CINXE.COM

Sergio Gómez | Universitat Rovira i Virgili - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Sergio Gómez | Universitat Rovira i Virgili - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="JJQezzMH1EmovWkdXq8EnWvcELE8/cMAtGxiSP1PZm9Md5jpDYpmfe2miRRYW5R7wDpsbme5T7vAQ4W7956dbg==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-1c712297ae3ac71207193b1bae0ecf1aae125886850f62c9c0139dd867630797.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="sergio gómez" /> <meta name="description" content="Sergio Gómez, Universitat Rovira i Virgili: 31 Followers, 12 Following, 75 Research papers. Research interests: Complex Networks, Multilayer Network, and…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '49879c2402910372f4abc62630a427bbe033d190'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15276,"monthly_visitors":"112 million","monthly_visitor_count":112794806,"monthly_visitor_count_in_millions":112,"user_count":277192450,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732482068000); window.Aedu.timeDifference = new Date().getTime() - 1732482068000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-296162c7af6fd81dcdd76f1a94f1fad04fb5f647401337d136fe8b68742170b1.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-8d53a22151f33ab413d88fa1c02f979c3f8706d470fc1bced09852c72a9f3454.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-f8fe82512740391f81c9e8cc48220144024b425b359b08194e316f4de070b9e8.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://urv.academia.edu/SergioGomez" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-9601d1cc3d68aa07c0a9901d03d3611aec04cc07d2a2039718ebef4ad4d148ca.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":33513994,"first_name":"Sergio","middle_initials":"","last_name":"Gómez","page_name":"SergioGomez","domain_name":"urv","created_at":"2015-08-01T08:24:15.311-07:00","display_name":"Sergio Gómez","url":"https://urv.academia.edu/SergioGomez","photo":"https://0.academia-photos.com/33513994/9898477/11035453/s65_sergio.g_mez.jpg","has_photo":true,"department":{"id":1273283,"name":"Enginyeria Informàtica i Matemàtiques","url":"https://urv.academia.edu/Departments/Enginyeria_Inform%C3%A0tica_i_Matem%C3%A0tiques/Documents","university":{"id":1965,"name":"Universitat Rovira i Virgili","url":"https://urv.academia.edu/"}},"position":"Faculty Member","position_id":1,"is_analytics_public":false,"interests":[{"id":13330,"name":"Complex Networks","url":"https://www.academia.edu/Documents/in/Complex_Networks"},{"id":2003308,"name":"Multilayer Network","url":"https://www.academia.edu/Documents/in/Multilayer_Network"},{"id":54123,"name":"Artificial Neural Networks","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Networks"},{"id":1390044,"name":"Evolitionary Computing","url":"https://www.academia.edu/Documents/in/Evolitionary_Computing"},{"id":7150,"name":"Complex Systems","url":"https://www.academia.edu/Documents/in/Complex_Systems"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://urv.academia.edu/SergioGomez&quot;,&quot;location&quot;:&quot;/SergioGomez&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;urv.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/SergioGomez&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-360250e7-f84a-4a52-89f0-882c92f95ea0"></div> <div id="ProfileCheckPaperUpdate-react-component-360250e7-f84a-4a52-89f0-882c92f95ea0"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Sergio Gómez" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/33513994/9898477/11035453/s200_sergio.g_mez.jpg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Sergio Gómez</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://urv.academia.edu/">Universitat Rovira i Virgili</a>, <a class="u-tcGrayDarker" href="https://urv.academia.edu/Departments/Enginyeria_Inform%C3%A0tica_i_Matem%C3%A0tiques/Documents">Enginyeria Informàtica i Matemàtiques</a>, <span class="u-tcGrayDarker">Faculty Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Sergio" data-follow-user-id="33513994" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="33513994"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">31</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">12</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">13</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="33513994" href="https://www.academia.edu/Documents/in/Complex_Networks"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://urv.academia.edu/SergioGomez&quot;,&quot;location&quot;:&quot;/SergioGomez&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;urv.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/SergioGomez&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Complex Networks&quot;]}" data-trace="false" data-dom-id="Pill-react-component-16048a0c-302d-401c-a5b9-9df9cb96e23a"></div> <div id="Pill-react-component-16048a0c-302d-401c-a5b9-9df9cb96e23a"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="33513994" href="https://www.academia.edu/Documents/in/Multilayer_Network"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Multilayer Network&quot;]}" data-trace="false" data-dom-id="Pill-react-component-2c040613-ebe4-4b17-b8bf-2b729cdda187"></div> <div id="Pill-react-component-2c040613-ebe4-4b17-b8bf-2b729cdda187"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="33513994" href="https://www.academia.edu/Documents/in/Artificial_Neural_Networks"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Artificial Neural Networks&quot;]}" data-trace="false" data-dom-id="Pill-react-component-e9a7cd1e-9872-439c-b560-069227325dd2"></div> <div id="Pill-react-component-e9a7cd1e-9872-439c-b560-069227325dd2"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="33513994" href="https://www.academia.edu/Documents/in/Evolitionary_Computing"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Evolitionary Computing&quot;]}" data-trace="false" data-dom-id="Pill-react-component-1956b02c-75c4-4669-9a63-13578bc00135"></div> <div id="Pill-react-component-1956b02c-75c4-4669-9a63-13578bc00135"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="33513994" href="https://www.academia.edu/Documents/in/Complex_Systems"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Complex Systems&quot;]}" data-trace="false" data-dom-id="Pill-react-component-a6fd5726-fd21-44dd-baa3-186128b74e0e"></div> <div id="Pill-react-component-a6fd5726-fd21-44dd-baa3-186128b74e0e"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Sergio Gómez</h3></div><div class="js-work-strip profile--work_container" data-work-id="56967382"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/56967382/Virus_spread_versus_contact_tracing_Two_competing_contagion_processes"><img alt="Research paper thumbnail of Virus spread versus contact tracing: Two competing contagion processes" class="work-thumbnail" src="https://attachments.academia-assets.com/72094552/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/56967382/Virus_spread_versus_contact_tracing_Two_competing_contagion_processes">Virus spread versus contact tracing: Two competing contagion processes</a></div><div class="wp-workCard_item"><span>Physical Review Research</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4ba21c157efe78e5d2189b343ee812b5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:72094552,&quot;asset_id&quot;:56967382,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/72094552/download_file?st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="56967382"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="56967382"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 56967382; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=56967382]").text(description); $(".js-view-count[data-work-id=56967382]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 56967382; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='56967382']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 56967382, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4ba21c157efe78e5d2189b343ee812b5" } } $('.js-work-strip[data-work-id=56967382]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":56967382,"title":"Virus spread versus contact tracing: Two competing contagion processes","translated_title":"","metadata":{"publisher":"American Physical Society (APS)","publication_name":"Physical Review Research"},"translated_abstract":null,"internal_url":"https://www.academia.edu/56967382/Virus_spread_versus_contact_tracing_Two_competing_contagion_processes","translated_internal_url":"","created_at":"2021-10-10T10:55:01.653-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33513994,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":72094552,"title":"","file_type":"txt","scribd_thumbnail_url":"https://attachments.academia-assets.com/72094552/thumbnails/1.jpg","file_name":"PhysRevResearch.3.txt","download_url":"https://www.academia.edu/attachments/72094552/download_file?st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Virus_spread_versus_contact_tracing_Two.txt","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/72094552/PhysRevResearch.3.txt?1633888511=\u0026response-content-disposition=attachment%3B+filename%3DVirus_spread_versus_contact_tracing_Two.txt\u0026Expires=1732485666\u0026Signature=Cxj36mFHcG5DG-9RffKcsr8hKrdNHfWcUzn62roalDZC6DF3jo4dQC9YK4MAzGhyGwjfLk~SISSRd4zUI6knJ2enZT3zMKnnLqq7GRLURm3Jw-suvDMCQOA9rnLTh0~nT2D1h4KSTYkRf4cOu6-eZmCCbVebPLB~lzfO9UnAjirTIA1pmN1MujD80IdUol-dJ5lbc8UWsOZTQfvcS2lcTW1uH2rK4Rqw29K9o6IbnulJM02TC1MwGGlfJBNTQKk1bHgEWTK2sFluz5~DrupVlmS2SYLudxgIzM4BQ4pAzrGJGpXsBa3tLVTH2EPj5owWYag5-8MsL57xonC0J0iqGg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Virus_spread_versus_contact_tracing_Two_competing_contagion_processes","translated_slug":"","page_count":2,"language":"en","content_type":"Work","owner":{"id":33513994,"first_name":"Sergio","middle_initials":"","last_name":"Gómez","page_name":"SergioGomez","domain_name":"urv","created_at":"2015-08-01T08:24:15.311-07:00","display_name":"Sergio Gómez","url":"https://urv.academia.edu/SergioGomez"},"attachments":[{"id":72094552,"title":"","file_type":"txt","scribd_thumbnail_url":"https://attachments.academia-assets.com/72094552/thumbnails/1.jpg","file_name":"PhysRevResearch.3.txt","download_url":"https://www.academia.edu/attachments/72094552/download_file?st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Virus_spread_versus_contact_tracing_Two.txt","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/72094552/PhysRevResearch.3.txt?1633888511=\u0026response-content-disposition=attachment%3B+filename%3DVirus_spread_versus_contact_tracing_Two.txt\u0026Expires=1732485666\u0026Signature=Cxj36mFHcG5DG-9RffKcsr8hKrdNHfWcUzn62roalDZC6DF3jo4dQC9YK4MAzGhyGwjfLk~SISSRd4zUI6knJ2enZT3zMKnnLqq7GRLURm3Jw-suvDMCQOA9rnLTh0~nT2D1h4KSTYkRf4cOu6-eZmCCbVebPLB~lzfO9UnAjirTIA1pmN1MujD80IdUol-dJ5lbc8UWsOZTQfvcS2lcTW1uH2rK4Rqw29K9o6IbnulJM02TC1MwGGlfJBNTQKk1bHgEWTK2sFluz5~DrupVlmS2SYLudxgIzM4BQ4pAzrGJGpXsBa3tLVTH2EPj5owWYag5-8MsL57xonC0J0iqGg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":192257,"name":"Physical","url":"https://www.academia.edu/Documents/in/Physical"}],"urls":[{"id":12715792,"url":"https://link.aps.org/article/10.1103/PhysRevResearch.3.013163"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="56967377"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/56967377/A_mathematical_model_for_the_spatiotemporal_epidemic_spreading_of_COVID19"><img alt="Research paper thumbnail of A mathematical model for the spatiotemporal epidemic spreading of COVID19" class="work-thumbnail" src="https://attachments.academia-assets.com/72094633/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/56967377/A_mathematical_model_for_the_spatiotemporal_epidemic_spreading_of_COVID19">A mathematical model for the spatiotemporal epidemic spreading of COVID19</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">An outbreak of a novel coronavirus, named SARS-CoV-2, that provokes the COVID-19 disease, was fir...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">An outbreak of a novel coronavirus, named SARS-CoV-2, that provokes the COVID-19 disease, was first reported in Hubei, mainland China on 31 December 2019. As of 20 March 2020, cases have been reported in 166 countries/regions, including cases of human-to-human transmission around the world. The proportions of this epidemics is probably one of the largest challenges faced by our interconnected modern societies. According to the current epidemiological reports, the large basic reproduction number, R_0 ~ 2.3, number of secondary cases produced by an infected individual in a population of susceptible individuals, as well as an asymptomatic period (up to 14 days) in which infectious individuals are undetectable without further analysis, pave the way for a major crisis of the national health capacity systems. Recent scientific reports have pointed out that the detected cases of COVID19 at young ages is strikingly short and that lethality is concentrated at large ages. Here we adapt a Micr...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6d24ccd45f285d1ab91408b588136533" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:72094633,&quot;asset_id&quot;:56967377,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/72094633/download_file?st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="56967377"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="56967377"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 56967377; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=56967377]").text(description); $(".js-view-count[data-work-id=56967377]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 56967377; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='56967377']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 56967377, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6d24ccd45f285d1ab91408b588136533" } } $('.js-work-strip[data-work-id=56967377]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":56967377,"title":"A mathematical model for the spatiotemporal epidemic spreading of COVID19","translated_title":"","metadata":{"abstract":"An outbreak of a novel coronavirus, named SARS-CoV-2, that provokes the COVID-19 disease, was first reported in Hubei, mainland China on 31 December 2019. As of 20 March 2020, cases have been reported in 166 countries/regions, including cases of human-to-human transmission around the world. The proportions of this epidemics is probably one of the largest challenges faced by our interconnected modern societies. According to the current epidemiological reports, the large basic reproduction number, R_0 ~ 2.3, number of secondary cases produced by an infected individual in a population of susceptible individuals, as well as an asymptomatic period (up to 14 days) in which infectious individuals are undetectable without further analysis, pave the way for a major crisis of the national health capacity systems. Recent scientific reports have pointed out that the detected cases of COVID19 at young ages is strikingly short and that lethality is concentrated at large ages. Here we adapt a Micr...","publisher":"Cold Spring Harbor Laboratory"},"translated_abstract":"An outbreak of a novel coronavirus, named SARS-CoV-2, that provokes the COVID-19 disease, was first reported in Hubei, mainland China on 31 December 2019. As of 20 March 2020, cases have been reported in 166 countries/regions, including cases of human-to-human transmission around the world. The proportions of this epidemics is probably one of the largest challenges faced by our interconnected modern societies. According to the current epidemiological reports, the large basic reproduction number, R_0 ~ 2.3, number of secondary cases produced by an infected individual in a population of susceptible individuals, as well as an asymptomatic period (up to 14 days) in which infectious individuals are undetectable without further analysis, pave the way for a major crisis of the national health capacity systems. Recent scientific reports have pointed out that the detected cases of COVID19 at young ages is strikingly short and that lethality is concentrated at large ages. Here we adapt a Micr...","internal_url":"https://www.academia.edu/56967377/A_mathematical_model_for_the_spatiotemporal_epidemic_spreading_of_COVID19","translated_internal_url":"","created_at":"2021-10-10T10:55:01.387-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33513994,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":72094633,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/72094633/thumbnails/1.jpg","file_name":"2020.03.21.20040022.full.pdf","download_url":"https://www.academia.edu/attachments/72094633/download_file?st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_mathematical_model_for_the_spatiotempo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/72094633/2020.03.21.20040022.full-libre.pdf?1633889815=\u0026response-content-disposition=attachment%3B+filename%3DA_mathematical_model_for_the_spatiotempo.pdf\u0026Expires=1732485666\u0026Signature=Y9cgRzKFo~Lm~Ncli6KEPR~Rm-ckE8LJ9ldKhmRLT1U2lwCIGzLbTL2P~U~wSyspCamzMT4F-kbJ4ZeHgcg3AD0ds-ovLIZDDdShtFMTB8p5BUTWGdn70zdjVoZRivXpfJxywnJHR8YDpd6ICoFArH4e3DfG8OFl~OzDT-0oFyTcHCSP07RujHwjdKQu8Z4wXktopQR1KnZy30sWN16YFjozLP1DVLUwwxIHwuleC9S1Xlf9tYalljG5u~wmoP0BfNKfPb1ssrh1EJ0lkq6OGot3~VFkrAFhz3RUT8iTAzf-6wVyjcXYxEVwz70rcYT~v5LaJX8U~EOynAONawxFPw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_mathematical_model_for_the_spatiotemporal_epidemic_spreading_of_COVID19","translated_slug":"","page_count":13,"language":"en","content_type":"Work","owner":{"id":33513994,"first_name":"Sergio","middle_initials":"","last_name":"Gómez","page_name":"SergioGomez","domain_name":"urv","created_at":"2015-08-01T08:24:15.311-07:00","display_name":"Sergio Gómez","url":"https://urv.academia.edu/SergioGomez"},"attachments":[{"id":72094633,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/72094633/thumbnails/1.jpg","file_name":"2020.03.21.20040022.full.pdf","download_url":"https://www.academia.edu/attachments/72094633/download_file?st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_mathematical_model_for_the_spatiotempo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/72094633/2020.03.21.20040022.full-libre.pdf?1633889815=\u0026response-content-disposition=attachment%3B+filename%3DA_mathematical_model_for_the_spatiotempo.pdf\u0026Expires=1732485666\u0026Signature=Y9cgRzKFo~Lm~Ncli6KEPR~Rm-ckE8LJ9ldKhmRLT1U2lwCIGzLbTL2P~U~wSyspCamzMT4F-kbJ4ZeHgcg3AD0ds-ovLIZDDdShtFMTB8p5BUTWGdn70zdjVoZRivXpfJxywnJHR8YDpd6ICoFArH4e3DfG8OFl~OzDT-0oFyTcHCSP07RujHwjdKQu8Z4wXktopQR1KnZy30sWN16YFjozLP1DVLUwwxIHwuleC9S1Xlf9tYalljG5u~wmoP0BfNKfPb1ssrh1EJ0lkq6OGot3~VFkrAFhz3RUT8iTAzf-6wVyjcXYxEVwz70rcYT~v5LaJX8U~EOynAONawxFPw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":12715790,"url":"https://syndication.highwire.org/content/doi/10.1101/2020.03.21.20040022"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="56967373"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/56967373/Versatile_Linkage_a_Family_of_Space_Conserving_Strategies_for_Agglomerative_Hierarchical_Clustering"><img alt="Research paper thumbnail of Versatile Linkage: a Family of Space-Conserving Strategies for Agglomerative Hierarchical Clustering" class="work-thumbnail" src="https://attachments.academia-assets.com/72094641/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/56967373/Versatile_Linkage_a_Family_of_Space_Conserving_Strategies_for_Agglomerative_Hierarchical_Clustering">Versatile Linkage: a Family of Space-Conserving Strategies for Agglomerative Hierarchical Clustering</a></div><div class="wp-workCard_item"><span>Journal of Classification</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ef132ba81cbdc7af5d2d9677d23737d0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:72094641,&quot;asset_id&quot;:56967373,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/72094641/download_file?st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="56967373"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="56967373"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 56967373; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=56967373]").text(description); $(".js-view-count[data-work-id=56967373]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 56967373; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='56967373']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 56967373, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ef132ba81cbdc7af5d2d9677d23737d0" } } $('.js-work-strip[data-work-id=56967373]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":56967373,"title":"Versatile Linkage: a Family of Space-Conserving Strategies for Agglomerative Hierarchical Clustering","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","grobid_abstract":"Agglomerative hierarchical clustering can be implemented with several strategies that differ in the way elements of a collection are grouped together to build a hierarchy of clusters. Here we introduce versatile linkage, a new infinite system of agglomerative hierarchical clustering strategies based on generalized means, which go from single linkage to complete linkage, passing through arithmetic average linkage and other clustering methods yet unexplored such as geometric linkage and harmonic linkage. We compare the different clustering strategies in terms of cophenetic correlation, mean absolute error, and also tree balance and space distortion, two new measures proposed to describe hierarchical trees. Unlike the β-flexible clustering system, we show that the versatile linkage family is space-conserving.","publication_name":"Journal of Classification","grobid_abstract_attachment_id":72094641},"translated_abstract":null,"internal_url":"https://www.academia.edu/56967373/Versatile_Linkage_a_Family_of_Space_Conserving_Strategies_for_Agglomerative_Hierarchical_Clustering","translated_internal_url":"","created_at":"2021-10-10T10:55:00.829-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33513994,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":72094641,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/72094641/thumbnails/1.jpg","file_name":"1906.pdf","download_url":"https://www.academia.edu/attachments/72094641/download_file?st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Versatile_Linkage_a_Family_of_Space_Cons.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/72094641/1906-libre.pdf?1633889807=\u0026response-content-disposition=attachment%3B+filename%3DVersatile_Linkage_a_Family_of_Space_Cons.pdf\u0026Expires=1732485666\u0026Signature=a-6FFPg81MyhRXX303~on4Jyz808wBxpI2elFF6D1ri6S9S6ojaPOYU~2ek5ErqAX24fz1XHqJoQKFa5eLZvoBX0vZEM2NNYJUH-wbA2tfgDJdWnSFrzSwEhXQ8fjMjKKNZXguoT~UEHjnr-fnYZCSXt8EhSWM3iikyWybcfvkcZ4j2a6Bk-ZEhDQXkP2PY8oveHETU3MvydMFWCoVNZc0M8vEXsvBSheE~M2CUy4U0L8A2oICuGTaUHkN4FEil8hJkwcLN0yIz8L2RQFbLxBAEGOcaKw9CiKuQPD7u141PJ-0to2wsYyEFyEvVnvhfJUSQLPaZ7dE6rx-8acMErPg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Versatile_Linkage_a_Family_of_Space_Conserving_Strategies_for_Agglomerative_Hierarchical_Clustering","translated_slug":"","page_count":19,"language":"en","content_type":"Work","owner":{"id":33513994,"first_name":"Sergio","middle_initials":"","last_name":"Gómez","page_name":"SergioGomez","domain_name":"urv","created_at":"2015-08-01T08:24:15.311-07:00","display_name":"Sergio Gómez","url":"https://urv.academia.edu/SergioGomez"},"attachments":[{"id":72094641,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/72094641/thumbnails/1.jpg","file_name":"1906.pdf","download_url":"https://www.academia.edu/attachments/72094641/download_file?st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Versatile_Linkage_a_Family_of_Space_Cons.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/72094641/1906-libre.pdf?1633889807=\u0026response-content-disposition=attachment%3B+filename%3DVersatile_Linkage_a_Family_of_Space_Cons.pdf\u0026Expires=1732485666\u0026Signature=a-6FFPg81MyhRXX303~on4Jyz808wBxpI2elFF6D1ri6S9S6ojaPOYU~2ek5ErqAX24fz1XHqJoQKFa5eLZvoBX0vZEM2NNYJUH-wbA2tfgDJdWnSFrzSwEhXQ8fjMjKKNZXguoT~UEHjnr-fnYZCSXt8EhSWM3iikyWybcfvkcZ4j2a6Bk-ZEhDQXkP2PY8oveHETU3MvydMFWCoVNZc0M8vEXsvBSheE~M2CUy4U0L8A2oICuGTaUHkN4FEil8hJkwcLN0yIz8L2RQFbLxBAEGOcaKw9CiKuQPD7u141PJ-0to2wsYyEFyEvVnvhfJUSQLPaZ7dE6rx-8acMErPg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":106145,"name":"Classification","url":"https://www.academia.edu/Documents/in/Classification"}],"urls":[{"id":12715789,"url":"http://link.springer.com/content/pdf/10.1007/s00357-019-09339-z.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="56967371"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/56967371/Congestion_Induced_by_the_Structure_of_Multiplex_Networks"><img alt="Research paper thumbnail of Congestion Induced by the Structure of Multiplex Networks" class="work-thumbnail" src="https://attachments.academia-assets.com/72094636/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/56967371/Congestion_Induced_by_the_Structure_of_Multiplex_Networks">Congestion Induced by the Structure of Multiplex Networks</a></div><div class="wp-workCard_item"><span>Physical review letters</span><span>, Jan 11, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Multiplex networks are representations of multilayer interconnected complex networks where the no...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Multiplex networks are representations of multilayer interconnected complex networks where the nodes are the same at every layer. They turn out to be good abstractions of the intricate connectivity of multimodal transportation networks, among other types of complex systems. One of the most important critical phenomena arising in such networks is the emergence of congestion in transportation flows. Here, we prove analytically that the structure of multiplex networks can induce congestion for flows that otherwise would be decongested if the individual layers were not interconnected. We provide explicit equations for the onset of congestion and approximations that allow us to compute this onset from individual descriptors of the individual layers. The observed cooperative phenomenon is reminiscent of Braess&amp;#39; paradox in which adding extra capacity to a network when the moving entities selfishly choose their route can in some cases reduce overall performance. Similarly, in the multip...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3798e38bab27afeea3da7264d9c33059" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:72094636,&quot;asset_id&quot;:56967371,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/72094636/download_file?st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="56967371"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="56967371"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 56967371; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=56967371]").text(description); $(".js-view-count[data-work-id=56967371]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 56967371; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='56967371']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 56967371, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3798e38bab27afeea3da7264d9c33059" } } $('.js-work-strip[data-work-id=56967371]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":56967371,"title":"Congestion Induced by the Structure of Multiplex Networks","translated_title":"","metadata":{"abstract":"Multiplex networks are representations of multilayer interconnected complex networks where the nodes are the same at every layer. They turn out to be good abstractions of the intricate connectivity of multimodal transportation networks, among other types of complex systems. One of the most important critical phenomena arising in such networks is the emergence of congestion in transportation flows. Here, we prove analytically that the structure of multiplex networks can induce congestion for flows that otherwise would be decongested if the individual layers were not interconnected. We provide explicit equations for the onset of congestion and approximations that allow us to compute this onset from individual descriptors of the individual layers. The observed cooperative phenomenon is reminiscent of Braess\u0026#39; paradox in which adding extra capacity to a network when the moving entities selfishly choose their route can in some cases reduce overall performance. Similarly, in the multip...","publication_date":{"day":11,"month":1,"year":2016,"errors":{}},"publication_name":"Physical review letters"},"translated_abstract":"Multiplex networks are representations of multilayer interconnected complex networks where the nodes are the same at every layer. They turn out to be good abstractions of the intricate connectivity of multimodal transportation networks, among other types of complex systems. One of the most important critical phenomena arising in such networks is the emergence of congestion in transportation flows. Here, we prove analytically that the structure of multiplex networks can induce congestion for flows that otherwise would be decongested if the individual layers were not interconnected. We provide explicit equations for the onset of congestion and approximations that allow us to compute this onset from individual descriptors of the individual layers. The observed cooperative phenomenon is reminiscent of Braess\u0026#39; paradox in which adding extra capacity to a network when the moving entities selfishly choose their route can in some cases reduce overall performance. Similarly, in the multip...","internal_url":"https://www.academia.edu/56967371/Congestion_Induced_by_the_Structure_of_Multiplex_Networks","translated_internal_url":"","created_at":"2021-10-10T10:55:00.618-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33513994,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":72094636,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/72094636/thumbnails/1.jpg","file_name":"1602.pdf","download_url":"https://www.academia.edu/attachments/72094636/download_file?st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Congestion_Induced_by_the_Structure_of_M.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/72094636/1602-libre.pdf?1633889809=\u0026response-content-disposition=attachment%3B+filename%3DCongestion_Induced_by_the_Structure_of_M.pdf\u0026Expires=1732485666\u0026Signature=a9pmYZDlwWZQqJQYt9VCaK8dd9Q1MCWZ5B-R8HAeeWela2JdTec9AIgf1kV~V8VhP1Yga0z7C7hjRm5VwnypHTLWx1J2sj6CUQYjma6S8xQ1PXrUeF-W5wM3rRNv3NdtOPFv7UVxyfDjj1kGd6ofEfXCIvBO4NzeK3HDs6DA-kvgbLxahTVqYJHu0KBXaAlJmfwnkVLNy1PifIx8m54W09ZkK7qR3j1hmnp9Zt-OY8KdNfifuM-TaZYPnE61vCw~83GSfBx~v4Dg0rqSxJrDozjZT3cKNgHB9PsV5GNz7ikQA8BSgqJ3NntHpkVptX~MG05aBRMRxVVYeWSron1Yzg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Congestion_Induced_by_the_Structure_of_Multiplex_Networks","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":33513994,"first_name":"Sergio","middle_initials":"","last_name":"Gómez","page_name":"SergioGomez","domain_name":"urv","created_at":"2015-08-01T08:24:15.311-07:00","display_name":"Sergio Gómez","url":"https://urv.academia.edu/SergioGomez"},"attachments":[{"id":72094636,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/72094636/thumbnails/1.jpg","file_name":"1602.pdf","download_url":"https://www.academia.edu/attachments/72094636/download_file?st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Congestion_Induced_by_the_Structure_of_M.