CINXE.COM

Congruence (geometry) - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Congruence (geometry) - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"c89b32e1-1b52-4240-9b55-8b4b59676d9e","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Congruence_(geometry)","wgTitle":"Congruence (geometry)","wgCurRevisionId":1258938297,"wgRevisionId":1258938297,"wgArticleId":39330,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 maint: bot: original URL status unknown","Articles with short description","Short description is different from Wikidata","Wikipedia indefinitely semi-protected pages","Commons category link is on Wikidata","Euclidean geometry","Equivalence (mathematics)"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Congruence_(geometry)","wgRelevantArticleId":39330,"wgIsProbablyEditable":false, "wgRelevantPageIsProbablyEditable":false,"wgRestrictionEdit":["autoconfirmed"],"wgRestrictionMove":["autoconfirmed"],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q154210","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true ,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups", "ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/6/60/Angle-angle-side_triangle_congruence.svg/1200px-Angle-angle-side_triangle_congruence.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="800"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/6/60/Angle-angle-side_triangle_congruence.svg/800px-Angle-angle-side_triangle_congruence.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="533"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/6/60/Angle-angle-side_triangle_congruence.svg/640px-Angle-angle-side_triangle_congruence.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="427"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Congruence (geometry) - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Congruence_(geometry)"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Congruence_(geometry)"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject page-Congruence_geometry rootpage-Congruence_geometry skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Congruence+%28geometry%29" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Congruence+%28geometry%29" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Congruence+%28geometry%29" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Congruence+%28geometry%29" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Determining_congruence_of_polygons" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Determining_congruence_of_polygons"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Determining congruence of polygons</span> </div> </a> <ul id="toc-Determining_congruence_of_polygons-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Congruence_of_triangles" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Congruence_of_triangles"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Congruence of triangles</span> </div> </a> <button aria-controls="toc-Congruence_of_triangles-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Congruence of triangles subsection</span> </button> <ul id="toc-Congruence_of_triangles-sublist" class="vector-toc-list"> <li id="toc-Determining_congruence" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Determining_congruence"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Determining congruence</span> </div> </a> <ul id="toc-Determining_congruence-sublist" class="vector-toc-list"> <li id="toc-Side-side-angle" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Side-side-angle"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1.1</span> <span>Side-side-angle</span> </div> </a> <ul id="toc-Side-side-angle-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Angle-angle-angle" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Angle-angle-angle"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1.2</span> <span>Angle-angle-angle</span> </div> </a> <ul id="toc-Angle-angle-angle-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-CPCTC" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#CPCTC"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>CPCTC</span> </div> </a> <ul id="toc-CPCTC-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Definition_of_congruence_in_analytic_geometry" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Definition_of_congruence_in_analytic_geometry"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Definition of congruence in analytic geometry</span> </div> </a> <ul id="toc-Definition_of_congruence_in_analytic_geometry-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Congruent_conic_sections" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Congruent_conic_sections"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Congruent conic sections</span> </div> </a> <ul id="toc-Congruent_conic_sections-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Congruent_polyhedra" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Congruent_polyhedra"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Congruent polyhedra</span> </div> </a> <ul id="toc-Congruent_polyhedra-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Congruent_triangles_on_a_sphere" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Congruent_triangles_on_a_sphere"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Congruent triangles on a sphere</span> </div> </a> <ul id="toc-Congruent_triangles_on_a_sphere-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notation" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notation"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Notation</span> </div> </a> <ul id="toc-Notation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Congruence (geometry)</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 56 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-56" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">56 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AA%D8%B7%D8%A7%D8%A8%D9%82_(%D9%87%D9%86%D8%AF%D8%B3%D8%A9)" title="تطابق (هندسة) – Arabic" lang="ar" hreflang="ar" data-title="تطابق (هندسة)" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/%C3%81ngulos_congruentes" title="Ángulos congruentes – Asturian" lang="ast" hreflang="ast" data-title="Ángulos congruentes" data-language-autonym="Asturianu" data-language-local-name="Asturian" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%B8%E0%A6%B0%E0%A7%8D%E0%A6%AC%E0%A6%B8%E0%A6%AE%E0%A6%A4%E0%A6%BE_(%E0%A6%9C%E0%A7%8D%E0%A6%AF%E0%A6%BE%E0%A6%AE%E0%A6%BF%E0%A6%A4%E0%A6%BF)" title="সর্বসমতা (জ্যামিতি) – Bangla" lang="bn" hreflang="bn" data-title="সর্বসমতা (জ্যামিতি)" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BD%D0%B3%D1%80%D1%83%D1%8D%D0%BD%D1%82%D0%BB%D1%8B%D2%A1_(%D0%B3%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F)" title="Конгруэнтлыҡ (геометрия) – Bashkir" lang="ba" hreflang="ba" data-title="Конгруэнтлыҡ (геометрия)" data-language-autonym="Башҡортса" data-language-local-name="Bashkir" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%95%D0%B4%D0%BD%D0%B0%D0%BA%D0%B2%D0%BE%D1%81%D1%82" title="Еднаквост – Bulgarian" lang="bg" hreflang="bg" data-title="Еднаквост" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Podudarnost_(geometrija)" title="Podudarnost (geometrija) – Bosnian" lang="bs" hreflang="bs" data-title="Podudarnost (geometrija)" data-language-autonym="Bosanski" data-language-local-name="Bosnian" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Congru%C3%A8ncia_(geometria)" title="Congruència (geometria) – Catalan" lang="ca" hreflang="ca" data-title="Congruència (geometria)" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BD%D0%B3%D1%80%D1%83%D1%8D%D0%BD%D1%82%D0%BB%C4%83%D1%85_(%D0%B3%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8)" title="Конгруэнтлăх (геометри) – Chuvash" lang="cv" hreflang="cv" data-title="Конгруэнтлăх (геометри)" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-sn mw-list-item"><a href="https://sn.wikipedia.org/wiki/Chiwirano" title="Chiwirano – Shona" lang="sn" hreflang="sn" data-title="Chiwirano" data-language-autonym="ChiShona" data-language-local-name="Shona" class="interlanguage-link-target"><span>ChiShona</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Cyfathiant" title="Cyfathiant – Welsh" lang="cy" hreflang="cy" data-title="Cyfathiant" data-language-autonym="Cymraeg" data-language-local-name="Welsh" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Kongruens" title="Kongruens – Danish" lang="da" hreflang="da" data-title="Kongruens" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Kongruenz_(Geometrie)" title="Kongruenz (Geometrie) – German" lang="de" hreflang="de" data-title="Kongruenz (Geometrie)" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Kongruentsus" title="Kongruentsus – Estonian" lang="et" hreflang="et" data-title="Kongruentsus" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Congruencia_(geometr%C3%ADa)" title="Congruencia (geometría) – Spanish" lang="es" hreflang="es" data-title="Congruencia (geometría)" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Kongruentzia_(geometria)" title="Kongruentzia (geometria) – Basque" lang="eu" hreflang="eu" data-title="Kongruentzia (geometria)" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%87%D9%85%E2%80%8C%D9%86%D9%87%D8%B4%D8%AA%DB%8C_(%D9%87%D9%86%D8%AF%D8%B3%D9%87)" title="هم‌نهشتی (هندسه) – Persian" lang="fa" hreflang="fa" data-title="هم‌نهشتی (هندسه)" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Congruence_(g%C3%A9om%C3%A9trie)" title="Congruence (géométrie) – French" lang="fr" hreflang="fr" data-title="Congruence (géométrie)" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Congruencia_(xeometr%C3%ADa)" title="Congruencia (xeometría) – Galician" lang="gl" hreflang="gl" data-title="Congruencia (xeometría)" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%ED%95%A9%EB%8F%99_(%EA%B8%B0%ED%95%98%ED%95%99)" title="합동 (기하학) – Korean" lang="ko" hreflang="ko" data-title="합동 (기하학)" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%B8%E0%A4%B0%E0%A5%8D%E0%A4%B5%E0%A4%BE%E0%A4%82%E0%A4%97%E0%A4%B8%E0%A4%AE%E0%A4%A4%E0%A4%BE" title="सर्वांगसमता – Hindi" lang="hi" hreflang="hi" data-title="सर्वांगसमता" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Sukladnost_(geometrija)" title="Sukladnost (geometrija) – Croatian" lang="hr" hreflang="hr" data-title="Sukladnost (geometrija)" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Kongruo_(geometrio)" title="Kongruo (geometrio) – Ido" lang="io" hreflang="io" data-title="Kongruo (geometrio)" data-language-autonym="Ido" data-language-local-name="Ido" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Kongruen" title="Kongruen – Indonesian" lang="id" hreflang="id" data-title="Kongruen" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Congruenza_(geometria)" title="Congruenza (geometria) – Italian" lang="it" hreflang="it" data-title="Congruenza (geometria)" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%97%D7%A4%D7%99%D7%A4%D7%94" title="חפיפה – Hebrew" lang="he" hreflang="he" data-title="חפיפה" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BD%D0%B3%D1%80%D1%83%D1%8D%D0%BD%D1%82%D1%82%D1%96%D0%BB%D1%96%D0%BA" title="Конгруэнттілік – Kazakh" lang="kk" hreflang="kk" data-title="Конгруэнттілік" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Congruentia_(geometria)" title="Congruentia (geometria) – Latin" lang="la" hreflang="la" data-title="Congruentia (geometria)" data-language-autonym="Latina" data-language-local-name="Latin" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Egybev%C3%A1g%C3%B3s%C3%A1g" title="Egybevágóság – Hungarian" lang="hu" hreflang="hu" data-title="Egybevágóság" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%A1%D0%BA%D0%BB%D0%B0%D0%B4%D0%BD%D0%BE%D1%81%D1%82" title="Складност – Macedonian" lang="mk" hreflang="mk" data-title="Складност" data-language-autonym="Македонски" data-language-local-name="Macedonian" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Kongruen_(geometri)" title="Kongruen (geometri) – Malay" lang="ms" hreflang="ms" data-title="Kongruen (geometri)" data-language-autonym="Bahasa Melayu" data-language-local-name="Malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-my mw-list-item"><a href="https://my.wikipedia.org/wiki/%E1%80%91%E1%80%95%E1%80%BA%E1%80%90%E1%80%B0%E1%80%8A%E1%80%AE%E1%80%81%E1%80%BC%E1%80%84%E1%80%BA%E1%80%B8" title="ထပ်တူညီခြင်း – Burmese" lang="my" hreflang="my" data-title="ထပ်တူညီခြင်း" data-language-autonym="မြန်မာဘာသာ" data-language-local-name="Burmese" class="interlanguage-link-target"><span>မြန်မာဘာသာ</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Congruentie_(meetkunde)" title="Congruentie (meetkunde) – Dutch" lang="nl" hreflang="nl" data-title="Congruentie (meetkunde)" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E5%9B%B3%E5%BD%A2%E3%81%AE%E5%90%88%E5%90%8C" title="図形の合同 – Japanese" lang="ja" hreflang="ja" data-title="図形の合同" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Kongruens_(geometri)" title="Kongruens (geometri) – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Kongruens (geometri)" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Kongruentlik" title="Kongruentlik – Uzbek" lang="uz" hreflang="uz" data-title="Kongruentlik" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Przystawanie_(geometria)" title="Przystawanie (geometria) – Polish" lang="pl" hreflang="pl" data-title="Przystawanie (geometria)" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Congru%C3%AAncia_(geometria)" title="Congruência (geometria) – Portuguese" lang="pt" hreflang="pt" data-title="Congruência (geometria)" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ksh mw-list-item"><a href="https://ksh.wikipedia.org/wiki/Kongruenz_(Jeometri)" title="Kongruenz (Jeometri) – Colognian" lang="ksh" hreflang="ksh" data-title="Kongruenz (Jeometri)" data-language-autonym="Ripoarisch" data-language-local-name="Colognian" class="interlanguage-link-target"><span>Ripoarisch</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Congruen%C8%9B%C4%83_(geometrie)" title="Congruență (geometrie) – Romanian" lang="ro" hreflang="ro" data-title="Congruență (geometrie)" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BD%D0%B3%D1%80%D1%83%D1%8D%D0%BD%D1%82%D0%BD%D0%BE%D1%81%D1%82%D1%8C_(%D0%B3%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F)" title="Конгруэнтность (геометрия) – Russian" lang="ru" hreflang="ru" data-title="Конгруэнтность (геометрия)" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Kongruenca_(gjeometri)" title="Kongruenca (gjeometri) – Albanian" lang="sq" hreflang="sq" data-title="Kongruenca (gjeometri)" data-language-autonym="Shqip" data-language-local-name="Albanian" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Congruence" title="Congruence – Simple English" lang="en-simple" hreflang="en-simple" data-title="Congruence" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Skladnost_(geometrija)" title="Skladnost (geometrija) – Slovenian" lang="sl" hreflang="sl" data-title="Skladnost (geometrija)" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D9%BE%DB%8E%DA%A9%DA%A9%DB%95%D9%88%D8%AA%D9%88%D9%88%DB%8C%DB%8C_(%D8%A6%DB%95%D9%86%D8%AF%D8%A7%D8%B2%DB%95)" title="پێککەوتوویی (ئەندازە) – Central