CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–17 of 17 results for author: <span class="mathjax">Yefanov, O</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Yefanov%2C+O">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Yefanov, O"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Yefanov%2C+O&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Yefanov, O"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.11127">arXiv:2409.11127</a> <span> [<a href="https://arxiv.org/pdf/2409.11127">pdf</a>, <a href="https://arxiv.org/format/2409.11127">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Convergent-beam attosecond X-ray crystallography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chapman%2C+H+N">Henry N. Chapman</a>, <a href="/search/physics?searchtype=author&query=Li%2C+C">Chufeng Li</a>, <a href="/search/physics?searchtype=author&query=Bajt%2C+S">Sa拧a Bajt</a>, <a href="/search/physics?searchtype=author&query=Butola%2C+M">Mansi Butola</a>, <a href="/search/physics?searchtype=author&query=Dresselhaus%2C+J+L">J. Lukas Dresselhaus</a>, <a href="/search/physics?searchtype=author&query=Egorov%2C+D">Dmitry Egorov</a>, <a href="/search/physics?searchtype=author&query=Fleckenstein%2C+H">Holger Fleckenstein</a>, <a href="/search/physics?searchtype=author&query=Ivanov%2C+N">Nikolay Ivanov</a>, <a href="/search/physics?searchtype=author&query=Kiene%2C+A">Antonia Kiene</a>, <a href="/search/physics?searchtype=author&query=Klopprogge%2C+B">Bjarne Klopprogge</a>, <a href="/search/physics?searchtype=author&query=Kremling%2C+V">Viviane Kremling</a>, <a href="/search/physics?searchtype=author&query=Middendorf%2C+P">Philipp Middendorf</a>, <a href="/search/physics?searchtype=author&query=Oberthuer%2C+D">Dominik Oberthuer</a>, <a href="/search/physics?searchtype=author&query=Prasciolu%2C+M">Mauro Prasciolu</a>, <a href="/search/physics?searchtype=author&query=Scheer%2C+T+E+S">T. Emilie S. Scheer</a>, <a href="/search/physics?searchtype=author&query=Sprenger%2C+J">Janina Sprenger</a>, <a href="/search/physics?searchtype=author&query=Wong%2C+J+C">Jia Chyi Wong</a>, <a href="/search/physics?searchtype=author&query=Yefanov%2C+O">Oleksandr Yefanov</a>, <a href="/search/physics?searchtype=author&query=Zakharova%2C+M">Margarita Zakharova</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+W">Wenhui Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.11127v1-abstract-short" style="display: inline;"> Sub-angstrom spatial resolution of electron density coupled with sub-femtosecond temporal resolution is required to directly observe the dynamics of the electronic structure of a molecule after photoinitiation or some other ultrafast perturbation. Meeting this challenge, pushing the field of quantum crystallography to attosecond timescales, would bring insights into how the electronic and nuclear… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.11127v1-abstract-full').style.display = 'inline'; document.getElementById('2409.11127v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.11127v1-abstract-full" style="display: none;"> Sub-angstrom spatial resolution of electron density coupled with sub-femtosecond temporal resolution is required to directly observe the dynamics of the electronic structure of a molecule after photoinitiation or some other ultrafast perturbation. Meeting this challenge, pushing the field of quantum crystallography to attosecond timescales, would bring insights into how the electronic and nuclear degrees of freedom couple, enable the study of quantum coherences involved in molecular dynamics, and ultimately enable these dynamics to be controlled. Here we propose to reach this realm by employing convergent-beam X-ray crystallography with high-power attosecond pulses from a hard-X-ray free-electron laser. We show that with dispersive optics, such as multilayer Laue lenses of high numerical aperture, it becomes possible to encode time into the resulting diffraction pattern with deep sub-femtosecond precision. Each snapshot diffraction pattern consists of Bragg streaks that can be mapped back to arrival times and positions of X-rays on the face of a crystal. This can span tens of femtoseconds, and can be finely sampled as we demonstrate experimentally. The approach brings several other advantages, such as an increase of the number of observable reflections in a snapshot diffraction pattern, all fully integrated, to improve the speed and accuracy of serial crystallography -- especially for crystals of small molecules. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.11127v1-abstract-full').style.display = 'none'; document.getElementById('2409.11127v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.11712">arXiv:2203.11712</a> <span> [<a href="https://arxiv.org/pdf/2203.11712">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> On the use of multilayer Laue lenses with X-ray Free Electron Lasers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Prasciolu%2C+M">Mauro Prasciolu</a>, <a href="/search/physics?searchtype=author&query=Murray%2C+K+T">Kevin T. Murray</a>, <a href="/search/physics?searchtype=author&query=Ivanov%2C+N">Nikolay Ivanov</a>, <a href="/search/physics?searchtype=author&query=Fleckenstein%2C+H">Holger Fleckenstein</a>, <a href="/search/physics?searchtype=author&query=Domarack%C3%BD%2C+M">Martin Domarack媒</a>, <a href="/search/physics?searchtype=author&query=Gelisio%2C+L">Luca Gelisio</a>, <a href="/search/physics?searchtype=author&query=Trost%2C+F">Fabian Trost</a>, <a href="/search/physics?searchtype=author&query=Ayyer%2C+K">Kartik Ayyer</a>, <a href="/search/physics?searchtype=author&query=Krebs%2C+D">Dietrich Krebs</a>, <a href="/search/physics?searchtype=author&query=Aplin%2C+S">Steve Aplin</a>, <a href="/search/physics?searchtype=author&query=Awel%2C+S">Salah Awel</a>, <a href="/search/physics?searchtype=author&query=Boesenberg%2C+U">Ulrike Boesenberg</a>, <a href="/search/physics?searchtype=author&query=Barty%2C+A">Anton Barty</a>, <a href="/search/physics?searchtype=author&query=Estillore%2C+A+D">Armando D. Estillore</a>, <a href="/search/physics?searchtype=author&query=Fuchs%2C+M">Matthias Fuchs</a>, <a href="/search/physics?searchtype=author&query=Gevorkov%2C+Y">Yaroslav Gevorkov</a>, <a href="/search/physics?searchtype=author&query=Hallmann%2C+J">Joerg Hallmann</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+C">Chan Kim</a>, <a href="/search/physics?searchtype=author&query=Kno%C5%A1ka%2C+J">Juraj Kno拧ka</a>, <a href="/search/physics?searchtype=author&query=K%C3%BCpper%2C+J">Jochen K眉pper</a>, <a href="/search/physics?searchtype=author&query=Li%2C+C">Chufeng Li</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+W">Wei Lu</a>, <a href="/search/physics?searchtype=author&query=Mariani%2C+V">Valerio Mariani</a>, <a href="/search/physics?searchtype=author&query=Morgan%2C+A+J">Andrew J. Morgan</a>, <a href="/search/physics?searchtype=author&query=M%C3%B6ller%2C+J">Johannes M枚ller</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.11712v1-abstract-short" style="display: inline;"> Multilayer Laue lenses were used for the first time to focus x-rays from an X-ray Free Electron Laser (XFEL). In an experiment, which was performed at the European XFEL, we demonstrated focusing to a spot size of a few tens of nanometers. A series of runs in which the number of pulses per train was increased from 1 to 2, 3, 4, 5, 6, 7, 10, 20 and 30 pulses per train, all with a pulse separation of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.11712v1-abstract-full').style.display = 'inline'; document.getElementById('2203.11712v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.11712v1-abstract-full" style="display: none;"> Multilayer Laue lenses were used for the first time to focus x-rays from an X-ray Free Electron Laser (XFEL). In an experiment, which was performed at the European XFEL, we demonstrated focusing to a spot size of a few tens of nanometers. A series of runs in which the number of pulses per train was increased from 1 to 2, 3, 4, 5, 6, 7, 10, 20 and 30 pulses per train, all with a pulse separation of 3.55 us, was done using the same set of lenses. The increase in the number of pulses per train was accompanied with an increase of x-ray intensity (transmission) from 9% to 92% at 5 pulses per train, and then the transmission was reduced to 23.5 % when the pulses were increased further. The final working condition was 30 pulses per train and 23.5% transmission. Only at this condition we saw that the diffraction efficiency of the MLLs changed over the course of a pulse train, and this variation was reproducible from train to train. We present the procedure to align and characterize these lenses and discuss challenges working with the pulse trains from this unique x-ray source. