CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 57 results for author: <span class="mathjax">Dicker, S R</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/astro-ph" aria-role="search"> Searching in archive <strong>astro-ph</strong>. <a href="/search/?searchtype=author&amp;query=Dicker%2C+S+R">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Dicker, S R"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Dicker%2C+S+R&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Dicker, S R"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Dicker%2C+S+R&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Dicker%2C+S+R&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Dicker%2C+S+R&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.09241">arXiv:2501.09241</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.09241">pdf</a>, <a href="https://arxiv.org/format/2501.09241">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Simons Observatory: Characterization of the Large Aperture Telescope Receiver </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Haridas%2C+S+K">Saianeesh K. Haridas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Iuliano%2C+J">Jeff Iuliano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kofman%2C+A">Anna Kofman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manduca%2C+A">Alex Manduca</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarmiento%2C+K+P">Karen Perez Sarmiento</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Satterthwaite%2C+T+P">Thomas P. Satterthwaite</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+Y">Yuhan Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ahmed%2C+Z">Zeeshan Ahmed</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bae%2C+K">Kyuyoung Bae</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coppi%2C+G">Gabriele Coppi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dow%2C+P+N">Peter N. Dow</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dutcher%2C+D">Daniel Dutcher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galitzki%2C+N">Nicholas Galitzki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gudmundsson%2C+J+E">Jon E. Gudmundsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Henderson%2C+S+W">Shawn W. Henderson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnson%2C+B+R">Bradley R. Johnson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koc%2C+M+A">Matthew A. Koc</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koopman%2C+B+J">Brian J. Koopman</a> , et al. (19 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.09241v1-abstract-short" style="display: inline;"> The Simons Observatory (SO) is a ground-based cosmic microwave background (CMB) survey experiment that currently consists of three 0.42m small-aperture telescopes (SATs) and one 6m large-aperture telescope (LAT), located at an elevation of 5200m in the Atacama Desert in Chile. At the LAT&#39;s focal plane, SO will install &gt;62,000 transition-edge sensor detectors across 13 optics tubes (OTs) within the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09241v1-abstract-full').style.display = 'inline'; document.getElementById('2501.09241v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.09241v1-abstract-full" style="display: none;"> The Simons Observatory (SO) is a ground-based cosmic microwave background (CMB) survey experiment that currently consists of three 0.42m small-aperture telescopes (SATs) and one 6m large-aperture telescope (LAT), located at an elevation of 5200m in the Atacama Desert in Chile. At the LAT&#39;s focal plane, SO will install &gt;62,000 transition-edge sensor detectors across 13 optics tubes (OTs) within the Large Aperture Telescope Receiver (LATR), the largest cryogenic camera ever built to observe the CMB. Here we report on the validation of the LATR in the laboratory and the subsequent dark testing and validation within the LAT. We show that the LATR meets cryogenic, optical, and detector specifications required for high-sensitivity measurements of the CMB. At the time of writing, the LATR is installed in the LAT with six OTs (corresponding to &gt;31,000 detectors), and the LAT mirrors and remaining seven OTs are undergoing development. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09241v1-abstract-full').style.display = 'none'; document.getElementById('2501.09241v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.02177">arXiv:2408.02177</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.02177">pdf</a>, <a href="https://arxiv.org/format/2408.02177">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> The RAdio Galaxy Environment Reference Survey (RAGERS): Evidence of an anisotropic distribution of submillimeter galaxies in the 4C 23.56 protocluster at z=2.48 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Zhou%2C+D">Dazhi Zhou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Greve%2C+T+R">Thomas R. Greve</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gullberg%2C+B">Bitten Gullberg</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+M+M">Minju M. Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Mascolo%2C+L">Luca Di Mascolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Romero%2C+C+E">Charles E. Romero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chapman%2C+S+C">Scott C. Chapman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+C">Chian-Chou Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cornish%2C+T">Thomas Cornish</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+L+C">Luis C. Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kohno%2C+K">Kotaro Kohno</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lagos%2C+C+D+P">Claudia D. P. Lagos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mason%2C+B+S">Brian S. Mason</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wagg%2C+J+F+W">Jeff F. W. Wagg</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+Q+D">Q. Daniel Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+R">Ran Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brinch%2C+M">Malte. Brinch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dannerbauer%2C+H">Helmut Dannerbauer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jiang%2C+X">Xue-Jian Jiang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lauritsen%2C+L+R+B">Lynge R. B. Lauritsen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vijayan%2C+A+P">Aswin P. Vijayan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vizgan%2C+D">David Vizgan</a> , et al. (19 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.02177v1-abstract-short" style="display: inline;"> High-redshift radio(-loud) galaxies (H$z$RGs) are massive galaxies with powerful radio-loud active galactic nuclei (AGNs) and serve as beacons for protocluster identification. However, the interplay between H$z$RGs and the large-scale environment remains unclear. To understand the connection between H$z$RGs and the surrounding obscured star formation, we investigated the overdensity and spatial di&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02177v1-abstract-full').style.display = 'inline'; document.getElementById('2408.02177v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.02177v1-abstract-full" style="display: none;"> High-redshift radio(-loud) galaxies (H$z$RGs) are massive galaxies with powerful radio-loud active galactic nuclei (AGNs) and serve as beacons for protocluster identification. However, the interplay between H$z$RGs and the large-scale environment remains unclear. To understand the connection between H$z$RGs and the surrounding obscured star formation, we investigated the overdensity and spatial distribution of submillimeter-bright galaxies (SMGs) in the field of 4C\,23.56, a well-known H$z$RG at $z=2.48$. We used SCUBA-2 data ($蟽\,{\sim}\,0.6$\,mJy) to estimate the $850\,{\rm 渭m}$ source number counts and examine the radial and azimuthal overdensities of the $850\,{\rm 渭m}$ sources in the vicinity of the H$z$RG. The angular distribution of SMGs is inhomogeneous around the H$z$RG 4C\,23.56, with fewer sources oriented along the radio jet. We also find a significant overdensity of bright SMGs (${\rm S}_{850\rm\,渭m}\geq5\,$mJy). Faint and bright SMGs exhibit different spatial distributions. The former are concentrated in the core region, while the latter prefer the outskirts of the H$z$RG field. High-resolution observations show that the seven brightest SMGs in our sample are intrinsically bright, suggesting that the overdensity of bright SMGs is less likely due to the source multiplicity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02177v1-abstract-full').style.display = 'none'; document.getElementById('2408.02177v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 17 figures, 5 tables, accepted to A&amp;A</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.06868">arXiv:2405.06868</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.06868">pdf</a>, <a href="https://arxiv.org/format/2405.06868">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Simons Observatory: Pre-deployment Performance of a Large Aperture Telescope Optics Tube in the 90 and 150 GHz Spectral Bands </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Sierra%2C+C+E">Carlos E. Sierra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sutariya%2C+S">Shreya Sutariya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alford%2C+T">Thomas Alford</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kofman%2C+A+M">Anna M. Kofman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chesmore%2C+G+E">Grace E. Chesmore</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bazarko%2C+A">Andrew Bazarko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dow%2C+P+N">Peter N. Dow</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dutcher%2C+D">Daniel Dutcher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galitzki%2C+N">Nicholas Galitzki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Golec%2C+J+E">Joseph E. Golec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Groh%2C+J+C">John C. Groh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gudmundsson%2C+J+E">Jon E. Gudmundsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Haridas%2C+S+K">Saianeesh K. Haridas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Healy%2C+E">Erin Healy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Iuliano%2C+J">Jeffrey Iuliano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnson%2C+B+R">Bradley R. Johnson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lessler%2C+C+S">Claire S. Lessler</a> , et al. (20 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.06868v1-abstract-short" style="display: inline;"> The Simons Observatory will map the temperature and polarization over half of the sky, at millimeter wavelengths in six spectral bands from the Atacama Desert in Chile. These data will provide new insights into the genesis, content, and history of our Universe; the astrophysics of galaxies and galaxy clusters; objects in our solar system; and time-varying astrophysical phenomena. This ambitious ne&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06868v1-abstract-full').style.display = 'inline'; document.getElementById('2405.06868v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.06868v1-abstract-full" style="display: none;"> The Simons Observatory will map the temperature and polarization over half of the sky, at millimeter wavelengths in six spectral bands from the Atacama Desert in Chile. These data will provide new insights into the genesis, content, and history of our Universe; the astrophysics of galaxies and galaxy clusters; objects in our solar system; and time-varying astrophysical phenomena. This ambitious new instrument suite, initially comprising three 0.5 m small-aperture telescopes and one 6 m large aperture telescope, is designed using a common combination of new technologies and new implementations to realize an observatory significantly more capable than the previous generation. In this paper, we present the pre-deployment performance of the first mid-frequency &#34;optics tube&#34; which will be fielded on the large aperture telescope with sensitivity to the 90 and 150 GHz spectral bands. This optics tube contains lenses, filters, detectors, and readout components, all of which operate at cryogenic temperatures. It is one of seven that form the core of the large aperture telescope receiver in its initial deployment. We describe this optics tube, including details of comprehensive testing methods, new techniques for beam and passband characterization, and its measured performance. The performance metrics include beams, optical efficiency, passbands, and forecasts for the on-sky performance of the system. We forecast a sensitivity that exceeds the requirements of the large aperture telescope with greater than 30% margin in each spectral band, and predict that the instrument will realize diffraction-limited performance and the expected detector passbands. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06868v1-abstract-full').style.display = 'none'; document.getElementById('2405.06868v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.09855">arXiv:2403.09855</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.09855">pdf</a>, <a href="https://arxiv.org/format/2403.09855">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ad4e35">10.3847/1538-4357/ad4e35 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sensitive 3mm Imaging of Discrete Sources in the Fields of tSZ-Selected Galaxy Clusters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarmiento%2C+K+P">Karen Perez Sarmiento</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mason%2C+B">Brian Mason</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Mascolo%2C+L">Luca Di Mascolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Haridas%2C+S">Saianeesh Haridas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">Matt Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M">Mathew Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moravec%2C+E">Emily Moravec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Romero%2C+C">Charles Romero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarazin%2C+C+L">Craig L. Sarazin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sievers%2C+J">Jonathan Sievers</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.09855v2-abstract-short" style="display: inline;"> In this paper we present the results of a blind survey for compact sources in 243 Galaxy clusters that were identified using the thermal Sunyaev-Zeldovich effect (tSZ). The survey was carried out at 90 GHz using MUSTANG2 on the Green Bank telescope and achieved a $5蟽$ detection limit of 1 mJy in the center of each cluster. We detected 24 discrete sources. The majority (18) of these correspond to k&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09855v2-abstract-full').style.display = 'inline'; document.getElementById('2403.09855v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.09855v2-abstract-full" style="display: none;"> In this paper we present the results of a blind survey for compact sources in 243 Galaxy clusters that were identified using the thermal Sunyaev-Zeldovich effect (tSZ). The survey was carried out at 90 GHz using MUSTANG2 on the Green Bank telescope and achieved a $5蟽$ detection limit of 1 mJy in the center of each cluster. We detected 24 discrete sources. The majority (18) of these correspond to known radio sources, and of these, 5 show signs of significant variability, either with time or in spectral index. The remaining sources have no clear counterparts at other wavelengths. Searches for galaxy clusters via the tSZ effect strongly rely on observations at 90 GHz, and the sources found have the potential to bias mass estimates of clusters. We compare our results to the simulation Websky that can be used to estimate the source contamination in galaxy cluster catalogs. While the simulation showed a good match to our observations at the clusters&#39; centers, it does not match our source distribution further out. Sources over 104&#34; from a cluster&#39;s center bias the tSZ signal high, for some of our sources, by over 50%. When averaged over the whole cluster population the effect is smaller but still at a level of 1 to 2%. We also discovered that unlike previous measurements and simulations we see an enhancement of source counts in the outer regions of the clusters and fewer sources than expected in the centers of this tSZ selected sample. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09855v2-abstract-full').style.display = 'none'; document.getElementById('2403.09855v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures and 2 tables Extended version of figure 4 is included and the full data for table 1 can be found as the auxiliary file tab1.txt</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ,970,2024,84 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.12931">arXiv:2307.12931</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.12931">pdf</a>, <a href="https://arxiv.org/format/2307.12931">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/AO.501744">10.1364/AO.501744 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Freeform three-mirror anastigmatic large-aperture telescope and receiver optics for CMB-S4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Puddu%2C+R">Roberto Puddu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benson%2C+B">Bradford Benson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carlstrom%2C+J">John Carlstrom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Emerson%2C+N">Nick Emerson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gudmundsson%2C+J+E">Jon E. Gudmundsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Limon%2C+M">Michele Limon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McMahon%2C+J">Jeff McMahon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nagy%2C+J+M">Johanna M. Nagy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Natoli%2C+T">Tyler Natoli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Niemack%2C+M+D">Michael D. Niemack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Padin%2C+S">Stephen Padin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ruhl%2C+J">John Ruhl</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Simon%2C+S+M">Sara M. Simon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=collaboration%2C+t+C">the CMB-S4 collaboration</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.12931v1-abstract-short" style="display: inline;"> CMB-S4, the next-generation ground-based cosmic microwave background (CMB) observatory, will provide detailed maps of the CMB at millimeter wavelengths to dramatically advance our understanding of the origin and evolution of the universe. CMB-S4 will deploy large and small aperture telescopes with hundreds of thousands of detectors to observe the CMB at arcminute and degree resolutions at millimet&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12931v1-abstract-full').style.display = 'inline'; document.getElementById('2307.12931v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.12931v1-abstract-full" style="display: none;"> CMB-S4, the next-generation ground-based cosmic microwave background (CMB) observatory, will provide detailed maps of the CMB at millimeter wavelengths to dramatically advance our understanding of the origin and evolution of the universe. CMB-S4 will deploy large and small aperture telescopes with hundreds of thousands of detectors to observe the CMB at arcminute and degree resolutions at millimeter wavelengths. Inflationary science benefits from a deep delensing survey at arcminute resolutions capable of observing a large field of view at millimeter wavelengths. This kind of survey acts as a complement to a degree angular resolution survey. The delensing survey requires a nearly uniform distribution of cameras per frequency band across the focal plane. We present a large-throughput, large-aperture (5-meter diameter) freeform three-mirror anastigmatic telescope and an array of 85 cameras for CMB observations at arcminute resolutions, which meets the needs of the delensing survey of CMB-S4. A detailed prescription of this three-mirror telescope and cameras is provided, with a series of numerical calculations that indicate expected optical performance and mechanical tolerance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12931v1-abstract-full').style.display = 'none'; document.getElementById('2307.12931v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.05790">arXiv:2305.05790</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.05790">pdf</a>, <a href="https://arxiv.org/format/2305.05790">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acd3f0">10.3847/1538-4357/acd3f0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Inferences from surface brightness fluctuations of Zwicky 3146 via the Sunyaev-Zeldovich effect and X-ray observations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Romero%2C+C+E">Charles E. Romero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gaspari%2C+M">Massimo Gaspari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schellenberger%2C+G">Gerrit Schellenberger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Forman%2C+W">William Forman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Khatri%2C+R">Rishi Khatri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kraft%2C+R">Ralph Kraft</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Mascolo%2C+L">Luca Di Mascolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mason%2C+B+S">Brian S. Mason</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moravec%2C+E">Emily Moravec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nulsen%2C+P">Paul Nulsen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarmiento%2C+K+P">Karen Perez Sarmiento</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarazin%2C+C">Craig Sarazin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sievers%2C+J">Jonathan Sievers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Su%2C+Y">Yuanyuan Su</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.05790v1-abstract-short" style="display: inline;"> The galaxy cluster Zwicky 3146 is a sloshing cool core cluster at $z{=}0.291$ that in SZ imaging does not appear to exhibit significant pressure substructure in the intracluster medium (ICM). We perform a surface brightness fluctuation analysis via Fourier amplitude spectra on SZ (MUSTANG-2) and X-ray (XMM-Newton) images of this cluster. These surface brightness fluctuations can be deprojected to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.05790v1-abstract-full').style.display = 'inline'; document.getElementById('2305.05790v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.05790v1-abstract-full" style="display: none;"> The galaxy cluster Zwicky 3146 is a sloshing cool core cluster at $z{=}0.291$ that in SZ imaging does not appear to exhibit significant pressure substructure in the intracluster medium (ICM). We perform a surface brightness fluctuation analysis via Fourier amplitude spectra on SZ (MUSTANG-2) and X-ray (XMM-Newton) images of this cluster. These surface brightness fluctuations can be deprojected to infer pressure and density fluctuations from the SZ and X-ray data, respectively. In the central region (Ring 1, $r &lt; 100^{\prime\prime} = 440$ kpc, in our analysis) we find fluctuation spectra that suggest injection scales around 200 kpc ($\sim 140$ kpc from pressure fluctuations and $\sim 250$ kpc from density fluctuations). When comparing the pressure and density fluctuations in the central region, we observe a change in the effective thermodynamic state from large to small scales, from isobaric (likely due to the slow sloshing) to adiabatic (due to more vigorous motions). By leveraging scalings from hydrodynamical simulations, we find an average 3D Mach number $\approx0.5$. We further compare our results to other studies of Zwicky 3146 and, more broadly, to other studies of fluctuations in other clusters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.05790v1-abstract-full').style.display = 'none'; document.getElementById('2305.05790v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to ApJ; 22 pages, 19 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.02292">arXiv:2208.02292</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.02292">pdf</a>, <a href="https://arxiv.org/format/2208.02292">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/AO.472459">10.1364/AO.472459 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Simons Observatory: Broadband Metamaterial Anti-Reflection Cuttings for Large Aperture Alumina Optics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Golec%2C+J+E">Joseph E. Golec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sutariya%2C+S">Shreya Sutariya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jackson%2C+R">Rebecca Jackson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zimmerman%2C+J">Jerry Zimmerman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Iuliano%2C+J">Jeffrey Iuliano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McMahon%2C+J">Jeff McMahon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Puglisi%2C+G">Giuseppe Puglisi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tucker%2C+C">Carole Tucker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wollack%2C+E+J">Edward J. Wollack</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.02292v2-abstract-short" style="display: inline;"> We present the design, fabrication, and measured performance of metamaterial Anti-Reflection Cuttings (ARCs) for large-format alumina filters operating over more than an octave of bandwidth to be deployed on the Simons Observatory (SO). The ARC consists of sub-wavelength features diced into the optic&#39;s surface using a custom dicing saw with near-micron accuracy. The designs achieve percent-level c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.02292v2-abstract-full').style.display = 'inline'; document.getElementById('2208.02292v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.02292v2-abstract-full" style="display: none;"> We present the design, fabrication, and measured performance of metamaterial Anti-Reflection Cuttings (ARCs) for large-format alumina filters operating over more than an octave of bandwidth to be deployed on the Simons Observatory (SO). The ARC consists of sub-wavelength features diced into the optic&#39;s surface using a custom dicing saw with near-micron accuracy. The designs achieve percent-level