Kurdish" lang="ckb" hreflang="ckb" data-title="پێککەوتوویی (ئەندازە)" data-language-autonym="کوردی" data-language-local-name="Central Kurdish" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/Podudarnost_(geometrija)" title="Podudarnost (geometrija) – Serbian" lang="sr" hreflang="sr" data-title="Podudarnost (geometrija)" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Podudarnost_(geometrija)" title="Podudarnost (geometrija) – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Podudarnost (geometrija)" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Yhtenevyys" title="Yhtenevyys – Finnish" lang="fi" hreflang="fi" data-title="Yhtenevyys" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Kongruens_(geometri)" title="Kongruens (geometri) – Swedish" lang="sv" hreflang="sv" data-title="Kongruens (geometri)" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%9A%E0%AE%B0%E0%AF%8D%E0%AE%B5%E0%AE%9A%E0%AE%AE%E0%AE%AE%E0%AF%8D_(%E0%AE%B5%E0%AE%9F%E0%AE%BF%E0%AE%B5%E0%AE%B5%E0%AE%BF%E0%AE%AF%E0%AE%B2%E0%AF%8D)" title="சர்வசமம் (வடிவவியல்) – Tamil" lang="ta" hreflang="ta" data-title="சர்வசமம் (வடிவவியல்)" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/E%C5%9Fle%C5%9Fik" title="Eşleşik – Turkish" lang="tr" hreflang="tr" data-title="Eşleşik" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BD%D0%B3%D1%80%D1%83%D0%B5%D0%BD%D1%82%D0%BD%D1%96%D1%81%D1%82%D1%8C_(%D0%B3%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D1%96%D1%8F)" title="Конгруентність (геометрія) – Ukrainian" lang="uk" hreflang="uk" data-title="Конгруентність (геометрія)" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/T%C6%B0%C6%A1ng_%C4%91%E1%BA%B3ng_(h%C3%ACnh_h%E1%BB%8Dc)" title="Tương đẳng (hình học) – Vietnamese" lang="vi" hreflang="vi" data-title="Tương đẳng (hình học)" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E5%85%A8%E7%AD%89" title="全等 – Literary Chinese" lang="lzh" hreflang="lzh" data-title="全等" data-language-autonym="文言" data-language-local-name="Literary Chinese" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E5%85%A8%E7%AD%89%EF%BC%88%E5%87%A0%E4%BD%95%EF%BC%89" title="全等(几何) – Wu" lang="wuu" hreflang="wuu" data-title="全等(几何)" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E5%85%A8%E7%AD%89" title="全等 – Cantonese" lang="yue" hreflang="yue" data-title="全等" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%85%A8%E7%AD%89" title="全等 – Chinese" lang="zh" hreflang="zh" data-title="全等" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q154210#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Congruence_(geometry)" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Congruence_(geometry)" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Congruence_(geometry)"><span>Read</span></a></li><li id="ca-viewsource" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Congruence_(geometry)&amp;action=edit" title="This page is protected.&#10;You can view its source [e]" accesskey="e"><span>View source</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Congruence_(geometry)&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Congruence_(geometry)"><span>Read</span></a></li><li id="ca-more-viewsource" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Congruence_(geometry)&amp;action=edit"><span>View source</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Congruence_(geometry)&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Congruence_(geometry)" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Congruence_(geometry)" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Congruence_(geometry)&amp;oldid=1258938297" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Congruence_(geometry)&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Congruence_%28geometry%29&amp;id=1258938297&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCongruence_%28geometry%29"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCongruence_%28geometry%29"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Congruence_%28geometry%29&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Congruence_(geometry)&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Congruence" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q154210" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> <div id="mw-indicator-pp-default" class="mw-indicator"><div class="mw-parser-output"><span typeof="mw:File"><a href="/wiki/Wikipedia:Protection_policy#semi" title="This article is semi-protected."><img alt="Page semi-protected" src="//upload.wikimedia.org/wikipedia/en/thumb/1/1b/Semi-protection-shackle.svg/20px-Semi-protection-shackle.svg.png" decoding="async" width="20" height="20" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/1/1b/Semi-protection-shackle.svg/30px-Semi-protection-shackle.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/1/1b/Semi-protection-shackle.svg/40px-Semi-protection-shackle.svg.png 2x" data-file-width="512" data-file-height="512" /></a></span></div></div> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Relationship between two figures of the same shape and size, or mirroring each other</div> <p class="mw-empty-elt"> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Congruent_non-congruent_triangles.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/12/Congruent_non-congruent_triangles.svg/260px-Congruent_non-congruent_triangles.svg.png" decoding="async" width="260" height="104" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/12/Congruent_non-congruent_triangles.svg/390px-Congruent_non-congruent_triangles.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/12/Congruent_non-congruent_triangles.svg/520px-Congruent_non-congruent_triangles.svg.png 2x" data-file-width="568" data-file-height="227" /></a><figcaption>The two triangles on the left are congruent. The third is <a href="/wiki/Similarity_(geometry)" title="Similarity (geometry)">similar</a> to them. The last triangle is neither congruent nor similar to any of the others. Congruence permits alteration of some properties, such as location and orientation, but leaves others unchanged, like <a href="/wiki/Distance" title="Distance">distances</a> and <a href="/wiki/Angle" title="Angle">angles</a>. The unchanged properties are called <a href="/wiki/Invariant_(mathematics)" title="Invariant (mathematics)">invariants</a>.</figcaption></figure> <p>In <a href="/wiki/Geometry" title="Geometry">geometry</a>, two figures or objects are <b>congruent</b> if they have the same <a href="/wiki/Shape" title="Shape">shape</a> and <a href="/wiki/Size" title="Size">size</a>, or if one has the same shape and size as the <a href="/wiki/Mirror_image" title="Mirror image">mirror image</a> of the other.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p><p>More formally, two sets of <a href="/wiki/Point_(geometry)" title="Point (geometry)">points</a> are called <b>congruent</b> if, and only if, one can be transformed into the other by an <a href="/wiki/Isometry" title="Isometry">isometry</a>, i.e., a combination of <a href="/wiki/Rigid_motion" class="mw-redirect" title="Rigid motion">rigid motions</a>, namely a <a href="/wiki/Translation_(geometry)" title="Translation (geometry)">translation</a>, a <a href="/wiki/Rotation" title="Rotation">rotation</a>, and a <a href="/wiki/Reflection_(mathematics)" title="Reflection (mathematics)">reflection</a>. This means that either object can be repositioned and reflected (but not resized) so as to coincide precisely with the other object. Therefore, two distinct plane figures on a piece of paper are congruent if they can be cut out and then matched up completely. Turning the paper over is permitted. </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Angle-angle-side_triangle_congruence.