using self-assembled soft template and simple sputtering deposition technique. The sensor based on the In2O3/CuO bilayer porous thin film shows obviously improved sensing performance to ethanol at the lower working temperature, compared to single layer counterpart sensors. The response of In2O3/CuO bilayer sensors exhibits nearly 3 and 5 times higher than those of the single layer In2O3 and CuO porous film sensors over the same ethanol concentration, respectively. The sensing mechanism based on p-n hetero-junction, which contributed to the enhanced sensing performance was also experimentally confirmed by a control experiment which the SiO2 insulation layer was inserted between the In2O3 and CuO layers to break the p-n junction. In addition, the sensing performance can be further enhanced by increasing the number of In2O3/CuO junction layers. The facile process can be easily extended to the fabrication of other semiconductor oxide gas sensors for practical sensing applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20sensor" title="gas sensor">gas sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=multilayer%20porous%20thin%20films" title=" multilayer porous thin films"> multilayer porous thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=In2O3%2FCuO" title=" In2O3/CuO"> In2O3/CuO</a>, <a href="https://publications.waset.org/abstracts/search?q=p-n%20junction" title=" p-n junction"> p-n junction</a> </p> <a href="https://publications.waset.org/abstracts/43275/uniform-porous-multilayer-junction-thin-film-for-enhanced-gas-sensing-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43275.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1157</span> A Comparative Study on Automatic Feature Classification Methods of Remote Sensing Images </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lee%20Jeong%20Min">Lee Jeong Min</a>, <a href="https://publications.waset.org/abstracts/search?q=Lee%20Mi%20Hee"> Lee Mi Hee</a>, <a href="https://publications.waset.org/abstracts/search?q=Eo%20Yang%20Dam"> Eo Yang Dam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geospatial feature extraction is a very important issue in the remote sensing research. In the meantime, the image classification based on statistical techniques, but, in recent years, data mining and machine learning techniques for automated image processing technology is being applied to remote sensing it has focused on improved results generated possibility. In this study, artificial neural network and decision tree technique is applied to classify the high-resolution satellite images, as compared to the MLC processing result is a statistical technique and an analysis of the pros and cons between each of the techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title="remote sensing">remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title=" artificial neural network"> artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20tree" title=" decision tree"> decision tree</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20likelihood%20classification" title=" maximum likelihood classification"> maximum likelihood classification</a> </p> <a href="https://publications.waset.org/abstracts/48370/a-comparative-study-on-automatic-feature-classification-methods-of-remote-sensing-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1156</span> Distributed Optical Fiber Vibration Sensing Using Phase Generated Carrier Demodulation Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhihua%20Yu">Zhihua Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi%20Zhang"> Qi Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Mingyu%20Zhang"> Mingyu Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Haolong%20Dai"> Haolong Dai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Distributed fiber-optic vibration sensors are gaining extensive attention, for the advantages of high sensitivity, accurate location, light weight, large-scale monitoring, good concealment, and etc. In this paper, a novel optical fiber distributed vibration sensing system is proposed, which is based on self-interference of Rayleigh backscattering with phase generated carrier (PGC) demodulation algorithm. Pulsed lights are sent into the sensing fiber and the Rayleigh backscattering light from a certain position along the sensing fiber would interfere through an unbalanced Michelson Interferometry (MI) to generate the interference light. An improved PGC demodulation algorithm is carried out to recover the phase information of the interference signal, which carries the sensing information. Three vibration events were applied simultaneously to different positions over 2000m sensing fiber and demodulated correctly. Experiments show that the spatial resolution of is 10 m, and the noise level of the Φ-OTDR system is about 10-3 rad/√Hz, and the signal to noise ratio (SNR) is about 30.34dB. This vibration measurement scheme can be applied at surface, seabed or downhole for vibration measurements or distributed acoustic sensing (DAS). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber%20optics%20sensors" title="fiber optics sensors">fiber optics sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=Michelson%20interferometry" title=" Michelson interferometry"> Michelson interferometry</a>, <a href="https://publications.waset.org/abstracts/search?q=MI" title=" MI"> MI</a>, <a href="https://publications.waset.org/abstracts/search?q=phase-sensitive%20optical%20time%20domain%20reflectometry" title=" phase-sensitive optical time domain reflectometry"> phase-sensitive optical time domain reflectometry</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%A6-OTDR" title=" Φ-OTDR"> Φ-OTDR</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20generated%20carrier" title=" phase generated carrier"> phase generated carrier</a>, <a href="https://publications.waset.org/abstracts/search?q=PGC" title=" PGC"> PGC</a> </p> <a href="https://publications.waset.org/abstracts/93881/distributed-optical-fiber-vibration-sensing-using-phase-generated-carrier-demodulation-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93881.