CINXE.COM
Search results for: ultrasound assisted extraction
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: ultrasound assisted extraction</title> <meta name="description" content="Search results for: ultrasound assisted extraction"> <meta name="keywords" content="ultrasound assisted extraction"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="ultrasound assisted extraction" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="ultrasound assisted extraction"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3140</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: ultrasound assisted extraction</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3140</span> Ultrasound Assisted Extraction and Microwave Assisted Extraction of Carotenoids from Melon Shells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Brinda%20Lakshmi">A. Brinda Lakshmi</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Lakshmi%20Priya"> J. Lakshmi Priya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cantaloupes (muskmelon and watermelon) contain biologically active molecules such as carotenoids which are natural pigments used as food colorants and afford health benefits. ß-carotene is the major source of carotenoids present in muskmelon and watermelon shell. Carotenoids were extracted using Microwave assisted extraction (MAE) and Ultrasound assisted extraction (UAE) utilising organic lipophilic solvents such as acetone, methanol, and hexane. Extraction conditions feed-solvent ratio, microwave power, ultrasound frequency, temperature and particle size were varied and optimized. It was found that the yield of carotenoids was higher using UAE than MAE, and muskmelon had the highest yield of carotenoids when was ethanol used as a solvent for 0.5 mm particle size. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carotenoids" title="carotenoids">carotenoids</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=muskmelon%20shell" title=" muskmelon shell"> muskmelon shell</a>, <a href="https://publications.waset.org/abstracts/search?q=watermelon%20shell" title=" watermelon shell"> watermelon shell</a> </p> <a href="https://publications.waset.org/abstracts/85600/ultrasound-assisted-extraction-and-microwave-assisted-extraction-of-carotenoids-from-melon-shells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85600.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3139</span> Protein and Lipid Extraction from Microalgae with Ultrasound Assisted Osmotic Shock Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nais%20Pinta%20Adetya">Nais Pinta Adetya</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Hadiyanto"> H. Hadiyanto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microalgae has a potential to be utilized as food and natural colorant. The microalgae components consists of three main parts, these are lipid, protein, and carbohydrate. Crucial step in producing lipid and protein from microalgae is extraction. Microalgae has high water level (70-90%), it causes drying process of biomass needs much more energy and also has potential to distract lipid and protein from microalgae. Extraction of lipid from wet biomass is able to take place efficiently with cell disruption of microalgae by osmotic shock method. In this study, osmotic shock method was going to be integrated with ultrasound to maximalize the extraction yield of lipid and protein from wet biomass Spirulina sp. with osmotic shock method assisted ultrasound. This study consisted of two steps, these were osmotic shock process toward wet biomass and ultrasound extraction assisted. NaCl solution was used as osmotic agent, with the variation of concentrations were 10%, 20%, and 30%. Extraction was conducted in 40°C for 20 minutes with frequency of ultrasound wave was 40kHz. The optimal yield of protein (2.7%) and (lipid 38%) were achieved at 20% osmotic agent concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extraction" title="extraction">extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid" title=" lipid"> lipid</a>, <a href="https://publications.waset.org/abstracts/search?q=osmotic%20shock" title=" osmotic shock"> osmotic shock</a>, <a href="https://publications.waset.org/abstracts/search?q=protein" title=" protein"> protein</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a> </p> <a href="https://publications.waset.org/abstracts/76886/protein-and-lipid-extraction-from-microalgae-with-ultrasound-assisted-osmotic-shock-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76886.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3138</span> Recovery of Essential Oil from Zingiber Officinale Var. Bentong Using Ultrasound Assisted-Supercritical Carbon Dioxide Extraction </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Norhidayah%20Suleiman">Norhidayah Suleiman</a>, <a href="https://publications.waset.org/abstracts/search?q=Afza%20Zulfaka"> Afza Zulfaka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zingiber officinale var. Bentong has been identified as the source of high added value compound specifically gingerol-related compounds. The extraction of the high-value compound using conventional method resulted in low yield and time consumption. Hence, the motivation for this work is to investigate the effect of the extraction technique on the essential oil from Zingiber officinale var. Bentong rhizome for commercialization purpose in many industries namely, functional food, pharmaceutical, and cosmeceutical. The investigation begins with a pre-treatment using ultrasound assisted in order to enhance the recovery of essential oil. It was conducted at a fixed frequency (20 kHz) of ultrasound with various time (10, 20, 40 min). The extraction using supercritical carbon dioxide (scCO2) were carried out afterward at a specific condition of temperature (50 °C) and pressure (30 MPa). scCO2 extraction seems to be a promising sustainable green method for the extraction of essential oil due to the benefits that CO2 possesses. The expected results demonstrated the ultrasound-assisted-scCO2 produces a higher yield of essential oil compared to solely scCO2 extraction. This research will provide important features for its application in food supplements or phytochemical preparations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title="essential oil">essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=scCO2" title=" scCO2"> scCO2</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound%20assisted" title=" ultrasound assisted"> ultrasound assisted</a>, <a href="https://publications.waset.org/abstracts/search?q=Zingiber%20officinale%20Var.