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.11712v1-abstract-full').style.display = 'none'; document.getElementById('2203.11712v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.06179">arXiv:2109.06179</a> <span> [<a href="https://arxiv.org/pdf/2109.06179">pdf</a>, <a href="https://arxiv.org/format/2109.06179">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Unsupervised learning approaches to characterize heterogeneous samples using X-ray single particle imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhuang%2C+Y">Yulong Zhuang</a>, <a href="/search/physics?searchtype=author&query=Awel%2C+S">Salah Awel</a>, <a href="/search/physics?searchtype=author&query=Barty%2C+A">Anton Barty</a>, <a href="/search/physics?searchtype=author&query=Bean%2C+R">Richard Bean</a>, <a href="/search/physics?searchtype=author&query=Bielecki%2C+J">Johan Bielecki</a>, <a href="/search/physics?searchtype=author&query=Bergemann%2C+M">Martin Bergemann</a>, <a href="/search/physics?searchtype=author&query=Daurer%2C+B+J">Benedikt J. Daurer</a>, <a href="/search/physics?searchtype=author&query=Ekeberg%2C+T">Tomas Ekeberg</a>, <a href="/search/physics?searchtype=author&query=Estillore%2C+A+D">Armando D. Estillore</a>, <a href="/search/physics?searchtype=author&query=Fangohr%2C+H">Hans Fangohr</a>, <a href="/search/physics?searchtype=author&query=Giewekemeyer%2C+K">Klaus Giewekemeyer</a>, <a href="/search/physics?searchtype=author&query=Hunter%2C+M+S">Mark S. Hunter</a>, <a href="/search/physics?searchtype=author&query=Karnevskiy%2C+M">Mikhail Karnevskiy</a>, <a href="/search/physics?searchtype=author&query=Kirian%2C+R+A">Richard A. Kirian</a>, <a href="/search/physics?searchtype=author&query=Kirkwood%2C+H">Henry Kirkwood</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+Y">Yoonhee Kim</a>, <a href="/search/physics?searchtype=author&query=Koliyadu%2C+J">Jayanath Koliyadu</a>, <a href="/search/physics?searchtype=author&query=Lange%2C+H">Holger Lange</a>, <a href="/search/physics?searchtype=author&query=Letrun%2C+R">Romain Letrun</a>, <a href="/search/physics?searchtype=author&query=L%C3%BCbke%2C+J">Jannik L眉bke</a>, <a href="/search/physics?searchtype=author&query=Mall%2C+A">Abhishek Mall</a>, <a href="/search/physics?searchtype=author&query=Michelat%2C+T">Thomas Michelat</a>, <a href="/search/physics?searchtype=author&query=Morgan%2C+A+J">Andrew J. Morgan</a>, <a href="/search/physics?searchtype=author&query=Roth%2C+N">Nils Roth</a>, <a href="/search/physics?searchtype=author&query=Samanta%2C+A+K">Amit K. Samanta</a> , et al. (17 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.06179v1-abstract-short" style="display: inline;"> One of the outstanding analytical problems in X-ray single particle imaging (SPI) is the classification of structural heterogeneity, which is especially difficult given the low signal-to-noise ratios of individual patterns and that even identical objects can yield patterns that vary greatly when orientation is taken into consideration. We propose two methods which explicitly account for this orien… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.06179v1-abstract-full').style.display = 'inline'; document.getElementById('2109.06179v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.06179v1-abstract-full" style="display: none;"> One of the outstanding analytical problems in X-ray single particle imaging (SPI) is the classification of structural heterogeneity, which is especially difficult given the low signal-to-noise ratios of individual patterns and that even identical objects can yield patterns that vary greatly when orientation is taken into consideration. We propose two methods which explicitly account for this orientation-induced variation and can robustly determine the structural landscape of a sample ensemble. The first, termed common-line principal component analysis (PCA) provides a rough classification which is essentially parameter-free and can be run automatically on any SPI dataset. The second method, utilizing variation auto-encoders (VAEs) can generate 3D structures of the objects at any point in the structural landscape. We implement both these methods in combination with the noise-tolerant expand-maximize-compress (EMC) algorithm and demonstrate its utility by applying it to an experimental dataset from gold nanoparticles with only a few thousand photons per pattern and recover both discrete structural classes as well as continuous deformations. These developments diverge from previous approaches of extracting reproducible subsets of patterns from a dataset and open up the possibility to move beyond studying homogeneous sample sets and study open questions on topics such as nanocrystal growth and dynamics as well as phase transitions which have not been externally triggered. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.06179v1-abstract-full').style.display = 'none'; document.getElementById('2109.06179v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.11237">arXiv:2012.11237</a> <span> [<a href="https://arxiv.org/pdf/2012.11237">pdf</a>, <a href="https://arxiv.org/format/2012.11237">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> New aerodynamic lens injector for single particle diffractive imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Roth%2C+N">Nils Roth</a>, <a href="/search/physics?searchtype=author&query=Horke%2C+D+A">Daniel A. Horke</a>, <a href="/search/physics?searchtype=author&query=L%C3%BCbke%2C+J">Jannik L眉bke</a>, <a href="/search/physics?searchtype=author&query=Samanta%2C+A+K">Amit K. Samanta</a>, <a href="/search/physics?searchtype=author&query=Estillore%2C+A+D">Armando D. Estillore</a>, <a href="/search/physics?searchtype=author&query=Worbs%2C+L">Lena Worbs</a>, <a href="/search/physics?searchtype=author&query=Pohlman%2C+N">Nicolai Pohlman</a>, <a href="/search/physics?searchtype=author&query=Ayyer%2C+K">Kartik Ayyer</a>, <a href="/search/physics?searchtype=author&query=Morgan%2C+A">Andrew Morgan</a>, <a href="/search/physics?searchtype=author&query=Fleckenstein%2C+H">Holger Fleckenstein</a>, <a href="/search/physics?searchtype=author&query=Domaracky%2C+M">Martin Domaracky</a>, <a href="/search/physics?searchtype=author&query=Erk%2C+B">Benjamin Erk</a>, <a href="/search/physics?searchtype=author&query=Passow%2C+C">Christopher Passow</a>, <a href="/search/physics?searchtype=author&query=Correa%2C+J">Jonathan Correa</a>, <a href="/search/physics?searchtype=author&query=Yefanov%2C+O">Oleksandr Yefanov</a>, <a href="/search/physics?searchtype=author&query=Barty%2C+A">Anton Barty</a>, <a href="/search/physics?searchtype=author&query=Bajt%2C+S">Sa拧a Bajt</a>, <a href="/search/physics?searchtype=author&query=Kirian%2C+R+A">Richard A. Kirian</a>, <a href="/search/physics?searchtype=author&query=Chapman%2C+H+N">Henry N. Chapman</a>, <a href="/search/physics?searchtype=author&query=K%C3%BCpper%2C+J">Jochen K眉pper</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.11237v1-abstract-short" style="display: inline;"> An aerodynamic lens injector was developed specifically for the needs of single-particle diffractive imaging experiments at free-electron lasers. Its design allows for quick changes of injector geometries and focusing properties in order to optimize injection for specific individual samples. Here, we present results of its first use at the FLASH free-electron-laser facility. Recorded diffraction p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.11237v1-abstract-full').style.display = 'inline'; document.getElementById('2012.11237v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.11237v1-abstract-full" style="display: none;"> An aerodynamic lens injector was developed specifically for the needs of single-particle diffractive imaging experiments at free-electron lasers. Its design allows for quick changes of injector geometries and focusing properties in order to optimize injection for specific individual samples. Here, we present results of its first use at the FLASH free-electron-laser facility. Recorded diffraction patterns of polystyrene spheres are modeled using Mie scattering, which allowed for the characterization of the particle beam under diffractive-imaging conditions and yield good agreement with particle-trajectory simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.11237v1-abstract-full').style.display = 'none'; document.getElementById('2012.11237v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.13597">arXiv:2007.13597</a> <span> [<a href="https://arxiv.org/pdf/2007.13597">pdf</a>, <a href="https://arxiv.org/format/2007.13597">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> 3D diffractive imaging of nanoparticle ensembles using an X-ray laser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ayyer%2C+K">Kartik Ayyer</a>, <a href="/search/physics?searchtype=author&query=Xavier%2C+P+L">P. Lourdu Xavier</a>, <a href="/search/physics?searchtype=author&query=Bielecki%2C+J">Johan Bielecki</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+Z">Zhou Shen</a>, <a href="/search/physics?searchtype=author&query=Daurer%2C+B+J">Benedikt J. Daurer</a>, <a href="/search/physics?searchtype=author&query=Samanta%2C+A+K">Amit K. Samanta</a>, <a href="/search/physics?searchtype=author&query=Awel%2C+S">Salah Awel</a>, <a href="/search/physics?searchtype=author&query=Bean%2C+R">Richard Bean</a>, <a href="/search/physics?searchtype=author&query=Barty%2C+A">Anton Barty</a>, <a href="/search/physics?searchtype=author&query=Ekeberg%2C+T">Tomas Ekeberg</a>, <a href="/search/physics?searchtype=author&query=Estillore%2C+A+D">Armando D. Estillore</a>, <a href="/search/physics?searchtype=author&query=Giewekemeyer%2C+K">Klaus Giewekemeyer</a>, <a href="/search/physics?searchtype=author&query=Hunter%2C+M+S">Mark S. Hunter</a>, <a href="/search/physics?searchtype=author&query=Kirian%2C+R+A">Richard A. Kirian</a>, <a href="/search/physics?searchtype=author&query=Kirkwood%2C+H">Henry Kirkwood</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+Y">Yoonhee Kim</a>, <a href="/search/physics?searchtype=author&query=Koliyadu%2C+J">Jayanath Koliyadu</a>, <a href="/search/physics?searchtype=author&query=Lange%2C+H">Holger Lange</a>, <a href="/search/physics?searchtype=author&query=Letruin%2C+R">Romain Letruin</a>, <a href="/search/physics?searchtype=author&query=L%C3%BCbke%2C+J">Jannik L眉bke</a>, <a href="/search/physics?searchtype=author&query=Morgan%2C+A+J">Andrew J. Morgan</a>, <a href="/search/physics?searchtype=author&query=Roth%2C+N">Nils Roth</a>, <a href="/search/physics?searchtype=author&query=Sato%2C+T">Tokushi Sato</a>, <a href="/search/physics?searchtype=author&query=Sikorski%2C+M">Marcin Sikorski</a>, <a href="/search/physics?searchtype=author&query=Schulz%2C+F">Florian Schulz</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.13597v1-abstract-short" style="display: inline;"> We report the 3D structure determination of gold nanoparticles (AuNPs) by X-ray single particle imaging (SPI). Around 10 million diffraction patterns from gold nanoparticles were measured in less than 100 hours of beam time, more than 100 times the amount of data in any single prior SPI experiment, using the new capabilities of the European X-ray free electron laser which allow measurements of 150… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.13597v1-abstract-full').style.display = 'inline'; document.getElementById('2007.13597v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.13597v1-abstract-full" style="display: none;"> We report the 3D structure determination of gold nanoparticles (AuNPs) by X-ray single particle imaging (SPI). Around 10 million diffraction patterns from gold nanoparticles were measured in less than 100 hours of beam time, more than 100 times the amount of data in any single prior SPI experiment, using the new capabilities of the European X-ray free electron laser which allow measurements of 1500 frames per second. A classification and structural sorting method was developed to disentangle the heterogeneity of the particles and to obtain a resolution of better than 3 nm. With these new experimental and analytical developments, we have entered a new era for the SPI method and the path towards close-to-atomic resolution imaging of biomolecules is apparent. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.13597v1-abstract-full').style.display = 'none'; document.getElementById('2007.13597v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 5 main figures, 6 supplementary figures, 2 supplementary movies (link in document)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.12716">arXiv:2003.12716</a> <span> [<a href="https://arxiv.org/pdf/2003.12716">pdf</a>, <a href="https://arxiv.org/format/2003.12716">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> </div> </div> <p class="title is-5 mathjax"> Ptychographic X-ray Speckle Tracking with Multi Layer Laue Lens Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Morgan%2C+A+J">Andrew James Morgan</a>, <a href="/search/physics?searchtype=author&query=Murray%2C+K+T">Kevin T. Murray</a>, <a href="/search/physics?searchtype=author&query=Prasciolu%2C+M">Mauro Prasciolu</a>, <a href="/search/physics?searchtype=author&query=Fleckenstein%2C+H">Holger Fleckenstein</a>, <a href="/search/physics?searchtype=author&query=Yefanov%2C+O">Oleksandr Yefanov</a>, <a href="/search/physics?searchtype=author&query=Villanueva-Perez%2C+P">Pablo Villanueva-Perez</a>, <a href="/search/physics?searchtype=author&query=Mariani%2C+V">Valerio Mariani</a>, <a href="/search/physics?searchtype=author&query=Domaracky%2C+M">Martin Domaracky</a>, <a href="/search/physics?searchtype=author&query=Kuhn%2C+M">Manuela Kuhn</a>, <a href="/search/physics?searchtype=author&query=Aplin%2C+S">Steve Aplin</a>, <a href="/search/physics?searchtype=author&query=Mohacsi%2C+I">Istwan Mohacsi</a>, <a href="/search/physics?searchtype=author&query=Messerschmidt%2C+M">Marc Messerschmidt</a>, <a href="/search/physics?searchtype=author&query=Stachnik%2C+K">Karolina Stachnik</a>, <a href="/search/physics?searchtype=author&query=Du%2C+Y">Yang Du</a>, <a href="/search/physics?searchtype=author&query=Burkhart%2C+A">Anja Burkhart</a>, <a href="/search/physics?searchtype=author&query=Meents%2C+A">Alke Meents</a>, <a href="/search/physics?searchtype=author&query=Nazaretski%2C+E">Evgeny Nazaretski</a>, <a href="/search/physics?searchtype=author&query=Yan%2C+H">Hanfei Yan</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+X">Xiaojing Huang</a>, <a href="/search/physics?searchtype=author&query=Chu%2C+Y">Yong Chu</a>, <a href="/search/physics?searchtype=author&query=Chapman%2C+H+N">Henry N. Chapman</a>, <a href="/search/physics?searchtype=author&query=Bajt%2C+S">Sa拧a Bajt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.12716v1-abstract-short" style="display: inline;"> The ever-increasing brightness of synchrotron radiation sources demands improved x-ray optics to utilise their capability for imaging and probing biological cells, nano-devices, and functional matter on the nanometre scale with chemical sensitivity. Hard x-rays are ideal for high-resolution imaging and spectroscopic applications due to their short wavelength, high penetrating power, and chemical s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.12716v1-abstract-full').style.display = 'inline'; document.getElementById('2003.12716v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.12716v1-abstract-full" style="display: none;"> The ever-increasing brightness of synchrotron radiation sources demands improved x-ray optics to utilise their capability for imaging and probing biological cells, nano-devices, and functional matter on the nanometre scale with chemical sensitivity. Hard x-rays are ideal for high-resolution imaging and