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/72094636/1602-libre.pdf?1633889809=\u0026response-content-disposition=attachment%3B+filename%3DCongestion_Induced_by_the_Structure_of_M.pdf\u0026Expires=1732485666\u0026Signature=a9pmYZDlwWZQqJQYt9VCaK8dd9Q1MCWZ5B-R8HAeeWela2JdTec9AIgf1kV~V8VhP1Yga0z7C7hjRm5VwnypHTLWx1J2sj6CUQYjma6S8xQ1PXrUeF-W5wM3rRNv3NdtOPFv7UVxyfDjj1kGd6ofEfXCIvBO4NzeK3HDs6DA-kvgbLxahTVqYJHu0KBXaAlJmfwnkVLNy1PifIx8m54W09ZkK7qR3j1hmnp9Zt-OY8KdNfifuM-TaZYPnE61vCw~83GSfBx~v4Dg0rqSxJrDozjZT3cKNgHB9PsV5GNz7ikQA8BSgqJ3NntHpkVptX~MG05aBRMRxVVYeWSron1Yzg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="56967361"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/56967361/Erratum_Strategical_incoherence_regulates_cooperation_in_social_dilemmas_on_multiplex_networks"><img alt="Research paper thumbnail of Erratum: Strategical incoherence regulates cooperation in social dilemmas on multiplex networks" class="work-thumbnail" src="https://attachments.academia-assets.com/72094629/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/56967361/Erratum_Strategical_incoherence_regulates_cooperation_in_social_dilemmas_on_multiplex_networks">Erratum: Strategical incoherence regulates cooperation in social dilemmas on multiplex networks</a></div><div class="wp-workCard_item"><span>Scientific Reports</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c0e303b4fa614541af0d596ee99300f4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:72094629,&quot;asset_id&quot;:56967361,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/72094629/download_file?st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="56967361"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="56967361"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 56967361; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=56967361]").text(description); $(".js-view-count[data-work-id=56967361]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 56967361; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='56967361']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 56967361, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c0e303b4fa614541af0d596ee99300f4" } } $('.js-work-strip[data-work-id=56967361]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":56967361,"title":"Erratum: Strategical incoherence regulates cooperation in social dilemmas on multiplex networks","translated_title":"","metadata":{"publisher":"Springer Nature","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Scientific Reports"},"translated_abstract":null,"internal_url":"https://www.academia.edu/56967361/Erratum_Strategical_incoherence_regulates_cooperation_in_social_dilemmas_on_multiplex_networks","translated_internal_url":"","created_at":"2021-10-10T10:54:59.250-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33513994,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":72094629,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/72094629/thumbnails/1.jpg","file_name":"pmc4557137.pdf","download_url":"https://www.academia.edu/attachments/72094629/download_file?st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Erratum_Strategical_incoherence_regulate.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/72094629/pmc4557137-libre.pdf?1633889804=\u0026response-content-disposition=attachment%3B+filename%3DErratum_Strategical_incoherence_regulate.pdf\u0026Expires=1732485666\u0026Signature=K1Rb-JuiLr14SH5grCCfiF2jNi8ce2nPNBSlZEjxtktx3kPrsW4n9NWAU78BOPqcnPiYejzrzXDIn38JAZkZzMFlL4MwRq2F10NAaZznyo1j2sgJsLuaIUVN~Kah4NzBQqy54YSPwupuvkTwt2n-PZgp6BhGa78-gG27wvPeoqDbBNHUypse10E2ucWddIUMDfvtQ~W9EjV0VsleISfVEC~41rGoZeTaqJddSkxPdrC4pNLQk7WMwEyBpB7i9sc9vyuzbKIqQxyDiK~MH-LUvhVdlyH2OfGm5yOY268BPWcrwu7Y6KQrhCl1nSPW~pGOpGsnVod0eYrSHk8rwMecdw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Erratum_Strategical_incoherence_regulates_cooperation_in_social_dilemmas_on_multiplex_networks","translated_slug":"","page_count":2,"language":"en","content_type":"Work","owner":{"id":33513994,"first_name":"Sergio","middle_initials":"","last_name":"Gómez","page_name":"SergioGomez","domain_name":"urv","created_at":"2015-08-01T08:24:15.311-07:00","display_name":"Sergio Gómez","url":"https://urv.academia.edu/SergioGomez"},"attachments":[{"id":72094629,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/72094629/thumbnails/1.jpg","file_name":"pmc4557137.pdf","download_url":"https://www.academia.edu/attachments/72094629/download_file?st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Erratum_Strategical_incoherence_regulate.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/72094629/pmc4557137-libre.pdf?1633889804=\u0026response-content-disposition=attachment%3B+filename%3DErratum_Strategical_incoherence_regulate.pdf\u0026Expires=1732485666\u0026Signature=K1Rb-JuiLr14SH5grCCfiF2jNi8ce2nPNBSlZEjxtktx3kPrsW4n9NWAU78BOPqcnPiYejzrzXDIn38JAZkZzMFlL4MwRq2F10NAaZznyo1j2sgJsLuaIUVN~Kah4NzBQqy54YSPwupuvkTwt2n-PZgp6BhGa78-gG27wvPeoqDbBNHUypse10E2ucWddIUMDfvtQ~W9EjV0VsleISfVEC~41rGoZeTaqJddSkxPdrC4pNLQk7WMwEyBpB7i9sc9vyuzbKIqQxyDiK~MH-LUvhVdlyH2OfGm5yOY268BPWcrwu7Y6KQrhCl1nSPW~pGOpGsnVod0eYrSHk8rwMecdw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="56967353"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/56967353/Information_transfer_in_community_structured_multiplex_networks"><img alt="Research paper thumbnail of Information transfer in community structured multiplex networks" class="work-thumbnail" src="https://attachments.academia-assets.com/72094634/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/56967353/Information_transfer_in_community_structured_multiplex_networks">Information transfer in community structured multiplex networks</a></div><div class="wp-workCard_item"><span>Frontiers in Physics</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c8410f047143b3c4a01264ce3294cdfd" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:72094634,&quot;asset_id&quot;:56967353,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/72094634/download_file?st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="56967353"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="56967353"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 56967353; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=56967353]").text(description); $(".js-view-count[data-work-id=56967353]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 56967353; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='56967353']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 56967353, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c8410f047143b3c4a01264ce3294cdfd" } } $('.js-work-strip[data-work-id=56967353]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":56967353,"title":"Information transfer in community structured multiplex networks","translated_title":"","metadata":{"publisher":"Frontiers Media SA","grobid_abstract":"The study of complex networks that account for different types of interactions has become a subject of interest in the last few years, specially because its representational power in the description of users interactions in diverse online social platforms (Facebook, Twitter, Instagram, etc.). The mathematical description of these interacting networks has been coined under the name of multilayer networks, where each layer accounts for a type of interaction. It has been shown that diffusive processes on top of these networks present a phenomenology that cannot be explained by the naive superposition of single layer diffusive phenomena but require the whole structure of interconnected layers. Nevertheless, the description of diffusive phenomena on multilayer networks has obviated the fact that social networks have strong mesoscopic structure represented by different communities of individuals driven by common interests, or any other social aspect. In this work, we study the transfer of information in multilayer networks with community structure. The final goal is to understand and quantify, if the existence of well-defined community structure at the level of individual layers, together with the multilayer structure of the whole network, enhances or deteriorates the diffusion of packets of information.","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Frontiers in Physics","grobid_abstract_attachment_id":72094634},"translated_abstract":null,"internal_url":"https://www.academia.edu/56967353/Information_transfer_in_community_structured_multiplex_networks","translated_internal_url":"","created_at":"2021-10-10T10:54:57.524-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33513994,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":72094634,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/72094634/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/72094634/download_file?st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Information_transfer_in_community_struct.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/72094634/pdf-libre.pdf?1633889806=\u0026response-content-disposition=attachment%3B+filename%3DInformation_transfer_in_community_struct.pdf\u0026Expires=1732485666\u0026Signature=gjZB15ZnuVvg9P4Dr0wfHGI8TH7YTUuS3gWO4uoCSDPWE84dtCuvxAb-j8NW9h~-OqY9s-7dvzcpNaVeAf5toDlc2itS0poYWQZyYGg7ZFd-D4kZdEr48C6ytAUNX1sYSsWYLoNwwGzwX5i56i-V-SKx8aabXVYoYX3wIwoW-K2U2j4wJIr9QdJPnCTdKuKlMDQ0QwgMBo9v9gJlImj0j~7f6VLD38PvD2LCfEESu33giqKHX3a4IiIV~EuzWNhV5pKMXirGhoOtQuoDoLIAzwVx1uCcp6BG9UCbUHxtC5V8odGZkmXLis6k2OvQQ6kxgc6lr-MnUvATJvk7s2X5tw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Information_transfer_in_community_structured_multiplex_networks","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":33513994,"first_name":"Sergio","middle_initials":"","last_name":"Gómez","page_name":"SergioGomez","domain_name":"urv","created_at":"2015-08-01T08:24:15.311-07:00","display_name":"Sergio Gómez","url":"https://urv.academia.edu/SergioGomez"},"attachments":[{"id":72094634,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/72094634/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/72094634/download_file?st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Information_transfer_in_community_struct.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/72094634/pdf-libre.pdf?1633889806=\u0026response-content-disposition=attachment%3B+filename%3DInformation_transfer_in_community_struct.pdf\u0026Expires=1732485666\u0026Signature=gjZB15ZnuVvg9P4Dr0wfHGI8TH7YTUuS3gWO4uoCSDPWE84dtCuvxAb-j8NW9h~-OqY9s-7dvzcpNaVeAf5toDlc2itS0poYWQZyYGg7ZFd-D4kZdEr48C6ytAUNX1sYSsWYLoNwwGzwX5i56i-V-SKx8aabXVYoYX3wIwoW-K2U2j4wJIr9QdJPnCTdKuKlMDQ0QwgMBo9v9gJlImj0j~7f6VLD38PvD2LCfEESu33giqKHX3a4IiIV~EuzWNhV5pKMXirGhoOtQuoDoLIAzwVx1uCcp6BG9UCbUHxtC5V8odGZkmXLis6k2OvQQ6kxgc6lr-MnUvATJvk7s2X5tw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="56967351"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/56967351/Analytical_Interpretation_of_Feed_Forward_Nets_Outputs_After_Training"><img alt="Research paper thumbnail of Analytical Interpretation of Feed-Forward Nets Outputs After Training" class="work-thumbnail" src="https://attachments.academia-assets.com/72094676/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/56967351/Analytical_Interpretation_of_Feed_Forward_Nets_Outputs_After_Training">Analytical Interpretation of Feed-Forward Nets Outputs After Training</a></div><div class="wp-workCard_item"><span>International Journal of Neural Systems</span><span>, 1996</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The minimization quadratic error criterion which gives rise to the back-propagation algorithm is ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The minimization quadratic error criterion which gives rise to the back-propagation algorithm is studied using functional analysis techniques. With them, we recover easily the well-known statistical result which states that the searched global minimum is a function which assigns, to each input pattern, the expected value of its corresponding output patterns. Its application to classification tasks shows that only certain output class representations can be used to obtain the optimal Bayesian decision rule. Finally, our method permits the study of other error criterions, finding out, for instance, that absolute value errors lead to medians instead of mean values.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="58828f0846649cd3f24fe6ce47964663" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:72094676,&quot;asset_id&quot;:56967351,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/72094676/download_file?st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="56967351"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="56967351"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 56967351; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=56967351]").text(description); $(".js-view-count[data-work-id=56967351]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 56967351; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='56967351']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 56967351, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "58828f0846649cd3f24fe6ce47964663" } } $('.js-work-strip[data-work-id=56967351]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":56967351,"title":"Analytical Interpretation of Feed-Forward Nets Outputs After Training","translated_title":"","metadata":{"abstract":"The minimization quadratic error criterion which gives rise to the back-propagation algorithm is studied using functional analysis techniques. With them, we recover easily the well-known statistical result which states that the searched global minimum is a function which assigns, to each input pattern, the expected value of its corresponding output patterns. Its application to classification tasks shows that only certain output class representations can be used to obtain the optimal Bayesian decision rule. Finally, our method permits the study of other error criterions, finding out, for instance, that absolute value errors lead to medians instead of mean values.","publisher":"World Scientific Pub Co Pte Lt","publication_date":{"day":null,"month":null,"year":1996,"errors":{}},"publication_name":"International Journal of Neural Systems"},"translated_abstract":"The minimization quadratic error criterion which gives rise to the back-propagation algorithm is studied using functional analysis techniques. With them, we recover easily the well-known statistical result which states that the searched global minimum is a function which assigns, to each input pattern, the expected value of its corresponding output patterns. Its application to classification tasks shows that only certain output class representations can be used to obtain the optimal Bayesian decision rule. Finally, our method permits the study of other error criterions, finding out, for instance, that absolute value errors lead to medians instead of mean values.","internal_url":"https://www.academia.edu/56967351/Analytical_Interpretation_of_Feed_Forward_Nets_Outputs_After_Training","translated_internal_url":"","created_at":"2021-10-10T10:54:56.437-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33513994,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":72094676,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/72094676/thumbnails/1.jpg","file_name":"Analytical_Interpretation_of_Feed-Forwar20211010-9023-3h9ejl.pdf","download_url":"https://www.academia.edu/attachments/72094676/download_file?st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Analytical_Interpretation_of_Feed_Forwar.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/72094676/Analytical_Interpretation_of_Feed-Forwar20211010-9023-3h9ejl.pdf?1633888588=\u0026response-content-disposition=attachment%3B+filename%3DAnalytical_Interpretation_of_Feed_Forwar.pdf\u0026Expires=1732485666\u0026Signature=VPid3g3AeT1f4pQvK1xe8tfXjwISXJfGRK9jQ5WRg1KPDQuHMEJk5N1IBfvnee5ilFf9ljstaBe3GSoDjchmOuGOsc3aw6Cx0tFQaduEM-fr3AGFp31YjjEZiAgKl2acBFAIza25WanJHnQDEHIcxmlGTZVEg6hK~Tjz7zA9yZJroEdxtfb7Q8UABCswJSxV6Aj3tEphP1t6CrC7N~peZc0QaXjUN7V85WOFAcK0ELcBSZKhO88g26QbUsK-m5CDMzoOSOHkRXMx4b1TqEDjkcf9KMLbVxhlgJzSUSfz03TJ~AS~YWb4WBisxei5rSgcgKqJi8XZNXOqLlPSqtDIsw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Analytical_Interpretation_of_Feed_Forward_Nets_Outputs_After_Training","translated_slug":"","page_count":25,"language":"en","content_type":"Work","owner":{"id":33513994,"first_name":"Sergio","middle_initials":"","last_name":"Gómez","page_name":"SergioGomez","domain_name":"urv","created_at":"2015-08-01T08:24:15.311-07:00","display_name":"Sergio Gómez","url":"https://urv.academia.edu/SergioGomez"},"attachments":[{"id":72094676,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/72094676/thumbnails/1.jpg","file_name":"Analytical_Interpretation_of_Feed-Forwar20211010-9023-3h9ejl.pdf","download_url":"https://www.academia.edu/attachments/72094676/download_file?st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Analytical_Interpretation_of_Feed_Forwar.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/72094676/Analytical_Interpretation_of_Feed-Forwar20211010-9023-3h9ejl.pdf?1633888588=\u0026response-content-disposition=attachment%3B+filename%3DAnalytical_Interpretation_of_Feed_Forwar.pdf\u0026Expires=1732485666\u0026Signature=VPid3g3AeT1f4pQvK1xe8tfXjwISXJfGRK9jQ5WRg1KPDQuHMEJk5N1IBfvnee5ilFf9ljstaBe3GSoDjchmOuGOsc3aw6Cx0tFQaduEM-fr3AGFp31YjjEZiAgKl2acBFAIza25WanJHnQDEHIcxmlGTZVEg6hK~Tjz7zA9yZJroEdxtfb7Q8UABCswJSxV6Aj3tEphP1t6CrC7N~peZc0QaXjUN7V85WOFAcK0ELcBSZKhO88g26QbUsK-m5CDMzoOSOHkRXMx4b1TqEDjkcf9KMLbVxhlgJzSUSfz03TJ~AS~YWb4WBisxei5rSgcgKqJi8XZNXOqLlPSqtDIsw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science"},{"id":428,"name":"Algorithms","url":"https://www.academia.edu/Documents/in/Algorithms"},{"id":4181,"name":"Cybernetics","url":"https://www.academia.edu/Documents/in/Cybernetics"},{"id":43774,"name":"Learning","url":"https://www.academia.edu/Documents/in/Learning"},{"id":880279,"name":"Bayes Theorem","url":"https://www.academia.edu/Documents/in/Bayes_Theorem-1"},{"id":2688270,"name":"neural systems","url":"https://www.academia.edu/Documents/in/neural_systems"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="56967152"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/56967152/Detection_of_timescales_in_evolving_complex_systems"><img alt="Research paper thumbnail of Detection of timescales in evolving complex systems" class="work-thumbnail" src="https://attachments.academia-assets.com/72094482/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/56967152/Detection_of_timescales_in_evolving_complex_systems">Detection of timescales in evolving complex systems</a></div><div class="wp-workCard_item"><span>Scientific Reports</span><span>, 2016</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a76a73614090b9a4137f80a8d2dc83d0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:72094482,&quot;asset_id&quot;:56967152,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/72094482/download_file?st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="56967152"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="56967152"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 56967152; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=56967152]").text(description); $(".js-view-count[data-work-id=56967152]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 56967152; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='56967152']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 56967152, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a76a73614090b9a4137f80a8d2dc83d0" } } $('.js-work-strip[data-work-id=56967152]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":56967152,"title":"Detection of timescales in evolving complex systems","translated_title":"","metadata":{"publisher":"Springer Nature","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Scientific Reports"},"translated_abstract":null,"internal_url":"https://www.academia.edu/56967152/Detection_of_timescales_in_evolving_complex_systems","translated_internal_url":"","created_at":"2021-10-10T10:53:33.694-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33513994,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":72094482,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/72094482/thumbnails/1.jpg","file_name":"1604.pdf","download_url":"https://www.academia.edu/attachments/72094482/download_file?st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Detection_of_timescales_in_evolving_comp.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/72094482/1604-libre.pdf?1633889838=\u0026response-content-disposition=attachment%3B+filename%3DDetection_of_timescales_in_evolving_comp.pdf\u0026Expires=1732485666\u0026Signature=PJ8nbsePtxdBmSJ2ndledYhnrb7-bRAwdLqJCSgomDwwBgr75n5VwLkgPltab4nhJLIDuYiPObSgJcd83QYBxH7lH07hWNzTWhFPb5wp8ViNekLcsbR5IKnwp1E5NTASTUL0Wizu2kFAhecz5RZ5bpkoVZMQH8pWYgeKnHIORjw68KHBjlWIsQXCGu4H99cfksmX1-69W~tkBiS5Tp5tmEEULXqNy4PF2pbQj7AxDdyPIi2e4bCvWPLf~3tl1i0zQl3SfsV0w2aVoqk78LPDf4Hk4HVlXLf8UivwZFVvK6kS8k65cfl2hSw4WeVlOviWbD0oX9fTmkroqLJWHXk1RQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Detection_of_timescales_in_evolving_complex_systems","translated_slug":"","page_count":17,"language":"en","content_type":"Work","owner":{"id":33513994,"first_name":"Sergio","middle_initials":"","last_name":"Gómez","page_name":"SergioGomez","domain_name":"urv","created_at":"2015-08-01T08:24:15.311-07:00","display_name":"Sergio Gómez","url":"https://urv.academia.edu/SergioGomez"},"attachments":[{"id":72094482,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/72094482/thumbnails/1.jpg","file_name":"1604.pdf","download_url":"https://www.academia.edu/attachments/72094482/download_file?st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Detection_of_timescales_in_evolving_comp.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/72094482/1604-libre.pdf?1633889838=\u0026response-content-disposition=attachment%3B+filename%3DDetection_of_timescales_in_evolving_comp.pdf\u0026Expires=1732485666\u0026Signature=PJ8nbsePtxdBmSJ2ndledYhnrb7-bRAwdLqJCSgomDwwBgr75n5VwLkgPltab4nhJLIDuYiPObSgJcd83QYBxH7lH07hWNzTWhFPb5wp8ViNekLcsbR5IKnwp1E5NTASTUL0Wizu2kFAhecz5RZ5bpkoVZMQH8pWYgeKnHIORjw68KHBjlWIsQXCGu4H99cfksmX1-69W~tkBiS5Tp5tmEEULXqNy4PF2pbQj7AxDdyPIi2e4bCvWPLf~3tl1i0zQl3SfsV0w2aVoqk78LPDf4Hk4HVlXLf8UivwZFVvK6kS8k65cfl2hSw4WeVlOviWbD0oX9fTmkroqLJWHXk1RQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22635315"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/22635315/Complex_Networked_Systems_Foundations_and_Implications"><img alt="Research paper thumbnail of Complex Networked Systems: Foundations and Implications" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/22635315/Complex_Networked_Systems_Foundations_and_Implications">Complex Networked Systems: Foundations and Implications</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22635315"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22635315"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22635315; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22635315]").text(description); $(".js-view-count[data-work-id=22635315]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22635315; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22635315']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22635315, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=22635315]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22635315,"title":"Complex Networked Systems: Foundations and Implications","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/22635315/Complex_Networked_Systems_Foundations_and_Implications","translated_internal_url":"","created_at":"2016-03-01T01:19:34.188-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33513994,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Complex_Networked_Systems_Foundations_and_Implications","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":33513994,"first_name":"Sergio","middle_initials":"","last_name":"Gómez","page_name":"SergioGomez","domain_name":"urv","created_at":"2015-08-01T08:24:15.311-07:00","display_name":"Sergio Gómez","url":"https://urv.academia.edu/SergioGomez"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22635304"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/22635304/Methods_for_encoding_in_multilayer_feed_forward_neural_networks"><img alt="Research paper thumbnail of Methods for encoding in multilayer feed-forward neural networks" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/22635304/Methods_for_encoding_in_multilayer_feed_forward_neural_networks">Methods for encoding in multilayer feed-forward neural networks</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span><span>, 1991</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Neural network techniques for encoding-decoding processes have been developed. The net we have de...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Neural network techniques for encoding-decoding processes have been developed. The net we have devised can work like a memory retrieval system in the sense of Hopfield, Feinstein and Palmer. Its behaviour for 2 R (R N) input units has some special interesting features. In particular, the accessibilities for each initial symbol may be explicitly computed. Although thermal noise may muddle</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22635304"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22635304"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22635304; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22635304]").text(description); $(".js-view-count[data-work-id=22635304]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22635304; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22635304']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22635304, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=22635304]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22635304,"title":"Methods for encoding in multilayer feed-forward neural networks","translated_title":"","metadata":{"abstract":"Neural network techniques for encoding-decoding processes have been developed. The net we have devised can work like a memory retrieval system in the sense of Hopfield, Feinstein and Palmer. Its behaviour for 2 R (R N) input units has some special interesting features. In particular, the accessibilities for each initial symbol may be explicitly computed. Although thermal noise may muddle","publication_date":{"day":null,"month":null,"year":1991,"errors":{}},"publication_name":"Lecture Notes in Computer Science"},"translated_abstract":"Neural network techniques for encoding-decoding processes have been developed. The net we have devised can work like a memory retrieval system in the sense of Hopfield, Feinstein and Palmer. Its behaviour for 2 R (R N) input units has some special interesting features. In particular, the accessibilities for each initial symbol may be explicitly computed. Although thermal noise may muddle","internal_url":"https://www.academia.edu/22635304/Methods_for_encoding_in_multilayer_feed_forward_neural_networks","translated_internal_url":"","created_at":"2016-03-01T01:18:36.587-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33513994,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Methods_for_encoding_in_multilayer_feed_forward_neural_networks","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":33513994,"first_name":"Sergio","middle_initials":"","last_name":"Gómez","page_name":"SergioGomez","domain_name":"urv","created_at":"2015-08-01T08:24:15.311-07:00","display_name":"Sergio Gómez","url":"https://urv.academia.edu/SergioGomez"},"attachments":[],"research_interests":[{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network"},{"id":1458139,"name":"Thermal Noise","url":"https://www.academia.edu/Documents/in/Thermal_Noise"},{"id":2003344,"name":"Feed Forward Neural Network","url":"https://www.academia.edu/Documents/in/Feed_Forward_Neural_Network"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22635303"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/22635303/Maximum_overlap_neural_networks_for_associative_memory"><img alt="Research paper thumbnail of Maximum overlap neural networks for associative memory" class="work-thumbnail" src="https://attachments.academia-assets.com/43230640/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/22635303/Maximum_overlap_neural_networks_for_associative_memory">Maximum overlap neural networks for associative memory</a></div><div class="wp-workCard_item"><span>Physics Letters A</span><span>, 1992</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="11ab8e121e75df5e052e07d0efb66dde" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:43230640,&quot;asset_id&quot;:22635303,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/43230640/download_file?st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22635303"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22635303"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22635303; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22635303]").text(description); $(".js-view-count[data-work-id=22635303]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22635303; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22635303']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22635303, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "11ab8e121e75df5e052e07d0efb66dde" } } $('.js-work-strip[data-work-id=22635303]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22635303,"title":"Maximum overlap neural networks for associative memory","translated_title":"","metadata":{"grobid_abstract":"The possibility of achieving optimal associative memory by means of multilayer neural networks is explored. Three original different solutions which guarantee maximal basins of attraction and storage capacity are found and their main characteristics are outlined.","publication_date":{"day":null,"month":null,"year":1992,"errors":{}},"publication_name":"Physics Letters A","grobid_abstract_attachment_id":43230640},"translated_abstract":null,"internal_url":"https://www.academia.edu/22635303/Maximum_overlap_neural_networks_for_associative_memory","translated_internal_url":"","created_at":"2016-03-01T01:18:36.412-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33513994,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":43230640,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/43230640/thumbnails/1.jpg","file_name":"0375-9601_2892_2990779-l.pdf20160301-1480-nrbreq","download_url":"https://www.academia.edu/attachments/43230640/download_file?st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Maximum_overlap_neural_networks_for_asso.