%20Bentong" title=" Zingiber officinale Var. Bentong"> Zingiber officinale Var. Bentong</a> </p> <a href="https://publications.waset.org/abstracts/104939/recovery-of-essential-oil-from-zingiber-officinale-var-bentong-using-ultrasound-assisted-supercritical-carbon-dioxide-extraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3137</span> Microwave and Ultrasound Assisted Extraction of Pectin from Mandarin and Lemon Peel: Comparisons between Sources and Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P%C4%B1nar%20Karbuz">Pınar Karbuz</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Seyhun%20K%C4%B1pcak"> A. Seyhun Kıpcak</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20B.%20Piskin"> Mehmet B. Piskin</a>, <a href="https://publications.waset.org/abstracts/search?q=Emek%20Derun"> Emek Derun</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurcan%20Tugrul"> Nurcan Tugrul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pectin is a complex colloidal polysaccharide, found on the cell walls of all young plants such as fruit and vegetables. It acts as a thickening, stabilizing and gelling agent in foods. Pectin was extracted from mandarin and lemon peels using ultrasound and microwave assisted extraction methods to compare with these two different sources and methods of pectin production. In this work, the effect of microwave power (360, 600 W) and irradiation time (1, 2, 3 min) on the yield of extracted pectin from mandarin and lemon peels for microwave assisted extraction (MAE) were investigated. For ultrasound assisted extraction (UAE), parameters were determined as temperature (60, 75 °C) and sonication time (15, 30, 45 min) and hydrochloric acid (HCl) was used as an extracting agent for both extraction methods. The highest yields of extracted pectin from lemon peels were found to be 8.16 % (w/w) for 75 °C, 45 min by UAE and 8.58 % (w/w) for 360 W, 1 min by MAE. Additionally, the highest yields of extracted pectin from mandarin peels were found to be 11.29 % (w/w) for 75 °C, 45 min by UAE and 16.44 % (w/w) for 600 W, 1 min by MAE. The results showed that the use of microwave assisted extraction promoted a better yield when compared to the two extraction methods. On the other hand, according to the results of experiments, mandarin peels contain more pectin than lemon peels when the compared to the pectin product values of two sources. Therefore, these results suggested that MAE could be used as an efficient and rapid method for extraction of pectin and mandarin peels should be preferred as sources of pectin production compared to lemon peels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mandarin%20peel" title="mandarin peel">mandarin peel</a>, <a href="https://publications.waset.org/abstracts/search?q=lemon%20peel" title=" lemon peel"> lemon peel</a>, <a href="https://publications.waset.org/abstracts/search?q=pectin" title=" pectin"> pectin</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave" title=" microwave"> microwave</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a> </p> <a href="https://publications.waset.org/abstracts/103278/microwave-and-ultrasound-assisted-extraction-of-pectin-from-mandarin-and-lemon-peel-comparisons-between-sources-and-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3136</span> Effect of Ultrasound on Carotenoids Extraction from Pepper and Process Optimization Using Response Surface Methodology (RSM)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elham%20Mahdian">Elham Mahdian</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Karazhian"> Reza Karazhian</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahele%20Dehghan%20Tanha"> Rahele Dehghan Tanha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pepper (Capsicum annum L.) which belong to the family Solananceae, are known for their versatility as a vegetable crop and are consumed both as fresh vegetables or dehydrated for spices. Pepper is considered an excellent source of bioactive nutrients. Ascorbic acid, carotenoids and phenolic compounds are its main antioxidant constituents. Ultrasound assisted extraction is an inexpensive, simple and efficient alternative to conventional extraction techniques. The mechanism of action for ultrasound-assisted extraction are attributed to cavitations, mechanical forces and thermal impact, which result in disruption of cells walls, reduce particle size, and enhance mass transfer across cell membranes. In this study, response surface methodology was used to optimize experimental conditions for ultrasonic assisted extraction of carotenoid compounds from Chili peppers. Variables were included extraction temperatures at 3 levels (30, 40 and 50 °C), extraction times at 3 levels (10, 25 and 40 minutes) and power at 3 levels (30, 60 and 90 %). It was observed that ultrasound waves applied at temperature of 49°C, time of 10 minutes and power 89 % resulted to the highest carotenoids contents (lycopene and β-carotene), while the lowest value was recorded in the control. Thus, results showed that ultrasound waves have strong impact on extraction of carotenoids from pepper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carotenoids" title="carotenoids">carotenoids</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=pepper" title=" pepper"> pepper</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a> </p> <a href="https://publications.waset.org/abstracts/32193/effect-of-ultrasound-on-carotenoids-extraction-from-pepper-and-process-optimization-using-response-surface-methodology-rsm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32193.