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1155</span> Linear Frequency Modulation-Frequency Shift Keying Radar with Compressive Sensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ho%20Jeong%20Jin">Ho Jeong Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang%20Won%20Seo"> Chang Won Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Choon%20Sik%20Cho"> Choon Sik Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Bong%20Yong%20Choi"> Bong Yong Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwang%20Kyun%20Na"> Kwang Kyun Na</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang%20Rok%20Lee"> Sang Rok Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a radar signal processing technique using the LFM-FSK (Linear Frequency Modulation-Frequency Shift Keying) is proposed for reducing the false alarm rate based on the compressive sensing. The LFM-FSK method combines FMCW (Frequency Modulation Continuous Wave) signal with FSK (Frequency Shift Keying). This shows an advantage which can suppress the ghost phenomenon without the complicated CFAR (Constant False Alarm Rate) algorithm. Moreover, the parametric sparse algorithm applying the compressive sensing that restores signals efficiently with respect to the incomplete data samples is also integrated, leading to reducing the burden of ADC in the receiver of radars. 24 GHz FMCW signal is applied and tested in the real environment with FSK modulated data for verifying the proposed algorithm along with the compressive sensing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20sensing" title="compressive sensing">compressive sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=LFM-FSK%20radar" title=" LFM-FSK radar"> LFM-FSK radar</a>, <a href="https://publications.waset.org/abstracts/search?q=radar%20signal%20processing" title=" radar signal processing"> radar signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=sparse%20algorithm" title=" sparse algorithm"> sparse algorithm</a> </p> <a href="https://publications.waset.org/abstracts/51309/linear-frequency-modulation-frequency-shift-keying-radar-with-compressive-sensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51309.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1154</span> Modern Spectrum Sensing Techniques for Cognitive Radio Networks: Practical Implementation and Performance Evaluation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Antoni%20Ivanov">Antoni Ivanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikolay%20Dandanov"> Nikolay Dandanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicole%20Christoff"> Nicole Christoff</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Poulkov"> Vladimir Poulkov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spectrum underutilization has made cognitive radio a promising technology both for current and future telecommunications. This is due to the ability to exploit the unused spectrum in the bands dedicated to other wireless communication systems, and thus, increase their occupancy. The essential function, which allows the cognitive radio device to perceive the occupancy of the spectrum, is spectrum sensing. In this paper, the performance of modern adaptations of the four most widely used spectrum sensing techniques namely, energy detection (ED), cyclostationary feature detection (CSFD), matched filter (MF) and eigenvalues-based detection (EBD) is compared. The implementation has been accomplished through the PlutoSDR hardware platform and the GNU Radio software package in very low Signal-to-Noise Ratio (SNR) conditions. The optimal detection performance of the examined methods in a realistic implementation-oriented model is found for the common relevant parameters (number of observed samples, sensing time and required probability of false alarm). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cognitive%20radio" title="cognitive radio">cognitive radio</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20spectrum%20access" title=" dynamic spectrum access"> dynamic spectrum access</a>, <a href="https://publications.waset.org/abstracts/search?q=GNU%20Radio" title=" GNU Radio"> GNU Radio</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrum%20sensing" title=" spectrum sensing"> spectrum sensing</a> </p> <a href="https://publications.waset.org/abstracts/81419/modern-spectrum-sensing-techniques-for-cognitive-radio-networks-practical-implementation-and-performance-evaluation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1153</span> Membrane Spanning DNA Origami Nanopores for Protein Translocation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Genevieve%20Pugh">Genevieve Pugh</a>, <a href="https://publications.waset.org/abstracts/search?q=Johnathan%20Burns"> Johnathan Burns</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefan%20Howorka"> Stefan Howorka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Single-molecule sensing via protein nanopores has achieved a step-change in portable and label-free DNA sequencing. However, protein pores of both natural or engineered origin are not able to produce the tunable diameters needed for effective protein sensing. Here, we describe a generic strategy to build synthetic DNA nanopores that are wide enough to accommodate folded protein. The pores are composed of interlinked DNA duplexes and carry lipid anchors to achieve the required membrane insertion. Our demonstrator pore has a contiguous cross-sectional channel area of 50 nm2 which is 6-times larger than the largest protein pore. Consequently, transport of folded protein across bilayers is possible. The modular design is amenable for different pore dimensions and can be adapted for protein sensing or to create molecular gates in synthetic biology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensing" title="biosensing">biosensing</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20nanotechnology" title=" DNA nanotechnology"> DNA nanotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20origami" title=" DNA origami"> DNA origami</a>, <a href="https://publications.waset.org/abstracts/search?q=nanopore%20sensing" title=" nanopore sensing"> nanopore sensing</a> </p> <a href="https://publications.waset.org/abstracts/78556/membrane-spanning-dna-origami-nanopores-for-protein-translocation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78556.