spectroscopic applications due to their short wavelength, high penetrating power, and chemical sensitivity. The penetrating power that makes x-rays useful for imaging also makes focusing them technologically challenging. Recent developments in layer deposition techniques that have enabled the fabrication of a series of highly focusing x-ray lenses, known as wedged multi layer Laue lenses. Improvements to the lens design and fabrication technique demands an accurate, robust, in-situ and at-wavelength characterisation method. To this end, we have developed a modified form of the speckle-tracking wavefront metrology method, the ptychographic x-ray speckle tracking method, which is capable of operating with highly divergent wavefields. A useful by-product of this method, is that it also provides high-resolution and aberration-free projection images of extended specimens. We report on three separate experiments using this method, where we have resolved ray path angles to within 4 nano-radians with an imaging resolution of 45nm (full-period). This method does not require a high degree of coherence, making it suitable for lab based x-ray sources. Likewise it is robust to errors in the registered sample positions making it suitable for x-ray free-electron laser facilities, where beam pointing fluctuations can be problematic for wavefront metrology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.12716v1-abstract-full').style.display = 'none'; document.getElementById('2003.12716v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.05173">arXiv:1705.05173</a> <span> [<a href="https://arxiv.org/pdf/1705.05173">pdf</a>, <a href="https://arxiv.org/format/1705.05173">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Continuous Diffraction of Molecules and Disordered Molecular Crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chapman%2C+H+N">Henry N. Chapman</a>, <a href="/search/physics?searchtype=author&query=Yefanov%2C+O+M">Oleksandr M. Yefanov</a>, <a href="/search/physics?searchtype=author&query=Ayyer%2C+K">Kartik Ayyer</a>, <a href="/search/physics?searchtype=author&query=White%2C+T+A">Thomas A. White</a>, <a href="/search/physics?searchtype=author&query=Barty%2C+A">Anton Barty</a>, <a href="/search/physics?searchtype=author&query=Morgan%2C+A">Andrew Morgan</a>, <a href="/search/physics?searchtype=author&query=Mariani%2C+V">Valerio Mariani</a>, <a href="/search/physics?searchtype=author&query=Oberthuer%2C+D">Dominik Oberthuer</a>, <a href="/search/physics?searchtype=author&query=Pande%2C+K">Kanupriya Pande</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.05173v1-abstract-short" style="display: inline;"> The diffraction pattern of a single non-periodic compact object, such as a molecule, is continuous and is proportional to the square modulus of the Fourier transform of that object. When arrayed in a crystal, the coherent sum of the continuous diffracted wave-fields from all objects gives rise to strong Bragg peaks that modulate the single-object transform. Wilson statistics describe the distribut… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.05173v1-abstract-full').style.display = 'inline'; document.getElementById('1705.05173v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.05173v1-abstract-full" style="display: none;"> The diffraction pattern of a single non-periodic compact object, such as a molecule, is continuous and is proportional to the square modulus of the Fourier transform of that object. When arrayed in a crystal, the coherent sum of the continuous diffracted wave-fields from all objects gives rise to strong Bragg peaks that modulate the single-object transform. Wilson statistics describe the distribution of continuous diffraction intensities to the same extent that they apply to Bragg diffraction. The continuous diffraction obtained from translationally-disordered molecular crystals consists of the incoherent sum of the wave-fields from the individual rigid units (such as molecules) in the crystal, which is proportional to the incoherent sum of the diffraction from the rigid units in each of their crystallographic orientations. This sum over orientations modifies the statistics in a similar way that crystal twinning modifies the distribution of Bragg intensities. These statistics are applied to determine parameters of continuous diffraction such as its scaling, the beam coherence, and the number of independent wave-fields or object orientations contributing. Continuous diffraction is generally much weaker than Bragg diffraction and may be accompanied by a background that far exceeds the strength of the signal. Instead of just relying upon the smallest measured intensities to guide the subtraction of the background it is shown how all measured values can be utilised to estimate the background, noise, and signal, by employing a modified "noisy Wilson" distribution that explicitly includes the background. Parameters relating to the background and signal quantities can be estimated from the moments of the measured intensities. The analysis method is demonstrated on previously-published continuous diffraction data measured from imperfect crystals of photosystem II. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.05173v1-abstract-full').style.display = 'none'; document.getElementById('1705.05173v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 11 figures, 2 appendices</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.04014">arXiv:1702.04014</a> <span> [<a href="https://arxiv.org/pdf/1702.04014">pdf</a>, <a href="https://arxiv.org/format/1702.04014">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1107/S1600576717018131">10.1107/S1600576717018131 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Femtosecond x-ray diffraction from an aerosolized beam of protein nanocrystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Awel%2C+S">Salah Awel</a>, <a href="/search/physics?searchtype=author&query=Kirian%2C+R+A">Richard A. Kirian</a>, <a href="/search/physics?searchtype=author&query=Wiedorn%2C+M+O">Max O. Wiedorn</a>, <a href="/search/physics?searchtype=author&query=Beyerlein%2C+K+R">Kenneth R. Beyerlein</a>, <a href="/search/physics?searchtype=author&query=Roth%2C+N">Nils Roth</a>, <a href="/search/physics?searchtype=author&query=Horke%2C+D+A">Daniel A. Horke</a>, <a href="/search/physics?searchtype=author&query=Oberth%C3%BCr%2C+D">Dominik Oberth眉r</a>, <a href="/search/physics?searchtype=author&query=Knoska%2C+J">Juraj Knoska</a>, <a href="/search/physics?searchtype=author&query=Mariani%2C+V">Valerio Mariani</a>, <a href="/search/physics?searchtype=author&query=Morgan%2C+A">Andrew Morgan</a>, <a href="/search/physics?searchtype=author&query=Adriano%2C+L">Luigi Adriano</a>, <a href="/search/physics?searchtype=author&query=Tolstikova%2C+A">Alexandra Tolstikova</a>, <a href="/search/physics?searchtype=author&query=Xavier%2C+P+L">P. Lourdu Xavier</a>, <a href="/search/physics?searchtype=author&query=Yefanov%2C+O">Oleksandr Yefanov</a>, <a href="/search/physics?searchtype=author&query=Aquila%2C+A">Andrew Aquila</a>, <a href="/search/physics?searchtype=author&query=Barty%2C+A">Anton Barty</a>, <a href="/search/physics?searchtype=author&query=Roy-Chowdhury%2C+S">Shatabdi Roy-Chowdhury</a>, <a href="/search/physics?searchtype=author&query=Hunter%2C+M+S">Mark S. Hunter</a>, <a href="/search/physics?searchtype=author&query=James%2C+D">Daniel James</a>, <a href="/search/physics?searchtype=author&query=Robinson%2C+J+S">Joseph S. Robinson</a>, <a href="/search/physics?searchtype=author&query=Weierstall%2C+U">Uwe Weierstall</a>, <a href="/search/physics?searchtype=author&query=Rode%2C+A+V">Andrei V. Rode</a>, <a href="/search/physics?searchtype=author&query=Bajt%2C+S">Sa拧a Bajt</a>, <a href="/search/physics?searchtype=author&query=K%C3%BCpper%2C+J">Jochen K眉pper</a>, <a href="/search/physics?searchtype=author&query=Chapman%2C+H+N">Henry N. Chapman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.04014v3-abstract-short" style="display: inline;"> We demonstrate near-atomic-resolution Bragg diffraction from aerosolized single granulovirus crystals using an x-ray free-electron laser. The form of the aerosol injector is