CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 672 results for author: <span class="mathjax">Huang, Y</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Huang%2C+Y">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Huang, Y"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Huang%2C+Y&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Huang, Y"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Huang%2C+Y&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Huang%2C+Y&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Huang%2C+Y&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Huang%2C+Y&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Huang%2C+Y&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Huang%2C+Y&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.06256">arXiv:2412.06256</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.06256">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Energy Efficient Stochastic Signal Manipulation in Superparamagnetic Tunnel Junctions via Voltage-Controlled Exchange Coupling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Jia%2C+Q">Qi Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Benally%2C+O+J">Onri J. Benally</a>, <a href="/search/physics?searchtype=author&amp;query=Zink%2C+B">Brandon Zink</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+D">Delin Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Lv%2C+Y">Yang Lv</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+S">Shuang Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Lyu%2C+D">Deyuan Lyu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yu-Chia Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Y">Yifei Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y+H">Yu Han Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">Jian-Ping Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.06256v1-abstract-short" style="display: inline;"> Superparamagnetic tunnel junctions (sMTJs) are emerging as promising components for stochastic units in neuromorphic computing, owing to their tunable random switching behavior. Conventional MTJ control methods, such as spin-transfer torque (STT) and spin-orbit torque (SOT), often require substantial power. Here, we introduce the voltage-controlled exchange coupling (VCEC) mechanism, enabling swit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.06256v1-abstract-full').style.display = 'inline'; document.getElementById('2412.06256v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.06256v1-abstract-full" style="display: none;"> Superparamagnetic tunnel junctions (sMTJs) are emerging as promising components for stochastic units in neuromorphic computing, owing to their tunable random switching behavior. Conventional MTJ control methods, such as spin-transfer torque (STT) and spin-orbit torque (SOT), often require substantial power. Here, we introduce the voltage-controlled exchange coupling (VCEC) mechanism, enabling switching between antiparallel and parallel states in sMTJs with an ultralow power consumption of only 40 nW, approximately two orders of magnitude lower than conventional STT-based sMTJs. This mechanism yields a sigmoid-shaped output response, making it ideally suited for neuromorphic computing applications. Furthermore, we validate the feasibility of integrating VCEC with the SOT current control, offering an additional dimension for magnetic state manipulation. This work marks the first practical demonstration of VCEC effect in sMTJs, highlighting its potential as a low-power control solution for probabilistic bits in advanced computing systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.06256v1-abstract-full').style.display = 'none'; document.getElementById('2412.06256v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.05677">arXiv:2412.05677</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.05677">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> High SNR 3D Imaging from Millimeter-scale Thick Tissues to Cellular Dynamics via Structured Illumination Microscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+M">Mengrui Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Shu%2C+M">Manming Shu</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+J">Jiajing Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+C">Chang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+X">Xiangda Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jingxiang Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+Y">Yuchen Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+H">Hu Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yuwei Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+D">Dingbang Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Ge%2C+Y">Yifan Ge</a>, <a href="/search/physics?searchtype=author&amp;query=Hao%2C+H">Huiwen Hao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+T">Tianyu Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+Y">Yansheng Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+S">Shaowei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Lei%2C+M">Ming Lei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.05677v1-abstract-short" style="display: inline;"> Three-dimensional (3D) fluorescence imaging provides a vital approach for study of biological tissues with intricate structures, and optical sectioning structured illumination microscopy (OS-SIM) stands out for its high imaging speed, low phototoxicity and high spatial resolution. However, OS-SIM faces the problem of low signal-to-noise ratio (SNR) when using traditional decoding algorithms, espec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.05677v1-abstract-full').style.display = 'inline'; document.getElementById('2412.05677v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.05677v1-abstract-full" style="display: none;"> Three-dimensional (3D) fluorescence imaging provides a vital approach for study of biological tissues with intricate structures, and optical sectioning structured illumination microscopy (OS-SIM) stands out for its high imaging speed, low phototoxicity and high spatial resolution. However, OS-SIM faces the problem of low signal-to-noise ratio (SNR) when using traditional decoding algorithms, especially in thick tissues. Here we propose a Hilbert-transform decoding and space domain based high-low (HT-SHiLo) algorithm for noise suppression in OS-SIM. We demonstrate HT-SHiLo algorithm can significantly improve the SNR of optical sectioning images at rapid processing speed, and double the imaging depth in thick tissues. With our OS-SIM system, we achieve high quality 3D images of various biological samples including mouse brains, Drosophila clock neurons, organoids, and live cells. We anticipate that this approach will render OS-SIM a powerful technique for research of cellular organelles or thick tissues in 3D morphology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.05677v1-abstract-full').style.display = 'none'; document.getElementById('2412.05677v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.05361">arXiv:2412.05361</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.05361">pdf</a>, <a href="https://arxiv.org/format/2412.05361">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> YIG Photonic Crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Rashedi%2C+A">Alireza Rashedi</a>, <a href="/search/physics?searchtype=author&amp;query=Ebrahimi%2C+M">Mehri Ebrahimi</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yunhu Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Rudd%2C+M+J">Matt J. Rudd</a>, <a href="/search/physics?searchtype=author&amp;query=Davis%2C+J+P">John P. Davis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.05361v1-abstract-short" style="display: inline;"> We present the first demonstration of a nanofabricated photonic crystal made from the magnetic material yttrium iron garnet (YIG). YIG is a compelling material for quantum technologies due to its unique magnetic and optical properties; however, experiments involving YIG have primarily been limited to millimeter-scale spheres. The successful nanofabrication of YIG structures opens new avenues for a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.05361v1-abstract-full').style.display = 'inline'; document.getElementById('2412.05361v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.05361v1-abstract-full" style="display: none;"> We present the first demonstration of a nanofabricated photonic crystal made from the magnetic material yttrium iron garnet (YIG). YIG is a compelling material for quantum technologies due to its unique magnetic and optical properties; however, experiments involving YIG have primarily been limited to millimeter-scale spheres. The successful nanofabrication of YIG structures opens new avenues for advancing quantum technology applications. Notably, the ability to co-localize magnons, phonons, and optical photons within a nanostructured environment paves the way for novel approaches in quantum information processing, including quantum wavelength transduction and enhanced magnon-photon interactions. This work marks a significant step toward integrating YIG-based devices into scalable quantum platforms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.05361v1-abstract-full').style.display = 'none'; document.getElementById('2412.05361v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.04127">arXiv:2412.04127</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.04127">pdf</a>, <a href="https://arxiv.org/format/2412.04127">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Frequency-tunable biphoton generation via spontaneous four-wave mixing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shiu%2C+J">Jiun-Shiuan Shiu</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+C">Chang-Wei Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yu-Chiao Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+M">Meng-Jung Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+I">I-Chia Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+T">Ting-Ho Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Kuan%2C+P">Pei-Chen Kuan</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yong-Fan Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.04127v1-abstract-short" style="display: inline;"> We present experimental results on tuning biphoton frequency by introducing a detuned coupling field in spontaneous four-wave mixing (SFWM), and examine its impact on the pairing ratio. This tunability is achieved by manipulating the inherent electromagnetically induced transparency (EIT) effect in the double-$螞$ scheme. Introducing a detuned coupling field degrades the efficiency of EIT-based sti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04127v1-abstract-full').style.display = 'inline'; document.getElementById('2412.04127v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.04127v1-abstract-full" style="display: none;"> We present experimental results on tuning biphoton frequency by introducing a detuned coupling field in spontaneous four-wave mixing (SFWM), and examine its impact on the pairing ratio. This tunability is achieved by manipulating the inherent electromagnetically induced transparency (EIT) effect in the double-$螞$ scheme. Introducing a detuned coupling field degrades the efficiency of EIT-based stimulated four-wave mixing, which in turn reduces the biphoton pairing ratio. However, this reduction can be mitigated by increasing the optical power of the coupling field. Additionally, we observe that blue- and red-detuning the biphoton frequency results in distinct temporal profiles of biphoton wavepackets due to phase mismatch. These findings provide insights into the mechanisms of frequency-tunable biphoton generation via SFWM, and suggest potential optimizations for applications in quantum communication and information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04127v1-abstract-full').style.display = 'none'; document.getElementById('2412.04127v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.03749">arXiv:2412.03749</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.03749">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Electrically functionalized body surface for deep-tissue bioelectrical recording </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+D">Dehui Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yucheng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+D">Dong Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+S">Shaolei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+K">Kaidong Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+B">Boxuan Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Ling%2C+Y">Yansong Ling</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+Q">Qingyu Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Yin%2C+J">Junyi Yin</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+E">Enbo Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+X">Xun Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Wan%2C+C">Chengzhang Wan</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J">Jun Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Hsiai%2C+T+K">Tzung K. Hsiai</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yu Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Duan%2C+X">Xiangfeng Duan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.03749v1-abstract-short" style="display: inline;"> Directly probing deep tissue activities from body surfaces offers a noninvasive approach to monitoring essential physiological processes1-3. However, this method is technically challenged by rapid signal attenuation toward the body surface and confounding motion artifacts4-6 primarily due to excessive contact impedance and mechanical mismatch with conventional electrodes. Herein, by formulating an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03749v1-abstract-full').style.display = 'inline'; document.getElementById('2412.03749v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.03749v1-abstract-full" style="display: none;"> Directly probing deep tissue activities from body surfaces offers a noninvasive approach to monitoring essential physiological processes1-3. However, this method is technically challenged by rapid signal attenuation toward the body surface and confounding motion artifacts4-6 primarily due to excessive contact impedance and mechanical mismatch with conventional electrodes. Herein, by formulating and directly spray coating biocompatible two-dimensional nanosheet ink onto the human body under ambient conditions, we create microscopically conformal and adaptive van der Waals thin films (VDWTFs) that seamlessly merge with non-Euclidean, hairy, and dynamically evolving body surfaces. Unlike traditional deposition methods, which often struggle with conformality and adaptability while retaining high electronic performance, this gentle process enables the formation of high-performance VDWTFs directly on the body surface under bio-friendly conditions, making it ideal for biological applications. This results in low-impedance electrically functionalized body surfaces (EFBS), enabling highly robust monitoring of biopotential and bioimpedance modulations associated with deep-tissue activities, such as blood circulation, muscle movements, and brain activities. Compared to commercial solutions, our VDWTF-EFBS exhibits nearly two-orders of magnitude lower contact impedance and substantially reduces the extrinsic motion artifacts, enabling reliable extraction of bioelectrical signals from irregular surfaces, such as unshaved human scalps. This advancement defines a technology for continuous, noninvasive monitoring of deep-tissue activities during routine body movements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03749v1-abstract-full').style.display = 'none'; document.getElementById('2412.03749v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.03288">arXiv:2412.03288</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.03288">pdf</a>, <a href="https://arxiv.org/format/2412.03288">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6633/ad99e6">10.1088/1361-6633/ad99e6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Searches for exotic spin-dependent interactions with spin sensors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+M">Min Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+H">Haowen Su</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yifan Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Jiao%2C+M">Man Jiao</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Ying Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yuanhong Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Rong%2C+X">Xing Rong</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+X">Xinhua Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Du%2C+J">Jiangfeng Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.03288v2-abstract-short" style="display: inline;"> Numerous theories have postulated the existence of exotic spin-dependent interactions beyond the Standard Model of particle physics. Spin-based quantum sensors, which utilize the quantum properties of spins to enhance measurement precision, emerge as powerful tools for probing these exotic interactions. These sensors encompass a wide range of technologies, such as optically pumped magnetometers, a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03288v2-abstract-full').style.display = 'inline'; document.getElementById('2412.03288v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.03288v2-abstract-full" style="display: none;"> Numerous theories have postulated the existence of exotic spin-dependent interactions beyond the Standard Model of particle physics. Spin-based quantum sensors, which utilize the quantum properties of spins to enhance measurement precision, emerge as powerful tools for probing these exotic interactions. These sensors encompass a wide range of technologies, such as optically pumped magnetometers, atomic comagnetometers, spin masers, nuclear magnetic resonance, spin amplifiers, and nitrogen-vacancy centers. These technologies stand out for their ultrahigh sensitivity, compact tabletop design, and cost-effectiveness, offering complementary approaches to the large-scale particle colliders and astrophysical observations. This article reviews the underlying physical principles of various spin sensors and highlights the recent theoretical and experimental progress in the searches for exotic spin-dependent interactions with these quantum sensors. Investigations covered include the exotic interactions of spins with ultralight dark matter, exotic spin-dependent forces, electric dipole moment, spin-gravity interactions, and among others. Ongoing and forthcoming experiments using advanced spin-based sensors to investigate exotic spin-dependent interactions are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03288v2-abstract-full').style.display = 'none'; document.getElementById('2412.03288v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 13 figures, accepted for publication in Reports on Progress in Physics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Rep. Prog. Phys. 88 (2025) 016401 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.01980">arXiv:2412.01980</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.01980">pdf</a>, <a href="https://arxiv.org/format/2412.01980">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Centrifugal Confinement Fusion Thruster </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yi-Min Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.01980v1-abstract-short" style="display: inline;"> Centrifugal confinement fusion, a promising alternative to toroidal confinement devices like tokamaks and stellarators, leverages supersonic plasma rotation within a magnetic mirror configuration to achieve simplified coil design, compactness, and enhanced stability. This brief article explores the potential of centrifugal confinement fusion for propulsion applications. A previous concern regardin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01980v1-abstract-full').style.display = 'inline'; document.getElementById('2412.01980v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.01980v1-abstract-full" style="display: none;"> Centrifugal confinement fusion, a promising alternative to toroidal confinement devices like tokamaks and stellarators, leverages supersonic plasma rotation within a magnetic mirror configuration to achieve simplified coil design, compactness, and enhanced stability. This brief article explores the potential of centrifugal confinement fusion for propulsion applications. A previous concern regarding the escape of energetic ions, essential for propulsion, is addressed through test-particle simulations. The results indicate that the earlier estimate based on adiabatic invariance was overly pessimistic, and the underlying physics is clarified. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01980v1-abstract-full').style.display = 'none'; document.getElementById('2412.01980v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Summary of a talk at the National Institute of Aerospace on October 29, 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.17158">arXiv:2411.17158</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.17158">pdf</a>, <a href="https://arxiv.org/format/2411.17158">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Molecular Networks">q-bio.MN</span> </div> </div> <p class="title is-5 mathjax"> Synthetic frequency-controlled gene circuits unlock expanded cellular states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+R">Rongrong Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wan%2C+S">Shengjie Wan</a>, <a href="/search/physics?searchtype=author&amp;query=Xiong%2C+J">Jiarui Xiong</a>, <a href="/search/physics?searchtype=author&amp;query=Ni%2C+L">Lei Ni</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Ye Li</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yajia Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+B">Bing Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+M">Mei Li</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+S">Shuai Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Jin%2C+F">Fan Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.17158v1-abstract-short" style="display: inline;"> Natural biological systems process environmental information through both amplitude and frequency-modulated signals, yet engineered biological circuits have largely relied on amplitude-based regulation alone. Despite the prevalence of frequency-encoded signals in natural systems, fundamental challenges in designing and implementing frequency-responsive gene circuits have limited their development&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17158v1-abstract-full').style.display = 'inline'; document.getElementById('2411.17158v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.17158v1-abstract-full" style="display: none;"> Natural biological systems process environmental information through both amplitude and frequency-modulated signals, yet engineered biological circuits have largely relied on amplitude-based regulation alone. Despite the prevalence of frequency-encoded signals in natural systems, fundamental challenges in designing and implementing frequency-responsive gene circuits have limited their development in synthetic biology. Here we present a Time-Resolved Gene Circuit (TRGC) architecture that enables frequency-to-amplitude signal conversion in engineered biological systems. Through systematic analysis, we establish a theoretical framework that guides the design of synthetic circuits capable of distinct frequency-dependent responses, implementing both high-pass and low-pass filtering behaviors. To enable rigorous characterization of these dynamic circuits, we developed a high-throughput automated platform that ensures stable and reproducible measurements of frequency-dependent r esponses across diverse conditions. Using this platform, we demonstrate that these frequency-modulated circuits can access cellular states unreachable through conventional amplitude modulation, significantly expanding the controllable gene expression space in multi-gene systems. Our results show that frequency modulation expands the range of achievable expression patterns when controlling multiple genes through a single input, demonstrating a new paradigm for engineering cellular behaviors. This work establishes frequency modulation as a powerful strategy for expanding the capabilities of engineered biological systems and enhancing cellular response to dynamic signals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17158v1-abstract-full').style.display = 'none'; document.getElementById('2411.17158v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.14607">arXiv:2411.14607</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.14607">pdf</a>, <a href="https://arxiv.org/format/2411.14607">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Advanced LIGO detector performance in the fourth observing run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Capote%2C+E">E. Capote</a>, <a href="/search/physics?searchtype=author&amp;query=Jia%2C+W">W. Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Aritomi%2C+N">N. Aritomi</a>, <a href="/search/physics?searchtype=author&amp;query=Nakano%2C+M">M. Nakano</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+V">V. Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/physics?searchtype=author&amp;query=Abouelfettouh%2C+I">I. Abouelfettouh</a>, <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Ananyeva%2C+A">A. Ananyeva</a>, <a href="/search/physics?searchtype=author&amp;query=Appert%2C+S">S. Appert</a>, <a href="/search/physics?searchtype=author&amp;query=Apple%2C+S+K">S. K. Apple</a>, <a href="/search/physics?searchtype=author&amp;query=Arai%2C+K">K. Arai</a>, <a href="/search/physics?searchtype=author&amp;query=Aston%2C+S+M">S. M. Aston</a>, <a href="/search/physics?searchtype=author&amp;query=Ball%2C+M">M. Ball</a>, <a href="/search/physics?searchtype=author&amp;query=Ballmer%2C+S+W">S. W. Ballmer</a>, <a href="/search/physics?searchtype=author&amp;query=Barker%2C+D">D. Barker</a>, <a href="/search/physics?searchtype=author&amp;query=Barsotti%2C+L">L. Barsotti</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+B+K">B. K. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Betzwieser%2C+J">J. Betzwieser</a>, <a href="/search/physics?searchtype=author&amp;query=Bhattacharjee%2C+D">D. Bhattacharjee</a>, <a href="/search/physics?searchtype=author&amp;query=Billingsley%2C+G">G. Billingsley</a>, <a href="/search/physics?searchtype=author&amp;query=Biscans%2C+S">S. Biscans</a>, <a href="/search/physics?searchtype=author&amp;query=Blair%2C+C+D">C. D. Blair</a>, <a href="/search/physics?searchtype=author&amp;query=Bode%2C+N">N. Bode</a>, <a href="/search/physics?searchtype=author&amp;query=Bonilla%2C+E">E. Bonilla</a> , et al. (171 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.14607v1-abstract-short" style="display: inline;"> On May 24th, 2023, the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO), joined by the Advanced Virgo and KAGRA detectors, began the fourth observing run for a two-year-long dedicated search for gravitational waves. The LIGO Hanford and Livingston detectors have achieved an unprecedented sensitivity to gravitational waves, with an angle-averaged median range to binary neutron st&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14607v1-abstract-full').style.display = 'inline'; document.getElementById('2411.14607v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.14607v1-abstract-full" style="display: none;"> On May 24th, 2023, the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO), joined by the Advanced Virgo and KAGRA detectors, began the fourth observing run for a two-year-long dedicated search for gravitational waves. The LIGO Hanford and Livingston detectors have achieved an unprecedented sensitivity to gravitational waves, with an angle-averaged median range to binary neutron star mergers of 152 Mpc and 160 Mpc, and duty cycles of 65.0% and 71.2%, respectively, with a coincident duty cycle of 52.6%. The maximum range achieved by the LIGO Hanford detector is 165 Mpc and the LIGO Livingston detector 177 Mpc, both achieved during the second part of the fourth observing run. For the fourth run, the quantum-limited sensitivity of the detectors was increased significantly due to the higher intracavity power from laser system upgrades and replacement of core optics, and from the addition of a 300 m filter cavity to provide the squeezed light with a frequency-dependent squeezing angle, part of the A+ upgrade program. Altogether, the A+ upgrades led to reduced detector-wide losses for the squeezed vacuum states of light which, alongside the filter cavity, enabled broadband quantum noise reduction of up to 5.2 dB at the Hanford observatory and 6.1 dB at the Livingston observatory. Improvements to sensors and actuators as well as significant controls commissioning increased low frequency sensitivity. This paper details these instrumental upgrades, analyzes the noise sources that limit detector sensitivity, and describes the commissioning challenges of the fourth observing run. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14607v1-abstract-full').style.display = 'none'; document.getElementById('2411.14607v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 18 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2400256 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11942">arXiv:2411.11942</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.11942">pdf</a>, <a href="https://arxiv.org/format/2411.11942">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Variable Rate Neural Compression for Sparse Detector Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yi Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Go%2C+Y">Yeonju Go</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+J">Jin Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+S">Shuhang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+X">Xihaier Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Marshall%2C+T">Thomas Marshall</a>, <a href="/search/physics?searchtype=author&amp;query=Osborn%2C+J">Joseph Osborn</a>, <a href="/search/physics?searchtype=author&amp;query=Pinkenburg%2C+C">Christopher Pinkenburg</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+Y">Yihui Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Shulga%2C+E">Evgeny Shulga</a>, <a href="/search/physics?searchtype=author&amp;query=Yoo%2C+S">Shinjae Yoo</a>, <a href="/search/physics?searchtype=author&amp;query=Yoon%2C+B">Byung-Jun Yoon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11942v1-abstract-short" style="display: inline;"> High-energy large-scale particle colliders generate data at extraordinary rates. Developing real-time high-throughput data compression algorithms to reduce data volume and meet the bandwidth requirement for storage has become increasingly critical. Deep learning is a promising technology that can address this challenging topic. At the newly constructed sPHENIX experiment at the Relativistic Heavy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11942v1-abstract-full').style.display = 'inline'; document.getElementById('2411.11942v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11942v1-abstract-full" style="display: none;"> High-energy large-scale particle colliders generate data at extraordinary rates. Developing real-time high-throughput data compression algorithms to reduce data volume and meet the bandwidth requirement for storage has become increasingly critical. Deep learning is a promising technology that can address this challenging topic. At the newly constructed sPHENIX experiment at the Relativistic Heavy Ion Collider, a Time Projection Chamber (TPC) serves as the main tracking detector, which records three-dimensional particle trajectories in a volume of a gas-filled cylinder. In terms of occupancy, the resulting data flow can be very sparse reaching $10^{-3}$ for proton-proton collisions. Such sparsity presents a challenge to conventional learning-free lossy compression algorithms, such as SZ, ZFP, and MGARD. In contrast, emerging deep learning-based models, particularly those utilizing convolutional neural networks for compression, have outperformed these conventional methods in terms of compression ratios and reconstruction accuracy. However, research on the efficacy of these deep learning models in handling sparse datasets, like those produced in particle colliders, remains limited. Furthermore, most deep learning models do not adapt their processing speeds to data sparsity, which affects efficiency. To address this issue, we propose a novel approach for TPC data compression via key-point identification facilitated by sparse convolution. Our proposed algorithm, BCAE-VS, achieves a $75\%$ improvement in reconstruction accuracy with a $10\%$ increase in compression ratio over the previous state-of-the-art model. Additionally, BCAE-VS manages to achieve these results with a model size over two orders of magnitude smaller. Lastly, we have experimentally verified that as sparsity increases, so does the model&#39;s throughput. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11942v1-abstract-full').style.display = 'none'; document.getElementById('2411.11942v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 12 figures, submitted to Journal of Computational Physics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10131">arXiv:2411.10131</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.10131">pdf</a>, <a href="https://arxiv.org/format/2411.10131">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Nonresonant Raman control of material phases </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shi%2C+J">Jiaojian Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Heide%2C+C">Christian Heide</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+H">Haowei Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yijing Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+Y">Yuejun Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Guzelturk%2C+B">Burak Guzelturk</a>, <a href="/search/physics?searchtype=author&amp;query=Henstridge%2C+M">Meredith Henstridge</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6n%2C+C+F">Carl Friedrich Sch枚n</a>, <a href="/search/physics?searchtype=author&amp;query=Mangu%2C+A">Anudeep Mangu</a>, <a href="/search/physics?searchtype=author&amp;query=Kobayashi%2C+Y">Yuki Kobayashi</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+X">Xinyue Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+S">Shangjie Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=May%2C+A+F">Andrew F. May</a>, <a href="/search/physics?searchtype=author&amp;query=Reddy%2C+P+D">Pooja Donthi Reddy</a>, <a href="/search/physics?searchtype=author&amp;query=Shautsova%2C+V">Viktoryia Shautsova</a>, <a href="/search/physics?searchtype=author&amp;query=Taghinejad%2C+M">Mohammad Taghinejad</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+D">Duan Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Hughes%2C+E">Eamonn Hughes</a>, <a href="/search/physics?searchtype=author&amp;query=Brongersma%2C+M+L">Mark L. Brongersma</a>, <a href="/search/physics?searchtype=author&amp;query=Mukherjee%2C+K">Kunal Mukherjee</a>, <a href="/search/physics?searchtype=author&amp;query=Trigo%2C+M">Mariano Trigo</a>, <a href="/search/physics?searchtype=author&amp;query=Heinz%2C+T+F">Tony F. Heinz</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Ju Li</a>, <a href="/search/physics?searchtype=author&amp;query=Nelson%2C+K+A">Keith A. Nelson</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+E">Edoardo Baldini</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10131v1-abstract-short" style="display: inline;"> Important advances have recently been made in the search for materials with complex multi-phase landscapes that host photoinduced metastable collective states with exotic functionalities. In almost all cases so far, the desired phases are accessed by exploiting light-matter interactions via the imaginary part of the dielectric function through above-bandgap or resonant mode excitation. Nonresonant&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10131v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10131v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10131v1-abstract-full" style="display: none;"> Important advances have recently been made in the search for materials with complex multi-phase landscapes that host photoinduced metastable collective states with exotic functionalities. In almost all cases so far, the desired phases are accessed by exploiting light-matter interactions via the imaginary part of the dielectric function through above-bandgap or resonant mode excitation. Nonresonant Raman excitation of coherent modes has been experimentally observed and proposed for dynamic material control, but the resulting atomic excursion has been limited to perturbative levels. Here, we demonstrate that it is possible to overcome this challenge by employing nonresonant ultrashort pulses with low photon energies well below the bandgap. Using mid-infrared pulses, we induce ferroelectric reversal in lithium niobate and phase switching in tin selenide and characterize the large-amplitude mode displacements through femtosecond Raman scattering, second harmonic generation, and x-ray diffraction. This approach, validated by first-principle calculations, defines a novel method for synthesizing hidden phases with unique functional properties and manipulating complex energy landscapes at reduced energy consumption and ultrafast speeds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10131v1-abstract-full').style.display = 'none'; document.getElementById('2411.10131v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.07620">arXiv:2411.07620</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.07620">pdf</a>, <a href="https://arxiv.org/format/2411.07620">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Investigation and optimization of the deconvolution method for PMT waveform reconstruction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Tang%2C+J">Jingzhe Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+T">Tianying Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+X">Xuan Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yongbo Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.07620v1-abstract-short" style="display: inline;"> Photomultiplier tubes (PMTs) are extensively employed as photosensors in neutrino and dark matter detection. The precise charge and timing information extracted from the PMT waveform plays a crucial role in energy and vertex reconstruction. In this study, we investigate the deconvolution algorithm utilized for PMT waveform reconstruction, while enhancing the timing separation ability for pile-up h&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07620v1-abstract-full').style.display = 'inline'; document.getElementById('2411.07620v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.07620v1-abstract-full" style="display: none;"> Photomultiplier tubes (PMTs) are extensively employed as photosensors in neutrino and dark matter detection. The precise charge and timing information extracted from the PMT waveform plays a crucial role in energy and vertex reconstruction. In this study, we investigate the deconvolution algorithm utilized for PMT waveform reconstruction, while enhancing the timing separation ability for pile-up hits by redesigning filters based on the time-frequency uncertainty principle. This filter design sacrifices signal-to-noise ratio (SNR) to achieve narrower pulse widths. Furthermore, we optimize the selection of signal pulses in the case of low SNR based on Short-Time Fourier Transform (STFT). Monte Carlo data confirms that our optimization yields enhanced reconstruction performance: improving timing separation ability for pile-up hits from $\sim$10 ns to $3\sim5$ ns, while controlling residual nonlinearity of charge reconstruction within 1\%. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07620v1-abstract-full').style.display = 'none'; document.getElementById('2411.07620v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06340">arXiv:2411.06340</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.06340">pdf</a>, <a href="https://arxiv.org/format/2411.06340">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Deep Learning in Classical X-ray Ghost Imaging for Dose Reduction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yiyue Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Loesel%2C+P+D">Philipp D. Loesel</a>, <a href="/search/physics?searchtype=author&amp;query=Paganin%2C+D+M">David M. Paganin</a>, <a href="/search/physics?searchtype=author&amp;query=Kingston%2C+A+M">Andrew M. Kingston</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06340v1-abstract-short" style="display: inline;"> Ghost imaging (GI) is an unconventional technique that combines information from two correlated patterned light fields to compute an image of the object of interest. GI can be performed with visible light as well as penetrating radiation such as x-rays, electrons, etc. Penetrating radiation is usually ionizing and damages biological specimens; therefore, minimising the dose of this radiation in a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06340v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06340v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06340v1-abstract-full" style="display: none;"> Ghost imaging (GI) is an unconventional technique that combines information from two correlated patterned light fields to compute an image of the object of interest. GI can be performed with visible light as well as penetrating radiation such as x-rays, electrons, etc. Penetrating radiation is usually ionizing and damages biological specimens; therefore, minimising the dose of this radiation in a medical or biological imaging context is important. GI has been proposed as a potential way to achieve this. With prior knowledge of the object of interest, such as sparsity in a specific basis (e.g., Fourier basis) or access to a large dataset for neural network training, it is possible to reconstruct an image of the object with a limited number of measurements. However, low sampling does not inherently equate to low dose. Here, we specifically explore the scenario where reduced sampling corresponds to low-dose conditions. In this simulation-based paper, we examine how deep learning (DL) techniques could reduce dose in classical x-ray GI. Since GI is based on illumination patterns, we start by exploring optimal sets of patterns that allow us to reconstruct the image with the fewest measurements, or lowest sampling rate, possible. We then propose a DL neural network that can directly reconstruct images from GI measurements even when the sampling rate is extremely low. We demonstrate that our deep learning-based GI (DLGI) approach has potential in image reconstruction, with results comparable to direct imaging (DI) at the same dose. However, given the same prior knowledge and detector quantum efficiency, it is very challenging for DLGI to outperform DI under low-dose conditions. We discuss how it may be achievable due to the higher sensitivity of bucket detectors over pixel detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06340v1-abstract-full').style.display = 'none'; document.getElementById('2411.06340v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.03249">arXiv:2411.03249</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.03249">pdf</a>, <a href="https://arxiv.org/format/2411.03249">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Investigation of Inward-Outward Ring Permanent Magnet Array for Portable Magnetic Resonance Imaging (MRI) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liang%2C+T">Ting-Ou Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+M">MinXuan Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+W">Wenwei Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+S+Y">Shao Ying Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.03249v2-abstract-short" style="display: inline;"> Permanent magnet array (PMA) is a popular option to provide the main magnetic field in a dedicated portable magnetic resonance imaging (MRI) system because it does not need power or a cooling system and has a much stronger field strength compared to a resistive magnet. Aside from the popular Halbach array that has a transversal field direction, the Inward-Outward ring (IO ring) array is a promisin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03249v2-abstract-full').style.display = 'inline'; document.getElementById('2411.03249v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.03249v2-abstract-full" style="display: none;"> Permanent magnet array (PMA) is a popular option to provide the main magnetic field in a dedicated portable magnetic resonance imaging (MRI) system because it does not need power or a cooling system and has a much stronger field strength compared to a resistive magnet. Aside from the popular Halbach array that has a transversal field direction, the Inward-Outward ring (IO ring) array is a promising candidate that offers a longitudinal field direction with various design and engineering possibilities. In this article, a thorough study of IO ring arrays is conducted by examining the relation between the design parameters and its field patterns, its variants that lead to different applications and their properties. A detailed comparison between an IO ring array and Halbach array was conducted and reported. Moreover, the feasibility of building an IO ring array in a lab is demonstrated. The investigations strongly indicate that IO ring is a promising candidate that can offer high and homogeneous fields or a desired field pattern to portable MRI systems. With a longitudinal field direction, an IO ring array opens up opportunities to adopt MRI advanced technology and techniques in a portable system to improve image quality and shorten scan time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03249v2-abstract-full').style.display = 'none'; document.getElementById('2411.03249v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01258">arXiv:2411.01258</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.01258">pdf</a>, <a href="https://arxiv.org/format/2411.01258">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Beyond the EPICS: comprehensive Python IOC development with QueueIOC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+P">Peng-Cheng Li</a>, <a href="/search/physics?searchtype=author&amp;query=Bi%2C+X">Xiao-Xue Bi</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Ying-Ke Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+D">Dian-Shuai Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+X">Xiao-Bao Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Q">Qun Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Lei%2C+G">Ge Lei</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+G">Gang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yu Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01258v2-abstract-short" style="display: inline;"> Architectural deficiencies in EPICS lead to inefficiency in the development and application of EPICS input/output controllers (IOCs). An unintrusive solution is replacing EPICS IOCs with more maintainable and flexible Python IOCs, only reusing the Channel Access (CA) protocol of EPICS. After a digression about GUI development inspired by EPICS operator interfaces (OPIs), the structural similarity&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01258v2-abstract-full').style.display = 'inline'; document.getElementById('2411.01258v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01258v2-abstract-full" style="display: none;"> Architectural deficiencies in EPICS lead to inefficiency in the development and application of EPICS input/output controllers (IOCs). An unintrusive solution is replacing EPICS IOCs with more maintainable and flexible Python IOCs, only reusing the Channel Access (CA) protocol of EPICS. After a digression about GUI development inspired by EPICS operator interfaces (OPIs), the structural similarity between standalone GUI backends, the Mamba backend, EPICS IOCs and other server programs is analysed. By combining the caproto library and event loops like those in these server programs, the QueueIOC framework for Python IOCs is created, which has the potential to systematically replace most EPICS IOCs currently used. Examples are first given for workalikes of StreamDevice and asyn; examples for seq-like applications include monochromators, motor anti-bumping and motor multiplexing. Also shown is software to use with the ~/iocBoot convention which addresses some issues with a similar solution based on procServ, along with a workalike of procServControl. A QueueIOC-based framework for detector integration, which overcomes areaDetector&#39;s limitations in performance and architecture, is presented in an accompanying paper. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01258v2-abstract-full').style.display = 'none'; document.getElementById('2411.01258v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.00953">arXiv:2411.00953</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.00953">pdf</a>, <a href="https://arxiv.org/format/2411.00953">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OL.537295">10.1364/OL.537295 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Robust Super-Resolution Classifier by Nonlinear Optics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Darji%2C+I">Ishan Darji</a>, <a href="/search/physics?searchtype=author&amp;query=Kumar%2C+S">Santosh Kumar</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yu-Ping Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.00953v1-abstract-short" style="display: inline;"> Spatial-mode projective measurements could achieve super-resolution in remote sensing and imaging, yet their performance is usually sensitive to the parameters of the target scenes. We propose and demonstrate a robust classifier of close-by light sources by using optimized mode projection via nonlinear optics. Contrary to linear-optics based methods using the first few Hermite-Gaussian modes for t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00953v1-abstract-full').style.display = 'inline'; document.getElementById('2411.00953v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.00953v1-abstract-full" style="display: none;"> Spatial-mode projective measurements could achieve super-resolution in remote sensing and imaging, yet their performance is usually sensitive to the parameters of the target scenes. We propose and demonstrate a robust classifier of close-by light sources by using optimized mode projection via nonlinear optics. Contrary to linear-optics based methods using the first few Hermite-Gaussian modes for the projection, here the projection modes are optimally tailored by shaping the pump wave to drive the nonlinear optical process. This minimizes modulation losses and allows high flexibility in designing those modes for robust and efficient measurements. We test this classifier on discriminating one light source and two sources separated well within the Rayleigh limit without prior knowledge of the exact centroid or brightness. Our results show a classification fidelity of over 80% even when the centroid is misaligned by half the source separation, or when one source is four times stronger than the other. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00953v1-abstract-full').style.display = 'none'; document.getElementById('2411.00953v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Opt. Lett. 49, 5419-5422 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.23966">arXiv:2410.23966</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.23966">pdf</a>, <a href="https://arxiv.org/format/2410.23966">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Chip-integrated Spectroscopy Capable of Temperature Retrieval </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Du%2C+Y">Yifan Du</a>, <a href="/search/physics?searchtype=author&amp;query=Sua%2C+Y+M">Yong Meng Sua</a>, <a href="/search/physics?searchtype=author&amp;query=Kumar%2C+S">Santosh Kumar</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jiuyi Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xiangzhi Li</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+Y">Yongxiang Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Ghuman%2C+P">Parminder Ghuman</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yuping Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.23966v2-abstract-short" style="display: inline;"> We demonstrate a chip-integrated emission spectroscope capable of retrieving the temperature of the light sources. It consists of a single photon detector with low dark counts and a sweeping on-chip filter with 2 pm spectral resolution in the visible and near-infrared regimes. With wildfire sensing applications in mind, we test our system with a hollow cathode lamp to simulate the K-line emission,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23966v2-abstract-full').style.display = 'inline'; document.getElementById('2410.23966v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.23966v2-abstract-full" style="display: none;"> We demonstrate a chip-integrated emission spectroscope capable of retrieving the temperature of the light sources. It consists of a single photon detector with low dark counts and a sweeping on-chip filter with 2 pm spectral resolution in the visible and near-infrared regimes. With wildfire sensing applications in mind, we test our system with a hollow cathode lamp to simulate the K-line emission, and show how the models of Doppler and collision broadening in the plasma can be used for temperature retrieval. With favorable device parameters, high spectral resolution, and a novel temperature retrieval capability, our technique may find broad applications in environmental monitoring, astrophysics, plasma physics, and so on. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23966v2-abstract-full').style.display = 'none'; document.getElementById('2410.23966v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.23659">arXiv:2410.23659</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.23659">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> SUANPAN: Scalable Photonic Linear Vector Machine </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Z">Ziyue Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+C">Chen Li</a>, <a href="/search/physics?searchtype=author&amp;query=Ran%2C+Y">Yuqia Ran</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yongzhuo Li</a>, <a href="/search/physics?searchtype=author&amp;query=Feng%2C+X">Xue Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+K">Kaiyu Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+F">Fang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+H">Hao Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+W">Wei Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Ye%2C+Y">Yu Ye</a>, <a href="/search/physics?searchtype=author&amp;query=Qiao%2C+F">Fei Qiao</a>, <a href="/search/physics?searchtype=author&amp;query=Ning%2C+C">Cun-Zheng Ning</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">Jiaxing Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Chang-Hasnain%2C+C+J">Connie J. Chang-Hasnain</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yidong Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.23659v1-abstract-short" style="display: inline;"> Photonic linear operation is a promising approach to handle the extensive vector multiplications in artificial intelligence techniques due to the natural bosonic parallelism and high-speed information transmission of photonics. Although it is believed that maximizing the interaction of the light beams is necessary to fully utilize the parallelism and tremendous efforts have been made in past decad&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23659v1-abstract-full').style.display = 'inline'; document.getElementById('2410.23659v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.23659v1-abstract-full" style="display: none;"> Photonic linear operation is a promising approach to handle the extensive vector multiplications in artificial intelligence techniques due to the natural bosonic parallelism and high-speed information transmission of photonics. Although it is believed that maximizing the interaction of the light beams is necessary to fully utilize the parallelism and tremendous efforts have been made in past decades, the achieved dimensionality of vector-matrix multiplication is very limited due to the difficulty of scaling up a tightly interconnected or highly coupled optical system. Additionally, there is still a lack of a universal photonic computing architecture that can be readily merged with existing computing system to meet the computing power demand of AI techniques. Here, we propose a programmable and reconfigurable photonic linear vector machine to perform only the inner product of two vectors, formed by a series of independent basic computing units, while each unit is just one pair of light-emitter and photodetector. Since there is no interaction among light beams inside, extreme scalability could be achieved by simply duplicating the independent basic computing unit while there is no requirement of large-scale analog-to-digital converter and digital-to-analog converter arrays. Our architecture is inspired by the traditional Chinese Suanpan or abacus and thus is denoted as photonic SUANPAN. As a proof of principle, SUANPAN architecture is implemented with an 8*8 vertical cavity surface emission laser array and an 8*8 MoTe2 two-dimensional material photodetector array. We believe that our proposed photonic SUANPAN is capable of serving as a fundamental linear vector machine that can be readily merged with existing electronic digital computing system and is potential to enhance the computing power for future various AI applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23659v1-abstract-full').style.display = 'none'; document.getElementById('2410.23659v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.22450">arXiv:2410.22450</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.22450">pdf</a>, <a href="https://arxiv.org/format/2410.22450">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> Nonlocal, Pattern-aware Response and Feedback Framework for Regional Climate Change </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kooloth%2C+P">Parvathi Kooloth</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+J">Jian Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yi Huang</a>, <a href="/search/physics?searchtype=author&amp;query=DeSantis%2C+D">Derek DeSantis</a>, <a href="/search/physics?searchtype=author&amp;query=Huo%2C+Y">Yiling Huo</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+F">Fukai Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Hailong Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.22450v1-abstract-short" style="display: inline;"> We devise a pattern-aware feedback framework for representing the forced climate response using a suite of Green&#39;s function experiments with solar radiation perturbations. By considering the column energy balance, a comprehensive linear response function (CLRF) forimportant climate variables and feedback quantities such as moist static energy, sea surface temperature, albedo, cloud optical depth,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22450v1-abstract-full').style.display = 'inline'; document.getElementById('2410.22450v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.22450v1-abstract-full" style="display: none;"> We devise a pattern-aware feedback framework for representing the forced climate response using a suite of Green&#39;s function experiments with solar radiation perturbations. By considering the column energy balance, a comprehensive linear response function (CLRF) forimportant climate variables and feedback quantities such as moist static energy, sea surface temperature, albedo, cloud optical depth, and lapse rate is learned from Green&#39;s function data. The learned CLRF delineates the effects of the energy diffusion in both the ocean and atmosphere and the pattern-aware feedbacks from the aforementioned radiatively active processes. The CLRF can then be decomposed into forcing-response mode pairs which are in turn used to construct a reduced-order model (ROM) describing the dominant dynamics of climate responses. These mode pairs capture nonlocal effects and teleconnections in the climate and thus, make the ROM apt for capturing regional features of climate change response. A key observation is that the CLRF captures the polar amplified response as the most excitable mode of the climate system and this mode is explainable in the data-learned pattern-aware feedback framework. The ROM can be used for predicting the response for a given forcing and for reconstructing the forcing from a given response; we demonstrate these capabilities for independent forcing pattern. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22450v1-abstract-full').style.display = 'none'; document.getElementById('2410.22450v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.20055">arXiv:2410.20055</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.20055">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> 3D Distance-color-coded Assessment of PCI Stent Apposition via Deep-learning-based Three-dimensional Multi-object Segmentation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Qin%2C+X">Xiaoyang Qin</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+H">Hao Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+S">Shuaichen Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Zeng%2C+X">Xinhao Zeng</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+K">Kaizhi Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+R">Renxiong Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yuming Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+J">Junqing Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yong Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+G">Gang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Ni%2C+G">Guangming Ni</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.20055v1-abstract-short" style="display: inline;"> Coronary artery disease poses a significant global health challenge, often necessitating percutaneous coronary intervention (PCI) with stent implantation. Assessing stent apposition holds pivotal importance in averting and identifying PCI complications that lead to in-stent restenosis. Here we proposed a novel three-dimensional (3D) distance-color-coded assessment (DccA)for PCI stent apposition vi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20055v1-abstract-full').style.display = 'inline'; document.getElementById('2410.20055v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.20055v1-abstract-full" style="display: none;"> Coronary artery disease poses a significant global health challenge, often necessitating percutaneous coronary intervention (PCI) with stent implantation. Assessing stent apposition holds pivotal importance in averting and identifying PCI complications that lead to in-stent restenosis. Here we proposed a novel three-dimensional (3D) distance-color-coded assessment (DccA)for PCI stent apposition via deep-learning-based 3D multi-object segmentation in intravascular optical coherence tomography (IV-OCT). Our proposed 3D DccA accurately segments 3D vessel lumens and stents in IV-OCT images, using a spatial matching network and dual-layer training with style transfer. It quantifies and maps stent-lumen distances into a 3D color space, facilitating 3D visual assessment of PCI stent apposition. Achieving over 95% segmentation precision, our proposed DccA enhances clinical evaluation of PCI stent deployment and supports personalized treatment planning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20055v1-abstract-full').style.display = 'none'; document.getElementById('2410.20055v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.18817">arXiv:2410.18817</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.18817">pdf</a>, <a href="https://arxiv.org/format/2410.18817">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Conceptual Design of the Muonium-to-Antimuonium Conversion Experiment (MACE) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bai%2C+A">Ai-Yu Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+H">Hanjie Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+C">Chang-Lin Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S">Siyuan Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+X">Xurong Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yu Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+W">Weibin Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+L">Ling-Yun Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+R">Rui-Rui Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+L">Li Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Z">Zihao Guo</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+Y">Yuan He</a>, <a href="/search/physics?searchtype=author&amp;query=Hou%2C+Z">Zhilong Hou</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yinyuan Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Jia%2C+H">Huan Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+H">Hao Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Jing%2C+H">Han-Tao Jing</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+X">Xiaoshen Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Hai-Bo Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jincheng Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Shulin Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+G">Guihao Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Miao%2C+H">Han Miao</a>, <a href="/search/physics?searchtype=author&amp;query=Ning%2C+Y">Yunsong Ning</a> , et al. (25 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.18817v1-abstract-short" style="display: inline;"> The spontaneous conversion of muonium to antimuonium is one of the interesting charged lepton flavor violation phenomena, offering a sensitive probe of potential new physics and serving as a tool to constrain the parameter space beyond the Standard Model. Utilizing a high-intensity muon beam, a Michel electron magnetic spectrometer and a positron transport solenoid together with a positron detecti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18817v1-abstract-full').style.display = 'inline'; document.getElementById('2410.18817v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.18817v1-abstract-full" style="display: none;"> The spontaneous conversion of muonium to antimuonium is one of the interesting charged lepton flavor violation phenomena, offering a sensitive probe of potential new physics and serving as a tool to constrain the parameter space beyond the Standard Model. Utilizing a high-intensity muon beam, a Michel electron magnetic spectrometer and a positron transport solenoid together with a positron detection system, MACE aims to discover or constrain this rare process at the conversion probability beyond the level of $10^{-13}$. This report provides an overview of the theoretical framework and detailed experimental design in the search for the muonium-to-antimuonium conversion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18817v1-abstract-full').style.display = 'none'; document.getElementById('2410.18817v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">115 pages, 59 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.17471">arXiv:2410.17471</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.17471">pdf</a>, <a href="https://arxiv.org/format/2410.17471">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> First Photon Machine Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+L">Lili Li</a>, <a href="/search/physics?searchtype=author&amp;query=Kumar%2C+S">Santosh Kumar</a>, <a href="/search/physics?searchtype=author&amp;query=Garikapati%2C+M">Malvika Garikapati</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yu-Ping Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.17471v1-abstract-short" style="display: inline;"> Quantum techniques are expected to revolutionize how information is acquired, exchanged, and processed. Yet it has been a challenge to realize and measure their values in practical settings. We present first photon machine learning as a new paradigm of neural networks and establish the first unambiguous advantage of quantum effects for artificial intelligence. By extending the physics behind the d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17471v1-abstract-full').style.display = 'inline'; document.getElementById('2410.17471v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.17471v1-abstract-full" style="display: none;"> Quantum techniques are expected to revolutionize how information is acquired, exchanged, and processed. Yet it has been a challenge to realize and measure their values in practical settings. We present first photon machine learning as a new paradigm of neural networks and establish the first unambiguous advantage of quantum effects for artificial intelligence. By extending the physics behind the double-slit experiment for quantum particles to a many-slit version, our experiment finds that a single photon can perform image recognition at around $30\%$ fidelity, which beats by a large margin the theoretical limit of what a similar classical system can possibly achieve (about 24\%). In this experiment, the entire neural network is implemented in sub-attojoule optics and the equivalent per-calculation energy cost is below $10^{-24}$ joule, highlighting the prospects of quantum optical machine learning for unparalleled advantages in speed, capacity, and energy efficiency. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17471v1-abstract-full').style.display = 'none'; document.getElementById('2410.17471v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.01361">arXiv:2410.01361</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.01361">pdf</a>, <a href="https://arxiv.org/format/2410.01361">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0216209">10.1063/5.0216209 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cascades and Kolmogorov&#39;s lognormal scaling in two-dimensional bacterial turbulence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yongxiang Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.01361v1-abstract-short" style="display: inline;"> Collective movements of bacteria exhibit a remarkable pattern of turbulence-like vortices, in which the Richardson cascade plays an important role. In this work, we examine the energy and enstrophy cascades and their associated lognormal statistics using experimental velocity field data. The coherent structure observed on a large scale is due to the presence of the inverse energy cascade; while th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01361v1-abstract-full').style.display = 'inline'; document.getElementById('2410.01361v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.01361v1-abstract-full" style="display: none;"> Collective movements of bacteria exhibit a remarkable pattern of turbulence-like vortices, in which the Richardson cascade plays an important role. In this work, we examine the energy and enstrophy cascades and their associated lognormal statistics using experimental velocity field data. The coherent structure observed on a large scale is due to the presence of the inverse energy cascade; while the kinetic energy is dissipated at all scales, since these active movements occur below the fluid viscosity scale. The forward enstrophy cascade occurs with injection at all scales and may be represented by other nonlinear interactions that are not captured by the existing experimental data. Furthermore, the lognormal statistics for both energy dissipation and enstrophy fields are verified in accordance with the Kolmogorov 1962 refined theory of turbulence. Their scaling exponents can be well described by the lognormal formula with intermittency parameters comparable with those of the three-dimensional hydrodynamic turbulence. The joint analysis of the multifractal measures of the energy dissipation rate and enstrophy follows an ellipse model from the lognormal statistics. Our results confirm the coexistence of the inverse energy cascade and the intermittency correction of the velocity scaling in this active fluid system. An inverse energy cascade diagram below the fluid viscosity is summarized to describe the observed two-dimensional bacterial turbulence. Our work provides an example of an active-flow model benchmark. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01361v1-abstract-full').style.display = 'none'; document.getElementById('2410.01361v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages with 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physics of Fluids, 36, 065149, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.13989">arXiv:2409.13989</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.13989">pdf</a>, <a href="https://arxiv.org/format/2409.13989">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> </div> </div> <p class="title is-5 mathjax"> ChemEval: A Comprehensive Multi-Level Chemical Evaluation for Large Language Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yuqing Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+R">Rongyang Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+X">Xuesong He</a>, <a href="/search/physics?searchtype=author&amp;query=Zhi%2C+X">Xuyang Zhi</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Hao Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xin Li</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+F">Feiyang Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D">Deguang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+H">Huadong Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yi Li</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+J">Jian Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zimu Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+S">Shijin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+G">Guoping Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+G">Guiquan Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Qi Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Lian%2C+D">Defu Lian</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+E">Enhong Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.13989v1-abstract-short" style="display: inline;"> There is a growing interest in the role that LLMs play in chemistry which lead to an increased focus on the development of LLMs benchmarks tailored to chemical domains to assess the performance of LLMs across a spectrum of chemical tasks varying in type and complexity. However, existing benchmarks in this domain fail to adequately meet the specific requirements of chemical research professionals.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13989v1-abstract-full').style.display = 'inline'; document.getElementById('2409.13989v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.13989v1-abstract-full" style="display: none;"> There is a growing interest in the role that LLMs play in chemistry which lead to an increased focus on the development of LLMs benchmarks tailored to chemical domains to assess the performance of LLMs across a spectrum of chemical tasks varying in type and complexity. However, existing benchmarks in this domain fail to adequately meet the specific requirements of chemical research professionals. To this end, we propose \textbf{\textit{ChemEval}}, which provides a comprehensive assessment of the capabilities of LLMs across a wide range of chemical domain tasks. Specifically, ChemEval identified 4 crucial progressive levels in chemistry, assessing 12 dimensions of LLMs across 42 distinct chemical tasks which are informed by open-source data and the data meticulously crafted by chemical experts, ensuring that the tasks have practical value and can effectively evaluate the capabilities of LLMs. In the experiment, we evaluate 12 mainstream LLMs on ChemEval under zero-shot and few-shot learning contexts, which included carefully selected demonstration examples and carefully designed prompts. The results show that while general LLMs like GPT-4 and Claude-3.5 excel in literature understanding and instruction following, they fall short in tasks demanding advanced chemical knowledge. Conversely, specialized LLMs exhibit enhanced chemical competencies, albeit with reduced literary comprehension. This suggests that LLMs have significant potential for enhancement when tackling sophisticated tasks in the field of chemistry. We believe our work will facilitate the exploration of their potential to drive progress in chemistry. Our benchmark and analysis will be available at {\color{blue} \url{https://github.com/USTC-StarTeam/ChemEval}}. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13989v1-abstract-full').style.display = 'none'; document.getElementById('2409.13989v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.13954">arXiv:2409.13954</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.13954">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> High-Speed Multifunctional Photonic Memory on a Foundry-Processed Photonic Platform </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kari%2C+S+R">Sadra Rahimi Kari</a>, <a href="/search/physics?searchtype=author&amp;query=Tamura%2C+M">Marcus Tamura</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Z">Zhimu Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yi-Siou Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+H">Hongyi Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Lian%2C+C">Chuanyu Lian</a>, <a href="/search/physics?searchtype=author&amp;query=Nobile%2C+N">Nicholas Nobile</a>, <a href="/search/physics?searchtype=author&amp;query=Erickson%2C+J">John Erickson</a>, <a href="/search/physics?searchtype=author&amp;query=Moridsadat%2C+M">Maryam Moridsadat</a>, <a href="/search/physics?searchtype=author&amp;query=Ocampo%2C+C+A+R">Carlos A. R铆os Ocampo</a>, <a href="/search/physics?searchtype=author&amp;query=Shastri%2C+B+J">Bhavin J Shastri</a>, <a href="/search/physics?searchtype=author&amp;query=Youngblood%2C+N">Nathan Youngblood</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.13954v1-abstract-short" style="display: inline;"> The integration of computing with memory is essential for distributed, massively parallel, and adaptive architectures such as neural networks in artificial intelligence (AI). Accelerating AI can be achieved through photonic computing, but it requires nonvolatile photonic memory capable of rapid updates during on-chip training sessions or when new information becomes available during deployment. Ph&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13954v1-abstract-full').style.display = 'inline'; document.getElementById('2409.13954v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.13954v1-abstract-full" style="display: none;"> The integration of computing with memory is essential for distributed, massively parallel, and adaptive architectures such as neural networks in artificial intelligence (AI). Accelerating AI can be achieved through photonic computing, but it requires nonvolatile photonic memory capable of rapid updates during on-chip training sessions or when new information becomes available during deployment. Phase-change materials (PCMs) are promising for providing compact, nonvolatile optical weighting; however, they face limitations in terms of bit precision, programming speed, and cycling endurance. Here, we propose a novel photonic memory cell that merges nonvolatile photonic weighting using PCMs with high-speed, volatile tuning enabled by an integrated PN junction. Our experiments demonstrate that the same PN modulator, fabricated via a foundry compatible process, can achieve dual functionality. It supports coarse programmability for setting initial optical weights and facilitates high-speed fine-tuning to adjust these weights dynamically. The result showcases a 400-fold increase in volatile tuning speed and a 10,000-fold enhancement in efficiency. This multifunctional photonic memory with volatile and nonvolatile capabilities could significantly advance the performance and versatility of photonic memory cells, providing robust solutions for dynamic computing environments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13954v1-abstract-full').style.display = 