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1152</span> Classification Method for Turnover While Sleeping Using Multi-Point Unconstrained Sensing Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Shiba">K. Shiba</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Kobayashi"> T. Kobayashi</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Kaburagi"> T. Kaburagi</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Kurihara"> Y. Kurihara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Elderly population in the world is increasing, and consequently, their nursing burden is also increasing. In such situations, monitoring and evaluating their daily action facilitates efficient nursing care. Especially, we focus on an unconscious activity during sleep, i.e. turnover. Monitoring turnover during sleep is essential to evaluate various conditions related to sleep. Bedsores are considered as one of the monitoring conditions. Changing patient’s posture every two hours is required for caregivers to prevent bedsore. Herein, we attempt to develop an unconstrained nocturnal monitoring system using a sensing device based on piezoelectric ceramics that can detect the vibrations owing to human body movement on the bed. In the proposed method, in order to construct a multi-points sensing, we placed two sensing devices under the right and left legs at the head-side of an ordinary bed. Using this equipment, when a subject lies on the bed, feature is calculated from the output voltages of the sensing devices. In order to evaluate our proposed method, we conducted an experiment with six healthy male subjects. Consequently, the period during which turnover occurs can be correctly classified as the turnover period with 100% accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turnover" title="turnover">turnover</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20ceramics" title=" piezoelectric ceramics"> piezoelectric ceramics</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-points%20sensing" title=" multi-points sensing"> multi-points sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=unconstrained%20monitoring%20system" title=" unconstrained monitoring system"> unconstrained monitoring system</a> </p> <a href="https://publications.waset.org/abstracts/75765/classification-method-for-turnover-while-sleeping-using-multi-point-unconstrained-sensing-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75765.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1151</span> Flood Monitoring Using Active Microwave Remote Sensed Synthetic Aperture Radar Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bikramjit%20Goswami">Bikramjit Goswami</a>, <a href="https://publications.waset.org/abstracts/search?q=Manoranjan%20Kalita"> Manoranjan Kalita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Active microwave remote sensing is useful in remote sensing applications in cloud-covered regions in the world. Because of high spatial resolution, the spatial variations of land cover can be monitored in greater detail using synthetic aperture radar (SAR). Inundation is studied using the SAR images obtained from Sentinel-1A in both VH and VV polarizations in the present experimental study. The temporal variation of the SAR scattering coefficient values for the area gives a good indication of flood and its boundary. The study area is the district of Morigaon in the state of Assam in India. The period of flood monitoring study is the monsoon season of the year 2017, during which high flood occurred in the state of Assam. The variation of microwave scattering value shows a distinctive indication of flood from the non-flooded period. Frequent monitoring of flood in a large area (10 km x 10 km) using passive microwave sensing and pin-pointing the actual flooded portions (5 m x 5 m) within the flooded area using active microwave sensing, can be a highly useful combination, as revealed by the present experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20remote%20sensing" title="active remote sensing">active remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20monitoring" title=" flood monitoring"> flood monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20remote%20sensing" title=" microwave remote sensing"> microwave remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20aperture%20radar" title=" synthetic aperture radar"> synthetic aperture radar</a> </p> <a href="https://publications.waset.org/abstracts/105375/flood-monitoring-using-active-microwave-remote-sensed-synthetic-aperture-radar-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105375.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biomolecular%20sensing&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biomolecular%20sensing&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biomolecular%20sensing&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biomolecular%20sensing&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biomolecular%20sensing&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biomolecular%20sensing&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biomolecular%20sensing&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biomolecular%20sensing&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biomolecular%20sensing&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biomolecular%20sensing&page=39">39</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biomolecular%20sensing&page=40">40</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biomolecular%20sensing&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>