nearly identical to conventional liquid-microjet nozzles, but the x-ray-scattering background is reduced by several orders of magnitude by the use of helium carrier gas rather than liquid. This approach provides a route to stu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.04014v3-abstract-full').style.display = 'inline'; document.getElementById('1702.04014v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.04014v3-abstract-full" style="display: none;"> We demonstrate near-atomic-resolution Bragg diffraction from aerosolized single granulovirus crystals using an x-ray free-electron laser. The form of the aerosol injector is nearly identical to conventional liquid-microjet nozzles, but the x-ray-scattering background is reduced by several orders of magnitude by the use of helium carrier gas rather than liquid. This approach provides a route to study the weak diffuse or lattice-transform signal arising from small crystals. The high speed of the particles is particularly well suited to upcoming MHz-repetition-rate x-ray free-electron lasers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.04014v3-abstract-full').style.display = 'none'; document.getElementById('1702.04014v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1407.8450">arXiv:1407.8450</a> <span> [<a href="https://arxiv.org/pdf/1407.8450">pdf</a>, <a href="https://arxiv.org/format/1407.8450">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Perspectives of Imaging of Single Protein Molecules with the Present Design of the European XFEL. - Part I - X-ray Source, Beamlime Optics and Instrument Simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Serkez%2C+S">Svitozar Serkez</a>, <a href="/search/physics?searchtype=author&query=Kocharyan%2C+V">Vitali Kocharyan</a>, <a href="/search/physics?searchtype=author&query=Saldin%2C+E">Evgeni Saldin</a>, <a href="/search/physics?searchtype=author&query=Zagorodnov%2C+I">Igor Zagorodnov</a>, <a href="/search/physics?searchtype=author&query=Geloni%2C+G">Gianluca Geloni</a>, <a href="/search/physics?searchtype=author&query=Yefanov%2C+O">Oleksandr Yefanov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1407.8450v1-abstract-short" style="display: inline;"> The Single Particles, Clusters and Biomolecules (SPB) instrument at the European XFEL is located behind the SASE1 undulator, and aims to support imaging and structure determination of biological specimen between about 0.1 micrometer and 1 micrometer size. The instrument is designed to work at photon energies from 3 keV up to 16 keV. This wide operation range is a cause for challenges to the focusi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.8450v1-abstract-full').style.display = 'inline'; document.getElementById('1407.8450v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1407.8450v1-abstract-full" style="display: none;"> The Single Particles, Clusters and Biomolecules (SPB) instrument at the European XFEL is located behind the SASE1 undulator, and aims to support imaging and structure determination of biological specimen between about 0.1 micrometer and 1 micrometer size. The instrument is designed to work at photon energies from 3 keV up to 16 keV. This wide operation range is a cause for challenges to the focusing optics. In particular, a long propagation distance of about 900 m between x-ray source and sample leads to a large lateral photon beam size at the optics. The beam divergence is the most important parameter for the optical system, and is largest for the lowest photon energies and for the shortest pulse duration (corresponding to the lowest charge). Due to the large divergence of nominal X-ray pulses with duration shorter than 10 fs, one suffers diffraction from mirror aperture, leading to a 100-fold decrease in fluence at photon energies around 4 keV, which are ideal for imaging of single biomolecules. The nominal SASE1 output power is about 50 GW. This is very far from the level required for single biomolecule imaging, even assuming perfect beamline and focusing efficiency. Here we demonstrate that the parameters of the accelerator complex and of the SASE1 undulator offer an opportunity to optimize the SPB beamline for single biomolecule imaging with minimal additional costs and time. Start to end simulations from the electron injector at the beginning of the accelerator complex up to the generation of diffraction data indicate that one can achieve diffraction without diffraction with about 0.5 photons per Shannon pixel at near-atomic resolution with 1e13 photons in a 4 fs pulse at 4 keV photon energy and in a 100 nm focus, corresponding to a fluence of 1e23 ph/cm^2. This result is exemplified using the RNA Pol II molecule as a case study. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.8450v1-abstract-full').style.display = 'none'; document.getElementById('1407.8450v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY 14-137 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1402.6135">arXiv:1402.6135</a> <span> [<a href="https://arxiv.org/pdf/1402.6135">pdf</a>, <a href="https://arxiv.org/format/1402.6135">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1107/S1600577514006857">10.1107/S1600577514006857 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Characterization of Spatial Coherence of Synchrotron Radiation with Non-Redundant Arrays of Apertures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Skopintsev%2C+P">P. Skopintsev</a>, <a href="/search/physics?searchtype=author&query=Singer%2C+A">A. Singer</a>, <a href="/search/physics?searchtype=author&query=Bach%2C+J">J. Bach</a>, <a href="/search/physics?searchtype=author&query=M%7Fuller%2C+L">L. Muller</a>, <a href="/search/physics?searchtype=author&query=Beyersdorf%2C+B">B. Beyersdorf</a>, <a href="/search/physics?searchtype=author&query=Schleitzer%2C+S">S. Schleitzer</a>, <a href="/search/physics?searchtype=author&query=Gorobtsov%2C+O">O. Gorobtsov</a>, <a href="/search/physics?searchtype=author&query=Shabalin%2C+A">A. Shabalin</a>, <a href="/search/physics?searchtype=author&query=Kurta%2C+R">R. Kurta</a>, <a href="/search/physics?searchtype=author&query=Dzhigaev%2C+D">D. Dzhigaev</a>, <a href="/search/physics?searchtype=author&query=Yefanov%2C+O+M">O. M. Yefanov</a>, <a href="/search/physics?searchtype=author&query=Glaser%2C+L">L. Glaser</a>, <a href="/search/physics?searchtype=author&query=Sakdinawat%2C+A">A. Sakdinawat</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Y. Liu</a>, <a href="/search/physics?searchtype=author&query=Gr%7Fubel%2C+G">G. Grubel</a>, <a href="/search/physics?searchtype=author&query=Fr%7Fomter%2C+R">R. Fromter</a>, <a href="/search/physics?searchtype=author&query=Oepen%2C+H+P">H. P. Oepen</a>, <a href="/search/physics?searchtype=author&query=Viefhaus%2C+J">J. Viefhaus</a>, <a href="/search/physics?searchtype=author&query=Vartanyants%2C+I+A">I. A. Vartanyants</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1402.6135v1-abstract-short" style="display: inline;"> We present a method to characterize the spatial coherence of soft X-ray radiation from a single diffraction pattern. The technique is based on scattering from non-redundant arrays (NRA) of slits and records the degree of spatial coherence at several relative separations from one to 15 microns, simultaneously. Using NRAs we measured the transverse coherence of the X-ray beam at the XUV X-ray beamli… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.6135v1-abstract-full').style.display = 'inline'; document.getElementById('1402.6135v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1402.6135v1-abstract-full" style="display: none;"> We present a method to characterize the spatial coherence of soft X-ray radiation from a single diffraction pattern. The technique is based on scattering from non-redundant arrays (NRA) of slits and records the degree of spatial coherence at several relative separations from one to 15 microns, simultaneously. Using NRAs we measured the transverse coherence of the X-ray beam at the XUV X-ray beamline P04 of the PETRA III synchrotron storage ring as a function of different beam parameters. To verify the results obtained with the NRAs additional Young's double pinhole