'none'; document.getElementById('2409.13954v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.11607">arXiv:2409.11607</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.11607">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Long-distance Liquid Transport Along Fibers Arising From Plateau-Rayleigh Instability </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yunqiao Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xianguo Li</a>, <a href="/search/physics?searchtype=author&amp;query=Tan%2C+Z">Zhongchao Tan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.11607v1-abstract-short" style="display: inline;"> Liquid mobility on fibers is critical to the effectiveness of fiber matrices in face masks, water harvesting and aerosol filtration, but is typically affected by Plateau-Rayleigh instability. However, the spontaneous flow within precursor films arising from this instability has been largely overlooked, particularly regarding its fundamental flow pattern and the potential for liquid mobilization. T&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.11607v1-abstract-full').style.display = 'inline'; document.getElementById('2409.11607v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.11607v1-abstract-full" style="display: none;"> Liquid mobility on fibers is critical to the effectiveness of fiber matrices in face masks, water harvesting and aerosol filtration, but is typically affected by Plateau-Rayleigh instability. However, the spontaneous flow within precursor films arising from this instability has been largely overlooked, particularly regarding its fundamental flow pattern and the potential for liquid mobilization. This study reveals the pivotal role of spontaneous flow on ribbon-like fibers in enhancing liquid transport. The non-axisymmetric curvature of these fibers induces long-wave instabilities, generating a sustained flow that enables film-wise transport over centimeter-scale distances at velocities of several millimeters per second. Using particle-image velocimetry, we uncover intricate hydrodynamics, including opposing flows within the film and organized vortices in the shear layer, driven by capillary effects at the liquid-vapor interfaces. Building on these insights, we demonstrate a network structure capable of achieving planar liquid transport over a 10 cm2 area. The ribbon-like fibers investigated exhibit the longest transport distances relative to biomimetic structures and aerodynamic propulsion. The unique transport dynamics and planar configuration of the fiber matrix offer substantial potential for advanced fiber-based liquid transport systems, with enhanced mass/heat transfer, laminar mixing and aerodynamic characteristics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.11607v1-abstract-full').style.display = 'none'; document.getElementById('2409.11607v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.07590">arXiv:2409.07590</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.07590">pdf</a>, <a href="https://arxiv.org/format/2409.07590">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Dynamical Systems">math.DS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> Deep Learning for predicting rate-induced tipping </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yu Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Bathiany%2C+S">Sebastian Bathiany</a>, <a href="/search/physics?searchtype=author&amp;query=Ashwin%2C+P">Peter Ashwin</a>, <a href="/search/physics?searchtype=author&amp;query=Boers%2C+N">Niklas Boers</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.07590v1-abstract-short" style="display: inline;"> Nonlinear dynamical systems exposed to changing forcing can exhibit catastrophic transitions between alternative and often markedly different states. The phenomenon of critical slowing down (CSD) can be used to anticipate such transitions if caused by a bifurcation and if the change in forcing is slow compared to the internal time scale of the system. However, in many real-world situations, these&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07590v1-abstract-full').style.display = 'inline'; document.getElementById('2409.07590v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.07590v1-abstract-full" style="display: none;"> Nonlinear dynamical systems exposed to changing forcing can exhibit catastrophic transitions between alternative and often markedly different states. The phenomenon of critical slowing down (CSD) can be used to anticipate such transitions if caused by a bifurcation and if the change in forcing is slow compared to the internal time scale of the system. However, in many real-world situations, these assumptions are not met and transitions can be triggered because the forcing exceeds a critical rate. For example, given the pace of anthropogenic climate change in comparison to the internal time scales of key Earth system components, such as the polar ice sheets or the Atlantic Meridional Overturning Circulation, such rate-induced tipping poses a severe risk. Moreover, depending on the realisation of random perturbations, some trajectories may transition across an unstable boundary, while others do not, even under the same forcing. CSD-based indicators generally cannot distinguish these cases of noise-induced tipping versus no tipping. This severely limits our ability to assess the risks of tipping, and to predict individual trajectories. To address this, we make a first attempt to develop a deep learning framework to predict transition probabilities of dynamical systems ahead of rate-induced transitions. Our method issues early warnings, as demonstrated on three prototypical systems for rate-induced tipping, subjected to time-varying equilibrium drift and noise perturbations. Exploiting explainable artificial intelligence methods, our framework captures the fingerprints necessary for early detection of rate-induced tipping, even in cases of long lead times. Our findings demonstrate the predictability of rate-induced and noise-induced tipping, advancing our ability to determine safe operating spaces for a broader class of dynamical systems than possible so far. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07590v1-abstract-full').style.display = 'none'; document.getElementById('2409.07590v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.07375">arXiv:2409.07375</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.07375">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> PRIME: Phase Reversed Interleaved Multi-Echo acquisition enables highly accelerated distortion-free diffusion MRI </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Jun%2C+Y">Yohan Jun</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Qiang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+T">Ting Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Cho%2C+J">Jaejin Cho</a>, <a href="/search/physics?searchtype=author&amp;query=Fujita%2C+S">Shohei Fujita</a>, <a href="/search/physics?searchtype=author&amp;query=Yong%2C+X">Xingwang Yong</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+S+Y">Susie Y Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Ning%2C+L">Lipeng Ning</a>, <a href="/search/physics?searchtype=author&amp;query=Yendiki%2C+A">Anastasia Yendiki</a>, <a href="/search/physics?searchtype=author&amp;query=Rathi%2C+Y">Yogesh Rathi</a>, <a href="/search/physics?searchtype=author&amp;query=Bilgic%2C+B">Berkin Bilgic</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.07375v1-abstract-short" style="display: inline;"> Purpose: To develop and evaluate a new pulse sequence for highly accelerated distortion-free diffusion MRI (dMRI) by inserting an additional echo without prolonging TR, when generalized slice dithered enhanced resolution (gSlider) radiofrequency encoding is used for volumetric acquisition. Methods: A phase-reversed interleaved multi-echo acquisition (PRIME) was developed for rapid, high-resolution&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07375v1-abstract-full').style.display = 'inline'; document.getElementById('2409.07375v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.07375v1-abstract-full" style="display: none;"> Purpose: To develop and evaluate a new pulse sequence for highly accelerated distortion-free diffusion MRI (dMRI) by inserting an additional echo without prolonging TR, when generalized slice dithered enhanced resolution (gSlider) radiofrequency encoding is used for volumetric acquisition. Methods: A phase-reversed interleaved multi-echo acquisition (PRIME) was developed for rapid, high-resolution, and distortion-free dMRI, which includes two echoes where the first echo is for target diffusion-weighted imaging (DWI) acquisition with high-resolution and the second echo is acquired with either 1) lower-resolution for high-fidelity field map estimation, or 2) matching resolution to enable efficient diffusion relaxometry acquisitions. The sequence was evaluated on in vivo data acquired from healthy volunteers on clinical and Connectome 2.0 scanners. Results: In vivo experiments demonstrated that 1) high in-plane acceleration (Rin-plane of 5-fold with 2D partial Fourier) was achieved using the high-fidelity field maps estimated from the second echo, which was made at a lower resolution/acceleration to increase its SNR while matching the effective echo spacing of the first readout, 2) high-resolution diffusion relaxometry parameters were estimated from dual-echo PRIME data using a white matter model of multi-TE spherical mean technique (MTE-SMT), and 3) high-fidelity mesoscale DWI at 550 um isotropic resolution could be obtained in vivo by capitalizing on the high-performance gradients of the Connectome 2.0 scanner. Conclusion: The proposed PRIME sequence enabled highly accelerated, high-resolution, and distortion-free dMRI using an additional echo without prolonging scan time when gSlider encoding is utilized. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07375v1-abstract-full').style.display = 'none'; document.getElementById('2409.07375v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.02815">arXiv:2409.02815</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.02815">pdf</a>, <a href="https://arxiv.org/format/2409.02815">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Development of the Multichannel Pulsed Ultrasonic Doppler Velocimeter for the measurement of liquid metal flow </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Pan%2C+D">Ding-Yi Pan</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yi-Fei Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Lyu%2C+Z">Ze Lyu</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+J">Juan-Cheng Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Ni%2C+M">Ming-Jiu Ni</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.02815v1-abstract-short" style="display: inline;"> In the present study, by adopting the advantage of ultrasonic techniques, we developed a Multichannel Pulsed Ultrasonic Doppler Velocimetry (MPUDV) to measure the 2D2C velocity fields of liquid metal flow. Due to the specially designed Ultrasonic host and post-processing scheme, the MPUDV system can reach a high spatiotemporal resolution of 50 Hz and 3 mm. The flow loop contains a cavity test sect&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02815v1-abstract-full').style.display = 'inline'; document.getElementById('2409.02815v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.02815v1-abstract-full" style="display: none;"> In the present study, by adopting the advantage of ultrasonic techniques, we developed a Multichannel Pulsed Ultrasonic Doppler Velocimetry (MPUDV) to measure the 2D2C velocity fields of liquid metal flow. Due to the specially designed Ultrasonic host and post-processing scheme, the MPUDV system can reach a high spatiotemporal resolution of 50 Hz and 3 mm. The flow loop contains a cavity test section to ensure a classical recirculating flow was built to validate the accuracy of MPUDV in velocity field measurement. In the initial phase of the study, water with tracer particles was selected as the working liquid to ensure the velocity field measurements by the well-developed Particle Image Velocimetry (PIV). A comparison of the data obtained from the PIV and MPUDV methods revealed less than 3 differences in the 2D2C velocity field between the two techniques during simultaneous measurements of the same flow field. This finding strongly demonstrates the reliability of the MPUDV method developed in this paper. Moreover, the ternary alloy GaInSn was selected as the working liquid in the flow loop to validate the efficacy of the MPUDV in measuring 2D-2C velocity fields. A series of tests were conducted in the cavity at varying Reynolds numbers, ranging from 9103 to 24123. The measurements demonstrated that the MPUDV could accurately measure the flow structures characterized by a central primary circulation eddy and two secondary eddies in the opaque liquid metal. Furthermore, it was found that the vortex center of the primary circulating eddy and the size of the secondary eddies undergo significant alterations with varying Reynolds numbers, indicating the influence of inertial force on the flow characteristics in the recirculating flow. It is therefore demonstrated that the current MPUDV methodology is applicable for measuring a 2D2C velocity field in opaque liquid metal flows. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02815v1-abstract-full').style.display = 'none'; document.getElementById('2409.02815v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.01508">arXiv:2409.01508</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.01508">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Manipulating Fano coupling in an opto-thermoelectric field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lin%2C+L">Linhan Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Lepeshov%2C+S">Sergey Lepeshov</a>, <a href="/search/physics?searchtype=author&amp;query=Krasnok%2C+A">Alex Krasnok</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yu Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+T">Taizhi Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+X">Xiaolei Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Korgel%2C+B+A">Brian A. Korgel</a>, <a href="/search/physics?searchtype=author&amp;query=Alu%2C+A">Andrea Alu</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+Y">Yuebing Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.01508v1-abstract-short" style="display: inline;"> Fano resonances in photonics arise from the coupling and interference between two resonant modes in structures with broken symmetry. They feature an uneven and narrow and tunable lineshape, and are ideally suited for optical spectroscopy. Many Fano resonance structures have been suggested in nanophotonics over the last ten years, but reconfigurability and tailored design remain challenging. Herein&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01508v1-abstract-full').style.display = 'inline'; document.getElementById('2409.01508v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.01508v1-abstract-full" style="display: none;"> Fano resonances in photonics arise from the coupling and interference between two resonant modes in structures with broken symmetry. They feature an uneven and narrow and tunable lineshape, and are ideally suited for optical spectroscopy. Many Fano resonance structures have been suggested in nanophotonics over the last ten years, but reconfigurability and tailored design remain challenging. Herein, we propose an all-optical pick-and-place approach aimed at assemble Fano metamolecules of various geometries and compositions in a reconfigurable manner. We study their coupling behavior by in-situ dark-field scattering spectroscopy. Driven by a light-directed opto-thermoelectric field, silicon nanoparticles with high quality-factor Mie resonances (discrete states) and low-loss BaTiO3 nanoparticles (continuum states) are assembled into all-dielectric heterodimers, where distinct Fano resonances are observed. The Fano parameter can be adjusted by changing the resonant frequency of the discrete states or the light polarization. We also show tunable coupling strength and multiple Fano resonances by altering the number of continuum states and discrete states in dielectric heterooligomers. Our work offers a general design rule for Fano resonance and an all-optical platform for controlling Fano coupling on demand. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01508v1-abstract-full').style.display = 'none'; document.getElementById('2409.01508v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.16663">arXiv:2408.16663</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.16663">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Multifaceted nature of defect tolerance in halide perovskites and emerging semiconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Mosquera-Lois%2C+I">Irea Mosquera-Lois</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yi-Teng Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Lohan%2C+H">Hugh Lohan</a>, <a href="/search/physics?searchtype=author&amp;query=Ye%2C+J">Junzhi Ye</a>, <a href="/search/physics?searchtype=author&amp;query=Walsh%2C+A">Aron Walsh</a>, <a href="/search/physics?searchtype=author&amp;query=Hoye%2C+R+L+Z">Robert L. Z. Hoye</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.16663v1-abstract-short" style="display: inline;"> Lead-halide perovskites (LHPs) have shot to prominence as efficient energy conversion materials that can be processed using cost-effective fabrication methods. A widely-quoted reason for their exceptional performance is their ability to tolerate defects, enabling long charge-carrier lifetimes despite high defect densities. Realizing defect tolerance in broader classes of materials would have a sub&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16663v1-abstract-full').style.display = 'inline'; document.getElementById('2408.16663v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.16663v1-abstract-full" style="display: none;"> Lead-halide perovskites (LHPs) have shot to prominence as efficient energy conversion materials that can be processed using cost-effective fabrication methods. A widely-quoted reason for their exceptional performance is their ability to tolerate defects, enabling long charge-carrier lifetimes despite high defect densities. Realizing defect tolerance in broader classes of materials would have a substantial impact on the semiconductor industry. Significant effort has been made over the past decade to unravel the underlying origins of defect tolerance to design stable alternatives to LHPs comprised of nontoxic elements. However, it has become clear that understanding defect tolerance in LHPs is far from straightforward. This review discusses the models proposed for defect tolerance in halide perovskites, evaluating the experimental and theoretical support for these models, as well as their limitations. We cover attempts to apply these models to identify materials beyond the lead-halide system that could also exhibit defect tolerance, and the successes and pitfalls encountered over the past decade. Finally, a discussion is made of some of the important missing pieces of information required for a deeper understanding and predictive models that enable the inverse design of defect tolerant semiconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16663v1-abstract-full').style.display = 'none'; document.getElementById('2408.16663v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">64 pages, 4 figures, 3 boxes, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.15818">arXiv:2408.15818</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.15818">pdf</a>, <a href="https://arxiv.org/format/2408.15818">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Communication-Free Robust Wireless Power Transfer with Constant Output Power and Stable Frequency </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zhuoyu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Lai%2C+J">Junan Lai</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yuangen Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Hao%2C+X">Xianglin Hao</a>, <a href="/search/physics?searchtype=author&amp;query=Yin%2C+K">Ke Yin</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+Z">Zhiqin Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+C">Chao Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+X">Xikui Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+M">Ming Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+T">Tianyu Dong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.15818v1-abstract-short" style="display: inline;"> A primary challenge in wireless power transfer (WPT) systems is to achieve efficient and stable power transmission without complex control strategies when load conditions change dynamically. Addressing this issue, we propose a third-order pseudo-Hermitian WPT system whose output characteristics exhibit a stable frequency and constant power. The frequency selection mechanism and energy efficiency o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15818v1-abstract-full').style.display = 'inline'; document.getElementById('2408.15818v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.15818v1-abstract-full" style="display: none;"> A primary challenge in wireless power transfer (WPT) systems is to achieve efficient and stable power transmission without complex control strategies when load conditions change dynamically. Addressing this issue, we propose a third-order pseudo-Hermitian WPT system whose output characteristics exhibit a stable frequency and constant power. The frequency selection mechanism and energy efficiency of the nonlinear WPT system based on pseudo-Hermitian under the coupling mode theory approximation are analyzed. Theoretical analysis indicates that under certain coupling coefficients and load conditions, the proposed system can achieve frequency adaptation in a stable frequency mode without the need to change the circuit frequency. When the load changes dynamically, the stability of the power output is maintained using a proportional integral (PI) control strategy that only collects the voltage and current at the transmitting end, eliminating the need for wireless communication circuits with feedback from the receiving side. Experimental results demonstrate that the proposed design scheme can achieve constant power transmission when load conditions change, maintaining stable and relatively high transmission efficiency. The proposed scheme exhibits benefits in practical applications since no communication is required. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15818v1-abstract-full').style.display = 'none'; document.getElementById('2408.15818v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.11838">arXiv:2408.11838</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.11838">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Cold plasma with zirconia nanoparticles for lung cancer via TGF-\b{eta} signaling pathway </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yueye Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+R">Rui Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+X">Xiao Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+F">Fei Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+Q">Qiujie Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Q">Qingnan Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+S">Shicong Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yufan Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+G">Guojun Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z">Zhitong Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.11838v1-abstract-short" style="display: inline;"> Despite advancements in lung cancer therapy, the prognosis for advanced or metastatic patients remains poor, yet many patients eventually develop resistance to standard treatments leading to disease progression and poor survival. Here, we described a combination of CAP and nanoparticles (ZrO2 NPs (zirconium oxide nanoparticle) and 3Y-TZP NPs (3% mol Yttria Tetragonal Zirconia Polycrystal Nanoparti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11838v1-abstract-full').style.display = 'inline'; document.getElementById('2408.11838v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.11838v1-abstract-full" style="display: none;"> Despite advancements in lung cancer therapy, the prognosis for advanced or metastatic patients remains poor, yet many patients eventually develop resistance to standard treatments leading to disease progression and poor survival. Here, we described a combination of CAP and nanoparticles (ZrO2 NPs (zirconium oxide nanoparticle) and 3Y-TZP NPs (3% mol Yttria Tetragonal Zirconia Polycrystal Nanoparticle)) for lung cancer therapy. We found that ZrO2 NPs caused obvious damage to the inside of the lung cancer cells. CAP and ZrO2 NPs mainly affected the mitochondria function, leading to a decrease in mitochondrial membrane potential and ATP levels, and causing endoplasmic reticulum stress and cell nucleus internal DNA damage, etc. CAP combined with ZrO2 NPs (CAP@ZrO2) induced lung cancer cell apoptosis by activating the TGF-\b{eta} pathway. CAP@ZrO2 offers a new therapy for the clinical treatment of lung cancer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11838v1-abstract-full').style.display = 'none'; document.getElementById('2408.11838v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">48 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.09149">arXiv:2408.09149</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.09149">pdf</a>, <a href="https://arxiv.org/format/2408.09149">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computers and Society">cs.CY</span> </div> </div> <p class="title is-5 mathjax"> Uncovering key predictors of high-growth firms via explainable machine learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yiwei Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+S">Shuqi Xu</a>, <a href="/search/physics?searchtype=author&amp;query=L%C3%BC%2C+L">Linyuan L眉</a>, <a href="/search/physics?searchtype=author&amp;query=Zaccaria%2C+A">Andrea Zaccaria</a>, <a href="/search/physics?searchtype=author&amp;query=Mariani%2C+M+S">Manuel Sebastian Mariani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.09149v1-abstract-short" style="display: inline;"> Predicting high-growth firms has attracted increasing interest from the technological forecasting and machine learning communities. Most existing studies primarily utilize financial data for these predictions. However, research suggests that a firm&#39;s research and development activities and its network position within technological ecosystems may also serve as valuable predictors. To unpack the rel&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09149v1-abstract-full').style.display = 'inline'; document.getElementById('2408.09149v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.09149v1-abstract-full" style="display: none;"> Predicting high-growth firms has attracted increasing interest from the technological forecasting and machine learning communities. Most existing studies primarily utilize financial data for these predictions. However, research suggests that a firm&#39;s research and development activities and its network position within technological ecosystems may also serve as valuable predictors. To unpack the relative importance of diverse features, this paper analyzes financial and patent data from 5,071 firms, extracting three categories of features: financial features, technological features of granted patents, and network-based features derived from firms&#39; connections to their primary technologies. By utilizing ensemble learning algorithms, we demonstrate that incorporating financial features with either technological, network-based features, or both, leads to more accurate high-growth firm predictions compared to using financial features alone. To delve deeper into the matter, we evaluate the predictive power of each individual feature within their respective categories using explainable artificial intelligence methods. Among non-financial features, the maximum economic value of a firm&#39;s granted patents and the number of patents related to a firms&#39; primary technologies stand out for their importance. Furthermore, firm size is positively associated with high-growth probability up to a certain threshold size, after which the association plateaus. Conversely, the maximum economic value of a firm&#39;s granted patents is positively linked to high-growth probability only after a threshold value is exceeded. These findings elucidate the complex predictive role of various features in forecasting high-growth firms and could inform technological resource allocation as well as investment decisions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09149v1-abstract-full').style.display = 'none'; document.getElementById('2408.09149v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.08124">arXiv:2408.08124</a> <span>&nbsp;&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Sub-terahertz field emission transistors with selfpackaged microcavities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yuxiang Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Ke%2C+Z">Ziqi Ke</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+W">Wenlong He</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.08124v4-abstract-short" style="display: inline;"> This paper presents the design of a vertical structure terahertz field emission transistor that utilizes a high-angle oblique deposition method to form a self-packaged vacuum microcavity. The simulation demonstrates that the self-packaged microcavity can effectively mitigate the potential impact of conventional field emission transistors on surrounding solid-state circuits, thereby improving the f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08124v4-abstract-full').style.display = 'inline'; document.getElementById('2408.08124v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.08124v4-abstract-full" style="display: none;"> This paper presents the design of a vertical structure terahertz field emission transistor that utilizes a high-angle oblique deposition method to form a self-packaged vacuum microcavity. The simulation demonstrates that the self-packaged microcavity can effectively mitigate the potential impact of conventional field emission transistors on surrounding solid-state circuits, thereby improving the frequency performance and stability of the device. The proposed design exhibits a cutoff frequency at the sub-terahertz level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08124v4-abstract-full').style.display = 'none'; document.getElementById('2408.08124v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Achieving reliable simulation of closed new domain formation processes using a single phase-field method is unconvincing and requires the use of multiple algorithms for parallel comparison with experiments</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.05472">arXiv:2408.05472</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.05472">pdf</a>, <a href="https://arxiv.org/format/2408.05472">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> FuXi Weather: A data-to-forecast machine learning system for global weather </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sun%2C+X">Xiuyu Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Zhong%2C+X">Xiaohui Zhong</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+X">Xiaoze Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yuanqing Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Hao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Neelin%2C+J+D">J. David Neelin</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+D">Deliang Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Feng%2C+J">Jie Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+W">Wei Han</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+L">Libo Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Qi%2C+Y">Yuan Qi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.05472v2-abstract-short" style="display: inline;"> Weather forecasting traditionally relies on numerical weather prediction (NWP) systems that integrates global observational systems, data assimilation (DA), and forecasting models. Despite steady improvements in forecast accuracy over recent decades, further advances are increasingly constrained by high computational costs, the underutilization of vast observational datasets, and the challenges of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05472v2-abstract-full').style.display = 'inline'; document.getElementById('2408.05472v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.05472v2-abstract-full" style="display: none;"> Weather forecasting traditionally relies on numerical weather prediction (NWP) systems that integrates global observational systems, data assimilation (DA), and forecasting models. Despite steady improvements in forecast accuracy over recent decades, further advances are increasingly constrained by high computational costs, the underutilization of vast observational datasets, and the challenges of obtaining finer resolution. These limitations, alongside the uneven distribution of observational networks, result in global disparities in forecast accuracy, leaving some regions vulnerable to extreme weather. Recent advances in machine learning present a promising alternative, providing more efficient and accurate forecasts using the same initial conditions as NWP. However, current machine learning models still depend on the initial conditions generated by NWP systems, which require extensive computational resources and expertise. Here we introduce FuXi Weather, a machine learning weather forecasting system that assimilates data from multiple satellites. Operating on a 6-hourly DA and forecast cycle, FuXi Weather generates reliable and accurate 10-day global weather forecasts at a spatial resolution of $0.25^\circ$. FuXi Weather is the first system to achieve all-grid, all-surface, all-channel, and all-sky DA and forecasting, extending skillful forecast lead times beyond those of the European Centre for Medium-range Weather Forecasts (ECMWF) high-resolution forecasts (HRES) while using significantly fewer observations. FuXi Weather consistently outperforms ECMWF HRES in observation-sparse regions, such as central Africa, demonstrating its potential to improve forecasts where observational infrastructure is limited. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05472v2-abstract-full').style.display = 'none'; document.getElementById('2408.05472v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">73 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.04988">arXiv:2408.04988</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.04988">pdf</a>, <a href="https://arxiv.org/format/2408.04988">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Molecular Networks">q-bio.MN</span> </div> </div> <p class="title is-5 mathjax"> Optimal Frequency in Second Messenger Signaling Quantifying cAMP Information Transmission in Bacteria </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xiong%2C+J">Jiarui Xiong</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+L">Liang Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+J">Jialun Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Ni%2C+L">Lei Ni</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+R">Rongrong Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+S">Shuai Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yajia Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+J">Jun Chu</a>, <a href="/search/physics?searchtype=author&amp;query=Jin%2C+F">Fan Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.04988v1-abstract-short" style="display: inline;"> Bacterial second messengers are crucial for transmitting environmental information to cellular responses. However, quantifying their information transmission capacity remains challenging. Here, we engineer an isolated cAMP signaling channel in Pseudomonas aeruginosa using targeted gene knockouts, optogenetics, and a fluorescent cAMP probe. This design allows precise optical control and real-time m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04988v1-abstract-full').style.display = 'inline'; document.getElementById('2408.04988v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.04988v1-abstract-full" style="display: none;"> Bacterial second messengers are crucial for transmitting environmental information to cellular responses. However, quantifying their information transmission capacity remains challenging. Here, we engineer an isolated cAMP signaling channel in Pseudomonas aeruginosa using targeted gene knockouts, optogenetics, and a fluorescent cAMP probe. This design allows precise optical control and real-time monitoring of cAMP dynamics. By integrating experimental data with information theory, we reveal an optimal frequency for light-mediated cAMP signaling that maximizes information transmission, reaching about 40 bits/h. This rate correlates strongly with cAMP degradation kinetics and employs a two-state encoding scheme. Our findings suggest a mechanism for fine-tuned regulation of multiple genes through temporal encoding of second messenger signals, providing new insights into bacterial adaptation strategies. This approach offers a framework for quantifying information processing in cellular signaling systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04988v1-abstract-full').style.display = 'none'; document.getElementById('2408.04988v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 92-05; 92-10 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> J.2.4 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00652">arXiv:2408.00652</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.00652">pdf</a>, <a href="https://arxiv.org/format/2408.00652">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Enhancing Multistep Prediction of Multivariate Market Indices Using Weighted Optical Reservoir Computing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+F">Fang Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Bu%2C+T">Ting Bu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yuping Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00652v1-abstract-short" style="display: inline;"> We propose and experimentally demonstrate an innovative stock index prediction method using a weighted optical reservoir computing system. We construct fundamental market data combined with macroeconomic data and technical indicators to capture the broader behavior of the stock market. Our approach shows significant higher performance than state-of-the-art methods such as linear regression, decisi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00652v1-abstract-full').style.display = 'inline'; document.getElementById('2408.00652v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00652v1-abstract-full" style="display: none;"> We propose and experimentally demonstrate an innovative stock index prediction method using a weighted optical reservoir computing system. We construct fundamental market data combined with macroeconomic data and technical indicators to capture the broader behavior of the stock market. Our approach shows significant higher performance than state-of-the-art methods such as linear regression, decision trees, and neural network architectures including long short-term memory. It captures well the market&#39;s high volatility and nonlinear behaviors despite limited data, demonstrating great potential for real-time, parallel, multi-dimensional data processing and predictions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00652v1-abstract-full').style.display = 'none'; document.getElementById('2408.00652v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.19764">arXiv:2407.19764</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.19764">pdf</a>, <a href="https://arxiv.org/format/2407.19764">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Utility of High-Order Scheme for Unsteady Flow Simulations: Comparison with Second-Order Tool </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+P">Peng Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yichen Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+Y">Yong Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Liao%2C+S">Shijun Liao</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+B">Bin Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.19764v1-abstract-short" style="display: inline;"> The objective of this work is to investigate the utility and effectiveness of the high-order scheme for simulating unsteady turbulent flows. To achieve it, the studies were conducted from two perspectives: (i) the ability of different numerical schemes for turbulence problems under the same set of meshes; and (ii) the accuracy and stability of higher-order schemes for solving turbulence statistics&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.19764v1-abstract-full').style.display = 'inline'; document.getElementById('2407.19764v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.19764v1-abstract-full" style="display: none;"> The objective of this work is to investigate the utility and effectiveness of the high-order scheme for simulating unsteady turbulent flows. To achieve it, the studies were conducted from two perspectives: (i) the ability of different numerical schemes for turbulence problems under the same set of meshes; and (ii) the accuracy and stability of higher-order schemes for solving turbulence statistics for different mesh types (hexahedral, tetrahedral, and polyhedral cells). The simulations employ the third-order scheme for spatial discretization of the governing equations, while a widely-used second-order solver, namely pisoFoam, was employed for comparison. This study considers the canonical cases of the Taylor-Green vortex (TGV) problem at Re=100, 1600 and flow past a sphere at Re=10000 to address the aforementioned two key issues. For the TGV case, the high-order model significantly improves the numerical accuracy with convergence rates and reduces the numerical dissipation of nearly 1/10 of pisoFoam. In the latter case, the high-order scheme with large-eddy simulation (LES) accurately predicts the vortex structures and the flow instability, regardless of grid type. However, pisoFoam is found to be sensitive to mesh types, which results in numerous non-physical structures in the flow field due to numerical noise rather than flow physics, particularly for tetrahedral cells. Furthermore, for the typical low- and high-order flow statistics, the numerical results predicted by the present model show better agreement with the reference data and have less dependence on the type of grids compared with the conventional scheme. In addition, the obtained energy spectrum by the high-order solver accurately captures the Kelvin-Helmholtz (K-H) instability and the vortex shedding frequency, while these important features are less pronounced by the traditional low-order model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.19764v1-abstract-full').style.display = 'none'; document.getElementById('2407.19764v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 17 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.16571">arXiv:2407.16571</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.16571">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Correlating Stroke Risk with Non-Invasive Tracing of Brain Blood Dynamic via a Portable Speckle Contrast Optical Spectroscopy Laser Device </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y+X">Yu Xi Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Mahler%2C+S">Simon Mahler</a>, <a href="/search/physics?searchtype=author&amp;query=Abedi%2C+A">Aidin Abedi</a>, <a href="/search/physics?searchtype=author&amp;query=Tyszka%2C+J+M">Julian Michael Tyszka</a>, <a href="/search/physics?searchtype=author&amp;query=Lo%2C+Y+T">Yu Tung Lo</a>, <a href="/search/physics?searchtype=author&amp;query=Lyden%2C+P+D">Patrick D. Lyden</a>, <a href="/search/physics?searchtype=author&amp;query=Russin%2C+J">Jonathan Russin</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+C">Charles Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+C">Changhuei Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.16571v1-abstract-short" style="display: inline;"> Stroke poses a significant global health threat, with millions affected annually, leading to substantial morbidity and mortality. Current stroke risk assessment for the general population relies on markers such as demographics, blood tests, and comorbidities. A minimally invasive, clinically scalable, and cost-effective way to directly measure cerebral blood flow presents an opportunity. This oppo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16571v1-abstract-full').style.display = 'inline'; document.getElementById('2407.16571v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.16571v1-abstract-full" style="display: none;"> Stroke poses a significant global health threat, with millions affected annually, leading to substantial morbidity and mortality. Current stroke risk assessment for the general population relies on markers such as demographics, blood tests, and comorbidities. A minimally invasive, clinically scalable, and cost-effective way to directly measure cerebral blood flow presents an opportunity. This opportunity has potential to positively impact effective stroke risk assessment prevention and intervention. Physiological changes in the cerebral vascular system, particularly in response to carbon dioxide level changes and oxygen deprivation, such as during breath-holding, can offer insights into stroke risk assessment. However, existing methods for measuring cerebral perfusion reserve, such as blood flow and blood volume changes, are limited by either invasiveness or impracticality. Here, we propose a transcranial approach using speckle contrast optical spectroscopy (SCOS) to non-invasively monitor regional changes in brain blood flow and volume during breath-holding. Our study, conducted on 50 individuals classified into two groups (low-risk and higher-risk for stroke), shows significant differences in blood dynamic changes during breath-holding between the two groups, providing physiological insights for stroke risk assessment using a non-invasive quantification paradigm. Given its cost-effectiveness, scalability, portability, and simplicity, this laser-centric tool has significant potential in enhancing the pre-screening of stroke and mitigating strokes in the general population through early diagnosis and intervention. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16571v1-abstract-full').style.display = 'none'; document.getElementById('2407.16571v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.16532">arXiv:2407.16532</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.16532">pdf</a>, <a href="https://arxiv.org/format/2407.16532">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Propulsion Contribution from Individual Filament in Flagellar Bundle </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+J">Jin Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Qiao%2C+Y">Yateng Qiao</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+L">Lingchun Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Zeng%2C+Y">Yan Zeng</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+Y">Yibo Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Bian%2C+H">Hongyi Bian</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yidi Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Ye%2C+Y">Yuxin Ye</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yingyue Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Wei%2C+R+H+C">Russell Hii Ching Wei</a>, <a href="/search/physics?searchtype=author&amp;query=Teng%2C+Y">Yinuo Teng</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Y">Yunlong Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+G">Gaojin Li</a>, <a href="/search/physics?searchtype=author&amp;query=Qu%2C+Z">Zijie Qu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.16532v1-abstract-short" style="display: inline;"> Flagellated microorganisms overcome the low-Reynolds-number time reversibility by rotating helical flagella. For peritrichous bacteria, such as Escherichia coli, the randomly distributed flagellar filaments align along the same direction to form a bundle, facilitating complex locomotive strategies. To understand the process of flagella bundling, especially the propulsion force, we develop a multi-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16532v1-abstract-full').style.display = 'inline'; document.getElementById('2407.16532v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.16532v1-abstract-full" style="display: none;"> Flagellated microorganisms overcome the low-Reynolds-number time reversibility by rotating helical flagella. For peritrichous bacteria, such as Escherichia coli, the randomly distributed flagellar filaments align along the same direction to form a bundle, facilitating complex locomotive strategies. To understand the process of flagella bundling, especially the propulsion force, we develop a multi-functional macroscopic experimental system and employ advanced numerical simulations for verification. Flagella arrangements and phase differences between helices are investigated, revealing the variation in propulsion contribution from the individual helix. Numerically, we build a time-dependent model to match the bundling process and study the influence of hydrodynamic interactions. Surprisingly, it is found that the total propulsion generated by a bundle of two filaments is constant at various phase differences between the helices. However, the difference between the propulsion from each helix is significantly affected by the phase difference, and only one of the helices is responsible for the total propulsion at a phase difference equals to pi. Through our experimental and computational results, we provide a new model considering the propulsion contribution of each filament to better understand microbial locomotion mechanisms, especially on the wobbling behavior of the cell. Our work also sheds light on the design and control of artificial microswimmers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16532v1-abstract-full').style.display = 'none'; document.getElementById('2407.16532v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.13099">arXiv:2407.13099</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.13099">pdf</a>, <a href="https://arxiv.org/format/2407.13099">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Asymmetric Hard X-ray Radiation of Two Ribbons in a Thermal-Dominated C-Class Flare </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shi%2C+G">Guanglu Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Feng%2C+L">Li Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J">Jun Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Ying%2C+B">Beili Ying</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+S">Shuting Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Q">Qiao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Hui Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Ying Li</a>, <a href="/search/physics?searchtype=author&amp;query=Ji%2C+K">Kaifan Ji</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yu Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Gan%2C+W">Weiqun Gan</a>, <a href="/search/physics?searchtype=author&amp;query=team%2C+t+L">the LST team</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.13099v1-abstract-short" style="display: inline;"> The asymmetry in hard X-ray (HXR) emission at the footpoints (FPs) of flare loops is a ubiquitous feature closely associated with nonthermal electron transport. We analyze the asymmetric HXR radiation at two flare ribbons which is thermal-dominated during a long-duration C4.4 flare that occurred on March 20, 2023, combining multi-view and multi-waveband observations from the ASO-S, SolO, and SDO s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13099v1-abstract-full').style.display = 'inline'; document.getElementById('2407.13099v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.13099v1-abstract-full" style="display: none;"> The asymmetry in hard X-ray (HXR) emission at the footpoints (FPs) of flare loops is a ubiquitous feature closely associated with nonthermal electron transport. We analyze the asymmetric HXR radiation at two flare ribbons which is thermal-dominated during a long-duration C4.4 flare that occurred on March 20, 2023, combining multi-view and multi-waveband observations from the ASO-S, SolO, and SDO spacecraft. We find that the H I Ly$伪$ emission captures similar features to the He II $位$304 in both light curve and spatio-temporal evolution of a pair of conjugate flare ribbons. The spectra and imaging analysis of the HXR emission, detected by STIX in 4-18 keV, reveal that the two-ribbon flare radiation is thermal dominated by over 95%, and the radiation source mainly concentrates on the northern ribbon, leading to an asymmetric distribution. To understand the underlying reasons for the HXR radiation asymmetry, we extrapolate the magnetic field within the active region using the NLFFF model. For 78% of the magnetic field lines starting from the northern flare ribbon, their lengths from the loop-tops (LTs) to the northern FPs are shorter than those to the southern FPs. For 62% of the field lines, their magnetic field strengths at the southern FPs exceed those at the northern FPs. In addition, considering the larger density, $\approx1.0\times10^{10}$ cm$^{-3}$, of the low-lying flare loops (&lt; 32 Mm), we find the shorter path from the LT to the northern FP enables more electrons to reach the northern FP more easily after collisions with the surrounding plasma. Therefore, in this thermal-dominated C-class flare, the asymmetric location of the flare LT relative to its two FPs plays a dominant role in the HXR radiation asymmetry, while such asymmetry is also slightly influenced by the magnetic mirror effect resulting in larger HXR radiation at the FPs with weaker magnetic strength. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13099v1-abstract-full').style.display = 'none'; document.getElementById('2407.13099v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 7 figures, accepted by Solar Physics. Comments welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.08559">arXiv:2407.08559</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.08559">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Study of a Novel Capacitive Pressure Sensor Using Spiral Comb Electrodes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+W">Wenjie Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Q">Qi Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Qi Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yiqun Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+L">Liang He</a>, <a href="/search/physics?searchtype=author&amp;query=Xia%2C+Y">Yuanlin Xia</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhuqing Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yubo Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J">Jianfeng Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Xia%2C+C">Cao Xia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.08559v1-abstract-short" style="display: inline;"> For traditional capacitive pressure sensors, high nonlinearity and poor sensitivity greatly limited their sensing applications. Hence, an innovative design of capacitors based on spiral comb electrodes is proposed for high-sensitivity pressure detection in this work. Compared to traditional capacitive pressure sensors with straight plate electrodes, the proposed sensor with the spiral electrodes i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08559v1-abstract-full').style.display = 'inline'; document.getElementById('2407.08559v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.08559v1-abstract-full" style="display: none;"> For traditional capacitive pressure sensors, high nonlinearity and poor sensitivity greatly limited their sensing applications. Hence, an innovative design of capacitors based on spiral comb electrodes is proposed for high-sensitivity pressure detection in this work. Compared to traditional capacitive pressure sensors with straight plate electrodes, the proposed sensor with the spiral electrodes increases the overlap areas of electrodes sufficiently, the pressure sensitivity can thus be greatly improved. Moreover, the capacitance variation of the proposed sensor is dominated by the change of the overlap area of the electrodes rather than the electrode&#39;s distance, the linearity can also thus be improved to higher than 0.99. Theoretical analysis and COMSOL-based finite element simulation have been implemented for principle verification and performance optimization. Simulation results show that the proposed design has a mechanical sensitivity of 1.5x10-4 m/Pa, capacitive sensitivity of 1.10 aF/Pa, and nonlinear error of 3.63%, respectively, at the pressure range from 0 to 30 kPa. An equivalent experiment has been further carried out for verification. Experimental results also show that both the sensitivity and linearity of capacitive pressure sensors with spiral electrodes are higher than those with straight electrodes. This work not only provides a new avenue for capacitor design, but also can be applied to high-sensitivity pressure detection. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08559v1-abstract-full').style.display = 'none'; document.getElementById('2407.08559v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> - </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.07651">arXiv:2407.07651</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.07651">pdf</a>, <a href="https://arxiv.org/format/2407.07651">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Study of the decay and production properties of $D_{s1}(2536)$ and $D_{s2}^*(2573)$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/physics?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/physics?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/physics?searchtype=author&amp;query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/physics?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/physics?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/physics?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/physics?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/physics?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/physics?searchtype=author&amp;query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/physics?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/physics?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/physics?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/physics?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/physics?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/physics?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/physics?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/physics?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/physics?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a>, <a href="/search/physics?searchtype=author&amp;query=Brueggemann%2C+A">A. Brueggemann</a> , et al. (645 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.07651v1-abstract-short" style="display: inline;"> The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of $D_{s1}(2536)^- \rightarrow \bar{D}^{*0}K^-$ and $D_{s2}^*(2573)^- \rightarrow \bar{D}^0K^-$ are measured for the first time to be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07651v1-abstract-full').style.display = 'inline'; document.getElementById('2407.07651v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.07651v1-abstract-full" style="display: none;"> The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of $D_{s1}(2536)^- \rightarrow \bar{D}^{*0}K^-$ and $D_{s2}^*(2573)^- \rightarrow \bar{D}^0K^-$ are measured for the first time to be $(35.9\pm 4.8\pm 3.5)\%$ and $(37.4\pm 3.1\pm 4.6)\%$, respectively. The measurements are in tension with predictions based on the assumption that the $D_{s1}(2536)$ and $D_{s2}^*(2573)$ are dominated by a bare $c\bar{s}$ component. The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ cross sections are measured, and a resonant structure at around 4.6~GeV with a width of 50~MeV is observed for the first time with a statistical significance of $15蟽$ in the $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ process. It could be the $Y(4626)$ found by the Belle collaboration in the $D_s^+D_{s1}(2536)^{-}$ final state, since they have similar masses and widths. There is also evidence for a structure at around 4.75~GeV in both processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07651v1-abstract-full').style.display = 'none'; document.getElementById('2407.07651v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.07075">arXiv:2407.07075</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.07075">pdf</a>, <a href="https://arxiv.org/format/2407.07075">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.hedp.2024.101132">10.1016/j.hedp.2024.101132 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Competition of magnetic reconnections in self-generated and external magnetic fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sakai%2C+K">K. Sakai</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+T+Y">T. Y. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Khasanah%2C+N">N. Khasanah</a>, <a href="/search/physics?searchtype=author&amp;query=Bolouki%2C+N">N. Bolouki</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+H+H">H. H. Chu</a>, <a href="/search/physics?searchtype=author&amp;query=Moritaka%2C+T">T. Moritaka</a>, <a href="/search/physics?searchtype=author&amp;query=Sakawa%2C+Y">Y. Sakawa</a>, <a href="/search/physics?searchtype=author&amp;query=Sano%2C+T">T. Sano</a>, <a href="/search/physics?searchtype=author&amp;query=Tomita%2C+K">K. Tomita</a>, <a href="/search/physics?searchtype=author&amp;query=Matsukiyo%2C+S">S. Matsukiyo</a>, <a href="/search/physics?searchtype=author&amp;query=Morita%2C+T">T. Morita</a>, <a href="/search/physics?searchtype=author&amp;query=Takabe%2C+H">H. Takabe</a>, <a href="/search/physics?searchtype=author&amp;query=Yamazaki%2C+R">R. Yamazaki</a>, <a href="/search/physics?searchtype=author&amp;query=Yasuhara%2C+R">R. Yasuhara</a>, <a href="/search/physics?searchtype=author&amp;query=Habara%2C+H">H. Habara</a>, <a href="/search/physics?searchtype=author&amp;query=Kuramitsu%2C+Y">Y. Kuramitsu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.07075v1-abstract-short" style="display: inline;"> We investigate the competition of magnetic reconnections in self-generated and external magnetic fields in laser-produced plasmas. The temporal evolution of plasma structures measured with self-emission imaging shows the vertical expansions and horizontal separation of plasma, which can be signatures of reconnection outflows in self-generated and external magnetic fields, respectively. Because the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07075v1-abstract-full').style.display = 'inline'; document.getElementById('2407.07075v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.07075v1-abstract-full" style="display: none;"> We investigate the competition of magnetic reconnections in self-generated and external magnetic fields in laser-produced plasmas. The temporal evolution of plasma structures measured with self-emission imaging shows the vertical expansions and horizontal separation of plasma, which can be signatures of reconnection outflows in self-generated and external magnetic fields, respectively. Because the outflows in self-generated magnetic fields are not clear in the presence of the external magnetic field, the external magnetic field can suppress the magnetic reconnection in self-generated magnetic fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07075v1-abstract-full').style.display = 'none'; document.getElementById('2407.07075v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 7 figures, High Energy Density Physics, in press</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> High Energy Density Phys. 52, 101132 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.04995">arXiv:2407.04995</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.04995">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> A Broadband Algorithm for Adiabatic Mode Evolution and its Application on Polarization Splitter-Rotator on LNOI Platform </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+G">Geng Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+C">Chijun Li</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xuanhao Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Pan%2C+A">An Pan</a>, <a href="/search/physics?searchtype=author&amp;query=Wei%2C+J">Junjie Wei</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yuankang Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+S">Siyu Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+Y">Yiqi Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+X">Xiangyu Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Zeng%2C+C">Cheng Zeng</a>, <a href="/search/physics?searchtype=author&amp;query=Xia%2C+J">Jinsong Xia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.04995v2-abstract-short" style="display: inline;"> Adiabatic mode evolution waveguides (AMEWs) are widely utilized in integrated photonics, including tapered waveguides, edge couplers, mode converters, splitters, etc. An analytical theory and a novel AMEW design algorithm are developed to create shortcuts to adiabaticity (STA). This new algorithm is effective in shortening the total length of the AMEW while maintaining the desired wavelength range&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.04995v2-abstract-full').style.display = 'inline'; document.getElementById('2407.04995v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.04995v2-abstract-full" style="display: none;"> Adiabatic mode evolution waveguides (AMEWs) are widely utilized in integrated photonics, including tapered waveguides, edge couplers, mode converters, splitters, etc. An analytical theory and a novel AMEW design algorithm are developed to create shortcuts to adiabaticity (STA). This new algorithm is effective in shortening the total length of the AMEW while maintaining the desired wavelength range. Moreover, this analytical algorithm requires much fewer computing resources than traditional numerical algorithms. With the new algorithm, we demonstrate a broadband and highly efficient polarization splitter-rotator (PSR) on a lithium-niobate-on-insulator (LNOI) platform with an LN thickness of 500 nm. According to our simulation, the length of the PSR is shortened by 3.5 times compared to the linear design. The fabricated PSR, with a total length of 2 mm, exhibits an insertion loss (IL) of 0.8 dB and a polarization extinction ratio (ER) of 12.2 dB over a wavelength range exceeding 76 nm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.04995v2-abstract-full').style.display = 'none'; document.getElementById('2407.04995v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 6 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.04713">arXiv:2407.04713</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.04713">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> 16-channel Photonic Solver for Optimization Problems on a Silicon Chip </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ouyang%2C+J">Jiayi Ouyang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Shengping Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Z">Ziyue Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+W">Wei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Feng%2C+X">Xue Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yongzhuo Li</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yidong Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.04713v1-abstract-short" style="display: inline;"> In this article, we proposed a programmable 16-channel photonic solver for quadratic unconstrained binary optimization (QUBO) problems. The solver is based on a hybrid optoelectronic scheme including a photonic chip and the corresponding electronic driving circuit. The photonic chip is fabricated on silicon on insulator (SOI) substrate and integrates high-speed electro-optic modulators, thermo-opt&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.04713v1-abstract-full').style.display = 'inline'; document.getElementById('2407.04713v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.04713v1-abstract-full" style="display: none;"> In this article, we proposed a programmable 16-channel photonic solver for quadratic unconstrained binary optimization (QUBO) problems. The solver is based on a hybrid optoelectronic scheme including a photonic chip and the corresponding electronic driving circuit. The photonic chip is fabricated on silicon on insulator (SOI) substrate and integrates high-speed electro-optic modulators, thermo-optic phase shifters and photodetectors to conduct the 16-dimensional optical vector-matrix multiplication (OVMM). Due to the parallel and low latency propagation of lightwave, the calculation of the QUBO cost function can be accelerated. Besides, the electronic processor is employed to run the heuristic algorithm to search the optimal solution. In the experiment, two 16-dimensional randomly generated QUBO problems are solved with high successful probabilities. To our knowledge, it is the largest scale of programmable and on-chip photonic solver ever reported. Moreover, the computing speed of the OVMM on photonic chip is ~2 TFLOP/s. It shows the potential of fast solving such optimization problems with integrated photonic systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.04713v1-abstract-full').style.display = 'none'; document.getElementById('2407.04713v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.04512">arXiv:2407.04512</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.04512">pdf</a>, <a href="https://arxiv.org/format/2407.04512">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Entropy Computing: A Paradigm for Optimization in an Open Quantum System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Nguyen%2C+L">Lac Nguyen</a>, <a href="/search/physics?searchtype=author&amp;query=Miri%2C+M">Mohammad-Ali Miri</a>, <a href="/search/physics?searchtype=author&amp;query=Rupert%2C+R+J">R. Joseph Rupert</a>, <a href="/search/physics?searchtype=author&amp;query=Dyk%2C+W">Wesley Dyk</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+S">Sam Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Vrahoretis%2C+N">Nick Vrahoretis</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+I">Irwin Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Begliarbekov%2C+M">Milan Begliarbekov</a>, <a href="/search/physics?searchtype=author&amp;query=Chancellor%2C+N">Nicholas Chancellor</a>, <a href="/search/physics?searchtype=author&amp;query=Chukwu%2C+U">Uchenna Chukwu</a>, <a href="/search/physics?searchtype=author&amp;query=Mahamuni%2C+P">Pranav Mahamuni</a>, <a href="/search/physics?searchtype=author&amp;query=Martinez-Delgado%2C+C">Cesar Martinez-Delgado</a>, <a href="/search/physics?searchtype=author&amp;query=Haycraft%2C+D">David Haycraft</a>, <a href="/search/physics?searchtype=author&amp;query=Spear%2C+C">Carrie Spear</a>, <a href="/search/physics?searchtype=author&amp;query=Campanelli%2C+M">Mark Campanelli</a>, <a href="/search/physics?searchtype=author&amp;query=Huffman%2C+R">Russell Huffman</a>, <a href="/search/physics?searchtype=author&amp;query=Sua%2C+Y+M">Yong Meng Sua</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yuping Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.04512v1-abstract-short" style="display: inline;"> Modern quantum technologies using matter are designed as closed quantum systems to isolate them from interactions with the environment. This design paradigm greatly constrains the scalability and limits practical implementation of such systems. Here, we introduce a novel computing paradigm, entropy computing, that works by conditioning a quantum reservoir thereby enabling the stabilization of a gr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.04512v1-abstract-full').style.display = 'inline'; document.getElementById('2407.04512v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.04512v1-abstract-full" style="display: none;"> Modern quantum technologies using matter are designed as closed quantum systems to isolate them from interactions with the environment. This design paradigm greatly constrains the scalability and limits practical implementation of such systems. Here, we introduce a novel computing paradigm, entropy computing, that works by conditioning a quantum reservoir thereby enabling the stabilization of a ground state. In this work, we experimentally demonstrate the feasibility of entropy computing by building a hybrid photonic-electronic computer that uses measurement-based feedback to solve non-convex optimization problems. The system functions by using temporal photonic modes to create qudits in order to encode probability amplitudes in the time-frequency degree of freedom of a photon. This scheme, when coupled with electronic interconnects, allows us to encode an arbitrary Hamiltonian into the system and solve non-convex continuous variables and combinatorial optimization problems. We show that the proposed entropy computing paradigm can act as a scalable and versatile platform for tackling a large range of NP-hard optimization problems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.04512v1-abstract-full').style.display = 'none'; document.getElementById('2407.04512v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.03727">arXiv:2407.03727</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.03727">pdf</a>, <a href="https://arxiv.org/ps/2407.03727">ps</a>, <a href="https://arxiv.org/format/2407.03727">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6587/ad97dd">10.1088/1361-6587/ad97dd <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct prediction of saturated neoclassical tearing modes in slab using an equilibrium approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Balkovic%2C+E">Erol Balkovic</a>, <a href="/search/physics?searchtype=author&amp;query=Loizu%2C+J">Joaquim Loizu</a>, <a href="/search/physics?searchtype=author&amp;query=Graves%2C+J+P">Jonathan P. Graves</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yi-Min Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Smiet%2C+C+B">Christopher B. Smiet</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.03727v1-abstract-short" style="display: inline;"> We demonstrate for the first time that the nonlinear saturation of neoclassical tearing modes (NTMs) can be found directly using a variational principle based on Taylor relaxation, without needing to simulate the intermediate, resistivity-dependent dynamics. As in previous investigations of classical tearing mode saturation (Loizu et al. 2020; Loizu &amp; Bonfiglio 2023), we make use of SPEC (Hudson e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03727v1-abstract-full').style.display = 'inline'; document.getElementById('2407.03727v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.03727v1-abstract-full" style="display: none;"> We demonstrate for the first time that the nonlinear saturation of neoclassical tearing modes (NTMs) can be found directly using a variational principle based on Taylor relaxation, without needing to simulate the intermediate, resistivity-dependent dynamics. As in previous investigations of classical tearing mode saturation (Loizu et al. 2020; Loizu &amp; Bonfiglio 2023), we make use of SPEC (Hudson et al. 2012), an equilibrium solver based on the variational principle of the Multi-Region relaxed MHD, featuring stepped pressure profiles and arbitrary magnetic topology. We work in slab geometry and employ a simple bootstrap current model $J_\textrm{bs} = C \nabla p$ to study the bootstrap-driven tearing modes, scanning over the asymptotic matching parameter $螖&#39;$ and the bootstrap current strength. Saturated island widths produced by SPEC agree well with the predictions of an initial value resistive MHD code (Huang &amp; Bhattacharjee 2016) while being orders of magnitude faster to calculate. Additionally, we observe good agreement with a simple analytical Modified Rutherford Equation, without requiring any fitting coefficients. The match is obtained for both linearly unstable classical tearing modes in the presence of bootstrap current, and neoclassical tearing modes, which are linearly stable but nonlinear-unstable due to the effects of the bootstrap current <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03727v1-abstract-full').style.display = 'none'; document.getElementById('2407.03727v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to PPCF</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.02227">arXiv:2407.02227</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.02227">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Interplay between MRI-based axon diameter and myelination estimates in macaque and human brain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gong%2C+T">Ting Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Maffei%2C+C">Chiara Maffei</a>, <a href="/search/physics?searchtype=author&amp;query=Dann%2C+E">Evan Dann</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+H">Hong-Hsi Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+H">Hansol Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Augustinack%2C+J+C">Jean C. Augustinack</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+S+Y">Susie Y. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Haber%2C+S+N">Suzanne N. Haber</a>, <a href="/search/physics?searchtype=author&amp;query=Yendiki%2C+A">Anastasia Yendiki</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.02227v1-abstract-short" style="display: inline;"> Axon diameter and myelin thickness are closely related microstructural tissue properties that affect the conduction velocity of action potentials in the nervous system. Imaging them non-invasively with MRI-based methods is thus valuable for studying brain microstructure and function. However, the relationship between MRI-based axon diameter and myelination measures has not been investigated across&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02227v1-abstract-full').style.display = 'inline'; document.getElementById('2407.02227v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.02227v1-abstract-full" style="display: none;"> Axon diameter and myelin thickness are closely related microstructural tissue properties that affect the conduction velocity of action potentials in the nervous system. Imaging them non-invasively with MRI-based methods is thus valuable for studying brain microstructure and function. However, the relationship between MRI-based axon diameter and myelination measures has not been investigated across the brain, mainly due to methodological limitations in estimating axon diameters. In recent years, studies using ultra-high gradient strength diffusion MRI (dMRI) have demonstrated improved estimation of axon diameter across white-matter (WM) tracts in the human brain, making such investigations feasible. In this study, we aim to investigate relationships between tissue microstructure properties with MRI-based methods and compare the imaging findings to histological evidence from the literature. We collected dMRI with ultra-high gradient strength and multi-echo spin-echo MRI on ex vivo macaque and human brain samples on a preclinical scanner. From these data, we estimated axon diameter, intra-axonal signal fraction, myelin water fraction (MWF) and aggregate g-ratio and investigated their correlations. We found that the microstructural imaging parameters exhibited consistent patterns across WM tracts and species. Overall, the findings suggest that MRI-based axon geometry and myelination measures can provide complementary information about fiber morphology, and the relationships between these measures agree with prior histological evidence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02227v1-abstract-full').style.display = 'none'; document.getElementById('2407.02227v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 8 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Huang%2C+Y&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Huang%2C+Y&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Huang%2C+Y&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Huang%2C+Y&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Huang%2C+Y&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Huang%2C+Y&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10