CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;16 of 16 results for author: <span class="mathjax">Yoon, C</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Yoon%2C+C">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Yoon, C"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Yoon%2C+C&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Yoon, C"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.17555">arXiv:2502.17555</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.17555">pdf</a>, <a href="https://arxiv.org/format/2502.17555">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Quarter Metal Superconductivity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yoon%2C+C">Chiho Yoon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+T">Tianyi Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barlas%2C+Y">Yafis Barlas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+F">Fan Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.17555v1-abstract-short" style="display: inline;"> We investigate the recently discovered multiple superconducting states in rhombohedral graphene quarter metal. We demonstrate that one of these states features a single-spin, single-valley, single-band, single-Fermi-pocket parent state and is most likely a chiral topological pair-density wave, marked by a threefold symmetry that may not be spontaneously broken, unpaired Majorana zero modes at edge&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.17555v1-abstract-full').style.display = 'inline'; document.getElementById('2502.17555v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.17555v1-abstract-full" style="display: none;"> We investigate the recently discovered multiple superconducting states in rhombohedral graphene quarter metal. We demonstrate that one of these states features a single-spin, single-valley, single-band, single-Fermi-pocket parent state and is most likely a chiral topological pair-density wave, marked by a threefold symmetry that may not be spontaneously broken, unpaired Majorana zero modes at edges, vortices, and dislocations, and an anomalous intrinsic superconducting diode effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.17555v1-abstract-full').style.display = 'none'; document.getElementById('2502.17555v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7+2 pages, 3+3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.09906">arXiv:2408.09906</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.09906">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Impact of Spin-Orbit Coupling on Superconductivity in Rhombohedral Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jixiang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+X">Xiaoyan Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+S">Shenyong Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yoon%2C+C">Chiho Yoon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Z">Zhengguang Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kakani%2C+V">Vivek Kakani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+T">Tonghang Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seo%2C+J">Junseok Seo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+L">Lihan Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+F">Fan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ju%2C+L">Long Ju</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.09906v2-abstract-short" style="display: inline;"> Spin-orbit coupling (SOC) has played an important role in many topological and correlated electron materials. In graphene-based systems, SOC induced by transition metal dichalcogenide (TMD) at proximity was shown to drive topological states and strengthen superconductivity. However, in rhombohedral multilayer graphene, a robust platform for electron correlation and topology, superconductivity and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09906v2-abstract-full').style.display = 'inline'; document.getElementById('2408.09906v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.09906v2-abstract-full" style="display: none;"> Spin-orbit coupling (SOC) has played an important role in many topological and correlated electron materials. In graphene-based systems, SOC induced by transition metal dichalcogenide (TMD) at proximity was shown to drive topological states and strengthen superconductivity. However, in rhombohedral multilayer graphene, a robust platform for electron correlation and topology, superconductivity and the role of SOC remain largely unexplored. Here we report transport measurements of TMD-proximitized rhombohedral trilayer graphene (RTG). We observed a new hole-doped superconducting state SC4 with Tc = 230 mK. On the electron-doped side, we identified a new isospin-symmetry breaking three-quarter-metal (TQM) phase and observed the nearby weak superconducting state SC3 is significantly enhanced. Surprisingly, the original superconducting state SC1 in bare RTG is strongly suppressed in the presence of TMD - opposite to the effect of SOC on all other graphene superconductivities. Our observations form the basis of exploring superconductivity and non-Abelian quasiparticles in rhombohedral graphene devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09906v2-abstract-full').style.display = 'none'; document.getElementById('2408.09906v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages; 4 figures, 1 table, 9 extended data figures; Nature Materials (2025, in press)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.17140">arXiv:2403.17140</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.17140">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Layer-selective spin-orbit coupling and strong correlation in bilayer graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Seiler%2C+A+M">Anna M. Seiler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhumagulov%2C+Y">Yaroslav Zhumagulov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zollner%2C+K">Klaus Zollner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yoon%2C+C">Chiho Yoon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Urbaniak%2C+D">David