experiments were conducted and show good agreement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.6135v1-abstract-full').style.display = 'none'; document.getElementById('1402.6135v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 February, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 6 figures, 2 tables, 42 references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Synchrotron Rad. 21 Part 4, pages 722-728. (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1311.1374">arXiv:1311.1374</a> <span> [<a href="https://arxiv.org/pdf/1311.1374">pdf</a>, <a href="https://arxiv.org/format/1311.1374">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1742-6596/499/1/012020">10.1088/1742-6596/499/1/012020 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ptychography imaging of the phase vortices in the x-ray beam formed by nanofocusing lenses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Dzhigaev%2C+D">D. Dzhigaev</a>, <a href="/search/physics?searchtype=author&query=Lorenz%2C+U">U. Lorenz</a>, <a href="/search/physics?searchtype=author&query=Kurta%2C+R">R. Kurta</a>, <a href="/search/physics?searchtype=author&query=Seiboth%2C+F">F. Seiboth</a>, <a href="/search/physics?searchtype=author&query=Stankevic%2C+T">T. Stankevic</a>, <a href="/search/physics?searchtype=author&query=Mickevicius%2C+S">S. Mickevicius</a>, <a href="/search/physics?searchtype=author&query=Singer%2C+A">A. Singer</a>, <a href="/search/physics?searchtype=author&query=Shabalin%2C+A">A. Shabalin</a>, <a href="/search/physics?searchtype=author&query=Yefanov%2C+O">O. Yefanov</a>, <a href="/search/physics?searchtype=author&query=Strikhanov%2C+M+N">M. N. Strikhanov</a>, <a href="/search/physics?searchtype=author&query=Falkenberg%2C+G">G. Falkenberg</a>, <a href="/search/physics?searchtype=author&query=Schroer%2C+C+G">C. G. Schroer</a>, <a href="/search/physics?searchtype=author&query=Feidenhans%60l%2C+R">R. Feidenhans`l</a>, <a href="/search/physics?searchtype=author&query=Vartanyants%2C+I+A">I. A. Vartanyants</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1311.1374v1-abstract-short" style="display: inline;"> We present the ptychography reconstruction of the x-ray beam formed by nanofocusing lenses (NFLs) containing a number of phase singularities (vortices) in the vicinity of the focal plane. As a test object Siemens star pattern was used with the finest features of 50 nm for ptychography measurements. The extended ptychography iterative engine (ePIE) algorithm was applied to retrieve both complex ill… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.1374v1-abstract-full').style.display = 'inline'; document.getElementById('1311.1374v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1311.1374v1-abstract-full" style="display: none;"> We present the ptychography reconstruction of the x-ray beam formed by nanofocusing lenses (NFLs) containing a number of phase singularities (vortices) in the vicinity of the focal plane. As a test object Siemens star pattern was used with the finest features of 50 nm for ptychography measurements. The extended ptychography iterative engine (ePIE) algorithm was applied to retrieve both complex illumination and object functions from the set of diffraction patterns. The reconstruction revealed the focus size of 91.4$\pm$1.1 nm in horizontal and 70$\pm$0.3 nm in vertical direction at full width at half maximum (FWHM). The complex probe function was propagated along the optical axis of the beam revealing the evolution of the phase singularities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.1374v1-abstract-full').style.display = 'none'; document.getElementById('1311.1374v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures, Proceedings of ICXOM22 Conference, 2-6 September 2013, Hamburg, Germany</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys.: Conf. Series 499 012020 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1306.4830">arXiv:1306.4830</a> <span> [<a href="https://arxiv.org/pdf/1306.4830">pdf</a>, <a href="https://arxiv.org/ps/1306.4830">ps</a>, <a href="https://arxiv.org/format/1306.4830">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Extension of SASE bandwidth up to 2% as a way to increase the efficiency of protein structure determination by x-ray nanocrystallography at the European XFEL </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Serkez%2C+S">Svitozar Serkez</a>, <a href="/search/physics?searchtype=author&query=Kocharyan%2C+V">Vitali Kocharyan</a>, <a href="/search/physics?searchtype=author&query=Saldin%2C+E">Evgeni Saldin</a>, <a href="/search/physics?searchtype=author&query=Zagorodnov%2C+I">Igor Zagorodnov</a>, <a href="/search/physics?searchtype=author&query=Geloni%2C+G">Gianluca Geloni</a>, <a href="/search/physics?searchtype=author&query=Yefanov%2C+O">Oleksander Yefanov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1306.4830v1-abstract-short" style="display: inline;"> Femtosecond x-ray nanocrystallography exploiting XFEL radiation is an emerging method for protein structure determination using crystals with sizes ranging from a few tens to a few hundreds nanometers. Crystals are randomly hit by XFEL pulses, producing diffraction patterns at unknown orientations. One can determine these orientations by studying the diffraction patterns themselves, i.e. by indexi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.4830v1-abstract-full').style.display = 'inline'; document.getElementById('1306.4830v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1306.4830v1-abstract-full" style="display: none;"> Femtosecond x-ray nanocrystallography exploiting XFEL radiation is an emerging method for protein structure determination using crystals with sizes ranging from a few tens to a few hundreds nanometers. Crystals are randomly hit by XFEL pulses, producing diffraction patterns at unknown orientations. One can determine these orientations by studying the diffraction patterns themselves, i.e. by indexing the Bragg peaks. The number of indexed individual images and the SASE bandwidth are inherently linked, because increasing the number of Bragg peaks per individual image requires increasing the bandwidth of the spectrum. This calls for a few percent SASE bandwidth, resulting in an increase in the number of indexed images at the same number of hits. Based on start-to-end simulations for the baseline of the European XFEL, we demonstrate here that it is possible to achieve up to a tenfold increase in SASE bandwidth, compared with the nominal mode of operation. This provides a route for further increasing the efficiency of protein structure determination at the European XFEL. We illustrate this concept with simulations of lysozyme nanocrystals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.4830v1-abstract-full').style.display = 'none'; document.getElementById('1306.4830v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY 13-109 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1306.0804">arXiv:1306.0804</a> <span> [<a href="https://arxiv.org/pdf/1306.0804">pdf</a>, <a href="https://arxiv.org/ps/1306.0804">ps</a>, <a href="https://arxiv.org/format/1306.0804">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Proposal for a scheme to generate 10 TW-level femtosecond x-ray pulses for imaging single protein molecules at the European XFEL </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Serkez%2C+S">Svitozar Serkez</a>, <a href="/search/physics?searchtype=author&query=Kocharyan%2C+V">Vitali Kocharyan</a>, <a href="/search/physics?searchtype=author&query=Saldin%2C+E">Evgeni Saldin</a>, <a href="/search/physics?searchtype=author&query=Zagorodnov%2C+I">Igor Zagorodnov</a>, <a href="/search/physics?searchtype=author&query=Geloni%2C+G">Gianluca Geloni</a>, <a href="/search/physics?searchtype=author&query=Yefanov%2C+O">Oleksander Yefanov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1306.0804v1-abstract-short" style="display: inline;"> Single biomolecular imaging using XFEL radiation is an emerging method for protein structure determination using the "diffraction before destruction" method at near atomic resolution. Crucial parameters for such bio-imaging experiments