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/60/Angle-angle-side_triangle_congruence.svg/220px-Angle-angle-side_triangle_congruence.svg.png" decoding="async" width="220" height="147" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/60/Angle-angle-side_triangle_congruence.svg/330px-Angle-angle-side_triangle_congruence.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/60/Angle-angle-side_triangle_congruence.svg/440px-Angle-angle-side_triangle_congruence.svg.png 2x" data-file-width="135" data-file-height="90" /></a><figcaption>This diagram illustrates the geometric principle of angle-angle-side triangle congruence: given triangle ABC and triangle A'B'C', triangle ABC is congruent with triangle A'B'C' if and only if: angle CAB is congruent with angle C'A'B', and angle ABC is congruent with angle A'B'C', and BC is congruent with B'C'. Note <a href="/wiki/Hatch_mark#Congruency_notation" title="Hatch mark">hatch marks</a> are used here to show angle and side equalities.</figcaption></figure> <p>In elementary geometry the word <i>congruent</i> is often used as follows.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> The word <i>equal</i> is often used in place of <i>congruent</i> for these objects. </p> <ul><li>Two <a href="/wiki/Line_segment" title="Line segment">line segments</a> are congruent if they have the same length.</li> <li>Two <a href="/wiki/Angle" title="Angle">angles</a> are congruent if they have the same measure.</li> <li>Two <a href="/wiki/Circle" title="Circle">circles</a> are congruent if they have the same diameter.</li></ul> <p>In this sense, <i>two plane figures are congruent</i> implies that their corresponding characteristics are "congruent" or "equal" including not just their corresponding sides and angles, but also their corresponding diagonals, perimeters, and areas. </p><p>The related concept of <a href="/wiki/Similarity_(geometry)" title="Similarity (geometry)">similarity</a> applies if the objects have the same shape but do not necessarily have the same size. (Most definitions consider congruence to be a form of similarity, although a minority require that the objects have different sizes in order to qualify as similar.) </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Determining_congruence_of_polygons">Determining congruence of polygons</h2></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Quadrilateral_congruence.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/cf/Quadrilateral_congruence.png/333px-Quadrilateral_congruence.png" decoding="async" width="333" height="214" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/c/cf/Quadrilateral_congruence.png 1.5x" data-file-width="379" data-file-height="244" /></a><figcaption>The orange and green quadrilaterals are congruent; the blue is not congruent to them. All three have the same <a href="/wiki/Perimeter" title="Perimeter">perimeter</a> and <a href="/wiki/Area" title="Area">area</a>. (The ordering of the sides of the blue quadrilateral is "mixed" which results in two of the interior angles and one of the diagonals not being congruent.)</figcaption></figure> <p>For two polygons to be congruent, they must have an equal number of sides (and hence an equal number&#8212;the same number&#8212;of vertices). Two polygons with <i>n</i> sides are congruent if and only if they each have numerically identical sequences (even if clockwise for one polygon and counterclockwise for the other) side-angle-side-angle-... for <i>n</i> sides and <i>n</i> angles. </p><p>Congruence of polygons can be established graphically as follows: </p> <ul><li>First, match and label the corresponding vertices of the two figures.</li> <li>Second, draw a vector from one of the vertices of one of the figures to the corresponding vertex of the other figure. <i>Translate</i> the first figure by this vector so that these two vertices match.</li> <li>Third, <i>rotate</i> the translated figure about the matched vertex until one pair of <a href="/wiki/Corresponding_sides" class="mw-redirect" title="Corresponding sides">corresponding sides</a> matches.</li> <li>Fourth, <i>reflect</i> the rotated figure about this matched side until the figures match.</li></ul> <p>If at any time the step cannot be completed, the polygons are not congruent. </p> <div class="mw-heading mw-heading2"><h2 id="Congruence_of_triangles">Congruence of triangles</h2></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Solution_of_triangles" title="Solution of triangles">Solution of triangles</a></div> <p>Two <a href="/wiki/Triangle" title="Triangle">triangles</a> are congruent if their corresponding <a href="/wiki/Edge_(geometry)" title="Edge (geometry)">sides</a> are equal in length, and their corresponding <a href="/wiki/Angle" title="Angle">angles</a> are equal in measure. </p><p>Symbolically, we write the congruency and incongruency of two triangles <span class="texhtml">△<i>ABC</i></span> and <span class="texhtml">△<i>A′B′C′</i></span> as follows: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ABC\cong A'B'C'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>B</mi> <mi>C</mi> <mo>&#x2245;<!-- ≅ --></mo> <msup> <mi>A</mi> <mo>&#x2032;</mo> </msup> <msup> <mi>B</mi> <mo>&#x2032;</mo> </msup> <msup> <mi>C</mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ABC\cong A'B'C'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/831487b988352b643b14f52b10017985f068407f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:15.731ex; height:2.509ex;" alt="{\displaystyle ABC\cong A&#039;B&#039;C&#039;}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ABC\ncong A'B'C'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>B</mi> <mi>C</mi> <mo>&#x2246;<!-- ≆ --></mo> <msup> <mi>A</mi> <mo>&#x2032;</mo> </msup> <msup> <mi>B</mi> <mo>&#x2032;</mo> </msup> <msup> <mi>C</mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ABC\ncong A'B'C'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/862e408fb0446733b6f758ccfd2a6dd87a2e2082" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.731ex; height:2.843ex;" alt="{\displaystyle ABC\ncong A&#039;B&#039;C&#039;}"></span></dd></dl> <p>In many cases it is sufficient to establish the equality of three corresponding parts and use one of the following results to deduce the congruence of the two triangles. </p> <div class="mw-heading mw-heading3"><h3 id="Determining_congruence">Determining congruence</h3></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Congruent_triangles.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/72/Congruent_triangles.svg/220px-Congruent_triangles.svg.png" decoding="async" width="220" height="275" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/72/Congruent_triangles.svg/330px-Congruent_triangles.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/72/Congruent_triangles.svg/440px-Congruent_triangles.svg.png 2x" data-file-width="300" data-file-height="375" /></a><figcaption>The shape of a triangle is determined up to congruence by specifying two sides and the angle between them (SAS), two angles and the side between them (ASA) or two angles and a corresponding adjacent side (AAS). Specifying two sides and an adjacent angle (SSA), however, can yield two distinct possible triangles.</figcaption></figure> <p>Sufficient evidence for congruence between two triangles in <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean space</a> can be shown through the following comparisons: </p> <ul><li><b>SAS</b> (side-angle-side): If two pairs of sides of two triangles are equal in length, and the included angles are equal in measurement, then the triangles are congruent.