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3135</span> Effect of Ultrasound and Enzyme on the Extraction of Eurycoma longifolia (Tongkat Ali)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=He%20Yuhai">He Yuhai</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Ziad%20Bin%20Sulaiman"> Ahmad Ziad Bin Sulaiman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tongkat Ali, or Eurycoma longifolia, is a traditional Malay and Orang Asli herb used as aphrodisiac, general tonic, anti-Malaria, and anti-Pyretic. It has been recognized as a cashcrop by Malaysia due to its high value for the pharmaceutical use. In Tongkat Ali, eurycomanone, a quassinoid is usually chosen as a marker phytochemical as it is the most abundant phytochemical. In this research, ultrasound and enzyme were used to enhance the extraction of Eurycomanone from Tongkat Ali. Ultrasonic assisted extraction (USE) enhances extraction by facilitating the swelling and hydration of the plant material, enlarging the plant pores, breaking the plant cell, reducing the plant particle size and creating cavitation bubbles that enhance mass transfer in both the washing and diffusion phase of extraction. Enzyme hydrolyses the cell wall of the plant, loosening the structure of the cell wall, releasing more phytochemicals from the plant cell, enhancing the productivity of the extraction. Possible effects of ultrasound on the activity of the enzyme during the hydrolysis of the cell wall is under the investigation by this research. The extracts was analysed by high performance liquid chromatography for the yields of Eurycomanone. In this whole process, the conventional water extraction was used as a control of comparing the performance of the ultrasound and enzyme assisted extraction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title="ultrasound">ultrasound</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic" title=" enzymatic"> enzymatic</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=Eurycoma%20longifolia" title=" Eurycoma longifolia"> Eurycoma longifolia</a> </p> <a href="https://publications.waset.org/abstracts/28783/effect-of-ultrasound-and-enzyme-on-the-extraction-of-eurycoma-longifolia-tongkat-ali" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3134</span> Optimization of Extraction Conditions for Phenolic Compounds from Deverra Scoparia Coss and Dur</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roukia%20Hammoudi">Roukia Hammoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chabrouk%20Farid"> Chabrouk Farid</a>, <a href="https://publications.waset.org/abstracts/search?q=Dehak%20Karima"> Dehak Karima</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahfoud%20Hadj%20Mahammed"> Mahfoud Hadj Mahammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Didi%20Ouldelhadj"> Mohamed Didi Ouldelhadj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to optimise the extraction conditions for phenolic compounds from Deverra scoparia Coss and Dur. Apiaceae plant by ultrasound assisted extraction (UAE). The effects of solvent type (acetone, ethanol and methanol), solvent concentration (%), extraction time (mins) and extraction temperature (°C) on total phenolic content (TPC) were determined. The optimum extraction conditions were found to be acetone concentration of 80%, extraction time of 25 min and extraction temperature of 25°C. Under the optimized conditions, the value for TPC was 9.68 ± 1.05 mg GAE/g of extract. The study of the antioxidant power of these oils was performed by the method of DPPH. The results showed that antioxidant activity of the Deverra scoparia essential oil was more effective as compared to ascorbic acid and trolox. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deverra%20scoparia" title="Deverra scoparia">Deverra scoparia</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound%20assisted%20extraction" title=" ultrasound assisted extraction"> ultrasound assisted extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenolic%20content" title=" total phenolic content"> total phenolic content</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a> </p> <a href="https://publications.waset.org/abstracts/23755/optimization-of-extraction-conditions-for-phenolic-compounds-from-deverra-scoparia-coss-and-dur" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23755.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">603</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3133</span> Optimization of Extraction Conditions for Phenolic Compounds from Deverra scoparia Coss. and Dur</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roukia%20Hammoudi">Roukia Hammoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Dehak%20Karima"> Dehak Karima</a>, <a href="https://publications.waset.org/abstracts/search?q=Chabrouk%20Farid"> Chabrouk Farid</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahfoud%20Hadj%20Mahammed"> Mahfoud Hadj Mahammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Didi%20Ouldelhadj"> Mohamed Didi Ouldelhadj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to optimise the extraction conditions for phenolic compounds from Deverra scoparia Coss and Dur. Apiaceae plant by ultrasound assisted extraction (UAE). The effects of solvent type (Acetone, Ethanol and methanol), solvent concentration (%), extraction time (mins) and extraction temperature (°C) on total phenolic content (TPC) were determined. the optimum extraction conditions were found to be acetone concentration of 80%, extraction time of 25 min and extraction temperature of 25°C. Under the optimized conditions, the value for TPC was 9.68 ± 1.05 mg GAE/g of extract. The study of the antioxidant power of these oils was performed by the method of DPPH. The results showed that antioxidant activity of the Deverra scoparia essential oil was more effective as compared to ascorbic acid and trolox. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deverra%20scoparia" title="Deverra scoparia">Deverra scoparia</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound%20assisted%20extraction" title=" ultrasound assisted extraction"> ultrasound assisted extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenolic%20content" title=" total phenolic content"> total phenolic content</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a> </p> <a href="https://publications.waset.org/abstracts/25874/optimization-of-extraction-conditions-for-phenolic-compounds-from-deverra-scoparia-coss-and-dur" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25874.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">595</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3132</span> Green Delivery Systems for Fruit Polyphenols</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boris%20M.%20Popovi%C4%87">Boris M. Popović</a>, <a href="https://publications.waset.org/abstracts/search?q=Tatjana%20Juri%C4%87"> Tatjana Jurić</a>, <a href="https://publications.waset.org/abstracts/search?q=Bojana%20Blagojevi%C4%87"> Bojana Blagojević</a>, <a href="https://publications.waset.org/abstracts/search?q=Denis%20Uka"> Denis Uka</a>, <a href="https://publications.waset.org/abstracts/search?q=Ru%C5%BEica%20%C5%BDdero%20Pavlovi%C4%87"> Ružica Ždero Pavlović</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green solvents are environmentally friendly and greatly improve the sustainability of chemical processes. There is a growing interest in the green extraction of polyphenols from fruits. In this study, we consider three Natural Deep Eutectic Solvents (NADES) systems based on choline chloride as a hydrogen bond acceptor and malic acid, urea, and fructose as hydrogen bond donors. NADES systems were prepared by heating and stirring, ultrasound, and microwave (MW) methods. Sour cherry pomace was used as a natural source of polyphenols. Polyphenol extraction from cherry pomace was performed by ultrasound-assisted extraction and microwave-assisted extraction and compared with conventional heat and stirring method extraction. It was found that MW-assisted preparation of NADES was the fastest, requiring less than 30 s. Also, MW extraction of polyphenols was the most rapid, with less than 5 min necessary for the extract preparation. All three NADES systems were highly efficient for anthocyanin extraction, but the most efficient was the system with malic acid as a hydrogen bond donor (yield of anthocyanin content was enhanced by 62.33% after MW extraction with NADES compared with the conventional solvent). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anthocyanins" title="anthocyanins">anthocyanins</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20extraction" title=" green extraction"> green extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=NADES" title=" NADES"> NADES</a>, <a href="https://publications.waset.org/abstracts/search?q=polyphenols" title=" polyphenols"> polyphenols</a> </p> <a href="https://publications.waset.org/abstracts/144151/green-delivery-systems-for-fruit-polyphenols" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3131</span> Optimization of Ultrasound-Assisted Extraction and Microwave-Assisted Acid Digestion for the Determination of Heavy Metals in Tea Samples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abu%20Harera%20Nadeem">Abu Harera Nadeem</a>, <a href="https://publications.waset.org/abstracts/search?q=Kingsley%20Donkor"> Kingsley Donkor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tea is a popular beverage due to its flavour, aroma and antioxidant properties—with the most consumed varieties being green and black tea. Antioxidants in tea can lower the risk of Alzheimer’s and heart disease and obesity. However, these teas contain heavy metals such as Hg, Cd, or Pb, which can cause autoimmune diseases like Graves disease. In this study, 11 heavy metals in various commercial green, black, and oolong tea samples were determined using inductively coupled plasma-mass spectrometry (ICP-MS). Two methods of sample preparation were compared for accuracy and precision, which were microwave-assisted digestion and ultrasonic-assisted extraction. The developed method was further validated by detection limit, precision, and accuracy. Results showed that the proposed method was highly sensitive with detection limits within parts-per-billion levels. Reasonable method accuracy was obtained by spiked experiments. The findings of this study can be used to delve into the link between tea consumption and disease and to provide information for future studies on metal determination in tea. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ICP-MS" title="ICP-MS">ICP-MS</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20tea" title=" green tea"> green tea</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20tea" title=" black tea"> black tea</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave-assisted%20acid%20digestion" title=" microwave-assisted acid digestion"> microwave-assisted acid digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound-assisted%20extraction" title=" ultrasound-assisted extraction"> ultrasound-assisted extraction</a> </p> <a href="https://publications.waset.org/abstracts/148549/optimization-of-ultrasound-assisted-extraction-and-microwave-assisted-acid-digestion-for-the-determination-of-heavy-metals-in-tea-samples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3130</span> The Effects of Ultrasound on the Extraction of Ficus deltoidea Leaves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nur%20Aimi%20Syairah%20Mohd%20Abdul%20Alim">Nur Aimi Syairah Mohd Abdul Alim</a>, <a href="https://publications.waset.org/abstracts/search?q=Azilah%20Ajit"> Azilah Ajit</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Z.