are photon energy range, peak power, pulse duration, and transverse coherence. The largest diffraction signals are achieved at the longest wavelength that supports… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.0804v1-abstract-full').style.display = 'inline'; document.getElementById('1306.0804v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1306.0804v1-abstract-full" style="display: none;"> Single biomolecular imaging using XFEL radiation is an emerging method for protein structure determination using the "diffraction before destruction" method at near atomic resolution. Crucial parameters for such bio-imaging experiments are photon energy range, peak power, pulse duration, and transverse coherence. The largest diffraction signals are achieved at the longest wavelength that supports a given resolution, which should be better than 0.3 nm. We propose a configuration which combines self-seeding and undulator tapering techniques with the emittance-spoiler method in order to increase the XFEL output peak power and to shorten the pulse duration up to a level sufficient for performing bio-imaging of single protein molecules at the optimal photon energy range, i.e. around 4 keV. Experiments at the LCLS confirmed the feasibility of these three new techniques. Based on start-to-end simulations we demonstrate that self-seeding, combined with undulator tapering, allows one to achieve up to a 100-fold increase in peak-power. A slotted foil in the last bunch compressor is added for x-ray pulse duration control. Simulations indicate that one can achieve diffraction to the desired resolution with 50 mJ (corresponding to 1e14 photons) per 10 fs pulse at 3.5 keV photon energy in a 100 nm focus. This result is exemplified using the photosystem I membrane protein as a case study. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.0804v1-abstract-full').style.display = 'none'; document.getElementById('1306.0804v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY 13-101 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1302.5730">arXiv:1302.5730</a> <span> [<a href="https://arxiv.org/pdf/1302.5730">pdf</a>, <a href="https://arxiv.org/format/1302.5730">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0953-4075/46/16/164013">10.1088/0953-4075/46/16/164013 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Orientation Determination in Single Particle X-ray Coherent Diffraction Imaging Experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yefanov%2C+O+M">O. M. Yefanov</a>, <a href="/search/physics?searchtype=author&query=Vartanyants%2C+I+A">I. A. Vartanyants</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1302.5730v1-abstract-short" style="display: inline;"> Single particle diffraction imaging experiments at free-electron lasers (FEL) have a great potential for structure determination of reproducible biological specimens that can not be crystallized. One of the challenges in processing the data from such an experiment is to determine correct orientation of each diffraction pattern from samples randomly injected in the FEL beam. We propose an algorithm… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1302.5730v1-abstract-full').style.display = 'inline'; document.getElementById('1302.5730v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1302.5730v1-abstract-full" style="display: none;"> Single particle diffraction imaging experiments at free-electron lasers (FEL) have a great potential for structure determination of reproducible biological specimens that can not be crystallized. One of the challenges in processing the data from such an experiment is to determine correct orientation of each diffraction pattern from samples randomly injected in the FEL beam. We propose an algorithm (see also O. Yefanov et al., Photon Science - HASYLAB Annual Report 2010) that can solve this problem and can be applied to samples from tens of nanometers to microns in size, measured with sub-nanometer resolution in the presence of noise. This is achieved by the simultaneous analysis of a large number of diffraction patterns corresponding to different orientations of the particles. The algorithms efficiency is demonstrated for two biological samples, an artificial protein structure without any symmetry and a virus with icosahedral symmetry. Both structures are few tens of nanometers in size and consist of more than 100 000 non-hydrogen atoms. More than 10 000 diffraction patterns with Poisson noise were simulated and analyzed for each structure. Our simulations indicate the possibility to achieve resolution of about 3.3 脜 at 3 脜 wavelength and incoming flux of 10^{12} photons per pulse focused to 100\times 100 nm^2. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1302.5730v1-abstract-full').style.display = 'none'; document.getElementById('1302.5730v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 10 figures, 40 references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. B: At. Mol. Opt. Phys. v. 46, 164013 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1301.6654">arXiv:1301.6654</a> <span> [<a href="https://arxiv.org/pdf/1301.6654">pdf</a>, <a href="https://arxiv.org/ps/1301.6654">ps</a>, <a href="https://arxiv.org/format/1301.6654">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.111.034802">10.1103/PhysRevLett.111.034802 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hanbury Brown and Twiss interferometry at a free-electron laser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Singer%2C+A">A. Singer</a>, <a href="/search/physics?searchtype=author&query=Lorenz%2C+U">U. Lorenz</a>, <a href="/search/physics?searchtype=author&query=Sorgenfrei%2C+F">F. Sorgenfrei</a>, <a href="/search/physics?searchtype=author&query=Gerasimova%2C+N">N. Gerasimova</a>, <a href="/search/physics?searchtype=author&query=Gulden%2C+J">J. Gulden</a>, <a href="/search/physics?searchtype=author&query=Yefanov%2C+O+M">O. M. Yefanov</a>, <a href="/search/physics?searchtype=author&query=Kurta%2C+R+P">R. P. Kurta</a>, <a href="/search/physics?searchtype=author&query=Shabalin%2C+A">A. Shabalin</a>, <a href="/search/physics?searchtype=author&query=Dronyak%2C+R">R. Dronyak</a>, <a href="/search/physics?searchtype=author&query=Treusch%2C+R">R. Treusch</a>, <a href="/search/physics?searchtype=author&query=Kocharyan%2C+V">V. Kocharyan</a>, <a href="/search/physics?searchtype=author&query=Weckert%2C+E">E. Weckert</a>, <a href="/search/physics?searchtype=author&query=Wurth%2C+W">W. Wurth</a>, <a href="/search/physics?searchtype=author&query=Vartanyants%2C+I+A">I. A. Vartanyants</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1301.6654v1-abstract-short" style="display: inline;"> We present measurements of second- and higher-order intensity correlation functions (so-called Hanbury Brown and Twiss experiment) performed at the free-electron laser (FEL) FLASH in the non-linear regime of its operation. We demonstrate the high transverse coherence properties of the FEL beam with a degree of transverse coherence of about 80% and degeneracy parameter of the order 10^9 that makes… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.6654v1-abstract-full').style.display = 'inline'; document.getElementById('1301.6654v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1301.6654v1-abstract-full" style="display: none;"> We present measurements of second- and higher-order intensity correlation functions (so-called Hanbury Brown and Twiss experiment) performed at the free-electron laser (FEL) FLASH in the non-linear regime of its operation. We demonstrate the high transverse coherence properties of the FEL beam with a degree of transverse coherence of about 80% and degeneracy parameter of the order 10^9 that makes it similar to laser sources. Intensity correlation measurements in spatial and frequency domain gave an estimate of the FEL average pulse duration of 50 fs. Our measurements of the higher-order correlation functions indicate that FEL radiation obeys Gaussian statistics, which is characteristic to chaotic sources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.6654v1-abstract-full').style.display = 'none'; document.getElementById('1301.6654v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 