Urbaniak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geisenhof%2C+F+R">Fabian R. Geisenhof</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fabian%2C+J">Jaroslav Fabian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+F">Fan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weitz%2C+R+T">R. Thomas Weitz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.17140v1-abstract-short" style="display: inline;"> Spin-orbit coupling (SOC) and electron-electron interaction can mutually influence each other and give rise to a plethora of intriguing phenomena in condensed matter systems. In pristine bilayer graphene, which has weak SOC, intrinsic Lifshitz transitions and concomitant van-Hove singularities lead to the emergence of many-body correlated phases. Layer-selective SOC can be proximity induced by add&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.17140v1-abstract-full').style.display = 'inline'; document.getElementById('2403.17140v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.17140v1-abstract-full" style="display: none;"> Spin-orbit coupling (SOC) and electron-electron interaction can mutually influence each other and give rise to a plethora of intriguing phenomena in condensed matter systems. In pristine bilayer graphene, which has weak SOC, intrinsic Lifshitz transitions and concomitant van-Hove singularities lead to the emergence of many-body correlated phases. Layer-selective SOC can be proximity induced by adding a layer of tungsten diselenide (WSe2) on its one side. By applying an electric displacement field, the system can be tuned across a spectrum wherein electronic correlation, SOC, or a combination of both dominates. Our investigations reveal an intricate phase diagram of proximity-induced SOC-selective bilayer graphene. Not only does this phase diagram include those correlated phases reminiscent of SOC-free doped bilayer graphene, but it also hosts unique SOC-induced states allowing a compelling measurement of valley g-factor and a seemingly impossible correlated insulator at charge neutrality, thereby showcasing the remarkable tunability of the interplay between interaction and SOC in WSe2 enriched bilayer graphene. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.17140v1-abstract-full').style.display = 'none'; document.getElementById('2403.17140v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.17483">arXiv:2310.17483</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.17483">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.adk9749">10.1126/science.adk9749 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Large Quantum Anomalous Hall Effect in Spin-Orbit Proximitized Rhombohedral Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+T">Tonghang Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Z">Zhengguang Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yuxuan Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jixiang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seo%2C+J">Junseok Seo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yoon%2C+C">Chiho Yoon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+L">Liang Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+F">Fan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ju%2C+L">Long Ju</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.17483v3-abstract-short" style="display: inline;"> The quantum anomalous Hall effect (QAHE) is a robust topological phenomenon featuring quantized Hall resistance at zero magnetic field. We report the QAHE in a rhombohedral pentalayer graphene/monolayer WS2 heterostructure. Distinct from other experimentally confirmed QAHE systems, this system has neither magnetic element nor moir茅 superlattice effect. The QAH states emerge at charge neutrality an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.17483v3-abstract-full').style.display = 'inline'; document.getElementById('2310.17483v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.17483v3-abstract-full" style="display: none;"> The quantum anomalous Hall effect (QAHE) is a robust topological phenomenon featuring quantized Hall resistance at zero magnetic field. We report the QAHE in a rhombohedral pentalayer graphene/monolayer WS2 heterostructure. Distinct from other experimentally confirmed QAHE systems, this system has neither magnetic element nor moir茅 superlattice effect. The QAH states emerge at charge neutrality and feature Chern numbers C = +-5 at temperatures up to about 1.5 K. This large QAHE arises from the synergy of the electron correlation in intrinsic flat bands of pentalayer graphene, the gate-tuning effect, and the proximity-induced Ising spin-orbit-coupling. Our experiment demonstrates the potential of crystalline two-dimensional materials for intertwined electron correlation and band topology physics, and may enable a route for engineering chiral Majorana edge states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.17483v3-abstract-full').style.display = 'none'; document.getElementById('2310.17483v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">to be published in Science</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 384, 647-651 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.13154">arXiv:2310.13154</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.13154">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Quantum Octets in Air Stable High Mobility Two-Dimensional PdSe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yuxin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+H">Haidong Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Huaixuan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yoon%2C+C">Chiho Yoon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nelson%2C+R+A">Ryan A. Nelson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Ziling Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smirnov%2C+D">Dmitry Smirnov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kawakami%2C+R">Roland Kawakami</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goldberger%2C+J+E">Joshua