%20Sulaiman"> A. Z. Sulaiman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study aimed to investigate the effects of ultrasound-assisted extraction (UAE) on the extraction of Vitexin and Iso-Vitexin from Ficus deltoidea plants. In recent years, ultrasound technology has been found to be a potential herbal extraction technique. The passage of ultrasound energy in a liquid medium generates mechanical agitation and other physical effects due to acoustic cavitation. The main goal is to optimised ultrasonic-assisted extraction condition providing the highest extraction yield with the most desirable antioxidant activity and stability. Thus, a series of experiments has been developed to investigate the effect of ultrasound energy on the vegetal material and the implemented parameters by using HPLC-photodiode array detection. The influences of several experimental parameters on the ultrasonic extraction of Ficus deltoidea leaves were investigated: extraction time (1-8 h), solvent-to-water ratio (1:10 to 1:50), temperature (50–100 °C), duty cycle (10–continuous sonication) and intensity. The extracts at the optimized condition were compared with those obtained by conventional boiling extraction, in terms of bioactive constituents yield and chemical composition. The compounds of interest identified in the extracts were Vitexin and Isovitexin, which possess anti-diabetic, anti-oxidant and anti-cancer properties. Results showed that the main variables affecting the extraction process were temperature and time. Though in less extent, solvent-to-water ratio, duty cycle and intensity are also demonstrated to be important parameters. The experimental values under optimal conditions were in good consistent with the predicted values, which suggested that ultrasonic-assisted extraction (UAE) is more efficient process as compared to conventional boiling extraction. It recommended that ultrasound extraction of Ficus deltoidea plants are feasible to replace the traditional time-consuming and low efficiency preparation procedure in the future modernized and commercialized manufacture of this highly valuable herbal medicine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ficus" title="Ficus">Ficus</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasounds" title=" ultrasounds"> ultrasounds</a>, <a href="https://publications.waset.org/abstracts/search?q=vitexin" title=" vitexin"> vitexin</a>, <a href="https://publications.waset.org/abstracts/search?q=isovitexin" title=" isovitexin"> isovitexin</a> </p> <a href="https://publications.waset.org/abstracts/28134/the-effects-of-ultrasound-on-the-extraction-of-ficus-deltoidea-leaves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3129</span> Green Extraction of Patchoulol from Patchouli Leaves Using Ultrasound-Assisted Ionic Liquids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20C.%20Jadeja">G. C. Jadeja</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Desai"> M. A. Desai</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20R.%20Bhatt"> D. R. Bhatt</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20K.%20Parikh"> J. K. Parikh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green extraction techniques are fast paving ways into various industrial sectors due to the stringent governmental regulations leading to the banning of toxic chemicals’ usage and also due to the increasing health/environmental awareness. The present work describes the ionic liquids based sonication method for selectively extracting patchoulol from the leaves of patchouli. 1-Butyl-3-methylimidazolium tetrafluoroborate ([Bmim]BF4) and N,N,N,N’,N’,N’-Hexaethyl-butane-1,4-diammonium dibromide (dicationic ionic liquid - DIL) were selected for extraction. Ultrasound assisted ionic liquid extraction was employed considering concentration of ionic liquid (4–8 %, w/w), ultrasound power (50–150 W for [Bmim]BF4 and 20–80 W for DIL), temperature (30–50 oC) and extraction time (30–50 min) as major parameters influencing the yield of patchoulol. Using the Taguchi method, the parameters were optimized and analysis of variance (ANOVA) was performed to find the most influential factor in the selected extraction method. In case of [Bmim]BF4, the optimum conditions were found to be: 4 % (w/w) ionic liquid concentration, 50 W power, 30 oC temperature and extraction time of 30 min. The yield obtained under the optimum conditions was 3.99 mg/g. In case of DIL, the optimum conditions were obtained as 6 % (w/w) ionic liquid concentration, 80 W power, 30 oC temperature and extraction time of 40 min, for which the yield obtained was 4.03 mg/g. Temperature was found to be the most significant factor in both the cases. Extraction time was the insignificant parameter while extracting the product using [Bmim]BF4 and in case of DIL, power was found to be the least significant factor affecting the process. Thus, a green method of recovering patchoulol is proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20extraction" title="green extraction">green extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a>, <a href="https://publications.waset.org/abstracts/search?q=patchoulol" title=" patchoulol"> patchoulol</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquids" title=" ionic liquids"> ionic liquids</a> </p> <a href="https://publications.waset.org/abstracts/79798/green-extraction-of-patchoulol-from-patchouli-leaves-using-ultrasound-assisted-ionic-liquids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79798.