6 figures, 1 table, 40 references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. v. 111, 034802 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1206.1091">arXiv:1206.1091</a> <span> [<a href="https://arxiv.org/pdf/1206.1091">pdf</a>, <a href="https://arxiv.org/ps/1206.1091">ps</a>, <a href="https://arxiv.org/format/1206.1091">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.20.017480">10.1364/OE.20.017480 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spatial and temporal coherence properties of single free-electron laser pulses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Singer%2C+A">A. Singer</a>, <a href="/search/physics?searchtype=author&query=Sorgenfrei%2C+F">F. Sorgenfrei</a>, <a href="/search/physics?searchtype=author&query=Mancuso%2C+A+P">A. P. Mancuso</a>, <a href="/search/physics?searchtype=author&query=Gerasimova%2C+N">N. Gerasimova</a>, <a href="/search/physics?searchtype=author&query=Yefanov%2C+O+M">O. M. Yefanov</a>, <a href="/search/physics?searchtype=author&query=Gulden%2C+J">J. Gulden</a>, <a href="/search/physics?searchtype=author&query=Gorniak%2C+T">T. Gorniak</a>, <a href="/search/physics?searchtype=author&query=Senkbeil%2C+T">T. Senkbeil</a>, <a href="/search/physics?searchtype=author&query=Sakdinawat%2C+A">A. Sakdinawat</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Y. Liu</a>, <a href="/search/physics?searchtype=author&query=Attwood%2C+D">D. Attwood</a>, <a href="/search/physics?searchtype=author&query=Dziarzhytski%2C+S">S. Dziarzhytski</a>, <a href="/search/physics?searchtype=author&query=Mai%2C+D+D">D. D. Mai</a>, <a href="/search/physics?searchtype=author&query=Treusch%2C+R">R. Treusch</a>, <a href="/search/physics?searchtype=author&query=Weckert%2C+E">E. Weckert</a>, <a href="/search/physics?searchtype=author&query=Salditt%2C+T">T. Salditt</a>, <a href="/search/physics?searchtype=author&query=Rosenhahn%2C+A">A. Rosenhahn</a>, <a href="/search/physics?searchtype=author&query=Wurth%2C+W">W. Wurth</a>, <a href="/search/physics?searchtype=author&query=Vartanyants%2C+I+A">I. A. Vartanyants</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1206.1091v1-abstract-short" style="display: inline;"> The experimental characterization of the spatial and temporal coherence properties of the free-electron laser in Hamburg (FLASH) at a wavelength of 8.0 nm is presented. Double pinhole diffraction patterns of single femtosecond pulses focused to a size of about 10 microns by 10 microns were measured. A transverse coherence length of 6.2 microns in the horizontal and 8.7 microns in the vertical dire… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1206.1091v1-abstract-full').style.display = 'inline'; document.getElementById('1206.1091v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1206.1091v1-abstract-full" style="display: none;"> The experimental characterization of the spatial and temporal coherence properties of the free-electron laser in Hamburg (FLASH) at a wavelength of 8.0 nm is presented. Double pinhole diffraction patterns of single femtosecond pulses focused to a size of about 10 microns by 10 microns were measured. A transverse coherence length of 6.2 microns in the horizontal and 8.7 microns in the vertical direction was determined from the most coherent pulses. Using a split and delay unit the coherence time of the pulses produced in the same operation conditions of FLASH was measured to be 1.75 fs. From our experiment we estimated the degeneracy parameter of the FLASH beam to be on the order of $10^{10}$ to $10^{11}$, which exceeds the values of this parameter at any other source in the same energy range by many orders of magnitude. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1206.1091v1-abstract-full').style.display = 'none'; document.getElementById('1206.1091v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 7 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1105.3898">arXiv:1105.3898</a> <span> [<a href="https://arxiv.org/pdf/1105.3898">pdf</a>, <a href="https://arxiv.org/ps/1105.3898">ps</a>, <a href="https://arxiv.org/format/1105.3898">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.107.144801">10.1103/PhysRevLett.107.144801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coherence Properties of Individual Femtosecond Pulses of an X-ray Free-Electron Laser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Vartanyants%2C+I+A">I. A. Vartanyants</a>, <a href="/search/physics?searchtype=author&query=Singer%2C+A">A. Singer</a>, <a href="/search/physics?searchtype=author&query=Mancuso%2C+A+P">A. P. Mancuso</a>, <a href="/search/physics?searchtype=author&query=Yefanov%2C+O">O. Yefanov</a>, <a href="/search/physics?searchtype=author&query=Sakdinawat%2C+A">A. Sakdinawat</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Y. Liu</a>, <a href="/search/physics?searchtype=author&query=Bang%2C+E">E. Bang</a>, <a href="/search/physics?searchtype=author&query=Williams%2C+G+J">G. J. Williams</a>, <a href="/search/physics?searchtype=author&query=Cadenazzi%2C+G">G. Cadenazzi</a>, <a href="/search/physics?searchtype=author&query=Abbey%2C+B">B. Abbey</a>, <a href="/search/physics?searchtype=author&query=Sinn%2C+H">H. Sinn</a>, <a href="/search/physics?searchtype=author&query=Attwood%2C+D">D. Attwood</a>, <a href="/search/physics?searchtype=author&query=Nugent%2C+K+A">K. A. Nugent</a>, <a href="/search/physics?searchtype=author&query=Weckert%2C+E">E. Weckert</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+T">T. Wang</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+D">D. Zhu</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+B">B. Wu</a>, <a href="/search/physics?searchtype=author&query=Graves%2C+C">C. Graves</a>, <a href="/search/physics?searchtype=author&query=Scherz%2C+A">A. Scherz</a>, <a href="/search/physics?searchtype=author&query=Turner%2C+J+J">J. J. Turner</a>, <a href="/search/physics?searchtype=author&query=Schlotter%2C+W+F">W. F. Schlotter</a>, <a href="/search/physics?searchtype=author&query=Messerschmidt%2C+M">M. Messerschmidt</a>, <a href="/search/physics?searchtype=author&query=Luning%2C+J">J. Luning</a>, <a href="/search/physics?searchtype=author&query=Acremann%2C+Y">Y. Acremann</a>, <a href="/search/physics?searchtype=author&query=Heimann%2C+P">P. Heimann</a> , et al. (11 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1105.3898v1-abstract-short" style="display: inline;"> Measurements of the spatial and temporal coherence of single, femtosecond x-ray pulses generated by the first hard x-ray free-electron laser (FEL), the Linac Coherent Light Source (LCLS), are presented. Single shot measurements were performed at 780 eV x-ray photon energy using apertures containing double pinholes in "diffract and destroy" mode. We determined a coherence length of 17 micrometers i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1105.3898v1-abstract-full').style.display = 'inline'; document.getElementById('1105.3898v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1105.3898v1-abstract-full" style="display: none;"> Measurements of the spatial and temporal coherence of single, femtosecond x-ray pulses generated by the first hard x-ray free-electron laser (FEL), the Linac Coherent Light Source (LCLS), are presented. Single shot measurements were performed at 780 eV x-ray photon energy using apertures containing double pinholes in "diffract and destroy" mode. We determined a coherence length of 17 micrometers in the vertical direction, which is approximately the size of the focused LCLS beam in the same direction. The analysis of the diffraction patterns produced by the pinholes with the largest separation yields an estimate of the temporal coherence time of 0.6 fs. We find that the total degree of transverse coherence is 56% and that the x-ray pulses are adequately described by two transverse coherent modes in each direction. This leads us to the conclusion that 78% of the total power is contained in the dominant mode. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1105.3898v1-abstract-full').style.display = 'none'; document.getElementById('1105.3898v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>