</li> <li><b>SSS</b> (side-side-side): If three pairs of sides of two triangles are equal in length, then the triangles are congruent.</li> <li><b>ASA</b> (angle-side-angle): If two pairs of angles of two triangles are equal in measurement, and the included sides are equal in length, then the triangles are congruent.</li></ul> <p>The ASA postulate is attributed to <a href="/wiki/Thales_of_Miletus" title="Thales of Miletus">Thales of Miletus</a>. In most systems of axioms, the three criteria – SAS, SSS and ASA – are established as <a href="/wiki/Theorem" title="Theorem">theorems</a>. In the <a href="/wiki/School_Mathematics_Study_Group" title="School Mathematics Study Group">School Mathematics Study Group</a> system <b>SAS</b> is taken as one (#15) of 22 postulates. </p> <ul><li><b>AAS</b> (angle-angle-side): If two pairs of angles of two triangles are equal in measurement, and a pair of corresponding non-included sides are equal in length, then the triangles are congruent. AAS is equivalent to an ASA condition, by the fact that if any two angles are given, so is the third angle, since their sum should be 180°. ASA and AAS are sometimes combined into a single condition, <b>AAcorrS</b> – any two angles and a corresponding side.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup></li> <li><b>RHS</b> (right-angle-hypotenuse-side), also known as <b>HL</b> (hypotenuse-leg): If two right-angled triangles have their hypotenuses equal in length, and a pair of other sides are equal in length, then the triangles are congruent.</li></ul> <div class="mw-heading mw-heading4"><h4 id="Side-side-angle">Side-side-angle</h4></div> <p>The SSA condition (side-side-angle) which specifies two sides and a non-included angle (also known as ASS, or angle-side-side) does not by itself prove congruence. In order to show congruence, additional information is required such as the measure of the corresponding angles and in some cases the lengths of the two pairs of corresponding sides. There are a few possible cases: </p><p>If two triangles satisfy the SSA condition and the length of the side opposite the angle is greater than or equal to the length of the adjacent side (SSA, or long side-short side-angle), then the two triangles are congruent. The opposite side is sometimes longer when the corresponding angles are acute, but it is <i>always</i> longer when the corresponding angles are right or obtuse. Where the angle is a right angle, also known as the hypotenuse-leg (HL) postulate or the right-angle-hypotenuse-side (RHS) condition, the third side can be calculated using the <a href="/wiki/Pythagorean_theorem" title="Pythagorean theorem">Pythagorean theorem</a> thus allowing the SSS postulate to be applied. </p><p>If two triangles satisfy the SSA condition and the corresponding angles are acute and the length of the side opposite the angle is equal to the length of the adjacent side multiplied by the sine of the angle, then the two triangles are congruent. </p><p>If two triangles satisfy the SSA condition and the corresponding angles are acute and the length of the side opposite the angle is greater than the length of the adjacent side multiplied by the sine of the angle (but less than the length of the adjacent side), then the two triangles cannot be shown to be congruent. This is the <a href="/wiki/Ambiguous_case" class="mw-redirect" title="Ambiguous case">ambiguous case</a> and two different triangles can be formed from the given information, but further information distinguishing them can lead to a proof of congruence. </p> <div class="mw-heading mw-heading4"><h4 id="Angle-angle-angle">Angle-angle-angle</h4></div> <p>In Euclidean geometry, AAA (angle-angle-angle) (or just AA, since in Euclidean geometry the angles of a triangle add up to 180°) does not provide information regarding the size of the two triangles and hence proves only <a href="/wiki/Similarity_(geometry)" title="Similarity (geometry)">similarity</a> and not congruence in Euclidean space. </p><p>However, in <a href="/wiki/Spherical_geometry" title="Spherical geometry">spherical geometry</a> and <a href="/wiki/Hyperbolic_geometry" title="Hyperbolic geometry">hyperbolic geometry</a> (where the sum of the angles of a triangle varies with size) AAA is sufficient for congruence on a given curvature of surface.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="CPCTC"><span class="anchor" id="CPCTC"></span> CPCTC</h3></div> <p>This <a href="/wiki/Acronym" title="Acronym">acronym</a> stands for <i>Corresponding Parts of Congruent Triangles are Congruent</i>, which is an abbreviated version of the definition of congruent triangles.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p><p>In more detail, it is a succinct way to say that if triangles <span class="texhtml mvar" style="font-style:italic;">ABC</span> and <span class="texhtml mvar" style="font-style:italic;">DEF</span> are congruent, that is, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \triangle ABC\cong \triangle DEF,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x25B3;<!-- △ --></mi> <mi>A</mi> <mi>B</mi> <mi>C</mi> <mo>&#x2245;<!-- ≅ --></mo> <mi mathvariant="normal">&#x25B3;<!-- △ --></mi> <mi>D</mi> <mi>E</mi> <mi>F</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \triangle ABC\cong \triangle DEF,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6eae89d6a70f8813eb27b471d343b4dad2b4d3de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.591ex; height:2.509ex;" alt="{\displaystyle \triangle ABC\cong \triangle DEF,}"></span></dd></dl> <p>with corresponding pairs of angles at vertices <span class="texhtml mvar" style="font-style:italic;">A</span> and <span class="texhtml mvar" style="font-style:italic;">D</span>; <span class="texhtml mvar" style="font-style:italic;">B</span> and <span class="texhtml mvar" style="font-style:italic;">E</span>; and <span class="texhtml mvar" style="font-style:italic;">C</span> and <span class="texhtml mvar" style="font-style:italic;">F</span>, and with corresponding pairs of sides <span class="texhtml mvar" style="font-style:italic;">AB</span> and <span class="texhtml mvar" style="font-style:italic;">DE</span>; <span class="texhtml mvar" style="font-style:italic;">BC</span> and <span class="texhtml mvar" style="font-style:italic;">EF</span>; and <span class="texhtml mvar" style="font-style:italic;">CA</span> and <span class="texhtml mvar" style="font-style:italic;">FD</span>, then the following statements are true: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {AB}}\cong {\overline {DE}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>A</mi> <mi>B</mi> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>&#x2245;<!-- ≅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>D</mi> <mi>E</mi> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {AB}}\cong {\overline {DE}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a6aa4eb177e18cf62014ae0ace26755a3f1575f2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.575ex; height:3.009ex;" alt="{\displaystyle {\overline {AB}}\cong {\overline {DE}}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {BC}}\cong {\overline {EF}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>B</mi> <mi>C</mi> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>&#x2245;<!