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/43230640/0375-9601_2892_2990779-l-libre.pdf20160301-1480-nrbreq?1456825939=\u0026response-content-disposition=attachment%3B+filename%3DMaximum_overlap_neural_networks_for_asso.pdf\u0026Expires=1732485666\u0026Signature=Y1RIKKCoDI-YhlbCbkqGMir-uW5mM4YsrXo14T7okbpaLyFNqIhzYZb72-tq1iN-OwNy-8Ivdhp7EGhtW3h7YfY0gA~X2mC-LkULVq2KRjhITsBRw1X3KUjIZ9H1os7Pl0SgiJWroETbSDEBsF1tu58D1m~P2VDUPXVwNa5TXXRONEap6VtBhQKpLb7QFJBsCm17yLcNzea4BhAuawII1VEnCBPGsJcl1HeYJeANtJFS2HHXvGoAXP7SETrjRJQRDuvh1Tb~Dmq9qXG9-VVXRk8TYJReAioLa6eQkNj-RulKU1~Csr9DvV0R-PzO8nUccAuHw5kzJImz5uukzpdp2w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Maximum_overlap_neural_networks_for_associative_memory","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":33513994,"first_name":"Sergio","middle_initials":"","last_name":"Gómez","page_name":"SergioGomez","domain_name":"urv","created_at":"2015-08-01T08:24:15.311-07:00","display_name":"Sergio Gómez","url":"https://urv.academia.edu/SergioGomez"},"attachments":[{"id":43230640,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/43230640/thumbnails/1.jpg","file_name":"0375-9601_2892_2990779-l.pdf20160301-1480-nrbreq","download_url":"https://www.academia.edu/attachments/43230640/download_file?st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Maximum_overlap_neural_networks_for_asso.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/43230640/0375-9601_2892_2990779-l-libre.pdf20160301-1480-nrbreq?1456825939=\u0026response-content-disposition=attachment%3B+filename%3DMaximum_overlap_neural_networks_for_asso.pdf\u0026Expires=1732485666\u0026Signature=Y1RIKKCoDI-YhlbCbkqGMir-uW5mM4YsrXo14T7okbpaLyFNqIhzYZb72-tq1iN-OwNy-8Ivdhp7EGhtW3h7YfY0gA~X2mC-LkULVq2KRjhITsBRw1X3KUjIZ9H1os7Pl0SgiJWroETbSDEBsF1tu58D1m~P2VDUPXVwNa5TXXRONEap6VtBhQKpLb7QFJBsCm17yLcNzea4BhAuawII1VEnCBPGsJcl1HeYJeANtJFS2HHXvGoAXP7SETrjRJQRDuvh1Tb~Dmq9qXG9-VVXRk8TYJReAioLa6eQkNj-RulKU1~Csr9DvV0R-PzO8nUccAuHw5kzJImz5uukzpdp2w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":328150,"name":"Associative Memory","url":"https://www.academia.edu/Documents/in/Associative_Memory"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22635302"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/22635302/Multistate_perceptrons_learning_rule_and_perceptron_of_maximal_stability"><img alt="Research paper thumbnail of Multistate perceptrons: learning rule and perceptron of maximal stability" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/22635302/Multistate_perceptrons_learning_rule_and_perceptron_of_maximal_stability">Multistate perceptrons: learning rule and perceptron of maximal stability</a></div><div class="wp-workCard_item"><span>Journal of Physics A: Mathematical and General</span><span>, 1992</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">... In this article we shall first introduce a new multistate perceptron learning nile, and then ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">... In this article we shall first introduce a new multistate perceptron learning nile, and then prove the corresponding convergence theorem. ... Our proposal for the multistate perceptron learningnile stems from the following theorem. Page 5. 5042 Theorem. ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22635302"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22635302"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22635302; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22635302]").text(description); $(".js-view-count[data-work-id=22635302]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22635302; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22635302']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22635302, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=22635302]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22635302,"title":"Multistate perceptrons: learning rule and perceptron of maximal stability","translated_title":"","metadata":{"abstract":"... In this article we shall first introduce a new multistate perceptron learning nile, and then prove the corresponding convergence theorem. ... Our proposal for the multistate perceptron learningnile stems from the following theorem. Page 5. 5042 Theorem. ...","publication_date":{"day":null,"month":null,"year":1992,"errors":{}},"publication_name":"Journal of Physics A: Mathematical and General"},"translated_abstract":"... In this article we shall first introduce a new multistate perceptron learning nile, and then prove the corresponding convergence theorem. ... Our proposal for the multistate perceptron learningnile stems from the following theorem. Page 5. 5042 Theorem. ...","internal_url":"https://www.academia.edu/22635302/Multistate_perceptrons_learning_rule_and_perceptron_of_maximal_stability","translated_internal_url":"","created_at":"2016-03-01T01:18:36.261-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33513994,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Multistate_perceptrons_learning_rule_and_perceptron_of_maximal_stability","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":33513994,"first_name":"Sergio","middle_initials":"","last_name":"Gómez","page_name":"SergioGomez","domain_name":"urv","created_at":"2015-08-01T08:24:15.311-07:00","display_name":"Sergio Gómez","url":"https://urv.academia.edu/SergioGomez"},"attachments":[],"research_interests":[{"id":15124,"name":"Convergence","url":"https://www.academia.edu/Documents/in/Convergence"},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":1004747,"name":"Perceptron","url":"https://www.academia.edu/Documents/in/Perceptron"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22635301"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/22635301/Encoding_strategies_in_multilayer_neural_networks"><img alt="Research paper thumbnail of Encoding strategies in multilayer neural networks" class="work-thumbnail" src="https://attachments.academia-assets.com/43230643/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/22635301/Encoding_strategies_in_multilayer_neural_networks">Encoding strategies in multilayer neural networks</a></div><div class="wp-workCard_item"><span>Journal of Physics A: Mathematical and General</span><span>, 1991</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5b1f0aed46c2b298b9201fefa0092d0d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:43230643,&quot;asset_id&quot;:22635301,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/43230643/download_file?st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22635301"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22635301"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22635301; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22635301]").text(description); $(".js-view-count[data-work-id=22635301]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22635301; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22635301']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22635301, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5b1f0aed46c2b298b9201fefa0092d0d" } } $('.js-work-strip[data-work-id=22635301]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22635301,"title":"Encoding strategies in multilayer neural networks","translated_title":"","metadata":{"grobid_abstract":"Neural networks capable of encoding sets of patterns are analysed. Solutions are found by theoretical treatment instead of by supervised learning. The behaviour for 2 R (R ∈ N) input units is studied and its characteristic features are discussed. The accessibilities for non-spurious patterns are calculated by analytic methods. Although thermal noise may induce wrong encoding, we show how it can rid the output of spurious sequences. Further, we compute error bounds at finite temperature.","publication_date":{"day":null,"month":null,"year":1991,"errors":{}},"publication_name":"Journal of Physics A: Mathematical and General","grobid_abstract_attachment_id":43230643},"translated_abstract":null,"internal_url":"https://www.academia.edu/22635301/Encoding_strategies_in_multilayer_neural_networks","translated_internal_url":"","created_at":"2016-03-01T01:18:36.123-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33513994,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":43230643,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/43230643/thumbnails/1.jpg","file_name":"Encoding_Strategies_in_Multilayer_Neural20160301-13747-1s6jvmn.pdf","download_url":"https://www.academia.edu/attachments/43230643/download_file?st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Encoding_strategies_in_multilayer_neural.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/43230643/Encoding_Strategies_in_Multilayer_Neural20160301-13747-1s6jvmn-libre.pdf?1456825941=\u0026response-content-disposition=attachment%3B+filename%3DEncoding_strategies_in_multilayer_neural.pdf\u0026Expires=1732485666\u0026Signature=EVPc5yC4T38qPT~rDqw7EMeNwSI0z1uFdaHmin6E0daDbd2S-hdxBfefU2MEqr1HKqJGQoUKn7XHmAHDH2G2h3xKdM6ER80HvsJE3hk6YA8~cykG-aBmFP~XAxqFwkFjxibtM~h9TYQtGbCrcdip1KnZyXoyijtON2KHUfjeuWeRG4gQlV~wxrJUXT72xM1cEFV9I~ECF6qO~uHdbxHPHRTDFLA83MQqlRndLxHpy5VTEimCEKnac5NygOjIgCiviunRhpBpD7LN11EyiR-i42HF~5OF-dIFgSSBxk~HICMb1oJmZMz5oEDIk82XiNfjqDC2KTu5UYQQzkGFgz3T5A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Encoding_strategies_in_multilayer_neural_networks","translated_slug":"","page_count":32,"language":"en","content_type":"Work","owner":{"id":33513994,"first_name":"Sergio","middle_initials":"","last_name":"Gómez","page_name":"SergioGomez","domain_name":"urv","created_at":"2015-08-01T08:24:15.311-07:00","display_name":"Sergio Gómez","url":"https://urv.academia.edu/SergioGomez"},"attachments":[{"id":43230643,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/43230643/thumbnails/1.jpg","file_name":"Encoding_Strategies_in_Multilayer_Neural20160301-13747-1s6jvmn.pdf","download_url":"https://www.academia.edu/attachments/43230643/download_file?st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Encoding_strategies_in_multilayer_neural.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/43230643/Encoding_Strategies_in_Multilayer_Neural20160301-13747-1s6jvmn-libre.pdf?1456825941=\u0026response-content-disposition=attachment%3B+filename%3DEncoding_strategies_in_multilayer_neural.pdf\u0026Expires=1732485666\u0026Signature=EVPc5yC4T38qPT~rDqw7EMeNwSI0z1uFdaHmin6E0daDbd2S-hdxBfefU2MEqr1HKqJGQoUKn7XHmAHDH2G2h3xKdM6ER80HvsJE3hk6YA8~cykG-aBmFP~XAxqFwkFjxibtM~h9TYQtGbCrcdip1KnZyXoyijtON2KHUfjeuWeRG4gQlV~wxrJUXT72xM1cEFV9I~ECF6qO~uHdbxHPHRTDFLA83MQqlRndLxHpy5VTEimCEKnac5NygOjIgCiviunRhpBpD7LN11EyiR-i42HF~5OF-dIFgSSBxk~HICMb1oJmZMz5oEDIk82XiNfjqDC2KTu5UYQQzkGFgz3T5A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":95069,"name":"Supervised Learning","url":"https://www.academia.edu/Documents/in/Supervised_Learning"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":330839,"name":"Analytical Method","url":"https://www.academia.edu/Documents/in/Analytical_Method"},{"id":1156863,"name":"Finite Temperature","url":"https://www.academia.edu/Documents/in/Finite_Temperature"},{"id":1458139,"name":"Thermal Noise","url":"https://www.academia.edu/Documents/in/Thermal_Noise"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="18321181"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/18321181/Motif_based_communities_in_complex_networks"><img alt="Research paper thumbnail of Motif-based communities in complex networks" class="work-thumbnail" src="https://attachments.academia-assets.com/39993635/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/18321181/Motif_based_communities_in_complex_networks">Motif-based communities in complex networks</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/FortunatoSanto">Santo Fortunato</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://urv.academia.edu/SergioGomez">Sergio Gómez</a></span></div><div class="wp-workCard_item"><span>Journal of Physics A: Mathematical and Theoretical</span><span>, 2008</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="95825bfa4d01b741f4f8940985465a72" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:39993635,&quot;asset_id&quot;:18321181,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/39993635/download_file?st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="18321181"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="18321181"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 18321181; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=18321181]").text(description); $(".js-view-count[data-work-id=18321181]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 18321181; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='18321181']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 18321181, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "95825bfa4d01b741f4f8940985465a72" } } $('.js-work-strip[data-work-id=18321181]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":18321181,"title":"Motif-based communities in complex networks","translated_title":"","metadata":{"grobid_abstract":"Community definitions usually focus on edges, inside and between the communities. However, the high density of edges within a community determines correlations between nodes going beyond nearest-neighbours, and which are indicated by the presence of motifs. We show how motifs can be used to define general classes of nodes, including communities, by extending the mathematical expression of Newman-Girvan modularity. We construct then a general framework and apply it to some synthetic and real networks.","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"Journal of Physics A: Mathematical and Theoretical","grobid_abstract_attachment_id":39993635},"translated_abstract":null,"internal_url":"https://www.academia.edu/18321181/Motif_based_communities_in_complex_networks","translated_internal_url":"","created_at":"2015-11-14T05:14:48.003-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":38312703,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":9762283,"work_id":18321181,"tagging_user_id":38312703,"tagged_user_id":33468097,"co_author_invite_id":2236418,"email":"a***s@urv.cat","affiliation":"Universitat Rovira i Virgili","display_order":0,"name":"Alex Arenas","title":"Motif-based communities in complex networks"},{"id":9764301,"work_id":18321181,"tagging_user_id":38312703,"tagged_user_id":4060659,"co_author_invite_id":null,"email":"g***9@hotmail.com","affiliation":"Instituto Politécnico Nacional","display_order":4194304,"name":"Alejandro Gómez","title":"Motif-based communities in complex networks"},{"id":9764302,"work_id":18321181,"tagging_user_id":38312703,"tagged_user_id":null,"co_author_invite_id":1295106,"email":"a***s@med.ucm.es","display_order":6291456,"name":"Alberto Fernández","title":"Motif-based communities in complex networks"},{"id":9764303,"work_id":18321181,"tagging_user_id":38312703,"tagged_user_id":null,"co_author_invite_id":1272088,"email":"a***z@ujaen.es","display_order":7340032,"name":"Alberto Fernández","title":"Motif-based communities in complex networks"},{"id":9764304,"work_id":18321181,"tagging_user_id":38312703,"tagged_user_id":35004629,"co_author_invite_id":null,"email":"a***z@urjc.es","affiliation":"Universidad Rey Juan Carlos","display_order":7864320,"name":"Alberto Fernández","title":"Motif-based communities in complex networks"},{"id":9764306,"work_id":18321181,"tagging_user_id":38312703,"tagged_user_id":31795718,"co_author_invite_id":null,"email":"a***6@hotmail.com","display_order":8126464,"name":"sergio gomez","title":"Motif-based communities in complex networks"},{"id":9764307,"work_id":18321181,"tagging_user_id":38312703,"tagged_user_id":24454301,"co_author_invite_id":null,"email":"p***s@gmail.com","display_order":8257536,"name":"Sergio Gómez","title":"Motif-based communities in complex networks"},{"id":9764308,"work_id":18321181,"tagging_user_id":38312703,"tagged_user_id":29215296,"co_author_invite_id":null,"email":"s***e@gmail.com","display_order":8323072,"name":"Sergio Gomez","title":"Motif-based communities in complex networks"},{"id":9764309,"work_id":18321181,"tagging_user_id":38312703,"tagged_user_id":null,"co_author_invite_id":255850,"email":"s***g@eia.udg.edu","display_order":8355840,"name":"Sergio Gómez","title":"Motif-based communities in complex networks"},{"id":9764314,"work_id":18321181,"tagging_user_id":38312703,"tagged_user_id":6801826,"co_author_invite_id":null,"email":"s***0@hotmail.com","affiliation":"Universidad de Córdoba","display_order":8372224,"name":"Sergio Gomez","title":"Motif-based communities in complex networks"},{"id":9764342,"work_id":18321181,"tagging_user_id":38312703,"tagged_user_id":null,"co_author_invite_id":2236955,"email":"s***z@etse.urv.es","display_order":8380416,"name":"Sergio Gómez","title":"Motif-based communities in complex networks"},{"id":9764344,"work_id":18321181,"tagging_user_id":38312703,"tagged_user_id":33513994,"co_author_invite_id":null,"email":"s***z@urv.cat","affiliation":"Universitat Rovira i Virgili","display_order":8386560,"name":"Sergio Gómez","title":"Motif-based communities in complex networks"}],"downloadable_attachments":[{"id":39993635,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39993635/thumbnails/1.jpg","file_name":"Motif-based_communities_in_complex_netwo20151114-24053-al788m.pdf","download_url":"https://www.academia.edu/attachments/39993635/download_file?st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Motif_based_communities_in_complex_netwo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39993635/Motif-based_communities_in_complex_netwo20151114-24053-al788m-libre.pdf?1447507019=\u0026response-content-disposition=attachment%3B+filename%3DMotif_based_communities_in_complex_netwo.pdf\u0026Expires=1732485666\u0026Signature=dZXPWApc~AGRGz9L99zUkncDs-bpr9z~4CR~fo5yt2Q7avR1q2S3y5d3qt~auH6EmvEanU-Bpgp1v-2NPOiTynginQh46hhDMs3F5NR~GCkwEqpqzLEPi1C-qRRdyFqu7mf6G710I3ssSXALJHMruYir9XvVFMgGUXjlhPvBTb7GtkJi4H04OeaarmD-GCHSzc456UG9HzqRH6ihbmi52y2fqueQy3Q3xUEUsJlx1fKHyRvtRieKGWTFRVQb41I1Wj1NkXIqVtF-Tbwodl7dN3NMaErhDWsqS11G1OD9mkW~-rkffdRq5hHShymNHtQpPiAHwUsKqsK9CxBVFENCsQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Motif_based_communities_in_complex_networks","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":38312703,"first_name":"Santo","middle_initials":null,"last_name":"Fortunato","page_name":"FortunatoSanto","domain_name":"independent","created_at":"2015-11-14T05:09:39.515-08:00","display_name":"Santo Fortunato","url":"https://independent.academia.edu/FortunatoSanto"},"attachments":[{"id":39993635,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39993635/thumbnails/1.jpg","file_name":"Motif-based_communities_in_complex_netwo20151114-24053-al788m.pdf","download_url":"https://www.academia.edu/attachments/39993635/download_file?st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Motif_based_communities_in_complex_netwo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39993635/Motif-based_communities_in_complex_netwo20151114-24053-al788m-libre.pdf?1447507019=\u0026response-content-disposition=attachment%3B+filename%3DMotif_based_communities_in_complex_netwo.pdf\u0026Expires=1732485666\u0026Signature=dZXPWApc~AGRGz9L99zUkncDs-bpr9z~4CR~fo5yt2Q7avR1q2S3y5d3qt~auH6EmvEanU-Bpgp1v-2NPOiTynginQh46hhDMs3F5NR~GCkwEqpqzLEPi1C-qRRdyFqu7mf6G710I3ssSXALJHMruYir9XvVFMgGUXjlhPvBTb7GtkJi4H04OeaarmD-GCHSzc456UG9HzqRH6ihbmi52y2fqueQy3Q3xUEUsJlx1fKHyRvtRieKGWTFRVQb41I1Wj1NkXIqVtF-Tbwodl7dN3NMaErhDWsqS11G1OD9mkW~-rkffdRq5hHShymNHtQpPiAHwUsKqsK9CxBVFENCsQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":99499,"name":"Complex network","url":"https://www.academia.edu/Documents/in/Complex_network"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":620661,"name":"High Density Concrete","url":"https://www.academia.edu/Documents/in/High_Density_Concrete"},{"id":629732,"name":"Nearest Neighbour","url":"https://www.academia.edu/Documents/in/Nearest_Neighbour"},{"id":1986543,"name":"PACS numbers","url":"https://www.academia.edu/Documents/in/PACS_numbers"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="20062606"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20062606/Optimal_projection_to_estimate_the_proportions_of_the_different_subsamples_in_a_given_mixture_sample"><img alt="Research paper thumbnail of Optimal projection to estimate the proportions of the different subsamples in a given mixture sample" class="work-thumbnail" src="https://attachments.academia-assets.com/41157143/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20062606/Optimal_projection_to_estimate_the_proportions_of_the_different_subsamples_in_a_given_mixture_sample">Optimal projection to estimate the proportions of the different subsamples in a given mixture sample</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/VicensGaitan">Vicens Gaitan</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://urv.academia.edu/SergioGomez">Sergio Gómez</a>, and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/AurelioJuste">Aurelio Juste</a></span></div><div class="wp-workCard_item"><span>Computer Physics Communications</span><span>, 1997</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2bd421b47080ba515765fb1e3e721ee4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:41157143,&quot;asset_id&quot;:20062606,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/41157143/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20062606"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20062606"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20062606; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20062606]").text(description); $(".js-view-count[data-work-id=20062606]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20062606; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20062606']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 20062606, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2bd421b47080ba515765fb1e3e721ee4" } } $('.js-work-strip[data-work-id=20062606]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20062606,"title":"Optimal projection to estimate the proportions of the different subsamples in a given mixture sample","translated_title":"","metadata":{"grobid_abstract":"Given a n-dimensional sample composed of a mixture of m subsamples with different probability density functions (p.d.f.), it is possible to build a (m − 1)-dimensional distribution that carries all the information about the subsample proportions in the mixture sample. This projection can be estimated without an analytical knowlegde of the p.d.f.'s of the different subsamples with the aid, for instance, of neural networks. This way, if m − 1 \u003c n it is possible to estimate the proportions of the mixture sample in a lower (m − 1)-dimensional space without losing sensitivity.","publication_date":{"day":null,"month":null,"year":1997,"errors":{}},"publication_name":"Computer Physics Communications","grobid_abstract_attachment_id":41157143},"translated_abstract":null,"internal_url":"https://www.academia.edu/20062606/Optimal_projection_to_estimate_the_proportions_of_the_different_subsamples_in_a_given_mixture_sample","translated_internal_url":"","created_at":"2016-01-06T09:56:15.784-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":41037490,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":12631889,"work_id":20062606,"tagging_user_id":41037490,"tagged_user_id":33513994,"co_author_invite_id":null,"email":"s***z@urv.cat","affiliation":"Universitat Rovira i Virgili","display_order":0,"name":"Sergio Gómez","title":"Optimal projection to estimate the proportions of the different subsamples in a given mixture sample"},{"id":12631890,"work_id":20062606,"tagging_user_id":41037490,"tagged_user_id":null,"co_author_invite_id":973428,"email":"g***o@ecm.ub.es","display_order":4194304,"name":"L. Garrido","title":"Optimal projection to estimate the proportions of the different subsamples in a given mixture sample"},{"id":12631893,"work_id":20062606,"tagging_user_id":41037490,"tagged_user_id":41369886,"co_author_invite_id":973429,"email":"j***e@ifae.es","display_order":6291456,"name":"Aurelio Juste","title":"Optimal projection to estimate the proportions of the different subsamples in a given mixture sample"},{"id":12758312,"work_id":20062606,"tagging_user_id":41037490,"tagged_user_id":4767376,"co_author_invite_id":null,"email":"v***n@gmail.com","affiliation":"Universitat Autònoma de Barcelona","display_order":7340032,"name":"Vicens Alcalde","title":"Optimal projection to estimate the proportions of the different subsamples in a given mixture sample"}],"downloadable_attachments":[{"id":41157143,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41157143/thumbnails/1.jpg","file_name":"Optimal_projection_to_estimate_the_propo20160114-17598-7r3jw0.pdf20160114-19908-169i7a1.pdf","download_url":"https://www.academia.edu/attachments/41157143/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Optimal_projection_to_estimate_the_propo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41157143/Optimal_projection_to_estimate_the_propo20160114-17598-7r3jw0.pdf20160114-19908-169i7a1-libre.pdf?1452831862=\u0026response-content-disposition=attachment%3B+filename%3DOptimal_projection_to_estimate_the_propo.pdf\u0026Expires=1732485666\u0026Signature=EL0dZbkkXF~1QeKNaxswjiDKN9vRkEaXsHCMB87h6SYaviNa7sOvs6o11rbjklA9O9cwmD-9MYPIsJ4V6y0Ds94QFBBqZvWgGkZ9LIPH7qXJVErD-sxh-u8bXT5Flz~aSeBjzIoQKyS0Y7iF39aXWkAcDAN7iVbMNgDjQ~shhatDv9o0lt5smbax7ySQ96lNqkLk03bZig~~nivDGp6upiRHgbZJzaRdVbHwjrf2KEJljK7fAJUWd-X5vkEetlKK0hQGo3VOKofwVvofF1p-2qie3x3mN9mQzVUgRXD2G~FiBIUtEWpNCb9OomeUdnM7D49-3nWncTiuCy8IuiD14w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Optimal_projection_to_estimate_the_proportions_of_the_different_subsamples_in_a_given_mixture_sample","translated_slug":"","page_count":13,"language":"en","content_type":"Work","owner":{"id":41037490,"first_name":"Vicens","middle_initials":null,"last_name":"Gaitan","page_name":"VicensGaitan","domain_name":"independent","created_at":"2016-01-06T09:55:39.619-08:00","display_name":"Vicens Gaitan","url":"https://independent.academia.edu/VicensGaitan"},"attachments":[{"id":41157143,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41157143/thumbnails/1.jpg","file_name":"Optimal_projection_to_estimate_the_propo20160114-17598-7r3jw0.pdf20160114-19908-169i7a1.pdf","download_url":"https://www.academia.edu/attachments/41157143/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Optimal_projection_to_estimate_the_propo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41157143/Optimal_projection_to_estimate_the_propo20160114-17598-7r3jw0.pdf20160114-19908-169i7a1-libre.pdf?1452831862=\u0026response-content-disposition=attachment%3B+filename%3DOptimal_projection_to_estimate_the_propo.pdf\u0026Expires=1732485667\u0026Signature=KNL9gcmvcLGkcvFFxtkempu-giL2ri~GOOVI5b22GPFmMbhF9rNRwaJijXFKwFzbEIpaXZ-s~RaLHpfpTLO4X1tporn0nMQ~1D5GZJneEbVDzzXCr1S4Rm8Re048rGskn8vsys0gaoyK-5WAEfz1IfkR~6j9HT~E9vDR48xInRAoaHy36WM-FmDjl5jWumxEywCM4JuUOGwJnbwNUdkWBs9IST4YJvdL8nutJ4CWwjcWGW87yykbSS8PX7aed1Z422jKfYqW5~p-L5AaetxzzyKs7Bsr-i8fd8CUvYfU4ZwaIDjZoot1Hsm2TCWigCrf1a-R3nmzroWexZm8JrqY3w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":267802,"name":"Dimensional","url":"https://www.academia.edu/Documents/in/Dimensional"},{"id":872399,"name":"Probability Density Function","url":"https://www.academia.edu/Documents/in/Probability_Density_Function"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="15682388"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/15682388/Strategical_incoherence_regulates_cooperation_in_social_dilemmas_on_multiplex_networks"><img alt="Research paper thumbnail of Strategical incoherence regulates cooperation in social dilemmas on multiplex networks" class="work-thumbnail" src="https://attachments.academia-assets.com/38763736/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/15682388/Strategical_incoherence_regulates_cooperation_in_social_dilemmas_on_multiplex_networks">Strategical incoherence regulates cooperation in social dilemmas on multiplex networks</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://hms-harvard.academia.edu/JoanMatamalas">Joan T Matamalas</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/JuliaPoncela">Julia Poncela</a>, and <a class="" data-click-track="profile-work-strip-authors" href="https://urv.academia.edu/SergioGomez">Sergio Gómez</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Cooperation is a very common, yet not fully-understood phenomenon in natural and human systems. T...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Cooperation is a very common, yet not fully-understood phenomenon in natural and human systems. The introduction of a network within the population is known to affect the outcome of cooperative dynamics, allowing for the survival of cooperation in adverse scenarios. Recently, the introduction of multiplex networks has yet again modified the expectations for the outcome of the Prisoner’s Dilemma game, compared to the monoplex case. However, much remains unstudied regarding other social dilemmas on multiplex, as well as the unexplored microscopic underpinnings of it. In this paper, we systematically study the evolution of cooperation in all four games in the T − S plane on multiplex. More importantly, we find some remarkable and previously unknown features in the microscopic organization of the strategies, that are responsible for the important differences between cooperative dynamics in monoplex and multiplex. Specifically, we find that in the stationary state, there are individuals that play the same strategy in all layers (coherent), and others that don’t (incoherent). This second group of players is responsible for the surprising fact of a non full-cooperation in the Harmony Game on multiplex, never observed before, as well as a higher-than-expected cooperation rates in some regions of the other three social dilemmas.