E. Goldberger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+F">Fan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lau%2C+C+N">Chun Ning Lau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.13154v1-abstract-short" style="display: inline;"> Two-dimensional (2D) materials have drawn immense interest in scientific and technological communities, owing to their extraordinary properties that are profoundly altered from their bulk counterparts and their enriched tunability by gating, proximity, strain, and external fields. For digital applications, an ideal 2D material would have high mobility, air stability, sizable band gap, and be compa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.13154v1-abstract-full').style.display = 'inline'; document.getElementById('2310.13154v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.13154v1-abstract-full" style="display: none;"> Two-dimensional (2D) materials have drawn immense interest in scientific and technological communities, owing to their extraordinary properties that are profoundly altered from their bulk counterparts and their enriched tunability by gating, proximity, strain, and external fields. For digital applications, an ideal 2D material would have high mobility, air stability, sizable band gap, and be compatible with large-scale synthesis. Here we demonstrate air-stable field-effect transistors using atomically thin few-layer PdSe2 sheets that are sandwiched between hexagonal BN (hBN), with record high saturation current &gt;350渭A/渭m, and field effect mobilities 700 and 10,000 cm2/Vs at 300K and 2K, respectively. At low temperatures, magnetotransport studies reveal unique octets in quantum oscillations, arising from 2-fold spin and 4-fold valley degeneracies, which can be broken by in-plane and out-of-plane magnetic fields toward quantum Hall spin and orbital ferromagnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.13154v1-abstract-full').style.display = 'none'; document.getElementById('2310.13154v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures, In review</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.02015">arXiv:2306.02015</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.02015">pdf</a>, <a href="https://arxiv.org/format/2306.02015">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Machine learning enabled experimental design and parameter estimation for ultrafast spin dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zhantao Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+C">Cheng Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petsch%2C+A+N">Alexander N. Petsch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chitturi%2C+S+R">Sathya R. Chitturi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Okullo%2C+A">Alana Okullo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chowdhury%2C+S">Sugata Chowdhury</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yoon%2C+C+H">Chun Hong Yoon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Turner%2C+J+J">Joshua J. Turner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.02015v1-abstract-short" style="display: inline;"> Advanced experimental measurements are crucial for driving theoretical developments and unveiling novel phenomena in condensed matter and material physics, which often suffer from the scarcity of facility resources and increasing complexities. To address the limitations, we introduce a methodology that combines machine learning with Bayesian optimal experimental design (BOED), exemplified with x-r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.02015v1-abstract-full').style.display = 'inline'; document.getElementById('2306.02015v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.02015v1-abstract-full" style="display: none;"> Advanced experimental measurements are crucial for driving theoretical developments and unveiling novel phenomena in condensed matter and material physics, which often suffer from the scarcity of facility resources and increasing complexities. To address the limitations, we introduce a methodology that combines machine learning with Bayesian optimal experimental design (BOED), exemplified with x-ray photon fluctuation spectroscopy (XPFS) measurements for spin fluctuations. Our method employs a neural network model for large-scale spin dynamics simulations for precise distribution and utility calculations in BOED. The capability of automatic differentiation from the neural network model is further leveraged for more robust and accurate parameter estimation. Our numerical benchmarks demonstrate the superior performance of our method in guiding XPFS experiments, predicting model parameters, and yielding more informative measurements within limited experimental time. Although focusing on XPFS and spin fluctuations, our method can be adapted to other experiments, facilitating more efficient data collection and accelerating scientific discoveries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.02015v1-abstract-full').style.display = 'none'; document.getElementById('2306.02015v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.07787">arXiv:2305.07787</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.07787">pdf</a>, <a href="https://arxiv.org/format/2305.07787">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> On Ultrafast X-ray Methods for Magnetism </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Plumley%2C+R">Rajan Plumley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chitturi%2C+S">Sathya Chitturi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+C">Cheng Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Assefa%2C+T">Tadesse Assefa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Burdet%2C+N">Nicholas Burdet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+L">Lingjia Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reid%2C+A">Alex Reid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dakovski%2C+G">Georgi Dakovski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seaberg%2C+M">Matthew Seaberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=O%27Dowd%2C+F">Frank