-- ≅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>E</mi> <mi>F</mi> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {BC}}\cong {\overline {EF}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/994739a1d9b87fb2edabf451a8292d824c7321d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.603ex; height:3.009ex;" alt="{\displaystyle {\overline {BC}}\cong {\overline {EF}}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {AC}}\cong {\overline {DF}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>A</mi> <mi>C</mi> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>&#x2245;<!-- ≅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>D</mi> <mi>F</mi> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {AC}}\cong {\overline {DF}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e44cf69bc8cae29c4a6e557645fd8b74296a13de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.731ex; height:3.009ex;" alt="{\displaystyle {\overline {AC}}\cong {\overline {DF}}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \angle BAC\cong \angle EDF}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2220;<!-- ∠ --></mi> <mi>B</mi> <mi>A</mi> <mi>C</mi> <mo>&#x2245;<!-- ≅ --></mo> <mi mathvariant="normal">&#x2220;<!-- ∠ --></mi> <mi>E</mi> <mi>D</mi> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \angle BAC\cong \angle EDF}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e639c7ff9f3fd907dfadb745817b96dcfa2d2f6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:17.169ex; height:2.176ex;" alt="{\displaystyle \angle BAC\cong \angle EDF}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \angle ABC\cong \angle DEF}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2220;<!-- ∠ --></mi> <mi>A</mi> <mi>B</mi> <mi>C</mi> <mo>&#x2245;<!-- ≅ --></mo> <mi mathvariant="normal">&#x2220;<!-- ∠ --></mi> <mi>D</mi> <mi>E</mi> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \angle ABC\cong \angle DEF}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d032d33bfbc146f5d9cd03c7650cf1eed29b60e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:17.169ex; height:2.176ex;" alt="{\displaystyle \angle ABC\cong \angle DEF}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \angle BCA\cong \angle EFD.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2220;<!-- ∠ --></mi> <mi>B</mi> <mi>C</mi> <mi>A</mi> <mo>&#x2245;<!-- ≅ --></mo> <mi mathvariant="normal">&#x2220;<!-- ∠ --></mi> <mi>E</mi> <mi>F</mi> <mi>D</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \angle BCA\cong \angle EFD.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7105a1268007df1c292a69c9ecaf01ba8d7ce56c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:17.816ex; height:2.176ex;" alt="{\displaystyle \angle BCA\cong \angle EFD.}"></span></dd></dl> <p>The statement is often used as a justification in elementary geometry proofs when a conclusion of the congruence of parts of two triangles is needed after the congruence of the triangles has been established. For example, if two triangles have been shown to be congruent by the <i>SSS</i> criteria and a statement that corresponding angles are congruent is needed in a proof, then CPCTC may be used as a justification of this statement. </p><p>A related theorem is <b>CPCFC</b>, in which "triangles" is replaced with "figures" so that the theorem applies to any pair of <a href="/wiki/Polygon" title="Polygon">polygons</a> or <a href="/wiki/Polyhedron" title="Polyhedron">polyhedrons</a> that are congruent. </p> <div class="mw-heading mw-heading2"><h2 id="Definition_of_congruence_in_analytic_geometry">Definition of congruence in analytic geometry</h2></div> <p>In a <a href="/wiki/Euclidean_geometry" title="Euclidean geometry">Euclidean system</a>, congruence is fundamental; it is the counterpart of equality for numbers. In <a href="/wiki/Analytic_geometry" title="Analytic geometry">analytic geometry</a>, congruence may be defined intuitively thus: two mappings of figures onto one Cartesian coordinate system are congruent if and only if, for <i>any</i> two points in the first mapping, the <a href="/wiki/Euclidean_distance" title="Euclidean distance">Euclidean distance</a> between them is equal to the Euclidean distance between the corresponding points in the second mapping. </p><p>A more formal definition states that two <a href="/wiki/Subset" title="Subset">subsets</a> <i>A</i> and <i>B</i> of <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean space</a> <b>R</b><sup><i>n</i></sup> are called congruent if there exists an <a href="/wiki/Isometry" title="Isometry">isometry</a> <i>f</i>&#160;: <b>R</b><sup><i>n</i></sup> → <b>R</b><sup><i>n</i></sup> (an element of the <a href="/wiki/Euclidean_group" title="Euclidean group">Euclidean group</a> <i>E</i>(<i>n</i>)) with <i>f</i>(<i>A</i>) = <i>B</i>. Congruence is an <a href="/wiki/Equivalence_relation" title="Equivalence relation">equivalence relation</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Congruent_conic_sections">Congruent conic sections</h2></div> <p>Two conic sections are congruent if their <a href="/wiki/Eccentricity_(mathematics)" title="Eccentricity (mathematics)">eccentricities</a> and one other distinct parameter characterizing them are equal. Their eccentricities establish their shapes, equality of which is sufficient to establish similarity, and the second parameter then establishes size. Since two <a href="/wiki/Circle" title="Circle">circles</a>, <a href="/wiki/Parabola" title="Parabola">parabolas</a>, or <a href="/wiki/Rectangular_hyperbola" class="mw-redirect" title="Rectangular hyperbola">rectangular hyperbolas</a> always have the same eccentricity (specifically 0 in the case of circles, 1 in the case of parabolas, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4afc1e27d418021bf10898eb44a7f5f315735ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.098ex; height:3.009ex;" alt="{\displaystyle {\sqrt {2}}}"></span> in the case of rectangular hyperbolas), two circles, parabolas, or rectangular hyperbolas need to have only one other common parameter value, establishing their size, for them to be congruent. </p> <div class="mw-heading mw-heading2"><h2 id="Congruent_polyhedra">Congruent polyhedra</h2></div> <p>For two <a href="/wiki/Polyhedra" class="mw-redirect" title="Polyhedra">polyhedra</a> with the same combinatorial type (that is, the same number <i>E</i> of edges, the same number of <a href="/wiki/Face_(geometry)" title="Face (geometry)">faces</a>, and the same number of sides on corresponding faces), there exists a set of <i>E</i> measurements that can establish whether or not the polyhedra are congruent.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> The number is tight, meaning that less than <i>E</i> measurements are not enough if the polyhedra are generic among their combinatorial type. But less measurements can work for special cases. For example, <a href="/wiki/Cube" title="Cube">cubes</a> have 12 edges, but 9 measurements are enough to decide if a polyhedron of that combinatorial type is congruent to a given regular cube. </p> <div class="mw-heading mw-heading2"><h2 id="Congruent_triangles_on_a_sphere">Congruent triangles on a sphere</h2></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Solving_triangles#Solving_spherical_triangles" class="mw-redirect" title="Solving triangles">Solving triangles §&#160;Solving spherical triangles</a>, and <a href="/wiki/Spherical_trigonometry#Solution_of_triangles" title="Spherical trigonometry">Spherical trigonometry §&#160;Solution of triangles</a></div> <p>As with plane triangles, on a sphere two triangles sharing the same sequence of angle-side-angle (ASA) are necessarily congruent (that is, they have three identical sides and three identical angles).