CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 330 results for author: <span class="mathjax">Bock, J J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/astro-ph" aria-role="search"> Searching in archive <strong>astro-ph</strong>. <a href="/search/?searchtype=author&query=Bock%2C+J+J">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Bock, J J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Bock%2C+J+J&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Bock, J J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Bock%2C+J+J&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Bock%2C+J+J&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Bock%2C+J+J&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Bock%2C+J+J&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Bock%2C+J+J&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Bock%2C+J+J&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&query=Bock%2C+J+J&start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> <li> <a href="/search/?searchtype=author&query=Bock%2C+J+J&start=300" class="pagination-link " aria-label="Page 7" aria-current="page">7 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10428">arXiv:2411.10428</a> <span> [<a href="https://arxiv.org/pdf/2411.10428">pdf</a>, <a href="https://arxiv.org/format/2411.10428">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> BICEP/Keck XIX: Extremely Thin Composite Polymer Vacuum Windows for BICEP and Other High Throughput Millimeter Wave Telescopes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Collaboration%2C+B">BICEP/Keck Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=%3A"> :</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C+A">C. A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Beck%2C+D">D. Beck</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Boenish%2C+H">H. Boenish</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Carter%2C+K">K. Carter</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J+R">J. R. Cheshire IV</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">J. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Corrigan%2C+L">L. Corrigan</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Crystian%2C+S">S. Crystian</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A+J">A. J. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Denison%2C+E">E. Denison</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Echter%2C+M">M. Echter</a>, <a href="/search/astro-ph?searchtype=author&query=Eiben%2C+M">M. Eiben</a>, <a href="/search/astro-ph?searchtype=author&query=Elwood%2C+B+D">B. D. Elwood</a> , et al. (69 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10428v1-abstract-short" style="display: inline;"> Millimeter-wave refracting telescopes targeting the degree-scale structure of the cosmic microwave background (CMB) have recently grown to diffraction-limited apertures of over 0.5 meters. These instruments are entirely housed in vacuum cryostats to support their sub-kelvin bolometric detectors and to minimize radiative loading from thermal emission due to absorption loss in their transmissive opt… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10428v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10428v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10428v1-abstract-full" style="display: none;"> Millimeter-wave refracting telescopes targeting the degree-scale structure of the cosmic microwave background (CMB) have recently grown to diffraction-limited apertures of over 0.5 meters. These instruments are entirely housed in vacuum cryostats to support their sub-kelvin bolometric detectors and to minimize radiative loading from thermal emission due to absorption loss in their transmissive optical elements. The large vacuum window is the only optical element in the system at ambient temperature, and therefore minimizing loss in the window is crucial for maximizing detector sensitivity. This motivates the use of low-loss polymer materials and a window as thin as practicable. However, the window must simultaneously meet the requirement to keep sufficient vacuum, and therefore must limit gas permeation and remain mechanically robust against catastrophic failure under pressure. We report on the development of extremely thin composite polyethylene window technology that meets these goals. Two windows have been deployed for two full observing seasons on the BICEP3 and BA150 CMB telescopes at the South Pole. On BICEP3, the window has demonstrated a 6% improvement in detector sensitivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10428v1-abstract-full').style.display = 'none'; document.getElementById('2411.10428v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 12 figures, 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.12089">arXiv:2410.12089</a> <span> [<a href="https://arxiv.org/pdf/2410.12089">pdf</a>, <a href="https://arxiv.org/format/2410.12089">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> BICEP/Keck XVIII: Measurement of BICEP3 polarization angles and consequences for constraining cosmic birefringence and inflation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Collaboration%2C+B">BICEP/Keck Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=%3A"> :</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C+A">C. A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Beck%2C+D">D. Beck</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Boenish%2C+H">H. Boenish</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J+R">J. R. Cheshire IV</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">J. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A+J">A. J. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Denison%2C+E">E. Denison</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Eiben%2C+M">M. Eiben</a>, <a href="/search/astro-ph?searchtype=author&query=Elwood%2C+B+D">B. D. Elwood</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">S. Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Fortes%2C+A">A. Fortes</a>, <a href="/search/astro-ph?searchtype=author&query=Gao%2C+M">M. Gao</a> , et al. (61 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.12089v2-abstract-short" style="display: inline;"> We use a custom-made calibrator to measure individual detectors' polarization angles of BICEP3, a small aperture telescope observing the cosmic microwave background (CMB) at 95GHz from the South Pole. We describe our calibration strategy and the statistical and systematic uncertainties associated with the measurement. We reach an unprecedented precision for such measurement on a CMB experiment, wi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12089v2-abstract-full').style.display = 'inline'; document.getElementById('2410.12089v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.12089v2-abstract-full" style="display: none;"> We use a custom-made calibrator to measure individual detectors' polarization angles of BICEP3, a small aperture telescope observing the cosmic microwave background (CMB) at 95GHz from the South Pole. We describe our calibration strategy and the statistical and systematic uncertainties associated with the measurement. We reach an unprecedented precision for such measurement on a CMB experiment, with a repeatability for each detector pair of $0.02掳$. We show that the relative angles measured using this method are in excellent agreement with those extracted from CMB data. Because the absolute measurement is currently limited by a systematic uncertainty, we do not derive cosmic birefringence constraints from BICEP3 data in this work. Rather, we forecast the sensitivity of BICEP3 sky maps for such analysis. We investigate the relative contributions of instrument noise, lensing, and dust, as well as astrophysical and instrumental systematics. We also explore the constraining power of different angle estimators, depending on analysis choices. We establish that the BICEP3 2-year dataset (2017--2018) has an on-sky sensitivity to the cosmic birefringence angle of $蟽= 0.078掳$, which could be improved to $蟽= 0.055掳$ by adding all of the existing BICEP3 data (through 2023). Furthermore, we emphasize the possibility of using the BICEP3 sky patch as a polarization calibration source for CMB experiments, which with the present data could reach a precision of $0.035掳$. Finally, in the context of inflation searches, we investigate the impact of detector-to-detector variations in polarization angles as they may bias the tensor-to-scalar ratio r. We show that while the effect is expected to remain subdominant to other sources of systematic uncertainty, it can be reliably calibrated using polarization angle measurements such as the ones we present in this paper. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12089v2-abstract-full').style.display = 'none'; document.getElementById('2410.12089v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 Pages, 17 Figures, 6 Tables, as submitted to PRD</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.16440">arXiv:2409.16440</a> <span> [<a href="https://arxiv.org/pdf/2409.16440">pdf</a>, <a href="https://arxiv.org/format/2409.16440">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Calibration Measurements of the BICEP3 and BICEP Array CMB Polarimeters from 2017 to 2024 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Giannakopoulos%2C+C">Christos Giannakopoulos</a>, <a href="/search/astro-ph?searchtype=author&query=Verg%C3%A8s%2C+C">Clara Verg猫s</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Zeeshan Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">Mandana Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">Denis Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">Ritoban Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C+A">Colin A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Beck%2C+D">Dominic Beck</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">James J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Boenish%2C+H">Hans Boenish</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">Victor Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J+R">James R. Cheshire IV</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">Jake Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">James Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">Michael Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A+J">Ari Jozef Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Denison%2C+E">Edward Denison</a>, <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M">Marion Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">Lionel Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Eiben%2C+M">Miranda Eiben</a>, <a href="/search/astro-ph?searchtype=author&query=Elwood%2C+B+D">Brodi D. Elwood</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">Sofia Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">Jeff P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Fortes%2C+A">Antonio Fortes</a> , et al. (61 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.16440v1-abstract-short" style="display: inline;"> The BICEP3 and BICEP Array polarimeters are small-aperture refracting telescopes located at the South Pole designed to measure primordial gravitational wave signatures in the Cosmic Microwave Background (CMB) polarization, predicted by inflation. Constraining the inflationary signal requires not only excellent sensitivity, but also careful control of instrumental systematics. Both instruments use… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16440v1-abstract-full').style.display = 'inline'; document.getElementById('2409.16440v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.16440v1-abstract-full" style="display: none;"> The BICEP3 and BICEP Array polarimeters are small-aperture refracting telescopes located at the South Pole designed to measure primordial gravitational wave signatures in the Cosmic Microwave Background (CMB) polarization, predicted by inflation. Constraining the inflationary signal requires not only excellent sensitivity, but also careful control of instrumental systematics. Both instruments use antenna-coupled orthogonally polarized detector pairs, and the polarized sky signal is reconstructed by taking the difference in each detector pair. As a result, the differential response between detectors within a pair becomes an important systematic effect we must control. Additionally, mapping the intensity and polarization response in regions away from the main beam can inform how sidelobe levels affect CMB measurements. Extensive calibration measurements are taken in situ every austral summer for control of instrumental systematics and instrument characterisation. In this work, we detail the set of beam calibration measurements that we conduct on the BICEP receivers, from deep measurements of main beam response to polarized beam response and sidelobe mapping. We discuss the impact of these measurements for instrumental systematics studies and design choices for future CMB receivers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16440v1-abstract-full').style.display = 'none'; document.getElementById('2409.16440v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 7 figures, 1 table, Proceedings paper SPIE 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.02296">arXiv:2409.02296</a> <span> [<a href="https://arxiv.org/pdf/2409.02296">pdf</a>, <a href="https://arxiv.org/format/2409.02296">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Development of the 220/270 GHz Receiver of BICEP Array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Collaboration%2C+T+B">The BICEP/Keck Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=%3A"> :</a>, <a href="/search/astro-ph?searchtype=author&query=Nakato%2C+Y">Y. Nakato</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C+A">C. A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Beck%2C+D">D. Beck</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cantrall%2C+B">B. Cantrall</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J+R">J. R. Cheshire IV</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A+J">A. J. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Denison%2C+E">E. Denison</a>, <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M">M. Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Eiben%2C+M">M. Eiben</a>, <a href="/search/astro-ph?searchtype=author&query=Elwood%2C+B+D">B. D. Elwood</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">S. Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Fortes%2C+A">A. Fortes</a> , et al. (61 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.02296v1-abstract-short" style="display: inline;"> Measurements of B-mode polarization in the CMB sourced from primordial gravitational waves would provide information on the energy scale of inflation and its potential form. To achieve these goals, one must carefully characterize the Galactic foregrounds, which can be distinguished from the CMB by conducting measurements at multiple frequencies. BICEP Array is the latest-generation multi-frequency… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02296v1-abstract-full').style.display = 'inline'; document.getElementById('2409.02296v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.02296v1-abstract-full" style="display: none;"> Measurements of B-mode polarization in the CMB sourced from primordial gravitational waves would provide information on the energy scale of inflation and its potential form. To achieve these goals, one must carefully characterize the Galactic foregrounds, which can be distinguished from the CMB by conducting measurements at multiple frequencies. BICEP Array is the latest-generation multi-frequency instrument of the BICEP/Keck program, which specifically targets degree-scale primordial B-modes in the CMB. In its final configuration, this telescope will consist of four small-aperture receivers, spanning frequency bands from 30 to 270 GHz. The 220/270 GHz receiver designed to characterize Galactic dust is currently undergoing commissioning at Stanford University and is scheduled to deploy to the South Pole during the 2024--2025 austral summer. Here, we will provide an overview of this high-frequency receiver and discuss the integration status and test results as it is being commissioned. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02296v1-abstract-full').style.display = 'none'; document.getElementById('2409.02296v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.10444">arXiv:2408.10444</a> <span> [<a href="https://arxiv.org/pdf/2408.10444">pdf</a>, <a href="https://arxiv.org/format/2408.10444">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> In-Flight Performance of Spider's 280 GHz Receivers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Shaw%2C+E+C">Elle C. Shaw</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Akers%2C+S">S. Akers</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Austermann%2C+J">J. Austermann</a>, <a href="/search/astro-ph?searchtype=author&query=Beall%2C+J">J. Beall</a>, <a href="/search/astro-ph?searchtype=author&query=Becker%2C+D+T">D. T. Becker</a>, <a href="/search/astro-ph?searchtype=author&query=Benton%2C+S+J">S. J. Benton</a>, <a href="/search/astro-ph?searchtype=author&query=Bergman%2C+A+S">A. S. Bergman</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Bond%2C+J+R">J. R. Bond</a>, <a href="/search/astro-ph?searchtype=author&query=Bryan%2C+S+A">S. A. Bryan</a>, <a href="/search/astro-ph?searchtype=author&query=Chiang%2C+H+C">H. C. Chiang</a>, <a href="/search/astro-ph?searchtype=author&query=Contaldi%2C+C+R">C. R. Contaldi</a>, <a href="/search/astro-ph?searchtype=author&query=Domagalski%2C+R+S">R. S. Domagalski</a>, <a href="/search/astro-ph?searchtype=author&query=Dor%C3%A9%2C+O">O. Dor茅</a>, <a href="/search/astro-ph?searchtype=author&query=Duff%2C+S+M">S. M. Duff</a>, <a href="/search/astro-ph?searchtype=author&query=Duivenvoorden%2C+A+J">A. J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&query=Eriksen%2C+H+K">H. K. Eriksen</a>, <a href="/search/astro-ph?searchtype=author&query=Farhang%2C+M">M. Farhang</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Fissel%2C+L+M">L. M. Fissel</a>, <a href="/search/astro-ph?searchtype=author&query=Fraisse%2C+A+A">A. A. Fraisse</a>, <a href="/search/astro-ph?searchtype=author&query=Freese%2C+K">K. Freese</a>, <a href="/search/astro-ph?searchtype=author&query=Galloway%2C+M">M. Galloway</a> , et al. (62 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.10444v1-abstract-short" style="display: inline;"> SPIDER is a balloon-borne instrument designed to map the cosmic microwave background at degree-angular scales in the presence of Galactic foregrounds. SPIDER has mapped a large sky area in the Southern Hemisphere using more than 2000 transition-edge sensors (TESs) during two NASA Long Duration Balloon flights above the Antarctic continent. During its first flight in January 2015, SPIDER observed i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10444v1-abstract-full').style.display = 'inline'; document.getElementById('2408.10444v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.10444v1-abstract-full" style="display: none;"> SPIDER is a balloon-borne instrument designed to map the cosmic microwave background at degree-angular scales in the presence of Galactic foregrounds. SPIDER has mapped a large sky area in the Southern Hemisphere using more than 2000 transition-edge sensors (TESs) during two NASA Long Duration Balloon flights above the Antarctic continent. During its first flight in January 2015, SPIDER observed in the 95 GHz and 150 GHz frequency bands, setting constraints on the B-mode signature of primordial gravitational waves. Its second flight in the 2022-23 season added new receivers at 280 GHz, each using an array of TESs coupled to the sky through feedhorns formed from stacks of silicon wafers. These receivers are optimized to produce deep maps of polarized Galactic dust emission over a large sky area, providing a unique data set with lasting value to the field. In this work, we describe the instrument's performance during SPIDER's second flight. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10444v1-abstract-full').style.display = 'none'; document.getElementById('2408.10444v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to SPIE Astronomical Telescopes + Instrumentation 2024, JATIS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.20982">arXiv:2407.20982</a> <span> [<a href="https://arxiv.org/pdf/2407.20982">pdf</a>, <a href="https://arxiv.org/format/2407.20982">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Analysis of Polarized Dust Emission from the First Flight of the SPIDER Balloon-Borne Telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=SPIDER+Collaboration"> SPIDER Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Benton%2C+S+J">S. J. Benton</a>, <a href="/search/astro-ph?searchtype=author&query=Bergman%2C+A+S">A. S. Bergman</a>, <a href="/search/astro-ph?searchtype=author&query=Bihary%2C+R">R. Bihary</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Bond%2C+J+R">J. R. Bond</a>, <a href="/search/astro-ph?searchtype=author&query=Bonetti%2C+J+A">J. A. Bonetti</a>, <a href="/search/astro-ph?searchtype=author&query=Bryan%2C+S+A">S. A. Bryan</a>, <a href="/search/astro-ph?searchtype=author&query=Chiang%2C+H+C">H. C. Chiang</a>, <a href="/search/astro-ph?searchtype=author&query=Contaldi%2C+C+R">C. R. Contaldi</a>, <a href="/search/astro-ph?searchtype=author&query=Dor%C3%A9%2C+O">O. Dor茅</a>, <a href="/search/astro-ph?searchtype=author&query=Duivenvoorden%2C+A+J">A. J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&query=Eriksen%2C+H+K">H. K. Eriksen</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Fraisse%2C+A+A">A. A. Fraisse</a>, <a href="/search/astro-ph?searchtype=author&query=Freese%2C+K">K. Freese</a>, <a href="/search/astro-ph?searchtype=author&query=Galloway%2C+M">M. Galloway</a>, <a href="/search/astro-ph?searchtype=author&query=Gambrel%2C+A+E">A. E. Gambrel</a>, <a href="/search/astro-ph?searchtype=author&query=Gandilo%2C+N+N">N. N. Gandilo</a>, <a href="/search/astro-ph?searchtype=author&query=Ganga%2C+K">K. Ganga</a>, <a href="/search/astro-ph?searchtype=author&query=Gourapura%2C+S">S. Gourapura</a>, <a href="/search/astro-ph?searchtype=author&query=Gualtieri%2C+R">R. Gualtieri</a>, <a href="/search/astro-ph?searchtype=author&query=Gudmundsson%2C+J+E">J. E. Gudmundsson</a> , et al. (45 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.20982v1-abstract-short" style="display: inline;"> Using data from the first flight of SPIDER and from Planck HFI, we probe the properties of polarized emission from interstellar dust in the SPIDER observing region. Component separation algorithms operating in both the spatial and harmonic domains are applied to probe their consistency and to quantify modeling errors associated with their assumptions. Analyses spanning the full SPIDER region demon… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20982v1-abstract-full').style.display = 'inline'; document.getElementById('2407.20982v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.20982v1-abstract-full" style="display: none;"> Using data from the first flight of SPIDER and from Planck HFI, we probe the properties of polarized emission from interstellar dust in the SPIDER observing region. Component separation algorithms operating in both the spatial and harmonic domains are applied to probe their consistency and to quantify modeling errors associated with their assumptions. Analyses spanning the full SPIDER region demonstrate that i) the spectral energy distribution of diffuse Galactic dust emission is broadly consistent with a modified-blackbody (MBB) model with a spectral index of $尾_\mathrm{d}=1.45\pm0.05$ $(1.47\pm0.06)$ for $E$ ($B$)-mode polarization, slightly lower than that reported by Planck for the full sky; ii) its angular power spectrum is broadly consistent with a power law; and iii) there is no significant detection of line-of-sight decorrelation of the astrophysical polarization. The size of the SPIDER region further allows for a statistically meaningful analysis of the variation in foreground properties within it. Assuming a fixed dust temperature $T_\mathrm{d}=19.6$ K, an analysis of two independent sub-regions of that field results in inferred values of $尾_\mathrm{d}=1.52\pm0.06$ and $尾_\mathrm{d}=1.09\pm0.09$, which are inconsistent at the $3.9\,蟽$ level. Furthermore, a joint analysis of SPIDER and Planck 217 and 353 GHz data within a subset of the SPIDER region is inconsistent with a simple MBB at more than $3\,蟽$, assuming a common morphology of polarized dust emission over the full range of frequencies. These modeling uncertainties have a small--but non-negligible--impact on limits on the cosmological tensor-to-scalar ratio derived from the \spider dataset. The fidelity of the component separation approaches of future CMB polarization experiments may thus have a significant impact on their constraining power. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20982v1-abstract-full').style.display = 'none'; document.getElementById('2407.20982v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.13587">arXiv:2406.13587</a> <span> [<a href="https://arxiv.org/pdf/2406.13587">pdf</a>, <a href="https://arxiv.org/format/2406.13587">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> The Precursor Small Aperture Telescope (PreSAT) CMB polarimeter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Petroff%2C+M+A">Matthew A. Petroff</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Zeeshan Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">James J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M">Marion Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">Sofia Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Goldfinger%2C+D+C">David C. Goldfinger</a>, <a href="/search/astro-ph?searchtype=author&query=Grimes%2C+P+K">Paul K. Grimes</a>, <a href="/search/astro-ph?searchtype=author&query=Henderson%2C+S+W">Shawn W. Henderson</a>, <a href="/search/astro-ph?searchtype=author&query=Karkare%2C+K+S">Kirit S. Karkare</a>, <a href="/search/astro-ph?searchtype=author&query=Kovac%2C+J+M">John M. Kovac</a>, <a href="/search/astro-ph?searchtype=author&query=Nguyen%2C+H+T">Hien T. Nguyen</a>, <a href="/search/astro-ph?searchtype=author&query=Paine%2C+S+N">Scott N. Paine</a>, <a href="/search/astro-ph?searchtype=author&query=Polish%2C+A+R">Anna R. Polish</a>, <a href="/search/astro-ph?searchtype=author&query=Pryke%2C+C">Clement Pryke</a>, <a href="/search/astro-ph?searchtype=author&query=Romand%2C+T">Thibault Romand</a>, <a href="/search/astro-ph?searchtype=author&query=Schmitt%2C+B+L">Benjamin L. Schmitt</a>, <a href="/search/astro-ph?searchtype=author&query=Vieregg%2C+A+G">Abigail G. Vieregg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.13587v3-abstract-short" style="display: inline;"> The search for the polarized imprint of primordial gravitational waves in the cosmic microwave background (CMB) as direct evidence of cosmic inflation requires exquisite sensitivity and control over systematics. The next-generation CMB-S4 project intends to improve upon current-generation experiments by deploying a significantly greater number of highly-sensitive detectors, combined with refined i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13587v3-abstract-full').style.display = 'inline'; document.getElementById('2406.13587v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.13587v3-abstract-full" style="display: none;"> The search for the polarized imprint of primordial gravitational waves in the cosmic microwave background (CMB) as direct evidence of cosmic inflation requires exquisite sensitivity and control over systematics. The next-generation CMB-S4 project intends to improve upon current-generation experiments by deploying a significantly greater number of highly-sensitive detectors, combined with refined instrument components based on designs from field-proven instruments. The Precursor Small Aperture Telescope (PreSAT) is envisioned as an early step to this next generation, which will test prototype CMB-S4 components and technologies within an existing BICEP Array receiver, with the aim of enabling full-stack laboratory testing and early risk retirement, along with direct correlation of laboratory component-level performance measurements with deployed system performance. The instrument will utilize new 95/155GHz dichroic dual-linear-polarization prototype detectors developed for CMB-S4, cooled to 100mK via the installation of an adiabatic demagnetization refrigerator, along with a prototype readout chain and prototype optics manufactured with wide-band anti-reflection coatings. The experience gained by integrating, deploying, and calibrating PreSAT will also help inform planning for CMB-S4 small aperture telescope commissioning, calibration, and operations well in advance of the fabrication of CMB-S4 production hardware. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13587v3-abstract-full').style.display = 'none'; document.getElementById('2406.13587v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 4 figures, submitted to Proc. SPIE</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.19469">arXiv:2405.19469</a> <span> [<a href="https://arxiv.org/pdf/2405.19469">pdf</a>, <a href="https://arxiv.org/format/2405.19469">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Constraining Inflation with the BICEP/Keck CMB Polarization Experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Collaboration%2C+T+B">The BICEP/Keck Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=%3A"> :</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C+A">C. A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Beck%2C+D">D. Beck</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Boenish%2C+H">H. Boenish</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J+R">J. R. Cheshire IV</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">J. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A">A. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Denison%2C+E+V">E. V. Denison</a>, <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M">M. Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Eiben%2C+M">M. Eiben</a>, <a href="/search/astro-ph?searchtype=author&query=Elwood%2C+B">B. Elwood</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">S. Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Gao%2C+M">M. Gao</a> , et al. (63 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.19469v2-abstract-short" style="display: inline;"> The BICEP/$\textit{Keck}$ (BK) series of cosmic microwave background (CMB) polarization experiments has, over the past decade and a half, produced a series of field-leading constraints on cosmic inflation via measurements of the "B-mode" polarization of the CMB. Primordial B modes are directly tied to the amplitude of primordial gravitational waves (PGW), their strength parameterized by the tensor… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.19469v2-abstract-full').style.display = 'inline'; document.getElementById('2405.19469v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.19469v2-abstract-full" style="display: none;"> The BICEP/$\textit{Keck}$ (BK) series of cosmic microwave background (CMB) polarization experiments has, over the past decade and a half, produced a series of field-leading constraints on cosmic inflation via measurements of the "B-mode" polarization of the CMB. Primordial B modes are directly tied to the amplitude of primordial gravitational waves (PGW), their strength parameterized by the tensor-to-scalar ratio, $r$, and thus the energy scale of inflation. Having set the most sensitive constraints to-date on $r$, $蟽(r)=0.009$ ($r_{0.05}<0.036, 95\%$ C.L.) using data through the 2018 observing season ("BK18"), the BICEP/$\textit{Keck}$ program has continued to improve its dataset in the years since. We give a brief overview of the BK program and the "BK18" result before discussing the program's ongoing efforts, including the deployment and performance of the $\textit{Keck Array}$'s successor instrument, BICEP Array, improvements to data processing and internal consistency testing, new techniques such as delensing, and how those will ultimately serve to allow BK reach $蟽(r) \lesssim 0.003$ using data through the 2027 observing season. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.19469v2-abstract-full').style.display = 'none'; document.getElementById('2405.19469v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures. Contribution to the 2024 Cosmology session of the 58th Rencontres de Moriond</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.03767">arXiv:2405.03767</a> <span> [<a href="https://arxiv.org/pdf/2405.03767">pdf</a>, <a href="https://arxiv.org/format/2405.03767">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/ad34d8">10.3847/1538-4365/ad34d8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Design and Performance of 30/40 GHz Diplexed Focal Plane for BICEP Array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Shiu%2C+C">Corwin Shiu</a>, <a href="/search/astro-ph?searchtype=author&query=Soliman%2C+A">Ahmed Soliman</a>, <a href="/search/astro-ph?searchtype=author&query=O%27Brient%2C+R">Roger O'Brient</a>, <a href="/search/astro-ph?searchtype=author&query=Steinbach%2C+B">Bryan Steinbach</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">James J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Frez%2C+C+F">Clifford F. Frez</a>, <a href="/search/astro-ph?searchtype=author&query=Jones%2C+W+C">William C. Jones</a>, <a href="/search/astro-ph?searchtype=author&query=Megerian%2C+K+G">Krikor G. Megerian</a>, <a href="/search/astro-ph?searchtype=author&query=Moncelsi%2C+L">Lorenzo Moncelsi</a>, <a href="/search/astro-ph?searchtype=author&query=Schillaci%2C+A">Alessandro Schillaci</a>, <a href="/search/astro-ph?searchtype=author&query=Turner%2C+A+D">Anthony D. Turner</a>, <a href="/search/astro-ph?searchtype=author&query=Weber%2C+A+C">Alexis C. Weber</a>, <a href="/search/astro-ph?searchtype=author&query=Zhang%2C+C">Cheng Zhang</a>, <a href="/search/astro-ph?searchtype=author&query=Zhang%2C+S">Silvia Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.03767v1-abstract-short" style="display: inline;"> We demonstrate a wide-band diplexed focal plane suitable for observing low-frequency foregrounds that are important for cosmic microwave background polarimetry. The antenna elements are composed of slotted bowtie antennas with 60% bandwidth that can be partitioned into two bands. Each pixel is composed of two interleaved 12$\times$12 pairs of linearly polarized antenna elements forming a phased ar… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.03767v1-abstract-full').style.display = 'inline'; document.getElementById('2405.03767v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.03767v1-abstract-full" style="display: none;"> We demonstrate a wide-band diplexed focal plane suitable for observing low-frequency foregrounds that are important for cosmic microwave background polarimetry. The antenna elements are composed of slotted bowtie antennas with 60% bandwidth that can be partitioned into two bands. Each pixel is composed of two interleaved 12$\times$12 pairs of linearly polarized antenna elements forming a phased array, designed to synthesize a symmetric beam with no need for focusing optics. The signal from each antenna element is captured in-phase and uniformly weighted by a microstrip summing tree. The antenna signal is diplexed into two bands through the use of two complementary, six-pole Butterworth filters. This filter architecture ensures a contiguous impedance match at all frequencies, and thereby achieves minimal reflection loss between both bands. Subsequently, out-of-band rejection is increased with a bandpass filter and the signal is then deposited on a transition-edge sensor bolometer island. We demonstrate the performance of this focal plane with two distinct bands, 30 and 40 GHz, each with a bandwidth of $\sim$20 and 15 GHz, respectively. The unequal bandwidths between the two bands are caused by an unintentional shift in diplexer frequency from its design values. The end-to-end optical efficiency of these detectors are relatively modest, at 20-30%, with an efficiency loss due to an unknown impedance mismatch in the summing tree. Far-field beam maps show good optical characteristics with edge pixels having no more than $\sim$ 5% ellipticity and $\sim$10-15% peak-to-peak differences for A-B polarization pairs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.03767v1-abstract-full').style.display = 'none'; document.getElementById('2405.03767v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 13 figures. Accepted for publication in ApJS</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal Supplement Series, Vol 272, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.11017">arXiv:2404.11017</a> <span> [<a href="https://arxiv.org/pdf/2404.11017">pdf</a>, <a href="https://arxiv.org/format/2404.11017">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2567224">10.1117/12.2567224 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> SPHEREx: NASA's Near-Infrared Spectrophotmetric All-Sky Survey </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Crill%2C+B+P">Brendan P. Crill</a>, <a href="/search/astro-ph?searchtype=author&query=Werner%2C+M">Michael Werner</a>, <a href="/search/astro-ph?searchtype=author&query=Akeson%2C+R">Rachel Akeson</a>, <a href="/search/astro-ph?searchtype=author&query=Ashby%2C+M">Matthew Ashby</a>, <a href="/search/astro-ph?searchtype=author&query=Bleem%2C+L">Lindsey Bleem</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">James J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Bryan%2C+S">Sean Bryan</a>, <a href="/search/astro-ph?searchtype=author&query=Burnham%2C+J">Jill Burnham</a>, <a href="/search/astro-ph?searchtype=author&query=Byunh%2C+J">Joyce Byunh</a>, <a href="/search/astro-ph?searchtype=author&query=Chang%2C+T">Tzu-Ching Chang</a>, <a href="/search/astro-ph?searchtype=author&query=Chiang%2C+Y">Yi-Kuan Chiang</a>, <a href="/search/astro-ph?searchtype=author&query=Cook%2C+W">Walter Cook</a>, <a href="/search/astro-ph?searchtype=author&query=Cooray%2C+A">Asantha Cooray</a>, <a href="/search/astro-ph?searchtype=author&query=Davis%2C+A">Andrew Davis</a>, <a href="/search/astro-ph?searchtype=author&query=Dor%C3%A9%2C+O">Olivier Dor茅</a>, <a href="/search/astro-ph?searchtype=author&query=Dowell%2C+C+D">C. Darren Dowell</a>, <a href="/search/astro-ph?searchtype=author&query=Dubois-Felsmann%2C+G">Gregory Dubois-Felsmann</a>, <a href="/search/astro-ph?searchtype=author&query=Eifler%2C+T">Tim Eifler</a>, <a href="/search/astro-ph?searchtype=author&query=Faisst%2C+A">Andreas Faisst</a>, <a href="/search/astro-ph?searchtype=author&query=Habib%2C+S">Salman Habib</a>, <a href="/search/astro-ph?searchtype=author&query=Heinrich%2C+C">Chen Heinrich</a>, <a href="/search/astro-ph?searchtype=author&query=Heitmann%2C+K">Katrin Heitmann</a>, <a href="/search/astro-ph?searchtype=author&query=Heaton%2C+G">Grigory Heaton</a>, <a href="/search/astro-ph?searchtype=author&query=Hirata%2C+C">Christopher Hirata</a>, <a href="/search/astro-ph?searchtype=author&query=Hristov%2C+V">Viktor Hristov</a> , et al. (29 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.11017v1-abstract-short" style="display: inline;"> SPHEREx, the Spectro-Photometer for the History of the Universe, Epoch of Reionization, and ices Explorer, is a NASA MIDEX mission planned for launch in 2024. SPHEREx will carry out the first all-sky spectral survey at wavelengths between 0.75 micron and 5 micron with spectral resolving power ~40 between 0.75 and 3.8 micron and ~120 between 3.8 and 5 micron At the end of its two-year mission, SPHE… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.11017v1-abstract-full').style.display = 'inline'; document.getElementById('2404.11017v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.11017v1-abstract-full" style="display: none;"> SPHEREx, the Spectro-Photometer for the History of the Universe, Epoch of Reionization, and ices Explorer, is a NASA MIDEX mission planned for launch in 2024. SPHEREx will carry out the first all-sky spectral survey at wavelengths between 0.75 micron and 5 micron with spectral resolving power ~40 between 0.75 and 3.8 micron and ~120 between 3.8 and 5 micron At the end of its two-year mission, SPHEREx will provide 0.75-to-5 micron spectra of each 6.2"x6.2" pixel on the sky - 14 billion spectra in all. This paper updates an earlier description of SPHEREx presenting changes made during the mission's Preliminary Design Phase, including a discussion of instrument integration and test and a summary of the data processing, analysis, and distribution plans. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.11017v1-abstract-full').style.display = 'none'; document.getElementById('2404.11017v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proceedings Volume 11443, Space Telescopes and Instrumentation 2020: Optical, Infrared, and Millimeter Wave; 114430I (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.04636">arXiv:2312.04636</a> <span> [<a href="https://arxiv.org/pdf/2312.04636">pdf</a>, <a href="https://arxiv.org/format/2312.04636">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> The Universe SPHEREx Will See: Empirically Based Galaxy Simulations and Redshift Predictions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Feder%2C+R+M">Richard M. Feder</a>, <a href="/search/astro-ph?searchtype=author&query=Masters%2C+D+C">Daniel C. Masters</a>, <a href="/search/astro-ph?searchtype=author&query=Lee%2C+B">Bomee Lee</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">James J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Chiang%2C+Y">Yi-Kuan Chiang</a>, <a href="/search/astro-ph?searchtype=author&query=Choi%2C+A">Ami Choi</a>, <a href="/search/astro-ph?searchtype=author&query=Dore%2C+O">Olivier Dore</a>, <a href="/search/astro-ph?searchtype=author&query=Hemmati%2C+S">Shoubaneh Hemmati</a>, <a href="/search/astro-ph?searchtype=author&query=Ilbert%2C+O">Olivier Ilbert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.04636v1-abstract-short" style="display: inline;"> We simulate galaxy properties and redshift estimation for SPHEREx, the next NASA Medium Class Explorer. To make robust models of the galaxy population and test spectro-photometric redshift performance for SPHEREx, we develop a set of synthetic spectral energy distributions based on detailed fits to COSMOS2020 photometry spanning 0.1-8 micron. Given that SPHEREx obtains low-resolution spectra, emis… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04636v1-abstract-full').style.display = 'inline'; document.getElementById('2312.04636v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.04636v1-abstract-full" style="display: none;"> We simulate galaxy properties and redshift estimation for SPHEREx, the next NASA Medium Class Explorer. To make robust models of the galaxy population and test spectro-photometric redshift performance for SPHEREx, we develop a set of synthetic spectral energy distributions based on detailed fits to COSMOS2020 photometry spanning 0.1-8 micron. Given that SPHEREx obtains low-resolution spectra, emission lines will be important for some fraction of galaxies. Here we expand on previous work, using better photometry and photometric redshifts from COSMOS2020, and tight empirical relations to predict robust emission line strengths and ratios. A second galaxy catalog derived from the GAMA survey is generated to ensure the bright ($m_{AB}<18$ in the i-band) sample is representative over larger areas. Using template fitting to estimate photometric continuum redshifts, we forecast redshift recovery of 19 million galaxies over 30000 sq. deg. with $蟽_z<0.003(1+z)$, 445 million with $蟽_z<0.1(1+z)$ and 810 million with $蟽_z<0.2(1+z)$. We also find through idealized tests that emission line information from spectrally dithered flux measurements can yield redshifts with accuracy beyond that implied by the naive SPHEREx channel resolution, motivating the development of a hybrid continuum-line redshift estimation approach. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04636v1-abstract-full').style.display = 'none'; document.getElementById('2312.04636v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 30 figures, 3 tables. Submitted to ApJ. Comments welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.10849">arXiv:2310.10849</a> <span> [<a href="https://arxiv.org/pdf/2310.10849">pdf</a>, <a href="https://arxiv.org/format/2310.10849">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10909-024-03100-6">10.1007/s10909-024-03100-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Results and Limits of Time Division Multiplexing for the BICEP Array High Frequency Receivers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">S. Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C+A">C. A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Beck%2C+D">D. Beck</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J">J. Cheshire</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">J. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A+J">A. J. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Denison%2C+E+V">E. V. Denison</a>, <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M+I">M. I. Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Eiben%2C+M">M. Eiben</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Fortes%2C+A">A. Fortes</a>, <a href="/search/astro-ph?searchtype=author&query=Gao%2C+M">M. Gao</a>, <a href="/search/astro-ph?searchtype=author&query=Giannakopoulos%2C+C">C. Giannakopoulos</a>, <a href="/search/astro-ph?searchtype=author&query=Goeckner-Wald%2C+N">N. Goeckner-Wald</a>, <a href="/search/astro-ph?searchtype=author&query=Goldfinger%2C+D+C">D. C. Goldfinger</a> , et al. (62 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.10849v2-abstract-short" style="display: inline;"> Time-Division Multiplexing is the readout architecture of choice for many ground and space experiments, as it is a very mature technology with proven outstanding low-frequency noise stability, which represents a central challenge in multiplexing. Once fully populated, each of the two BICEP Array high frequency receivers, observing at 150GHz and 220/270GHz, will have 7776 TES detectors tiled on the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.10849v2-abstract-full').style.display = 'inline'; document.getElementById('2310.10849v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.10849v2-abstract-full" style="display: none;"> Time-Division Multiplexing is the readout architecture of choice for many ground and space experiments, as it is a very mature technology with proven outstanding low-frequency noise stability, which represents a central challenge in multiplexing. Once fully populated, each of the two BICEP Array high frequency receivers, observing at 150GHz and 220/270GHz, will have 7776 TES detectors tiled on the focal plane. The constraints set by these two receivers required a redesign of the warm readout electronics. The new version of the standard Multi Channel Electronics, developed and built at the University of British Columbia, is presented here for the first time. BICEP Array operates Time Division Multiplexing readout technology to the limits of its capabilities in terms of multiplexing rate, noise and crosstalk, and applies them in rigorously demanding scientific application requiring extreme noise performance and systematic error control. Future experiments like CMB-S4 plan to use TES bolometers with Time Division/SQUID-based readout for an even larger number of detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.10849v2-abstract-full').style.display = 'none'; document.getElementById('2310.10849v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures, Submitted to Journal of Low Temperature Physics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Low Temperature Physics (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.08038">arXiv:2210.08038</a> <span> [<a href="https://arxiv.org/pdf/2210.08038">pdf</a>, <a href="https://arxiv.org/format/2210.08038">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acc85c">10.3847/1538-4357/acc85c <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> BICEP / Keck XVII: Line of Sight Distortion Analysis: Estimates of Gravitational Lensing, Anisotropic Cosmic Birefringence, Patchy Reionization, and Systematic Errors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Collaboration%2C+B">BICEP/Keck Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=%3A"> :</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Beck%2C+D">D. Beck</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C+A">C. A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Boenish%2C+H">H. Boenish</a>, <a href="/search/astro-ph?searchtype=author&query=Bullock%2C+E">E. Bullock</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J+R">J. R. Cheshire IV</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">J. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A">A. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Denison%2C+E+V">E. V. Denison</a>, <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M">M. Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Eiben%2C+M">M. Eiben</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">S. Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Fliescher%2C+S">S. Fliescher</a> , et al. (70 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.08038v2-abstract-short" style="display: inline;"> We present estimates of line-of-sight distortion fields derived from the 95 GHz and 150 GHz data taken by BICEP2, BICEP3, and Keck Array up to the 2018 observing season, leading to cosmological constraints and a study of instrumental and astrophysical systematics. Cosmological constraints are derived from three of the distortion fields concerning gravitational lensing from large-scale structure, p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.08038v2-abstract-full').style.display = 'inline'; document.getElementById('2210.08038v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.08038v2-abstract-full" style="display: none;"> We present estimates of line-of-sight distortion fields derived from the 95 GHz and 150 GHz data taken by BICEP2, BICEP3, and Keck Array up to the 2018 observing season, leading to cosmological constraints and a study of instrumental and astrophysical systematics. Cosmological constraints are derived from three of the distortion fields concerning gravitational lensing from large-scale structure, polarization rotation from magnetic fields or an axion-like field, and the screening effect of patchy reionization. We measure an amplitude of the lensing power spectrum $A_L^{蠁蠁}=0.95 \pm 0.20$. We constrain polarization rotation, expressed as the coupling constant of a Chern-Simons electromagnetic term $g_{a纬} \leq 2.6 \times 10^{-2}/H_I$, where $H_I$ is the inflationary Hubble parameter, and an amplitude of primordial magnetic fields smoothed over 1 Mpc $B_{1\text{Mpc}} \leq 6.6 \;\text{nG}$ at 95 GHz. We constrain the root mean square of optical-depth fluctuations in a simple "crinkly surface" model of patchy reionization, finding $A^蟿<0.19$ ($2蟽$) for the coherence scale of $L_c=100$. We show that all of the distortion fields of the 95 GHz and 150 GHz polarization maps are consistent with simulations including lensed-$螞$CDM, dust, and noise, with no evidence for instrumental systematics. In some cases, the EB and TB quadratic estimators presented here are more sensitive than our previous map-based null tests at identifying and rejecting spurious B-modes that might arise from instrumental effects. Finally, we verify that the standard deprojection filtering in the BICEP/Keck data processing is effective at removing temperature to polarization leakage. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.08038v2-abstract-full').style.display = 'none'; document.getElementById('2210.08038v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 19 figures, accepted for publication in The Astrophysical Journal</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ (2023) 949 43 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.05684">arXiv:2210.05684</a> <span> [<a href="https://arxiv.org/pdf/2210.05684">pdf</a>, <a href="https://arxiv.org/ps/2210.05684">ps</a>, <a href="https://arxiv.org/format/2210.05684">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acb64c">10.3847/1538-4357/acb64c <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> BICEP / Keck XVI: Characterizing Dust Polarization through Correlations with Neutral Hydrogen </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Collaboration%2C+B">BICEP/Keck Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=%3A"> :</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Beck%2C+D">D. Beck</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C+A">C. A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Boenish%2C+H">H. Boenish</a>, <a href="/search/astro-ph?searchtype=author&query=Bullock%2C+E">E. Bullock</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J+R">J. R. Cheshire IV</a>, <a href="/search/astro-ph?searchtype=author&query=Clark%2C+S+E">S. E. Clark</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">J. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A">A. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Denison%2C+E+V">E. V. Denison</a>, <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M">M. Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Eiben%2C+M">M. Eiben</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">S. Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a> , et al. (71 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.05684v2-abstract-short" style="display: inline;"> We characterize Galactic dust filaments by correlating BICEP/Keck and Planck data with polarization templates based on neutral hydrogen (H I) observations. Dust polarization is important for both our understanding of astrophysical processes in the interstellar medium (ISM) and the search for primordial gravitational waves in the cosmic microwave background (CMB). In the diffuse ISM, H I is strongl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05684v2-abstract-full').style.display = 'inline'; document.getElementById('2210.05684v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.05684v2-abstract-full" style="display: none;"> We characterize Galactic dust filaments by correlating BICEP/Keck and Planck data with polarization templates based on neutral hydrogen (H I) observations. Dust polarization is important for both our understanding of astrophysical processes in the interstellar medium (ISM) and the search for primordial gravitational waves in the cosmic microwave background (CMB). In the diffuse ISM, H I is strongly correlated with the dust and partly organized into filaments that are aligned with the local magnetic field. We analyze the deep BICEP/Keck data at 95, 150, and 220 GHz, over the low-column-density region of sky where BICEP/Keck has set the best limits on primordial gravitational waves. We separate the H I emission into distinct velocity components and detect dust polarization correlated with the local Galactic H I but not with the H I associated with Magellanic Stream I. We present a robust, multifrequency detection of polarized dust emission correlated with the filamentary H I morphology template down to 95 GHz. For assessing its utility for foreground cleaning, we report that the H I morphology template correlates in B modes at a $\sim$10-65$\%$ level over the multipole range $20 < \ell < 200$ with the BICEP/Keck maps, which contain contributions from dust, CMB, and noise components. We measure the spectral index of the filamentary dust component spectral energy distribution to be $尾= 1.54 \pm 0.13$. We find no evidence for decorrelation in this region between the filaments and the rest of the dust field or from the inclusion of dust associated with the intermediate velocity H I. Finally, we explore the morphological parameter space in the H I-based filamentary model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05684v2-abstract-full').style.display = 'none'; document.getElementById('2210.05684v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ 945 72 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.02755">arXiv:2208.02755</a> <span> [<a href="https://arxiv.org/pdf/2208.02755">pdf</a>, <a href="https://arxiv.org/format/2208.02755">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Thermal Testing for Cryogenic CMB Instrument Optical Design </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Goldfinger%2C+D+C">D. C. Goldfinger</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Beck%2C+D">D. Beck</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C+A">C. A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J">J. Cheshire</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">J. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A+J">A. J. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Denison%2C+E+V">E. V. Denison</a>, <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M+I">M. I. Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Eiben%2C+M">M. Eiben</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">S. Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Giannakopoulos%2C+C">C. Giannakopoulos</a>, <a href="/search/astro-ph?searchtype=author&query=Goeckner-Wald%2C+N">N. Goeckner-Wald</a>, <a href="/search/astro-ph?searchtype=author&query=Grayson%2C+J">J. Grayson</a>, <a href="/search/astro-ph?searchtype=author&query=Grimes%2C+P+K">P. K. Grimes</a> , et al. (61 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.02755v1-abstract-short" style="display: inline;"> Observations of the Cosmic Microwave Background rely on cryogenic instrumentation with cold detectors, readout, and optics providing the low noise performance and instrumental stability required to make more sensitive measurements. It is therefore critical to optimize all aspects of the cryogenic design to achieve the necessary performance, with low temperature components and acceptable system coo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.02755v1-abstract-full').style.display = 'inline'; document.getElementById('2208.02755v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.02755v1-abstract-full" style="display: none;"> Observations of the Cosmic Microwave Background rely on cryogenic instrumentation with cold detectors, readout, and optics providing the low noise performance and instrumental stability required to make more sensitive measurements. It is therefore critical to optimize all aspects of the cryogenic design to achieve the necessary performance, with low temperature components and acceptable system cooling requirements. In particular, we will focus on our use of thermal filters and cold optics, which reduce the thermal load passed along to the cryogenic stages. To test their performance, we have made a series of in situ measurements while integrating the third receiver for the BICEP Array telescope. In addition to characterizing the behavior of this receiver, these measurements continue to refine the models that are being used to inform design choices being made for future instruments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.02755v1-abstract-full').style.display = 'none'; document.getElementById('2208.02755v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 8 figures, Proceedings of SPIE 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.01080">arXiv:2208.01080</a> <span> [<a href="https://arxiv.org/pdf/2208.01080">pdf</a>, <a href="https://arxiv.org/format/2208.01080">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> 2022 Upgrade and Improved Low Frequency Camera Sensitivity for CMB Observation at the South Pole </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Soliman%2C+A">A. Soliman</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C+A">C. A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Beck%2C+D">D. Beck</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J">J. Cheshire</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">J. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A+J">A. J. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Denison%2C+E+V">E. V. Denison</a>, <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M+I">M. I. Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Eiben%2C+M">M. Eiben</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">S. Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Giannakopoulos%2C+C">C. Giannakopoulos</a>, <a href="/search/astro-ph?searchtype=author&query=Goeckner-Wald%2C+N">N. Goeckner-Wald</a>, <a href="/search/astro-ph?searchtype=author&query=Goldfinger%2C+D+C">D. C. Goldfinger</a>, <a href="/search/astro-ph?searchtype=author&query=Grayson%2C+J">J. Grayson</a> , et al. (61 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.01080v1-abstract-short" style="display: inline;"> Constraining the Galactic foregrounds with multi-frequency Cosmic Microwave Background (CMB) observations is an essential step towards ultimately reaching the sensitivity to measure primordial gravitational waves (PGWs), the sign of inflation after the Big-Bang that would be imprinted on the CMB. The BICEP Array telescope is a set of multi-frequency cameras designed to constrain the energy scale o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.01080v1-abstract-full').style.display = 'inline'; document.getElementById('2208.01080v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.01080v1-abstract-full" style="display: none;"> Constraining the Galactic foregrounds with multi-frequency Cosmic Microwave Background (CMB) observations is an essential step towards ultimately reaching the sensitivity to measure primordial gravitational waves (PGWs), the sign of inflation after the Big-Bang that would be imprinted on the CMB. The BICEP Array telescope is a set of multi-frequency cameras designed to constrain the energy scale of inflation through CMB B-mode searches while also controlling the polarized galactic foregrounds. The lowest frequency BICEP Array receiver (BA1) has been observing from the South Pole since 2020 and provides 30 GHz and 40 GHz data to characterize the Galactic synchrotron in our CMB maps. In this paper, we present the design of the BA1 detectors and the full optical characterization of the camera including the on-sky performance at the South Pole. The paper also introduces the design challenges during the first observing season including the effect of out-of-band photons on detectors performance. It also describes the tests done to diagnose that effect and the new upgrade to minimize these photons, as well as installing more dichroic detectors during the 2022 deployment season to improve the BA1 sensitivity. We finally report background noise measurements of the detectors with the goal of having photon noise dominated detectors in both optical channels. BA1 achieves an improvement in mapping speed compared to the previous deployment season. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.01080v1-abstract-full').style.display = 'none'; document.getElementById('2208.01080v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings of SPIE Astronomical Telescopes + Instrumentation 2022 (AS22)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.14796">arXiv:2207.14796</a> <span> [<a href="https://arxiv.org/pdf/2207.14796">pdf</a>, <a href="https://arxiv.org/format/2207.14796">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Improved Polarization Calibration of the BICEP3 CMB Polarimeter at the South Pole </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Verg%C3%A8s%2C+C">C. Verg猫s</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Beck%2C+D">D. Beck</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C+A">C. A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J+R">J. R. Cheshire IV</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">J. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A+J">A. J. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Denison%2C+E+V">E. V. Denison</a>, <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M+I">M. I. Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Eiben%2C+M">M. Eiben</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">S. Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Giannakopoulos%2C+C">C. Giannakopoulos</a>, <a href="/search/astro-ph?searchtype=author&query=Goeckner-Wald%2C+N">N. Goeckner-Wald</a>, <a href="/search/astro-ph?searchtype=author&query=Goldfinger%2C+D+C">D. C. Goldfinger</a>, <a href="/search/astro-ph?searchtype=author&query=Grayson%2C+J">J. Grayson</a> , et al. (61 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.14796v2-abstract-short" style="display: inline;"> The BICEP3 Polarimeter is a small aperture, refracting telescope, dedicated to the observation of the Cosmic Microwave Background (CMB) at 95GHz. It is designed to target degree angular scale polarization patterns, in particular the very-much-sought-after primordial B-mode signal, which is a unique signature of cosmic inflation. The polarized signal from the sky is reconstructed by differencing co… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.14796v2-abstract-full').style.display = 'inline'; document.getElementById('2207.14796v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.14796v2-abstract-full" style="display: none;"> The BICEP3 Polarimeter is a small aperture, refracting telescope, dedicated to the observation of the Cosmic Microwave Background (CMB) at 95GHz. It is designed to target degree angular scale polarization patterns, in particular the very-much-sought-after primordial B-mode signal, which is a unique signature of cosmic inflation. The polarized signal from the sky is reconstructed by differencing co-localized, orthogonally polarized superconducting Transition Edge Sensor (TES) bolometers. In this work, we present absolute measurements of the polarization response of the detectors for more than $\sim 800$ functioning detector pairs of the BICEP3 experiment, out of a total of $\sim 1000$. We use a specifically designed Rotating Polarized Source (RPS) to measure the polarization response at multiple source and telescope boresight rotation angles, to fully map the response over 360 degrees. We present here polarization properties extracted from on-site calibration data taken in January 2022. A similar calibration campaign was performed in 2018, but we found that our constraint was dominated by systematics on the level of $\sim0.5^\circ$. After a number of improvements to the calibration set-up, we are now able to report a significantly lower level of systematic contamination. In the future, such precise measurements will be used to constrain physics beyond the standard cosmological model, namely cosmic birefringence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.14796v2-abstract-full').style.display = 'none'; document.getElementById('2207.14796v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to: SPIE Astronomical Telescopes + Instrumentation (AS22)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.13712">arXiv:2207.13712</a> <span> [<a href="https://arxiv.org/pdf/2207.13712">pdf</a>, <a href="https://arxiv.org/format/2207.13712">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac9a51">10.3847/1538-4357/ac9a51 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Near-infrared Extragalactic Background Light Fluctuations on Nonlinear Scales </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Cheng%2C+Y">Yun-Ting Cheng</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">James J. Bock</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.13712v2-abstract-short" style="display: inline;"> Several fluctuation studies on the near-infrared extragalactic background light (EBL) find an excess power at tens of arcminute scales ($\ell\sim10^3$). Emission from the intra-halo light (IHL) has been proposed as a possible explanation for the excess signal. In this work, we investigate the emission from the integrated galaxy light (IGL) and IHL in the power spectrum of EBL fluctuations using th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.13712v2-abstract-full').style.display = 'inline'; document.getElementById('2207.13712v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.13712v2-abstract-full" style="display: none;"> Several fluctuation studies on the near-infrared extragalactic background light (EBL) find an excess power at tens of arcminute scales ($\ell\sim10^3$). Emission from the intra-halo light (IHL) has been proposed as a possible explanation for the excess signal. In this work, we investigate the emission from the integrated galaxy light (IGL) and IHL in the power spectrum of EBL fluctuations using the simulated galaxy catalog MICECAT. We find that at $\ell\sim10^3$, the one-halo clustering from satellite galaxies has comparable power to the two-halo term in the IGL power spectrum. In some previous EBL analyses, the IGL model assumed a small one-halo clustering signal, which may result in overestimating the IHL contribution to the EBL. We also investigate the dependence of the IGL$+$IHL power spectrum on the IHL distribution as a function of redshift and halo mass, and the spatial profile within the halo. Our forecast suggests that the upcoming SPHEREx deep field survey can distinguish different IHL models considered in this work with high significance. Finally, we quantify the bias in the power spectrum from the correlation of the mask and the signal, which has not been accounted for in previous analyses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.13712v2-abstract-full').style.display = 'none'; document.getElementById('2207.13712v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 13 figures, accepted by ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.16556">arXiv:2203.16556</a> <span> [<a href="https://arxiv.org/pdf/2203.16556">pdf</a>, <a href="https://arxiv.org/format/2203.16556">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.58027/3q8k-ew90">10.58027/3q8k-ew90 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Latest Constraints on Inflationary B-modes from the BICEP/Keck Telescopes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Collaboration%2C+B">BICEP/Keck Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=%3A"> :</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Beck%2C+D">D. Beck</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C">C. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Boenish%2C+H">H. Boenish</a>, <a href="/search/astro-ph?searchtype=author&query=Bullock%2C+E">E. Bullock</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J+R">J. R. Cheshire IV</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">J. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A">A. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Denison%2C+E+V">E. V. Denison</a>, <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M">M. Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Eiben%2C+M">M. Eiben</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">S. Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Fliescher%2C+S">S. Fliescher</a> , et al. (71 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.16556v1-abstract-short" style="display: inline;"> For the past decade, the BICEP/Keck collaboration has been operating a series of telescopes at the Amundsen-Scott South Pole Station measuring degree-scale $B$-mode polarization imprinted in the Cosmic Microwave Background (CMB) by primordial gravitational waves (PGWs). These telescopes are compact refracting polarimeters mapping about 2% of the sky, observing at a broad range of frequencies to ac… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.16556v1-abstract-full').style.display = 'inline'; document.getElementById('2203.16556v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.16556v1-abstract-full" style="display: none;"> For the past decade, the BICEP/Keck collaboration has been operating a series of telescopes at the Amundsen-Scott South Pole Station measuring degree-scale $B$-mode polarization imprinted in the Cosmic Microwave Background (CMB) by primordial gravitational waves (PGWs). These telescopes are compact refracting polarimeters mapping about 2% of the sky, observing at a broad range of frequencies to account for the polarized foreground from Galactic synchrotron and thermal dust emission. Our latest publication "BK18" utilizes the data collected up to the 2018 observing season, in conjunction with the publicly available WMAP and Planck data, to constrain the tensor-to-scalar ratio $r$. It particularly includes (1) the 3-year BICEP3 data which is the current deepest CMB polarization map at the foreground-minimum 95 GHz; and (2) the Keck 220 GHz map with a higher signal-to-noise ratio on the dust foreground than the Planck 353 GHz map. We fit the auto- and cross-spectra of these maps to a multicomponent likelihood model ($螞$CDM+dust+synchrotron+noise+$r$) and find it to be an adequate description of the data at the current noise level. The likelihood analysis yields $蟽(r)=0.009$. The inference of $r$ from our baseline model is tightened to $r_{0.05}=0.014^{+0.010}_{-0.011}$ and $r_{0.05}<0.036$ at 95% confidence, meaning that the BICEP/Keck $B$-mode data is the most powerful existing dataset for the constraint of PGWs. The up-coming BICEP Array telescope is projected to reach $蟽(r) \lesssim 0.003$ using data up to 2027. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.16556v1-abstract-full').style.display = 'none'; document.getElementById('2203.16556v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures, contribution to the 2022 Cosmology session of the 56th Rencontres de Moriond</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.08024">arXiv:2203.08024</a> <span> [<a href="https://arxiv.org/pdf/2203.08024">pdf</a>, <a href="https://arxiv.org/format/2203.08024">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Snowmass 2021 CMB-S4 White Paper </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Abazajian%2C+K">Kevork Abazajian</a>, <a href="/search/astro-ph?searchtype=author&query=Abdulghafour%2C+A">Arwa Abdulghafour</a>, <a href="/search/astro-ph?searchtype=author&query=Addison%2C+G+E">Graeme E. Addison</a>, <a href="/search/astro-ph?searchtype=author&query=Adshead%2C+P">Peter Adshead</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Zeeshan Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Ajello%2C+M">Marco Ajello</a>, <a href="/search/astro-ph?searchtype=author&query=Akerib%2C+D">Daniel Akerib</a>, <a href="/search/astro-ph?searchtype=author&query=Allen%2C+S+W">Steven W. Allen</a>, <a href="/search/astro-ph?searchtype=author&query=Alonso%2C+D">David Alonso</a>, <a href="/search/astro-ph?searchtype=author&query=Alvarez%2C+M">Marcelo Alvarez</a>, <a href="/search/astro-ph?searchtype=author&query=Amin%2C+M+A">Mustafa A. Amin</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">Mandana Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Anderson%2C+A">Adam Anderson</a>, <a href="/search/astro-ph?searchtype=author&query=Ansarinejad%2C+B">Behzad Ansarinejad</a>, <a href="/search/astro-ph?searchtype=author&query=Archipley%2C+M">Melanie Archipley</a>, <a href="/search/astro-ph?searchtype=author&query=Arnold%2C+K+S">Kam S. Arnold</a>, <a href="/search/astro-ph?searchtype=author&query=Ashby%2C+M">Matt Ashby</a>, <a href="/search/astro-ph?searchtype=author&query=Aung%2C+H">Han Aung</a>, <a href="/search/astro-ph?searchtype=author&query=Baccigalupi%2C+C">Carlo Baccigalupi</a>, <a href="/search/astro-ph?searchtype=author&query=Baker%2C+C">Carina Baker</a>, <a href="/search/astro-ph?searchtype=author&query=Bakshi%2C+A">Abhishek Bakshi</a>, <a href="/search/astro-ph?searchtype=author&query=Bard%2C+D">Debbie Bard</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">Denis Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Barron%2C+D">Darcy Barron</a>, <a href="/search/astro-ph?searchtype=author&query=Barry%2C+P+S">Peter S. Barry</a> , et al. (331 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.08024v1-abstract-short" style="display: inline;"> This Snowmass 2021 White Paper describes the Cosmic Microwave Background Stage 4 project CMB-S4, which is designed to cross critical thresholds in our understanding of the origin and evolution of the Universe, from the highest energies at the dawn of time through the growth of structure to the present day. We provide an overview of the science case, the technical design, and project plan. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.08024v1-abstract-full" style="display: none;"> This Snowmass 2021 White Paper describes the Cosmic Microwave Background Stage 4 project CMB-S4, which is designed to cross critical thresholds in our understanding of the origin and evolution of the Universe, from the highest energies at the dawn of time through the growth of structure to the present day. We provide an overview of the science case, the technical design, and project plan. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.08024v1-abstract-full').style.display = 'none'; document.getElementById('2203.08024v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to Snowmass 2021. arXiv admin note: substantial text overlap with arXiv:1908.01062, arXiv:1907.04473</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.05350">arXiv:2112.05350</a> <span> [<a href="https://arxiv.org/pdf/2112.05350">pdf</a>, <a href="https://arxiv.org/format/2112.05350">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac416f">10.3847/1538-4357/ac416f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Polarization spectrum of near infrared zodiacal light observed with CIBER </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Takimoto%2C+K">Kohji Takimoto</a>, <a href="/search/astro-ph?searchtype=author&query=Arai%2C+T">Toshiaki Arai</a>, <a href="/search/astro-ph?searchtype=author&query=Matsuura%2C+S">Shuji Matsuura</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">James J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Cooray%2C+A">Asantha Cooray</a>, <a href="/search/astro-ph?searchtype=author&query=Feder%2C+R+M">Richard M. Feder</a>, <a href="/search/astro-ph?searchtype=author&query=Korngut%2C+P+M">Phillip M. Korngut</a>, <a href="/search/astro-ph?searchtype=author&query=Lanz%2C+A">Alicia Lanz</a>, <a href="/search/astro-ph?searchtype=author&query=Lee%2C+D+H">Dae Hee Lee</a>, <a href="/search/astro-ph?searchtype=author&query=Matsumoto%2C+T">Toshio Matsumoto</a>, <a href="/search/astro-ph?searchtype=author&query=Nguyen%2C+C+H">Chi H. Nguyen</a>, <a href="/search/astro-ph?searchtype=author&query=Onishi%2C+Y">Yosuke Onishi</a>, <a href="/search/astro-ph?searchtype=author&query=Sano%2C+K">Kei Sano</a>, <a href="/search/astro-ph?searchtype=author&query=Shirahata%2C+M">Mai Shirahata</a>, <a href="/search/astro-ph?searchtype=author&query=Takahashi%2C+A">Aoi Takahashi</a>, <a href="/search/astro-ph?searchtype=author&query=Tsumura%2C+K">Kohji Tsumura</a>, <a href="/search/astro-ph?searchtype=author&query=Zemcov%2C+M">Michael Zemcov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.05350v1-abstract-short" style="display: inline;"> We report the first measurement of the zodiacal light (ZL) polarization spectrum in the near-infrared between 0.8 and 1.8 $渭$m. Using the low-resolution spectrometer (LRS) on board the Cosmic Infrared Background Experiment (CIBER), calibrated for absolute spectrophotometry and spectropolarimetry, we acquire long-slit polarization spectral images of the total diffuse sky brightness towards five fie… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.05350v1-abstract-full').style.display = 'inline'; document.getElementById('2112.05350v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.05350v1-abstract-full" style="display: none;"> We report the first measurement of the zodiacal light (ZL) polarization spectrum in the near-infrared between 0.8 and 1.8 $渭$m. Using the low-resolution spectrometer (LRS) on board the Cosmic Infrared Background Experiment (CIBER), calibrated for absolute spectrophotometry and spectropolarimetry, we acquire long-slit polarization spectral images of the total diffuse sky brightness towards five fields. To extract the ZL spectrum, we subtract contribution of other diffuse radiation, such as the diffuse galactic light (DGL), the integrated star light (ISL), and the extragalactic background light (EBL). The measured ZL polarization spectrum shows little wavelength dependence in the near-infrared and the degree of polarization clearly varies as a function of the ecliptic coordinates and solar elongation. Among the observed fields, the North Ecliptic Pole shows the maximum degree of polarization of $\sim$ 20$\%$, which is consistent with an earlier observation from the Diffuse Infrared Background Experiment (DIRBE) aboard on the Cosmic Background Explorer (COBE). The measured degree of polarization and its solar elongation dependence are reproduced by the empirical scattering model in the visible band and also by the Mie scattering model for large absorptive particles, while the Rayleigh scattering model is ruled out. All of our results suggest that the interplanetary dust is dominated by large particles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.05350v1-abstract-full').style.display = 'none'; document.getElementById('2112.05350v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 15 figures, accepted by ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.00820">arXiv:2112.00820</a> <span> [<a href="https://arxiv.org/pdf/2112.00820">pdf</a>, <a href="https://arxiv.org/format/2112.00820">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10909-022-02729-5">10.1007/s10909-022-02729-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> In-flight gain monitoring of SPIDER's transition-edge sensor arrays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Gambrel%2C+A+E">A. E. Gambrel</a>, <a href="/search/astro-ph?searchtype=author&query=Rahlin%2C+A+S">A. S. Rahlin</a>, <a href="/search/astro-ph?searchtype=author&query=Young%2C+E+Y">E. Y. Young</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Benton%2C+S+J">S. J. Benton</a>, <a href="/search/astro-ph?searchtype=author&query=Bergman%2C+A+S">A. S. Bergman</a>, <a href="/search/astro-ph?searchtype=author&query=Bihary%2C+R">R. Bihary</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Bond%2C+J+R">J. R. Bond</a>, <a href="/search/astro-ph?searchtype=author&query=Bonetti%2C+J+A">J. A. Bonetti</a>, <a href="/search/astro-ph?searchtype=author&query=Bryan%2C+S+A">S. A. Bryan</a>, <a href="/search/astro-ph?searchtype=author&query=Chiang%2C+H+C">H. C. Chiang</a>, <a href="/search/astro-ph?searchtype=author&query=Contaldi%2C+C+R">C. R. Contaldi</a>, <a href="/search/astro-ph?searchtype=author&query=Dore%2C+O">O. Dore</a>, <a href="/search/astro-ph?searchtype=author&query=Duivenvoorden%2C+A+J">A. J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&query=Eriksen%2C+H+K">H. K. Eriksen</a>, <a href="/search/astro-ph?searchtype=author&query=Farhang%2C+M">M. Farhang</a>, <a href="/search/astro-ph?searchtype=author&query=Fraisse%2C+A+A">A. A. Fraisse</a>, <a href="/search/astro-ph?searchtype=author&query=Freese%2C+K">K. Freese</a>, <a href="/search/astro-ph?searchtype=author&query=Galloway%2C+M">M. Galloway</a>, <a href="/search/astro-ph?searchtype=author&query=Gandilo%2C+N+N">N. N. Gandilo</a>, <a href="/search/astro-ph?searchtype=author&query=Ganga%2C+K">K. Ganga</a>, <a href="/search/astro-ph?searchtype=author&query=Gualtieri%2C+R">R. Gualtieri</a> , et al. (45 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.00820v2-abstract-short" style="display: inline;"> Experiments deploying large arrays of transition-edge sensors (TESs) often require a robust method to monitor gain variations with minimal loss of observing time. We propose a sensitive and non-intrusive method for monitoring variations in TES responsivity using small square waves applied to the TES bias. We construct an estimator for a TES's small-signal power response from its electrical respons… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.00820v2-abstract-full').style.display = 'inline'; document.getElementById('2112.00820v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.00820v2-abstract-full" style="display: none;"> Experiments deploying large arrays of transition-edge sensors (TESs) often require a robust method to monitor gain variations with minimal loss of observing time. We propose a sensitive and non-intrusive method for monitoring variations in TES responsivity using small square waves applied to the TES bias. We construct an estimator for a TES's small-signal power response from its electrical response that is exact in the limit of strong electrothermal feedback. We discuss the application and validation of this method using flight data from SPIDER, a balloon-borne telescope that observes the polarization of the cosmic microwave background with more than 2000 TESs. This method may prove useful for future balloon- and space-based instruments, where observing time and ground control bandwidth are limited. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.00820v2-abstract-full').style.display = 'none'; document.getElementById('2112.00820v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures; Proceedings of the 19th International Workshop on Low Temperature Detectors (LTD19); Minor updates to match published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Low Temperature Physics (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.14785">arXiv:2111.14785</a> <span> [<a href="https://arxiv.org/pdf/2111.14785">pdf</a>, <a href="https://arxiv.org/format/2111.14785">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> BICEP Array: 150 GHz detector module development </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Schillaci%2C+A">A. Schillaci</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C+A">C. A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Beck%2C+D">D. Beck</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J">J. Cheshire</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">J. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A">A. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Denison%2C+E">E. Denison</a>, <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M">M. Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Eiben%2C+M">M. Eiben</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">S. Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Giannakopoulos%2C+C">C. Giannakopoulos</a>, <a href="/search/astro-ph?searchtype=author&query=Goeckner-Wald%2C+N">N. Goeckner-Wald</a>, <a href="/search/astro-ph?searchtype=author&query=Goldfinger%2C+D">D. Goldfinger</a>, <a href="/search/astro-ph?searchtype=author&query=Grayson%2C+J+A">J. A. Grayson</a> , et al. (59 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.14785v1-abstract-short" style="display: inline;"> The BICEP/Keck Collaboration is currently leading the quest to the highest sensitivity measurements of the polarized CMB anisotropies on degree scale with a series of cryogenic telescopes, of which BICEP Array is the latest Stage-3 upgrade with a total of $\sim32,000$ detectors. The instrument comprises 4 receivers spanning 30 to 270 GHz, with the low-frequency 30/40 GHz deployed to the South Pole… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.14785v1-abstract-full').style.display = 'inline'; document.getElementById('2111.14785v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.14785v1-abstract-full" style="display: none;"> The BICEP/Keck Collaboration is currently leading the quest to the highest sensitivity measurements of the polarized CMB anisotropies on degree scale with a series of cryogenic telescopes, of which BICEP Array is the latest Stage-3 upgrade with a total of $\sim32,000$ detectors. The instrument comprises 4 receivers spanning 30 to 270 GHz, with the low-frequency 30/40 GHz deployed to the South Pole Station in late 2019. The full complement of receivers is forecast to set the most stringent constraints on the tensor to scalar ratio $r$. Building on these advances, the overarching small-aperture telescope concept is already being used as the reference for further Stage-4 experiment design. In this paper I will present the development of the BICEP Array 150 GHz detector module and its fabrication requirements, with highlights on the high-density time division multiplexing (TDM) design of the cryogenic circuit boards. The low-impedance wiring required between the detectors and the first-stage SQUID amplifiers is crucial to maintain a stiff voltage bias on the detectors. A novel multi-layer FR4 Printed Circuit Board (PCB) with superconducting traces, capable of reading out up to 648 detectors, is presented along with its validation tests. I will also describe an ultra-high density TDM detector module we developed for a CMB-S4-like experiment that allows up to 1,920 detectors to be read out. TDM has been chosen as the detector readout technology for the Cosmic Microwave Background Stage-4 (CMB-S4) experiment based on its proven low-noise performance, predictable costs and overall maturity of the architecture. The heritage for TDM is rooted in mm- and submm-wave experiments dating back 20 years and has since evolved to support a multiplexing factor of 64x in Stage-3 experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.14785v1-abstract-full').style.display = 'none'; document.getElementById('2111.14785v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figure, Proceeding of LTD19 submitted to Journal of Low Temperature Physics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.14751">arXiv:2111.14751</a> <span> [<a href="https://arxiv.org/pdf/2111.14751">pdf</a>, <a href="https://arxiv.org/format/2111.14751">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10909-023-02967-1">10.1007/s10909-023-02967-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Plastic Laminate Antireflective Coatings for Millimeter-wave Optics in BICEP Array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M">Marion Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Zeeshan Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">Mandana Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">Denis Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">Ritoban Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C+A">Colin A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Beck%2C+D">Dominic Beck</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">James J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">Victor Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J+R">James R. Cheshire IV</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">Jake Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">James Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">Michael Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A+J">Ari Jozef Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Denison%2C+E">Edward Denison</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">Lionel Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Eiben%2C+M">Miranda Eiben</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">Sofia Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">Jeff P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Giannakopoulos%2C+C">Christos Giannakopoulos</a>, <a href="/search/astro-ph?searchtype=author&query=Goeckner-Wald%2C+N">Neil Goeckner-Wald</a>, <a href="/search/astro-ph?searchtype=author&query=Goldfinger%2C+D">David Goldfinger</a>, <a href="/search/astro-ph?searchtype=author&query=Grayson%2C+J+A">James A. Grayson</a>, <a href="/search/astro-ph?searchtype=author&query=Grimes%2C+P">Paul Grimes</a> , et al. (60 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.14751v1-abstract-short" style="display: inline;"> The BICEP/Keck series of experiments target the Cosmic Microwave Background at degree-scale resolution from the South Pole. Over the next few years, the "Stage-3" BICEP Array (BA) telescope will improve the program's frequency coverage and sensitivity to primordial B-mode polarization by an order of magnitude. The first receiver in the array, BA1, began observing at 30/40 GHz in early 2020. The ne… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.14751v1-abstract-full').style.display = 'inline'; document.getElementById('2111.14751v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.14751v1-abstract-full" style="display: none;"> The BICEP/Keck series of experiments target the Cosmic Microwave Background at degree-scale resolution from the South Pole. Over the next few years, the "Stage-3" BICEP Array (BA) telescope will improve the program's frequency coverage and sensitivity to primordial B-mode polarization by an order of magnitude. The first receiver in the array, BA1, began observing at 30/40 GHz in early 2020. The next two receivers, BA2 and BA3, are currently being assembled and will map the southern sky at frequencies ranging from 95 GHz to 150 GHz. Common to all BA receivers is a refractive, on-axis, cryogenic optical design that focuses microwave radiation onto a focal plane populated with antenna-coupled bolometers. High-performance antireflective coatings up to 760 mm in aperture are needed for each element in the optical chain, and must withstand repeated thermal cycles down to 4 K. Here we present the design and fabrication of the 30/40 GHz anti-reflection coatings for the recently deployed BA1 receiver, then discuss laboratory measurements of their reflectance. We review the lamination method for these single- and dual-layer plastic coatings with indices matched to various polyethylene, nylon and alumina optics. We also describe ongoing efforts to optimize coatings for the next BA cryostats, which may inform technological choices for future Small-Aperture Telescopes of the CMB "Stage 4" experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.14751v1-abstract-full').style.display = 'none'; document.getElementById('2111.14751v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures. Submitted to Journal of Low Temperature Physics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.01113">arXiv:2111.01113</a> <span> [<a href="https://arxiv.org/pdf/2111.01113">pdf</a>, <a href="https://arxiv.org/format/2111.01113">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac562f">10.3847/1538-4357/ac562f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Simulation-Based Method for Correcting Mode Coupling in CMB Angular Power Spectra </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Leung%2C+J+S+-">J. S. -Y. Leung</a>, <a href="/search/astro-ph?searchtype=author&query=Hartley%2C+J">J. Hartley</a>, <a href="/search/astro-ph?searchtype=author&query=Nagy%2C+J+M">J. M. Nagy</a>, <a href="/search/astro-ph?searchtype=author&query=Netterfield%2C+C+B">C. B. Netterfield</a>, <a href="/search/astro-ph?searchtype=author&query=Shariff%2C+J+A">J. A. Shariff</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Benton%2C+S+J">S. J. Benton</a>, <a href="/search/astro-ph?searchtype=author&query=Bergman%2C+A+S">A. S. Bergman</a>, <a href="/search/astro-ph?searchtype=author&query=Bihary%2C+R">R. Bihary</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Bond%2C+J+R">J. R. Bond</a>, <a href="/search/astro-ph?searchtype=author&query=Bonetti%2C+J+A">J. A. Bonetti</a>, <a href="/search/astro-ph?searchtype=author&query=Bryan%2C+S+A">S. A. Bryan</a>, <a href="/search/astro-ph?searchtype=author&query=Chiang%2C+H+C">H. C. Chiang</a>, <a href="/search/astro-ph?searchtype=author&query=Contaldi%2C+C+R">C. R. Contaldi</a>, <a href="/search/astro-ph?searchtype=author&query=Dor%C3%A9%2C+O">O. Dor茅</a>, <a href="/search/astro-ph?searchtype=author&query=Duivenvoorden%2C+A+J">A. J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&query=Eriksen%2C+H+K">H. K. Eriksen</a>, <a href="/search/astro-ph?searchtype=author&query=Farhang%2C+M">M. Farhang</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Fraisse%2C+A+A">A. A. Fraisse</a>, <a href="/search/astro-ph?searchtype=author&query=Freese%2C+K">K. Freese</a>, <a href="/search/astro-ph?searchtype=author&query=Galloway%2C+M">M. Galloway</a>, <a href="/search/astro-ph?searchtype=author&query=Gambrel%2C+A+E">A. E. Gambrel</a> , et al. (45 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.01113v2-abstract-short" style="display: inline;"> Modern CMB analysis pipelines regularly employ complex time-domain filters, beam models, masking, and other techniques during the production of sky maps and their corresponding angular power spectra. However, these processes can generate couplings between multipoles from the same spectrum and from different spectra, in addition to the typical power attenuation. Within the context of pseudo-… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.01113v2-abstract-full').style.display = 'inline'; document.getElementById('2111.01113v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.01113v2-abstract-full" style="display: none;"> Modern CMB analysis pipelines regularly employ complex time-domain filters, beam models, masking, and other techniques during the production of sky maps and their corresponding angular power spectra. However, these processes can generate couplings between multipoles from the same spectrum and from different spectra, in addition to the typical power attenuation. Within the context of pseudo-$C_\ell$ based, MASTER-style analyses, the net effect of the time-domain filtering is commonly approximated by a multiplicative transfer function, $F_{\ell}$, that can fail to capture mode mixing and is dependent on the spectrum of the signal. To address these shortcomings, we have developed a simulation-based spectral correction approach that constructs a two-dimensional transfer matrix, $J_{\ell\ell'}$, which contains information about mode mixing in addition to mode attenuation. We demonstrate the application of this approach on data from the first flight of the SPIDER balloon-borne CMB experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.01113v2-abstract-full').style.display = 'none'; document.getElementById('2111.01113v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 7 figures; updated to match published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ 928(2):109, 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.00483">arXiv:2110.00483</a> <span> [<a href="https://arxiv.org/pdf/2110.00483">pdf</a>, <a href="https://arxiv.org/format/2110.00483">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.127.151301">10.1103/PhysRevLett.127.151301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> BICEP / Keck XIII: Improved Constraints on Primordial Gravitational Waves using Planck, WMAP, and BICEP/Keck Observations through the 2018 Observing Season </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Collaboration%2C+B">BICEP/Keck Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=%3A"> :</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Beck%2C+D">D. Beck</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C">C. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Boenish%2C+H">H. Boenish</a>, <a href="/search/astro-ph?searchtype=author&query=Bullock%2C+E">E. Bullock</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J+R">J. R. Cheshire IV</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">J. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A">A. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Denison%2C+E+V">E. V. Denison</a>, <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M">M. Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Eiben%2C+M">M. Eiben</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">S. Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Fliescher%2C+S">S. Fliescher</a> , et al. (68 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.00483v1-abstract-short" style="display: inline;"> We present results from an analysis of all data taken by the BICEP2, Keck Array and BICEP3 CMB polarization experiments up to and including the 2018 observing season. We add additional Keck Array observations at 220 GHz and BICEP3 observations at 95 GHz to the previous 95/150/220 GHz data set. The $Q/U$ maps now reach depths of 2.8, 2.8 and 8.8 $渭{\mathrm K}_{cmb}$ arcmin at 95, 150 and 220 GHz re… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.00483v1-abstract-full').style.display = 'inline'; document.getElementById('2110.00483v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.00483v1-abstract-full" style="display: none;"> We present results from an analysis of all data taken by the BICEP2, Keck Array and BICEP3 CMB polarization experiments up to and including the 2018 observing season. We add additional Keck Array observations at 220 GHz and BICEP3 observations at 95 GHz to the previous 95/150/220 GHz data set. The $Q/U$ maps now reach depths of 2.8, 2.8 and 8.8 $渭{\mathrm K}_{cmb}$ arcmin at 95, 150 and 220 GHz respectively over an effective area of $\approx 600$ square degrees at 95 GHz and $\approx 400$ square degrees at 150 & 220 GHz. The 220 GHz maps now achieve a signal-to-noise on polarized dust emission exceeding that of Planck at 353 GHz. We take auto- and cross-spectra between these maps and publicly available WMAP and Planck maps at frequencies from 23 to 353 GHz and evaluate the joint likelihood of the spectra versus a multicomponent model of lensed-$螞$CDM+$r$+dust+synchrotron+noise. The foreground model has seven parameters, and no longer requires a prior on the frequency spectral index of the dust emission taken from measurements on other regions of the sky. This model is an adequate description of the data at the current noise levels. The likelihood analysis yields the constraint $r_{0.05}<0.036$ at 95% confidence. Running maximum likelihood search on simulations we obtain unbiased results and find that $蟽(r)=0.009$. These are the strongest constraints to date on primordial gravitational waves. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.00483v1-abstract-full').style.display = 'none'; document.getElementById('2110.00483v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 24 figures, as published in PRL, data and figures available for download at http://bicepkeck.org</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 127, 151301 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.00482">arXiv:2110.00482</a> <span> [<a href="https://arxiv.org/pdf/2110.00482">pdf</a>, <a href="https://arxiv.org/format/2110.00482">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac4886">10.3847/1538-4357/ac4886 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> BICEP / Keck XV: The BICEP3 CMB Polarimeter and the First Three Year Data Set </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Collaboration%2C+B">BICEP/Keck Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=%3A"> :</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Beck%2C+D">D. Beck</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C">C. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Boenish%2C+H">H. Boenish</a>, <a href="/search/astro-ph?searchtype=author&query=Bullock%2C+E">E. Bullock</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J+R">J. R. Cheshire IV</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">J. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A">A. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Denison%2C+E+V">E. V. Denison</a>, <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M">M. Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Eiben%2C+M">M. Eiben</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">S. Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Fliescher%2C+S">S. Fliescher</a> , et al. (68 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.00482v1-abstract-short" style="display: inline;"> We report on the design and performance of the BICEP3 instrument and its first three-year data set collected from 2016 to 2018. BICEP3 is a 52cm aperture, refracting telescope designed to observe the polarization of the cosmic microwave background (CMB) on degree angular scales at 95GHz. It started science observation at the South Pole in 2016 with 2400 antenna-coupled transition-edge sensor (TES)… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.00482v1-abstract-full').style.display = 'inline'; document.getElementById('2110.00482v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.00482v1-abstract-full" style="display: none;"> We report on the design and performance of the BICEP3 instrument and its first three-year data set collected from 2016 to 2018. BICEP3 is a 52cm aperture, refracting telescope designed to observe the polarization of the cosmic microwave background (CMB) on degree angular scales at 95GHz. It started science observation at the South Pole in 2016 with 2400 antenna-coupled transition-edge sensor (TES) bolometers. The receiver first demonstrated new technologies such as large-diameter alumina optics, Zotefoam infrared filters, and flux-activated SQUIDs, allowing $\sim 10\times$ higher optical throughput compared to the Keck design. BICEP3 achieved instrument noise-equivalent temperatures of 9.2, 6.8 and 7.1$渭\text{K}_{\text{CMB}}\sqrt{\text{s}}$ and reached Stokes $Q$ and $U$ map depths of 5.9, 4.4 and 4.4$渭$K-arcmin in 2016, 2017 and 2018, respectively. The combined three-year data set achieved a polarization map depth of 2.8$渭$K-arcmin over an effective area of 585 square degrees, which is the deepest CMB polarization map made to date at 95GHz. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.00482v1-abstract-full').style.display = 'none'; document.getElementById('2110.00482v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 35 figures, as submitted to ApJ, data and figures available for download at http://bicepkeck.org</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal 927, 77 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.03316">arXiv:2108.03316</a> <span> [<a href="https://arxiv.org/pdf/2108.03316">pdf</a>, <a href="https://arxiv.org/format/2108.03316">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.022006">10.1103/PhysRevD.105.022006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> BICEP / Keck XIV: Improved constraints on axion-like polarization oscillations in the cosmic microwave background </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Collaboration%2C+B">BICEP/Keck Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=%3A"> :</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C+A">C. A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Beck%2C+D">D. Beck</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Boenish%2C+H">H. Boenish</a>, <a href="/search/astro-ph?searchtype=author&query=Bullock%2C+E">E. Bullock</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J+R">J. R. Cheshire IV</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">J. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A">A. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Denison%2C+E+V">E. V. Denison</a>, <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M">M. Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Eiben%2C+M">M. Eiben</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">S. Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Fliescher%2C+S">S. Fliescher</a> , et al. (68 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.03316v2-abstract-short" style="display: inline;"> We present an improved search for axion-like polarization oscillations in the cosmic microwave background (CMB) with observations from the Keck Array. An all-sky, temporally sinusoidal rotation of CMB polarization, equivalent to a time-variable cosmic birefringence, is an observable manifestation of a local axion field and potentially allows a CMB polarimeter to detect axion-like dark matter direc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.03316v2-abstract-full').style.display = 'inline'; document.getElementById('2108.03316v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.03316v2-abstract-full" style="display: none;"> We present an improved search for axion-like polarization oscillations in the cosmic microwave background (CMB) with observations from the Keck Array. An all-sky, temporally sinusoidal rotation of CMB polarization, equivalent to a time-variable cosmic birefringence, is an observable manifestation of a local axion field and potentially allows a CMB polarimeter to detect axion-like dark matter directly. We describe improvements to the method presented in previous work, and we demonstrate the updated method with an expanded dataset consisting of the 2012-2015 observing seasons. We set limits on the axion-photon coupling constant for mass $m$ in the range $10^{-23}$-$10^{-18}~\mathrm{eV}$, which corresponds to oscillation periods on the order of hours to years. Our results are consistent with the background model. For periods between $1$ and $30~\mathrm{d}$ ($1.6 \times 10^{-21} \leq m \leq 4.8 \times 10^{-20}~\mathrm{eV}$), the $95\%$-confidence upper limits on rotation amplitude are approximately constant with a median of $0.27^\circ$, which constrains the axion-photon coupling constant to $g_{蠁纬} < (4.5 \times 10^{-12}~\mathrm{GeV}^{-1}) m/(10^{-21}~\mathrm{eV}$), if axion-like particles constitute all of the dark matter. More than half of the collected BICEP dataset has yet to be analyzed, and several current and future CMB polarimetry experiments can apply the methods presented here to achieve comparable or superior constraints. In the coming years, oscillation measurements can achieve the sensitivity to rule out unexplored regions of the axion parameter space. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.03316v2-abstract-full').style.display = 'none'; document.getElementById('2108.03316v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 105, 022006 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.12493">arXiv:2107.12493</a> <span> [<a href="https://arxiv.org/pdf/2107.12493">pdf</a>, <a href="https://arxiv.org/format/2107.12493">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0064723">10.1063/5.0064723 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong Negative Electrothermal Feedback in Thermal Kinetic Inductance Detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Agrawal%2C+S">Shubh Agrawal</a>, <a href="/search/astro-ph?searchtype=author&query=Steinbach%2C+B">Bryan Steinbach</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">James J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Frez%2C+C">Clifford Frez</a>, <a href="/search/astro-ph?searchtype=author&query=Minutolo%2C+L">Lorenzo Minutolo</a>, <a href="/search/astro-ph?searchtype=author&query=Nguyen%2C+H">Hien Nguyen</a>, <a href="/search/astro-ph?searchtype=author&query=O%27Brient%2C+R">Roger O'Brient</a>, <a href="/search/astro-ph?searchtype=author&query=Turner%2C+A">Anthony Turner</a>, <a href="/search/astro-ph?searchtype=author&query=Wandui%2C+A">Albert Wandui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.12493v1-abstract-short" style="display: inline;"> We demonstrate strong negative electrothermal feedback accelerating and linearizing the response of a thermal kinetic inductance detector (TKID). TKIDs are a proposed highly multiplexable replacement to transition-edge sensors and measure power through the temperature-dependent resonant frequency of a superconducting microresonator bolometer. At high readout probe power and probe frequency detuned… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.12493v1-abstract-full').style.display = 'inline'; document.getElementById('2107.12493v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.12493v1-abstract-full" style="display: none;"> We demonstrate strong negative electrothermal feedback accelerating and linearizing the response of a thermal kinetic inductance detector (TKID). TKIDs are a proposed highly multiplexable replacement to transition-edge sensors and measure power through the temperature-dependent resonant frequency of a superconducting microresonator bolometer. At high readout probe power and probe frequency detuned from the TKID resonant frequency, we observe electrothermal feedback loop gain up to $\mathcal L$ $\approx$ 16 through measuring the reduction of settling time. We also show that the detector response has no detectable non-linearity over a 38% range of incident power and that the noise-equivalent power is below the design photon noise. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.12493v1-abstract-full').style.display = 'none'; document.getElementById('2107.12493v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 9 figures, The following article has been submitted to the Journal of Applied Physics. After it is published, it will be found at https://publishing.aip.org/resources/librarians/products/journals/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.01172">arXiv:2104.01172</a> <span> [<a href="https://arxiv.org/pdf/2104.01172">pdf</a>, <a href="https://arxiv.org/format/2104.01172">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac230b">10.3847/1538-4357/ac230b <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The XFaster Power Spectrum and Likelihood Estimator for the Analysis of Cosmic Microwave Background Maps </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Gambrel%2C+A+E">A. E. Gambrel</a>, <a href="/search/astro-ph?searchtype=author&query=Rahlin%2C+A+S">A. S. Rahlin</a>, <a href="/search/astro-ph?searchtype=author&query=Song%2C+X">X. Song</a>, <a href="/search/astro-ph?searchtype=author&query=Contaldi%2C+C+R">C. R. Contaldi</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Benton%2C+S+J">S. J. Benton</a>, <a href="/search/astro-ph?searchtype=author&query=Bergman%2C+A+S">A. S. Bergman</a>, <a href="/search/astro-ph?searchtype=author&query=Bihary%2C+R">R. Bihary</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Bond%2C+J+R">J. R. Bond</a>, <a href="/search/astro-ph?searchtype=author&query=Bonetti%2C+J+A">J. A. Bonetti</a>, <a href="/search/astro-ph?searchtype=author&query=Bryan%2C+S+A">S. A. Bryan</a>, <a href="/search/astro-ph?searchtype=author&query=Chiang%2C+H+C">H. C. Chiang</a>, <a href="/search/astro-ph?searchtype=author&query=Duivenvoorden%2C+A+J">A. J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&query=Eriksen%2C+H+K">H. K. Eriksen</a>, <a href="/search/astro-ph?searchtype=author&query=Farhang%2C+M">M. Farhang</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Fraisse%2C+A+A">A. A. Fraisse</a>, <a href="/search/astro-ph?searchtype=author&query=Freese%2C+K">K. Freese</a>, <a href="/search/astro-ph?searchtype=author&query=Galloway%2C+M">M. Galloway</a>, <a href="/search/astro-ph?searchtype=author&query=Gandilo%2C+N+N">N. N. Gandilo</a>, <a href="/search/astro-ph?searchtype=author&query=Gualtieri%2C+R">R. Gualtieri</a>, <a href="/search/astro-ph?searchtype=author&query=Gudmundsson%2C+J+E">J. E. Gudmundsson</a>, <a href="/search/astro-ph?searchtype=author&query=Halpern%2C+M">M. Halpern</a> , et al. (42 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.01172v2-abstract-short" style="display: inline;"> We present the XFaster analysis package. XFaster is a fast, iterative angular power spectrum estimator based on a diagonal approximation to the quadratic Fisher matrix estimator. XFaster uses Monte Carlo simulations to compute noise biases and filter transfer functions and is thus a hybrid of both Monte Carlo and quadratic estimator methods. In contrast to conventional pseudo-$C_\ell$ based method… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.01172v2-abstract-full').style.display = 'inline'; document.getElementById('2104.01172v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.01172v2-abstract-full" style="display: none;"> We present the XFaster analysis package. XFaster is a fast, iterative angular power spectrum estimator based on a diagonal approximation to the quadratic Fisher matrix estimator. XFaster uses Monte Carlo simulations to compute noise biases and filter transfer functions and is thus a hybrid of both Monte Carlo and quadratic estimator methods. In contrast to conventional pseudo-$C_\ell$ based methods, the algorithm described here requires a minimal number of simulations, and does not require them to be precisely representative of the data to estimate accurate covariance matrices for the bandpowers. The formalism works with polarization-sensitive observations and also data sets with identical, partially overlapping, or independent survey regions. The method was first implemented for the analysis of BOOMERanG data, and also used as part of the Planck analysis. Here, we describe the full, publicly available analysis package, written in Python, as developed for the analysis of data from the 2015 flight of the SPIDER instrument. The package includes extensions for self-consistently estimating null spectra and for estimating fits for Galactic foreground contributions. We show results from the extensive validation of XFaster using simulations, and its application to the SPIDER data set. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.01172v2-abstract-full').style.display = 'none'; document.getElementById('2104.01172v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.13334">arXiv:2103.13334</a> <span> [<a href="https://arxiv.org/pdf/2103.13334">pdf</a>, <a href="https://arxiv.org/format/2103.13334">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> A Constraint on Primordial $B$-Modes from the First Flight of the SPIDER Balloon-Borne Telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=SPIDER+Collaboration"> SPIDER Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Benton%2C+S+J">S. J. Benton</a>, <a href="/search/astro-ph?searchtype=author&query=Bergman%2C+A+S">A. S. Bergman</a>, <a href="/search/astro-ph?searchtype=author&query=Bihary%2C+R">R. Bihary</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Bond%2C+J+R">J. R. Bond</a>, <a href="/search/astro-ph?searchtype=author&query=Bonetti%2C+J+A">J. A. Bonetti</a>, <a href="/search/astro-ph?searchtype=author&query=Bryan%2C+S+A">S. A. Bryan</a>, <a href="/search/astro-ph?searchtype=author&query=Chiang%2C+H+C">H. C. Chiang</a>, <a href="/search/astro-ph?searchtype=author&query=Contaldi%2C+C+R">C. R. Contaldi</a>, <a href="/search/astro-ph?searchtype=author&query=Dor%C3%A9%2C+O">O. Dor茅</a>, <a href="/search/astro-ph?searchtype=author&query=Duivenvoorden%2C+A+J">A. J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&query=Eriksen%2C+H+K">H. K. Eriksen</a>, <a href="/search/astro-ph?searchtype=author&query=Farhang%2C+M">M. Farhang</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Fraisse%2C+A+A">A. A. Fraisse</a>, <a href="/search/astro-ph?searchtype=author&query=Freese%2C+K">K. Freese</a>, <a href="/search/astro-ph?searchtype=author&query=Galloway%2C+M">M. Galloway</a>, <a href="/search/astro-ph?searchtype=author&query=Gambrel%2C+A+E">A. E. Gambrel</a>, <a href="/search/astro-ph?searchtype=author&query=Gandilo%2C+N+N">N. N. Gandilo</a>, <a href="/search/astro-ph?searchtype=author&query=Ganga%2C+K">K. Ganga</a>, <a href="/search/astro-ph?searchtype=author&query=Gualtieri%2C+R">R. Gualtieri</a>, <a href="/search/astro-ph?searchtype=author&query=Gudmundsson%2C+J+E">J. E. Gudmundsson</a> , et al. (46 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.13334v1-abstract-short" style="display: inline;"> We present the first linear polarization measurements from the 2015 long-duration balloon flight of SPIDER, an experiment designed to map the polarization of the cosmic microwave background (CMB) on degree angular scales. Results from these measurements include maps and angular power spectra from observations of 4.8% of the sky at 95 and 150 GHz, along with the results of internal consistency test… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.13334v1-abstract-full').style.display = 'inline'; document.getElementById('2103.13334v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.13334v1-abstract-full" style="display: none;"> We present the first linear polarization measurements from the 2015 long-duration balloon flight of SPIDER, an experiment designed to map the polarization of the cosmic microwave background (CMB) on degree angular scales. Results from these measurements include maps and angular power spectra from observations of 4.8% of the sky at 95 and 150 GHz, along with the results of internal consistency tests on these data. While the polarized CMB anisotropy from primordial density perturbations is the dominant signal in this region of sky, Galactic dust emission is also detected with high significance; Galactic synchrotron emission is found to be negligible in the SPIDER bands. We employ two independent foreground-removal techniques in order to explore the sensitivity of the cosmological result to the assumptions made by each. The primary method uses a dust template derived from Planck data to subtract the Galactic dust signal. A second approach, employing a joint analysis of SPIDER and Planck data in the harmonic domain, assumes a modified-blackbody model for the spectral energy distribution of the dust with no constraint on its spatial morphology. Using a likelihood that jointly samples the template amplitude and $r$ parameter space, we derive 95% upper limits on the primordial tensor-to-scalar ratio from Feldman-Cousins and Bayesian constructions, finding $r<0.11$ and $r<0.19$, respectively. Roughly half the uncertainty in $r$ derives from noise associated with the template subtraction. New data at 280 GHz from SPIDER's second flight will complement the Planck polarization maps, providing powerful measurements of the polarized Galactic dust emission. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.13334v1-abstract-full').style.display = 'none'; document.getElementById('2103.13334v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.03882">arXiv:2103.03882</a> <span> [<a href="https://arxiv.org/pdf/2103.03882">pdf</a>, <a href="https://arxiv.org/format/2103.03882">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac0f5b">10.3847/1538-4357/ac0f5b <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing Intra-Halo Light with Galaxy Stacking in CIBER Images </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Cheng%2C+Y">Yun-Ting Cheng</a>, <a href="/search/astro-ph?searchtype=author&query=Arai%2C+T">Toshiaki Arai</a>, <a href="/search/astro-ph?searchtype=author&query=Bangale%2C+P">Priyadarshini Bangale</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">James J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Chang%2C+T">Tzu-Ching Chang</a>, <a href="/search/astro-ph?searchtype=author&query=Cooray%2C+A">Asantha Cooray</a>, <a href="/search/astro-ph?searchtype=author&query=Feder%2C+R+M">Richard M. Feder</a>, <a href="/search/astro-ph?searchtype=author&query=Korngut%2C+P+M">Phillip M. Korngut</a>, <a href="/search/astro-ph?searchtype=author&query=Lee%2C+D+H">Dae Hee Lee</a>, <a href="/search/astro-ph?searchtype=author&query=Liu%2C+L">Lunjun Liu</a>, <a href="/search/astro-ph?searchtype=author&query=Matsumoto%2C+T">Toshio Matsumoto</a>, <a href="/search/astro-ph?searchtype=author&query=Matsuura%2C+S">Shuji Matsuura</a>, <a href="/search/astro-ph?searchtype=author&query=Nguyen%2C+C+H">Chi H. Nguyen</a>, <a href="/search/astro-ph?searchtype=author&query=Sano%2C+K">Kei Sano</a>, <a href="/search/astro-ph?searchtype=author&query=Tsumura%2C+K">Kohji Tsumura</a>, <a href="/search/astro-ph?searchtype=author&query=Zemcov%2C+M">Michael Zemcov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.03882v2-abstract-short" style="display: inline;"> We study the stellar halos of $0.2\lesssim z \lesssim 0.5$ galaxies with stellar masses spanning $M_*\sim 10^{10.5}$ to $10^{12}M_\odot$ (approximately $L_*$ galaxies at this redshift) using imaging data from the Cosmic Infrared Background Experiment (CIBER). A previous CIBER fluctuation analysis suggested that intra-halo light (IHL) contributes a significant portion of the near-infrared extragala… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.03882v2-abstract-full').style.display = 'inline'; document.getElementById('2103.03882v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.03882v2-abstract-full" style="display: none;"> We study the stellar halos of $0.2\lesssim z \lesssim 0.5$ galaxies with stellar masses spanning $M_*\sim 10^{10.5}$ to $10^{12}M_\odot$ (approximately $L_*$ galaxies at this redshift) using imaging data from the Cosmic Infrared Background Experiment (CIBER). A previous CIBER fluctuation analysis suggested that intra-halo light (IHL) contributes a significant portion of the near-infrared extragalactic background light (EBL), the integrated emission from all sources throughout cosmic history. In this work, we carry out a stacking analysis with a sample of $\sim$30,000 Sloan Digital Sky Survey (SDSS) photometric galaxies from CIBER images in two near-infrared bands (1.1 and 1.8 $渭$m) to directly probe the IHL associated with these galaxies. We stack galaxies in five sub-samples split by brightness, and detect an extended galaxy profile, beyond the instrument point spread function (PSF), derived by stacking stars. We jointly fit a model for the inherent galaxy light profile, plus large-scale one- and two-halo clustering to measure the extended galaxy IHL. We detect non-linear one-halo clustering in the 1.8 $渭$m band, at a level consistent with numerical simulations. Our results on the galaxy profile suggest that $\sim 50\%$ of the total galaxy light budget in our galaxy sample resides in the outskirts of the galaxies at $r > 10$ kpc. We describe this extended emission as IHL and and are able to study how this fraction evolves with cosmic time. These results are new in the near-infrared wavelength at the $L_*$ mass scale, and suggest that IHL has a significant contribution to the integrated galactic light, and to the amplitude of large-scale background fluctuations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.03882v2-abstract-full').style.display = 'none'; document.getElementById('2103.03882v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 17 figures, accepted by ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.02386">arXiv:2102.02386</a> <span> [<a href="https://arxiv.org/pdf/2102.02386">pdf</a>, <a href="https://arxiv.org/format/2102.02386">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2562729">10.1117/12.2562729 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Analysis of Temperature-to-Polarization Leakage in BICEP3 and Keck CMB Data from 2016 to 2018 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Collaboration%2C+T+B">The BICEP/Keck Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=%3A"> :</a>, <a href="/search/astro-ph?searchtype=author&query=Germaine%2C+T+S">T. St. Germaine</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C+A">C. A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Boenish%2C+H">H. Boenish</a>, <a href="/search/astro-ph?searchtype=author&query=Bullock%2C+E">E. Bullock</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J+R">J. R. Cheshire</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">J. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A">A. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Denison%2C+E">E. Denison</a>, <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M">M. Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Eiben%2C+M">M. Eiben</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">S. Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Fliescher%2C+S">S. Fliescher</a> , et al. (64 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.02386v1-abstract-short" style="display: inline;"> The BICEP/Keck Array experiment is a series of small-aperture refracting telescopes observing degree-scale Cosmic Microwave Background polarization from the South Pole in search of a primordial $B$-mode signature. As a pair differencing experiment, an important systematic that must be controlled is the differential beam response between the co-located, orthogonally polarized detectors. We use high… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.02386v1-abstract-full').style.display = 'inline'; document.getElementById('2102.02386v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.02386v1-abstract-full" style="display: none;"> The BICEP/Keck Array experiment is a series of small-aperture refracting telescopes observing degree-scale Cosmic Microwave Background polarization from the South Pole in search of a primordial $B$-mode signature. As a pair differencing experiment, an important systematic that must be controlled is the differential beam response between the co-located, orthogonally polarized detectors. We use high-fidelity, in-situ measurements of the beam response to estimate the temperature-to-polarization (T $\rightarrow$ P) leakage in our latest data including observations from 2016 through 2018. This includes three years of BICEP3 observing at 95 GHz, and multifrequency data from Keck Array. Here we present band-averaged far-field beam maps, differential beam mismatch, and residual beam power (after filtering out the leading difference modes via deprojection) for these receivers. We show preliminary results of "beam map simulations," which use these beam maps to observe a simulated temperature (no $Q/U$) sky to estimate T $\rightarrow$ P leakage in our real data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.02386v1-abstract-full').style.display = 'none'; document.getElementById('2102.02386v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc. SPIE 11453, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X, 114532E (15 December 2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.12407">arXiv:2012.12407</a> <span> [<a href="https://arxiv.org/pdf/2012.12407">pdf</a>, <a href="https://arxiv.org/format/2012.12407">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2562941">10.1117/12.2562941 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Design and pre-flight performance of SPIDER 280 GHz receivers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Shaw%2C+E+C">E. C. Shaw</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Akers%2C+S">S. Akers</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Austermann%2C+J">J. Austermann</a>, <a href="/search/astro-ph?searchtype=author&query=Beall%2C+J">J. Beall</a>, <a href="/search/astro-ph?searchtype=author&query=Becker%2C+D+T">D. T. Becker</a>, <a href="/search/astro-ph?searchtype=author&query=Benton%2C+S+J">S. J. Benton</a>, <a href="/search/astro-ph?searchtype=author&query=Bergman%2C+A+S">A. S. Bergman</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Bond%2C+J+R">J. R. Bond</a>, <a href="/search/astro-ph?searchtype=author&query=Bryan%2C+S+A">S. A. Bryan</a>, <a href="/search/astro-ph?searchtype=author&query=Chiang%2C+H+C">H. C. Chiang</a>, <a href="/search/astro-ph?searchtype=author&query=Contaldi%2C+C+R">C. R. Contaldi</a>, <a href="/search/astro-ph?searchtype=author&query=Domagalski%2C+R+S">R. S. Domagalski</a>, <a href="/search/astro-ph?searchtype=author&query=Dor%C3%A9%2C+O">O. Dor茅</a>, <a href="/search/astro-ph?searchtype=author&query=Duff%2C+S+M">S. M. Duff</a>, <a href="/search/astro-ph?searchtype=author&query=Duivenvoorden%2C+A+J">A. J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&query=Eriksen%2C+H+K">H. K. Eriksen</a>, <a href="/search/astro-ph?searchtype=author&query=Farhang%2C+M">M. Farhang</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Fissel%2C+L+M">L. M. Fissel</a>, <a href="/search/astro-ph?searchtype=author&query=Fraisse%2C+A+A">A. A. Fraisse</a>, <a href="/search/astro-ph?searchtype=author&query=Freese%2C+K">K. Freese</a>, <a href="/search/astro-ph?searchtype=author&query=Galloway%2C+M">M. Galloway</a> , et al. (57 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.12407v1-abstract-short" style="display: inline;"> In this work we describe upgrades to the Spider balloon-borne telescope in preparation for its second flight, currently planned for December 2021. The Spider instrument is optimized to search for a primordial B-mode polarization signature in the cosmic microwave background at degree angular scales. During its first flight in 2015, Spider mapped ~10% of the sky at 95 and 150 GHz. The payload for th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.12407v1-abstract-full').style.display = 'inline'; document.getElementById('2012.12407v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.12407v1-abstract-full" style="display: none;"> In this work we describe upgrades to the Spider balloon-borne telescope in preparation for its second flight, currently planned for December 2021. The Spider instrument is optimized to search for a primordial B-mode polarization signature in the cosmic microwave background at degree angular scales. During its first flight in 2015, Spider mapped ~10% of the sky at 95 and 150 GHz. The payload for the second Antarctic flight will incorporate three new 280 GHz receivers alongside three refurbished 95- and 150 GHz receivers from Spider's first flight. In this work we discuss the design and characterization of these new receivers, which employ over 1500 feedhorn-coupled transition-edge sensors. We describe pre-flight laboratory measurements of detector properties, and the optical performance of completed receivers. These receivers will map a wide area of the sky at 280 GHz, providing new information on polarized Galactic dust emission that will help to separate it from the cosmological signal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.12407v1-abstract-full').style.display = 'none'; document.getElementById('2012.12407v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 8 figures; as published in the conference proceedings for SPIE Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X (2020)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> "Design and pre-flight performance of SPIDER 280 GHz receivers," Proc. SPIE 11453, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X, 114532F (13 December 2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.09363">arXiv:2012.09363</a> <span> [<a href="https://arxiv.org/pdf/2012.09363">pdf</a>, <a href="https://arxiv.org/format/2012.09363">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2562066">10.1117/12.2562066 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observing low elevation sky and the CMB Cold Spot with BICEP3 at the South Pole </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Kang%2C+J">J. Kang</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C+A">C. A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Boenish%2C+H">H. Boenish</a>, <a href="/search/astro-ph?searchtype=author&query=Bullock%2C+E">E. Bullock</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J+R">J. R. Cheshire</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">J. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A">A. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Denison%2C+E">E. Denison</a>, <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M">M. Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Eiben%2C+M">M. Eiben</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">S. Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Fliescher%2C+S">S. Fliescher</a>, <a href="/search/astro-ph?searchtype=author&query=Goeckner-Wald%2C+N">N. Goeckner-Wald</a>, <a href="/search/astro-ph?searchtype=author&query=Goldfinger%2C+D+C">D. C. Goldfinger</a> , et al. (62 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.09363v2-abstract-short" style="display: inline;"> BICEP3 is a 520 mm aperture on-axis refracting telescope at the South Pole, which observes the polarization of the cosmic microwave background (CMB) at 95 GHz to search for the B-mode signal from inflationary gravitational waves. In addition to this main target, we have developed a low-elevation observation strategy to extend coverage of the Southern sky at the South Pole, where BICEP3 can quickly… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.09363v2-abstract-full').style.display = 'inline'; document.getElementById('2012.09363v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.09363v2-abstract-full" style="display: none;"> BICEP3 is a 520 mm aperture on-axis refracting telescope at the South Pole, which observes the polarization of the cosmic microwave background (CMB) at 95 GHz to search for the B-mode signal from inflationary gravitational waves. In addition to this main target, we have developed a low-elevation observation strategy to extend coverage of the Southern sky at the South Pole, where BICEP3 can quickly achieve degree-scale E-mode measurements over a large area. An interesting E-mode measurement is probing a potential polarization anomaly around the CMB Cold Spot. During the austral summer seasons of 2018-19 and 2019-20, BICEP3 observed the sky with a flat mirror to redirect the beams to various low elevation ranges. The preliminary data analysis shows degree-scale E-modes measured with high signal-to-noise ratio. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.09363v2-abstract-full').style.display = 'none'; document.getElementById('2012.09363v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 10 figures; Figure 7 shows the correct file</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc. SPIE 11453, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X, 114532D (13 December 2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.05934">arXiv:2012.05934</a> <span> [<a href="https://arxiv.org/pdf/2012.05934">pdf</a>, <a href="https://arxiv.org/format/2012.05934">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Polarization Calibration of the BICEP3 CMB polarimeter at the South Pole </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C+A">C. A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Boenish%2C+H">H. Boenish</a>, <a href="/search/astro-ph?searchtype=author&query=Bullock%2C+E">E. Bullock</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J+R">J. R. Cheshire</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">J. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A">A. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Denison%2C+E">E. Denison</a>, <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M">M. Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Eiben%2C+M">M. Eiben</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">S. Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Fliescher%2C+S">S. Fliescher</a>, <a href="/search/astro-ph?searchtype=author&query=Goeckner-Wald%2C+N">N. Goeckner-Wald</a>, <a href="/search/astro-ph?searchtype=author&query=Goldfinger%2C+D+C">D. C. Goldfinger</a>, <a href="/search/astro-ph?searchtype=author&query=Grayson%2C+J+A">J. A. Grayson</a> , et al. (62 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.05934v1-abstract-short" style="display: inline;"> The BICEP3 CMB Polarimeter is a small-aperture refracting telescope located at the South Pole and is specifically designed to search for the possible signature of inflationary gravitational waves in the Cosmic Microwave Background (CMB). The experiment measures polarization on the sky by differencing the signal of co-located, orthogonally polarized antennas coupled to Transition Edge Sensor (TES)… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.05934v1-abstract-full').style.display = 'inline'; document.getElementById('2012.05934v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.05934v1-abstract-full" style="display: none;"> The BICEP3 CMB Polarimeter is a small-aperture refracting telescope located at the South Pole and is specifically designed to search for the possible signature of inflationary gravitational waves in the Cosmic Microwave Background (CMB). The experiment measures polarization on the sky by differencing the signal of co-located, orthogonally polarized antennas coupled to Transition Edge Sensor (TES) detectors. We present precise measurements of the absolute polarization response angles and polarization efficiencies for nearly all of BICEP3s $\sim800$ functioning polarization-sensitive detector pairs from calibration data taken in January 2018. Using a Rotating Polarized Source (RPS), we mapped polarization response for each detector over a full 360 degrees of source rotation and at multiple telescope boresight rotations from which per-pair polarization properties were estimated. In future work, these results will be used to constrain signals predicted by exotic physical models such as Cosmic Birefringence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.05934v1-abstract-full').style.display = 'none'; document.getElementById('2012.05934v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings submitted to SPIE 2020 (AS111). 12 pages, 5 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.04047">arXiv:2012.04047</a> <span> [<a href="https://arxiv.org/pdf/2012.04047">pdf</a>, <a href="https://arxiv.org/format/2012.04047">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Receiver development for BICEP Array, a next-generation CMB polarimeter at the South Pole </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Moncelsi%2C+L">L. Moncelsi</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C+A">C. A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J">J. Cheshire</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">J. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A">A. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Denison%2C+E+V">E. V. Denison</a>, <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M">M. Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Eiben%2C+M">M. Eiben</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">S. Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Goeckner-Wald%2C+N">N. Goeckner-Wald</a>, <a href="/search/astro-ph?searchtype=author&query=Goldfinger%2C+D+C">D. C. Goldfinger</a>, <a href="/search/astro-ph?searchtype=author&query=Grayson%2C+J">J. Grayson</a>, <a href="/search/astro-ph?searchtype=author&query=Grimes%2C+P">P. Grimes</a>, <a href="/search/astro-ph?searchtype=author&query=Hall%2C+G">G. Hall</a> , et al. (50 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.04047v1-abstract-short" style="display: inline;"> A detection of curl-type ($B$-mode) polarization of the primary CMB would be direct evidence for the inflationary paradigm of the origin of the Universe. The BICEP/Keck Array (BK) program targets the degree angular scales, where the power from primordial $B$-mode polarization is expected to peak, with ever-increasing sensitivity and has published the most stringent constraints on inflation to date… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.04047v1-abstract-full').style.display = 'inline'; document.getElementById('2012.04047v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.04047v1-abstract-full" style="display: none;"> A detection of curl-type ($B$-mode) polarization of the primary CMB would be direct evidence for the inflationary paradigm of the origin of the Universe. The BICEP/Keck Array (BK) program targets the degree angular scales, where the power from primordial $B$-mode polarization is expected to peak, with ever-increasing sensitivity and has published the most stringent constraints on inflation to date. BICEP Array (BA) is the Stage-3 instrument of the BK program and will comprise four BICEP3-class receivers observing at 30/40, 95, 150 and 220/270 GHz with a combined 32,000+ detectors; such wide frequency coverage is necessary for control of the Galactic foregrounds, which also produce degree-scale $B$-mode signal. The 30/40 GHz receiver is designed to constrain the synchrotron foreground and has begun observing at the South Pole in early 2020. By the end of a 3-year observing campaign, the full BICEP Array instrument is projected to reach $蟽_r$ between 0.002 and 0.004, depending on foreground complexity and degree of removal of $B$-modes due to gravitational lensing (delensing). This paper presents an overview of the design, measured on-sky performance and calibration of the first BA receiver. We also give a preview of the added complexity in the time-domain multiplexed readout of the 7,776-detector 150 GHz receiver. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.04047v1-abstract-full').style.display = 'none'; document.getElementById('2012.04047v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings of SPIE 2020 (AS111). This article supersedes arXiv:1808.00568 and arXiv:2002.05228</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.08163">arXiv:2011.08163</a> <span> [<a href="https://arxiv.org/pdf/2011.08163">pdf</a>, <a href="https://arxiv.org/format/2011.08163">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.022004">10.1103/PhysRevD.103.022004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Demonstration of Improved Constraints on Primordial Gravitational Waves with Delensing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=BICEP%2FKeck"> BICEP/Keck</a>, <a href="/search/astro-ph?searchtype=author&query=Collaborations%2C+S">SPTpol Collaborations</a>, <a href="/search/astro-ph?searchtype=author&query=%3A"> :</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Anderson%2C+A+J">A. J. Anderson</a>, <a href="/search/astro-ph?searchtype=author&query=Austermann%2C+J+E">J. E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&query=Avva%2C+J+S">J. S. Avva</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Beall%2C+J+A">J. A. Beall</a>, <a href="/search/astro-ph?searchtype=author&query=Bender%2C+A+N">A. N. Bender</a>, <a href="/search/astro-ph?searchtype=author&query=Benson%2C+B+A">B. A. Benson</a>, <a href="/search/astro-ph?searchtype=author&query=Bianchini%2C+F">F. Bianchini</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C+A">C. A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Bleem%2C+L+E">L. E. Bleem</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Boenish%2C+H">H. Boenish</a>, <a href="/search/astro-ph?searchtype=author&query=Bullock%2C+E">E. Bullock</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Carlstrom%2C+J+E">J. E. Carlstrom</a>, <a href="/search/astro-ph?searchtype=author&query=Chang%2C+C+L">C. L. Chang</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J+R">J. R. Cheshire IV</a>, <a href="/search/astro-ph?searchtype=author&query=Chiang%2C+H+C">H. C. Chiang</a> , et al. (117 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.08163v2-abstract-short" style="display: inline;"> We present a constraint on the tensor-to-scalar ratio, $r$, derived from measurements of cosmic microwave background (CMB) polarization $B$-modes with "delensing," whereby the uncertainty on $r$ contributed by the sample variance of the gravitational lensing $B$-modes is reduced by cross-correlating against a lensing $B$-mode template. This template is constructed by combining an estimate of the p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.08163v2-abstract-full').style.display = 'inline'; document.getElementById('2011.08163v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.08163v2-abstract-full" style="display: none;"> We present a constraint on the tensor-to-scalar ratio, $r$, derived from measurements of cosmic microwave background (CMB) polarization $B$-modes with "delensing," whereby the uncertainty on $r$ contributed by the sample variance of the gravitational lensing $B$-modes is reduced by cross-correlating against a lensing $B$-mode template. This template is constructed by combining an estimate of the polarized CMB with a tracer of the projected large-scale structure. The large-scale-structure tracer used is a map of the cosmic infrared background derived from Planck satellite data, while the polarized CMB map comes from a combination of South Pole Telescope, BICEP/Keck, and Planck data. We expand the BICEP/Keck likelihood analysis framework to accept a lensing template and apply it to the BICEP/Keck data set collected through 2014 using the same parametric foreground modelling as in the previous analysis. From simulations, we find that the uncertainty on $r$ is reduced by $\sim10\%$, from $蟽(r)$= 0.024 to 0.022, which can be compared with a $\sim26\%$ reduction obtained when using a perfect lensing template. Applying the technique to the real data, the constraint on $r$ is improved from $r_{0.05} < 0.090$ to $r_{0.05} < 0.082$ (95\% C.L.). This is the first demonstration of improvement in an $r$ constraint through delensing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.08163v2-abstract-full').style.display = 'none'; document.getElementById('2011.08163v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 11 figures; match published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 022004 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.03483">arXiv:2011.03483</a> <span> [<a href="https://arxiv.org/pdf/2011.03483">pdf</a>, <a href="https://arxiv.org/format/2011.03483">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.042002">10.1103/PhysRevD.103.042002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> BICEP / Keck XII: Constraints on axion-like polarization oscillations in the cosmic microwave background </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Collaboration%2C+B">BICEP/Keck Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=%3A"> :</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C+A">C. A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Boenish%2C+H">H. Boenish</a>, <a href="/search/astro-ph?searchtype=author&query=Bullock%2C+E">E. Bullock</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J+R">J. R. Cheshire IV</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">J. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A">A. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M">M. Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">S. Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Fliescher%2C+S">S. Fliescher</a>, <a href="/search/astro-ph?searchtype=author&query=Goeckner-Wald%2C+N">N. Goeckner-Wald</a>, <a href="/search/astro-ph?searchtype=author&query=Grayson%2C+J">J. Grayson</a>, <a href="/search/astro-ph?searchtype=author&query=Hall%2C+G">G. Hall</a> , et al. (58 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.03483v2-abstract-short" style="display: inline;"> We present a search for axion-like polarization oscillations in the cosmic microwave background (CMB) with observations from the Keck Array. A local axion field induces an all-sky, temporally sinusoidal rotation of CMB polarization. A CMB polarimeter can thus function as a direct-detection experiment for axion-like dark matter. We develop techniques to extract an oscillation signal. Many elements… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.03483v2-abstract-full').style.display = 'inline'; document.getElementById('2011.03483v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.03483v2-abstract-full" style="display: none;"> We present a search for axion-like polarization oscillations in the cosmic microwave background (CMB) with observations from the Keck Array. A local axion field induces an all-sky, temporally sinusoidal rotation of CMB polarization. A CMB polarimeter can thus function as a direct-detection experiment for axion-like dark matter. We develop techniques to extract an oscillation signal. Many elements of the method are generic to CMB polarimetry experiments and can be adapted for other datasets. As a first demonstration, we process data from the 2012 observing season to set upper limits on the axion-photon coupling constant in the mass range $10^{-21}$-$10^{-18}~\mathrm{eV}$, which corresponds to oscillation periods on the order of hours to months. We find no statistically significant deviations from the background model. For periods larger than $24~\mathrm{hr}$ (mass $m < 4.8 \times 10^{-20}~\mathrm{eV}$), the median 95%-confidence upper limit is equivalent to a rotation amplitude of $0.68^\circ$, which constrains the axion-photon coupling constant to $g_{蠁纬} < \left ( 1.1 \times 10^{-11}~\mathrm{GeV}^{-1} \right ) m/\left (10^{-21}~\mathrm{eV} \right )$, if axion-like particles constitute all of the dark matter. The constraints can be improved substantially with data already collected by the BICEP series of experiments. Current and future CMB polarimetry experiments are expected to achieve sufficient sensitivity to rule out unexplored regions of the axion parameter space. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.03483v2-abstract-full').style.display = 'none'; document.getElementById('2011.03483v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 6 figures, 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 042002 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.12619">arXiv:2008.12619</a> <span> [<a href="https://arxiv.org/pdf/2008.12619">pdf</a>, <a href="https://arxiv.org/format/2008.12619">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac1596">10.3847/1538-4357/ac1596 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> CMB-S4: Forecasting Constraints on Primordial Gravitational Waves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Collaboration%2C+C">CMB-S4 Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=%3A"> :</a>, <a href="/search/astro-ph?searchtype=author&query=Abazajian%2C+K">Kevork Abazajian</a>, <a href="/search/astro-ph?searchtype=author&query=Addison%2C+G+E">Graeme E. Addison</a>, <a href="/search/astro-ph?searchtype=author&query=Adshead%2C+P">Peter Adshead</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Zeeshan Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Akerib%2C+D">Daniel Akerib</a>, <a href="/search/astro-ph?searchtype=author&query=Ali%2C+A">Aamir Ali</a>, <a href="/search/astro-ph?searchtype=author&query=Allen%2C+S+W">Steven W. Allen</a>, <a href="/search/astro-ph?searchtype=author&query=Alonso%2C+D">David Alonso</a>, <a href="/search/astro-ph?searchtype=author&query=Alvarez%2C+M">Marcelo Alvarez</a>, <a href="/search/astro-ph?searchtype=author&query=Amin%2C+M+A">Mustafa A. Amin</a>, <a href="/search/astro-ph?searchtype=author&query=Anderson%2C+A">Adam Anderson</a>, <a href="/search/astro-ph?searchtype=author&query=Arnold%2C+K+S">Kam S. Arnold</a>, <a href="/search/astro-ph?searchtype=author&query=Ashton%2C+P">Peter Ashton</a>, <a href="/search/astro-ph?searchtype=author&query=Baccigalupi%2C+C">Carlo Baccigalupi</a>, <a href="/search/astro-ph?searchtype=author&query=Bard%2C+D">Debbie Bard</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">Denis Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Barron%2C+D">Darcy Barron</a>, <a href="/search/astro-ph?searchtype=author&query=Barry%2C+P+S">Peter S. Barry</a>, <a href="/search/astro-ph?searchtype=author&query=Bartlett%2C+J+G">James G. Bartlett</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">Ritoban Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&query=Bean%2C+R">Rachel Bean</a>, <a href="/search/astro-ph?searchtype=author&query=Bebek%2C+C">Chris Bebek</a> , et al. (212 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.12619v1-abstract-short" style="display: inline;"> CMB-S4---the next-generation ground-based cosmic microwave background (CMB) experiment---is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the Universe, from the highest energies at the dawn of time through the growth of structure to the present day. Among the science cases pursued with CMB-S4, the quest for detecting p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.12619v1-abstract-full').style.display = 'inline'; document.getElementById('2008.12619v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.12619v1-abstract-full" style="display: none;"> CMB-S4---the next-generation ground-based cosmic microwave background (CMB) experiment---is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the Universe, from the highest energies at the dawn of time through the growth of structure to the present day. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semi-analytic projection tool, targeted explicitly towards optimizing constraints on the tensor-to-scalar ratio, $r$, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2--3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments given a desired scientific goal. To form a closed-loop process, we couple this semi-analytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for $r > 0.003$ at greater than $5蟽$, or, in the absence of a detection, of reaching an upper limit of $r < 0.001$ at $95\%$ CL. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.12619v1-abstract-full').style.display = 'none'; document.getElementById('2008.12619v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 8 figures, 9 tables, submitted to ApJ. arXiv admin note: text overlap with arXiv:1907.04473</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.05341">arXiv:2005.05341</a> <span> [<a href="https://arxiv.org/pdf/2005.05341">pdf</a>, <a href="https://arxiv.org/format/2005.05341">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/abb023">10.3847/1538-4357/abb023 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phase-Space Spectral Line De-confusion in Intensity Mapping </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Cheng%2C+Y">Yun-Ting Cheng</a>, <a href="/search/astro-ph?searchtype=author&query=Chang%2C+T">Tzu-Ching Chang</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">James J. Bock</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.05341v2-abstract-short" style="display: inline;"> Line intensity mapping (LIM) is a promising tool to efficiently probe the three-dimensional large-scale structure by mapping the aggregate emission of a spectral line from all sources that trace the matter density field. Spectral lines from different redshifts can fall in the same observed frequency and be confused, however, which is a major challenge in LIM. In this work, we develop a line de-con… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.05341v2-abstract-full').style.display = 'inline'; document.getElementById('2005.05341v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.05341v2-abstract-full" style="display: none;"> Line intensity mapping (LIM) is a promising tool to efficiently probe the three-dimensional large-scale structure by mapping the aggregate emission of a spectral line from all sources that trace the matter density field. Spectral lines from different redshifts can fall in the same observed frequency and be confused, however, which is a major challenge in LIM. In this work, we develop a line de-confusion technique in map space capable of reconstructing the three-dimensional spatial distribution of line-emitting sources. If multiple spectral lines of a source population are observable in multiple frequencies, using the sparse approximation, our technique iteratively extracts sources along a given line of sight by fitting the LIM data to a set of spectral templates. We demonstrate that the technique successfully extracts sources with emission lines present at a few $蟽$ above the noise level, taking into account uncertainties in the source modeling and presence of continuum foreground contamination and noise fluctuations. As an example, we consider a TIME/CONCERTO-like survey targeting [C II] at the epoch of reionization, and reliably reconstruct the 3D spatial distribution of the CO interlopers at $0.5\lesssim z\lesssim 1.5$. We also demonstrate a successful de-confusion for the SPHEREx mission in the near-infrared wavelengths. Potentially, the reconstructed maps can be further cross-correlated with a (galaxy) tracer population to estimate the total interloper power in the linear clustering regime. This technique is a general framework to extract the phase-space distribution of low-redshift interlopers, without the need of external information, for any line de-confusion problem. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.05341v2-abstract-full').style.display = 'none'; document.getElementById('2005.05341v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 22 figures, accepted by ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.05771">arXiv:2002.05771</a> <span> [<a href="https://arxiv.org/pdf/2002.05771">pdf</a>, <a href="https://arxiv.org/format/2002.05771">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10909-020-02415-4">10.1007/s10909-020-02415-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Particle response of antenna-coupled TES arrays: results from SPIDER and the lab </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Osherson%2C+B">B. Osherson</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Fu%2C+J">J. Fu</a>, <a href="/search/astro-ph?searchtype=author&query=Gramillano%2C+R+V">R. V. Gramillano</a>, <a href="/search/astro-ph?searchtype=author&query=Gualtieri%2C+R">R. Gualtieri</a>, <a href="/search/astro-ph?searchtype=author&query=Shaw%2C+E+C">E. C. Shaw</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Benton%2C+S+J">S. J. Benton</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Bond%2C+J+R">J. R. Bond</a>, <a href="/search/astro-ph?searchtype=author&query=Bryan%2C+S+A">S. A. Bryan</a>, <a href="/search/astro-ph?searchtype=author&query=Chiang%2C+H+C">H. C. Chiang</a>, <a href="/search/astro-ph?searchtype=author&query=Contaldi%2C+C+R">C. R. Contaldi</a>, <a href="/search/astro-ph?searchtype=author&query=Dore%2C+O">O. Dore</a>, <a href="/search/astro-ph?searchtype=author&query=Fraisse%2C+A+A">A. A. Fraisse</a>, <a href="/search/astro-ph?searchtype=author&query=Gambrel%2C+A+E">A. E. Gambrel</a>, <a href="/search/astro-ph?searchtype=author&query=Gandilo%2C+N+N">N. N. Gandilo</a>, <a href="/search/astro-ph?searchtype=author&query=Gudmundsson%2C+J+E">J. E. Gudmundsson</a>, <a href="/search/astro-ph?searchtype=author&query=Halpern%2C+M">M. Halpern</a>, <a href="/search/astro-ph?searchtype=author&query=Hartley%2C+J">J. Hartley</a>, <a href="/search/astro-ph?searchtype=author&query=Hasselfield%2C+M">M. Hasselfield</a>, <a href="/search/astro-ph?searchtype=author&query=Hilton%2C+G">G. Hilton</a>, <a href="/search/astro-ph?searchtype=author&query=Holmes%2C+W">W. Holmes</a>, <a href="/search/astro-ph?searchtype=author&query=Hristov%2C+V+V">V. V. Hristov</a> , et al. (23 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.05771v1-abstract-short" style="display: inline;"> Future mm-wave and sub-mm space missions will employ large arrays of multiplexed Transition Edge Sensor (TES) bolometers. Such instruments must contend with the high flux of cosmic rays beyond our atmosphere that induce "glitches" in bolometer data, which posed a challenge to data analysis from the Planck bolometers. Future instruments will face the additional challenges of shared substrate wafers… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.05771v1-abstract-full').style.display = 'inline'; document.getElementById('2002.05771v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.05771v1-abstract-full" style="display: none;"> Future mm-wave and sub-mm space missions will employ large arrays of multiplexed Transition Edge Sensor (TES) bolometers. Such instruments must contend with the high flux of cosmic rays beyond our atmosphere that induce "glitches" in bolometer data, which posed a challenge to data analysis from the Planck bolometers. Future instruments will face the additional challenges of shared substrate wafers and multiplexed readout wiring. In this work we explore the susceptibility of modern TES arrays to the cosmic ray environment of space using two data sets: the 2015 long-duration balloon flight of the SPIDER cosmic microwave background polarimeter, and a laboratory exposure of SPIDER flight hardware to radioactive sources. We find manageable glitch rates and short glitch durations, leading to minimal effect on SPIDER analysis. We constrain energy propagation within the substrate through a study of multi-detector coincidences, and give a preliminary look at pulse shapes in laboratory data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.05771v1-abstract-full').style.display = 'none'; document.getElementById('2002.05771v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures, Proceedings of the 18th International Workshop on Low Temperature Detectors</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.05254">arXiv:2002.05254</a> <span> [<a href="https://arxiv.org/pdf/2002.05254">pdf</a>, <a href="https://arxiv.org/format/2002.05254">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10909-019-02299-z">10.1007/s10909-019-02299-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optical Design and Characterization of 40-GHz Detector and Module for the BICEP Array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Soliman%2C+A">A. Soliman</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C+A">C. A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Boenish%2C+H">H. Boenish</a>, <a href="/search/astro-ph?searchtype=author&query=Bullock%2C+E">E. Bullock</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J">J. Cheshire</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">J. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A">A. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M">M. Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">S. Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Hall%2C+G">G. Hall</a>, <a href="/search/astro-ph?searchtype=author&query=Halpern%2C+M">M. Halpern</a>, <a href="/search/astro-ph?searchtype=author&query=Harrison%2C+S">S. Harrison</a>, <a href="/search/astro-ph?searchtype=author&query=Henderson%2C+S">S. Henderson</a>, <a href="/search/astro-ph?searchtype=author&query=Hildebrandt%2C+S+R">S. R. Hildebrandt</a> , et al. (44 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.05254v1-abstract-short" style="display: inline;"> Families of cosmic inflation models predict a primordial gravitational-wave background that imprints B-mode polarization pattern in the Cosmic Microwave Background (CMB). High sensitivity instruments with wide frequency coverage and well-controlled systematic errors are needed to constrain the faint B-mode amplitude. We have developed antenna-coupled Transition Edge Sensor (TES) arrays for high-se… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.05254v1-abstract-full').style.display = 'inline'; document.getElementById('2002.05254v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.05254v1-abstract-full" style="display: none;"> Families of cosmic inflation models predict a primordial gravitational-wave background that imprints B-mode polarization pattern in the Cosmic Microwave Background (CMB). High sensitivity instruments with wide frequency coverage and well-controlled systematic errors are needed to constrain the faint B-mode amplitude. We have developed antenna-coupled Transition Edge Sensor (TES) arrays for high-sensitivity polarized CMB observations over a wide range of millimeter-wave bands. BICEP Array, the latest phase of the BICEP/Keck experiment series, is a multi-receiver experiment designed to search for inflationary B-mode polarization to a precision $蟽$(r) between 0.002 and 0.004 after 3 full years of observations, depending on foreground complexity and the degree of lensing removal. We describe the electromagnetic design and measured performance of BICEP Array low-frequency 40-GHz detector, their packaging in focal plane modules, and optical characterization including efficiency and beam matching between polarization pairs. We summarize the design and simulated optical performance, including an approach to improve the optical efficiency due to mismatch losses. We report the measured beam maps for a new broad-band corrugation design to minimize beam differential ellipticity between polarization pairs caused by interactions with the module housing frame, which helps minimize polarized beam mismatch that converts CMB temperature to polarization ($T \rightarrow P$) anisotropy in CMB maps. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.05254v1-abstract-full').style.display = 'none'; document.getElementById('2002.05254v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 7 figures, Accepted by the Journal of Low Temperature Physics (Proceedings of the 18th International Workshop on Low Temperature Detectors)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.05228">arXiv:2002.05228</a> <span> [<a href="https://arxiv.org/pdf/2002.05228">pdf</a>, <a href="https://arxiv.org/format/2002.05228">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10909-020-02394-6">10.1007/s10909-020-02394-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Design and performance of the first BICEP Array receiver </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Schillaci%2C+A">A. Schillaci</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C+A">C. A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Boenish%2C+H">H. Boenish</a>, <a href="/search/astro-ph?searchtype=author&query=Bullock%2C+E">E. Bullock</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J">J. Cheshire</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">J. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A">A. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M">M. Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">S. Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Hall%2C+G">G. Hall</a>, <a href="/search/astro-ph?searchtype=author&query=Halpern%2C+M">M. Halpern</a>, <a href="/search/astro-ph?searchtype=author&query=Harrison%2C+S">S. Harrison</a>, <a href="/search/astro-ph?searchtype=author&query=Henderson%2C+S">S. Henderson</a>, <a href="/search/astro-ph?searchtype=author&query=Hildebrandt%2C+S+R">S. R. Hildebrandt</a> , et al. (44 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.05228v1-abstract-short" style="display: inline;"> Branches of cosmic inflationary models, such as slow-roll inflation, predict a background of primordial gravitational waves that imprints a unique odd-parity B-mode pattern in the Cosmic Microwave Background (CMB) at amplitudes that are within experimental reach. The BICEP/Keck (BK) experiment targets this primordial signature, the amplitude of which is parameterized by the tensor-to-scalar ratio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.05228v1-abstract-full').style.display = 'inline'; document.getElementById('2002.05228v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.05228v1-abstract-full" style="display: none;"> Branches of cosmic inflationary models, such as slow-roll inflation, predict a background of primordial gravitational waves that imprints a unique odd-parity B-mode pattern in the Cosmic Microwave Background (CMB) at amplitudes that are within experimental reach. The BICEP/Keck (BK) experiment targets this primordial signature, the amplitude of which is parameterized by the tensor-to-scalar ratio r, by observing the polarized microwave sky through the exceptionally clean and stable atmosphere at the South Pole. B-mode measurements require an instrument with exquisite sensitivity, tight control of systematics, and wide frequency coverage to disentangle the primordial signal from the Galactic foregrounds. BICEP Array represents the most recent stage of the BK program, and comprises four BICEP3-class receivers observing at 30/40, 95, 150 and 220/270 GHz. The 30/40 GHz receiver will be deployed at the South Pole during the 2019/2020 austral summer. After 3 full years of observations with 30,000+ detectors, BICEP Array will measure primordial gravitational waves to a precision $蟽(r)$ between 0.002 and 0.004, depending on foreground complexity and the degree of lensing removal. In this paper we give an overview of the instrument, highlighting the design features in terms of cryogenics, magnetic shielding, detectors and readout architecture as well as reporting on the integration and tests that are ongoing with the first receiver at 30/40 GHz. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.05228v1-abstract-full').style.display = 'none'; document.getElementById('2002.05228v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures, presented at LTD18 in Milan (July 2019), accepted on JLTP (February 2020)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.05219">arXiv:2002.05219</a> <span> [<a href="https://arxiv.org/pdf/2002.05219">pdf</a>, <a href="https://arxiv.org/format/2002.05219">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10909-020-02411-8">10.1007/s10909-020-02411-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Characterizing the Sensitivity of 40 GHz TES Bolometers for BICEP Array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Zhang%2C+C">C. Zhang</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C+A">C. A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Boenish%2C+H">H. Boenish</a>, <a href="/search/astro-ph?searchtype=author&query=Bullock%2C+E">E. Bullock</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J">J. Cheshire</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">J. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A">A. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M">M. Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">S. Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Hall%2C+G">G. Hall</a>, <a href="/search/astro-ph?searchtype=author&query=Halpern%2C+M">M. Halpern</a>, <a href="/search/astro-ph?searchtype=author&query=Harrison%2C+S">S. Harrison</a>, <a href="/search/astro-ph?searchtype=author&query=Henderson%2C+S">S. Henderson</a>, <a href="/search/astro-ph?searchtype=author&query=Hildebrandt%2C+S+R">S. R. Hildebrandt</a> , et al. (44 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.05219v1-abstract-short" style="display: inline;"> The BICEP/Keck (BK) experiment aims to detect the imprint of primordial gravitational waves in the Cosmic Microwave Background polarization, which would be direct evidence of the inflation theory. While the tensor-to-scalar ratio has been constrained to be r_0.05 < 0.06 at 95% c.l., further improvements on this upper limit are hindered by polarized Galactic foreground emissions and removal of grav… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.05219v1-abstract-full').style.display = 'inline'; document.getElementById('2002.05219v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.05219v1-abstract-full" style="display: none;"> The BICEP/Keck (BK) experiment aims to detect the imprint of primordial gravitational waves in the Cosmic Microwave Background polarization, which would be direct evidence of the inflation theory. While the tensor-to-scalar ratio has been constrained to be r_0.05 < 0.06 at 95% c.l., further improvements on this upper limit are hindered by polarized Galactic foreground emissions and removal of gravitational lensing polarization. The 30/40 GHz receiver of the BICEP Array (BA) will deploy at the end of 2019 and will constrain the synchrotron foreground with unprecedented accuracy within the BK sky patch. We will show the design of the 30/40 GHz detectors and test results summarizing its performance. The low optical and atmospheric loading at these frequencies requires our TES detectors to have low saturation power in order to be photon-noise dominated. To realize the low thermal conductivity required from a 250 mK base temperature, we developed new bolometer leg designs. We will present the relevant measured detector parameters: G, Tc, Rn, Psat , and spectral bands, and noise spectra. We achieved a per bolometer NEP including all noise components of 2.07E-17 W/sqrt(Hz), including an anticipated photon noise level 1.54E-17 W/sqrt(Hz). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.05219v1-abstract-full').style.display = 'none'; document.getElementById('2002.05219v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Journal of Low Temperature Physics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.05197">arXiv:2002.05197</a> <span> [<a href="https://arxiv.org/pdf/2002.05197">pdf</a>, <a href="https://arxiv.org/format/2002.05197">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10909-020-02392-8">10.1007/s10909-020-02392-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optical characterization of the Keck Array and BICEP3 CMB Polarimeters from 2016 to 2019 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Collaboration%2C+T+B">The BICEP/Keck Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=%3A"> :</a>, <a href="/search/astro-ph?searchtype=author&query=Germaine%2C+T+S">T. St Germaine</a>, <a href="/search/astro-ph?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Bischoff%2C+C+A">C. A. Bischoff</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Boenish%2C+H">H. Boenish</a>, <a href="/search/astro-ph?searchtype=author&query=Bullock%2C+E">E. Bullock</a>, <a href="/search/astro-ph?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/astro-ph?searchtype=author&query=Cheshire%2C+J">J. Cheshire</a>, <a href="/search/astro-ph?searchtype=author&query=Connors%2C+J">J. Connors</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A">A. Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M">M. Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">S. Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">J. P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Fliescher%2C+S">S. Fliescher</a>, <a href="/search/astro-ph?searchtype=author&query=Grayson%2C+J+A">J. A. Grayson</a>, <a href="/search/astro-ph?searchtype=author&query=Hall%2C+G">G. Hall</a> , et al. (50 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.05197v1-abstract-short" style="display: inline;"> The BICEP/Keck experiment (BK) is a series of small-aperture refracting telescopes observing degree-scale Cosmic Microwave Background (CMB) polarization from the South Pole in search of a primordial $B$-mode signature. This $B$-mode signal arises from primordial gravitational waves interacting with the CMB, and has amplitude parametrized by the tensor-to-scalar ratio $r$. Since 2016, BICEP3 and th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.05197v1-abstract-full').style.display = 'inline'; document.getElementById('2002.05197v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.05197v1-abstract-full" style="display: none;"> The BICEP/Keck experiment (BK) is a series of small-aperture refracting telescopes observing degree-scale Cosmic Microwave Background (CMB) polarization from the South Pole in search of a primordial $B$-mode signature. This $B$-mode signal arises from primordial gravitational waves interacting with the CMB, and has amplitude parametrized by the tensor-to-scalar ratio $r$. Since 2016, BICEP3 and the Keck Array have been observing with 4800 total antenna-coupled transition-edge sensor detectors, with frequency bands spanning 95, 150, 220, and 270 GHz. Here we present the optical performance of these receivers from 2016 to 2019, including far-field beams measured in situ with an improved chopped thermal source and instrument spectral response measured with a field-deployable Fourier Transform Spectrometer. As a pair differencing experiment, an important systematic that must be controlled is the differential beam response between the co-located, orthogonally polarized detectors. We generate per-detector far-field beam maps and the corresponding differential beam mismatch that is used to estimate the temperature-to-polarization leakage in our CMB maps and to give feedback on detector and optics fabrication. The differential beam parameters presented here were estimated using improved low-level beam map analysis techniques, including efficient removal of non-Gaussian noise as well as improved spatial masking. These techniques help minimize systematic uncertainty in the beam analysis, with the goal of constraining the bias on $r$ induced by temperature-to-polarization leakage to be subdominant to the statistical uncertainty. This is essential as we progress to higher detector counts in the next generation of CMB experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.05197v1-abstract-full').style.display = 'none'; document.getElementById('2002.05197v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures. Accepted by the Journal of Low Temperature Physics (Proceedings of the 18th International Workshop on Low Temperature Detectors)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.07394">arXiv:1909.07394</a> <span> [<a href="https://arxiv.org/pdf/1909.07394">pdf</a>, <a href="https://arxiv.org/format/1909.07394">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ab5183">10.3847/1538-4357/ab5183 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An Imprint of the Galactic Magnetic Field in the Diffuse Unpolarized Dust Emission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Hensley%2C+B+S">Brandon S. Hensley</a>, <a href="/search/astro-ph?searchtype=author&query=Zhang%2C+C">Cheng Zhang</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">James J. Bock</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.07394v1-abstract-short" style="display: inline;"> It is well known that aligned, aspherical dust grains emit polarized radiation and that the degree of polarization depends on the angle $蠄$ between the interstellar magnetic field and the line of sight. However, anisotropy of the dust absorption cross sections also modulates the $total\ intensity$ of the radiation as the viewing geometry changes. We report a detection of this effect in the high Ga… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.07394v1-abstract-full').style.display = 'inline'; document.getElementById('1909.07394v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.07394v1-abstract-full" style="display: none;"> It is well known that aligned, aspherical dust grains emit polarized radiation and that the degree of polarization depends on the angle $蠄$ between the interstellar magnetic field and the line of sight. However, anisotropy of the dust absorption cross sections also modulates the $total\ intensity$ of the radiation as the viewing geometry changes. We report a detection of this effect in the high Galactic latitude $Planck$ data, finding that the 353 GHz dust intensity per $N_{\rm HI}$ is smaller when the Galactic magnetic field is mostly in the plane of the sky and larger when the field is mostly along the line of sight. These variations are of opposite sign and roughly equal magnitude as the changes in polarized intensity per $N_{\rm HI}$ with $蠄$, as predicted. In principle, the variation in intensity can be used in conjunction with the dust polarization angle to constrain the full 3D orientation of the Galactic magnetic field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.07394v1-abstract-full').style.display = 'none'; document.getElementById('1909.07394v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.01305">arXiv:1909.01305</a> <span> [<a href="https://arxiv.org/pdf/1909.01305">pdf</a>, <a href="https://arxiv.org/format/1909.01305">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10909-019-02296-2">10.1007/s10909-019-02296-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Microwave multiplexing on the Keck Array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Cukierman%2C+A">Ari Cukierman</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Zeeshan Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Henderson%2C+S">Shawn Henderson</a>, <a href="/search/astro-ph?searchtype=author&query=Young%2C+E">Edward Young</a>, <a href="/search/astro-ph?searchtype=author&query=Yu%2C+C">Cyndia Yu</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">Denis Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Brown%2C+D">David Brown</a>, <a href="/search/astro-ph?searchtype=author&query=Chaudhuri%2C+S">Saptarshi Chaudhuri</a>, <a href="/search/astro-ph?searchtype=author&query=Cornelison%2C+J">James Cornelison</a>, <a href="/search/astro-ph?searchtype=author&query=D%27Ewart%2C+J+M">John M. D'Ewart</a>, <a href="/search/astro-ph?searchtype=author&query=Dierickx%2C+M">Marion Dierickx</a>, <a href="/search/astro-ph?searchtype=author&query=Dober%2C+B+J">Bradley J. Dober</a>, <a href="/search/astro-ph?searchtype=author&query=Dusatko%2C+J">John Dusatko</a>, <a href="/search/astro-ph?searchtype=author&query=Fatigoni%2C+S">Sofia Fatigoni</a>, <a href="/search/astro-ph?searchtype=author&query=Filippini%2C+J+P">Jeff P. Filippini</a>, <a href="/search/astro-ph?searchtype=author&query=Frisch%2C+J+C">Josef C. Frisch</a>, <a href="/search/astro-ph?searchtype=author&query=Haller%2C+G">Gunther Haller</a>, <a href="/search/astro-ph?searchtype=author&query=Halpern%2C+M">Mark Halpern</a>, <a href="/search/astro-ph?searchtype=author&query=Hilton%2C+G+C">Gene C. Hilton</a>, <a href="/search/astro-ph?searchtype=author&query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&query=Irwin%2C+K+D">Kent D. Irwin</a>, <a href="/search/astro-ph?searchtype=author&query=Karkare%2C+K+S">Kirit S. Karkare</a>, <a href="/search/astro-ph?searchtype=author&query=Karpel%2C+E">Ethan Karpel</a>, <a href="/search/astro-ph?searchtype=author&query=Kernasovskiy%2C+S+A">Sarah A. Kernasovskiy</a>, <a href="/search/astro-ph?searchtype=author&query=Kovac%2C+J+M">John M. Kovac</a> , et al. (60 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.01305v2-abstract-short" style="display: inline;"> We describe an on-sky demonstration of a microwave-multiplexing readout system in one of the receivers of the Keck Array, a polarimetry experiment observing the cosmic microwave background at the South Pole. During the austral summer of 2018-2019, we replaced the time-division multiplexing readout system with microwave-multiplexing components including superconducting microwave resonators coupled… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.01305v2-abstract-full').style.display = 'inline'; document.getElementById('1909.01305v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.01305v2-abstract-full" style="display: none;"> We describe an on-sky demonstration of a microwave-multiplexing readout system in one of the receivers of the Keck Array, a polarimetry experiment observing the cosmic microwave background at the South Pole. During the austral summer of 2018-2019, we replaced the time-division multiplexing readout system with microwave-multiplexing components including superconducting microwave resonators coupled to radio-frequency superconducting quantum interference devices at the sub-Kelvin focal plane, coaxial-cable plumbing and amplification between room temperature and the cold stages, and a SLAC Microresonator Radio Frequency system for the warm electronics. In the range 5-6 GHz, a single coaxial cable reads out 528 channels. The readout system is coupled to transition-edge sensors, which are in turn coupled to 150-GHz slot-dipole phased-array antennas. Observations began in April 2019, and we report here on an initial characterization of the system performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.01305v2-abstract-full').style.display = 'none'; document.getElementById('1909.01305v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 11 figures, Accepted by the Journal of Low Temperature Physics (Proceedings of the 18th International Workshop on Low Temperature Detectors)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.01062">arXiv:1908.01062</a> <span> [<a href="https://arxiv.org/pdf/1908.01062">pdf</a>, <a href="https://arxiv.org/format/1908.01062">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> CMB-S4 Decadal Survey APC White Paper </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Abazajian%2C+K">Kevork Abazajian</a>, <a href="/search/astro-ph?searchtype=author&query=Addison%2C+G">Graeme Addison</a>, <a href="/search/astro-ph?searchtype=author&query=Adshead%2C+P">Peter Adshead</a>, <a href="/search/astro-ph?searchtype=author&query=Ahmed%2C+Z">Zeeshan Ahmed</a>, <a href="/search/astro-ph?searchtype=author&query=Allen%2C+S+W">Steven W. Allen</a>, <a href="/search/astro-ph?searchtype=author&query=Alonso%2C+D">David Alonso</a>, <a href="/search/astro-ph?searchtype=author&query=Alvarez%2C+M">Marcelo Alvarez</a>, <a href="/search/astro-ph?searchtype=author&query=Amin%2C+M+A">Mustafa A. Amin</a>, <a href="/search/astro-ph?searchtype=author&query=Anderson%2C+A">Adam Anderson</a>, <a href="/search/astro-ph?searchtype=author&query=Arnold%2C+K+S">Kam S. Arnold</a>, <a href="/search/astro-ph?searchtype=author&query=Baccigalupi%2C+C">Carlo Baccigalupi</a>, <a href="/search/astro-ph?searchtype=author&query=Bailey%2C+K">Kathy Bailey</a>, <a href="/search/astro-ph?searchtype=author&query=Barkats%2C+D">Denis Barkats</a>, <a href="/search/astro-ph?searchtype=author&query=Barron%2C+D">Darcy Barron</a>, <a href="/search/astro-ph?searchtype=author&query=Barry%2C+P+S">Peter S. Barry</a>, <a href="/search/astro-ph?searchtype=author&query=Bartlett%2C+J+G">James G. Bartlett</a>, <a href="/search/astro-ph?searchtype=author&query=Thakur%2C+R+B">Ritoban Basu Thakur</a>, <a href="/search/astro-ph?searchtype=author&query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&query=Baxter%2C+E">Eric Baxter</a>, <a href="/search/astro-ph?searchtype=author&query=Bean%2C+R">Rachel Bean</a>, <a href="/search/astro-ph?searchtype=author&query=Bebek%2C+C">Chris Bebek</a>, <a href="/search/astro-ph?searchtype=author&query=Bender%2C+A+N">Amy N. Bender</a>, <a href="/search/astro-ph?searchtype=author&query=Benson%2C+B+A">Bradford A. Benson</a>, <a href="/search/astro-ph?searchtype=author&query=Berger%2C+E">Edo Berger</a>, <a href="/search/astro-ph?searchtype=author&query=Bhimani%2C+S">Sanah Bhimani</a> , et al. (200 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.01062v1-abstract-short" style="display: inline;"> We provide an overview of the science case, instrument configuration and project plan for the next-generation ground-based cosmic microwave background experiment CMB-S4, for consideration by the 2020 Decadal Survey. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.01062v1-abstract-full" style="display: none;"> We provide an overview of the science case, instrument configuration and project plan for the next-generation ground-based cosmic microwave background experiment CMB-S4, for consideration by the 2020 Decadal Survey. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.01062v1-abstract-full').style.display = 'none'; document.getElementById('1908.01062v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Project White Paper submitted to the 2020 Decadal Survey, 10 pages plus references. arXiv admin note: substantial text overlap with arXiv:1907.04473</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.12875">arXiv:1907.12875</a> <span> [<a href="https://arxiv.org/pdf/1907.12875">pdf</a>, <a href="https://arxiv.org/format/1907.12875">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201936386">10.1051/0004-6361/201936386 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Planck 2018 results. V. CMB power spectra and likelihoods </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Planck+Collaboration"> Planck Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Aghanim%2C+N">N. Aghanim</a>, <a href="/search/astro-ph?searchtype=author&query=Akrami%2C+Y">Y. Akrami</a>, <a href="/search/astro-ph?searchtype=author&query=Ashdown%2C+M">M. Ashdown</a>, <a href="/search/astro-ph?searchtype=author&query=Aumont%2C+J">J. Aumont</a>, <a href="/search/astro-ph?searchtype=author&query=Baccigalupi%2C+C">C. Baccigalupi</a>, <a href="/search/astro-ph?searchtype=author&query=Ballardini%2C+M">M. Ballardini</a>, <a href="/search/astro-ph?searchtype=author&query=Banday%2C+A+J">A. J. Banday</a>, <a href="/search/astro-ph?searchtype=author&query=Barreiro%2C+R+B">R. B. Barreiro</a>, <a href="/search/astro-ph?searchtype=author&query=Bartolo%2C+N">N. Bartolo</a>, <a href="/search/astro-ph?searchtype=author&query=Basak%2C+S">S. Basak</a>, <a href="/search/astro-ph?searchtype=author&query=Benabed%2C+K">K. Benabed</a>, <a href="/search/astro-ph?searchtype=author&query=Bernard%2C+J+-">J. -P. Bernard</a>, <a href="/search/astro-ph?searchtype=author&query=Bersanelli%2C+M">M. Bersanelli</a>, <a href="/search/astro-ph?searchtype=author&query=Bielewicz%2C+P">P. Bielewicz</a>, <a href="/search/astro-ph?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/astro-ph?searchtype=author&query=Bond%2C+J+R">J. R. Bond</a>, <a href="/search/astro-ph?searchtype=author&query=Borrill%2C+J">J. Borrill</a>, <a href="/search/astro-ph?searchtype=author&query=Bouchet%2C+F+R">F. R. Bouchet</a>, <a href="/search/astro-ph?searchtype=author&query=Boulanger%2C+F">F. Boulanger</a>, <a href="/search/astro-ph?searchtype=author&query=Bucher%2C+M">M. Bucher</a>, <a href="/search/astro-ph?searchtype=author&query=Burigana%2C+C">C. Burigana</a>, <a href="/search/astro-ph?searchtype=author&query=Butler%2C+R+C">R. C. Butler</a>, <a href="/search/astro-ph?searchtype=author&query=Calabrese%2C+E">E. Calabrese</a>, <a href="/search/astro-ph?searchtype=author&query=Cardoso%2C+J+-">J. -F. Cardoso</a> , et al. (143 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.12875v2-abstract-short" style="display: inline;"> This paper describes the 2018 Planck CMB likelihoods, following a hybrid approach similar to the 2015 one, with different approximations at low and high multipoles, and implementing several methodological and analysis refinements. With more realistic simulations, and better correction and modelling of systematics, we can now make full use of the High Frequency Instrument polarization data. The low… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.12875v2-abstract-full').style.display = 'inline'; document.getElementById('1907.12875v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.12875v2-abstract-full" style="display: none;"> This paper describes the 2018 Planck CMB likelihoods, following a hybrid approach similar to the 2015 one, with different approximations at low and high multipoles, and implementing several methodological and analysis refinements. With more realistic simulations, and better correction and modelling of systematics, we can now make full use of the High Frequency Instrument polarization data. The low-multipole 100x143 GHz EE cross-spectrum constrains the reionization optical-depth parameter $蟿$ to better than 15% (in combination with with the other low- and high-$\ell$ likelihoods). We also update the 2015 baseline low-$\ell$ joint TEB likelihood based on the Low Frequency Instrument data, which provides a weaker $蟿$ constraint. At high multipoles, a better model of the temperature-to-polarization leakage and corrections for the effective calibrations of the polarization channels (polarization efficiency or PE) allow us to fully use the polarization spectra, improving the constraints on the $螞$CDM parameters by 20 to 30% compared to TT-only constraints. Tests on the modelling of the polarization demonstrate good consistency, with some residual modelling uncertainties, the accuracy of the PE modelling being the main limitation. Using our various tests, simulations, and comparison between different high-$\ell$ implementations, we estimate the consistency of the results to be better than the 0.5$蟽$ level. Minor curiosities already present before (differences between $\ell$<800 and $\ell$>800 parameters or the preference for more smoothing of the $C_\ell$ peaks) are shown to be driven by the TT power spectrum and are not significantly modified by the inclusion of polarization. Overall, the legacy Planck CMB likelihoods provide a robust tool for constraining the cosmological model and represent a reference for future CMB observations. (Abridged) <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.12875v2-abstract-full').style.display = 'none'; document.getElementById('1907.12875v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Revised to match version published in Astronomy & Astrophysics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 641, A5 (2020) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Bock%2C+J+J&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Bock%2C+J+J&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Bock%2C+J+J&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Bock%2C+J+J&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Bock%2C+J+J&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Bock%2C+J+J&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&query=Bock%2C+J+J&start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> <li> <a href="/search/?searchtype=author&query=Bock%2C+J+J&start=300" class="pagination-link " aria-label="Page 7" aria-current="page">7 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>