O&#39;Dowd</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Montoya%2C+S">Sergio Montoya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hongwei Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Okullo%2C+A">Alana Okullo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mardanya%2C+S">Sougata Mardanya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kevan%2C+S">Stephen Kevan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fischer%2C+P">Peter Fischer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fullerton%2C+E">Eric Fullerton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sinha%2C+S">Sunil Sinha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Colocho%2C+W">William Colocho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lutman%2C+A">Alberto Lutman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Decker%2C+F">Franz-Joseph Decker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roy%2C+S">Sujoy Roy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fujioka%2C+J">Jun Fujioka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tokura%2C+Y">Yoshinori Tokura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Minitti%2C+M+P">Michael P. Minitti</a> , et al. (14 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.07787v1-abstract-short" style="display: inline;"> With the introduction of x-ray free electron laser sources around the world, new scientific approaches for visualizing matter at fundamental length and time-scales have become possible. As it relates to magnetism and &#34;magnetic-type&#34; systems, advanced methods are being developed for studying ultrafast magnetic responses on the time-scales at which they occur. We describe three capabilities which ha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.07787v1-abstract-full').style.display = 'inline'; document.getElementById('2305.07787v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.07787v1-abstract-full" style="display: none;"> With the introduction of x-ray free electron laser sources around the world, new scientific approaches for visualizing matter at fundamental length and time-scales have become possible. As it relates to magnetism and &#34;magnetic-type&#34; systems, advanced methods are being developed for studying ultrafast magnetic responses on the time-scales at which they occur. We describe three capabilities which have the potential to seed new directions in this area and present original results from each: pump-probe x-ray scattering with low energy excitation, x-ray photon fluctuation spectroscopy, and ultrafast diffuse x-ray scattering. By combining these experimental techniques with advanced modeling together with machine learning, we describe how the combination of these domains allows for a new understanding in the field of magnetism. Finally, we give an outlook for future areas of investigation and the newly developed instruments which will take us there. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.07787v1-abstract-full').style.display = 'none'; document.getElementById('2305.07787v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.12626">arXiv:2301.12626</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.12626">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Ideal Weak Topological Insulator and Protected Helical Saddle Points </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Oh%2C+J+S">Ji Seop Oh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+T">Tianyi Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dhale%2C+N">Nikhil Dhale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Sheng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+C">Chao Lei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yoon%2C+C">Chiho Yoon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+W">Wenhao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+J">Jianwei Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+H">Hanlin Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hashimoto%2C+M">Makoto Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D">Donghui Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jozwiak%2C+C">Chris Jozwiak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bostwick%2C+A">Aaron Bostwick</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rotenberg%2C+E">Eli Rotenberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lau%2C+C+N">Chun Ning Lau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+B">Bing Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+F">Fan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Birgeneau%2C+R">Robert Birgeneau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+M">Ming Yi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.12626v2-abstract-short" style="display: inline;"> The paradigm of classifying three-dimensional (3D) topological insulators into strong and weak ones (STI and WTI) opens the door for the discovery of various topological phases of matter protected by different symmetries and defined in different dimensions. However, in contrast to the vast realization of STIs, very few materials have been experimentally identified as being close to WTI. Even among&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.12626v2-abstract-full').style.display = 'inline'; document.getElementById('2301.12626v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.12626v2-abstract-full" style="display: none;"> The paradigm of classifying three-dimensional (3D) topological insulators into strong and weak ones (STI and WTI) opens the door for the discovery of various topological phases of matter protected by different symmetries and defined in different dimensions. However, in contrast to the vast realization of STIs, very few materials have been experimentally identified as being close to WTI. Even amongst those identified, none exists with topological surface states (TSS) exposed in a global bulk band gap that is stable at all temperatures. Here we report the design and observation of an ideal WTI in a quasi-one-dimensional (quasi-1D) bismuth halide, Bi$_{4}$I$_{1.2}$Br$_{2.8}$ (BIB). Via angle-resolved photoemission spectroscopy (ARPES), we identify that BIB hosts TSS on the (100)$\prime$ side surface in the form of two anisotropic $蟺$-offset Dirac cones (DCs) separated in momentum while topologically dark on the (001) top surface. The ARPES data fully determine a unique side-surface Hamiltonian and thereby identify two pairs of non-degenerate helical saddle points and a series of four Lifshitz transitions. The fact that both the surface Dirac and saddle points are in the global bulk band gap of 195 meV, combined with the small Dirac velocities, nontrivial spin texture, and the near-gap chemical potential, qualifies BIB to be not only an ideal WTI but also a fertile ground for topological many-body physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.12626v2-abstract-full').style.display = 'none'; document.getElementById('2301.12626v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.05718">arXiv:2110.05718</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.05718">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41563-022-01304-3">10.1038/s41563-022-01304-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Room-temperature quantum spin Hall edge state in a higher-order topological insulator Bi$_4$Br$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shumiya%2C+N">Nana Shumiya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yoon%2C+C">Chiho Yoon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yongkai Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Ying Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yu-Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+G">Guangming Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Y">Yen-Chuan Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Multer%2C+D">Daniel Multer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Casas%2C+B">Brian Casas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zhujun Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+S">Shuang Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+N">Nan Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balicas%2C+L">Luis Balicas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+F">Fan Zhang</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.05718v3-abstract-short" style="display: inline;"> Room-temperature realization of macroscopic quantum phenomena is one of the major pursuits in fundamental physics. The quantum spin Hall state, a topological quantum phenomenon that features a two-dimensional insulating bulk and a helical edge state, has not yet been realized at room temperature. Here, we use scanning tunneling microscopy to visualize a quantum spin Hall edge state on the surface&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.05718v3-abstract-full').style.display = 'inline'; document.getElementById('2110.05718v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.05718v3-abstract-full" style="display: none;"> Room-temperature realization of macroscopic quantum phenomena is one of the major pursuits in fundamental physics. The quantum spin Hall state, a topological quantum phenomenon that features a two-dimensional insulating bulk and a helical edge state, has not yet been realized at room temperature. Here, we use scanning tunneling microscopy to visualize a quantum spin Hall edge state on the surface of the higher-order topological insulator Bi4Br4. We find that the atomically resolved lattice exhibits a large insulating gap of over 200meV, and an atomically sharp monolayer step edge hosts a striking in-gap gapless state, suggesting the topological bulk-boundary correspondence. An external magnetic field can gap the edge state, consistent with the time-reversal symmetry protection inherent to the underlying topology. We further identify the geometrical hybridization of such edge states, which not only attests to the Z2 topology of the quantum spin Hall state but also visualizes the building blocks of the higher-order topological insulator phase. Remarkably, both the insulating gap and topological edge state are observed to persist up to 300K. Our results point to the realization of the room-temperature quantum spin Hall edge state in a higher-order topological insulator. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.05718v3-abstract-full').style.display = 'none'; document.getElementById('2110.05718v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Materials (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.13516">arXiv:2105.13516</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.13516">pdf</a>, <a href="https://arxiv.org/format/2105.13516">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.11.031042">10.1103/PhysRevX.11.031042 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Room-Temperature Topological Phase Transition in Quasi-One-Dimensional Material Bi$_4$I$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+J">Jianwei Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Sheng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yoon%2C+C">Chiho Yoon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oh%2C+J+S">Ji Seop Oh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+H">Han Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaoyuan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dhale%2C+N">Nikhil Dhale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">Yan-Feng Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Y">Yucheng Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yichen Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hashimoto%2C+M">Makoto Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D">Donghui Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Denlinger%2C+J">Jonathan Denlinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiqu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lau%2C+C+N">Chun Ning Lau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Birgeneau%2C+R+J">Robert J. Birgeneau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+F">Fan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+B">Bing Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+M">Ming