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="653d07cceae3dff5c5ab1c3682966096" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:38763736,&quot;asset_id&quot;:15682388,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/38763736/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="15682388"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="15682388"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 15682388; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=15682388]").text(description); $(".js-view-count[data-work-id=15682388]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 15682388; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='15682388']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 15682388, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "653d07cceae3dff5c5ab1c3682966096" } } $('.js-work-strip[data-work-id=15682388]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":15682388,"title":"Strategical incoherence regulates cooperation in social dilemmas on multiplex networks","translated_title":"","metadata":{"abstract":"Cooperation is a very common, yet not fully-understood phenomenon in natural and human systems. The introduction of a network within the population is known to affect the outcome of cooperative dynamics, allowing for the survival of cooperation in adverse scenarios. Recently, the introduction of multiplex networks has yet again modified the expectations for the outcome of the Prisoner’s Dilemma game, compared to the monoplex case. However, much remains unstudied regarding other social dilemmas on multiplex, as well as the unexplored microscopic underpinnings of it. In this paper, we systematically study the evolution of cooperation in all four games in the T − S plane on multiplex. More importantly, we find some remarkable and previously unknown features in the microscopic organization of the strategies, that are responsible for the important differences between cooperative dynamics in monoplex and multiplex. Specifically, we find that in the stationary state, there are individuals that play the same strategy in all layers (coherent), and others that don’t (incoherent). This second group of players is responsible for the surprising fact of a non full-cooperation in the Harmony Game on multiplex, never observed before, as well as a higher-than-expected cooperation rates in some regions of the other three social dilemmas."},"translated_abstract":"Cooperation is a very common, yet not fully-understood phenomenon in natural and human systems. The introduction of a network within the population is known to affect the outcome of cooperative dynamics, allowing for the survival of cooperation in adverse scenarios. Recently, the introduction of multiplex networks has yet again modified the expectations for the outcome of the Prisoner’s Dilemma game, compared to the monoplex case. However, much remains unstudied regarding other social dilemmas on multiplex, as well as the unexplored microscopic underpinnings of it. In this paper, we systematically study the evolution of cooperation in all four games in the T − S plane on multiplex. More importantly, we find some remarkable and previously unknown features in the microscopic organization of the strategies, that are responsible for the important differences between cooperative dynamics in monoplex and multiplex. Specifically, we find that in the stationary state, there are individuals that play the same strategy in all layers (coherent), and others that don’t (incoherent). This second group of players is responsible for the surprising fact of a non full-cooperation in the Harmony Game on multiplex, never observed before, as well as a higher-than-expected cooperation rates in some regions of the other three social dilemmas.","internal_url":"https://www.academia.edu/15682388/Strategical_incoherence_regulates_cooperation_in_social_dilemmas_on_multiplex_networks","translated_internal_url":"","created_at":"2015-09-14T05:44:29.015-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":27502351,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":5826659,"work_id":15682388,"tagging_user_id":27502351,"tagged_user_id":34915849,"co_author_invite_id":1287209,"email":"j***a@gmail.com","display_order":0,"name":"Julia Poncela","title":"Strategical incoherence regulates cooperation in social dilemmas on multiplex networks"},{"id":5826660,"work_id":15682388,"tagging_user_id":27502351,"tagged_user_id":33513994,"co_author_invite_id":null,"email":"s***z@urv.cat","affiliation":"Universitat Rovira i Virgili","display_order":4194304,"name":"Sergio Gómez","title":"Strategical incoherence regulates cooperation in social dilemmas on multiplex networks"},{"id":5826661,"work_id":15682388,"tagging_user_id":27502351,"tagged_user_id":33468097,"co_author_invite_id":null,"email":"a***s@urv.cat","affiliation":"Universitat Rovira i Virgili","display_order":6291456,"name":"Alex Arenas","title":"Strategical incoherence regulates cooperation in social dilemmas on multiplex networks"}],"downloadable_attachments":[{"id":38763736,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/38763736/thumbnails/1.jpg","file_name":"srep09519.pdf","download_url":"https://www.academia.edu/attachments/38763736/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Strategical_incoherence_regulates_cooper.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/38763736/srep09519-libre.pdf?1442236641=\u0026response-content-disposition=attachment%3B+filename%3DStrategical_incoherence_regulates_cooper.pdf\u0026Expires=1732485667\u0026Signature=MLm0dKh59uVB8gdEdmDmOwLF6goIxd65fv16nTzArjgXn8aYHE-4VucRiZJ5dj53fFAtYz4TxLMlb56brrBrILUID4E-1xq7~L5yE1rzhINwRoKlteq7LGkVVHkVk6462z-iDCKXIiZw0-2iTGe6wy4bLlkIYPvgCpq~tNzDfPzsyNNKo5MZKFl40riUQ-8c9FrJuQoTy~FVm5tYMSxq5cW0SeD7zNidw6iAlf7mqZoPvi-031obR0qeYgOQph1aeLRSitMLjc8p3TsOXKHb3KvBKzSjoMZ0nAZypCgG~sMi63oqzW2YbOUcHJrAG1BAdkOqODWT2e8r7WpTfd-w6Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Strategical_incoherence_regulates_cooperation_in_social_dilemmas_on_multiplex_networks","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":27502351,"first_name":"Joan","middle_initials":"T","last_name":"Matamalas","page_name":"JoanMatamalas","domain_name":"hms-harvard","created_at":"2015-03-09T07:12:30.183-07:00","display_name":"Joan T Matamalas","url":"https://hms-harvard.academia.edu/JoanMatamalas"},"attachments":[{"id":38763736,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/38763736/thumbnails/1.jpg","file_name":"srep09519.pdf","download_url":"https://www.academia.edu/attachments/38763736/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Strategical_incoherence_regulates_cooper.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/38763736/srep09519-libre.pdf?1442236641=\u0026response-content-disposition=attachment%3B+filename%3DStrategical_incoherence_regulates_cooper.pdf\u0026Expires=1732485667\u0026Signature=MLm0dKh59uVB8gdEdmDmOwLF6goIxd65fv16nTzArjgXn8aYHE-4VucRiZJ5dj53fFAtYz4TxLMlb56brrBrILUID4E-1xq7~L5yE1rzhINwRoKlteq7LGkVVHkVk6462z-iDCKXIiZw0-2iTGe6wy4bLlkIYPvgCpq~tNzDfPzsyNNKo5MZKFl40riUQ-8c9FrJuQoTy~FVm5tYMSxq5cW0SeD7zNidw6iAlf7mqZoPvi-031obR0qeYgOQph1aeLRSitMLjc8p3TsOXKHb3KvBKzSjoMZ0nAZypCgG~sMi63oqzW2YbOUcHJrAG1BAdkOqODWT2e8r7WpTfd-w6Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":757,"name":"Game Theory","url":"https://www.academia.edu/Documents/in/Game_Theory"},{"id":7150,"name":"Complex Systems","url":"https://www.academia.edu/Documents/in/Complex_Systems"},{"id":13113,"name":"Evolutionary Game Theory","url":"https://www.academia.edu/Documents/in/Evolutionary_Game_Theory"},{"id":13330,"name":"Complex Networks","url":"https://www.academia.edu/Documents/in/Complex_Networks"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="14853727"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/14853727/Feature_Selection_and_Outliers_Detection_with_Genetic_Algorithms_and_Neural_Networks"><img alt="Research paper thumbnail of Feature Selection and Outliers Detection with Genetic Algorithms and Neural Networks" class="work-thumbnail" src="https://attachments.academia-assets.com/39136514/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/14853727/Feature_Selection_and_Outliers_Detection_with_Genetic_Algorithms_and_Neural_Networks">Feature Selection and Outliers Detection with Genetic Algorithms and Neural Networks</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://upc.academia.edu/Ren%C3%A9Alqu%C3%A9zar">René Alquézar</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://urv.academia.edu/SergioGomez">Sergio Gómez</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper presents a new feature selection method and an outliers detec- tion algorithm. The pre...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper presents a new feature selection method and an outliers detec- tion algorithm. The presented method is based on using a genetic algorithm com- bined with a problem-specific-designed neural network. The d imensional reduc- tion and the outliers detection makes the resulting dataset more suitable for training neural networks. A comparative analysis between different kind of proposed crite- ria to select the features is reported. A number of experimental results have been carried out to demonstrate the usefulness of the presented technique.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e43345a206b8229c7009523778a2f7b5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:39136514,&quot;asset_id&quot;:14853727,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/39136514/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="14853727"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="14853727"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 14853727; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=14853727]").text(description); $(".js-view-count[data-work-id=14853727]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 14853727; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='14853727']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 14853727, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e43345a206b8229c7009523778a2f7b5" } } $('.js-work-strip[data-work-id=14853727]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":14853727,"title":"Feature Selection and Outliers Detection with Genetic Algorithms and Neural Networks","translated_title":"","metadata":{"abstract":"This paper presents a new feature selection method and an outliers detec- tion algorithm. The presented method is based on using a genetic algorithm com- bined with a problem-specific-designed neural network. The d imensional reduc- tion and the outliers detection makes the resulting dataset more suitable for training neural networks. A comparative analysis between different kind of proposed crite- ria to select the features is reported. A number of experimental results have been carried out to demonstrate the usefulness of the presented technique."},"translated_abstract":"This paper presents a new feature selection method and an outliers detec- tion algorithm. The presented method is based on using a genetic algorithm com- bined with a problem-specific-designed neural network. The d imensional reduc- tion and the outliers detection makes the resulting dataset more suitable for training neural networks. A comparative analysis between different kind of proposed crite- ria to select the features is reported. A number of experimental results have been carried out to demonstrate the usefulness of the presented technique.","internal_url":"https://www.academia.edu/14853727/Feature_Selection_and_Outliers_Detection_with_Genetic_Algorithms_and_Neural_Networks","translated_internal_url":"","created_at":"2015-08-11T10:28:43.220-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33822880,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":4529764,"work_id":14853727,"tagging_user_id":33822880,"tagged_user_id":26852817,"co_author_invite_id":null,"email":"e***0@hotmail.com","display_order":0,"name":"Enrique Romero","title":"Feature Selection and Outliers Detection with Genetic Algorithms and Neural Networks"},{"id":4529773,"work_id":14853727,"tagging_user_id":33822880,"tagged_user_id":4558575,"co_author_invite_id":null,"email":"e***o@hotmail.com","display_order":4194304,"name":"Enrique Romero","title":"Feature Selection and Outliers Detection with Genetic Algorithms and Neural Networks"},{"id":4529782,"work_id":14853727,"tagging_user_id":33822880,"tagged_user_id":33132731,"co_author_invite_id":null,"email":"e***o@lsi.upc.edu","display_order":6291456,"name":"Enrique Romero","title":"Feature Selection and Outliers Detection with Genetic Algorithms and Neural Networks"},{"id":4529791,"work_id":14853727,"tagging_user_id":33822880,"tagged_user_id":29215296,"co_author_invite_id":null,"email":"s***e@gmail.com","display_order":7340032,"name":"Sergio Gomez","title":"Feature Selection and Outliers Detection with Genetic Algorithms and Neural Networks"},{"id":4529795,"work_id":14853727,"tagging_user_id":33822880,"tagged_user_id":31795718,"co_author_invite_id":null,"email":"a***6@hotmail.com","display_order":8126464,"name":"sergio gomez","title":"Feature Selection and Outliers Detection with Genetic Algorithms and Neural Networks"},{"id":4529797,"work_id":14853727,"tagging_user_id":33822880,"tagged_user_id":33513994,"co_author_invite_id":null,"email":"s***z@urv.cat","affiliation":"Universitat Rovira i Virgili","display_order":8257536,"name":"Sergio Gómez","title":"Feature Selection and Outliers Detection with Genetic Algorithms and Neural Networks"},{"id":4529799,"work_id":14853727,"tagging_user_id":33822880,"tagged_user_id":6801826,"co_author_invite_id":null,"email":"s***0@hotmail.com","affiliation":"Universidad de Córdoba","display_order":8323072,"name":"Sergio Gomez","title":"Feature Selection and Outliers Detection with Genetic Algorithms and Neural Networks"},{"id":4529801,"work_id":14853727,"tagging_user_id":33822880,"tagged_user_id":null,"co_author_invite_id":79481,"email":"a***s@urv.cat","display_order":8355840,"name":"Agusti Solanas","title":"Feature Selection and Outliers Detection with Genetic Algorithms and Neural Networks"}],"downloadable_attachments":[{"id":39136514,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39136514/thumbnails/1.jpg","file_name":"0deec5167b9f09c3c7000000.pdf20151012-16080-wref4f.pdf","download_url":"https://www.academia.edu/attachments/39136514/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Feature_Selection_and_Outliers_Detection.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39136514/0deec5167b9f09c3c7000000.pdf20151012-16080-wref4f-libre.pdf?1444687309=\u0026response-content-disposition=attachment%3B+filename%3DFeature_Selection_and_Outliers_Detection.pdf\u0026Expires=1732485667\u0026Signature=co2MmHf3yKMMQxzoP62lY5UgSxNdgWJUBBZPDFW21MpdmhYY8nkM1~k14bEWBAgxRUuqK5NDYevpq-H4Oj9eW5tnRRXlzGZdLOMx4~MaXL6N1iX6wkKRQyAVtegISXH~9C33TAnXhyxWz9qhRCc43Jop3G~xwgOBdhXdU3sA6DFOyioUwBSxc~P0K7FTTlXf2mD0TRTqA29dmnYbVxmOeCdUtGetxpFT2rKSn8GLevKBQFPgeuDIuBeQDiBs41p8B8bv3PFfRbkT~U-Ti1M9kc0eyDQFge8AAXEPSNVNWdt6rJiGNXJmIENg0y0cUEH9SCA-JgxO~fnqbvOHnrGxgQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Feature_Selection_and_Outliers_Detection_with_Genetic_Algorithms_and_Neural_Networks","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":33822880,"first_name":"René","middle_initials":null,"last_name":"Alquézar","page_name":"RenéAlquézar","domain_name":"upc","created_at":"2015-08-11T10:26:26.012-07:00","display_name":"René Alquézar","url":"https://upc.academia.edu/Ren%C3%A9Alqu%C3%A9zar"},"attachments":[{"id":39136514,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39136514/thumbnails/1.jpg","file_name":"0deec5167b9f09c3c7000000.pdf20151012-16080-wref4f.pdf","download_url":"https://www.academia.edu/attachments/39136514/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Feature_Selection_and_Outliers_Detection.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39136514/0deec5167b9f09c3c7000000.pdf20151012-16080-wref4f-libre.pdf?1444687309=\u0026response-content-disposition=attachment%3B+filename%3DFeature_Selection_and_Outliers_Detection.pdf\u0026Expires=1732485667\u0026Signature=co2MmHf3yKMMQxzoP62lY5UgSxNdgWJUBBZPDFW21MpdmhYY8nkM1~k14bEWBAgxRUuqK5NDYevpq-H4Oj9eW5tnRRXlzGZdLOMx4~MaXL6N1iX6wkKRQyAVtegISXH~9C33TAnXhyxWz9qhRCc43Jop3G~xwgOBdhXdU3sA6DFOyioUwBSxc~P0K7FTTlXf2mD0TRTqA29dmnYbVxmOeCdUtGetxpFT2rKSn8GLevKBQFPgeuDIuBeQDiBs41p8B8bv3PFfRbkT~U-Ti1M9kc0eyDQFge8AAXEPSNVNWdt6rJiGNXJmIENg0y0cUEH9SCA-JgxO~fnqbvOHnrGxgQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network"},{"id":30329,"name":"Genetic Algorithm","url":"https://www.academia.edu/Documents/in/Genetic_Algorithm"},{"id":43619,"name":"Feature Selection","url":"https://www.academia.edu/Documents/in/Feature_Selection"},{"id":131096,"name":"Outlier detection","url":"https://www.academia.edu/Documents/in/Outlier_detection"},{"id":152553,"name":"Comparative Analysis","url":"https://www.academia.edu/Documents/in/Comparative_Analysis"}],"urls":[{"id":5202527,"url":"http://www.researchgate.net/profile/Josep_Domingo-Ferrer/publication/221045141_Feature_Selection_and_Outliers_Detection_with_Genetic_Algorithms_and_Neural_Networks/links/0deec5167b9f09c3c7000000.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="15222647"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/15222647/Benchmark_model_to_assess_community_structure_in_evolving_networks"><img alt="Research paper thumbnail of Benchmark model to assess community structure in evolving networks" class="work-thumbnail" src="https://attachments.academia-assets.com/43419849/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/15222647/Benchmark_model_to_assess_community_structure_in_evolving_networks">Benchmark model to assess community structure in evolving networks</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://aalto-fi.academia.edu/SFortunato">S. Fortunato</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://urv.academia.edu/SergioGomez">Sergio Gómez</a></span></div><div class="wp-workCard_item"><span>Physical Review E</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b06059f585ff267e625ac8ebdeb704c1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:43419849,&quot;asset_id&quot;:15222647,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/43419849/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="15222647"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="15222647"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 15222647; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=15222647]").text(description); $(".js-view-count[data-work-id=15222647]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 15222647; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='15222647']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 15222647, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b06059f585ff267e625ac8ebdeb704c1" } } $('.js-work-strip[data-work-id=15222647]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":15222647,"title":"Benchmark model to assess community structure in evolving networks","translated_title":"","metadata":{"grobid_abstract":"Detecting the time evolution of the community structure of networks is crucial to identify major changes in the internal organization of many complex systems, which may undergo important endogenous or exogenous events. This analysis can be done in two ways: considering each snapshot as an independent community detection problem or taking into account the whole evolution of the network. In the first case, one can apply static methods on the temporal snapshots, which correspond to configurations of the system in short time windows, and match afterwards the communities across layers. Alternatively, one can develop dedicated dynamic procedures, so that multiple snapshots are simultaneously taken into account while detecting communities, which allows us to keep memory of the flow. To check how well a method of any kind could capture the evolution of communities, suitable benchmarks are needed. Here we propose a model for generating simple dynamic benchmark graphs, based on stochastic block models. In them, the time evolution consists of a periodic oscillation of the system's structure between configurations with built-in community structure. We also propose the extension of quality comparison indices to the dynamic scenario.","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Physical Review E","grobid_abstract_attachment_id":43419849},"translated_abstract":null,"internal_url":"https://www.academia.edu/15222647/Benchmark_model_to_assess_community_structure_in_evolving_networks","translated_internal_url":"","created_at":"2015-08-27T04:19:30.310-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":34285114,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":5145692,"work_id":15222647,"tagging_user_id":34285114,"tagged_user_id":33513994,"co_author_invite_id":null,"email":"s***z@urv.cat","affiliation":"Universitat Rovira i Virgili","display_order":0,"name":"Sergio Gómez","title":"Benchmark model to assess community structure in evolving networks"},{"id":5145693,"work_id":15222647,"tagging_user_id":34285114,"tagged_user_id":33468097,"co_author_invite_id":null,"email":"a***s@urv.cat","affiliation":"Universitat Rovira i Virgili","display_order":4194304,"name":"Alex Arenas","title":"Benchmark model to assess community structure in evolving networks"},{"id":5145694,"work_id":15222647,"tagging_user_id":34285114,"tagged_user_id":38443817,"co_author_invite_id":1157140,"email":"c***l@urv.cat","display_order":6291456,"name":"Clara Granell","title":"Benchmark model to assess community structure in evolving networks"},{"id":5145708,"work_id":15222647,"tagging_user_id":34285114,"tagged_user_id":null,"co_author_invite_id":1157141,"email":"r***d@zgib.net","display_order":7340032,"name":"Richard Darst","title":"Benchmark model to assess community structure in evolving networks"}],"downloadable_attachments":[{"id":43419849,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/43419849/thumbnails/1.jpg","file_name":"1501.05808.pdf","download_url":"https://www.academia.edu/attachments/43419849/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Benchmark_model_to_assess_community_stru.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/43419849/1501.05808-libre.pdf?1457273420=\u0026response-content-disposition=attachment%3B+filename%3DBenchmark_model_to_assess_community_stru.pdf\u0026Expires=1732485667\u0026Signature=epkzTwuilsOaHsuYYQZBLTs5hm~uK1qDAAnGIn1Sk2yv61ETmHeDYeGlVxZSdzkLhnXT5p7sO4ZTqp5Mh-yGqyw1dWUN4MoVrATRqL5V~gsomG44g5ZxhxCnSd~SPmdbgZLARt3c90YIRWaTyjJgrS~RvD~2Thz60q1xEMOYfxri8DgKkn2pfORsjOtuZCTBJHGnpYek-YrFqGqLnZgsW1~OS3JYEH-gD0Grq7KP2eqPb56I1ZFo1WcBip4KlaWThiCO7YMeZWAKJGMD3gIkpd4xP3W-lcvFyk2IOfx9xUGqjVvRIaf0etJTxHqdyQ6A0UEVw-kDpbVIoLM-e3WjNw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Benchmark_model_to_assess_community_structure_in_evolving_networks","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":34285114,"first_name":"S.","middle_initials":null,"last_name":"Fortunato","page_name":"SFortunato","domain_name":"aalto-fi","created_at":"2015-08-27T04:13:25.976-07:00","display_name":"S. Fortunato","url":"https://aalto-fi.academia.edu/SFortunato"},"attachments":[{"id":43419849,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/43419849/thumbnails/1.jpg","file_name":"1501.05808.pdf","download_url":"https://www.academia.edu/attachments/43419849/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Benchmark_model_to_assess_community_stru.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/43419849/1501.05808-libre.pdf?1457273420=\u0026response-content-disposition=attachment%3B+filename%3DBenchmark_model_to_assess_community_stru.pdf\u0026Expires=1732485667\u0026Signature=epkzTwuilsOaHsuYYQZBLTs5hm~uK1qDAAnGIn1Sk2yv61ETmHeDYeGlVxZSdzkLhnXT5p7sO4ZTqp5Mh-yGqyw1dWUN4MoVrATRqL5V~gsomG44g5ZxhxCnSd~SPmdbgZLARt3c90YIRWaTyjJgrS~RvD~2Thz60q1xEMOYfxri8DgKkn2pfORsjOtuZCTBJHGnpYek-YrFqGqLnZgsW1~OS3JYEH-gD0Grq7KP2eqPb56I1ZFo1WcBip4KlaWThiCO7YMeZWAKJGMD3gIkpd4xP3W-lcvFyk2IOfx9xUGqjVvRIaf0etJTxHqdyQ6A0UEVw-kDpbVIoLM-e3WjNw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="14549828"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/14549828/Strategical_incoherence_regulates_cooperation_in_social_dilemmas_on_multiplex_networks"><img alt="Research paper thumbnail of Strategical incoherence regulates cooperation in social dilemmas on multiplex networks" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/14549828/Strategical_incoherence_regulates_cooperation_in_social_dilemmas_on_multiplex_networks">Strategical incoherence regulates cooperation in social dilemmas on multiplex networks</a></div><div class="wp-workCard_item"><span>Scientific Reports</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Cooperation is a very common, yet not fully-understood phenomenon in natural and human systems. T...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Cooperation is a very common, yet not fully-understood phenomenon in natural and human systems. The introduction of a network within the population is known to affect the outcome of cooperative dynamics, allowing for the survival of cooperation in adverse scenarios. Recently, the introduction of multiplex networks has yet again modified the expectations for the outcome of the Prisoner&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39;s Dilemma game, compared to the monoplex case. However, much remains unstudied regarding other social dilemmas on multiplex, as well as the unexplored microscopic underpinnings of it. In this paper, we systematically study the evolution of cooperation in all four games in the T - S plane on multiplex. More importantly, we find some remarkable and previously unknown features in the microscopic organization of the strategies, that are responsible for the important differences between cooperative dynamics in monoplex and multiplex. Specifically, we find that in the stationary state, there are individuals that play the same strategy in all layers (coherent), and others that don&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39;t (incoherent). This second group of players is responsible for the surprising fact of a non full-cooperation in the Harmony Game on multiplex, never observed before, as well as a higher-than-expected cooperation rates in some regions of the other three social dilemmas.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="14549828"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="14549828"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 14549828; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=14549828]").text(description); $(".js-view-count[data-work-id=14549828]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 14549828; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='14549828']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 14549828, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=14549828]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":14549828,"title":"Strategical incoherence regulates cooperation in social dilemmas on multiplex networks","translated_title":"","metadata":{"abstract":"Cooperation is a very common, yet not fully-understood phenomenon in natural and human systems. The introduction of a network within the population is known to affect the outcome of cooperative dynamics, allowing for the survival of cooperation in adverse scenarios. Recently, the introduction of multiplex networks has yet again modified the expectations for the outcome of the Prisoner\u0026amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39;s Dilemma game, compared to the monoplex case. However, much remains unstudied regarding other social dilemmas on multiplex, as well as the unexplored microscopic underpinnings of it. In this paper, we systematically study the evolution of cooperation in all four games in the T - S plane on multiplex. More importantly, we find some remarkable and previously unknown features in the microscopic organization of the strategies, that are responsible for the important differences between cooperative dynamics in monoplex and multiplex. Specifically, we find that in the stationary state, there are individuals that play the same strategy in all layers (coherent), and others that don\u0026amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39;t (incoherent). This second group of players is responsible for the surprising fact of a non full-cooperation in the Harmony Game on multiplex, never observed before, as well as a higher-than-expected cooperation rates in some regions of the other three social dilemmas.","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Scientific Reports"},"translated_abstract":"Cooperation is a very common, yet not fully-understood phenomenon in natural and human systems. The introduction of a network within the population is known to affect the outcome of cooperative dynamics, allowing for the survival of cooperation in adverse scenarios. Recently, the introduction of multiplex networks has yet again modified the expectations for the outcome of the Prisoner\u0026amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39;s Dilemma game, compared to the monoplex case. However, much remains unstudied regarding other social dilemmas on multiplex, as well as the unexplored microscopic underpinnings of it. In this paper, we systematically study the evolution of cooperation in all four games in the T - S plane on multiplex. More importantly, we find some remarkable and previously unknown features in the microscopic organization of the strategies, that are responsible for the important differences between cooperative dynamics in monoplex and multiplex. Specifically, we find that in the stationary state, there are individuals that play the same strategy in all layers (coherent), and others that don\u0026amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39;t (incoherent). This second group of players is responsible for the surprising fact of a non full-cooperation in the Harmony Game on multiplex, never observed before, as well as a higher-than-expected cooperation rates in some regions of the other three social dilemmas.","internal_url":"https://www.academia.edu/14549828/Strategical_incoherence_regulates_cooperation_in_social_dilemmas_on_multiplex_networks","translated_internal_url":"","created_at":"2015-08-01T08:30:24.396-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33513994,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":4120187,"work_id":14549828,"tagging_user_id":33513994,"tagged_user_id":33468097,"co_author_invite_id":null,"email":"a***s@urv.cat","affiliation":"Universitat Rovira i Virgili","display_order":0,"name":"Alex Arenas","title":"Strategical incoherence regulates cooperation in social dilemmas on multiplex networks"}],"downloadable_attachments":[],"slug":"Strategical_incoherence_regulates_cooperation_in_social_dilemmas_on_multiplex_networks","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":33513994,"first_name":"Sergio","middle_initials":"","last_name":"Gómez","page_name":"SergioGomez","domain_name":"urv","created_at":"2015-08-01T08:24:15.311-07:00","display_name":"Sergio Gómez","url":"https://urv.academia.edu/SergioGomez"},"attachments":[],"research_interests":[{"id":757,"name":"Game Theory","url":"https://www.academia.edu/Documents/in/Game_Theory"},{"id":7150,"name":"Complex