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3128</span> Green Extraction Processes for the Recovery of Polyphenols from Solid Wastes of Olive Oil Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Theodora-Venetia%20Missirli">Theodora-Venetia Missirli</a>, <a href="https://publications.waset.org/abstracts/search?q=Konstantina%20Kyriakopoulou"> Konstantina Kyriakopoulou</a>, <a href="https://publications.waset.org/abstracts/search?q=Magdalini%20Krokida"> Magdalini Krokida</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Olive mill solid waste is an olive oil mill industry by-product with high phenolic, lipid and organic acid concentrations that can be used as a low cost source of natural antioxidants. In this study, extracts of Olea europaea (olive tree) solid olive mill waste (SOMW) were evaluated in terms of their antiradical activity and total phenolic compounds concentrations, such as oleuropein, hydroxytyrosol etc. SOMW samples were subjected to drying prior to extraction as a pretreatment step. Two drying processes, accelerated solar drying (ASD) and air-drying (AD) (at 35, 50, 70°C constant air velocity of 1 m/s), were applied. Subsequently, three different extraction methods were employed to recover extracts from untreated and dried SOMW samples. The methods include the green Microwave Assisted (MAE) and Ultrasound Assisted Extraction (UAE) and the conventional Soxhlet extraction (SE), using water and methanol as solvents. The efficiency and selectivity of the processes were evaluated in terms of extraction yield. The antioxidant activity (AAR) and the total phenolic content (TPC) of the extracts were evaluated using the DPPH assay and the Folin-Ciocalteu method, respectively. The results showed that bioactive content was significantly affected by the extraction technique and the solvent. Specifically, untreated SOMW samples showed higher performance in the yield for all solvents and higher antioxidant potential and phenolic content in the case of water. UAE extraction method showed greater extraction yields than the MAE method for both untreated and dried leaves regardless of the solvent used. The use of ultrasound and microwave assisted extraction in combination with industrially applied drying methods, such as air and solar drying, was feasible and effective for the recovery of bioactive compounds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20potential" title="antioxidant potential">antioxidant potential</a>, <a href="https://publications.waset.org/abstracts/search?q=drying%20treatment" title=" drying treatment"> drying treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20mill%20pomace" title=" olive mill pomace"> olive mill pomace</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20assisted%20extraction" title=" microwave assisted extraction"> microwave assisted extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound%20assisted%20extraction" title=" ultrasound assisted extraction"> ultrasound assisted extraction</a> </p> <a href="https://publications.waset.org/abstracts/48623/green-extraction-processes-for-the-recovery-of-polyphenols-from-solid-wastes-of-olive-oil-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3127</span> Extraction of Nutraceutical Bioactive Compounds from the Native Algae Using Solvents with a Deep Natural Eutectic Point and Ultrasonic-assisted Extraction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyedeh%20Bahar%20Hashemi">Seyedeh Bahar Hashemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Rahimi"> Alireza Rahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Arjmand"> Mehdi Arjmand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Food is the source of energy and growth through the breakdown of its vital components and plays a vital role in human health and nutrition. Many natural compounds found in plant and animal materials play a special role in biological systems and the origin of many such compounds directly or indirectly is algae. Algae is an enormous source of polysaccharides and have gained much interest in human flourishing. In this study, algae biomass extraction is conducted using deep eutectic-based solvents (NADES) and Ultrasound-assisted extraction (UAE). The aim of this research is to extract bioactive compounds including total carotenoid, antioxidant activity, and polyphenolic contents. For this purpose, the influence of three important extraction parameters namely, biomass-to-solvent ratio, temperature, and time are studied with respect to their impact on the recovery of carotenoids, and phenolics, and on the extracts’ antioxidant activity. Here we employ the Response Surface Methodology for the process optimization. The influence of the independent parameters on each dependent is determined through Analysis of Variance. Our results show that Ultrasound-assisted extraction (UAE) for 50 min is the best extraction condition, and proline:lactic acid (1:1) and choline chloride:urea (1:2) extracts show the highest total phenolic contents (50.00 ± 0.70 mgGAE/gdw) and antioxidant activity [60.00 ± 1.70 mgTE/gdw, 70.00 ± 0.90 mgTE/gdw in 2.2-diphenyl-1-picrylhydrazyl (DPPH), and 2.2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)]. Our results confirm that the combination of UAE and NADES provides an excellent alternative to organic solvents for sustainable and green extraction and has huge potential for use in industrial applications involving the extraction of bioactive compounds from algae. This study is among the first attempts to optimize the effects of ultrasonic-assisted extraction, ultrasonic devices, and deep natural eutectic point and investigate their application in bioactive compounds extraction from algae. We also study the future perspective of ultrasound technology which helps to understand the complex mechanism of ultrasonic-assisted extraction and further guide its application in algae. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20deep%20eutectic%20solvents" title="natural deep eutectic solvents">natural deep eutectic solvents</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound-assisted%20extraction" title=" ultrasound-assisted extraction"> ultrasound-assisted extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=algae" title=" algae"> algae</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=carotenoids" title=" carotenoids"> carotenoids</a> </p> <a href="https://publications.waset.org/abstracts/162294/extraction-of-nutraceutical-bioactive-compounds-from-the-native-algae-using-solvents-with-a-deep-natural-eutectic-point-and-ultrasonic-assisted-extraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3126</span> Ultrasound-Assisted Extraction of Carotenoids from Tangerine Peel Using Ostrich Oil as a Green Solvent and Optimization of the Process by Response Surface Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fariba%20Tadayon">Fariba Tadayon</a>, <a href="https://publications.waset.org/abstracts/search?q=Nika%20Gharahgolooyan"> Nika Gharahgolooyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ateke%20Tadayon"> Ateke Tadayon</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Jafarian"> Mostafa Jafarian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carotenoid pigments are a various group of lipophilic compounds that generate the yellow to red colors of many plants, foods and flowers. A well-known type of carotenoids which is pro-vitamin A is β-carotene. Due to the color of citrus fruit’s peel, the peel can be a good source of different carotenoids. Ostrich oil is one of the most valuable foundations in many branches of industry, medicine, cosmetics and nutrition. The animal-based ostrich oil could be considered as an alternative and green solvent. Following this study, wastes of citrus peel will recycle by a simple method and extracted carotenoids can increase properties of ostrich oil. In this work, a simple and efficient method for extraction of carotenoids from tangerine peel was designed. Ultrasound-assisted extraction (UAE) showed significant effect on the extraction rate by increasing the mass transfer rate. Ostrich oil can be used as a green solvent in many studies to eliminate petroleum-based solvents. Since tangerine peel is a complex source of different carotenoids separation and determination was performed by high-performance liquid chromatography (HPLC). In addition, the ability of ostrich oil and sunflower oil in carotenoid extraction from tangerine peel and carrot was compared. The highest yield of β-carotene extracted from tangerine peel using sunflower oil and ostrich oil were 75.741 and 88.110 (mg/L), respectively. Optimization of the process was achieved by response surface methodology (RSM) and the optimal extraction conditions were tangerine peel powder particle size of 0.180 mm, ultrasonic intensity of 19 W/cm2 and sonication time of 30 minutes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%B2-carotene" title="β-carotene">β-carotene</a>, <a href="https://publications.waset.org/abstracts/search?q=carotenoids" title=" carotenoids"> carotenoids</a>, <a href="https://publications.waset.org/abstracts/search?q=citrus%20peel" title=" citrus peel"> citrus peel</a>, <a href="https://publications.waset.org/abstracts/search?q=ostrich%20oil" title=" ostrich oil"> ostrich oil</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound-assisted%20extraction" title=" ultrasound-assisted extraction"> ultrasound-assisted extraction</a> </p> <a href="https://publications.waset.org/abstracts/45771/ultrasound-assisted-extraction-of-carotenoids-from-tangerine-peel-using-ostrich-oil-as-a-green-solvent-and-optimization-of-the-process-by-response-surface-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3125</span> Comparison of Different Extraction Methods for the Determination of Polyphenols</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Senem%20Suna">Senem Suna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Extraction of bioactive compounds from several food/food products comes as an important topic and new trend related with health promoting effects. As a result of the increasing interest in natural foods, different methods are used for the acquisition of these components especially polyphenols. However, special attention has to be paid to the selection of proper techniques or several processing technologies (supercritical fluid extraction, microwave-assisted extraction, ultrasound-assisted extraction, powdered extracts production) for each kind of food to get maximum benefit as well as the obtainment of phenolic compounds. In order to meet consumer’s demand for healthy food and the management of quality and safety requirements, advanced research and development are needed. In this review, advantages, and disadvantages of different extraction methods, their opportunities to be used in food industry and the effects of polyphenols are mentioned in details. Consequently, with the evaluation of the results of several studies, the selection of the most suitable food specific method was aimed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioactives" title="bioactives">bioactives</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=powdered%20extracts" title=" powdered extracts"> powdered extracts</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20fluid%20extraction" title=" supercritical fluid extraction"> supercritical fluid extraction</a> </p> <a href="https://publications.waset.org/abstracts/89849/comparison-of-different-extraction-methods-for-the-determination-of-polyphenols" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3124</span> Comparison of Classical and Ultrasound-Assisted Extractions of Hyphaene thebaica Fruit and Evaluation of Its Extract as Antibacterial Activity in Reducing Severity of Erwinia carotovora</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanan%20Moawad">Hanan Moawad</a>, <a href="https://publications.waset.org/abstracts/search?q=Naglaa%20M.