<sup id="cite_ref-Bolin_9-0" class="reference"><a href="#cite_note-Bolin-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> This can be seen as follows: One can situate one of the vertices with a given angle at the south pole and run the side with given length up the prime meridian. Knowing both angles at either end of the segment of fixed length ensures that the other two sides emanate with a uniquely determined trajectory, and thus will meet each other at a uniquely determined point; thus ASA is valid. </p><p>The congruence theorems side-angle-side (SAS) and side-side-side (SSS) also hold on a sphere; in addition, if two spherical triangles have an identical angle-angle-angle (AAA) sequence, they are congruent (unlike for plane triangles).<sup id="cite_ref-Bolin_9-1" class="reference"><a href="#cite_note-Bolin-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> </p><p>The plane-triangle congruence theorem angle-angle-side (AAS) does not hold for spherical triangles.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> As in plane geometry, side-side-angle (SSA) does not imply congruence. </p> <div class="mw-heading mw-heading2"><h2 id="Notation">Notation</h2></div> <p>A symbol commonly used for congruence is an equals symbol with a <a href="/wiki/Tilde" title="Tilde">tilde</a> above it, <b><span class="texhtml">≅</span></b>, corresponding to the <a href="/wiki/Unicode" title="Unicode">Unicode</a> character 'approximately equal to' (U+2245). In the UK, the three-bar equal sign <i><span class="texhtml">≡</span></i> (U+2261) is sometimes used. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2></div> <ul><li><a href="/wiki/Euclidean_plane_isometry" title="Euclidean plane isometry">Euclidean plane isometry</a></li> <li><a href="/wiki/Isometry" title="Isometry">Isometry</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFClaphamNicholson2009" class="citation web cs1">Clapham, C.; Nicholson, J. (2009). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20131029203826/http://web.cortland.edu/matresearch/OxfordDictionaryMathematics.pdf">"Oxford Concise Dictionary of Mathematics, Congruent Figures"</a> <span class="cs1-format">(PDF)</span>. Addison-Wesley. p.&#160;167. Archived from the original on 29 October 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">2 June</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Oxford+Concise+Dictionary+of+Mathematics%2C+Congruent+Figures&amp;rft.pages=167&amp;rft.pub=Addison-Wesley&amp;rft.date=2009&amp;rft.aulast=Clapham&amp;rft.aufirst=C.&amp;rft.au=Nicholson%2C+J.&amp;rft_id=http%3A%2F%2Fweb.cortland.edu%2Fmatresearch%2FOxfordDictionaryMathematics.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACongruence+%28geometry%29" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_web" title="Template:Cite web">cite web</a>}}</code>: CS1 maint: bot: original URL status unknown (<a href="/wiki/Category:CS1_maint:_bot:_original_URL_status_unknown" title="Category:CS1 maint: bot: original URL status unknown">link</a>)</span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://mathopenref.com/congruent.html">"Congruence"</a>. Math Open Reference. 2009<span class="reference-accessdate">. Retrieved <span class="nowrap">2 June</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Congruence&amp;rft.pub=Math+Open+Reference&amp;rft.date=2009&amp;rft_id=http%3A%2F%2Fmathopenref.com%2Fcongruent.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACongruence+%28geometry%29" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFParr1970" class="citation book cs1">Parr, H. E. (1970). <i>Revision Course in School mathematics</i>. Mathematics Textbooks Second Edition. G Bell and Sons Ltd. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-7135-1717-4" title="Special:BookSources/0-7135-1717-4"><bdi>0-7135-1717-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Revision+Course+in+School+mathematics&amp;rft.series=Mathematics+Textbooks+Second+Edition&amp;rft.pub=G+Bell+and+Sons+Ltd.&amp;rft.date=1970&amp;rft.isbn=0-7135-1717-4&amp;rft.aulast=Parr&amp;rft.aufirst=H.+E.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACongruence+%28geometry%29" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCornel2002" class="citation book cs1"><a href="/wiki/Antonio_Coronel" class="mw-redirect" title="Antonio Coronel">Cornel, Antonio</a> (2002). <i>Geometry for Secondary Schools</i>. Mathematics Textbooks Second Edition. Bookmark Inc. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/971-569-441-1" title="Special:BookSources/971-569-441-1"><bdi>971-569-441-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Geometry+for+Secondary+Schools&amp;rft.series=Mathematics+Textbooks+Second+Edition&amp;rft.pub=Bookmark+Inc.&amp;rft.date=2002&amp;rft.isbn=971-569-441-1&amp;rft.aulast=Cornel&amp;rft.aufirst=Antonio&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACongruence+%28geometry%29" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJacobs1974" class="citation cs2">Jacobs, Harold R. (1974), <a rel="nofollow" class="external text" href="https://archive.org/details/geometry0000jaco/page/160/mode/2up"><i>Geometry</i></a>, W.H. Freeman, p.&#160;160, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-7167-0456-0" title="Special:BookSources/0-7167-0456-0"><bdi>0-7167-0456-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Geometry&amp;rft.pages=160&amp;rft.pub=W.H.+Freeman&amp;rft.date=1974&amp;rft.isbn=0-7167-0456-0&amp;rft.aulast=Jacobs&amp;rft.aufirst=Harold+R.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fgeometry0000jaco%2Fpage%2F160%2Fmode%2F2up&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACongruence+%28geometry%29" class="Z3988"></span> Jacobs uses a slight variation of the phrase</span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.cliffsnotes.com/study-guides/geometry/triangles/congruent-triangles">"Congruent Triangles"</a>. Cliff's Notes<span class="reference-accessdate">. Retrieved <span class="nowrap">2014-02-04</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Congruent+Triangles&amp;rft.pub=Cliff%27s+Notes&amp;rft_id=https%3A%2F%2Fwww.cliffsnotes.com%2Fstudy-guides%2Fgeometry%2Ftriangles%2Fcongruent-triangles&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACongruence+%28geometry%29" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBorisovDickinsonHastings2010" class="citation journal cs1">Borisov, Alexander; Dickinson, Mark; Hastings, Stuart (March 2010). "A Congruence Problem for Polyhedra". <i><a href="/wiki/American_Mathematical_Monthly" class="mw-redirect" title="American Mathematical Monthly">American Mathematical Monthly</a></i>. <b>117</b> (3): 232–249. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0811.4197">0811.4197</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.4169%2F000298910X480081">10.4169/000298910X480081</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:8166476">8166476</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=American+Mathematical+Monthly&amp;rft.atitle=A+Congruence+Problem+for+Polyhedra&amp;rft.volume=117&amp;rft.issue=3&amp;rft.pages=232-249&amp;rft.date=2010-03&amp;rft_id=info%3Aarxiv%2F0811.4197&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A8166476%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.4169%2F000298910X480081&amp;rft.aulast=Borisov&amp;rft.aufirst=Alexander&amp;rft.au=Dickinson%2C+Mark&amp;rft.au=Hastings%2C+Stuart&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACongruence+%28geometry%29" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCreech" class="citation web cs1">Creech, Alexa. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20131111162553/http://146.163.152.131/teaching/projects/creech_final.pdf">"A Congruence Problem"</a> <span class="cs1-format">(PDF)</span>. Archived from <a rel="nofollow" class="external text" href="http://146.163.152.131/teaching/projects/creech_final.pdf">the original</a> <span class="cs1-format">(PDF)</span> on November 11, 2013.