control over reflections at angles of incidence up to 20$^\circ$. The ARCs were demonstrated on four 42 cm diameter filters covering the 75-170 GHz band and a 50 mm diameter prototype covering the 200-300 GHz band. The reflection and transmission of these samples were measured using a broadband coherent source that covers frequencies from 20 GHz to 1.2 THz. These measurements demonstrate percent-level control over reflectance across the targeted pass-bands and a rapid reduction in transmission as the wavelength approaches the length scale of the metamaterial structure where scattering dominates the optical response. The latter behavior enables the use of the metamaterial ARC as a scattering filter in this limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.02292v2-abstract-full').style.display = 'none'; document.getElementById('2208.02292v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 8 figures, published in Applied Optics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-22-569-PPD-V </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Opt. 61, 8904-8911 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.10012">arXiv:2207.10012</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.10012">pdf</a>, <a href="https://arxiv.org/format/2207.10012">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Optical design concept of the CMB-S4 large-aperture telescopes and cameras </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benson%2C+B">Bradford Benson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carlstrom%2C+J">John Carlstrom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Emerson%2C+N">Nick Emerson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gudmundsson%2C+J+E">Jon E. Gudmundsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hills%2C+R">Richard Hills</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Limon%2C+M">Michele Limon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McMahon%2C+J">Jeff McMahon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Niemack%2C+M+D">Michael D. Niemack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nagy%2C+J+M">Johanna M. Nagy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Padin%2C+S">Stephen Padin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ruhl%2C+J">John Ruhl</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Simon%2C+S+M">Sara M. Simon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=collaboration%2C+t+C">the CMB-S4 collaboration</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.10012v1-abstract-short" style="display: inline;"> CMB-S4 -- the next-generation ground-based cosmic microwave background (CMB) experiment - will significantly advance the sensitivity of CMB measurements and improve our understanding of the origin and evolution of the universe. CMB-S4 will deploy large-aperture telescopes fielding hundreds of thousands of detectors at millimeter wavelengths. We present the baseline optical design concept of the la&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.10012v1-abstract-full').style.display = 'inline'; document.getElementById('2207.10012v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.10012v1-abstract-full" style="display: none;"> CMB-S4 -- the next-generation ground-based cosmic microwave background (CMB) experiment - will significantly advance the sensitivity of CMB measurements and improve our understanding of the origin and evolution of the universe. CMB-S4 will deploy large-aperture telescopes fielding hundreds of thousands of detectors at millimeter wavelengths. We present the baseline optical design concept of the large-aperture CMB-S4 telescopes, which consists of two optical configurations: (i) a new off-axis, three-mirror, free-form anastigmatic design and (ii) the existing coma-corrected crossed-Dragone design. We also present an overview of the optical configuration of the array of silicon optics cameras that will populate the focal plane with 85 diffraction-limited optics tubes covering up to 9 degrees of field of view, up to $1.1 \, \rm mm$ in wavelength. We describe the computational optimization methods that were put in place to implement the families of designs described here and give a brief update on the current status of the design effort. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.10012v1-abstract-full').style.display = 'none'; document.getElementById('2207.10012v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.12239">arXiv:2112.12239</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.12239">pdf</a>, <a href="https://arxiv.org/format/2112.12239">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac85e5">10.3847/1538-4357/ac85e5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Massive and Distant Clusters of WISE Survey XI: Stellar Mass Fractions and Luminosity Functions of MaDCoWS Clusters at $z \sim 1$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Decker%2C+B">Bandon Decker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brodwin%2C+M">Mark Brodwin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Saha%2C+R">Ripon Saha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Connor%2C+T">Thomas Connor</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eisenhardt%2C+P+R+M">Peter R. M. Eisenhardt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gonzalez%2C+A+H">Anthony H. Gonzalez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moravec%2C+E">Emily Moravec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Muhibullah%2C+M">Mustafa Muhibullah</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stanford%2C+S+A">S. Adam Stanford</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stern%2C+D">Daniel Stern</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Thongkham%2C+K">Khunanon Thongkham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wylezalek%2C+D">Dominika Wylezalek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mason%2C+B">Brian Mason</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Romero%2C+C+E">Charles E. Romero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ruppin%2C+F">Florian Ruppin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.12239v1-abstract-short" style="display: inline;"> We present stellar mass fractions and composite luminosity functions (LFs) for a sample of \Ncl\ clusters from the Massive and Distant Clusters of WISE Survey (MaDCoWS) at a redshift range of $0.951 \leq z \leq 1.43$. Using SED fitting of optical and deep mid-infrared photometry, we establish the membership of objects along the lines-of-sight to these clusters and calculate the stellar masses of m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.12239v1-abstract-full').style.display = 'inline'; document.getElementById('2112.12239v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.12239v1-abstract-full" style="display: none;"> We present stellar mass fractions and composite luminosity functions (LFs) for a sample of \Ncl\ clusters from the Massive and Distant Clusters of WISE Survey (MaDCoWS) at a redshift range of $0.951 \leq z \leq 1.43$. Using SED fitting of optical and deep mid-infrared photometry, we establish the membership of objects along the lines-of-sight to these clusters and calculate the stellar masses of member galaxies. We find stellar mass fractions for these clusters largely consistent with previous works, including appearing to display a negative correlation with total cluster mass. We measure a composite $3.6~\mathrm{渭m}$ LF down to $m^*+2.5$ for all 12 clusters. Fitting a Schechter function to the LF, we find a characteristic $3.6~\mathrm{渭m}$ magnitude of $m^*=19.83\pm0.12$ and faint-end slope of $伪=-0.81\pm0.10$ for the full sample at a mean redshift of $\bar{z} = 1.18$. We also divide the clusters into high- and low-redshift bins at $\bar{z}=1.29$ and $\bar{z}=1.06$ respectively and measure a composite LF for each bin. We see a small, but statistically significant evolution in $m^*$ and $伪$ -- consistent with passive evolution -- when we study the joint fit to the two parameters, which is probing the evolution of faint cluster galaxies at $z\sim1$. This highlights the importance of deep IR data in studying the evolution of cluster galaxy populations at high-redshift. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.12239v1-abstract-full').style.display = 'none'; document.getElementById('2112.12239v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 11 figures, Submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.05514">arXiv:2110.05514</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.05514">pdf</a>, <a href="https://arxiv.org/format/2110.05514">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac4506">10.3847/1538-4357/ac4506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Radio and X-ray observations of the luminous Fast Blue Optical Transient AT2020xnd </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Bright%2C+J+S">Joe S. Bright</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Margutti%2C+R">Raffaella Margutti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Matthews%2C+D">David Matthews</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brethauer%2C+D">Daniel Brethauer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coppejans%2C+D">Deanne Coppejans</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wieringa%2C+M+H">Mark H. Wieringa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Metzger%2C+B+D">Brian D. Metzger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=DeMarchi%2C+L">Lindsay DeMarchi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Laskar%2C+T">Tanmoy Laskar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Romero%2C+C">Charles Romero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alexander%2C+K+D">Kate D. Alexander</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Horesh%2C+A">Assaf Horesh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Migliori%2C+G">Giulia Migliori</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chornock%2C+R">Ryan Chornock</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Berger%2C+E">E. Berger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bietenholz%2C+M">Michael Bietenholz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jacobson-Gal%C3%A1n%2C+W+V">W. V. Jacobson-Gal谩n</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mason%2C+B+S">Brian S. Mason</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Milisavljevic%2C+D">Dan Milisavljevic</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Motta%2C+S+E">Sara E. Motta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ramirez-Ruiz%2C+E">Enrico Ramirez-Ruiz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rhodes%2C+L">Lauren Rhodes</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.05514v1-abstract-short" style="display: inline;"> We present deep X-ray and radio observations of the Fast Blue Optical Transient (FBOT) AT2020xnd/ZTF20acigmel at $z=0.2433$ from $13$d to $269$d after explosion. AT2020xnd belongs to the category of optically luminous FBOTs with similarities to the archetypal event AT2018cow. AT2020xnd shows luminous radio emission reaching $L_谓\approx8\times10^{29}$ergs$^{-1}$Hz$^{-1}$ at 20GHz and $75$d post exp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.05514v1-abstract-full').style.display = 'inline'; document.getElementById('2110.05514v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.05514v1-abstract-full" style="display: none;"> We present deep X-ray and radio observations of the Fast Blue Optical Transient (FBOT) AT2020xnd/ZTF20acigmel at $z=0.2433$ from $13$d to $269$d after explosion. AT2020xnd belongs to the category of optically luminous FBOTs with similarities to the archetypal event AT2018cow. AT2020xnd shows luminous radio emission reaching $L_谓\approx8\times10^{29}$ergs$^{-1}$Hz$^{-1}$ at 20GHz and $75$d post explosion, accompanied by luminous and rapidly fading soft X-ray emission peaking at $L_{X}\approx6\times10^{42}$ergs$^{-1}$. Interpreting the radio emission in the context of synchrotron radiation from the explosion&#39;s shock interaction with the environment we find that AT2020xnd launched a high-velocity outflow ($v\sim$0.1-0.2$c$) propagating into a dense circumstellar medium (effective $\dot M\approx10^{-3}M_{\rm{sol}}$yr$^{-1}$ for an assumed wind velocity of $v_w=1000$kms$^{-1}$). Similar to AT2018cow, the detected X-ray emission is in excess compared to the extrapolated synchrotron spectrum and constitutes a different emission component, possibly powered by accretion onto a newly formed black hole or neutron star. These properties make AT2020xnd a high-redshift analog to AT2018cow, and establish AT2020xnd as the fourth member of the class of optically-luminous FBOTs with luminous multi-wavelength counterparts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.05514v1-abstract-full').style.display = 'none'; document.getElementById('2110.05514v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 6 figures, 6 tables. Submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.06725">arXiv:2107.06725</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.06725">pdf</a>, <a href="https://arxiv.org/format/2107.06725">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab2679">10.1093/mnras/stab2679 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observations of compact sources in galaxy clusters using MUSTANG2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E+S">Elia S. Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+G">Gene Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">Matt Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hincks%2C+A+D">Adam D. Hincks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huffenberger%2C+K">Kevin Huffenberger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+J+P">John P. Hughes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Mascolo%2C+L">Luca Di Mascolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mason%2C+B+S">Brian S. Mason</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mates%2C+J+A+B">J. A. B. Mates</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McMahon%2C+J">Jeff McMahon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Naess%2C+S">Sigurd Naess</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Partridge%2C+B">Bruce Partridge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Radiconi%2C+F">Federico Radiconi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Romero%2C+C">Charles Romero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarazin%2C+C+L">Craig L. Sarazin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sehgal%2C+N">Neelima Sehgal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sievers%2C+J">Jonathan Sievers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sif%C3%B3n%2C+C">Crist贸bal Sif贸n</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.06725v2-abstract-short" style="display: inline;"> Compact sources can cause scatter in the scaling relationships between the amplitude of the thermal Sunyaev-Zel&#39;dovich Effect (tSZE) in galaxy clusters and cluster mass. Estimates of the importance of this scatter vary - largely due to limited data on sources in clusters at the frequencies at which tSZE cluster surveys operate. In this paper we present 90 GHz compact source measurements from a sam&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.06725v2-abstract-full').style.display = 'inline'; document.getElementById('2107.06725v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.06725v2-abstract-full" style="display: none;"> Compact sources can cause scatter in the scaling relationships between the amplitude of the thermal Sunyaev-Zel&#39;dovich Effect (tSZE) in galaxy clusters and cluster mass. Estimates of the importance of this scatter vary - largely due to limited data on sources in clusters at the frequencies at which tSZE cluster surveys operate. In this paper we present 90 GHz compact source measurements from a sample of 30 clusters observed using the MUSTANG2 instrument on the Green Bank Telescope. We present simulations of how a source&#39;s flux density, spectral index, and angular separation from the cluster&#39;s center affect the measured tSZE in clusters detected by the Atacama Cosmology Telescope (ACT). By comparing the MUSTANG2 measurements with these simulations we calibrate an empirical relationship between 1.4 GHz flux densities from radio surveys and source contamination in ACT tSZE measurements. We find 3 per cent of the ACT clusters have more than a 20 per cent decrease in Compton-y but another 3 per cent have a 10 per cent increase in the Compton-y due to the matched filters used to find clusters. As sources affect the measured tSZE signal and hence the likelihood that a cluster will be detected, testing the level of source contamination in the tSZE signal using a tSZE selected catalog is inherently biased. We confirm this by comparing the ACT tSZE catalog with optically and X-ray selected cluster catalogs. There is a strong case for a large, high resolution survey of clusters to better characterize their source population. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.06725v2-abstract-full').style.display = 'none'; document.getElementById('2107.06725v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 Pages, 10 figures, 2 tables, with 4 pages of online only figures at end. Published on-line in MNRAS on 22/9/2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.04611">arXiv:2107.04611</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.04611">pdf</a>, <a href="https://arxiv.org/format/2107.04611">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab3391">10.1093/mnras/stab3391 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A high-resolution view of the filament of gas between Abell 399 and Abell 401 from the Atacama Cosmology Telescope and MUSTANG-2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Hincks%2C+A+D">Adam D. Hincks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Radiconi%2C+F">Federico Radiconi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Romero%2C+C">Charles Romero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barbavara%2C+E">Eleonora Barbavara</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E">Elia Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+Bernardis%2C+P">Paolo de Bernardis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duivenvoorden%2C+A+J">Adriaan J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%C3%BCnner%2C+R">Rolando D眉nner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Govoni%2C+F">Federica Govoni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+J+C">J. Colin Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">Matt Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+J+P">John P. Hughes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lamagna%2C+L">Luca Lamagna</a> , et al. (21 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.04611v2-abstract-short" style="display: inline;"> We report a significant detection of the hot intergalactic medium in the filamentary bridge connecting the galaxy clusters Abell 399 and Abell 401. This result is enabled by a low-noise, high-resolution map of the thermal Sunyaev-Zeldovich signal from the Atacama Cosmology Telescope (ACT) and Planck satellite. The ACT data provide the $1.65&#39;$ resolution that allows us to clearly separate the profi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.04611v2-abstract-full').style.display = 'inline'; document.getElementById('2107.04611v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.04611v2-abstract-full" style="display: none;"> We report a significant detection of the hot intergalactic medium in the filamentary bridge connecting the galaxy clusters Abell 399 and Abell 401. This result is enabled by a low-noise, high-resolution map of the thermal Sunyaev-Zeldovich signal from the Atacama Cosmology Telescope (ACT) and Planck satellite. The ACT data provide the $1.65&#39;$ resolution that allows us to clearly separate the profiles of the clusters, whose centres are separated by $37&#39;$, from the gas associated with the filament. A model that fits for only the two clusters is ruled out compared to one that includes a bridge component at $&gt;5蟽$. Using a gas temperature determined from Suzaku X-ray data, we infer a total mass of $(3.3\pm0.7)\times10^{14}\,\mathrm{M}_{\odot}$ associated with the filament, comprising about $8\%$ of the entire Abell 399-Abell 401 system. We fit two phenomenological models to the filamentary structure; the favoured model has a width transverse to the axis joining the clusters of ${\sim}1.9\,\mathrm{Mpc}$. When combined with the Suzaku data, we find a gas density of $(0.88\pm0.24)\times10^{-4}\,\mathrm{cm}^{-3}$, considerably lower than previously reported. We show that this can be fully explained by a geometry in which the axis joining Abell 399 and Abell 401 has a large component along the line of sight, such that the distance between the clusters is significantly greater than the $3.2\,\mathrm{Mpc}$ projected separation on the plane of the sky. Finally, we present initial results from higher resolution ($12.7&#34;$ effective) imaging of the bridge with the MUSTANG-2 receiver on the Green Bank Telescope. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.04611v2-abstract-full').style.display = 'none'; document.getElementById('2107.04611v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 10 figures, 3 tables. This is a pre-copyedited, author-produced PDF of an article accepted for publication in the Monthly Notices of the Royal Astronomical Society following peer review. The version of record is available online at: https://academic.oup.com/mnras/advance-article/doi/10.1093/mnras/stab3391/6442294</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.13432">arXiv:2105.13432</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.13432">pdf</a>, <a href="https://arxiv.org/format/2105.13432">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac5d4f">10.3847/1538-4357/ac5d4f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A study of 90 GHz dust emissivity on molecular cloud and filament scales </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Lowe%2C+I">Ian Lowe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mason%2C+B">Brian Mason</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Clark%2C+S+E">S. E. Clark</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Friesen%2C+R">Rachel Friesen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hacar%2C+A">Alvaro Hacar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hensley%2C+B">Brandon Hensley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Naess%2C+S">Sigurd Naess</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Romero%2C+C">Charles Romero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sadavoy%2C+S">Sarah Sadavoy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Salatino%2C+M">Maria Salatino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarazin%2C+C">Craig Sarazin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schillaci%2C+A">Alessandro Schillaci</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sievers%2C+J">Jonathan Sievers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stanke%2C+T">Thomas Stanke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stutz%2C+A">Amelia Stutz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+Z">Zhilei Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.13432v2-abstract-short" style="display: inline;"> Recent observations from the MUSTANG2 instrument on the Green Bank Telescope have revealed evidence of enhanced long-wavelength emission in the dust spectral energy distribution (SED) in the Orion Molecular Cloud (OMC) 2/3 filament on 25&#34; (0.1 pc) scales. Here we present a measurement of the SED on larger spatial scales (map size 0.5-3 degrees or 3-20 pc), at somewhat lower resolution (120&#34;, corre&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.13432v2-abstract-full').style.display = 'inline'; document.getElementById('2105.13432v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.13432v2-abstract-full" style="display: none;"> Recent observations from the MUSTANG2 instrument on the Green Bank Telescope have revealed evidence of enhanced long-wavelength emission in the dust spectral energy distribution (SED) in the Orion Molecular Cloud (OMC) 2/3 filament on 25&#34; (0.1 pc) scales. Here we present a measurement of the SED on larger spatial scales (map size 0.5-3 degrees or 3-20 pc), at somewhat lower resolution (120&#34;, corresponding to 0.25 pc at 400 pc) using data from the Herschel satellite and Atacama Cosmology Telescope (ACT). We then extend the 120&#34;-scale investigation to other regions covered in the Herschel Gould Belt Survey (HGBS) specifically: the dense filaments in the southerly regions of Orion A; Orion B; and Serpens-S. Our dataset in aggregate covers approximately 10 square degrees, with continuum photometry spanning from 160um to 3mm. These OMC 2/3 data display excess emission at 3mm, though less (10.9% excess) than what is seen at higher resolution. Strikingly, we find that the enhancement is present even more strongly in the other filaments we targeted, with an average excess of 42.4% and 30/46 slices showing an inconsistency with the modified blackbody to at least 4蟽. Applying this analysis to the other targeted regions, we lay the groundwork for future high-resolution analyses. Additionally, we also consider a two-component dust model motivated by Planck results and an amorphous grain dust model. While both of these have been proposed to explain deviations in emission from a generic modified blackbody (MBB), we find that they have significant drawbacks, requiring many spectral points or lacking experimental data coverage. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.13432v2-abstract-full').style.display = 'none'; document.getElementById('2105.13432v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal 929 (2022) 102 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.07974">arXiv:2011.07974</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.07974">pdf</a>, <a href="https://arxiv.org/format/2011.07974">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2561315">10.1117/12.2561315 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Large Aperture Submillimetre Telescope (AtLAST) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P+D">Pamela D. Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cicone%2C+C">Claudia Cicone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hatziminaoglou%2C+E">Evanthia Hatziminaoglou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sartori%2C+S">Sabrina Sartori</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Breuck%2C+C">Carlos De Breuck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bryan%2C+S">Sean Bryan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duran%2C+C">Carlos Duran</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Groppi%2C+C">Chris Groppi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=K%C3%A4rcher%2C+H">Hans K盲rcher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kawabe%2C+R">Ryohei Kawabe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kohno%2C+K">Kotaro Kohno</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Geach%2C+J">James Geach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.07974v2-abstract-short" style="display: inline;"> The coldest and densest structures of gas and dust in the Universe have unique spectral signatures across the (sub-)millimetre bands ($谓\approx 30-950$~GHz). The current generation of single dish facilities has given a glimpse of the potential for discovery, while sub-mm interferometers have presented a high resolution view into the finer details of known targets or in small-area deep fields. Howe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.07974v2-abstract-full').style.display = 'inline'; document.getElementById('2011.07974v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.07974v2-abstract-full" style="display: none;"> The coldest and densest structures of gas and dust in the Universe have unique spectral signatures across the (sub-)millimetre bands ($谓\approx 30-950$~GHz). The current generation of single dish facilities has given a glimpse of the potential for discovery, while sub-mm interferometers have presented a high resolution view into the finer details of known targets or in small-area deep fields. However, significant advances in our understanding of such cold and dense structures are now hampered by the limited sensitivity and angular resolution of our sub-mm view of the Universe at larger scales. In this context, we present the case for a new transformational astronomical facility in the 2030s, the Atacama Large Aperture Submillimetre Telescope (AtLAST). AtLAST is a concept for a 50-m-class single dish telescope, with a high throughput provided by a 2~deg - diameter Field of View, located on a high, dry site in the Atacama with good atmospheric transmission up to $谓\sim 1$~THz, and fully powered by renewable energy. We envision AtLAST as a facility operated by an international partnership with a suite of instruments to deliver the transformative science that cannot be achieved with current or in-construction observatories. As an 50m-diameter telescope with a full complement of advanced instrumentation, including highly multiplexed high-resolution spectrometers, continuum cameras and integral field units, AtLAST will have mapping speeds hundreds of times greater than current or planned large aperture ($&gt;$ 12m) facilities. By reaching confusion limits below L$_*$ in the distant Universe, resolving low-mass protostellar cores at the distance of the Galactic Centre, and directly mapping both the cold and the hot (the Sunyaev-Zeldovich effect) circumgalactic medium of galaxies, AtLAST will enable a fundamentally new understanding of the sub-mm Universe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.07974v2-abstract-full').style.display = 'none'; document.getElementById('2011.07974v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 5 figures, to be submitted to SPIE Astronomical telescopes &amp; Instruments 2020, Ground-based and Airborne Telescopes VIII (conference 11445, abstract 290)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proceedings of the SPIE, Volume 11445, id. 114452F 20 pp. (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.02233">arXiv:2010.02233</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.02233">pdf</a>, <a href="https://arxiv.org/format/2010.02233">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/AO.411711">10.1364/AO.411711 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Simons Observatory: Metamaterial Microwave Absorber (MMA) and its Cryogenic Applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+Z">Zhilei Xu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chesmore%2C+G+E">Grace E. Chesmore</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adachi%2C+S">Shunsuke Adachi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ali%2C+A+M">Aamir M. Ali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bazarko%2C+A">Andrew Bazarko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coppi%2C+G">Gabriele Coppi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+T">Tom Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Golec%2C+J+E">Joseph E. Golec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gudmundsson%2C+J+E">Jon E. Gudmundsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harrington%2C+K">Kathleen Harrington</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hattori%2C+M">Makoto Hattori</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kofman%2C+A">Anna Kofman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kiuchi%2C+K">Kenji Kiuchi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kusaka%2C+A">Akito Kusaka</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Limon%2C+M">Michele Limon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Matsuda%2C+F">Frederick Matsuda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McMahon%2C+J">Jeff McMahon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nati%2C+F">Federico Nati</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Niemack%2C+M+D">Michael D. Niemack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sutariya%2C+S">Shreya Sutariya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Suzuki%2C+A">Aritoki Suzuki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Teply%2C+G+P">Grant P. Teply</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.02233v3-abstract-short" style="display: inline;"> Controlling stray light at millimeter wavelengths requires special optical design and selection of absorptive materials that should be compatible with cryogenic operating environments. While a wide selection of absorptive materials exists, these typically exhibit high indices of refraction and reflect/scatter a significant fraction of light before absorption. For many lower index materials such as&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.02233v3-abstract-full').style.display = 'inline'; document.getElementById('2010.02233v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.02233v3-abstract-full" style="display: none;"> Controlling stray light at millimeter wavelengths requires special optical design and selection of absorptive materials that should be compatible with cryogenic operating environments. While a wide selection of absorptive materials exists, these typically exhibit high indices of refraction and reflect/scatter a significant fraction of light before absorption. For many lower index materials such as commercial microwave absorbers, their applications in cryogenic environments are challenging. In this paper, we present a new tool to control stray light: metamaterial microwave absorber tiles. These tiles comprise an outer metamaterial layer that approximates a lossy gradient index anti-reflection coating. They are fabricated via injection molding commercially available carbon-loaded polyurethane (25\% by mass). The injection molding technology enables mass production at low cost. The design of these tiles is presented, along with thermal tests to 1 K. Room temperature optical measurements verify their control of reflectance to less than 1\% up to 65$\circ$ angles of incidence, and control of wide angle scattering below 0.01\%. The dielectric properties of the bulk carbon-loaded material used in the tiles is also measured at different temperatures, confirming that the material maintains similar dielectric properties down to 3 K. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.02233v3-abstract-full').style.display = 'none'; document.getElementById('2010.02233v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 11 figures, published in Applied Optics, selected as &#34;Editor&#39;s pick&#34;</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Applied Optics, Vol. 60, Issue 4, pp. 864-874 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.11043">arXiv:2009.11043</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.11043">pdf</a>, <a href="https://arxiv.org/format/2009.11043">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/abd023">10.3847/1538-4365/abd023 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: A Catalog of &gt; 4000 Sunyaev-Zel&#39;dovich Galaxy Clusters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">M. Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sif%C3%B3n%2C+C">C. Sif贸n</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Naess%2C+S">S. Naess</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M">M. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Oguri%2C+M">M. Oguri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rozo%2C+E">E. Rozo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rykoff%2C+E">E. Rykoff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abbott%2C+T+M+C">T. M. C. Abbott</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adhikari%2C+S">S. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguena%2C+M">M. Aguena</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">S. Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allam%2C+S">S. Allam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amodeo%2C+S">S. Amodeo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amon%2C+A">A. Amon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Annis%2C+J">J. Annis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ansarinejad%2C+B">B. Ansarinejad</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aros-Bunster%2C+C">C. Aros-Bunster</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">J. E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Avila%2C+S">S. Avila</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bacon%2C+D">D. Bacon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">N. Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">J. A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Becker%2C+D+T">D. T. Becker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bernstein%2C+G+M">G. M. Bernstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bertin%2C+E">E. Bertin</a> , et al. (124 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.11043v2-abstract-short" style="display: inline;"> We present a catalog of 4195 optically confirmed Sunyaev-Zel&#39;dovich (SZ) selected galaxy clusters detected with signal-to-noise &gt; 4 in 13,211 deg$^2$ of sky surveyed by the Atacama Cosmology Telescope (ACT). Cluster candidates were selected by applying a multi-frequency matched filter to 98 and 150 GHz maps constructed from ACT observations obtained from 2008-2018, and confirmed using deep, wide-a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.11043v2-abstract-full').style.display = 'inline'; document.getElementById('2009.11043v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.11043v2-abstract-full" style="display: none;"> We present a catalog of 4195 optically confirmed Sunyaev-Zel&#39;dovich (SZ) selected galaxy clusters detected with signal-to-noise &gt; 4 in 13,211 deg$^2$ of sky surveyed by the Atacama Cosmology Telescope (ACT). Cluster candidates were selected by applying a multi-frequency matched filter to 98 and 150 GHz maps constructed from ACT observations obtained from 2008-2018, and confirmed using deep, wide-area optical surveys. The clusters span the redshift range 0.04 &lt; z &lt; 1.91 (median z = 0.52). The catalog contains 222 z &gt; 1 clusters, and a total of 868 systems are new discoveries. Assuming an SZ-signal vs. mass scaling relation calibrated from X-ray observations, the sample has a 90% completeness mass limit of M500c &gt; 3.8 x 10$^{14}$ MSun, evaluated at z = 0.5, for clusters detected at signal-to-noise ratio &gt; 5 in maps filtered at an angular scale of 2.4&#39;. The survey has a large overlap with deep optical weak-lensing surveys that are being used to calibrate the SZ-signal mass-scaling relation, such as the Dark Energy Survey (4566 deg$^2$), the Hyper Suprime-Cam Subaru Strategic Program (469 deg$^2$), and the Kilo Degree Survey (825 deg$^2$). We highlight some noteworthy objects in the sample, including potentially projected systems; clusters with strong lensing features; clusters with active central galaxies or star formation; and systems of multiple clusters that may be physically associated. The cluster catalog will be a useful resource for future cosmological analyses, and studying the evolution of the intracluster medium and galaxies in massive clusters over the past 10 Gyr. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.11043v2-abstract-full').style.display = 'none'; document.getElementById('2009.11043v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 27 figures, accepted for publication in ApJS; v1.0 catalogs will be available from LAMBDA https://lambda.gsfc.nasa.gov/product/act/actpol_prod_table.cfm; v1.0 catalogs available from https://astro.ukzn.ac.za/~mjh/ACTDR5/v1.0/ until then</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.10138">arXiv:2009.10138</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.10138">pdf</a>, <a href="https://arxiv.org/format/2009.10138">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/AO.411533">10.1364/AO.411533 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Simons Observatory: Modeling Optical Systematics in the Large Aperture Telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Gudmundsson%2C+J+E">Jon E. Gudmundsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Puddu%2C+R">Roberto Puddu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adler%2C+A+E">Alexandre E. Adler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ali%2C+A+M">Aamir M. Ali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bazarko%2C+A">Andrew Bazarko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chesmore%2C+G+E">Grace E. Chesmore</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coppi%2C+G">Gabriele Coppi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cothard%2C+N+F">Nicholas F. Cothard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dachlythra%2C+N">Nadia Dachlythra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%C3%BCnner%2C+R">Rolando D眉nner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fabbian%2C+G">Giulio Fabbian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galitzki%2C+N">Nicholas Galitzki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Golec%2C+J+E">Joseph E. Golec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+S+P">Shuay-Pwu Patty Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hargrave%2C+P+C">Peter C. Hargrave</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kofman%2C+A+M">Anna M. Kofman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+A+T">Adrian T. Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Limon%2C+M">Michele Limon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Matsuda%2C+F+T">Frederick T. Matsuda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mauskopf%2C+P+D">Philip D. Mauskopf</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moodley%2C+K">Kavilan Moodley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nati%2C+F">Federico Nati</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.10138v1-abstract-short" style="display: inline;"> We present geometrical and physical optics simulation results for the Simons Observatory Large Aperture Telescope. This work was developed as part of the general design process for the telescope; allowing us to evaluate the impact of various design choices on performance metrics and potential systematic effects. The primary goal of the simulations was to evaluate the final design of the reflectors&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.10138v1-abstract-full').style.display = 'inline'; document.getElementById('2009.10138v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.10138v1-abstract-full" style="display: none;"> We present geometrical and physical optics simulation results for the Simons Observatory Large Aperture Telescope. This work was developed as part of the general design process for the telescope; allowing us to evaluate the impact of various design choices on performance metrics and potential systematic effects. The primary goal of the simulations was to evaluate the final design of the reflectors and the cold optics which are now being built. We describe non-sequential ray tracing used to inform the design of the cold optics, including absorbers internal to each optics tube. We discuss ray tracing simulations of the telescope structure that allow us to determine geometries that minimize detector loading and mitigate spurious near-field effects that have not been resolved by the internal baffling. We also describe physical optics simulations, performed over a range of frequencies and field locations, that produce estimates of monochromatic far field beam patterns which in turn are used to gauge general optical performance. Finally, we describe simulations that shed light on beam sidelobes from panel gap diffraction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.10138v1-abstract-full').style.display = 'none'; document.getElementById('2009.10138v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Opt. 60, 823-837 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.07772">arXiv:2009.07772</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.07772">pdf</a>, <a href="https://arxiv.org/format/2009.07772">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/abbccb">10.3847/2041-8213/abbccb <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: Weighing distant clusters with the most ancient light </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sif%C3%B3n%2C+C">Crist贸bal Sif贸n</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amodeo%2C+S">Stefania Amodeo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Becker%2C+D+T">Daniel T. Becker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Denison%2C+E+V">Edward V. Denison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duivenvoorden%2C+A+J">Adriaan J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%C3%BCnner%2C+R">Rolando D眉nner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferraro%2C+S">Simone Ferraro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guan%2C+Y">Yilun Guan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Han%2C+D">Dongwon Han</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+J+C">J. Colin Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+G+C">Gene C. Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">Matt Hilton</a> , et al. (36 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.07772v2-abstract-short" style="display: inline;"> We use gravitational lensing of the cosmic microwave background (CMB) to measure the mass of the most distant blindly-selected sample of galaxy clusters on which a lensing measurement has been performed to date. In CMB data from the the Atacama Cosmology Telescope (ACT) and the Planck satellite, we detect the stacked lensing effect from 677 near-infrared-selected galaxy clusters from the Massive a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.07772v2-abstract-full').style.display = 'inline'; document.getElementById('2009.07772v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.07772v2-abstract-full" style="display: none;"> We use gravitational lensing of the cosmic microwave background (CMB) to measure the mass of the most distant blindly-selected sample of galaxy clusters on which a lensing measurement has been performed to date. In CMB data from the the Atacama Cosmology Telescope (ACT) and the Planck satellite, we detect the stacked lensing effect from 677 near-infrared-selected galaxy clusters from the Massive and Distant Clusters of WISE Survey (MaDCoWS), which have a mean redshift of $ \langle z \rangle = 1.08$. There are no current optical weak lensing measurements of clusters that match the distance and average mass of this sample. We detect the lensing signal with a significance of $4.2 蟽$. We model the signal with a halo model framework to find the mean mass of the population from which these clusters are drawn. Assuming that the clusters follow Navarro-Frenk-White density profiles, we infer a mean mass of $\langle M_{500c}\rangle = \left(1.7 \pm 0.4 \right)\times10^{14}\,\mathrm{M}_\odot$. We consider systematic uncertainties from cluster redshift errors, centering errors, and the shape of the NFW profile. These are all smaller than 30% of our reported uncertainty. This work highlights the potential of CMB lensing to enable cosmological constraints from the abundance of distant clusters populating ever larger volumes of the observable Universe, beyond the capabilities of optical weak lensing measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.07772v2-abstract-full').style.display = 'none'; document.getElementById('2009.07772v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 3 figures, matches version accepted in ApJL, code available at https://github.com/ACTCollaboration/madcows_lensing/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.06703">arXiv:2006.06703</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.06703">pdf</a>, <a href="https://arxiv.org/format/2006.06703">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/abb673">10.3847/1538-4357/abb673 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Massive and Distant Clusters of WISE Survey X: Initial Results from a Sunyaev-Zeldovich Effect Study of Massive Galaxy Clusters at z&gt;1 using MUSTANG2 on the GBT </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Romero%2C+C+E">Charles E. Romero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Mascolo%2C+L">Luca Di Mascolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sievers%2C+J">Jonathan Sievers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moravec%2C+E">Emily Moravec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brodwin%2C+M">Mark Brodwin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Connor%2C+T">Thomas Connor</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Decker%2C+B">Bandon Decker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gonzalez%2C+A+H">Anthony H. Gonzalez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lowe%2C+I">Ian Lowe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mason%2C+B+S">Brian S. Mason</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarazin%2C+C">Craig Sarazin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stanford%2C+S+A">Spencer A. Stanford</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stern%2C+D">Daniel Stern</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Thongkham%2C+K">Khunanon Thongkham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wylezalek%2C+D">Dominika Wylezalek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zago%2C+F">Fernando Zago</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.06703v2-abstract-short" style="display: inline;"> The properties of galaxy clusters as a function of redshift can be utilized as an important cosmological tool. We present initial results from a program of follow-up observations of the Sunyaev-Zeldovich effect (SZE) in high redshift galaxy clusters detected at infrared wavelengths in the Massive and Distant Clusters of WISE Survey (MaDCoWS). Using typical on-source integration times of 3-4 hours&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.06703v2-abstract-full').style.display = 'inline'; document.getElementById('2006.06703v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.06703v2-abstract-full" style="display: none;"> The properties of galaxy clusters as a function of redshift can be utilized as an important cosmological tool. We present initial results from a program of follow-up observations of the Sunyaev-Zeldovich effect (SZE) in high redshift galaxy clusters detected at infrared wavelengths in the Massive and Distant Clusters of WISE Survey (MaDCoWS). Using typical on-source integration times of 3-4 hours per cluster, MUSTANG2 on the Green Bank Telescope was able to measure strong detections of SZE decrements and statistically significant masses on 14 out of 16 targets. On the remaining two, weaker (3.7 sigma) detections of the SZE signal and strong upper limits on the masses were obtained. In this paper we present masses and pressure profiles of each target and outline the data analysis used to recover these quantities. Of the clusters with strong detections, three show significantly flatter pressure profiles while, from the MUSTANG2 data, five others show signs of disruption at their cores. However, outside of the cores of the clusters, we were unable to detect significant amounts of asymmetry. Finally, there are indications that the relationship between optical richness used by MaDCoWS and SZE-inferred mass may be significantly flatter than indicated in previous studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.06703v2-abstract-full').style.display = 'none'; document.getElementById('2006.06703v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by ApJ ; 20 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2020 ApJ 902 2 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.02476">arXiv:1901.02476</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.02476">pdf</a>, <a href="https://arxiv.org/format/1901.02476">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201833385">10.1051/0004-6361/201833385 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dust opacity variations in the pre-stellar core L1544 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Chacon-Tanarro%2C+A">A. Chacon-Tanarro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pineda%2C+J+E">J. E. Pineda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Caselli%2C+P">P. Caselli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bizzocchi%2C+L">L. Bizzocchi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gutermuth%2C+R+A">R. A. Gutermuth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mason%2C+B+S">B. S. Mason</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gomez-Ruiz%2C+A+I">A. I. Gomez-Ruiz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harju%2C+J">J. Harju</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">M. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">S. R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">T. Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Romero%2C+C+E">C. E. Romero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sievers%2C+J">J. Sievers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stanchfield%2C+S">S. Stanchfield</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Offner%2C+S">S. Offner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sanchez-Arguelles%2C+D">D. Sanchez-Arguelles</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.02476v1-abstract-short" style="display: inline;"> Context: The study of dust emission at millimeter wavelengths is important to shed light on the dust properties and physical structure of pre-stellar cores, the initial conditions in the process of star and planet formation. Aims: Using two new continuum facilities, AzTEC at the LMT and MUSTANG-2 at the GBO, we aim to detect changes in the optical properties of dust grains as a function of radius&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.02476v1-abstract-full').style.display = 'inline'; document.getElementById('1901.02476v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.02476v1-abstract-full" style="display: none;"> Context: The study of dust emission at millimeter wavelengths is important to shed light on the dust properties and physical structure of pre-stellar cores, the initial conditions in the process of star and planet formation. Aims: Using two new continuum facilities, AzTEC at the LMT and MUSTANG-2 at the GBO, we aim to detect changes in the optical properties of dust grains as a function of radius for the well-known pre-stellar core L1544. Methods: We determine the emission profiles at 1.1 and 3.3 mm and examine whether they can be reproduced in terms of the current best physical models for L1544. We also make use of various tools to determine the radial distributions of the density, temperature, and the dust opacity in a self-consistent manner. Results: We find that our observations cannot be reproduced without invoking opacity variations. With the new data, new temperature and density profiles, as well as opacity variations across the core, have been derived. The opacity changes are consistent with the expected variations between uncoagulated bare grains, toward the outer regions of the core, and grains with thick ice mantles, toward the core center. A simple analytical grain growth model predicts the presence of grains of ~3-4 um within the central 2000 au for the new density profile. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.02476v1-abstract-full').style.display = 'none'; document.getElementById('1901.02476v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 623, A118 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.05058">arXiv:1808.05058</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.05058">pdf</a>, <a href="https://arxiv.org/format/1808.05058">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Cold optical design for the Large Aperture Simons Observatory telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">S. R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">P. A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gudmundsson%2C+J+E">J. E Gudmundsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mauskopf%2C+P+D">P. D. Mauskopf</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ali%2C+A">A. Ali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ashton%2C+P+C">P. C. Ashton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coppi%2C+G">G. Coppi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">M. J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galitzki%2C+N">N. Galitzki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+S+P">S. P. Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+C+A">C. A. Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">J. Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Keating%2C+B">B. Keating</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+A+T">A. T. Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Limon%2C+M">M. Limon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Matsuda%2C+F">F. Matsuda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McMahon%2C+J">J. McMahon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Niemack%2C+M+D">M. D. Niemack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J+L">J. L. Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Piccirillo%2C+L">L. Piccirillo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Salatino%2C+M">M. Salatino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Simon%2C+S+M">S. M. Simon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Staggs%2C+S+T">S. T. Staggs</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Thornton%2C+R">R. Thornton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ullom%2C+J+N">J. N. Ullom</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.05058v2-abstract-short" style="display: inline;"> The Simons Observatory will consist of a single large (6 m diameter) telescope and a number of smaller (0.5 m diameter) refracting telescopes designed to measure the polarization of the Cosmic Microwave Background to unprecedented accuracy. The large aperture telescope is the same design as the CCAT-prime telescope, a modified Crossed Dragone design with a field-of-view of over 7.8 degrees diamete&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.05058v2-abstract-full').style.display = 'inline'; document.getElementById('1808.05058v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.05058v2-abstract-full" style="display: none;"> The Simons Observatory will consist of a single large (6 m diameter) telescope and a number of smaller (0.5 m diameter) refracting telescopes designed to measure the polarization of the Cosmic Microwave Background to unprecedented accuracy. The large aperture telescope is the same design as the CCAT-prime telescope, a modified Crossed Dragone design with a field-of-view of over 7.8 degrees diameter at 90 GHz. This paper presents an overview of the cold reimaging optics for this telescope and what drove our choice of 350-400 mm diameter silicon lenses in a 2.4 m cryostat over other possibilities. We will also consider the future expandability of this design to CMB Stage-4 and beyond. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.05058v2-abstract-full').style.display = 'none'; document.getElementById('1808.05058v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.06678">arXiv:1807.06678</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.06678">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2314073">10.1117/12.2314073 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The optical design of the six-meter CCAT-prime and Simons Observatory telescopes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Parshley%2C+S+C">Stephen C. Parshley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Niemack%2C+M+D">Michael D. Niemack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hills%2C+R">Richard Hills</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%C3%BCnner%2C+R">Rolando D眉nner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Erler%2C+J">Jens Erler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gudmundsson%2C+J+E">Jon E. Gudmundsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Herter%2C+T">Terry Herter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koopman%2C+B+J">Brian J. Koopman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Limon%2C+M">Michele Limon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Matsuda%2C+F+T">Frederick T. Matsuda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mauskopf%2C+P">Philip Mauskopf</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Riechers%2C+D+A">Dominik A. Riechers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stacey%2C+G+J">Gordon J. Stacey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vavagiakis%2C+E+M">Eve M. Vavagiakis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.06678v1-abstract-short" style="display: inline;"> A common optical design for a coma-corrected, 6-meter aperture, crossed-Dragone telescope has been adopted for the CCAT-prime telescope of CCAT Observatory, Inc., and for the Large Aperture Telescope of the Simons Observatory. Both are to be built in the high altitude Atacama Desert in Chile for submillimeter and millimeter wavelength observations, respectively. The design delivers a high throughp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.06678v1-abstract-full').style.display = 'inline'; document.getElementById('1807.06678v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.06678v1-abstract-full" style="display: none;"> A common optical design for a coma-corrected, 6-meter aperture, crossed-Dragone telescope has been adopted for the CCAT-prime telescope of CCAT Observatory, Inc., and for the Large Aperture Telescope of the Simons Observatory. Both are to be built in the high altitude Atacama Desert in Chile for submillimeter and millimeter wavelength observations, respectively. The design delivers a high throughput, relatively flat focal plane, with a field of view 7.8 degrees in diameter for 3 mm wavelengths, and the ability to illuminate &gt;100k diffraction-limited beams for &lt; 1 mm wavelengths. The optics consist of offset reflecting primary and secondary surfaces arranged in such a way as to satisfy the Mizuguchi-Dragone criterion, suppressing first-order astigmatism and maintaining high polarization purity. The surface shapes are perturbed from their standard conic forms in order to correct coma aberrations. We discuss the optical design, performance, and tolerancing sensitivity. More information about CCAT-prime can be found at ccatobservatory.org and about Simons Observatory at simonsobservatory.org. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.06678v1-abstract-full').style.display = 'none'; document.getElementById('1807.06678v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Event: SPIE Astronomical Telescopes + Instrumentation, 2018, Austin, Texas, USA; Proceedings Volume 10700, Ground-based and Airborne Telescopes VII; 1070041 (2018)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.02360">arXiv:1610.02360</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1610.02360">pdf</a>, <a href="https://arxiv.org/format/1610.02360">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2017/06/031">10.1088/1475-7516/2017/06/031 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: Two-Season ACTPol Spectra and Parameters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Louis%2C+T">Thibaut Louis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Grace%2C+E">Emily Grace</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hasselfield%2C+M">Matthew Hasselfield</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lungu%2C+M">Marius Lungu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maurin%2C+L">Lo茂c Maurin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Addison%2C+G+E">Graeme E. Addison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">Peter A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+R">Rupert Allison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amiri%2C+M">Mandana Amiri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Angile%2C+E">Elio Angile</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+Bernardis%2C+F">Francesco de Bernardis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Britton%2C+J">Joe Britton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cho%2C+H">Hsiao-mei Cho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coughlin%2C+K">Kevin Coughlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crichton%2C+D">Devin Crichton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crowley%2C+K">Kevin Crowley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Datta%2C+R">Rahul Datta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a> , et al. (58 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.02360v1-abstract-short" style="display: inline;"> We present the temperature and polarization angular power spectra measured by the Atacama Cosmology Telescope Polarimeter (ACTPol). We analyze night-time data collected during 2013-14 using two detector arrays at 149 GHz, from 548 deg$^2$ of sky on the celestial equator. We use these spectra, and the spectra measured with the MBAC camera on ACT from 2008-10, in combination with Planck and WMAP dat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.02360v1-abstract-full').style.display = 'inline'; document.getElementById('1610.02360v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.02360v1-abstract-full" style="display: none;"> We present the temperature and polarization angular power spectra measured by the Atacama Cosmology Telescope Polarimeter (ACTPol). We analyze night-time data collected during 2013-14 using two detector arrays at 149 GHz, from 548 deg$^2$ of sky on the celestial equator. We use these spectra, and the spectra measured with the MBAC camera on ACT from 2008-10, in combination with Planck and WMAP data to estimate cosmological parameters from the temperature, polarization, and temperature-polarization cross-correlations. We find the new ACTPol data to be consistent with the LCDM model. The ACTPol temperature-polarization cross-spectrum now provides stronger constraints on multiple parameters than the ACTPol temperature spectrum, including the baryon density, the acoustic peak angular scale, and the derived Hubble constant. Adding the new data to planck temperature data tightens the limits on damping tail parameters, for example reducing the joint uncertainty on the number of neutrino species and the primordial helium fraction by 20%. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.02360v1-abstract-full').style.display = 'none'; document.getElementById('1610.02360v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 25 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1605.06569">arXiv:1605.06569</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1605.06569">pdf</a>, <a href="https://arxiv.org/format/1605.06569">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/227/2/21">10.3847/1538-4365/227/2/21 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: The polarization-sensitive ACTPol instrument </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Thornton%2C+R+J">R. J. Thornton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">S. Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Angile%2C+F+E">F. E. Angile</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">J. A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Becker%2C+D+T">D. T. Becker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cho%2C+H">H-M. Cho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">S. K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Corlies%2C+P">P. Corlies</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coughlin%2C+K+P">K. P. Coughlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Datta%2C+R">R. Datta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">M. J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">S. R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunner%2C+R">R. Dunner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fowler%2C+J+W">J. W. Fowler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fox%2C+A+E">A. E. Fox</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">P. A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gao%2C+J">J. Gao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Grace%2C+E">E. Grace</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Halpern%2C+M">M. Halpern</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hasselfield%2C+M">M. Hasselfield</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Henderson%2C+S+W">S. W. Henderson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+G+C">G. C. Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hincks%2C+A+D">A. D. Hincks</a> , et al. (31 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1605.06569v1-abstract-short" style="display: inline;"> The Atacama Cosmology Telescope (ACT) is designed to make high angular resolution measurements of anisotropies in the Cosmic Microwave Background (CMB) at millimeter wavelengths. We describe ACTPol, an upgraded receiver for ACT, which uses feedhorn-coupled, polarization-sensitive detector arrays, a 3 degree field of view, 100 mK cryogenics with continuous cooling, and meta material anti-reflection&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.06569v1-abstract-full').style.display = 'inline'; document.getElementById('1605.06569v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1605.06569v1-abstract-full" style="display: none;"> The Atacama Cosmology Telescope (ACT) is designed to make high angular resolution measurements of anisotropies in the Cosmic Microwave Background (CMB) at millimeter wavelengths. We describe ACTPol, an upgraded receiver for ACT, which uses feedhorn-coupled, polarization-sensitive detector arrays, a 3 degree field of view, 100 mK cryogenics with continuous cooling, and meta material anti-reflection coatings. ACTPol comprises three arrays with separate cryogenic optics: two arrays at a central frequency of 148 GHz and one array operating simultaneously at both 97 GHz and 148 GHz. The combined instrument sensitivity, angular resolution, and sky coverage are optimized for measuring angular power spectra, clusters via the thermal Sunyaev-Zel&#39;dovich and kinetic Sunyaev-Zel&#39;dovich signals, and CMB lensing due to large scale structure. The receiver was commissioned with its first 148 GHz array in 2013, observed with both 148 GHz arrays in 2014, and has recently completed its first full season of operations with the full suite of three arrays. This paper provides an overview of the design and initial performance of the receiver and related systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.06569v1-abstract-full').style.display = 'none'; document.getElementById('1605.06569v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2016. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1501.00187">arXiv:1501.00187</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1501.00187">pdf</a>, <a href="https://arxiv.org/format/1501.00187">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0004-637X/807/2/121">10.1088/0004-637X/807/2/121 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Galaxy Cluster Pressure Profiles as Determined by Sunyaev Zel&#39;dovich Effect Observations with MUSTANG and Bolocam I: Joint Analysis Technique </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Romero%2C+C">Charles Romero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mason%2C+B+S">Brian S. Mason</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sayers%2C+J">Jack Sayers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Young%2C+A+H">Alexander H. Young</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Clarke%2C+T+E">Tracy E. Clarke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarazin%2C+C">Craig Sarazin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sievers%2C+J">Jonathon Sievers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Reese%2C+E+D">Erik D. Reese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Czakon%2C+N">Nicole Czakon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Korngut%2C+P+M">Phillip M. Korngut</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Golwala%2C+S">Sunil Golwala</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1501.00187v2-abstract-short" style="display: inline;"> We present a technique to constrain galaxy cluster pressure profiles by jointly fitting Sunyaev-Zel&#39;dovich effect (SZE) data obtained with MUSTANG and Bolocam for the clusters Abell 1835 and MACS0647. Bolocam and MUSTANG probe different angular scales and are thus highly complementary. We find that the addition of the high resolution MUSTANG data can improve constraints on pressure profile paramet&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.00187v2-abstract-full').style.display = 'inline'; document.getElementById('1501.00187v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1501.00187v2-abstract-full" style="display: none;"> We present a technique to constrain galaxy cluster pressure profiles by jointly fitting Sunyaev-Zel&#39;dovich effect (SZE) data obtained with MUSTANG and Bolocam for the clusters Abell 1835 and MACS0647. Bolocam and MUSTANG probe different angular scales and are thus highly complementary. We find that the addition of the high resolution MUSTANG data can improve constraints on pressure profile parameters relative to those derived solely from Bolocam. In Abell 1835 and MACS0647, we find gNFW inner slopes of $纬= 0.36_{-0.21}^{+0.33}$ and $纬= 0.38_{-0.25}^{+0.20}$, respectively when $伪$ and $尾$ are constrained to 0.86 and 4.67 respectively. The fitted SZE pressure profiles are in good agreement with X-ray derived pressure profiles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.00187v2-abstract-full').style.display = 'none'; document.getElementById('1501.00187v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 12 figures. Submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1411.0317">arXiv:1411.0317</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1411.0317">pdf</a>, <a href="https://arxiv.org/format/1411.0317">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0004-637X/809/2/185">10.1088/0004-637X/809/2/185 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurements of the Sunyaev-Zel&#39;dovich Effect in MACS J0647.7+7015 and MACS J1206.2-0847 at High Angular Resolution with MUSTANG </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Young%2C+A+H">Alexander H. Young</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Romero%2C+C">Charles Romero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sayers%2C+J">Jack Sayers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Balestra%2C+I">Italo Balestra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Clarke%2C+T+E">Tracy E. Clarke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Czakon%2C+N">Nicole Czakon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferrari%2C+C">Chiara Ferrari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Girardi%2C+M">Marisa Girardi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Golwala%2C+S">Sunil Golwala</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Intema%2C+H">Huib Intema</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Korngut%2C+P+M">Phillip M. Korngut</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mason%2C+B+S">Brian S. Mason</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mercurio%2C+A">Amata Mercurio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nonino%2C+M">Mario Nonino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Reese%2C+E+D">Erik D. Reese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rosati%2C+P">Piero Rosati</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarazin%2C+C">Craig Sarazin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Umetsu%2C+K">Keiichi Umetsu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1411.0317v1-abstract-short" style="display: inline;"> We present high resolution (9$^{\prime \prime}$) imaging of the Sunyaev-Zel&#39;dovich Effect (SZE) toward two massive galaxy clusters, MACS J0647.7+7015 ($z=0.591$) and MACS J1206.2-0847 ($z=0.439$). We compare these 90 GHz measurements, taken with the MUSTANG receiver on the Green Bank Telescope, with generalized Navarro-Frenk-White (gNFW) models derived from Bolocam 140 GHz SZE data as well as maps&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.0317v1-abstract-full').style.display = 'inline'; document.getElementById('1411.0317v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1411.0317v1-abstract-full" style="display: none;"> We present high resolution (9$^{\prime \prime}$) imaging of the Sunyaev-Zel&#39;dovich Effect (SZE) toward two massive galaxy clusters, MACS J0647.7+7015 ($z=0.591$) and MACS J1206.2-0847 ($z=0.439$). We compare these 90 GHz measurements, taken with the MUSTANG receiver on the Green Bank Telescope, with generalized Navarro-Frenk-White (gNFW) models derived from Bolocam 140 GHz SZE data as well as maps of the thermal gas derived from {\it Chandra} X-ray observations. For MACS J0647.7+7015, we find a gNFW profile with core slope parameter $纬= 0.9$ fits the MUSTANG image with $蠂^{2}_{red}=1.005$ and probability to exceed (PTE) = 0.34. For MACS J1206.2-0847, we find $纬=0.7$, $蠂^{2}_{red}=0.993$, and PTE = 0.70. In addition, we find a significant ($&gt;$3-$蟽$) residual SZE feature in MACS J1206.2-0847 coincident with a group of galaxies identified in VLT data and filamentary structure found in a weak-lensing mass reconstruction. We suggest the detected sub-structure may be the SZE decrement from a low mass foreground group or an infalling group. GMRT measurements at 610 MHz reveal diffuse extended radio emission to the west, which we posit is either an AGN-driven radio lobe, a bubble expanding away from disturbed gas associated with the SZE signal, or a bubble detached and perhaps re-accelerated by sloshing within the cluster. Using the spectroscopic redshifts available, we find evidence for a foreground ($z=0.423$) or infalling group, coincident with the residual SZE feature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.0317v1-abstract-full').style.display = 'none'; document.getElementById('1411.0317v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 14 figures, 7 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1405.5524">arXiv:1405.5524</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1405.5524">pdf</a>, <a href="https://arxiv.org/format/1405.5524">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2014/10/007">10.1088/1475-7516/2014/10/007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: CMB Polarization at $200&lt;\ell&lt;9000$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Naess%2C+S">Sigurd Naess</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hasselfield%2C+M">Matthew Hasselfield</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McMahon%2C+J">Jeff McMahon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Niemack%2C+M+D">Michael D. Niemack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Addison%2C+G+E">Graeme E. Addison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">Peter A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+R">Rupert Allison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amiri%2C+M">Mandana Amiri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nick Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+Bernardis%2C+F">Francesco de Bernardis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Britton%2C+J">Joe Britton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cho%2C+H">Hsiao-mei Cho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coughlin%2C+K">Kevin Coughlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crichton%2C+D">Devin Crichton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Das%2C+S">Sudeep Das</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Datta%2C+R">Rahul Datta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Joanna Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%C3%BCnner%2C+R">Rolando D眉nner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fowler%2C+J+W">Joseph W. Fowler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fox%2C+A+E">Anna E. Fox</a> , et al. (53 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1405.5524v2-abstract-short" style="display: inline;"> We report on measurements of the cosmic microwave background (CMB) and celestial polarization at 146 GHz made with the Atacama Cosmology Telescope Polarimeter (ACTPol) in its first three months of observing. Four regions of sky covering a total of 270 square degrees were mapped with an angular resolution of $1.3&#39;$. The map noise levels in the four regions are between 11 and 17 $渭$K-arcmin. We pres&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.5524v2-abstract-full').style.display = 'inline'; document.getElementById('1405.5524v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1405.5524v2-abstract-full" style="display: none;"> We report on measurements of the cosmic microwave background (CMB) and celestial polarization at 146 GHz made with the Atacama Cosmology Telescope Polarimeter (ACTPol) in its first three months of observing. Four regions of sky covering a total of 270 square degrees were mapped with an angular resolution of $1.3&#39;$. The map noise levels in the four regions are between 11 and 17 $渭$K-arcmin. We present TT, TE, EE, TB, EB, and BB power spectra from three of these regions. The observed E-mode polarization power spectrum, displaying six acoustic peaks in the range $200&lt;\ell&lt;3000$, is an excellent fit to the prediction of the best-fit cosmological models from WMAP9+ACT and Planck data. The polarization power spectrum, which mainly reflects primordial plasma velocity perturbations, provides an independent determination of cosmological parameters consistent with those based on the temperature power spectrum, which results mostly from primordial density perturbations. We find that without masking any point sources in the EE data at $\ell&lt;9000$, the Poisson tail of the EE power spectrum due to polarized point sources has an amplitude less than $2.4$ $渭$K$^2$ at $\ell = 3000$ at 95\% confidence. Finally, we report that the Crab Nebula, an important polarization calibration source at microwave frequencies, has 8.7\% polarization with an angle of $150.7^\circ \pm 0.6^\circ$ when smoothed with a $5&#39;$ Gaussian beam. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.5524v2-abstract-full').style.display = 'none'; document.getElementById('1405.5524v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 May, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 15 figures, 5 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1301.0824">arXiv:1301.0824</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1301.0824">pdf</a>, <a href="https://arxiv.org/format/1301.0824">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2013/10/060">10.1088/1475-7516/2013/10/060 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: Cosmological parameters from three seasons of data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Sievers%2C+J+L">Jonathan L. Sievers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hlozek%2C+R+A">Ren茅e A. Hlozek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nolta%2C+M+R">Michael R. Nolta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Acquaviva%2C+V">Viviana Acquaviva</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Addison%2C+G+E">Graeme E. Addison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">Peter A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguirre%2C+P">Paula Aguirre</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amiri%2C+M">Mandana Amiri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Appel%2C+J+W">John William Appel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barrientos%2C+L+F">L. Felipe Barrientos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E+S">Elia S. Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nick Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+B">Ben Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burger%2C+B">Bryce Burger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chervenak%2C+J">Jay Chervenak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crichton%2C+D">Devin Crichton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Das%2C+S">Sudeep Das</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Doriese%2C+W+B">W. Bertrand Doriese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Joanna Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%C3%BCnner%2C+R">Rolando D眉nner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a> , et al. (68 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1301.0824v3-abstract-short" style="display: inline;"> We present constraints on cosmological and astrophysical parameters from high-resolution microwave background maps at 148 GHz and 218 GHz made by the Atacama Cosmology Telescope (ACT) in three seasons of observations from 2008 to 2010. A model of primary cosmological and secondary foreground parameters is fit to the map power spectra and lensing deflection power spectrum, including contributions f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.0824v3-abstract-full').style.display = 'inline'; document.getElementById('1301.0824v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1301.0824v3-abstract-full" style="display: none;"> We present constraints on cosmological and astrophysical parameters from high-resolution microwave background maps at 148 GHz and 218 GHz made by the Atacama Cosmology Telescope (ACT) in three seasons of observations from 2008 to 2010. A model of primary cosmological and secondary foreground parameters is fit to the map power spectra and lensing deflection power spectrum, including contributions from both the thermal Sunyaev-Zeldovich (tSZ) effect and the kinematic Sunyaev-Zeldovich (kSZ) effect, Poisson and correlated anisotropy from unresolved infrared sources, radio sources, and the correlation between the tSZ effect and infrared sources. The power ell^2 C_ell/2pi of the thermal SZ power spectrum at 148 GHz is measured to be 3.4 +\- 1.4 muK^2 at ell=3000, while the corresponding amplitude of the kinematic SZ power spectrum has a 95% confidence level upper limit of 8.6 muK^2. Combining ACT power spectra with the WMAP 7-year temperature and polarization power spectra, we find excellent consistency with the LCDM model. We constrain the number of effective relativistic degrees of freedom in the early universe to be Neff=2.79 +\- 0.56, in agreement with the canonical value of Neff=3.046 for three massless neutrinos. We constrain the sum of the neutrino masses to be Sigma m_nu &lt; 0.39 eV at 95% confidence when combining ACT and WMAP 7-year data with BAO and Hubble constant measurements. We constrain the amount of primordial helium to be Yp = 0.225 +\- 0.034, and measure no variation in the fine structure constant alpha since recombination, with alpha/alpha0 = 1.004 +/- 0.005. We also find no evidence for any running of the scalar spectral index, dns/dlnk = -0.004 +\- 0.012. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.0824v3-abstract-full').style.display = 'none'; document.getElementById('1301.0824v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 January, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 22 figures. This paper is a companion to Das et al. (2013) and Dunkley et al. (2013). Matches published JCAP version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1301.0816">arXiv:1301.0816</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1301.0816">pdf</a>, <a href="https://arxiv.org/ps/1301.0816">ps</a>, <a href="https://arxiv.org/format/1301.0816">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2013/07/008">10.1088/1475-7516/2013/07/008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: Sunyaev-Zel&#39;dovich Selected Galaxy Clusters at 148 GHz from Three Seasons of Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Hasselfield%2C+M">Matthew Hasselfield</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">Matt Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marriage%2C+T+A">Tobias A. Marriage</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Addison%2C+G+E">Graeme E. Addison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barrientos%2C+L+F">L. Felipe Barrientos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E+S">Elia S. Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crichton%2C+D">Devin Crichton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Das%2C+S">Sudeep Das</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Joanna Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunner%2C+R">Rolando Dunner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fowler%2C+J+W">Joseph W. Fowler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gralla%2C+M+B">Megan B. Gralla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hajian%2C+A">Amir Hajian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Halpern%2C+M">Mark Halpern</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hincks%2C+A+D">Adam D. Hincks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hlozek%2C+R">Ren茅e Hlozek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+J+P">John P. Hughes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Infante%2C+L">Leopoldo Infante</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Irwin%2C+K+D">Kent D. Irwin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kosowsky%2C+A">Arthur Kosowsky</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marsden%2C+D">Danica Marsden</a> , et al. (19 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1301.0816v2-abstract-short" style="display: inline;"> [Abridged] We present a catalog of 68 galaxy clusters, of which 19 are new discoveries, detected via the Sunyaev-Zel&#39;dovich effect (SZ) at 148 GHz in the Atacama Cosmology Telescope (ACT) survey of 504 square degrees on the celestial equator. A subsample of 48 clusters within the 270 square degree region overlapping SDSS Stripe 82 is estimated to be 90% complete for M_500c &gt; 4.5e14 Msun and 0.15 &lt;&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.0816v2-abstract-full').style.display = 'inline'; document.getElementById('1301.0816v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1301.0816v2-abstract-full" style="display: none;"> [Abridged] We present a catalog of 68 galaxy clusters, of which 19 are new discoveries, detected via the Sunyaev-Zel&#39;dovich effect (SZ) at 148 GHz in the Atacama Cosmology Telescope (ACT) survey of 504 square degrees on the celestial equator. A subsample of 48 clusters within the 270 square degree region overlapping SDSS Stripe 82 is estimated to be 90% complete for M_500c &gt; 4.5e14 Msun and 0.15 &lt; z &lt; 0.8. While matched filters are used to detect the clusters, the sample is studied further through a &#34;Profile Based Amplitude Analysis&#34; using a single filter at a fixed 胃_500 = 5.9&#39; angular scale. This new approach takes advantage of the &#34;Universal Pressure Profile&#34; (UPP) to fix the relationship between the cluster characteristic size (R_500) and the integrated Compton parameter (Y_500). The UPP scalings are found to be nearly identical to an adiabatic model, while a model incorporating non-thermal pressure better matches dynamical mass measurements and masses from the South Pole Telescope. A high signal to noise ratio subsample of 15 ACT clusters is used to obtain cosmological constraints. We first confirm that constraints from SZ data are limited by uncertainty in the scaling relation parameters rather than sample size or measurement uncertainty. We next add in seven clusters from the ACT Southern survey, including their dynamical mass measurements based on galaxy velocity dispersions. In combination with WMAP7 these data simultaneously constrain the scaling relation and cosmological parameters, yielding 蟽_8 = 0.829 \pm 0.024 and 惟_m = 0.292 \pm 0.025. The results include marginalization over a 15% bias in dynamical mass relative to the true halo mass. In an extension to LCDM that incorporates non-zero neutrino mass density, we combine our data with WMAP7+BAO+Hubble constant measurements to constrain 危m_谓&lt; 0.29 eV (95% C. L.). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.0816v2-abstract-full').style.display = 'none'; document.getElementById('1301.0816v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 January, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 21 figures To appear in J. Cosmology and Astroparticle Physics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1208.0050">arXiv:1208.0050</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1208.0050">pdf</a>, <a href="https://arxiv.org/format/1208.0050">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0004-637X/762/1/10">10.1088/0004-637X/762/1/10 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: Data Characterization and Map Making </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=D%C3%BCnner%2C+R">Rolando D眉nner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hasselfield%2C+M">Matthew Hasselfield</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marriage%2C+T+A">Tobias A. Marriage</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sievers%2C+J">Jon Sievers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Acquaviva%2C+V">Viviana Acquaviva</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Addison%2C+G+E">Graeme E. Addison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">Peter A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguirre%2C+P">Paula Aguirre</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amiri%2C+M">Mandana Amiri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Appel%2C+J+W">John William Appel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barrientos%2C+L+F">L. Felipe Barrientos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E+S">Elia S. Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+B">Ben Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burger%2C+B">Bryce Burger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chervenak%2C+J">Jay Chervenak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Das%2C+S">Sudeep Das</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Doriese%2C+W+B">W. Bertrand Doriese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Joanna Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fisher%2C+R+P">Ryan P. Fisher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gralla%2C+M+B">Megan B. Gralla</a> , et al. (49 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1208.0050v2-abstract-short" style="display: inline;"> We present a description of the data reduction and mapmaking pipeline used for the 2008 observing season of the Atacama Cosmology Telescope (ACT). The data presented here at 148 GHz represent 12% of the 90 TB collected by ACT from 2007 to 2010. In 2008 we observed for 136 days, producing a total of 1423 hours of data (11 TB for the 148 GHz band only), with a daily average of 10.5 hours of observat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1208.0050v2-abstract-full').style.display = 'inline'; document.getElementById('1208.0050v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1208.0050v2-abstract-full" style="display: none;"> We present a description of the data reduction and mapmaking pipeline used for the 2008 observing season of the Atacama Cosmology Telescope (ACT). The data presented here at 148 GHz represent 12% of the 90 TB collected by ACT from 2007 to 2010. In 2008 we observed for 136 days, producing a total of 1423 hours of data (11 TB for the 148 GHz band only), with a daily average of 10.5 hours of observation. From these, 1085 hours were devoted to a 850 deg^2 stripe (11.2 hours by 9.1 deg) centered on a declination of -52.7 deg, while 175 hours were devoted to a 280 deg^2 stripe (4.5 hours by 4.8 deg) centered at the celestial equator. We discuss sources of statistical and systematic noise, calibration, telescope pointing, and data selection. Out of 1260 survey hours and 1024 detectors per array, 816 hours and 593 effective detectors remain after data selection for this frequency band, yielding a 38% survey efficiency. The total sensitivity in 2008, determined from the noise level between 5 Hz and 20 Hz in the time-ordered data stream (TOD), is 32 micro-Kelvin sqrt{s} in CMB units. Atmospheric brightness fluctuations constitute the main contaminant in the data and dominate the detector noise covariance at low frequencies in the TOD. The maps were made by solving the least-squares problem using the Preconditioned Conjugate Gradient method, incorporating the details of the detector and noise correlations. Cross-correlation with WMAP sky maps, as well as analysis from simulations, reveal that our maps are unbiased at multipoles ell &gt; 300. This paper accompanies the public release of the 148 GHz southern stripe maps from 2008. The techniques described here will be applied to future maps and data releases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1208.0050v2-abstract-full').style.display = 'none'; document.getElementById('1208.0050v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 August, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 July, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 18 figures, 6 tables, an ACT Collaboration paper</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1112.5433">arXiv:1112.5433</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1112.5433">pdf</a>, <a href="https://arxiv.org/ps/1112.5433">ps</a>, <a href="https://arxiv.org/format/1112.5433">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0004-637X/751/1/28">10.1088/0004-637X/751/1/28 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence for Environmental Changes in the Submillimeter Dust Opacity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Martin%2C+P+G">Peter G. Martin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Roy%2C+A">Arabindo Roy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bontemps%2C+S">Sylvain Bontemps</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Miville-Desch%C3%AAnes%2C+M">Marc-Antoine Miville-Desch锚nes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">Peter A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bock%2C+J+J">James J. Bock</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chapin%2C+E+L">Edward L. Chapin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Griffin%2C+M">Matthew Griffin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gundersen%2C+J+O">Joshua O. Gundersen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Halpern%2C+M">Mark Halpern</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hargrave%2C+P+C">Peter C. Hargrave</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+D+H">David H. Hughes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klein%2C+J">Jeff Klein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marsden%2C+G">Gaelen Marsden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mauskopf%2C+P">Philip Mauskopf</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Netterfield%2C+C+B">Calvin B. Netterfield</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Olmi%2C+L">Luca Olmi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patanchon%2C+G">Guillaume Patanchon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rex%2C+M">Marie Rex</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Scott%2C+D">Douglas Scott</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Semisch%2C+C">Christopher Semisch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Truch%2C+M+D+P">Matthew D. P. Truch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tucker%2C+C">Carole Tucker</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1112.5433v2-abstract-short" style="display: inline;"> The submillimeter opacity of dust in the diffuse Galactic interstellar medium (ISM) has been quantified using a pixel-by-pixel correlation of images of continuum emission with a proxy for column density. We used three BLAST bands at 250, 350, and 500 渭m and one IRAS at 100 渭m. The proxy is the near-infrared color excess, E(J-Ks), obtained from 2MASS. Based on observations of stars, we show how wel&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1112.5433v2-abstract-full').style.display = 'inline'; document.getElementById('1112.5433v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1112.5433v2-abstract-full" style="display: none;"> The submillimeter opacity of dust in the diffuse Galactic interstellar medium (ISM) has been quantified using a pixel-by-pixel correlation of images of continuum emission with a proxy for column density. We used three BLAST bands at 250, 350, and 500 渭m and one IRAS at 100 渭m. The proxy is the near-infrared color excess, E(J-Ks), obtained from 2MASS. Based on observations of stars, we show how well this color excess is correlated with the total hydrogen column density for regions of moderate extinction. The ratio of emission to column density, the emissivity, is then known from the correlations, as a function of frequency. The spectral distribution of this emissivity can be fit by a modified blackbody, whence the characteristic dust temperature T and the desired opacity 蟽_e(1200) at 1200 GHz can be obtained. We have analyzed 14 regions near the Galactic plane toward the Vela molecular cloud, mostly selected to avoid regions of high column density (N_H &gt; 10^{22} cm^-2) and small enough to ensure a uniform T. We find 蟽_e(1200) is typically 2 to 4 x 10^{-25} cm^2/H and thus about 2 to 4 times larger than the average value in the local high Galactic latitude diffuse atomic ISM. This is strong evidence for grain evolution. There is a range in total power per H nucleon absorbed (re-radiated) by the dust, reflecting changes in the interstellar radiation field and/or the dust absorption opacity. These changes affect the equilibrium T, which is typically 15 K, colder than at high latitudes. Our analysis extends, to higher opacity and lower T, the trend of increasing opacity with decreasing T that was found at high latitudes. The recognition of changes in the emission opacity raises a cautionary flag because all column densities deduced from dust emission maps, and the masses of compact structures within them, depend inversely on the value adopted. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1112.5433v2-abstract-full').style.display = 'none'; document.getElementById('1112.5433v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 March, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 December, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Original version (22 Dec 2011): 14 pages, 8 figures. Revised version (24 February 2012) accepted for publication in the Astrophysical Journal (14 March 2012): elaborated details of analysis, extended discussion including new Appendix; abstract, results, conclusions unchanged. 