Systems","url":"https://www.academia.edu/Documents/in/Complex_Systems"},{"id":13113,"name":"Evolutionary Game Theory","url":"https://www.academia.edu/Documents/in/Evolutionary_Game_Theory"},{"id":13330,"name":"Complex Networks","url":"https://www.academia.edu/Documents/in/Complex_Networks"},{"id":64568,"name":"Humans","url":"https://www.academia.edu/Documents/in/Humans"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":496530,"name":"Community Networks","url":"https://www.academia.edu/Documents/in/Community_Networks"},{"id":1153482,"name":"Cooperative Behavior","url":"https://www.academia.edu/Documents/in/Cooperative_Behavior"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="14549827"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/14549827/Hi_Content_3D_Structure_and_Dynamics_of_the_Virgo_Cluster_Region"><img alt="Research paper thumbnail of Hi Content, 3D Structure and Dynamics of the Virgo Cluster Region" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/14549827/Hi_Content_3D_Structure_and_Dynamics_of_the_Virgo_Cluster_Region">Hi Content, 3D Structure and Dynamics of the Virgo Cluster Region</a></div><div class="wp-workCard_item"><span>Highlights of Spanish Astrophysics III</span><span>, 2003</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="14549827"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="14549827"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 14549827; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=14549827]").text(description); $(".js-view-count[data-work-id=14549827]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 14549827; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='14549827']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 14549827, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=14549827]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":14549827,"title":"Hi Content, 3D Structure and Dynamics of the Virgo Cluster Region","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2003,"errors":{}},"publication_name":"Highlights of Spanish Astrophysics III"},"translated_abstract":null,"internal_url":"https://www.academia.edu/14549827/Hi_Content_3D_Structure_and_Dynamics_of_the_Virgo_Cluster_Region","translated_internal_url":"","created_at":"2015-08-01T08:30:24.209-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33513994,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":4120172,"work_id":14549827,"tagging_user_id":33513994,"tagged_user_id":33567324,"co_author_invite_id":973433,"email":"j***s@ub.edu","display_order":0,"name":"J. Solanes","title":"Hi Content, 3D Structure and Dynamics of the Virgo Cluster Region"}],"downloadable_attachments":[],"slug":"Hi_Content_3D_Structure_and_Dynamics_of_the_Virgo_Cluster_Region","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":33513994,"first_name":"Sergio","middle_initials":"","last_name":"Gómez","page_name":"SergioGomez","domain_name":"urv","created_at":"2015-08-01T08:24:15.311-07:00","display_name":"Sergio Gómez","url":"https://urv.academia.edu/SergioGomez"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="3315393" id="papers"><div class="js-work-strip profile--work_container" data-work-id="56967382"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/56967382/Virus_spread_versus_contact_tracing_Two_competing_contagion_processes"><img alt="Research paper thumbnail of Virus spread versus contact tracing: Two competing contagion processes" class="work-thumbnail" src="https://attachments.academia-assets.com/72094552/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/56967382/Virus_spread_versus_contact_tracing_Two_competing_contagion_processes">Virus spread versus contact tracing: Two competing contagion processes</a></div><div class="wp-workCard_item"><span>Physical Review Research</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4ba21c157efe78e5d2189b343ee812b5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:72094552,&quot;asset_id&quot;:56967382,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/72094552/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="56967382"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="56967382"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 56967382; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=56967382]").text(description); $(".js-view-count[data-work-id=56967382]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 56967382; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='56967382']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 56967382, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4ba21c157efe78e5d2189b343ee812b5" } } $('.js-work-strip[data-work-id=56967382]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":56967382,"title":"Virus spread versus contact tracing: Two competing contagion processes","translated_title":"","metadata":{"publisher":"American Physical Society (APS)","publication_name":"Physical Review Research"},"translated_abstract":null,"internal_url":"https://www.academia.edu/56967382/Virus_spread_versus_contact_tracing_Two_competing_contagion_processes","translated_internal_url":"","created_at":"2021-10-10T10:55:01.653-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33513994,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":72094552,"title":"","file_type":"txt","scribd_thumbnail_url":"https://attachments.academia-assets.com/72094552/thumbnails/1.jpg","file_name":"PhysRevResearch.3.txt","download_url":"https://www.academia.edu/attachments/72094552/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Virus_spread_versus_contact_tracing_Two.txt","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/72094552/PhysRevResearch.3.txt?1633888511=\u0026response-content-disposition=attachment%3B+filename%3DVirus_spread_versus_contact_tracing_Two.txt\u0026Expires=1732485666\u0026Signature=Cxj36mFHcG5DG-9RffKcsr8hKrdNHfWcUzn62roalDZC6DF3jo4dQC9YK4MAzGhyGwjfLk~SISSRd4zUI6knJ2enZT3zMKnnLqq7GRLURm3Jw-suvDMCQOA9rnLTh0~nT2D1h4KSTYkRf4cOu6-eZmCCbVebPLB~lzfO9UnAjirTIA1pmN1MujD80IdUol-dJ5lbc8UWsOZTQfvcS2lcTW1uH2rK4Rqw29K9o6IbnulJM02TC1MwGGlfJBNTQKk1bHgEWTK2sFluz5~DrupVlmS2SYLudxgIzM4BQ4pAzrGJGpXsBa3tLVTH2EPj5owWYag5-8MsL57xonC0J0iqGg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Virus_spread_versus_contact_tracing_Two_competing_contagion_processes","translated_slug":"","page_count":2,"language":"en","content_type":"Work","owner":{"id":33513994,"first_name":"Sergio","middle_initials":"","last_name":"Gómez","page_name":"SergioGomez","domain_name":"urv","created_at":"2015-08-01T08:24:15.311-07:00","display_name":"Sergio Gómez","url":"https://urv.academia.edu/SergioGomez"},"attachments":[{"id":72094552,"title":"","file_type":"txt","scribd_thumbnail_url":"https://attachments.academia-assets.com/72094552/thumbnails/1.jpg","file_name":"PhysRevResearch.3.txt","download_url":"https://www.academia.edu/attachments/72094552/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Virus_spread_versus_contact_tracing_Two.txt","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/72094552/PhysRevResearch.3.txt?1633888511=\u0026response-content-disposition=attachment%3B+filename%3DVirus_spread_versus_contact_tracing_Two.txt\u0026Expires=1732485666\u0026Signature=Cxj36mFHcG5DG-9RffKcsr8hKrdNHfWcUzn62roalDZC6DF3jo4dQC9YK4MAzGhyGwjfLk~SISSRd4zUI6knJ2enZT3zMKnnLqq7GRLURm3Jw-suvDMCQOA9rnLTh0~nT2D1h4KSTYkRf4cOu6-eZmCCbVebPLB~lzfO9UnAjirTIA1pmN1MujD80IdUol-dJ5lbc8UWsOZTQfvcS2lcTW1uH2rK4Rqw29K9o6IbnulJM02TC1MwGGlfJBNTQKk1bHgEWTK2sFluz5~DrupVlmS2SYLudxgIzM4BQ4pAzrGJGpXsBa3tLVTH2EPj5owWYag5-8MsL57xonC0J0iqGg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":192257,"name":"Physical","url":"https://www.academia.edu/Documents/in/Physical"}],"urls":[{"id":12715792,"url":"https://link.aps.org/article/10.1103/PhysRevResearch.3.013163"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="56967377"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/56967377/A_mathematical_model_for_the_spatiotemporal_epidemic_spreading_of_COVID19"><img alt="Research paper thumbnail of A mathematical model for the spatiotemporal epidemic spreading of COVID19" class="work-thumbnail" src="https://attachments.academia-assets.com/72094633/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/56967377/A_mathematical_model_for_the_spatiotemporal_epidemic_spreading_of_COVID19">A mathematical model for the spatiotemporal epidemic spreading of COVID19</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">An outbreak of a novel coronavirus, named SARS-CoV-2, that provokes the COVID-19 disease, was fir...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">An outbreak of a novel coronavirus, named SARS-CoV-2, that provokes the COVID-19 disease, was first reported in Hubei, mainland China on 31 December 2019. As of 20 March 2020, cases have been reported in 166 countries/regions, including cases of human-to-human transmission around the world. The proportions of this epidemics is probably one of the largest challenges faced by our interconnected modern societies. According to the current epidemiological reports, the large basic reproduction number, R_0 ~ 2.3, number of secondary cases produced by an infected individual in a population of susceptible individuals, as well as an asymptomatic period (up to 14 days) in which infectious individuals are undetectable without further analysis, pave the way for a major crisis of the national health capacity systems. Recent scientific reports have pointed out that the detected cases of COVID19 at young ages is strikingly short and that lethality is concentrated at large ages. Here we adapt a Micr...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6d24ccd45f285d1ab91408b588136533" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:72094633,&quot;asset_id&quot;:56967377,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/72094633/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="56967377"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="56967377"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 56967377; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=56967377]").text(description); $(".js-view-count[data-work-id=56967377]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 56967377; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='56967377']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 56967377, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6d24ccd45f285d1ab91408b588136533" } } $('.js-work-strip[data-work-id=56967377]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":56967377,"title":"A mathematical model for the spatiotemporal epidemic spreading of COVID19","translated_title":"","metadata":{"abstract":"An outbreak of a novel coronavirus, named SARS-CoV-2, that provokes the COVID-19 disease, was first reported in Hubei, mainland China on 31 December 2019. As of 20 March 2020, cases have been reported in 166 countries/regions, including cases of human-to-human transmission around the world. The proportions of this epidemics is probably one of the largest challenges faced by our interconnected modern societies. According to the current epidemiological reports, the large basic reproduction number, R_0 ~ 2.3, number of secondary cases produced by an infected individual in a population of susceptible individuals, as well as an asymptomatic period (up to 14 days) in which infectious individuals are undetectable without further analysis, pave the way for a major crisis of the national health capacity systems. Recent scientific reports have pointed out that the detected cases of COVID19 at young ages is strikingly short and that lethality is concentrated at large ages. Here we adapt a Micr...","publisher":"Cold Spring Harbor Laboratory"},"translated_abstract":"An outbreak of a novel coronavirus, named SARS-CoV-2, that provokes the COVID-19 disease, was first reported in Hubei, mainland China on 31 December 2019. As of 20 March 2020, cases have been reported in 166 countries/regions, including cases of human-to-human transmission around the world. The proportions of this epidemics is probably one of the largest challenges faced by our interconnected modern societies. According to the current epidemiological reports, the large basic reproduction number, R_0 ~ 2.3, number of secondary cases produced by an infected individual in a population of susceptible individuals, as well as an asymptomatic period (up to 14 days) in which infectious individuals are undetectable without further analysis, pave the way for a major crisis of the national health capacity systems. Recent scientific reports have pointed out that the detected cases of COVID19 at young ages is strikingly short and that lethality is concentrated at large ages. Here we adapt a Micr...","internal_url":"https://www.academia.edu/56967377/A_mathematical_model_for_the_spatiotemporal_epidemic_spreading_of_COVID19","translated_internal_url":"","created_at":"2021-10-10T10:55:01.387-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33513994,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":72094633,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/72094633/thumbnails/1.jpg","file_name":"2020.03.21.20040022.full.pdf","download_url":"https://www.academia.edu/attachments/72094633/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_mathematical_model_for_the_spatiotempo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/72094633/2020.03.21.20040022.full-libre.pdf?1633889815=\u0026response-content-disposition=attachment%3B+filename%3DA_mathematical_model_for_the_spatiotempo.pdf\u0026Expires=1732485666\u0026Signature=Y9cgRzKFo~Lm~Ncli6KEPR~Rm-ckE8LJ9ldKhmRLT1U2lwCIGzLbTL2P~U~wSyspCamzMT4F-kbJ4ZeHgcg3AD0ds-ovLIZDDdShtFMTB8p5BUTWGdn70zdjVoZRivXpfJxywnJHR8YDpd6ICoFArH4e3DfG8OFl~OzDT-0oFyTcHCSP07RujHwjdKQu8Z4wXktopQR1KnZy30sWN16YFjozLP1DVLUwwxIHwuleC9S1Xlf9tYalljG5u~wmoP0BfNKfPb1ssrh1EJ0lkq6OGot3~VFkrAFhz3RUT8iTAzf-6wVyjcXYxEVwz70rcYT~v5LaJX8U~EOynAONawxFPw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_mathematical_model_for_the_spatiotemporal_epidemic_spreading_of_COVID19","translated_slug":"","page_count":13,"language":"en","content_type":"Work","owner":{"id":33513994,"first_name":"Sergio","middle_initials":"","last_name":"Gómez","page_name":"SergioGomez","domain_name":"urv","created_at":"2015-08-01T08:24:15.311-07:00","display_name":"Sergio Gómez","url":"https://urv.academia.edu/SergioGomez"},"attachments":[{"id":72094633,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/72094633/thumbnails/1.jpg","file_name":"2020.03.21.20040022.full.pdf","download_url":"https://www.academia.edu/attachments/72094633/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_mathematical_model_for_the_spatiotempo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/72094633/2020.03.21.20040022.full-libre.pdf?1633889815=\u0026response-content-disposition=attachment%3B+filename%3DA_mathematical_model_for_the_spatiotempo.pdf\u0026Expires=1732485666\u0026Signature=Y9cgRzKFo~Lm~Ncli6KEPR~Rm-ckE8LJ9ldKhmRLT1U2lwCIGzLbTL2P~U~wSyspCamzMT4F-kbJ4ZeHgcg3AD0ds-ovLIZDDdShtFMTB8p5BUTWGdn70zdjVoZRivXpfJxywnJHR8YDpd6ICoFArH4e3DfG8OFl~OzDT-0oFyTcHCSP07RujHwjdKQu8Z4wXktopQR1KnZy30sWN16YFjozLP1DVLUwwxIHwuleC9S1Xlf9tYalljG5u~wmoP0BfNKfPb1ssrh1EJ0lkq6OGot3~VFkrAFhz3RUT8iTAzf-6wVyjcXYxEVwz70rcYT~v5LaJX8U~EOynAONawxFPw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":12715790,"url":"https://syndication.highwire.org/content/doi/10.1101/2020.03.21.20040022"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="56967373"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/56967373/Versatile_Linkage_a_Family_of_Space_Conserving_Strategies_for_Agglomerative_Hierarchical_Clustering"><img alt="Research paper thumbnail of Versatile Linkage: a Family of Space-Conserving Strategies for Agglomerative Hierarchical Clustering" class="work-thumbnail" src="https://attachments.academia-assets.com/72094641/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/56967373/Versatile_Linkage_a_Family_of_Space_Conserving_Strategies_for_Agglomerative_Hierarchical_Clustering">Versatile Linkage: a Family of Space-Conserving Strategies for Agglomerative Hierarchical Clustering</a></div><div class="wp-workCard_item"><span>Journal of Classification</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ef132ba81cbdc7af5d2d9677d23737d0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:72094641,&quot;asset_id&quot;:56967373,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/72094641/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="56967373"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="56967373"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 56967373; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=56967373]").text(description); $(".js-view-count[data-work-id=56967373]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 56967373; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='56967373']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 56967373, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ef132ba81cbdc7af5d2d9677d23737d0" } } $('.js-work-strip[data-work-id=56967373]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":56967373,"title":"Versatile Linkage: a Family of Space-Conserving Strategies for Agglomerative Hierarchical Clustering","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","grobid_abstract":"Agglomerative hierarchical clustering can be implemented with several strategies that differ in the way elements of a collection are grouped together to build a hierarchy of clusters. Here we introduce versatile linkage, a new infinite system of agglomerative hierarchical clustering strategies based on generalized means, which go from single linkage to complete linkage, passing through arithmetic average linkage and other clustering methods yet unexplored such as geometric linkage and harmonic linkage. We compare the different clustering strategies in terms of cophenetic correlation, mean absolute error, and also tree balance and space distortion, two new measures proposed to describe hierarchical trees. Unlike the β-flexible clustering system, we show that the versatile linkage family is space-conserving.","publication_name":"Journal of Classification","grobid_abstract_attachment_id":72094641},"translated_abstract":null,"internal_url":"https://www.academia.edu/56967373/Versatile_Linkage_a_Family_of_Space_Conserving_Strategies_for_Agglomerative_Hierarchical_Clustering","translated_internal_url":"","created_at":"2021-10-10T10:55:00.829-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33513994,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":72094641,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/72094641/thumbnails/1.jpg","file_name":"1906.pdf","download_url":"https://www.academia.edu/attachments/72094641/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Versatile_Linkage_a_Family_of_Space_Cons.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/72094641/1906-libre.pdf?1633889807=\u0026response-content-disposition=attachment%3B+filename%3DVersatile_Linkage_a_Family_of_Space_Cons.pdf\u0026Expires=1732485666\u0026Signature=a-6FFPg81MyhRXX303~on4Jyz808wBxpI2elFF6D1ri6S9S6ojaPOYU~2ek5ErqAX24fz1XHqJoQKFa5eLZvoBX0vZEM2NNYJUH-wbA2tfgDJdWnSFrzSwEhXQ8fjMjKKNZXguoT~UEHjnr-fnYZCSXt8EhSWM3iikyWybcfvkcZ4j2a6Bk-ZEhDQXkP2PY8oveHETU3MvydMFWCoVNZc0M8vEXsvBSheE~M2CUy4U0L8A2oICuGTaUHkN4FEil8hJkwcLN0yIz8L2RQFbLxBAEGOcaKw9CiKuQPD7u141PJ-0to2wsYyEFyEvVnvhfJUSQLPaZ7dE6rx-8acMErPg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Versatile_Linkage_a_Family_of_Space_Conserving_Strategies_for_Agglomerative_Hierarchical_Clustering","translated_slug":"","page_count":19,"language":"en","content_type":"Work","owner":{"id":33513994,"first_name":"Sergio","middle_initials":"","last_name":"Gómez","page_name":"SergioGomez","domain_name":"urv","created_at":"2015-08-01T08:24:15.311-07:00","display_name":"Sergio Gómez","url":"https://urv.academia.edu/SergioGomez"},"attachments":[{"id":72094641,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/72094641/thumbnails/1.jpg","file_name":"1906.pdf","download_url":"https://www.academia.edu/attachments/72094641/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Versatile_Linkage_a_Family_of_Space_Cons.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/72094641/1906-libre.pdf?1633889807=\u0026response-content-disposition=attachment%3B+filename%3DVersatile_Linkage_a_Family_of_Space_Cons.pdf\u0026Expires=1732485666\u0026Signature=a-6FFPg81MyhRXX303~on4Jyz808wBxpI2elFF6D1ri6S9S6ojaPOYU~2ek5ErqAX24fz1XHqJoQKFa5eLZvoBX0vZEM2NNYJUH-wbA2tfgDJdWnSFrzSwEhXQ8fjMjKKNZXguoT~UEHjnr-fnYZCSXt8EhSWM3iikyWybcfvkcZ4j2a6Bk-ZEhDQXkP2PY8oveHETU3MvydMFWCoVNZc0M8vEXsvBSheE~M2CUy4U0L8A2oICuGTaUHkN4FEil8hJkwcLN0yIz8L2RQFbLxBAEGOcaKw9CiKuQPD7u141PJ-0to2wsYyEFyEvVnvhfJUSQLPaZ7dE6rx-8acMErPg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":106145,"name":"Classification","url":"https://www.academia.edu/Documents/in/Classification"}],"urls":[{"id":12715789,"url":"http://link.springer.com/content/pdf/10.1007/s00357-019-09339-z.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="56967371"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/56967371/Congestion_Induced_by_the_Structure_of_Multiplex_Networks"><img alt="Research paper thumbnail of Congestion Induced by the Structure of Multiplex Networks" class="work-thumbnail" src="https://attachments.academia-assets.com/72094636/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/56967371/Congestion_Induced_by_the_Structure_of_Multiplex_Networks">Congestion Induced by the Structure of Multiplex Networks</a></div><div class="wp-workCard_item"><span>Physical review letters</span><span>, Jan 11, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Multiplex networks are representations of multilayer interconnected complex networks where the no...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Multiplex networks are representations of multilayer interconnected complex networks where the nodes are the same at every layer. They turn out to be good abstractions of the intricate connectivity of multimodal transportation networks, among other types of complex systems. One of the most important critical phenomena arising in such networks is the emergence of congestion in transportation flows. Here, we prove analytically that the structure of multiplex networks can induce congestion for flows that otherwise would be decongested if the individual layers were not interconnected. We provide explicit equations for the onset of congestion and approximations that allow us to compute this onset from individual descriptors of the individual layers. The observed cooperative phenomenon is reminiscent of Braess&amp;#39; paradox in which adding extra capacity to a network when the moving entities selfishly choose their route can in some cases reduce overall performance. Similarly, in the multip...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3798e38bab27afeea3da7264d9c33059" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:72094636,&quot;asset_id&quot;:56967371,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/72094636/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="56967371"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="56967371"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 56967371; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=56967371]").text(description); $(".js-view-count[data-work-id=56967371]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 56967371; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='56967371']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 56967371, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3798e38bab27afeea3da7264d9c33059" } } $('.js-work-strip[data-work-id=56967371]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":56967371,"title":"Congestion Induced by the Structure of Multiplex Networks","translated_title":"","metadata":{"abstract":"Multiplex networks are representations of multilayer interconnected complex networks where the nodes are the same at every layer. They turn out to be good abstractions of the intricate connectivity of multimodal transportation networks, among other types of complex systems. One of the most important critical phenomena arising in such networks is the emergence of congestion in transportation flows. Here, we prove analytically that the structure of multiplex networks can induce congestion for flows that otherwise would be decongested if the individual layers were not interconnected. We provide explicit equations for the onset of congestion and approximations that allow us to compute this onset from individual descriptors of the individual layers. The observed cooperative phenomenon is reminiscent of Braess\u0026#39; paradox in which adding extra capacity to a network when the moving entities selfishly choose their route can in some cases reduce overall performance. Similarly, in the multip...","publication_date":{"day":11,"month":1,"year":2016,"errors":{}},"publication_name":"Physical review letters"},"translated_abstract":"Multiplex networks are representations of multilayer interconnected complex networks where the nodes are the same at every layer. They turn out to be good abstractions of the intricate connectivity of multimodal transportation networks, among other types of complex systems. One of the most important critical phenomena arising in such networks is the emergence of congestion in transportation flows. Here, we prove analytically that the structure of multiplex networks can induce congestion for flows that otherwise would be decongested if the individual layers were not interconnected. We provide explicit equations for the onset of congestion and approximations that allow us to compute this onset from individual descriptors of the individual layers. The observed cooperative phenomenon is reminiscent of Braess\u0026#39; paradox in which adding extra capacity to a network when the moving entities selfishly choose their route can in some cases reduce overall performance. Similarly, in the multip...","internal_url":"https://www.academia.edu/56967371/Congestion_Induced_by_the_Structure_of_Multiplex_Networks","translated_internal_url":"","created_at":"2021-10-10T10:55:00.618-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33513994,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":72094636,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/72094636/thumbnails/1.jpg","file_name":"1602.pdf","download_url":"https://www.academia.edu/attachments/72094636/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Congestion_Induced_by_the_Structure_of_M.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/72094636/1602-libre.pdf?1633889809=\u0026response-content-disposition=attachment%3B+filename%3DCongestion_Induced_by_the_Structure_of_M.pdf\u0026Expires=1732485666\u0026Signature=a9pmYZDlwWZQqJQYt9VCaK8dd9Q1MCWZ5B-R8HAeeWela2JdTec9AIgf1kV~V8VhP1Yga0z7C7hjRm5VwnypHTLWx1J2sj6CUQYjma6S8xQ1PXrUeF-W5wM3rRNv3NdtOPFv7UVxyfDjj1kGd6ofEfXCIvBO4NzeK3HDs6DA-kvgbLxahTVqYJHu0KBXaAlJmfwnkVLNy1PifIx8m54W09ZkK7qR3j1hmnp9Zt-OY8KdNfifuM-TaZYPnE61vCw~83GSfBx~v4Dg0rqSxJrDozjZT3cKNgHB9PsV5GNz7ikQA8BSgqJ3NntHpkVptX~MG05aBRMRxVVYeWSron1Yzg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Congestion_Induced_by_the_Structure_of_Multiplex_Networks","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":33513994,"first_name":"Sergio","middle_initials":"","last_name":"Gómez","page_name":"SergioGomez","domain_name":"urv","created_at":"2015-08-01T08:24:15.311-07:00","display_name":"Sergio Gómez","url":"https://urv.academia.edu/SergioGomez"},"attachments":[{"id":72094636,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/72094636/thumbnails/1.jpg","file_name":"1602.pdf","download_url":"https://www.academia.edu/attachments/72094636/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Congestion_Induced_by_the_Structure_of_M.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/72094636/1602-libre.pdf?1633889809=\u0026response-content-disposition=attachment%3B+filename%3DCongestion_Induced_by_the_Structure_of_M.pdf\u0026Expires=1732485666\u0026Signature=a9pmYZDlwWZQqJQYt9VCaK8dd9Q1MCWZ5B-R8HAeeWela2JdTec9AIgf1kV~V8VhP1Yga0z7C7hjRm5VwnypHTLWx1J2sj6CUQYjma6S8xQ1PXrUeF-W5wM3rRNv3NdtOPFv7UVxyfDjj1kGd6ofEfXCIvBO4NzeK3HDs6DA-kvgbLxahTVqYJHu0KBXaAlJmfwnkVLNy1PifIx8m54W09ZkK7qR3j1hmnp9Zt-OY8KdNfifuM-TaZYPnE61vCw~83GSfBx~v4Dg0rqSxJrDozjZT3cKNgHB9PsV5GNz7ikQA8BSgqJ3NntHpkVptX~MG05aBRMRxVVYeWSron1Yzg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="56967361"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/56967361/Erratum_Strategical_incoherence_regulates_cooperation_in_social_dilemmas_on_multiplex_networks"><img alt="Research paper thumbnail of Erratum: Strategical incoherence regulates cooperation in social dilemmas on multiplex networks" class="work-thumbnail" src="https://attachments.academia-assets.com/72094629/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/56967361/Erratum_Strategical_incoherence_regulates_cooperation_in_social_dilemmas_on_multiplex_networks">Erratum: Strategical incoherence regulates cooperation in social dilemmas on multiplex networks</a></div><div class="wp-workCard_item"><span>Scientific Reports</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c0e303b4fa614541af0d596ee99300f4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:72094629,&quot;asset_id&quot;:56967361,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/72094629/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="56967361"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="56967361"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 56967361; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=56967361]").text(description); $(".js-view-count[data-work-id=56967361]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 56967361; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='56967361']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 56967361, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c0e303b4fa614541af0d596ee99300f4" } } $('.js-work-strip[data-work-id=56967361]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":56967361,"title":"Erratum: Strategical incoherence regulates cooperation in social dilemmas on multiplex networks","translated_title":"","metadata":{"publisher":"Springer Nature","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Scientific Reports"},"translated_abstract":null,"internal_url":"https://www.academia.edu/56967361/Erratum_Strategical_incoherence_regulates_cooperation_in_social_dilemmas_on_multiplex_networks","translated_internal_url":"","created_at":"2021-10-10T10:54:59.250-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33513994,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":72094629,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/72094629/thumbnails/1.jpg","file_name":"pmc4557137.pdf","download_url":"https://www.academia.edu/attachments/72094629/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Erratum_Strategical_incoherence_regulate.