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=A+Congruence+Problem&amp;rft.aulast=Creech&amp;rft.aufirst=Alexa&amp;rft_id=http%3A%2F%2F146.163.152.131%2Fteaching%2Fprojects%2Fcreech_final.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACongruence+%28geometry%29" class="Z3988"></span></span> </li> <li id="cite_note-Bolin-9"><span class="mw-cite-backlink">^ <a href="#cite_ref-Bolin_9-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Bolin_9-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBolin2003" class="citation web cs1">Bolin, Michael (September 9, 2003). <a rel="nofollow" class="external text" href="http://math.iit.edu/~mccomic/420/notes/Bolin_spherical.pdf#page=6">"Exploration of Spherical Geometry"</a> <span class="cs1-format">(PDF)</span>. pp.&#160;6–7. <a rel="nofollow" class="external text" href="https://ghostarchive.org/archive/20221009/http://math.iit.edu/~mccomic/420/notes/Bolin_spherical.pdf#page=6">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 2022-10-09.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Exploration+of+Spherical+Geometry&amp;rft.pages=6-7&amp;rft.date=2003-09-09&amp;rft.aulast=Bolin&amp;rft.aufirst=Michael&amp;rft_id=http%3A%2F%2Fmath.iit.edu%2F~mccomic%2F420%2Fnotes%2FBolin_spherical.pdf%23page%3D6&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACongruence+%28geometry%29" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHollyer" class="citation web cs1">Hollyer, L. <a rel="nofollow" class="external text" href="http://www.uh.edu/~hollyer/Module6/m6ppt/sld089.htm">"Slide 89 of 112"</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Slide+89+of+112&amp;rft.aulast=Hollyer&amp;rft.aufirst=L.&amp;rft_id=http%3A%2F%2Fwww.uh.edu%2F~hollyer%2FModule6%2Fm6ppt%2Fsld089.htm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACongruence+%28geometry%29" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></div> <div class="side-box-text plainlist">Wikimedia Commons has media related to <span style="font-weight: bold; font-style: italic;"><a href="https://commons.wikimedia.org/wiki/Category:Congruence" class="extiw" title="commons:Category:Congruence">Congruence</a></span>.</div></div> </div> <ul><li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20160531042730/http://www.cut-the-knot.org/pythagoras/SSS.shtml">The SSS</a> at <a href="/wiki/Cut-the-Knot" class="mw-redirect" title="Cut-the-Knot">Cut-the-Knot</a></li> <li><a rel="nofollow" class="external text" href="http://www.cut-the-knot.org/pythagoras/SSA.shtml">The SSA</a> at <a href="/wiki/Cut-the-Knot" class="mw-redirect" title="Cut-the-Knot">Cut-the-Knot</a></li> <li>Interactive animations demonstrating <a rel="nofollow" class="external text" href="http://www.mathopenref.com/congruentpolygons.html">Congruent polygons</a>, <a rel="nofollow" class="external text" href="http://www.mathopenref.com/congruentangles.html">Congruent angles</a>, <a rel="nofollow" class="external text" href="http://www.mathopenref.com/congruentlines.html">Congruent line segments</a>, <a rel="nofollow" class="external text" href="http://www.mathopenref.com/congruenttriangles.html">Congruent triangles</a> at Math Open Reference</li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox authority-control" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q154210#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4164978-3">Germany</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐6855777b7b‐57784 Cached time: 20241204113805 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.469 seconds Real time usage: 0.721 seconds Preprocessor visited node count: 1255/1000000 Post‐expand include size: 24598/2097152 bytes Template argument size: 1488/2097152 bytes Highest expansion depth: 13/100 Expensive parser function count: 6/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 42564/5000000 bytes Lua time usage: 0.314/10.000 seconds Lua memory usage: 5766071/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 579.335 1 -total 30.65% 177.589 1 Template:Reflist 23.37% 135.365 1 Template:Authority_control 21.86% 126.629 6 Template:Cite_web 20.32% 117.711 1 Template:Short_description 9.68% 56.098 1 Template:Commons_category 9.65% 55.880 7 Template:Main_other 9.32% 53.968 1 Template:Sister_project 8.93% 51.718 1 Template:SDcat 8.39% 48.612 2 Template:Pagetype --> <!-- Saved in parser cache with key enwiki:pcache:39330:|#|:idhash:canonical and timestamp 20241204113805 and revision id 1258938297. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&amp;useformat=desktop" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Congruence_(geometry)&amp;oldid=1258938297">https://en.wikipedia.org/w/index.php?title=Congruence_(geometry)&amp;oldid=1258938297</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Euclidean_geometry" title="Category:Euclidean geometry">Euclidean geometry</a></li><li><a href="/wiki/Category:Equivalence_(mathematics)" title="Category:Equivalence (mathematics)">Equivalence (mathematics)</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_maint:_bot:_original_URL_status_unknown" title="Category:CS1 maint: bot: original URL status unknown">CS1 maint: bot: original URL status unknown</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Wikipedia_indefinitely_semi-protected_pages" title="Category:Wikipedia indefinitely semi-protected pages">Wikipedia indefinitely semi-protected pages</a></li><li><a href="/wiki/Category:Commons_category_link_is_on_Wikidata" title="Category:Commons category link is on Wikidata">Commons category link is on Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 22 November 2024, at 13:19<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Congruence_(geometry)&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-6855777b7b-fvc2g","wgBackendResponseTime":133,"wgPageParseReport":{"limitreport":{"cputime":"0.469","walltime":"0.721","ppvisitednodes":{"value":1255,"limit":1000000},"postexpandincludesize":{"value":24598,"limit":2097152},"templateargumentsize":{"value":1488,"limit":2097152},"expansiondepth":{"value":13,"limit":100},"expensivefunctioncount":{"value":6,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":42564,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 579.335 1 -total"," 30.65% 177.589 1 Template:Reflist"," 23.37% 135.365 1 Template:Authority_control"," 21.86% 126.629 6 Template:Cite_web"," 20.32% 117.711 1 Template:Short_description"," 9.68% 56.098 1 Template:Commons_category"," 9.65% 55.880 7 Template:Main_other"," 9.32% 53.968 1 Template:Sister_project"," 8.93% 51.718 1 Template:SDcat"," 8.39% 48.612 2 Template:Pagetype"]},"scribunto":{"limitreport-timeusage":{"value":"0.314","limit":"10.000"},"limitreport-memusage":{"value":5766071,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-6855777b7b-57784","timestamp":"20241204113805","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Congruence (geometry)","url":"https:\/\/en.wikipedia.org\/wiki\/Congruence_(geometry)","sameAs":"http:\/\/www.wikidata.org\/entity\/Q154210","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q154210","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-02-16T06:13:53Z","dateModified":"2024-11-22T13:19:07Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/6\/60\/Angle-angle-side_triangle_congruence.svg","headline":"when two figures or objects in geometry have the same shape and size, or if one has the same shape and size as the mirror image of the other"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10