Yi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.13516v1-abstract-short" style="display: inline;"> Quasi-one-dimensional (1D) materials provide a superior platform for characterizing and tuning topological phases for two reasons: i) existence for multiple cleavable surfaces that enables better experimental identification of topological classification, and ii) stronger response to perturbations such as strain for tuning topological phases compared to higher dimensional crystal structures. In thi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.13516v1-abstract-full').style.display = 'inline'; document.getElementById('2105.13516v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.13516v1-abstract-full" style="display: none;"> Quasi-one-dimensional (1D) materials provide a superior platform for characterizing and tuning topological phases for two reasons: i) existence for multiple cleavable surfaces that enables better experimental identification of topological classification, and ii) stronger response to perturbations such as strain for tuning topological phases compared to higher dimensional crystal structures. In this paper, we present experimental evidence for a room-temperature topological phase transition in the quasi-1D material Bi$_4$I$_4$, mediated via a first order structural transition between two distinct stacking orders of the weakly-coupled chains. Using high resolution angle-resolved photoemission spectroscopy on the two natural cleavable surfaces, we identify the high temperature $尾$ phase to be the first weak topological insulator with gapless Dirac cones on the (100) surface and no Dirac crossing on the (001) surface, while in the low temperature $伪$ phase, the topological surface state on the (100) surface opens a gap, consistent with a recent theoretical prediction of a higher-order topological insulator beyond the scope of the established topological materials databases that hosts gapless hinge states. Our results not only identify a rare topological phase transition between first-order and second-order topological insulators but also establish a novel quasi-1D material platform for exploring unprecedented physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.13516v1-abstract-full').style.display = 'none'; document.getElementById('2105.13516v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures, accepted for publication in Phys. Rev. X</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 11, 031042 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.12630">arXiv:2103.12630</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.12630">pdf</a>, <a href="https://arxiv.org/format/2103.12630">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.L241115">10.1103/PhysRevB.104.L241115 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological multiband s-wave superconductivity in coupled multifold fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+C">Changhee Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yoon%2C+C">Chiho Yoon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T">Taehyeok Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chung%2C+S+B">Suk Bum Chung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Min%2C+H">Hongki Min</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.12630v5-abstract-short" style="display: inline;"> We study three-dimensional time-reversal-invariant topological superconductivity in noncentrosymmetric materials such as RhSi, CoSi, and AlPt which host coupled multifold nodes energetically split by the spin-orbit coupling at the same time-reversal-invariant momentum (TRIM). The topological superconductivity arises from the $s_{+} \oplus s_{-}$ gap function, which is $\boldsymbol{k}$ independent,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.12630v5-abstract-full').style.display = 'inline'; document.getElementById('2103.12630v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.12630v5-abstract-full" style="display: none;"> We study three-dimensional time-reversal-invariant topological superconductivity in noncentrosymmetric materials such as RhSi, CoSi, and AlPt which host coupled multifold nodes energetically split by the spin-orbit coupling at the same time-reversal-invariant momentum (TRIM). The topological superconductivity arises from the $s_{+} \oplus s_{-}$ gap function, which is $\boldsymbol{k}$ independent, but with opposite signs for the two nodes split at the same TRIM. We consider various electron-electron interactions in the tight-binding model for RhSi and find that the topological superconducting phase supporting a surface Majorana cone and topological nodal rings is favored in a wide range of interaction parameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.12630v5-abstract-full').style.display = 'none'; document.getElementById('2103.12630v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6+12 pages, 3+4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 104, L241115 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.08447">arXiv:2101.08447</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.08447">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.1c00915">10.1021/acs.nanolett.1c00915 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Angstrom-wide conductive channels in black phosphorus by Cu intercalation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S+W">Suk Woo Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+L">Lu Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yoon%2C+J+C">Jong Chan Yoon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+Y">Yohan Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+D">Da Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oh%2C+I">Inseon Oh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+G">Gil-Ho Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yoo%2C+J">Jung-Woo Yoo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shin%2C+H">Hyung-Joon Shin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+F">Feng Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Z">Zonghoon Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.08447v1-abstract-short" style="display: inline;"> Intercalation is an effective method to improve and modulate properties of two-dimensional materials. Even so, spatially controlled intercalation at atomic scale, which is important to introduce and modulated properties, has not been successful due to difficulties in controlling the diffusion of intercalants. Here, we show formation of angstrom-wide conductive channels (~4.3 A) in black phosphorus&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08447v1-abstract-full').style.display = 'inline'; document.getElementById('2101.08447v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.08447v1-abstract-full" style="display: none;"> Intercalation is an effective method to improve and modulate properties of two-dimensional materials. Even so, spatially controlled intercalation at atomic scale, which is important to introduce and modulated properties, has not been successful due to difficulties in controlling the diffusion of intercalants. Here, we show formation of angstrom-wide conductive channels (~4.3 A) in black phosphorus by Cu intercalation. The atomic structure, resultant microstructural effects, intercalation mechanism, and local variations of electronic properties modulated in black phosphorus by Cu intercalation were investigated extensively by transmission electron microscopy including in situ observation, DFT calculation, and conductive atomic force microscopy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08447v1-abstract-full').style.display = 'none'; document.getElementById('2101.08447v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.14710">arXiv:2005.14710</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.14710">pdf</a>, <a href="https://arxiv.org/format/2005.14710">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Quasi-One-Dimensional Higher-Order Topological Insulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yoon%2C+C">Chiho Yoon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Cheng-Cheng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Min%2C+H">Hongki Min</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+F">Fan Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.14710v1-abstract-short" style="display: inline;"> Quasi-1D materials Bi$_{4}$X$_{4}$ (X=Br,I) are prototype weak topological insulators (TI) in the $尾$ phase. For the $伪$ phases, recent high-throughput database screening suggests that Bi$_{4}$Br$_{4}$ is a rare higher-order TI (HOTI) whereas Bi$_{4}$I$_{4}$ has trivial symmetry indicators. Here we show that in fact the two $伪$ phases are both pristine HOTIs yet with distinct termination-dependent&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.14710v1-abstract-full').style.display = 'inline'; document.getElementById('2005.14710v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.14710v1-abstract-full" style="display: none;"> Quasi-1D materials Bi$_{4}$X$_{4}$ (X=Br,I) are prototype weak topological insulators (TI) in the $尾$ phase. For the $伪$ phases, recent high-throughput database screening suggests that Bi$_{4}$Br$_{4}$ is a rare higher-order TI (HOTI) whereas Bi$_{4}$I$_{4}$ has trivial symmetry indicators. Here we show that in fact the two $伪$ phases are both pristine HOTIs yet with distinct termination-dependent hinge state patterns by performing first-principles calculations, analyzing coupled-edge dimerizations, inspecting surface lattice structures, constructing tight-binding models, and establishing boundary topological invariants. We reveal that the location of inversion center dictates Bi$_{4}$Br$_{4}$ (Bi$_{4}$I$_{4}$) to feature opposite (the same) dimerizations of a surface or intrinsic (bulk or extrinsic) origin at two side cleavage surfaces. We propose a variety of experiments to examine our predictions. Given the superior hinges along atomic chains, the structural transition at room temperature, and the extreme anisotropies in three axes, our results not only imply the possible existence of many topological materials beyond the scope of symmetry indicators but also establish a new TI paradigm and a unique material platform for exploring the interplay of geometry, symmetry, topology, and interaction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.14710v1-abstract-full').style.display = 'none'; document.getElementById('2005.14710v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 12 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.07105">arXiv:1610.07105</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1610.07105">pdf</a>, <a href="https://arxiv.org/format/1610.07105">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2053-1583/aa659a">10.1088/2053-1583/aa659a <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Broken sublattice symmetry states in Bernal stacked multilayer graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yoon%2C+C">Chiho Yoon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jang%2C+Y">Yunsu Jang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jung%2C+J">Jeil Jung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Min%2C+H">Hongki Min</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.07105v2-abstract-short" style="display: inline;"> We analyze the ordered phases of Bernal stacked multilayer graphene in the presence of interaction induced band gaps due to sublattice symmetry breaking potentials, whose solutions can be analyzed in terms of light-mass and heavy-mass pseudospin doublets which have the same Chern numbers but opposite charge polarization directions. The application of a perpendicular external electric field reveals&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.07105v2-abstract-full').style.display = 'inline'; document.getElementById('1610.07105v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.07105v2-abstract-full" style="display: none;"> We analyze the ordered phases of Bernal stacked multilayer graphene in the presence of interaction induced band gaps due to sublattice symmetry breaking potentials, whose solutions can be analyzed in terms of light-mass and heavy-mass pseudospin doublets which have the same Chern numbers but opposite charge polarization directions. The application of a perpendicular external electric field reveals an effective Hund&#39;s rule for the ordering of the sublattice pseudospin doublets in a tetralayer, while a similar but more complex phase diagram develops with increasing layer number. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.07105v2-abstract-full').style.display = 'none'; document.getElementById('1610.07105v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures + supplementary material (11 pages)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2D Materials 4, 021025 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0202410">arXiv:cond-mat/0202410</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0202410">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.65.056109">10.1103/PhysRevE.65.056109 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Attack vulnerability of complex networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Holme%2C+P">Petter Holme</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+B+J">Beom Jun Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yoon%2C+C+N">Chang No Yoon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+S+K">Seung Kee Han</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0202410v1-abstract-short" style="display: inline;"> We study the response of complex networks subject to attacks on vertices and edges. Several existing complex network models as well as real-world networks of scientific collaborations and Internet traffic are numerically investigated, and the network performance is quantitatively measured by the average inverse geodesic length and the size of the largest connected subgraph. For each case of atta&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0202410v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0202410v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0202410v1-abstract-full" style="display: none;"> We study the response of complex networks subject to attacks on vertices and edges. Several existing complex network models as well as real-world networks of scientific collaborations and Internet traffic are numerically investigated, and the network performance is quantitatively measured by the average inverse geodesic length and the size of the largest connected subgraph. For each case of attacks on vertices and edges, four different attacking strategies are used: removals by the descending order of the degree and the betweenness centrality, calculated for either the initial network or the current network during the removal procedure. It is found that the removals by the recalculated degrees and betweenness centralities are often more harmful than the attack strategies based on the initial network, suggesting that the network structure changes as important vertices or edges are removed. Furthermore, the correlation between the betweenness centrality and the degree in complex networks is studied. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0202410v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0202410v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2002; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2002. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in Phys. Rev. E</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 65, 056109 (2002). </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0111232">arXiv:cond-mat/0111232</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0111232">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0111232">ps</a>, <a href="https://arxiv.org/format/cond-mat/0111232">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.65.027103">10.1103/PhysRevE.65.027103 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Path finding strategies in scale-free networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+B+J">Beom Jun Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yoon%2C+C+N">Chang No Yoon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+S+K">Seung Kee Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jeong%2C+H">Hawoong Jeong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0111232v2-abstract-short" style="display: inline;"> We numerically investigate the scale-free network model of Barab{谩}si and Albert [A. L. Barab{谩}si and R. Albert, Science {\bf 286}, 509 (1999)] through the use of various path finding strategies. In real networks, global network information is not accessible to each vertex, and the actual path connecting two vertices can sometimes be much longer than the shortest one. A generalized diameter dep&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0111232v2-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0111232v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0111232v2-abstract-full" style="display: none;"> We numerically investigate the scale-free network model of Barab{谩}si and Albert [A. L. Barab{谩}si and R. Albert, Science {\bf 286}, 509 (1999)] through the use of various path finding strategies. In real networks, global network information is not accessible to each vertex, and the actual path connecting two vertices can sometimes be much longer than the shortest one. A generalized diameter depending on the actual path finding strategy is introduced, and a simple strategy, which utilizes only local information on the connectivity, is suggested and shown to yield small-world behavior: the diameter $D$ of the network increases logarithmically with the network size $N$, the same as is found with global strategy. If paths are sought at random, $D \sim N^{0.5}$ is found. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0111232v2-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0111232v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 January, 2002; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 November, 2001; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2001. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, final form</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 65, 027103 (2002). </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10