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/72094629/pmc4557137-libre.pdf?1633889804=\u0026response-content-disposition=attachment%3B+filename%3DErratum_Strategical_incoherence_regulate.pdf\u0026Expires=1732485666\u0026Signature=K1Rb-JuiLr14SH5grCCfiF2jNi8ce2nPNBSlZEjxtktx3kPrsW4n9NWAU78BOPqcnPiYejzrzXDIn38JAZkZzMFlL4MwRq2F10NAaZznyo1j2sgJsLuaIUVN~Kah4NzBQqy54YSPwupuvkTwt2n-PZgp6BhGa78-gG27wvPeoqDbBNHUypse10E2ucWddIUMDfvtQ~W9EjV0VsleISfVEC~41rGoZeTaqJddSkxPdrC4pNLQk7WMwEyBpB7i9sc9vyuzbKIqQxyDiK~MH-LUvhVdlyH2OfGm5yOY268BPWcrwu7Y6KQrhCl1nSPW~pGOpGsnVod0eYrSHk8rwMecdw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Erratum_Strategical_incoherence_regulates_cooperation_in_social_dilemmas_on_multiplex_networks","translated_slug":"","page_count":2,"language":"en","content_type":"Work","owner":{"id":33513994,"first_name":"Sergio","middle_initials":"","last_name":"Gómez","page_name":"SergioGomez","domain_name":"urv","created_at":"2015-08-01T08:24:15.311-07:00","display_name":"Sergio Gómez","url":"https://urv.academia.edu/SergioGomez"},"attachments":[{"id":72094629,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/72094629/thumbnails/1.jpg","file_name":"pmc4557137.pdf","download_url":"https://www.academia.edu/attachments/72094629/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Erratum_Strategical_incoherence_regulate.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/72094629/pmc4557137-libre.pdf?1633889804=\u0026response-content-disposition=attachment%3B+filename%3DErratum_Strategical_incoherence_regulate.pdf\u0026Expires=1732485666\u0026Signature=K1Rb-JuiLr14SH5grCCfiF2jNi8ce2nPNBSlZEjxtktx3kPrsW4n9NWAU78BOPqcnPiYejzrzXDIn38JAZkZzMFlL4MwRq2F10NAaZznyo1j2sgJsLuaIUVN~Kah4NzBQqy54YSPwupuvkTwt2n-PZgp6BhGa78-gG27wvPeoqDbBNHUypse10E2ucWddIUMDfvtQ~W9EjV0VsleISfVEC~41rGoZeTaqJddSkxPdrC4pNLQk7WMwEyBpB7i9sc9vyuzbKIqQxyDiK~MH-LUvhVdlyH2OfGm5yOY268BPWcrwu7Y6KQrhCl1nSPW~pGOpGsnVod0eYrSHk8rwMecdw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="56967353"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/56967353/Information_transfer_in_community_structured_multiplex_networks"><img alt="Research paper thumbnail of Information transfer in community structured multiplex networks" class="work-thumbnail" src="https://attachments.academia-assets.com/72094634/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/56967353/Information_transfer_in_community_structured_multiplex_networks">Information transfer in community structured multiplex networks</a></div><div class="wp-workCard_item"><span>Frontiers in Physics</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c8410f047143b3c4a01264ce3294cdfd" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:72094634,&quot;asset_id&quot;:56967353,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/72094634/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="56967353"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="56967353"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 56967353; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=56967353]").text(description); $(".js-view-count[data-work-id=56967353]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 56967353; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='56967353']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 56967353, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c8410f047143b3c4a01264ce3294cdfd" } } $('.js-work-strip[data-work-id=56967353]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":56967353,"title":"Information transfer in community structured multiplex networks","translated_title":"","metadata":{"publisher":"Frontiers Media SA","grobid_abstract":"The study of complex networks that account for different types of interactions has become a subject of interest in the last few years, specially because its representational power in the description of users interactions in diverse online social platforms (Facebook, Twitter, Instagram, etc.). The mathematical description of these interacting networks has been coined under the name of multilayer networks, where each layer accounts for a type of interaction. It has been shown that diffusive processes on top of these networks present a phenomenology that cannot be explained by the naive superposition of single layer diffusive phenomena but require the whole structure of interconnected layers. Nevertheless, the description of diffusive phenomena on multilayer networks has obviated the fact that social networks have strong mesoscopic structure represented by different communities of individuals driven by common interests, or any other social aspect. In this work, we study the transfer of information in multilayer networks with community structure. The final goal is to understand and quantify, if the existence of well-defined community structure at the level of individual layers, together with the multilayer structure of the whole network, enhances or deteriorates the diffusion of packets of information.","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Frontiers in Physics","grobid_abstract_attachment_id":72094634},"translated_abstract":null,"internal_url":"https://www.academia.edu/56967353/Information_transfer_in_community_structured_multiplex_networks","translated_internal_url":"","created_at":"2021-10-10T10:54:57.524-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33513994,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":72094634,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/72094634/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/72094634/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Information_transfer_in_community_struct.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/72094634/pdf-libre.pdf?1633889806=\u0026response-content-disposition=attachment%3B+filename%3DInformation_transfer_in_community_struct.pdf\u0026Expires=1732485666\u0026Signature=gjZB15ZnuVvg9P4Dr0wfHGI8TH7YTUuS3gWO4uoCSDPWE84dtCuvxAb-j8NW9h~-OqY9s-7dvzcpNaVeAf5toDlc2itS0poYWQZyYGg7ZFd-D4kZdEr48C6ytAUNX1sYSsWYLoNwwGzwX5i56i-V-SKx8aabXVYoYX3wIwoW-K2U2j4wJIr9QdJPnCTdKuKlMDQ0QwgMBo9v9gJlImj0j~7f6VLD38PvD2LCfEESu33giqKHX3a4IiIV~EuzWNhV5pKMXirGhoOtQuoDoLIAzwVx1uCcp6BG9UCbUHxtC5V8odGZkmXLis6k2OvQQ6kxgc6lr-MnUvATJvk7s2X5tw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Information_transfer_in_community_structured_multiplex_networks","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":33513994,"first_name":"Sergio","middle_initials":"","last_name":"Gómez","page_name":"SergioGomez","domain_name":"urv","created_at":"2015-08-01T08:24:15.311-07:00","display_name":"Sergio Gómez","url":"https://urv.academia.edu/SergioGomez"},"attachments":[{"id":72094634,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/72094634/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/72094634/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Information_transfer_in_community_struct.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/72094634/pdf-libre.pdf?1633889806=\u0026response-content-disposition=attachment%3B+filename%3DInformation_transfer_in_community_struct.pdf\u0026Expires=1732485666\u0026Signature=gjZB15ZnuVvg9P4Dr0wfHGI8TH7YTUuS3gWO4uoCSDPWE84dtCuvxAb-j8NW9h~-OqY9s-7dvzcpNaVeAf5toDlc2itS0poYWQZyYGg7ZFd-D4kZdEr48C6ytAUNX1sYSsWYLoNwwGzwX5i56i-V-SKx8aabXVYoYX3wIwoW-K2U2j4wJIr9QdJPnCTdKuKlMDQ0QwgMBo9v9gJlImj0j~7f6VLD38PvD2LCfEESu33giqKHX3a4IiIV~EuzWNhV5pKMXirGhoOtQuoDoLIAzwVx1uCcp6BG9UCbUHxtC5V8odGZkmXLis6k2OvQQ6kxgc6lr-MnUvATJvk7s2X5tw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="56967351"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/56967351/Analytical_Interpretation_of_Feed_Forward_Nets_Outputs_After_Training"><img alt="Research paper thumbnail of Analytical Interpretation of Feed-Forward Nets Outputs After Training" class="work-thumbnail" src="https://attachments.academia-assets.com/72094676/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/56967351/Analytical_Interpretation_of_Feed_Forward_Nets_Outputs_After_Training">Analytical Interpretation of Feed-Forward Nets Outputs After Training</a></div><div class="wp-workCard_item"><span>International Journal of Neural Systems</span><span>, 1996</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The minimization quadratic error criterion which gives rise to the back-propagation algorithm is ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The minimization quadratic error criterion which gives rise to the back-propagation algorithm is studied using functional analysis techniques. With them, we recover easily the well-known statistical result which states that the searched global minimum is a function which assigns, to each input pattern, the expected value of its corresponding output patterns. Its application to classification tasks shows that only certain output class representations can be used to obtain the optimal Bayesian decision rule. Finally, our method permits the study of other error criterions, finding out, for instance, that absolute value errors lead to medians instead of mean values.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="58828f0846649cd3f24fe6ce47964663" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:72094676,&quot;asset_id&quot;:56967351,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/72094676/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="56967351"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="56967351"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 56967351; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=56967351]").text(description); $(".js-view-count[data-work-id=56967351]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 56967351; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='56967351']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 56967351, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "58828f0846649cd3f24fe6ce47964663" } } $('.js-work-strip[data-work-id=56967351]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":56967351,"title":"Analytical Interpretation of Feed-Forward Nets Outputs After Training","translated_title":"","metadata":{"abstract":"The minimization quadratic error criterion which gives rise to the back-propagation algorithm is studied using functional analysis techniques. With them, we recover easily the well-known statistical result which states that the searched global minimum is a function which assigns, to each input pattern, the expected value of its corresponding output patterns. Its application to classification tasks shows that only certain output class representations can be used to obtain the optimal Bayesian decision rule. Finally, our method permits the study of other error criterions, finding out, for instance, that absolute value errors lead to medians instead of mean values.","publisher":"World Scientific Pub Co Pte Lt","publication_date":{"day":null,"month":null,"year":1996,"errors":{}},"publication_name":"International Journal of Neural Systems"},"translated_abstract":"The minimization quadratic error criterion which gives rise to the back-propagation algorithm is studied using functional analysis techniques. With them, we recover easily the well-known statistical result which states that the searched global minimum is a function which assigns, to each input pattern, the expected value of its corresponding output patterns. Its application to classification tasks shows that only certain output class representations can be used to obtain the optimal Bayesian decision rule. Finally, our method permits the study of other error criterions, finding out, for instance, that absolute value errors lead to medians instead of mean values.","internal_url":"https://www.academia.edu/56967351/Analytical_Interpretation_of_Feed_Forward_Nets_Outputs_After_Training","translated_internal_url":"","created_at":"2021-10-10T10:54:56.437-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33513994,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":72094676,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/72094676/thumbnails/1.jpg","file_name":"Analytical_Interpretation_of_Feed-Forwar20211010-9023-3h9ejl.pdf","download_url":"https://www.academia.edu/attachments/72094676/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Analytical_Interpretation_of_Feed_Forwar.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/72094676/Analytical_Interpretation_of_Feed-Forwar20211010-9023-3h9ejl.pdf?1633888588=\u0026response-content-disposition=attachment%3B+filename%3DAnalytical_Interpretation_of_Feed_Forwar.pdf\u0026Expires=1732485666\u0026Signature=VPid3g3AeT1f4pQvK1xe8tfXjwISXJfGRK9jQ5WRg1KPDQuHMEJk5N1IBfvnee5ilFf9ljstaBe3GSoDjchmOuGOsc3aw6Cx0tFQaduEM-fr3AGFp31YjjEZiAgKl2acBFAIza25WanJHnQDEHIcxmlGTZVEg6hK~Tjz7zA9yZJroEdxtfb7Q8UABCswJSxV6Aj3tEphP1t6CrC7N~peZc0QaXjUN7V85WOFAcK0ELcBSZKhO88g26QbUsK-m5CDMzoOSOHkRXMx4b1TqEDjkcf9KMLbVxhlgJzSUSfz03TJ~AS~YWb4WBisxei5rSgcgKqJi8XZNXOqLlPSqtDIsw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Analytical_Interpretation_of_Feed_Forward_Nets_Outputs_After_Training","translated_slug":"","page_count":25,"language":"en","content_type":"Work","owner":{"id":33513994,"first_name":"Sergio","middle_initials":"","last_name":"Gómez","page_name":"SergioGomez","domain_name":"urv","created_at":"2015-08-01T08:24:15.311-07:00","display_name":"Sergio Gómez","url":"https://urv.academia.edu/SergioGomez"},"attachments":[{"id":72094676,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/72094676/thumbnails/1.jpg","file_name":"Analytical_Interpretation_of_Feed-Forwar20211010-9023-3h9ejl.pdf","download_url":"https://www.academia.edu/attachments/72094676/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Analytical_Interpretation_of_Feed_Forwar.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/72094676/Analytical_Interpretation_of_Feed-Forwar20211010-9023-3h9ejl.pdf?1633888588=\u0026response-content-disposition=attachment%3B+filename%3DAnalytical_Interpretation_of_Feed_Forwar.pdf\u0026Expires=1732485666\u0026Signature=VPid3g3AeT1f4pQvK1xe8tfXjwISXJfGRK9jQ5WRg1KPDQuHMEJk5N1IBfvnee5ilFf9ljstaBe3GSoDjchmOuGOsc3aw6Cx0tFQaduEM-fr3AGFp31YjjEZiAgKl2acBFAIza25WanJHnQDEHIcxmlGTZVEg6hK~Tjz7zA9yZJroEdxtfb7Q8UABCswJSxV6Aj3tEphP1t6CrC7N~peZc0QaXjUN7V85WOFAcK0ELcBSZKhO88g26QbUsK-m5CDMzoOSOHkRXMx4b1TqEDjkcf9KMLbVxhlgJzSUSfz03TJ~AS~YWb4WBisxei5rSgcgKqJi8XZNXOqLlPSqtDIsw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science"},{"id":428,"name":"Algorithms","url":"https://www.academia.edu/Documents/in/Algorithms"},{"id":4181,"name":"Cybernetics","url":"https://www.academia.edu/Documents/in/Cybernetics"},{"id":43774,"name":"Learning","url":"https://www.academia.edu/Documents/in/Learning"},{"id":880279,"name":"Bayes Theorem","url":"https://www.academia.edu/Documents/in/Bayes_Theorem-1"},{"id":2688270,"name":"neural systems","url":"https://www.academia.edu/Documents/in/neural_systems"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="56967152"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/56967152/Detection_of_timescales_in_evolving_complex_systems"><img alt="Research paper thumbnail of Detection of timescales in evolving complex systems" class="work-thumbnail" src="https://attachments.academia-assets.com/72094482/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/56967152/Detection_of_timescales_in_evolving_complex_systems">Detection of timescales in evolving complex systems</a></div><div class="wp-workCard_item"><span>Scientific Reports</span><span>, 2016</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a76a73614090b9a4137f80a8d2dc83d0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:72094482,&quot;asset_id&quot;:56967152,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/72094482/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="56967152"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="56967152"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 56967152; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=56967152]").text(description); $(".js-view-count[data-work-id=56967152]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 56967152; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='56967152']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 56967152, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a76a73614090b9a4137f80a8d2dc83d0" } } $('.js-work-strip[data-work-id=56967152]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":56967152,"title":"Detection of timescales in evolving complex systems","translated_title":"","metadata":{"publisher":"Springer Nature","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Scientific Reports"},"translated_abstract":null,"internal_url":"https://www.academia.edu/56967152/Detection_of_timescales_in_evolving_complex_systems","translated_internal_url":"","created_at":"2021-10-10T10:53:33.694-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33513994,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":72094482,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/72094482/thumbnails/1.jpg","file_name":"1604.pdf","download_url":"https://www.academia.edu/attachments/72094482/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Detection_of_timescales_in_evolving_comp.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/72094482/1604-libre.pdf?1633889838=\u0026response-content-disposition=attachment%3B+filename%3DDetection_of_timescales_in_evolving_comp.pdf\u0026Expires=1732485666\u0026Signature=PJ8nbsePtxdBmSJ2ndledYhnrb7-bRAwdLqJCSgomDwwBgr75n5VwLkgPltab4nhJLIDuYiPObSgJcd83QYBxH7lH07hWNzTWhFPb5wp8ViNekLcsbR5IKnwp1E5NTASTUL0Wizu2kFAhecz5RZ5bpkoVZMQH8pWYgeKnHIORjw68KHBjlWIsQXCGu4H99cfksmX1-69W~tkBiS5Tp5tmEEULXqNy4PF2pbQj7AxDdyPIi2e4bCvWPLf~3tl1i0zQl3SfsV0w2aVoqk78LPDf4Hk4HVlXLf8UivwZFVvK6kS8k65cfl2hSw4WeVlOviWbD0oX9fTmkroqLJWHXk1RQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Detection_of_timescales_in_evolving_complex_systems","translated_slug":"","page_count":17,"language":"en","content_type":"Work","owner":{"id":33513994,"first_name":"Sergio","middle_initials":"","last_name":"Gómez","page_name":"SergioGomez","domain_name":"urv","created_at":"2015-08-01T08:24:15.311-07:00","display_name":"Sergio Gómez","url":"https://urv.academia.edu/SergioGomez"},"attachments":[{"id":72094482,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/72094482/thumbnails/1.jpg","file_name":"1604.pdf","download_url":"https://www.academia.edu/attachments/72094482/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Detection_of_timescales_in_evolving_comp.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/72094482/1604-libre.pdf?1633889838=\u0026response-content-disposition=attachment%3B+filename%3DDetection_of_timescales_in_evolving_comp.pdf\u0026Expires=1732485666\u0026Signature=PJ8nbsePtxdBmSJ2ndledYhnrb7-bRAwdLqJCSgomDwwBgr75n5VwLkgPltab4nhJLIDuYiPObSgJcd83QYBxH7lH07hWNzTWhFPb5wp8ViNekLcsbR5IKnwp1E5NTASTUL0Wizu2kFAhecz5RZ5bpkoVZMQH8pWYgeKnHIORjw68KHBjlWIsQXCGu4H99cfksmX1-69W~tkBiS5Tp5tmEEULXqNy4PF2pbQj7AxDdyPIi2e4bCvWPLf~3tl1i0zQl3SfsV0w2aVoqk78LPDf4Hk4HVlXLf8UivwZFVvK6kS8k65cfl2hSw4WeVlOviWbD0oX9fTmkroqLJWHXk1RQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22635315"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/22635315/Complex_Networked_Systems_Foundations_and_Implications"><img alt="Research paper thumbnail of Complex Networked Systems: Foundations and Implications" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/22635315/Complex_Networked_Systems_Foundations_and_Implications">Complex Networked Systems: Foundations and Implications</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22635315"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22635315"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22635315; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22635315]").text(description); $(".js-view-count[data-work-id=22635315]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22635315; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22635315']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22635315, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=22635315]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22635315,"title":"Complex Networked Systems: Foundations and Implications","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/22635315/Complex_Networked_Systems_Foundations_and_Implications","translated_internal_url":"","created_at":"2016-03-01T01:19:34.188-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33513994,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Complex_Networked_Systems_Foundations_and_Implications","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":33513994,"first_name":"Sergio","middle_initials":"","last_name":"Gómez","page_name":"SergioGomez","domain_name":"urv","created_at":"2015-08-01T08:24:15.311-07:00","display_name":"Sergio Gómez","url":"https://urv.academia.edu/SergioGomez"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22635304"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/22635304/Methods_for_encoding_in_multilayer_feed_forward_neural_networks"><img alt="Research paper thumbnail of Methods for encoding in multilayer feed-forward neural networks" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/22635304/Methods_for_encoding_in_multilayer_feed_forward_neural_networks">Methods for encoding in multilayer feed-forward neural networks</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span><span>, 1991</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Neural network techniques for encoding-decoding processes have been developed. The net we have de...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Neural network techniques for encoding-decoding processes have been developed. The net we have devised can work like a memory retrieval system in the sense of Hopfield, Feinstein and Palmer. Its behaviour for 2 R (R N) input units has some special interesting features. In particular, the accessibilities for each initial symbol may be explicitly computed. Although thermal noise may muddle</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22635304"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22635304"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22635304; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22635304]").text(description); $(".js-view-count[data-work-id=22635304]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22635304; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22635304']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22635304, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=22635304]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22635304,"title":"Methods for encoding in multilayer feed-forward neural networks","translated_title":"","metadata":{"abstract":"Neural network techniques for encoding-decoding processes have been developed. The net we have devised can work like a memory retrieval system in the sense of Hopfield, Feinstein and Palmer. Its behaviour for 2 R (R N) input units has some special interesting features. In particular, the accessibilities for each initial symbol may be explicitly computed. Although thermal noise may muddle","publication_date":{"day":null,"month":null,"year":1991,"errors":{}},"publication_name":"Lecture Notes in Computer Science"},"translated_abstract":"Neural network techniques for encoding-decoding processes have been developed. The net we have devised can work like a memory retrieval system in the sense of Hopfield, Feinstein and Palmer. Its behaviour for 2 R (R N) input units has some special interesting features. In particular, the accessibilities for each initial symbol may be explicitly computed. Although thermal noise may muddle","internal_url":"https://www.academia.edu/22635304/Methods_for_encoding_in_multilayer_feed_forward_neural_networks","translated_internal_url":"","created_at":"2016-03-01T01:18:36.587-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33513994,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Methods_for_encoding_in_multilayer_feed_forward_neural_networks","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":33513994,"first_name":"Sergio","middle_initials":"","last_name":"Gómez","page_name":"SergioGomez","domain_name":"urv","created_at":"2015-08-01T08:24:15.311-07:00","display_name":"Sergio Gómez","url":"https://urv.academia.edu/SergioGomez"},"attachments":[],"research_interests":[{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network"},{"id":1458139,"name":"Thermal Noise","url":"https://www.academia.edu/Documents/in/Thermal_Noise"},{"id":2003344,"name":"Feed Forward Neural Network","url":"https://www.academia.edu/Documents/in/Feed_Forward_Neural_Network"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22635303"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/22635303/Maximum_overlap_neural_networks_for_associative_memory"><img alt="Research paper thumbnail of Maximum overlap neural networks for associative memory" class="work-thumbnail" src="https://attachments.academia-assets.com/43230640/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/22635303/Maximum_overlap_neural_networks_for_associative_memory">Maximum overlap neural networks for associative memory</a></div><div class="wp-workCard_item"><span>Physics Letters A</span><span>, 1992</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="11ab8e121e75df5e052e07d0efb66dde" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:43230640,&quot;asset_id&quot;:22635303,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/43230640/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22635303"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22635303"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22635303; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22635303]").text(description); $(".js-view-count[data-work-id=22635303]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22635303; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22635303']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22635303, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "11ab8e121e75df5e052e07d0efb66dde" } } $('.js-work-strip[data-work-id=22635303]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22635303,"title":"Maximum overlap neural networks for associative memory","translated_title":"","metadata":{"grobid_abstract":"The possibility of achieving optimal associative memory by means of multilayer neural networks is explored. Three original different solutions which guarantee maximal basins of attraction and storage capacity are found and their main characteristics are outlined.","publication_date":{"day":null,"month":null,"year":1992,"errors":{}},"publication_name":"Physics Letters A","grobid_abstract_attachment_id":43230640},"translated_abstract":null,"internal_url":"https://www.academia.edu/22635303/Maximum_overlap_neural_networks_for_associative_memory","translated_internal_url":"","created_at":"2016-03-01T01:18:36.412-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33513994,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":43230640,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/43230640/thumbnails/1.jpg","file_name":"0375-9601_2892_2990779-l.pdf20160301-1480-nrbreq","download_url":"https://www.academia.edu/attachments/43230640/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Maximum_overlap_neural_networks_for_asso.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/43230640/0375-9601_2892_2990779-l-libre.pdf20160301-1480-nrbreq?1456825939=\u0026response-content-disposition=attachment%3B+filename%3DMaximum_overlap_neural_networks_for_asso.pdf\u0026Expires=1732485666\u0026Signature=Y1RIKKCoDI-YhlbCbkqGMir-uW5mM4YsrXo14T7okbpaLyFNqIhzYZb72-tq1iN-OwNy-8Ivdhp7EGhtW3h7YfY0gA~X2mC-LkULVq2KRjhITsBRw1X3KUjIZ9H1os7Pl0SgiJWroETbSDEBsF1tu58D1m~P2VDUPXVwNa5TXXRONEap6VtBhQKpLb7QFJBsCm17yLcNzea4BhAuawII1VEnCBPGsJcl1HeYJeANtJFS2HHXvGoAXP7SETrjRJQRDuvh1Tb~Dmq9qXG9-VVXRk8TYJReAioLa6eQkNj-RulKU1~Csr9DvV0R-PzO8nUccAuHw5kzJImz5uukzpdp2w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Maximum_overlap_neural_networks_for_associative_memory","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":33513994,"first_name":"Sergio","middle_initials":"","last_name":"Gómez","page_name":"SergioGomez","domain_name":"urv","created_at":"2015-08-01T08:24:15.311-07:00","display_name":"Sergio Gómez","url":"https://urv.academia.edu/SergioGomez"},"attachments":[{"id":43230640,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/43230640/thumbnails/1.jpg","file_name":"0375-9601_2892_2990779-l.pdf20160301-1480-nrbreq","download_url":"https://www.academia.edu/attachments/43230640/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Maximum_overlap_neural_networks_for_asso.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/43230640/0375-9601_2892_2990779-l-libre.pdf20160301-1480-nrbreq?1456825939=\u0026response-content-disposition=attachment%3B+filename%3DMaximum_overlap_neural_networks_for_asso.pdf\u0026Expires=1732485666\u0026Signature=Y1RIKKCoDI-YhlbCbkqGMir-uW5mM4YsrXo14T7okbpaLyFNqIhzYZb72-tq1iN-OwNy-8Ivdhp7EGhtW3h7YfY0gA~X2mC-LkULVq2KRjhITsBRw1X3KUjIZ9H1os7Pl0SgiJWroETbSDEBsF1tu58D1m~P2VDUPXVwNa5TXXRONEap6VtBhQKpLb7QFJBsCm17yLcNzea4BhAuawII1VEnCBPGsJcl1HeYJeANtJFS2HHXvGoAXP7SETrjRJQRDuvh1Tb~Dmq9qXG9-VVXRk8TYJReAioLa6eQkNj-RulKU1~Csr9DvV0R-PzO8nUccAuHw5kzJImz5uukzpdp2w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":328150,"name":"Associative Memory","url":"https://www.academia.edu/Documents/in/Associative_Memory"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22635302"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/22635302/Multistate_perceptrons_learning_rule_and_perceptron_of_maximal_stability"><img alt="Research paper thumbnail of Multistate perceptrons: learning rule and perceptron of maximal stability" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/22635302/Multistate_perceptrons_learning_rule_and_perceptron_of_maximal_stability">Multistate perceptrons: learning rule and perceptron of maximal stability</a></div><div class="wp-workCard_item"><span>Journal of Physics A: Mathematical and General</span><span>, 1992</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">... In this article we shall first introduce a new multistate perceptron learning nile, and then ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">... In this article we shall first introduce a new multistate perceptron learning nile, and then prove the corresponding convergence theorem. ... Our proposal for the multistate perceptron learningnile stems from the following theorem. Page 5. 5042 Theorem. ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22635302"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22635302"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22635302; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22635302]").text(description); $(".js-view-count[data-work-id=22635302]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22635302; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22635302']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22635302, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=22635302]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22635302,"title":"Multistate perceptrons: learning rule and perceptron of maximal stability","translated_title":"","metadata":{"abstract":"... In this article we shall first introduce a new multistate perceptron learning nile, and then prove the corresponding convergence theorem. ... Our proposal for the multistate perceptron learningnile stems from the following theorem. Page 5. 5042 Theorem. ...","publication_date":{"day":null,"month":null,"year":1992,"errors":{}},"publication_name":"Journal of Physics A: Mathematical and General"},"translated_abstract":"... In this article we shall first introduce a new multistate perceptron learning nile, and then prove the corresponding convergence theorem. ... Our proposal for the multistate perceptron learningnile stems from the following theorem. Page 5. 5042 Theorem. ...","internal_url":"https://www.academia.edu/22635302/Multistate_perceptrons_learning_rule_and_perceptron_of_maximal_stability","translated_internal_url":"","created_at":"2016-03-01T01:18:36.261-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33513994,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Multistate_perceptrons_learning_rule_and_perceptron_of_maximal_stability","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":33513994,"first_name":"Sergio","middle_initials":"","last_name":"Gómez","page_name":"SergioGomez","domain_name":"urv","created_at":"2015-08-01T08:24:15.311-07:00","display_name":"Sergio Gómez","url":"https://urv.academia.edu/SergioGomez"},"attachments":[],"research_interests":[{"id":15124,"name":"Convergence","url":"https://www.academia.edu/Documents/in/Convergence"},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":1004747,"name":"Perceptron","url":"https://www.academia.edu/Documents/in/Perceptron"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="22635301"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/22635301/Encoding_strategies_in_multilayer_neural_networks"><img alt="Research paper thumbnail of Encoding strategies in multilayer neural networks" class="work-thumbnail" src="https://attachments.academia-assets.com/43230643/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/22635301/Encoding_strategies_in_multilayer_neural_networks">Encoding strategies in multilayer neural networks</a></div><div class="wp-workCard_item"><span>Journal of Physics A: Mathematical and General</span><span>, 1991</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5b1f0aed46c2b298b9201fefa0092d0d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:43230643,&quot;asset_id&quot;:22635301,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/43230643/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="22635301"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="22635301"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 22635301; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=22635301]").text(description); $(".js-view-count[data-work-id=22635301]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 22635301; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='22635301']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 22635301, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5b1f0aed46c2b298b9201fefa0092d0d" } } $('.js-work-strip[data-work-id=22635301]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":22635301,"title":"Encoding strategies in multilayer neural networks","translated_title":"","metadata":{"grobid_abstract":"Neural networks capable of encoding sets of patterns are analysed. Solutions are found by theoretical treatment instead of by supervised learning. The behaviour for 2 R (R ∈ N) input units is studied and its characteristic features are discussed. The accessibilities for non-spurious patterns are calculated by analytic methods. Although thermal noise may induce wrong encoding, we show how it can rid the output of spurious sequences. Further, we compute error bounds at finite temperature.","publication_date":{"day":null,"month":null,"year":1991,"errors":{}},"publication_name":"Journal of Physics A: Mathematical and General","grobid_abstract_attachment_id":43230643},"translated_abstract":null,"internal_url":"https://www.academia.edu/22635301/Encoding_strategies_in_multilayer_neural_networks","translated_internal_url":"","created_at":"2016-03-01T01:18:36.123-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33513994,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":43230643,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/43230643/thumbnails/1.jpg","file_name":"Encoding_Strategies_in_Multilayer_Neural20160301-13747-1s6jvmn.pdf","download_url":"https://www.academia.edu/attachments/43230643/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Encoding_strategies_in_multilayer_neural.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/43230643/Encoding_Strategies_in_Multilayer_Neural20160301-13747-1s6jvmn-libre.pdf?1456825941=\u0026response-content-disposition=attachment%3B+filename%3DEncoding_strategies_in_multilayer_neural.pdf\u0026Expires=1732485666\u0026Signature=EVPc5yC4T38qPT~rDqw7EMeNwSI0z1uFdaHmin6E0daDbd2S-hdxBfefU2MEqr1HKqJGQoUKn7XHmAHDH2G2h3xKdM6ER80HvsJE3hk6YA8~cykG-aBmFP~XAxqFwkFjxibtM~h9TYQtGbCrcdip1KnZyXoyijtON2KHUfjeuWeRG4gQlV~wxrJUXT72xM1cEFV9I~ECF6qO~uHdbxHPHRTDFLA83MQqlRndLxHpy5VTEimCEKnac5NygOjIgCiviunRhpBpD7LN11EyiR-i42HF~5OF-dIFgSSBxk~HICMb1oJmZMz5oEDIk82XiNfjqDC2KTu5UYQQzkGFgz3T5A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Encoding_strategies_in_multilayer_neural_networks","translated_slug":"","page_count":32,"language":"en","content_type":"Work","owner":{"id":33513994,"first_name":"Sergio","middle_initials":"","last_name":"Gómez","page_name":"SergioGomez","domain_name":"urv","created_at":"2015-08-01T08:24:15.311-07:00","display_name":"Sergio Gómez","url":"https://urv.academia.edu/SergioGomez"},"attachments":[{"id":43230643,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/43230643/thumbnails/1.jpg","file_name":"Encoding_Strategies_in_Multilayer_Neural20160301-13747-1s6jvmn.pdf","download_url":"https://www.academia.edu/attachments/43230643/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Encoding_strategies_in_multilayer_neural.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/43230643/Encoding_Strategies_in_Multilayer_Neural20160301-13747-1s6jvmn-libre.pdf?1456825941=\u0026response-content-disposition=attachment%3B+filename%3DEncoding_strategies_in_multilayer_neural.pdf\u0026Expires=1732485666\u0026Signature=EVPc5yC4T38qPT~rDqw7EMeNwSI0z1uFdaHmin6E0daDbd2S-hdxBfefU2MEqr1HKqJGQoUKn7XHmAHDH2G2h3xKdM6ER80HvsJE3hk6YA8~cykG-aBmFP~XAxqFwkFjxibtM~h9TYQtGbCrcdip1KnZyXoyijtON2KHUfjeuWeRG4gQlV~wxrJUXT72xM1cEFV9I~ECF6qO~uHdbxHPHRTDFLA83MQqlRndLxHpy5VTEimCEKnac5NygOjIgCiviunRhpBpD7LN11EyiR-i42HF~5OF-dIFgSSBxk~HICMb1oJmZMz5oEDIk82XiNfjqDC2KTu5UYQQzkGFgz3T5A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":95069,"name":"Supervised Learning","url":"https://www.academia.edu/Documents/in/Supervised_Learning"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":330839,"name":"Analytical Method","url":"https://www.academia.edu/Documents/in/Analytical_Method"},{"id":1156863,"name":"Finite Temperature","url":"https://www.academia.edu/Documents/in/Finite_Temperature"},{"id":1458139,"name":"Thermal Noise","url":"https://www.academia.edu/Documents/in/Thermal_Noise"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="18321181"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/18321181/Motif_based_communities_in_complex_networks"><img alt="Research paper thumbnail of Motif-based communities in complex networks" class="work-thumbnail" src="https://attachments.academia-assets.com/39993635/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/18321181/Motif_based_communities_in_complex_networks">Motif-based communities in complex networks</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/FortunatoSanto">Santo Fortunato</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://urv.academia.edu/SergioGomez">Sergio Gómez</a></span></div><div class="wp-workCard_item"><span>Journal of Physics A: Mathematical and Theoretical</span><span>, 2008</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="95825bfa4d01b741f4f8940985465a72" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:39993635,&quot;asset_id&quot;:18321181,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/39993635/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="18321181"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="18321181"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 18321181; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=18321181]").text(description); $(".js-view-count[data-work-id=18321181]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 18321181; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='18321181']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 18321181, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "95825bfa4d01b741f4f8940985465a72" } } $('.js-work-strip[data-work-id=18321181]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":18321181,"title":"Motif-based communities in complex networks","translated_title":"","metadata":{"grobid_abstract":"Community definitions usually focus on edges, inside and between the communities. However, the high density of edges within a community determines correlations between nodes going beyond nearest-neighbours, and which are indicated by the presence of motifs. We show how motifs can be used to define general classes of nodes, including communities, by extending the mathematical expression of Newman-Girvan modularity. We construct then a general framework and apply it to some synthetic and real networks.","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"Journal of Physics A: Mathematical and Theoretical","grobid_abstract_attachment_id":39993635},"translated_abstract":null,"internal_url":"https://www.academia.edu/18321181/Motif_based_communities_in_complex_networks","translated_internal_url":"","created_at":"2015-11-14T05:14:48.003-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":38312703,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":9762283,"work_id":18321181,"tagging_user_id":38312703,"tagged_user_id":33468097,"co_author_invite_id":2236418,"email":"a***s@urv.cat","affiliation":"Universitat Rovira i Virgili","display_order":0,"name":"Alex Arenas","title":"Motif-based communities in complex networks"},{"id":9764301,"work_id":18321181,"tagging_user_id":38312703,"tagged_user_id":4060659,"co_author_invite_id":null,"email":"g***9@hotmail.com","affiliation":"Instituto Politécnico Nacional","display_order":4194304,"name":"Alejandro Gómez","title":"Motif-based communities in complex networks"},{"id":9764302,"work_id":18321181,"tagging_user_id":38312703,"tagged_user_id":null,"co_author_invite_id":1295106,"email":"a***s@med.ucm.es","display_order":6291456,"name":"Alberto Fernández","title":"Motif-based communities in complex networks"},{"id":9764303,"work_id":18321181,"tagging_user_id":38312703,"tagged_user_id":null,"co_author_invite_id":1272088,"email":"a***z@ujaen.es","display_order":7340032,"name":"Alberto Fernández","title":"Motif-based communities in complex networks"},{"id":9764304,"work_id":18321181,"tagging_user_id":38312703,"tagged_user_id":35004629,"co_author_invite_id":null,"email":"a***z@urjc.es","affiliation":"Universidad Rey Juan Carlos","display_order":7864320,"name":"Alberto Fernández","title":"Motif-based communities in complex networks"},{"id":9764306,"work_id":18321181,"tagging_user_id":38312703,"tagged_user_id":31795718,"co_author_invite_id":null,"email":"a***6@hotmail.com","display_order":8126464,"name":"sergio gomez","title":"Motif-based communities in complex networks"},{"id":9764307,"work_id":18321181,"tagging_user_id":38312703,"tagged_user_id":24454301,"co_author_invite_id":null,"email":"p***s@gmail.com","display_order":8257536,"name":"Sergio Gómez","title":"Motif-based communities in complex networks"},{"id":9764308,"work_id":18321181,"tagging_user_id":38312703,"tagged_user_id":29215296,"co_author_invite_id":null,"email":"s***e@gmail.com","display_order":8323072,"name":"Sergio Gomez","title":"Motif-based communities in complex networks"},{"id":9764309,"work_id":18321181,"tagging_user_id":38312703,"tagged_user_id":null,"co_author_invite_id":255850,"email":"s***g@eia.udg.edu","display_order":8355840,"name":"Sergio Gómez","title":"Motif-based communities in complex networks"},{"id":9764314,"work_id":18321181,"tagging_user_id":38312703,"tagged_user_id":6801826,"co_author_invite_id":null,"email":"s***0@hotmail.com","affiliation":"Universidad de Córdoba","display_order":8372224,"name":"Sergio Gomez","title":"Motif-based communities in complex networks"},{"id":9764342,"work_id":18321181,"tagging_user_id":38312703,"tagged_user_id":null,"co_author_invite_id":2236955,"email":"s***z@etse.urv.es","display_order":8380416,"name":"Sergio Gómez","title":"Motif-based communities in complex networks"},{"id":9764344,"work_id":18321181,"tagging_user_id":38312703,"tagged_user_id":33513994,"co_author_invite_id":null,"email":"s***z@urv.cat","affiliation":"Universitat Rovira i Virgili","display_order":8386560,"name":"Sergio Gómez","title":"Motif-based communities in complex networks"}],"downloadable_attachments":[{"id":39993635,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39993635/thumbnails/1.jpg","file_name":"Motif-based_communities_in_complex_netwo20151114-24053-al788m.pdf","download_url":"https://www.academia.edu/attachments/39993635/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Motif_based_communities_in_complex_netwo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39993635/Motif-based_communities_in_complex_netwo20151114-24053-al788m-libre.pdf?1447507019=\u0026response-content-disposition=attachment%3B+filename%3DMotif_based_communities_in_complex_netwo.pdf\u0026Expires=1732485666\u0026Signature=dZXPWApc~AGRGz9L99zUkncDs-bpr9z~4CR~fo5yt2Q7avR1q2S3y5d3qt~auH6EmvEanU-Bpgp1v-2NPOiTynginQh46hhDMs3F5NR~GCkwEqpqzLEPi1C-qRRdyFqu7mf6G710I3ssSXALJHMruYir9XvVFMgGUXjlhPvBTb7GtkJi4H04OeaarmD-GCHSzc456UG9HzqRH6ihbmi52y2fqueQy3Q3xUEUsJlx1fKHyRvtRieKGWTFRVQb41I1Wj1NkXIqVtF-Tbwodl7dN3NMaErhDWsqS11G1OD9mkW~-rkffdRq5hHShymNHtQpPiAHwUsKqsK9CxBVFENCsQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Motif_based_communities_in_complex_networks","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":38312703,"first_name":"Santo","middle_initials":null,"last_name":"Fortunato","page_name":"FortunatoSanto","domain_name":"independent","created_at":"2015-11-14T05:09:39.515-08:00","display_name":"Santo Fortunato","url":"https://independent.academia.edu/FortunatoSanto"},"attachments":[{"id":39993635,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39993635/thumbnails/1.jpg","file_name":"Motif-based_communities_in_complex_netwo20151114-24053-al788m.pdf","download_url":"https://www.academia.edu/attachments/39993635/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ4MjA2Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Motif_based_communities_in_complex_netwo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39993635/Motif-based_communities_in_complex_netwo20151114-24053-al788m-libre.pdf?1447507019=\u0026response-content-disposition=attachment%3B+filename%3DMotif_based_communities_in_complex_netwo.pdf\u0026Expires=1732485666\u0026Signature=dZXPWApc~AGRGz9L99zUkncDs-bpr9z~4CR~fo5yt2Q7avR1q2S3y5d3qt~auH6EmvEanU-Bpgp1v-2NPOiTynginQh46hhDMs3F5NR~GCkwEqpqzLEPi1C-qRRdyFqu7mf6G710I3ssSXALJHMruYir9XvVFMgGUXjlhPvBTb7GtkJi4H04OeaarmD-GCHSzc456UG9HzqRH6ihbmi52y2fqueQy3Q3xUEUsJlx1fKHyRvtRieKGWTFRVQb41I1Wj1NkXIqVtF-Tbwodl7dN3NMaErhDWsqS11G1OD9mkW~-rkffdRq5hHShymNHtQpPiAHwUsKqsK9CxBVFENCsQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":99499,"name":"Complex network","url":"https://www.academia.edu/Documents/in/Complex_network"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":620661,"name":"High Density Concrete","url":"https://www.academia.edu/Documents/in/High_Density_Concrete"},{"id":629732,"name":"Nearest Neighbour","url":"https://www.academia.edu/Documents/in/Nearest_Neighbour"},{"id":1986543,"name":"PACS numbers","url":"https://www.academia.edu/Documents/in/PACS_numbers"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="20062606"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/20062606/Optimal_projection_to_estimate_the_proportions_of_the_different_subsamples_in_a_given_mixture_sample"><img alt="Research paper thumbnail of Optimal projection to estimate the proportions of the different subsamples in a given mixture sample" class="work-thumbnail" src="https://attachments.academia-assets.com/41157143/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/20062606/Optimal_projection_to_estimate_the_proportions_of_the_different_subsamples_in_a_given_mixture_sample">Optimal projection to estimate the proportions of the different subsamples in a given mixture sample</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/VicensGaitan">Vicens Gaitan</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://urv.academia.edu/SergioGomez">Sergio Gómez</a>, and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/AurelioJuste">Aurelio Juste</a></span></div><div class="wp-workCard_item"><span>Computer Physics Communications</span><span>, 1997</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2bd421b47080ba515765fb1e3e721ee4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:41157143,&quot;asset_id&quot;:20062606,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/41157143/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="20062606"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="20062606"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 20062606; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=20062606]").text(description); $(".js-view-count[data-work-id=20062606]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 20062606; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='20062606']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 20062606, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2bd421b47080ba515765fb1e3e721ee4" } } $('.js-work-strip[data-work-id=20062606]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":20062606,"title":"Optimal projection to estimate the proportions of the different subsamples in a given mixture sample","translated_title":"","metadata":{"grobid_abstract":"Given a n-dimensional sample composed of a mixture of m subsamples with different probability density functions (p.d.f.), it is possible to build a (m − 1)-dimensional distribution that carries all the information about the subsample proportions in the mixture sample. This projection can be estimated without an analytical knowlegde of the p.d.f.'s of the different subsamples with the aid, for instance, of neural networks. This way, if m − 1 \u003c n it is possible to estimate the proportions of the mixture sample in a lower (m − 1)-dimensional space without losing sensitivity.","publication_date":{"day":null,"month":null,"year":1997,"errors":{}},"publication_name":"Computer Physics Communications","grobid_abstract_attachment_id":41157143},"translated_abstract":null,"internal_url":"https://www.academia.edu/20062606/Optimal_projection_to_estimate_the_proportions_of_the_different_subsamples_in_a_given_mixture_sample","translated_internal_url":"","created_at":"2016-01-06T09:56:15.784-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":41037490,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":12631889,"work_id":20062606,"tagging_user_id":41037490,"tagged_user_id":33513994,"co_author_invite_id":null,"email":"s***z@urv.cat","affiliation":"Universitat Rovira i Virgili","display_order":0,"name":"Sergio Gómez","title":"Optimal projection to estimate the proportions of the different subsamples in a given mixture sample"},{"id":12631890,"work_id":20062606,"tagging_user_id":41037490,"tagged_user_id":null,"co_author_invite_id":973428,"email":"g***o@ecm.ub.es","display_order":4194304,"name":"L. Garrido","title":"Optimal projection to estimate the proportions of the different subsamples in a given mixture sample"},{"id":12631893,"work_id":20062606,"tagging_user_id":41037490,"tagged_user_id":41369886,"co_author_invite_id":973429,"email":"j***e@ifae.es","display_order":6291456,"name":"Aurelio Juste","title":"Optimal projection to estimate the proportions of the different subsamples in a given mixture sample"},{"id":12758312,"work_id":20062606,"tagging_user_id":41037490,"tagged_user_id":4767376,"co_author_invite_id":null,"email":"v***n@gmail.com","affiliation":"Universitat Autònoma de Barcelona","display_order":7340032,"name":"Vicens Alcalde","title":"Optimal projection to estimate the proportions of the different subsamples in a given mixture sample"}],"downloadable_attachments":[{"id":41157143,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41157143/thumbnails/1.jpg","file_name":"Optimal_projection_to_estimate_the_propo20160114-17598-7r3jw0.pdf20160114-19908-169i7a1.pdf","download_url":"https://www.academia.edu/attachments/41157143/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Optimal_projection_to_estimate_the_propo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41157143/Optimal_projection_to_estimate_the_propo20160114-17598-7r3jw0.pdf20160114-19908-169i7a1-libre.pdf?1452831862=\u0026response-content-disposition=attachment%3B+filename%3DOptimal_projection_to_estimate_the_propo.pdf\u0026Expires=1732485666\u0026Signature=EL0dZbkkXF~1QeKNaxswjiDKN9vRkEaXsHCMB87h6SYaviNa7sOvs6o11rbjklA9O9cwmD-9MYPIsJ4V6y0Ds94QFBBqZvWgGkZ9LIPH7qXJVErD-sxh-u8bXT5Flz~aSeBjzIoQKyS0Y7iF39aXWkAcDAN7iVbMNgDjQ~shhatDv9o0lt5smbax7ySQ96lNqkLk03bZig~~nivDGp6upiRHgbZJzaRdVbHwjrf2KEJljK7fAJUWd-X5vkEetlKK0hQGo3VOKofwVvofF1p-2qie3x3mN9mQzVUgRXD2G~FiBIUtEWpNCb9OomeUdnM7D49-3nWncTiuCy8IuiD14w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Optimal_projection_to_estimate_the_proportions_of_the_different_subsamples_in_a_given_mixture_sample","translated_slug":"","page_count":13,"language":"en","content_type":"Work","owner":{"id":41037490,"first_name":"Vicens","middle_initials":null,"last_name":"Gaitan","page_name":"VicensGaitan","domain_name":"independent","created_at":"2016-01-06T09:55:39.619-08:00","display_name":"Vicens Gaitan","url":"https://independent.academia.edu/VicensGaitan"},"attachments":[{"id":41157143,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41157143/thumbnails/1.jpg","file_name":"Optimal_projection_to_estimate_the_propo20160114-17598-7r3jw0.pdf20160114-19908-169i7a1.pdf","download_url":"https://www.academia.edu/attachments/41157143/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Optimal_projection_to_estimate_the_propo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41157143/Optimal_projection_to_estimate_the_propo20160114-17598-7r3jw0.pdf20160114-19908-169i7a1-libre.pdf?1452831862=\u0026response-content-disposition=attachment%3B+filename%3DOptimal_projection_to_estimate_the_propo.pdf\u0026Expires=1732485667\u0026Signature=KNL9gcmvcLGkcvFFxtkempu-giL2ri~GOOVI5b22GPFmMbhF9rNRwaJijXFKwFzbEIpaXZ-s~RaLHpfpTLO4X1tporn0nMQ~1D5GZJneEbVDzzXCr1S4Rm8Re048rGskn8vsys0gaoyK-5WAEfz1IfkR~6j9HT~E9vDR48xInRAoaHy36WM-FmDjl5jWumxEywCM4JuUOGwJnbwNUdkWBs9IST4YJvdL8nutJ4CWwjcWGW87yykbSS8PX7aed1Z422jKfYqW5~p-L5AaetxzzyKs7Bsr-i8fd8CUvYfU4ZwaIDjZoot1Hsm2TCWigCrf1a-R3nmzroWexZm8JrqY3w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":267802,"name":"Dimensional","url":"https://www.academia.edu/Documents/in/Dimensional"},{"id":872399,"name":"Probability Density Function","url":"https://www.academia.edu/Documents/in/Probability_Density_Function"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="15682388"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/15682388/Strategical_incoherence_regulates_cooperation_in_social_dilemmas_on_multiplex_networks"><img alt="Research paper thumbnail of Strategical incoherence regulates cooperation in social dilemmas on multiplex networks" class="work-thumbnail" src="https://attachments.academia-assets.com/38763736/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/15682388/Strategical_incoherence_regulates_cooperation_in_social_dilemmas_on_multiplex_networks">Strategical incoherence regulates cooperation in social dilemmas on multiplex networks</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://hms-harvard.academia.edu/JoanMatamalas">Joan T Matamalas</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/JuliaPoncela">Julia Poncela</a>, and <a class="" data-click-track="profile-work-strip-authors" href="https://urv.academia.edu/SergioGomez">Sergio Gómez</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Cooperation is a very common, yet not fully-understood phenomenon in natural and human systems. T...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Cooperation is a very common, yet not fully-understood phenomenon in natural and human systems. The introduction of a network within the population is known to affect the outcome of cooperative dynamics, allowing for the survival of cooperation in adverse scenarios. Recently, the introduction of multiplex networks has yet again modified the expectations for the outcome of the Prisoner’s Dilemma game, compared to the monoplex case. However, much remains unstudied regarding other social dilemmas on multiplex, as well as the unexplored microscopic underpinnings of it. In this paper, we systematically study the evolution of cooperation in all four games in the T − S plane on multiplex. More importantly, we find some remarkable and previously unknown features in the microscopic organization of the strategies, that are responsible for the important differences between cooperative dynamics in monoplex and multiplex. Specifically, we find that in the stationary state, there are individuals that play the same strategy in all layers (coherent), and others that don’t (incoherent). This second group of players is responsible for the surprising fact of a non full-cooperation in the Harmony Game on multiplex, never observed before, as well as a higher-than-expected cooperation rates in some regions of the other three social dilemmas.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="653d07cceae3dff5c5ab1c3682966096" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:38763736,&quot;asset_id&quot;:15682388,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/38763736/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="15682388"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="15682388"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 15682388; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=15682388]").text(description); $(".js-view-count[data-work-id=15682388]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 15682388; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='15682388']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 15682388, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "653d07cceae3dff5c5ab1c3682966096" } } $('.js-work-strip[data-work-id=15682388]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":15682388,"title":"Strategical incoherence regulates cooperation in social dilemmas on multiplex networks","translated_title":"","metadata":{"abstract":"Cooperation is a very common, yet not fully-understood phenomenon in natural and human systems. The introduction of a network within the population is known to affect the outcome of cooperative dynamics, allowing for the survival of cooperation in adverse scenarios. Recently, the introduction of multiplex networks has yet again modified the expectations for the outcome of the Prisoner’s Dilemma game, compared to the monoplex case. However, much remains unstudied regarding other social dilemmas on multiplex, as well as the unexplored microscopic underpinnings of it. In this paper, we systematically study the evolution of cooperation in all four games in the T − S plane on multiplex. More importantly, we find some remarkable and previously unknown features in the microscopic organization of the strategies, that are responsible for the important differences between cooperative dynamics in monoplex and multiplex. Specifically, we find that in the stationary state, there are individuals that play the same strategy in all layers (coherent), and others that don’t (incoherent). This second group of players is responsible for the surprising fact of a non full-cooperation in the Harmony Game on multiplex, never observed before, as well as a higher-than-expected cooperation rates in some regions of the other three social dilemmas."},"translated_abstract":"Cooperation is a very common, yet not fully-understood phenomenon in natural and human systems. The introduction of a network within the population is known to affect the outcome of cooperative dynamics, allowing for the survival of cooperation in adverse scenarios. Recently, the introduction of multiplex networks has yet again modified the expectations for the outcome of the Prisoner’s Dilemma game, compared to the monoplex case. However, much remains unstudied regarding other social dilemmas on multiplex, as well as the unexplored microscopic underpinnings of it. In this paper, we systematically study the evolution of cooperation in all four games in the T − S plane on multiplex. More importantly, we find some remarkable and previously unknown features in the microscopic organization of the strategies, that are responsible for the important differences between cooperative dynamics in monoplex and multiplex. Specifically, we find that in the stationary state, there are individuals that play the same strategy in all layers (coherent), and others that don’t (incoherent). This second group of players is responsible for the surprising fact of a non full-cooperation in the Harmony Game on multiplex, never observed before, as well as a higher-than-expected cooperation rates in some regions of the other three social dilemmas.","internal_url":"https://www.academia.edu/15682388/Strategical_incoherence_regulates_cooperation_in_social_dilemmas_on_multiplex_networks","translated_internal_url":"","created_at":"2015-09-14T05:44:29.015-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":27502351,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":5826659,"work_id":15682388,"tagging_user_id":27502351,"tagged_user_id":34915849,"co_author_invite_id":1287209,"email":"j***a@gmail.com","display_order":0,"name":"Julia Poncela","title":"Strategical incoherence regulates cooperation in social dilemmas on multiplex networks"},{"id":5826660,"work_id":15682388,"tagging_user_id":27502351,"tagged_user_id":33513994,"co_author_invite_id":null,"email":"s***z@urv.cat","affiliation":"Universitat Rovira i Virgili","display_order":4194304,"name":"Sergio Gómez","title":"Strategical incoherence regulates cooperation in social dilemmas on multiplex networks"},{"id":5826661,"work_id":15682388,"tagging_user_id":27502351,"tagged_user_id":33468097,"co_author_invite_id":null,"email":"a***s@urv.cat","affiliation":"Universitat Rovira i Virgili","display_order":6291456,"name":"Alex Arenas","title":"Strategical incoherence regulates cooperation in social dilemmas on multiplex networks"}],"downloadable_attachments":[{"id":38763736,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/38763736/thumbnails/1.jpg","file_name":"srep09519.pdf","download_url":"https://www.academia.edu/attachments/38763736/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Strategical_incoherence_regulates_cooper.