16 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1108.3343">arXiv:1108.3343</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1108.3343">pdf</a>, <a href="https://arxiv.org/format/1108.3343">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0004-637X/751/1/12">10.1088/0004-637X/751/1/12 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: High-Resolution Sunyaev-Zel&#39;dovich Array Observations of ACT SZE-selected Clusters from the Equatorial Strip </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Reese%2C+E+D">Erik D. Reese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Menanteau%2C+F">Felipe Menanteau</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">Matt Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sievers%2C+J">Jonathan Sievers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguirre%2C+P">Paula Aguirre</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Appel%2C+J+W">John William Appel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baker%2C+A+J">Andrew J. Baker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Das%2C+S">Sudeep Das</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunner%2C+R">Rolando Dunner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fowler%2C+J+W">Joseph W. Fowler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hajian%2C+A">Amir Hajian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Halpern%2C+M">Mark Halpern</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hasselfield%2C+M">Matthew Hasselfield</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+J+C">J. Colin Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hincks%2C+A+D">Adam D. Hincks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huffenberger%2C+K+M">Kevin M. Huffenberger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+J+P">John P. Hughes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Irwin%2C+K+D">Kent D. Irwin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klein%2C+J">Jeff Klein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kosowsky%2C+A">Arthur Kosowsky</a> , et al. (19 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1108.3343v1-abstract-short" style="display: inline;"> We present follow-up observations with the Sunyaev-Zel&#39;dovich Array (SZA) of optically-confirmed galaxy clusters found in the equatorial survey region of the Atacama Cosmology Telescope (ACT): ACT-CL J0022-0036, ACT-CL J2051+0057, and ACT-CL J2337+0016. ACT-CL J0022-0036 is a newly-discovered, massive (10^15 Msun), high-redshift (z=0.81) cluster revealed by ACT through the Sunyaev-Zel&#39;dovich effec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1108.3343v1-abstract-full').style.display = 'inline'; document.getElementById('1108.3343v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1108.3343v1-abstract-full" style="display: none;"> We present follow-up observations with the Sunyaev-Zel&#39;dovich Array (SZA) of optically-confirmed galaxy clusters found in the equatorial survey region of the Atacama Cosmology Telescope (ACT): ACT-CL J0022-0036, ACT-CL J2051+0057, and ACT-CL J2337+0016. ACT-CL J0022-0036 is a newly-discovered, massive (10^15 Msun), high-redshift (z=0.81) cluster revealed by ACT through the Sunyaev-Zel&#39;dovich effect (SZE). Deep, targeted observations with the SZA allow us to probe a broader range of cluster spatial scales, better disentangle cluster decrements from radio point source emission, and derive more robust integrated SZE flux and mass estimates than we can with ACT data alone. For the two clusters we detect with the SZA we compute integrated SZE signal and derive masses from the SZA data only. ACT-CL J2337+0016, also known as Abell 2631, has archival Chandra data that allow an additional X-ray-based mass estimate. Optical richness is also used to estimate cluster masses and shows good agreement with the SZE and X-ray-based estimates. Based on the point sources detected by the SZA in these three cluster fields and an extrapolation to ACT&#39;s frequency, we estimate that point sources could be contaminating the SZE decrement at the &lt;= 20% level for some fraction of clusters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1108.3343v1-abstract-full').style.display = 'none'; document.getElementById('1108.3343v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 5 figures, 7 tables; submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1103.6225">arXiv:1103.6225</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1103.6225">pdf</a>, <a href="https://arxiv.org/ps/1103.6225">ps</a>, <a href="https://arxiv.org/format/1103.6225">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0004-637X/734/1/54">10.1088/0004-637X/734/1/54 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Radio - 2 mm Spectral Index of the Crab Nebula Measured with GISMO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Arendt%2C+R+G">R. G. Arendt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=George%2C+J+V">J. V. George</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Staguhn%2C+J+G">J. G. Staguhn</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benford%2C+D+J">D. J. Benford</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">M. J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">S. R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fixsen%2C+D+J">D. J. Fixsen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Irwin%2C+K+D">K. D. Irwin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jhabvala%2C+C+A">C. A. Jhabvala</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Korngut%2C+P+M">P. M. Korngut</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kov%C3%A1cs%2C+A">A. Kov谩cs</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maher%2C+S+F">S. F. Maher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mason%2C+B+S">B. S. Mason</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Miller%2C+T+M">T. M. Miller</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moseley%2C+S+H">S. H. Moseley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Navarro%2C+S">S. Navarro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sievers%2C+A">A. Sievers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sievers%2C+J+L">J. L. Sievers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sharp%2C+E">E. Sharp</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wollack%2C+E+J">E. J. Wollack</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1103.6225v1-abstract-short" style="display: inline;"> We present results of 2 mm observations of the Crab Nebula, obtained using the Goddard-IRAM Superconducting 2 Millimeter Observer (GISMO) bolometer camera on the IRAM 30 m telescope. Additional 3.3 mm observations with the MUSTANG bolometer array on the Green Bank Telescope are also presented. The integrated 2 mm flux density of the Crab Nebula provides no evidence for the emergence of a second sy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1103.6225v1-abstract-full').style.display = 'inline'; document.getElementById('1103.6225v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1103.6225v1-abstract-full" style="display: none;"> We present results of 2 mm observations of the Crab Nebula, obtained using the Goddard-IRAM Superconducting 2 Millimeter Observer (GISMO) bolometer camera on the IRAM 30 m telescope. Additional 3.3 mm observations with the MUSTANG bolometer array on the Green Bank Telescope are also presented. The integrated 2 mm flux density of the Crab Nebula provides no evidence for the emergence of a second synchrotron component that has been proposed. It is consistent with the radio power law spectrum, extrapolated up to a break frequency of log(nu_{b} [GHz]) = 2.84 +/- 0.29 or nu_{b} = 695^{+651}_{-336} GHz. The Crab Nebula is well-resolved by the ~16.7&#34; beam (FWHM) of GISMO. Comparison to radio data at comparable spatial resolution enables us to confirm significant spatial variation of the spectral index between 21 cm and 2 mm. The main effect is a spectral flattening in the inner region of the Crab Nebula, correlated with the toroidal structure at the center of the nebula that is prominent in the near-IR through X-ray regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1103.6225v1-abstract-full').style.display = 'none'; document.getElementById('1103.6225v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 March, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in the ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1101.1517">arXiv:1101.1517</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1101.1517">pdf</a>, <a href="https://arxiv.org/ps/1101.1517">ps</a>, <a href="https://arxiv.org/format/1101.1517">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0004-637X/744/1/40">10.1088/0004-637X/744/1/40 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Correlations in the (Sub)millimeter background from ACTxBLAST </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Hajian%2C+A">Amir Hajian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Viero%2C+M+P">Marco P. Viero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Addison%2C+G">Graeme Addison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguirre%2C+P">Paula Aguirre</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Appel%2C+J+W">John William Appel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nick Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bock%2C+J+J">James J. Bock</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Das%2C+S">Sudeep Das</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Joanna Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunner%2C+R">Rolando Dunner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+J+P">John P. Hughes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fowler%2C+J+W">Joseph W. Fowler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Halpern%2C+M">Mark Halpern</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hasselfield%2C+M">Matthew Hasselfield</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">Matt Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hincks%2C+A+D">Adam D. Hincks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hlozek%2C+R">Renee Hlozek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Irwin%2C+K+D">Kent D. Irwin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klein%2C+J">Jeff Klein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kosowsky%2C+A">Arthur Kosowsky</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lin%2C+Y">Yen-Ting Lin</a> , et al. (20 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1101.1517v1-abstract-short" style="display: inline;"> We present measurements of the auto- and cross-frequency correlation power spectra of the cosmic (sub)millimeter background at: 250, 350, and 500 um (1200, 860, and 600 GHz) from observations made with the Balloon-borne Large Aperture Submillimeter Telescope, BLAST; and at 1380 and 2030 um (218 and 148 GHz) from observations made with the Atacama Cosmology Telescope, ACT. The overlapping observati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1101.1517v1-abstract-full').style.display = 'inline'; document.getElementById('1101.1517v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1101.1517v1-abstract-full" style="display: none;"> We present measurements of the auto- and cross-frequency correlation power spectra of the cosmic (sub)millimeter background at: 250, 350, and 500 um (1200, 860, and 600 GHz) from observations made with the Balloon-borne Large Aperture Submillimeter Telescope, BLAST; and at 1380 and 2030 um (218 and 148 GHz) from observations made with the Atacama Cosmology Telescope, ACT. The overlapping observations cover 8.6 deg^2 in an area relatively free of Galactic dust near the south ecliptic pole (SEP). The ACT bands are sensitive to radiation from the CMB, the Sunyaev-Zel&#39;dovich (SZ) effect from galaxy clusters, and to emission by radio and dusty star-forming galaxies (DSFGs), while the dominant contribution to the BLAST bands is from DSFGs. We confirm and extend the BLAST analysis of clustering with an independent pipeline, and also detect correlations between the ACT and BLAST maps at over 25sigma significance, which we interpret as a detection of the DSFGs in the ACT maps. In addition to a Poisson component in the cross-frequency power spectra, we detect a clustered signal at &gt;4sigma, and using a model for the DSFG evolution and number counts, we successfully fit all our spectra with a linear clustering model and a bias that depends only on redshift and not on scale. Finally, the data are compared to, and generally agree with, phenomenological models for the DSFG population. This study represents a first of its kind, and demonstrates the constraining power of the cross-frequency correlation technique to constrain models for the DSFGs. Similar analyses with more data will impose tight constraints on future models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1101.1517v1-abstract-full').style.display = 'none'; document.getElementById('1101.1517v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal, Volume 744, Issue 1, article id. 40 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1011.3817">arXiv:1011.3817</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1011.3817">pdf</a>, <a href="https://arxiv.org/ps/1011.3817">ps</a>, <a href="https://arxiv.org/format/1011.3817">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0004-6256/141/2/39">10.1088/0004-6256/141/2/39 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> MUSTANG 3.3 Millimeter Continuum Observations of Class 0 Protostars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Shirley%2C+Y+L">Yancy L. Shirley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mason%2C+B+S">Brian S. Mason</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mangum%2C+J+G">Jeffrey G. Mangum</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bolin%2C+D+E">David E. Bolin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Korngut%2C+P+M">Phillip M. Korngut</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1011.3817v1-abstract-short" style="display: inline;"> We present observations of six Class 0 protostars at 3.3 mm (90 GHz) using the 64-pixel MUSTANG bolometer camera on the 100-m Green Bank Telescope. The 3.3 mm photometry is analyzed along with shorter wavelength observations to derive spectral indices (S_nu ~ nu^alpha) of the measured emission. We utilize previously published dust continuum radiative transfer models to estimate the characteristic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.3817v1-abstract-full').style.display = 'inline'; document.getElementById('1011.3817v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1011.3817v1-abstract-full" style="display: none;"> We present observations of six Class 0 protostars at 3.3 mm (90 GHz) using the 64-pixel MUSTANG bolometer camera on the 100-m Green Bank Telescope. The 3.3 mm photometry is analyzed along with shorter wavelength observations to derive spectral indices (S_nu ~ nu^alpha) of the measured emission. We utilize previously published dust continuum radiative transfer models to estimate the characteristic dust temperature within the central beam of our observations. We present constraints on the millimeter dust opacity index, beta, between 0.862 mm, 1.25 mm, and 3.3 mm. Beta_mm typically ranges from 1.0 to 2.4 for Class 0 sources. The relative contributions from disk emission and envelope emission are estimated at 3.3 mm. L483 is found to have negligible disk emission at 3.3 mm while L1527 is dominated by disk emission within the central beam. The beta_mm^disk &lt;= 0.8 - 1.4 for L1527 indicates that grain growth is likely occurring in the disk. The photometry presented in this paper may be combined with future interferometric observations of Class 0 envelopes and disks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.3817v1-abstract-full').style.display = 'none'; document.getElementById('1011.3817v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 3 figures, AJ accepted, in press</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1010.5494">arXiv:1010.5494</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1010.5494">pdf</a>, <a href="https://arxiv.org/format/1010.5494">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0004-637X/734/1/10">10.1088/0004-637X/734/1/10 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> MUSTANG High Angular Resolution Sunyaev-Zel&#39;dovich Effect Imaging of Sub-Structure in Four Galaxy Clusters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Korngut%2C+P+M">P. M. Korngut</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">S. R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Reese%2C+E+D">E. D. Reese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mason%2C+B+S">B. S. Mason</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">M. J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">T. Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarazin%2C+C+L">C. L. Sarazin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sun%2C+M">M. Sun</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sievers%2C+J">J. Sievers</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1010.5494v1-abstract-short" style="display: inline;"> We present 10&#34; to 18&#34; images of four massive clusters of galaxies through the Sunyaev-Zel&#39;dovich Effect (SZE). These measurements, made at 90~GHz with the MUSTANG receiver on the Green Bank Telescope (GBT), reveal pressure sub-structure to the intra-cluster medium (ICM) in three of the four systems. We identify the likely presence of a previously unknown weak shock-front in MACS0744+3927. By fitti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1010.5494v1-abstract-full').style.display = 'inline'; document.getElementById('1010.5494v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1010.5494v1-abstract-full" style="display: none;"> We present 10&#34; to 18&#34; images of four massive clusters of galaxies through the Sunyaev-Zel&#39;dovich Effect (SZE). These measurements, made at 90~GHz with the MUSTANG receiver on the Green Bank Telescope (GBT), reveal pressure sub-structure to the intra-cluster medium (ICM) in three of the four systems. We identify the likely presence of a previously unknown weak shock-front in MACS0744+3927. By fitting the Rankine-Hugoniot density jump conditions in a complementary SZE/X-ray analysis, we infer a Mach number of M = 1.2^{+0.2}_{-0.2} and a shock-velocity of 1827^{+267}_{-195}~km/s. In RXJ1347-1145, we present a new reduction of previously reported data and confirm the presence of a south-east SZE enhancement with a significance of 13.9 sigma when smoothed to 18&#34; resolution. This too is likely caused by shock-heated gas produced in a recent merger. In our highest redshift system, CL1226+3332, we detect sub-structure at a peak significance of 4.6 sigma in the form of a ridge oriented orthogonally to the vector connecting the main mass peak and a sub-clump revealed by weak lensing. We also conclude that the gas distribution is elongated in a south-west direction, consistent with a previously proposed merger scenario. The SZE image of the cool core cluster Abell 1835 is, in contrast, consistent with azimuthally symmetric signal only. This pilot study demonstrates the potential of high-resolution SZE images to complement X-ray data and probe the dynamics of galaxy clusters <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1010.5494v1-abstract-full').style.display = 'none'; document.getElementById('1010.5494v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2010. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1010.4605">arXiv:1010.4605</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1010.4605">pdf</a>, <a href="https://arxiv.org/ps/1010.4605">ps</a>, <a href="https://arxiv.org/format/1010.4605">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0004-637X/730/2/142">10.1088/0004-637X/730/2/142 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Deconvolution of Images from BLAST 2005: Insight into the K3-50 and IC 5146 Star-Forming Regions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Roy%2C+A">Arabindo Roy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">Peter A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bock%2C+J+J">James J. Bock</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brunt%2C+C+M">Christopher M. Brunt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chapin%2C+E+L">Edward L. Chapin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=France%2C+K">Kevin France</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gibb%2C+A+G">Andrew G. Gibb</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Griffin%2C+M">Matthew Griffin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gundersen%2C+J+O">Joshua O. Gundersen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Halpern%2C+M">Mark Halpern</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hargrave%2C+P+C">Peter C. Hargrave</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+D+H">David H. Hughes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klein%2C+J">Jeff Klein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marsden%2C+G">Gaelen Marsden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Martin%2C+P+G">Peter G. Martin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mauskopf%2C+P">Philip Mauskopf</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Netterfield%2C+C+B">Calvin B. Netterfield</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Olmi%2C+L">Luca Olmi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patanchon%2C+G">Guillaume Patanchon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rex%2C+M">Marie Rex</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Scott%2C+D">Douglas Scott</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Semisch%2C+C">Christopher Semisch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Truch%2C+M+D+P">Matthew D. P. Truch</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1010.4605v1-abstract-short" style="display: inline;"> We present an implementation of the iterative flux-conserving Lucy-Richardson (L-R) deconvolution method of image restoration for maps produced by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST). We have analyzed its performance and convergence extensively through simulations and cross-correlations of the deconvolved images with available highresolution maps. We present new scienc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1010.4605v1-abstract-full').style.display = 'inline'; document.getElementById('1010.4605v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1010.4605v1-abstract-full" style="display: none;"> We present an implementation of the iterative flux-conserving Lucy-Richardson (L-R) deconvolution method of image restoration for maps produced by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST). We have analyzed its performance and convergence extensively through simulations and cross-correlations of the deconvolved images with available highresolution maps. We present new science results from two BLAST surveys, in the Galactic regions K3-50 and IC 5146, further demonstrating the benefits of performing this deconvolution. We have resolved three clumps within a radius of 4.&#39;5 inside the star-forming molecular cloud containing K3-50. Combining the well-resolved dust emission map with available multi-wavelength data, we have constrained the Spectral Energy Distributions (SEDs) of five clumps to obtain masses (M), bolometric luminosities (L), and dust temperatures (T). The L-M diagram has been used as a diagnostic tool to estimate the evolutionary stages of the clumps. There are close relationships between dust continuum emission and both 21-cm radio continuum and 12CO molecular line emission. The restored extended large scale structures in the Northern Streamer of IC 5146 have a strong spatial correlation with both SCUBA and high resolution extinction images. A dust temperature of 12 K has been obtained for the central filament. We report physical properties of ten compact sources, including six associated protostars, by fitting SEDs to multi-wavelength data. All of these compact sources are still quite cold (typical temperature below ~ 16 K) and are above the critical Bonner-Ebert mass. They have associated low-power Young Stellar Objects (YSOs). Further evidence for starless clumps has also been found in the IC 5146 region. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1010.4605v1-abstract-full').style.display = 'none'; document.getElementById('1010.4605v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 12 Figures, 3 Tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1010.1065">arXiv:1010.1065</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1010.1065">pdf</a>, <a href="https://arxiv.org/ps/1010.1065">ps</a>, <a href="https://arxiv.org/format/1010.1065">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0004-637X/737/2/61">10.1088/0004-637X/737/2/61 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: Sunyaev Zel&#39;dovich Selected Galaxy Clusters at 148 GHz in the 2008 Survey </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Marriage%2C+T+A">T. A. Marriage</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Acquaviva%2C+V">V. Acquaviva</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguirre%2C+P">P. Aguirre</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Appel%2C+J+W">J. W. Appel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barrientos%2C+L+F">L. F. Barrientos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E+S">E. S. Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. R. Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+B">B. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burger%2C+B">B. Burger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chervenak%2C+J">J. Chervenak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Das%2C+S">S. Das</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">M. J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">S. R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Doriese%2C+W+B">W. B. Doriese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">J. Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunner%2C+R">R. Dunner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Essinger-Hileman%2C+T">T. Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fisher%2C+R+P">R. P. Fisher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fowler%2C+J+W">J. W. Fowler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hajian%2C+A">A. Hajian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Halpern%2C+M">M. Halpern</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hasselfield%2C+M">M. Hasselfield</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hern%27andez-Monteagudo%2C+C">C. Hern&#39;andez-Monteagudo</a> , et al. (46 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1010.1065v2-abstract-short" style="display: inline;"> We report on twenty-three clusters detected blindly as Sunyaev-Zel&#39;dovich (SZ) decrements in a 148 GHz, 455 square-degree map of the southern sky made with data from the Atacama Cosmology Telescope 2008 observing season. All SZ detections announced in this work have confirmed optical counterparts. Ten of the clusters are new discoveries. One newly discovered cluster, ACT-CL J0102-4915, with a reds&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1010.1065v2-abstract-full').style.display = 'inline'; document.getElementById('1010.1065v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1010.1065v2-abstract-full" style="display: none;"> We report on twenty-three clusters detected blindly as Sunyaev-Zel&#39;dovich (SZ) decrements in a 148 GHz, 455 square-degree map of the southern sky made with data from the Atacama Cosmology Telescope 2008 observing season. All SZ detections announced in this work have confirmed optical counterparts. Ten of the clusters are new discoveries. One newly discovered cluster, ACT-CL J0102-4915, with a redshift of 0.75 (photometric), has an SZ decrement comparable to the most massive systems at lower redshifts. Simulations of the cluster recovery method reproduce the sample purity measured by optical follow-up. In particular, for clusters detected with a signal-to-noise ratio greater than six, simulations are consistent with optical follow-up that demonstrated this subsample is 100% pure. The simulations further imply that the total sample is 80% complete for clusters with mass in excess of 6x10^14 solar masses referenced to the cluster volume characterized by five hundred times the critical density. The Compton y -- X-ray luminosity mass comparison for the eleven best detected clusters visually agrees with both self-similar and non-adiabatic, simulation-derived scaling laws. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1010.1065v2-abstract-full').style.display = 'none'; document.getElementById('1010.1065v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 October, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 7 figures, Accepted for publication in ApJ</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ 737 (2011) 61 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1010.1025">arXiv:1010.1025</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1010.1025">pdf</a>, <a href="https://arxiv.org/ps/1010.1025">ps</a>, <a href="https://arxiv.org/format/1010.1025">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0004-637X/732/1/44">10.1088/0004-637X/732/1/44 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: Cosmology from Galaxy Clusters Detected via the Sunyaev-Zel&#39;dovich Effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Sehgal%2C+N">Neelima Sehgal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Trac%2C+H">Hy Trac</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Acquaviva%2C+V">Viviana Acquaviva</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">Peter A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguirre%2C+P">Paula Aguirre</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amiri%2C+M">Mandana Amiri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Appel%2C+J+W">John W. Appel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barrientos%2C+L+F">L. Felipe Barrientos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E+S">Elia S. Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+B">Ben Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burger%2C+B">Bryce Burger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chervenak%2C+J">Jay Chervenak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Das%2C+S">Sudeep Das</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Doriese%2C+W+B">W. Bertrand Doriese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Joanna Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%C3%BCnner%2C+R">Rolando D眉nner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fisher%2C+R+P">Ryan P. Fisher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fowler%2C+J+W">Joseph W. Fowler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hajian%2C+A">Amir Hajian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Halpern%2C+M">Mark Halpern</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hasselfield%2C+M">Matthew Hasselfield</a> , et al. (44 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1010.1025v1-abstract-short" style="display: inline;"> We present constraints on cosmological parameters based on a sample of Sunyaev-Zel&#39;dovich-selected galaxy clusters detected in a millimeter-wave survey by the Atacama Cosmology Telescope. The cluster sample used in this analysis consists of 9 optically-confirmed high-mass clusters comprising the high-significance end of the total cluster sample identified in 455 square degrees of sky surveyed duri&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1010.1025v1-abstract-full').style.display = 'inline'; document.getElementById('1010.1025v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1010.1025v1-abstract-full" style="display: none;"> We present constraints on cosmological parameters based on a sample of Sunyaev-Zel&#39;dovich-selected galaxy clusters detected in a millimeter-wave survey by the Atacama Cosmology Telescope. The cluster sample used in this analysis consists of 9 optically-confirmed high-mass clusters comprising the high-significance end of the total cluster sample identified in 455 square degrees of sky surveyed during 2008 at 148 GHz. We focus on the most massive systems to reduce the degeneracy between unknown cluster astrophysics and cosmology derived from SZ surveys. We describe the scaling relation between cluster mass and SZ signal with a 4-parameter fit. Marginalizing over the values of the parameters in this fit with conservative priors gives sigma_8 = 0.851 +/- 0.115 and w = -1.14 +/- 0.35 for a spatially-flat wCDM cosmological model with WMAP 7-year priors on cosmological parameters. This gives a modest improvement in statistical uncertainty over WMAP 7-year constraints alone. Fixing the scaling relation between cluster mass and SZ signal to a fiducial relation obtained from numerical simulations and calibrated by X-ray observations, we find sigma_8 = 0.821 +/- 0.044 and w = -1.05 +/- 0.20. These results are consistent with constraints from WMAP 7 plus baryon acoustic oscillations plus type Ia supernoava which give sigma_8 = 0.802 +/- 0.038 and w = -0.98 +/- 0.053. A stacking analysis of the clusters in this sample compared to clusters simulated assuming the fiducial model also shows good agreement. These results suggest that, given the sample of clusters used here, both the astrophysics of massive clusters and the cosmological parameters derived from them are broadly consistent with current models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1010.1025v1-abstract-full').style.display = 'none'; document.getElementById('1010.1025v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures. Submitted to ApJ</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> SLAC-PUB-14383 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Astrophysical Journal 732 (2011) 44-55 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1009.2972">arXiv:1009.2972</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1009.2972">pdf</a>, <a href="https://arxiv.org/format/1009.2972">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0004-637X/727/2/114">10.1088/0004-637X/727/2/114 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Balloon-Borne Large Aperture Submillimeter Telescope (BLAST) 2005: A 10 deg^2 Survey of Star Formation in Cygnus X </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Roy%2C+A">Arabindo Roy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">Peter A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bock%2C+J+J">James J. Bock</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chapin%2C+E+L">Edward L. Chapin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=France%2C+K">Kevin France</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gibb%2C+A+G">Andrew G. Gibb</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Griffin%2C+M">Matthew Griffin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gundersen%2C+J+O">Joshua O. Gundersen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Halpern%2C+M">Mark Halpern</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hargrave%2C+P+C">Peter C. Hargrave</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+D+H">David H. Hughes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klein%2C+J">Jeff Klein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marsden%2C+G">Gaelen Marsden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Martin%2C+P+G">Peter G. Martin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mauskopf%2C+P">Philip Mauskopf</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ortiz%2C+J+L+M">Jorge L. Morales Ortiz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Netterfield%2C+C+B">Calvin B. Netterfield</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Noriega-Crespo%2C+A">Alberto Noriega-Crespo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Olmi%2C+L">Luca Olmi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patanchon%2C+G">Guillaume Patanchon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rex%2C+M">Marie Rex</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Scott%2C+D">Douglas Scott</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Semisch%2C+C">Christopher Semisch</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1009.2972v2-abstract-short" style="display: inline;"> We present Cygnus X in a new multi-wavelength perspective based on an unbiased BLAST survey at 250, 350, and 500 micron, combined with rich datasets for this well-studied region. Our primary goal is to investigate the early stages of high mass star formation. We have detected 184 compact sources in various stages of evolution across all three BLAST bands. From their well-constrained spectral energ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1009.2972v2-abstract-full').style.display = 'inline'; document.getElementById('1009.2972v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1009.2972v2-abstract-full" style="display: none;"> We present Cygnus X in a new multi-wavelength perspective based on an unbiased BLAST survey at 250, 350, and 500 micron, combined with rich datasets for this well-studied region. Our primary goal is to investigate the early stages of high mass star formation. We have detected 184 compact sources in various stages of evolution across all three BLAST bands. From their well-constrained spectral energy distributions, we obtain the physical properties mass, surface density, bolometric luminosity, and dust temperature. Some of the bright sources reaching 40 K contain well-known compact H II regions. We relate these to other sources at earlier stages of evolution via the energetics as deduced from their position in the luminosity-mass (L-M) diagram. The BLAST spectral coverage, near the peak of the spectral energy distribution of the dust, reveals fainter sources too cool (~ 10 K) to be seen by earlier shorter-wavelength surveys like IRAS. We detect thermal emission from infrared dark clouds and investigate the phenomenon of cold ``starless cores&#34; more generally. Spitzer images of these cold sources often show stellar nurseries, but these potential sites for massive star formation are ``starless&#34; in the sense that to date there is no massive protostar in a vigorous accretion phase. We discuss evolution in the context of the L-M diagram. Theory raises some interesting possibilities: some cold massive compact sources might never form a cluster containing massive stars; and clusters with massive stars might not have an identifiable compact cold massive precursor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1009.2972v2-abstract-full').style.display = 'none'; document.getElementById('1009.2972v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2010; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 September, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">42 pages, 31 Figures, 6 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1009.1296">arXiv:1009.1296</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1009.1296">pdf</a>, <a href="https://arxiv.org/ps/1009.1296">ps</a>, <a href="https://arxiv.org/format/1009.1296">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0004-637X/723/1/915">10.1088/0004-637X/723/1/915 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The BLAST View of the Star Forming Region in Aquila (ell=45deg,b=0deg) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Rivera-Ingraham%2C+A">Alana Rivera-Ingraham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">Peter A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bock%2C+J+J">James J. Bock</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chapin%2C+E+L">Edward L. Chapin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Griffin%2C+M">Matthew Griffin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gundersen%2C+J+O">Joshua O. Gundersen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Halpern%2C+M">Mark Halpern</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hargrave%2C+P+C">Peter C. Hargrave</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+D+H">David H. Hughes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klein%2C+J">Jeff Klein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marsden%2C+G">Gaelen Marsden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Martin%2C+P+G">Peter G. Martin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mauskopf%2C+P">Philip Mauskopf</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Netterfield%2C+C+B">Calvin B. Netterfield</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Olmi%2C+L">Luca Olmi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patanchon%2C+G">Guillaume Patanchon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rex%2C+M">Marie Rex</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Roy%2C+A">Arabindo Roy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Scott%2C+D">Douglas Scott</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Semisch%2C+C">Christopher Semisch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Truch%2C+M+D+P">Matthew D. P. Truch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tucker%2C+C">Carole Tucker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tucker%2C+G+S">Gregory S. Tucker</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1009.1296v2-abstract-short" style="display: inline;"> We have carried out the first general submillimeter analysis of the field towards GRSMC 45.46+0.05, a massive star forming region in Aquila. The deconvolved 6 deg^2 (3\degree X 2\degree) maps provided by BLAST in 2005 at 250, 350, and 500 micron were used to perform a preliminary characterization of the clump population previously investigated in the infrared, radio, and molecular maps. Interferom&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1009.1296v2-abstract-full').style.display = 'inline'; document.getElementById('1009.1296v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1009.1296v2-abstract-full" style="display: none;"> We have carried out the first general submillimeter analysis of the field towards GRSMC 45.46+0.05, a massive star forming region in Aquila. The deconvolved 6 deg^2 (3\degree X 2\degree) maps provided by BLAST in 2005 at 250, 350, and 500 micron were used to perform a preliminary characterization of the clump population previously investigated in the infrared, radio, and molecular maps. Interferometric CORNISH data at 4.8 GHz have also been used to characterize the Ultracompact HII regions (UCHIIRs) within the main clumps. By means of the BLAST maps we have produced an initial census of the submillimeter structures that will be observed by Herschel, several of which are known Infrared Dark Clouds (IRDCs). Our spectral energy distributions of the main clumps in the field, located at ~7 kpc, reveal an active population with temperatures of T~35-40 K and masses of ~10^3 Msun for a dust emissivity index beta=1.5. The clump evolutionary stages range from evolved sources, with extended HII regions and prominent IR stellar population, to massive young stellar objects, prior to the formation of an UCHIIR.The CORNISH data have revealed the details of the stellar content and structure of the UCHIIRs. In most cases, the ionizing stars corresponding to the brightest radio detections are capable of accounting for the clump bolometric luminosity, in most cases powered by embedded OB stellar clusters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1009.1296v2-abstract-full').style.display = 'none'; document.getElementById('1009.1296v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 January, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 September, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2010. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1009.0866">arXiv:1009.0866</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1009.0866">pdf</a>, <a href="https://arxiv.org/ps/1009.0866">ps</a>, <a href="https://arxiv.org/format/1009.0866">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0004-637X/739/1/52">10.1088/0004-637X/739/1/52 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: Cosmological Parameters from the 2008 Power Spectra </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">J. Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hlozek%2C+R">R. Hlozek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sievers%2C+J">J. Sievers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Acquaviva%2C+V">V. Acquaviva</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguirre%2C+P">P. Aguirre</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Appel%2C+J+W">J. W. Appel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barrientos%2C+L+F">L. F. Barrientos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E+S">E. S. Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. R. Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+B">B. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burger%2C+B">B. Burger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chervenak%2C+J">J. Chervenak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Das%2C+S">S. Das</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">M. J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">S. R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Doriese%2C+W+B">W. Bertrand Doriese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunner%2C+R">R. Dunner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Essinger-Hileman%2C+T">T. Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fisher%2C+R+P">R. P. Fisher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fowler%2C+J+W">J. W. Fowler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hajian%2C+A">A. Hajian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Halpern%2C+M">M. Halpern</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hasselfield%2C+M">M. Hasselfield</a> , et al. (42 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1009.0866v1-abstract-short" style="display: inline;"> We present cosmological parameters derived from the angular power spectrum of the cosmic microwave background (CMB) radiation observed at 148 GHz and 218 GHz over 296 deg^2 with the Atacama Cosmology Telescope (ACT) during its 2008 season. ACT measures fluctuations at scales 500&lt;l&lt;10000. We fit a model for the lensed CMB, Sunyaev-Zel&#39;dovich (SZ), and foreground contribution to the 148 GHz and 218&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1009.0866v1-abstract-full').style.display = 'inline'; document.getElementById('1009.0866v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1009.0866v1-abstract-full" style="display: none;"> We present cosmological parameters derived from the angular power spectrum of the cosmic microwave background (CMB) radiation observed at 148 GHz and 218 GHz over 296 deg^2 with the Atacama Cosmology Telescope (ACT) during its 2008 season. ACT measures fluctuations at scales 500&lt;l&lt;10000. We fit a model for the lensed CMB, Sunyaev-Zel&#39;dovich (SZ), and foreground contribution to the 148 GHz and 218 GHz power spectra, including thermal and kinetic SZ, Poisson power from radio and infrared point sources, and clustered power from infrared point sources. The power from thermal and kinetic SZ at 148 GHz is estimated to be B_3000 = 6.8+-2.9 uK^2, where B_l=l(l+1)C_l/2pi. We estimate primary cosmological parameters from the 148 GHz spectrum, marginalizing over SZ and source power. The LCDM cosmological model is a good fit to the data, and LCDM parameters estimated from ACT+WMAP are consistent with the 7-year WMAP limits, with scale invariant n_s = 1 excluded at 99.7% CL (3sigma). A model with no CMB lensing is disfavored at 2.8sigma. By measuring the third to seventh acoustic peaks, and probing the Silk damping regime, the ACT data improve limits on cosmological parameters that affect the small-scale CMB power. The ACT data combined with WMAP give a 6sigma detection of primordial helium, with Y_P = 0.313+-0.044, and a 4sigma detection of relativistic species, assumed to be neutrinos, with Neff = 5.3+-1.3 (4.6+-0.8 with BAO+H0 data). From the CMB alone the running of the spectral index is constrained to be dn/dlnk = -0.034 +- 0.018, the limit on the tensor-to-scalar ratio is r&lt;0.25 (95% CL), and the possible contribution of Nambu cosmic strings to the power spectrum is constrained to string tension Gmu&lt;1.6 \times 10^-7 (95% CL). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1009.0866v1-abstract-full').style.display = 'none'; document.getElementById('1009.0866v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 13 figures. Submitted to ApJ. This paper is a companion to Hajian et al. (2010) and Das et al. (2010)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1009.0847">arXiv:1009.0847</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1009.0847">pdf</a>, <a href="https://arxiv.org/ps/1009.0847">ps</a>, <a href="https://arxiv.org/format/1009.0847">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0004-637X/729/1/62">10.1088/0004-637X/729/1/62 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: A Measurement of the Cosmic Microwave Background Power Spectrum at 148 and 218 GHz from the 2008 Southern Survey </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Das%2C+S">Sudeep Das</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marriage%2C+T+A">Tobias A. Marriage</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">Peter A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguirre%2C+P">Paula Aguirre</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amir%2C+M">Mandana Amir</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Appel%2C+J+W">John W. Appel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barrientos%2C+L+F">L. Felipe Barrientos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E+S">Elia S. Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+B">Ben Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burger%2C+B">Bryce Burger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chervenak%2C+J">Jay Chervenak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Doriese%2C+W+B">W. Bertrand Doriese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Joanna Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%C3%BCnner%2C+R">Rolando D眉nner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fisher%2C+R+P">Ryan P. Fisher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fowler%2C+J+W">Joseph W. Fowler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hajian%2C+A">Amir Hajian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Halpern%2C+M">Mark Halpern</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hasselfield%2C+M">Matthew Hasselfield</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hern%C3%A1ndez-Monteagudo%2C+C">Carlos Hern谩ndez-Monteagudo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+G+C">Gene C. Hilton</a> , et al. (42 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1009.0847v1-abstract-short" style="display: inline;"> We present measurements of the cosmic microwave background (CMB) power spectrum made by the Atacama Cosmology Telescope at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. Our results clearly show the second through the seventh acoustic peaks in the CMB power spectrum. The measurements of these higher-order peaks provide an additional test of the 螞CDM cosmolog&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1009.0847v1-abstract-full').style.display = 'inline'; document.getElementById('1009.0847v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1009.0847v1-abstract-full" style="display: none;"> We present measurements of the cosmic microwave background (CMB) power spectrum made by the Atacama Cosmology Telescope at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. Our results clearly show the second through the seventh acoustic peaks in the CMB power spectrum. The measurements of these higher-order peaks provide an additional test of the 螞CDM cosmological model. At l &gt; 3000, we detect power in excess of the primary anisotropy spectrum of the CMB. At lower multipoles 500 &lt; l &lt; 3000, we find evidence for gravitational lensing of the CMB in the power spectrum at the 2.8蟽 level. We also detect a low level of Galactic dust in our maps, which demonstrates that we can recover known faint, diffuse signals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1009.0847v1-abstract-full').style.display = 'none'; document.getElementById('1009.0847v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 13 figures. Submitted to ApJ. This paper is a companion to Hajian et al. (2010) and Dunkley et al. (2010)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1009.0777">arXiv:1009.0777</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1009.0777">pdf</a>, <a href="https://arxiv.org/ps/1009.0777">ps</a>, <a href="https://arxiv.org/format/1009.0777">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0004-637X/740/2/86">10.1088/0004-637X/740/2/86 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: Calibration with WMAP Using Cross-Correlations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Hajian%2C+A">Amir Hajian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Acquaviva%2C+V">Viviana Acquaviva</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">Peter A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguirre%2C+P">Paula Aguirre</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amiri%2C+M">Mandana Amiri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Appel%2C+J+W">John William Appel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barrientos%2C+L+F">L. Felipe Barrientos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E+S">Elia S. Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+B">Ben Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burger%2C+B">Bryce Burger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chervenak%2C+J">Jay Chervenak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Das%2C+S">Sudeep Das</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Doriese%2C+W+B">W. Bertrand Doriese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Joanna Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunner%2C+R">Rolando Dunner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fisher%2C+R+P">Ryan P. Fisher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fowler%2C+J+W">Joseph W. Fowler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Halpern%2C+M">Mark Halpern</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hasselfield%2C+M">Matthew Hasselfield</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hernandez-Monteagudo%2C+C">Carlos Hernandez-Monteagudo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+G+C">Gene C. Hilton</a> , et al. (42 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1009.0777v1-abstract-short" style="display: inline;"> We present a new calibration method based on cross-correlations with WMAP and apply it to data from the Atacama Cosmology Telescope (ACT). ACT&#39;s observing strategy and map making procedure allows an unbiased reconstruction of the modes in the maps over a wide range of multipoles. By directly matching the ACT maps to WMAP observations in the multipole range of 400 &lt; ell &lt; 1000, we determine the abs&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1009.0777v1-abstract-full').style.display = 'inline'; document.getElementById('1009.0777v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1009.0777v1-abstract-full" style="display: none;"> We present a new calibration method based on cross-correlations with WMAP and apply it to data from the Atacama Cosmology Telescope (ACT). ACT&#39;s observing strategy and map making procedure allows an unbiased reconstruction of the modes in the maps over a wide range of multipoles. By directly matching the ACT maps to WMAP observations in the multipole range of 400 &lt; ell &lt; 1000, we determine the absolute calibration with an uncertainty of 2% in temperature. The precise measurement of the calibration error directly impacts the uncertainties in the cosmological parameters estimated from the ACT power spectra. We also present a combined map based on ACT and WMAP data that has high signal-to-noise over a wide range of multipoles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1009.0777v1-abstract-full').style.display = 'none'; document.getElementById('1009.0777v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to ApJ. This is a companion to Das et al (2010) and Dunkley et al (2010)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal, Volume 740, Issue 2, article id. 86 (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1007.5256">arXiv:1007.5256</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1007.5256">pdf</a>, <a href="https://arxiv.org/ps/1007.5256">ps</a>, <a href="https://arxiv.org/format/1007.5256">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0004-637X/731/2/100">10.1088/0004-637X/731/2/100 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: Extragalactic Sources at 148 GHz in the 2008 Survey </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Marriage%2C+T+A">T. A. Marriage</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Juin%2C+J+B">J. B. Juin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lin%2C+Y+-">Y. -T. Lin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marsden%2C+D">D. Marsden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nolta%2C+M+R">M. R. Nolta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Partridge%2C+B">B. Partridge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguirre%2C+P">P. Aguirre</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Appel%2C+J+W">J. W. Appel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barrientos%2C+L+F">L. F. Barrientos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E+S">E. S. Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. R. Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+B">B. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burger%2C+B">B. Burger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chervenak%2C+J">J. Chervenak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Das%2C+S">S. Das</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">M. J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">S. R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Doriese%2C+W+B">W. B. Doriese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">J. Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunner%2C+R">R. Dunner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Essinger-Hileman%2C+T">T. Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fisher%2C+R+P">R. P. Fisher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fowler%2C+J+W">J. W. Fowler</a> , et al. (44 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1007.5256v2-abstract-short" style="display: inline;"> We report on extragalactic sources detected in a 455 square-degree map of the southern sky made with data at a frequency of 148 GHz from the Atacama Cosmology Telescope 2008 observing season. We provide a catalog of 157 sources with flux densities spanning two orders of magnitude: from 15 to 1500 mJy. Comparison to other catalogs shows that 98% of the ACT detections correspond to sources detected&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1007.5256v2-abstract-full').style.display = 'inline'; document.getElementById('1007.5256v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1007.5256v2-abstract-full" style="display: none;"> We report on extragalactic sources detected in a 455 square-degree map of the southern sky made with data at a frequency of 148 GHz from the Atacama Cosmology Telescope 2008 observing season. We provide a catalog of 157 sources with flux densities spanning two orders of magnitude: from 15 to 1500 mJy. Comparison to other catalogs shows that 98% of the ACT detections correspond to sources detected at lower radio frequencies. Three of the sources appear to be associated with the brightest cluster galaxies of low redshift X-ray selected galaxy clusters. Estimates of the radio to mm-wave spectral indices and differential counts of the sources further bolster the hypothesis that they are nearly all radio sources, and that their emission is not dominated by re-emission from warm dust. In a bright (&gt;50 mJy) 148 GHz-selected sample with complete cross-identifications from the Australia Telescope 20 GHz survey, we observe an average steepening of the spectra between 5, 20, and 148 GHz with median spectral indices of $伪_{\rm 5-20} = -0.07 \pm 0.06$, $伪_{\rm 20-148} = -0.39 \pm0.04$, and $伪_{\rm 5-148} = -0.20 \pm 0.03$. When the measured spectral indices are taken into account, the 148 GHz differential source counts are consistent with previous measurements at 30 GHz in the context of a source count model dominated by radio sources. Extrapolating with an appropriately rescaled model for the radio source counts, the Poisson contribution to the spatial power spectrum from synchrotron-dominated sources with flux density less than 20 mJy is $C^{\rm Sync} = (2.8 \pm 0.3) \times 10^{-6} \micro\kelvin^2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1007.5256v2-abstract-full').style.display = 'none'; document.getElementById('1007.5256v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 July, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to ApJ</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ 731 (2011) 100 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1007.0290">arXiv:1007.0290</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1007.0290">pdf</a>, <a href="https://arxiv.org/ps/1007.0290">ps</a>, <a href="https://arxiv.org/format/1007.0290">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0067-0049/194/2/41">10.1088/0067-0049/194/2/41 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: The Receiver and Instrumentation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Swetz%2C+D+S">D. S. Swetz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Appel%2C+J+W">J. W. Appel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E+S">E. S. Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burger%2C+B">B. Burger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chervenak%2C+J">J. Chervenak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">M. J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">S. R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Doriese%2C+W+B">W. B. Doriese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%C3%BCnner%2C+R">R. D眉nner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Essinger-Hileman%2C+T">T. Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fisher%2C+R+P">R. P. Fisher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fowler%2C+J+W">J. W. Fowler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Halpern%2C+M">M. Halpern</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hasselfield%2C+M">M. Hasselfield</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+G+C">G. C. Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hincks%2C+A+D">A. D. Hincks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Irwin%2C+K+D">K. D. Irwin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jarosik%2C+N">N. Jarosik</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kaul%2C+M">M. Kaul</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klein%2C+J">J. Klein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lau%2C+J+M">J. M. Lau</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Limon%2C+M">M. Limon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marriage%2C+T+A">T. A. Marriage</a> , et al. (16 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1007.0290v1-abstract-short" style="display: inline;"> The Atacama Cosmology Telescope was designed to measure small-scale anisotropies in the Cosmic Microwave Background and detect galaxy clusters through the Sunyaev-Zel&#39;dovich effect. The instrument is located on Cerro Toco in the Atacama Desert, at an altitude of 5190 meters. A six-meter off-axis Gregorian telescope feeds a new type of cryogenic receiver, the Millimeter Bolometer Array Camera. The&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1007.0290v1-abstract-full').style.display = 'inline'; document.getElementById('1007.0290v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1007.0290v1-abstract-full" style="display: none;"> The Atacama Cosmology Telescope was designed to measure small-scale anisotropies in the Cosmic Microwave Background and detect galaxy clusters through the Sunyaev-Zel&#39;dovich effect. The instrument is located on Cerro Toco in the Atacama Desert, at an altitude of 5190 meters. A six-meter off-axis Gregorian telescope feeds a new type of cryogenic receiver, the Millimeter Bolometer Array Camera. The receiver features three 1000-element arrays of transition-edge sensor bolometers for observations at 148 GHz, 218 GHz, and 277 GHz. Each detector array is fed by free space mm-wave optics. Each frequency band has a field of view of approximately 22&#39; x 26&#39;. The telescope was commissioned in 2007 and has completed its third year of operations. We discuss the major components of the telescope, camera, and related systems, and summarize the instrument performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1007.0290v1-abstract-full').style.display = 'none'; document.getElementById('1007.0290v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 10 figures, submitted to ApJ Supplemental</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1001.2934">arXiv:1001.2934</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1001.2934">pdf</a>, <a href="https://arxiv.org/ps/1001.2934">ps</a>, <a href="https://arxiv.org/format/1001.2934">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0004-637X/722/2/1148">10.1088/0004-637X/722/2/1148 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: A Measurement of the 600&lt; ell &lt;8000 Cosmic Microwave Background Power Spectrum at 148 GHz </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Fowler%2C+J+W">J. W. Fowler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Acquaviva%2C+V">V. Acquaviva</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguirre%2C+P">P. Aguirre</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Appel%2C+J+W">J. W. Appel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barrientos%2C+L+F">L. F. Barrientos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E+S">E. S. Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. R. Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+B">B. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burger%2C+B">B. Burger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chervenak%2C+J">J. Chervenak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Das%2C+S">S. Das</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">M. J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">S. R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Doriese%2C+W+B">W. B. Doriese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">J. Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%C3%BCnner%2C+R">R. D眉nner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Essinger-Hileman%2C+T">T. Essinger-Hileman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fisher%2C+R+P">R. P. Fisher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hajian%2C+A">A. Hajian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Halpern%2C+M">M. Halpern</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hasselfield%2C+M">M. Hasselfield</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hern%C3%A1ndez-Monteagudo%2C+C">C. Hern谩ndez-Monteagudo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+G+C">G. C. Hilton</a> , et al. (47 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1001.2934v2-abstract-short" style="display: inline;"> We present a measurement of the angular power spectrum of the cosmic microwave background (CMB) radiation observed at 148 GHz. The measurement uses maps with 1.4&#39; angular resolution made with data from the Atacama Cosmology Telescope (ACT). The observations cover 228 square degrees of the southern sky, in a 4.2-degree-wide strip centered on declination 53 degrees South. The CMB at arcminute angula&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1001.2934v2-abstract-full').style.display = 'inline'; document.getElementById('1001.2934v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1001.2934v2-abstract-full" style="display: none;"> We present a measurement of the angular power spectrum of the cosmic microwave background (CMB) radiation observed at 148 GHz. The measurement uses maps with 1.4&#39; angular resolution made with data from the Atacama Cosmology Telescope (ACT). The observations cover 228 square degrees of the southern sky, in a 4.2-degree-wide strip centered on declination 53 degrees South. The CMB at arcminute angular scales is particularly sensitive to the Silk damping scale, to the Sunyaev-Zel&#39;dovich (SZ) effect from galaxy clusters, and to emission by radio sources and dusty galaxies. After masking the 108 brightest point sources in our maps, we estimate the power spectrum between 600 &lt; \ell &lt; 8000 using the adaptive multi-taper method to minimize spectral leakage and maximize use of the full data set. Our absolute calibration is based on observations of Uranus. To verify the calibration and test the fidelity of our map at large angular scales, we cross-correlate the ACT map to the WMAP map and recover the WMAP power spectrum from 250 &lt; ell &lt; 1150. The power beyond the Silk damping tail of the CMB is consistent with models of the emission from point sources. We quantify the contribution of SZ clusters to the power spectrum by fitting to a model normalized at sigma8 = 0.8. We constrain the model&#39;s amplitude ASZ &lt; 1.63 (95% CL). If interpreted as a measurement of sigma8, this implies sigma8^SZ &lt; 0.86 (95% CL) given our SZ model. A fit of ACT and WMAP five-year data jointly to a 6-parameter LCDM model plus terms for point sources and the SZ effect is consistent with these results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1001.2934v2-abstract-full').style.display = 'none'; document.getElementById('1001.2934v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2010; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 January, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 8 figures. Accepted for publication in ApJ</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Astrophysical Journal 722 (2010) 1148-1161 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0910.5025">arXiv:0910.5025</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0910.5025">pdf</a>, <a href="https://arxiv.org/format/0910.5025">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0004-637X/716/1/7">10.1088/0004-637X/716/1/7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Implications of a High Angular Resolution Image of the Sunyaev-Zel&#39;dovich Effect in RXJ1347-1145 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Mason%2C+B+S">B. S. Mason</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">S. R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Korngut%2C+P+M">P. M. Korngut</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">M. J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cotton%2C+W+D">W. D. Cotton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koch%2C+P+M">P. M. Koch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Molnar%2C+S+M">S. M. Molnar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sievers%2C+J+L">J. L. Sievers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguirre%2C+J+E">J. E. Aguirre</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benford%2C+D">D. Benford</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Staguhn%2C+J+G">J. G. Staguhn</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moseley%2C+H">H. Moseley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Irwin%2C+K+D">K. D. Irwin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">P. A. R. Ade</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0910.5025v2-abstract-short" style="display: inline;"> The most X-ray luminous cluster known, RXJ1347-1145 (z=0.45), has been the object of extensive study across the electromagnetic spectrum. We have imaged the Sunyaev-Zel&#39;dovich Effect (SZE) at 90 GHz (3.3 mm) in RXJ1347-1145 at 10&#34; resolution with the 64-pixel MUSTANG bolometer array on the Green Bank Telescope (GBT), confirming a previously reported strong, localized enhancement of the SZE 20&#34; t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0910.5025v2-abstract-full').style.display = 'inline'; document.getElementById('0910.5025v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0910.5025v2-abstract-full" style="display: none;"> The most X-ray luminous cluster known, RXJ1347-1145 (z=0.45), has been the object of extensive study across the electromagnetic spectrum. We have imaged the Sunyaev-Zel&#39;dovich Effect (SZE) at 90 GHz (3.3 mm) in RXJ1347-1145 at 10&#34; resolution with the 64-pixel MUSTANG bolometer array on the Green Bank Telescope (GBT), confirming a previously reported strong, localized enhancement of the SZE 20&#34; to the South-East of the center of X-ray emission. This enhancement of the SZE has been interpreted as shock-heated (&gt; 20 keV) gas caused by an ongoing major (low mass-ratio) merger event. Our data support this interpretation. We also detect a pronounced asymmetry in the projected cluster pressure profile, with the pressure just east of the cluster core ~1.6 times higher than just to the west. This is the highest resolution image of the SZE made to date. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0910.5025v2-abstract-full').style.display = 'none'; document.getElementById('0910.5025v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2010; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 October, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures; accepted for publication in The Astrophysical Journal</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Astrophys.J.716:739-745,2010 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0910.1095">arXiv:0910.1095</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0910.1095">pdf</a>, <a href="https://arxiv.org/ps/0910.1095">ps</a>, <a href="https://arxiv.org/format/0910.1095">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0004-637X/708/2/1611">10.1088/0004-637X/708/2/1611 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> BLAST05: Power Spectra of Bright Galactic Cirrus at Submillimeter Wavelengths </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Roy%2C+A">Arabindo Roy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">Peter A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bock%2C+J+J">James J. Bock</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chapin%2C+E+L">Edward L. Chapin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Griffin%2C+M">Matthew Griffin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gundersen%2C+J+O">Joshua O. Gundersen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Halpern%2C+M">Mark Halpern</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hargrave%2C+P+C">Peter C. Hargrave</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+D+H">David H. Hughes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klein%2C+J">Jeff Klein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marsden%2C+G">Gaelen Marsden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Martin%2C+P+G">Peter G. Martin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mauskopf%2C+P">Philip Mauskopf</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Miville-Deschenes%2C+M">Marc-Antoine Miville-Deschenes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Netterfield%2C+C+B">Calvin B. Netterfield</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Olmi%2C+L">Luca Olmi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pascale%2C+E">Enzo Pascale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patanchon%2C+G">Guillaume Patanchon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rex%2C+M">Marie Rex</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Scott%2C+D">Douglas Scott</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Semisch%2C+C">Christopher Semisch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Truch%2C+M+D+P">Matthew D. P. Truch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tucker%2C+C">Carole Tucker</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0910.1095v1-abstract-short" style="display: inline;"> We report multi-wavelength power spectra of diffuse Galactic dust emission from BLAST observations at 250, 350, and 500 microns in Galactic Plane fields in Cygnus X and Aquila. These submillimeter power spectra statistically quantify the self-similar structure observable over a broad range of scales and can be used to assess the cirrus noise which limits the detection of faint point sources. The&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0910.1095v1-abstract-full').style.display = 'inline'; document.getElementById('0910.1095v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0910.1095v1-abstract-full" style="display: none;"> We report multi-wavelength power spectra of diffuse Galactic dust emission from BLAST observations at 250, 350, and 500 microns in Galactic Plane fields in Cygnus X and Aquila. These submillimeter power spectra statistically quantify the self-similar structure observable over a broad range of scales and can be used to assess the cirrus noise which limits the detection of faint point sources. The advent of submillimeter surveys with the Herschel Space Observatory makes the wavelength dependence a matter of interest. We show that the observed relative amplitudes of the power spectra can be related through a spectral energy distribution (SED). Fitting a simple modified black body to this SED, we find the dust temperature in Cygnus X to be 19.9 +/- 1.3 K and in the Aquila region 16.9 +/- 0.7 K. Our empirical estimates provide important new insight into the substantial cirrus noise that will be encountered in forthcoming observations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0910.1095v1-abstract-full').style.display = 'none'; document.getElementById('0910.1095v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to the Astrophysical Journal. Maps and other data are available at http://blastexperiment.info/</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Astrophys.J.708:1611-1620,2010 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0907.1306">arXiv:0907.1306</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0907.1306">pdf</a>, <a href="https://arxiv.org/format/0907.1306">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.788361">10.1117/12.788361 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> MUSTANG: 90 GHz Science with the Green Bank Telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">S. R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Korngut%2C+P+M">P. M. Korngut</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mason%2C+B+S">B. S. Mason</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguirre%2C+J">J. Aguirre</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ames%2C+T+J">T. J. Ames</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benford%2C+D+J">D. J. Benford</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+T+C">T. C. Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chervenak%2C+J+A">J. A. Chervenak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cotton%2C+W+D">W. D. Cotton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">M. J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Figueroa-Feliciano%2C+E">E. Figueroa-Feliciano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Irwin%2C+K+D">K. D. Irwin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maher%2C+S">S. Maher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mello%2C+M">M. Mello</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moseley%2C+S+H">S. H. Moseley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tally%2C+D+J">D. J. Tally</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tucker%2C+C">C. Tucker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=White%2C+S+D">S. D. White</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0907.1306v1-abstract-short" style="display: inline;"> MUSTANG is a 90 GHz bolometer camera built for use as a facility instrument on the 100 m Robert C. Byrd Green Bank radio telescope (GBT). MUSTANG has an 8 by 8 focal plane array of transition edge sensor bolometers read out using time-domain multiplexed SQUID electronics. As a continuum instrument on a large single dish MUSTANG has a combination of high resolution (8&#34;) and good sensitivity to ex&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0907.1306v1-abstract-full').style.display = 'inline'; document.getElementById('0907.1306v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0907.1306v1-abstract-full" style="display: none;"> MUSTANG is a 90 GHz bolometer camera built for use as a facility instrument on the 100 m Robert C. Byrd Green Bank radio telescope (GBT). MUSTANG has an 8 by 8 focal plane array of transition edge sensor bolometers read out using time-domain multiplexed SQUID electronics. As a continuum instrument on a large single dish MUSTANG has a combination of high resolution (8&#34;) and good sensitivity to extended emission which make it very competitive for a wide range of galactic and extragalactic science. Commissioning finished in January 2008 and some of the first science data have been collected. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0907.1306v1-abstract-full').style.display = 'none'; document.getElementById('0907.1306v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 July, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 Pages, 5 figures, Presented at the SPIE conference on astronomical instrumentation in 2008</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc.SPIE Int.Soc.Opt.Eng.7020:702005,2008 </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Dicker%2C+S+R&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Dicker%2C+S+R&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Dicker%2C+S+R&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10