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/38763736/srep09519-libre.pdf?1442236641=\u0026response-content-disposition=attachment%3B+filename%3DStrategical_incoherence_regulates_cooper.pdf\u0026Expires=1732485667\u0026Signature=MLm0dKh59uVB8gdEdmDmOwLF6goIxd65fv16nTzArjgXn8aYHE-4VucRiZJ5dj53fFAtYz4TxLMlb56brrBrILUID4E-1xq7~L5yE1rzhINwRoKlteq7LGkVVHkVk6462z-iDCKXIiZw0-2iTGe6wy4bLlkIYPvgCpq~tNzDfPzsyNNKo5MZKFl40riUQ-8c9FrJuQoTy~FVm5tYMSxq5cW0SeD7zNidw6iAlf7mqZoPvi-031obR0qeYgOQph1aeLRSitMLjc8p3TsOXKHb3KvBKzSjoMZ0nAZypCgG~sMi63oqzW2YbOUcHJrAG1BAdkOqODWT2e8r7WpTfd-w6Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Strategical_incoherence_regulates_cooperation_in_social_dilemmas_on_multiplex_networks","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":27502351,"first_name":"Joan","middle_initials":"T","last_name":"Matamalas","page_name":"JoanMatamalas","domain_name":"hms-harvard","created_at":"2015-03-09T07:12:30.183-07:00","display_name":"Joan T Matamalas","url":"https://hms-harvard.academia.edu/JoanMatamalas"},"attachments":[{"id":38763736,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/38763736/thumbnails/1.jpg","file_name":"srep09519.pdf","download_url":"https://www.academia.edu/attachments/38763736/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Strategical_incoherence_regulates_cooper.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/38763736/srep09519-libre.pdf?1442236641=\u0026response-content-disposition=attachment%3B+filename%3DStrategical_incoherence_regulates_cooper.pdf\u0026Expires=1732485667\u0026Signature=MLm0dKh59uVB8gdEdmDmOwLF6goIxd65fv16nTzArjgXn8aYHE-4VucRiZJ5dj53fFAtYz4TxLMlb56brrBrILUID4E-1xq7~L5yE1rzhINwRoKlteq7LGkVVHkVk6462z-iDCKXIiZw0-2iTGe6wy4bLlkIYPvgCpq~tNzDfPzsyNNKo5MZKFl40riUQ-8c9FrJuQoTy~FVm5tYMSxq5cW0SeD7zNidw6iAlf7mqZoPvi-031obR0qeYgOQph1aeLRSitMLjc8p3TsOXKHb3KvBKzSjoMZ0nAZypCgG~sMi63oqzW2YbOUcHJrAG1BAdkOqODWT2e8r7WpTfd-w6Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":757,"name":"Game Theory","url":"https://www.academia.edu/Documents/in/Game_Theory"},{"id":7150,"name":"Complex Systems","url":"https://www.academia.edu/Documents/in/Complex_Systems"},{"id":13113,"name":"Evolutionary Game Theory","url":"https://www.academia.edu/Documents/in/Evolutionary_Game_Theory"},{"id":13330,"name":"Complex Networks","url":"https://www.academia.edu/Documents/in/Complex_Networks"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="14853727"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/14853727/Feature_Selection_and_Outliers_Detection_with_Genetic_Algorithms_and_Neural_Networks"><img alt="Research paper thumbnail of Feature Selection and Outliers Detection with Genetic Algorithms and Neural Networks" class="work-thumbnail" src="https://attachments.academia-assets.com/39136514/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/14853727/Feature_Selection_and_Outliers_Detection_with_Genetic_Algorithms_and_Neural_Networks">Feature Selection and Outliers Detection with Genetic Algorithms and Neural Networks</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://upc.academia.edu/Ren%C3%A9Alqu%C3%A9zar">René Alquézar</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://urv.academia.edu/SergioGomez">Sergio Gómez</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper presents a new feature selection method and an outliers detec- tion algorithm. The pre...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper presents a new feature selection method and an outliers detec- tion algorithm. The presented method is based on using a genetic algorithm com- bined with a problem-specific-designed neural network. The d imensional reduc- tion and the outliers detection makes the resulting dataset more suitable for training neural networks. A comparative analysis between different kind of proposed crite- ria to select the features is reported. A number of experimental results have been carried out to demonstrate the usefulness of the presented technique.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e43345a206b8229c7009523778a2f7b5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:39136514,&quot;asset_id&quot;:14853727,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/39136514/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="14853727"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="14853727"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 14853727; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=14853727]").text(description); $(".js-view-count[data-work-id=14853727]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 14853727; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='14853727']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 14853727, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e43345a206b8229c7009523778a2f7b5" } } $('.js-work-strip[data-work-id=14853727]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":14853727,"title":"Feature Selection and Outliers Detection with Genetic Algorithms and Neural Networks","translated_title":"","metadata":{"abstract":"This paper presents a new feature selection method and an outliers detec- tion algorithm. The presented method is based on using a genetic algorithm com- bined with a problem-specific-designed neural network. The d imensional reduc- tion and the outliers detection makes the resulting dataset more suitable for training neural networks. A comparative analysis between different kind of proposed crite- ria to select the features is reported. A number of experimental results have been carried out to demonstrate the usefulness of the presented technique."},"translated_abstract":"This paper presents a new feature selection method and an outliers detec- tion algorithm. The presented method is based on using a genetic algorithm com- bined with a problem-specific-designed neural network. The d imensional reduc- tion and the outliers detection makes the resulting dataset more suitable for training neural networks. A comparative analysis between different kind of proposed crite- ria to select the features is reported. A number of experimental results have been carried out to demonstrate the usefulness of the presented technique.","internal_url":"https://www.academia.edu/14853727/Feature_Selection_and_Outliers_Detection_with_Genetic_Algorithms_and_Neural_Networks","translated_internal_url":"","created_at":"2015-08-11T10:28:43.220-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33822880,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":4529764,"work_id":14853727,"tagging_user_id":33822880,"tagged_user_id":26852817,"co_author_invite_id":null,"email":"e***0@hotmail.com","display_order":0,"name":"Enrique Romero","title":"Feature Selection and Outliers Detection with Genetic Algorithms and Neural Networks"},{"id":4529773,"work_id":14853727,"tagging_user_id":33822880,"tagged_user_id":4558575,"co_author_invite_id":null,"email":"e***o@hotmail.com","display_order":4194304,"name":"Enrique Romero","title":"Feature Selection and Outliers Detection with Genetic Algorithms and Neural Networks"},{"id":4529782,"work_id":14853727,"tagging_user_id":33822880,"tagged_user_id":33132731,"co_author_invite_id":null,"email":"e***o@lsi.upc.edu","display_order":6291456,"name":"Enrique Romero","title":"Feature Selection and Outliers Detection with Genetic Algorithms and Neural Networks"},{"id":4529791,"work_id":14853727,"tagging_user_id":33822880,"tagged_user_id":29215296,"co_author_invite_id":null,"email":"s***e@gmail.com","display_order":7340032,"name":"Sergio Gomez","title":"Feature Selection and Outliers Detection with Genetic Algorithms and Neural Networks"},{"id":4529795,"work_id":14853727,"tagging_user_id":33822880,"tagged_user_id":31795718,"co_author_invite_id":null,"email":"a***6@hotmail.com","display_order":8126464,"name":"sergio gomez","title":"Feature Selection and Outliers Detection with Genetic Algorithms and Neural Networks"},{"id":4529797,"work_id":14853727,"tagging_user_id":33822880,"tagged_user_id":33513994,"co_author_invite_id":null,"email":"s***z@urv.cat","affiliation":"Universitat Rovira i Virgili","display_order":8257536,"name":"Sergio Gómez","title":"Feature Selection and Outliers Detection with Genetic Algorithms and Neural Networks"},{"id":4529799,"work_id":14853727,"tagging_user_id":33822880,"tagged_user_id":6801826,"co_author_invite_id":null,"email":"s***0@hotmail.com","affiliation":"Universidad de Córdoba","display_order":8323072,"name":"Sergio Gomez","title":"Feature Selection and Outliers Detection with Genetic Algorithms and Neural Networks"},{"id":4529801,"work_id":14853727,"tagging_user_id":33822880,"tagged_user_id":null,"co_author_invite_id":79481,"email":"a***s@urv.cat","display_order":8355840,"name":"Agusti Solanas","title":"Feature Selection and Outliers Detection with Genetic Algorithms and Neural Networks"}],"downloadable_attachments":[{"id":39136514,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39136514/thumbnails/1.jpg","file_name":"0deec5167b9f09c3c7000000.pdf20151012-16080-wref4f.pdf","download_url":"https://www.academia.edu/attachments/39136514/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Feature_Selection_and_Outliers_Detection.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39136514/0deec5167b9f09c3c7000000.pdf20151012-16080-wref4f-libre.pdf?1444687309=\u0026response-content-disposition=attachment%3B+filename%3DFeature_Selection_and_Outliers_Detection.pdf\u0026Expires=1732485667\u0026Signature=co2MmHf3yKMMQxzoP62lY5UgSxNdgWJUBBZPDFW21MpdmhYY8nkM1~k14bEWBAgxRUuqK5NDYevpq-H4Oj9eW5tnRRXlzGZdLOMx4~MaXL6N1iX6wkKRQyAVtegISXH~9C33TAnXhyxWz9qhRCc43Jop3G~xwgOBdhXdU3sA6DFOyioUwBSxc~P0K7FTTlXf2mD0TRTqA29dmnYbVxmOeCdUtGetxpFT2rKSn8GLevKBQFPgeuDIuBeQDiBs41p8B8bv3PFfRbkT~U-Ti1M9kc0eyDQFge8AAXEPSNVNWdt6rJiGNXJmIENg0y0cUEH9SCA-JgxO~fnqbvOHnrGxgQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Feature_Selection_and_Outliers_Detection_with_Genetic_Algorithms_and_Neural_Networks","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":33822880,"first_name":"René","middle_initials":null,"last_name":"Alquézar","page_name":"RenéAlquézar","domain_name":"upc","created_at":"2015-08-11T10:26:26.012-07:00","display_name":"René Alquézar","url":"https://upc.academia.edu/Ren%C3%A9Alqu%C3%A9zar"},"attachments":[{"id":39136514,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/39136514/thumbnails/1.jpg","file_name":"0deec5167b9f09c3c7000000.pdf20151012-16080-wref4f.pdf","download_url":"https://www.academia.edu/attachments/39136514/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Feature_Selection_and_Outliers_Detection.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/39136514/0deec5167b9f09c3c7000000.pdf20151012-16080-wref4f-libre.pdf?1444687309=\u0026response-content-disposition=attachment%3B+filename%3DFeature_Selection_and_Outliers_Detection.pdf\u0026Expires=1732485667\u0026Signature=co2MmHf3yKMMQxzoP62lY5UgSxNdgWJUBBZPDFW21MpdmhYY8nkM1~k14bEWBAgxRUuqK5NDYevpq-H4Oj9eW5tnRRXlzGZdLOMx4~MaXL6N1iX6wkKRQyAVtegISXH~9C33TAnXhyxWz9qhRCc43Jop3G~xwgOBdhXdU3sA6DFOyioUwBSxc~P0K7FTTlXf2mD0TRTqA29dmnYbVxmOeCdUtGetxpFT2rKSn8GLevKBQFPgeuDIuBeQDiBs41p8B8bv3PFfRbkT~U-Ti1M9kc0eyDQFge8AAXEPSNVNWdt6rJiGNXJmIENg0y0cUEH9SCA-JgxO~fnqbvOHnrGxgQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":26066,"name":"Neural Network","url":"https://www.academia.edu/Documents/in/Neural_Network"},{"id":30329,"name":"Genetic Algorithm","url":"https://www.academia.edu/Documents/in/Genetic_Algorithm"},{"id":43619,"name":"Feature Selection","url":"https://www.academia.edu/Documents/in/Feature_Selection"},{"id":131096,"name":"Outlier detection","url":"https://www.academia.edu/Documents/in/Outlier_detection"},{"id":152553,"name":"Comparative Analysis","url":"https://www.academia.edu/Documents/in/Comparative_Analysis"}],"urls":[{"id":5202527,"url":"http://www.researchgate.net/profile/Josep_Domingo-Ferrer/publication/221045141_Feature_Selection_and_Outliers_Detection_with_Genetic_Algorithms_and_Neural_Networks/links/0deec5167b9f09c3c7000000.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="15222647"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/15222647/Benchmark_model_to_assess_community_structure_in_evolving_networks"><img alt="Research paper thumbnail of Benchmark model to assess community structure in evolving networks" class="work-thumbnail" src="https://attachments.academia-assets.com/43419849/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/15222647/Benchmark_model_to_assess_community_structure_in_evolving_networks">Benchmark model to assess community structure in evolving networks</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://aalto-fi.academia.edu/SFortunato">S. Fortunato</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://urv.academia.edu/SergioGomez">Sergio Gómez</a></span></div><div class="wp-workCard_item"><span>Physical Review E</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b06059f585ff267e625ac8ebdeb704c1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:43419849,&quot;asset_id&quot;:15222647,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/43419849/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="15222647"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="15222647"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 15222647; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=15222647]").text(description); $(".js-view-count[data-work-id=15222647]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 15222647; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='15222647']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 15222647, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b06059f585ff267e625ac8ebdeb704c1" } } $('.js-work-strip[data-work-id=15222647]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":15222647,"title":"Benchmark model to assess community structure in evolving networks","translated_title":"","metadata":{"grobid_abstract":"Detecting the time evolution of the community structure of networks is crucial to identify major changes in the internal organization of many complex systems, which may undergo important endogenous or exogenous events. This analysis can be done in two ways: considering each snapshot as an independent community detection problem or taking into account the whole evolution of the network. In the first case, one can apply static methods on the temporal snapshots, which correspond to configurations of the system in short time windows, and match afterwards the communities across layers. Alternatively, one can develop dedicated dynamic procedures, so that multiple snapshots are simultaneously taken into account while detecting communities, which allows us to keep memory of the flow. To check how well a method of any kind could capture the evolution of communities, suitable benchmarks are needed. Here we propose a model for generating simple dynamic benchmark graphs, based on stochastic block models. In them, the time evolution consists of a periodic oscillation of the system's structure between configurations with built-in community structure. We also propose the extension of quality comparison indices to the dynamic scenario.","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Physical Review E","grobid_abstract_attachment_id":43419849},"translated_abstract":null,"internal_url":"https://www.academia.edu/15222647/Benchmark_model_to_assess_community_structure_in_evolving_networks","translated_internal_url":"","created_at":"2015-08-27T04:19:30.310-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":34285114,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":5145692,"work_id":15222647,"tagging_user_id":34285114,"tagged_user_id":33513994,"co_author_invite_id":null,"email":"s***z@urv.cat","affiliation":"Universitat Rovira i Virgili","display_order":0,"name":"Sergio Gómez","title":"Benchmark model to assess community structure in evolving networks"},{"id":5145693,"work_id":15222647,"tagging_user_id":34285114,"tagged_user_id":33468097,"co_author_invite_id":null,"email":"a***s@urv.cat","affiliation":"Universitat Rovira i Virgili","display_order":4194304,"name":"Alex Arenas","title":"Benchmark model to assess community structure in evolving networks"},{"id":5145694,"work_id":15222647,"tagging_user_id":34285114,"tagged_user_id":38443817,"co_author_invite_id":1157140,"email":"c***l@urv.cat","display_order":6291456,"name":"Clara Granell","title":"Benchmark model to assess community structure in evolving networks"},{"id":5145708,"work_id":15222647,"tagging_user_id":34285114,"tagged_user_id":null,"co_author_invite_id":1157141,"email":"r***d@zgib.net","display_order":7340032,"name":"Richard Darst","title":"Benchmark model to assess community structure in evolving networks"}],"downloadable_attachments":[{"id":43419849,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/43419849/thumbnails/1.jpg","file_name":"1501.05808.pdf","download_url":"https://www.academia.edu/attachments/43419849/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Benchmark_model_to_assess_community_stru.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/43419849/1501.05808-libre.pdf?1457273420=\u0026response-content-disposition=attachment%3B+filename%3DBenchmark_model_to_assess_community_stru.pdf\u0026Expires=1732485667\u0026Signature=epkzTwuilsOaHsuYYQZBLTs5hm~uK1qDAAnGIn1Sk2yv61ETmHeDYeGlVxZSdzkLhnXT5p7sO4ZTqp5Mh-yGqyw1dWUN4MoVrATRqL5V~gsomG44g5ZxhxCnSd~SPmdbgZLARt3c90YIRWaTyjJgrS~RvD~2Thz60q1xEMOYfxri8DgKkn2pfORsjOtuZCTBJHGnpYek-YrFqGqLnZgsW1~OS3JYEH-gD0Grq7KP2eqPb56I1ZFo1WcBip4KlaWThiCO7YMeZWAKJGMD3gIkpd4xP3W-lcvFyk2IOfx9xUGqjVvRIaf0etJTxHqdyQ6A0UEVw-kDpbVIoLM-e3WjNw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Benchmark_model_to_assess_community_structure_in_evolving_networks","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":34285114,"first_name":"S.","middle_initials":null,"last_name":"Fortunato","page_name":"SFortunato","domain_name":"aalto-fi","created_at":"2015-08-27T04:13:25.976-07:00","display_name":"S. Fortunato","url":"https://aalto-fi.academia.edu/SFortunato"},"attachments":[{"id":43419849,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/43419849/thumbnails/1.jpg","file_name":"1501.05808.pdf","download_url":"https://www.academia.edu/attachments/43419849/download_file?st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&st=MTczMjQ4MjA2Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Benchmark_model_to_assess_community_stru.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/43419849/1501.05808-libre.pdf?1457273420=\u0026response-content-disposition=attachment%3B+filename%3DBenchmark_model_to_assess_community_stru.pdf\u0026Expires=1732485667\u0026Signature=epkzTwuilsOaHsuYYQZBLTs5hm~uK1qDAAnGIn1Sk2yv61ETmHeDYeGlVxZSdzkLhnXT5p7sO4ZTqp5Mh-yGqyw1dWUN4MoVrATRqL5V~gsomG44g5ZxhxCnSd~SPmdbgZLARt3c90YIRWaTyjJgrS~RvD~2Thz60q1xEMOYfxri8DgKkn2pfORsjOtuZCTBJHGnpYek-YrFqGqLnZgsW1~OS3JYEH-gD0Grq7KP2eqPb56I1ZFo1WcBip4KlaWThiCO7YMeZWAKJGMD3gIkpd4xP3W-lcvFyk2IOfx9xUGqjVvRIaf0etJTxHqdyQ6A0UEVw-kDpbVIoLM-e3WjNw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="14549828"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/14549828/Strategical_incoherence_regulates_cooperation_in_social_dilemmas_on_multiplex_networks"><img alt="Research paper thumbnail of Strategical incoherence regulates cooperation in social dilemmas on multiplex networks" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/14549828/Strategical_incoherence_regulates_cooperation_in_social_dilemmas_on_multiplex_networks">Strategical incoherence regulates cooperation in social dilemmas on multiplex networks</a></div><div class="wp-workCard_item"><span>Scientific Reports</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Cooperation is a very common, yet not fully-understood phenomenon in natural and human systems. T...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Cooperation is a very common, yet not fully-understood phenomenon in natural and human systems. The introduction of a network within the population is known to affect the outcome of cooperative dynamics, allowing for the survival of cooperation in adverse scenarios. Recently, the introduction of multiplex networks has yet again modified the expectations for the outcome of the Prisoner&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39;s Dilemma game, compared to the monoplex case. However, much remains unstudied regarding other social dilemmas on multiplex, as well as the unexplored microscopic underpinnings of it. In this paper, we systematically study the evolution of cooperation in all four games in the T - S plane on multiplex. More importantly, we find some remarkable and previously unknown features in the microscopic organization of the strategies, that are responsible for the important differences between cooperative dynamics in monoplex and multiplex. Specifically, we find that in the stationary state, there are individuals that play the same strategy in all layers (coherent), and others that don&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39;t (incoherent). This second group of players is responsible for the surprising fact of a non full-cooperation in the Harmony Game on multiplex, never observed before, as well as a higher-than-expected cooperation rates in some regions of the other three social dilemmas.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="14549828"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="14549828"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 14549828; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=14549828]").text(description); $(".js-view-count[data-work-id=14549828]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 14549828; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='14549828']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 14549828, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=14549828]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":14549828,"title":"Strategical incoherence regulates cooperation in social dilemmas on multiplex networks","translated_title":"","metadata":{"abstract":"Cooperation is a very common, yet not fully-understood phenomenon in natural and human systems. The introduction of a network within the population is known to affect the outcome of cooperative dynamics, allowing for the survival of cooperation in adverse scenarios. Recently, the introduction of multiplex networks has yet again modified the expectations for the outcome of the Prisoner\u0026amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39;s Dilemma game, compared to the monoplex case. However, much remains unstudied regarding other social dilemmas on multiplex, as well as the unexplored microscopic underpinnings of it. In this paper, we systematically study the evolution of cooperation in all four games in the T - S plane on multiplex. More importantly, we find some remarkable and previously unknown features in the microscopic organization of the strategies, that are responsible for the important differences between cooperative dynamics in monoplex and multiplex. Specifically, we find that in the stationary state, there are individuals that play the same strategy in all layers (coherent), and others that don\u0026amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39;t (incoherent). This second group of players is responsible for the surprising fact of a non full-cooperation in the Harmony Game on multiplex, never observed before, as well as a higher-than-expected cooperation rates in some regions of the other three social dilemmas.","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Scientific Reports"},"translated_abstract":"Cooperation is a very common, yet not fully-understood phenomenon in natural and human systems. The introduction of a network within the population is known to affect the outcome of cooperative dynamics, allowing for the survival of cooperation in adverse scenarios. Recently, the introduction of multiplex networks has yet again modified the expectations for the outcome of the Prisoner\u0026amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39;s Dilemma game, compared to the monoplex case. However, much remains unstudied regarding other social dilemmas on multiplex, as well as the unexplored microscopic underpinnings of it. In this paper, we systematically study the evolution of cooperation in all four games in the T - S plane on multiplex. More importantly, we find some remarkable and previously unknown features in the microscopic organization of the strategies, that are responsible for the important differences between cooperative dynamics in monoplex and multiplex. Specifically, we find that in the stationary state, there are individuals that play the same strategy in all layers (coherent), and others that don\u0026amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39;t (incoherent). This second group of players is responsible for the surprising fact of a non full-cooperation in the Harmony Game on multiplex, never observed before, as well as a higher-than-expected cooperation rates in some regions of the other three social dilemmas.","internal_url":"https://www.academia.edu/14549828/Strategical_incoherence_regulates_cooperation_in_social_dilemmas_on_multiplex_networks","translated_internal_url":"","created_at":"2015-08-01T08:30:24.396-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33513994,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":4120187,"work_id":14549828,"tagging_user_id":33513994,"tagged_user_id":33468097,"co_author_invite_id":null,"email":"a***s@urv.cat","affiliation":"Universitat Rovira i Virgili","display_order":0,"name":"Alex Arenas","title":"Strategical incoherence regulates cooperation in social dilemmas on multiplex networks"}],"downloadable_attachments":[],"slug":"Strategical_incoherence_regulates_cooperation_in_social_dilemmas_on_multiplex_networks","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":33513994,"first_name":"Sergio","middle_initials":"","last_name":"Gómez","page_name":"SergioGomez","domain_name":"urv","created_at":"2015-08-01T08:24:15.311-07:00","display_name":"Sergio Gómez","url":"https://urv.academia.edu/SergioGomez"},"attachments":[],"research_interests":[{"id":757,"name":"Game Theory","url":"https://www.academia.edu/Documents/in/Game_Theory"},{"id":7150,"name":"Complex Systems","url":"https://www.academia.edu/Documents/in/Complex_Systems"},{"id":13113,"name":"Evolutionary Game Theory","url":"https://www.academia.edu/Documents/in/Evolutionary_Game_Theory"},{"id":13330,"name":"Complex Networks","url":"https://www.academia.edu/Documents/in/Complex_Networks"},{"id":64568,"name":"Humans","url":"https://www.academia.edu/Documents/in/Humans"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":496530,"name":"Community Networks","url":"https://www.academia.edu/Documents/in/Community_Networks"},{"id":1153482,"name":"Cooperative Behavior","url":"https://www.academia.edu/Documents/in/Cooperative_Behavior"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="14549827"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/14549827/Hi_Content_3D_Structure_and_Dynamics_of_the_Virgo_Cluster_Region"><img alt="Research paper thumbnail of Hi Content, 3D Structure and Dynamics of the Virgo Cluster Region" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/14549827/Hi_Content_3D_Structure_and_Dynamics_of_the_Virgo_Cluster_Region">Hi Content, 3D Structure and Dynamics of the Virgo Cluster Region</a></div><div class="wp-workCard_item"><span>Highlights of Spanish Astrophysics III</span><span>, 2003</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="14549827"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="14549827"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 14549827; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=14549827]").text(description); $(".js-view-count[data-work-id=14549827]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 14549827; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='14549827']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 14549827, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=14549827]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":14549827,"title":"Hi Content, 3D Structure and Dynamics of the Virgo Cluster Region","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2003,"errors":{}},"publication_name":"Highlights of Spanish Astrophysics III"},"translated_abstract":null,"internal_url":"https://www.academia.edu/14549827/Hi_Content_3D_Structure_and_Dynamics_of_the_Virgo_Cluster_Region","translated_internal_url":"","created_at":"2015-08-01T08:30:24.209-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33513994,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":4120172,"work_id":14549827,"tagging_user_id":33513994,"tagged_user_id":33567324,"co_author_invite_id":973433,"email":"j***s@ub.edu","display_order":0,"name":"J. Solanes","title":"Hi Content, 3D Structure and Dynamics of the Virgo Cluster Region"}],"downloadable_attachments":[],"slug":"Hi_Content_3D_Structure_and_Dynamics_of_the_Virgo_Cluster_Region","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":33513994,"first_name":"Sergio","middle_initials":"","last_name":"Gómez","page_name":"SergioGomez","domain_name":"urv","created_at":"2015-08-01T08:24:15.311-07:00","display_name":"Sergio Gómez","url":"https://urv.academia.edu/SergioGomez"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "2795fa4d9cb8435a43d7c0166cd3fbe093f67f03534234067ad7de9f2a03271e", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="FI1YIUkPi7sf6xwmyGJYHQCN5M1V/xQ6vmb6ghNKHAF8bt4Hd4I5j1rw/C/Olsj7q2uYEg67mIHKSR1xGZvnAA==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://urv.academia.edu/SergioGomez" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="7UNXQWwgKu8kWz1LS5LB3vPwauMos9dLcbmhH8iQVpWFoNFnUq2Y22FA3UJNZlE4WBYWPHP3W/AFlkbswkGtlA==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10