%20Abd%20EL-Rahman"> Naglaa M. Abd EL-Rahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Erwinia carotovora var. carotovora is the main cause of soft rot in potatoes. Hyphaene thebaica was studied for biocontrol of E. carotovora which inhibited growth of E. carotovora on solid medium, a comparative study of classical and ultrasound-assisted extractions of Hyphaene thebaica fruit. The use of ultrasound decreased significant the total time of treatment and increase the total amount of crude extract. The crude extract was subjected to determine the in vitro, by a bioassay technique revealed that the treatment of paper disks with ultrasound extraction of Hyphaene thebaica reduced the growth of pathogen and produced inhibition zones up to 38mm in diameter. The antioxidant activity of ultrasound-ethanolic extract of Doum fruits (Hyphaene thebaica) was determined. Data obtained showed that the extract contains the secondary metabolites such as Tannins, Saponin, Flavonoids, Phenols, Steroids, Terpenoids, Glycosides and Alkaloids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title="ultrasound">ultrasound</a>, <a href="https://publications.waset.org/abstracts/search?q=classical%20extract" title=" classical extract"> classical extract</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20control" title=" biological control"> biological control</a>, <a href="https://publications.waset.org/abstracts/search?q=Erwinia%20carotovora" title=" Erwinia carotovora"> Erwinia carotovora</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyphaene%20thebaica" title=" Hyphaene thebaica"> Hyphaene thebaica</a> </p> <a href="https://publications.waset.org/abstracts/8686/comparison-of-classical-and-ultrasound-assisted-extractions-of-hyphaene-thebaica-fruit-and-evaluation-of-its-extract-as-antibacterial-activity-in-reducing-severity-of-erwinia-carotovora" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">520</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3123</span> Optimization of Ultrasound Assisted Extraction and Characterization of Functional Properties of Dietary Fiber from Oat Cultivar S2000</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Suhail%20Ibrahim">Muhammad Suhail Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Nadeem"> Muhammad Nadeem</a>, <a href="https://publications.waset.org/abstracts/search?q=Waseem%20Khalid"> Waseem Khalid</a>, <a href="https://publications.waset.org/abstracts/search?q=Ammara%20Ainee"> Ammara Ainee</a>, <a href="https://publications.waset.org/abstracts/search?q=Taleeha%20Roheen"> Taleeha Roheen</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadaf%20Javaria"> Sadaf Javaria</a>, <a href="https://publications.waset.org/abstracts/search?q=Aftab%20Ahmed"> Aftab Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Hira%20Fatima"> Hira Fatima</a>, <a href="https://publications.waset.org/abstracts/search?q=Mian%20Nadeem%20Riaz"> Mian Nadeem Riaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Zubair%20Khalid"> Muhammad Zubair Khalid</a>, <a href="https://publications.waset.org/abstracts/search?q=Isam%20A.%20Mohamed%20Ahmed%20J"> Isam A. Mohamed Ahmed J</a>, <a href="https://publications.waset.org/abstracts/search?q=Moneera%20O.%20Aljobair"> Moneera O. Aljobair</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was executed to explore the efficacy of ultrasound-assisted extraction of dietary fiber from oat cultivar S2000. Extraction (variables time, temperature and amplitude) was optimized by using response surface methodology (RSM) conducted by Box Behnken Design (BBD). The effect of time, temperature and amplitude were studied at three levels. It was observed that time and temperature exerted more impact on extraction efficiency as compared to amplitude. The highest yield of total dietary fiber (TDF), soluble dietary fiber (SDF) and In-soluble dietary fiber (IDF) fractions were observed under ultrasound processing for 20 min at 40 ◦C with 80% amplitude. Characterization of extracted dietary fiber showed that it had better crystallinity, thermal properties and good fibrous structure. It also showed better functional properties as compared to traditionally extracted dietary fiber. Furthermore, dietary fibers from oats may offer high-value utilization and the expansion of comprehensive utilization in functional food and nutraceutical development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extraction" title="extraction">extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonication" title=" ultrasonication"> ultrasonication</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=box%20behnken%20design" title=" box behnken design"> box behnken design</a> </p> <a href="https://publications.waset.org/abstracts/187067/optimization-of-ultrasound-assisted-extraction-and-characterization-of-functional-properties-of-dietary-fiber-from-oat-cultivar-s2000" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187067.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">50</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3122</span> Optimization of Ultrasound Assisted Extraction of Polysaccharides from Plant Waste Materials: Selected Model Material is Hazelnut Skin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Y%C4%B1lmaz">T. Yılmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=%C5%9E.%20Tavman"> Ş. Tavman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, optimization of ultrasound assisted extraction (UAE) of hemicellulose based polysaccharides from plant waste material has been studied. Selected material is hazelnut skin. Extraction variables for the operation are extraction time, amplitude and application temperature. Optimum conditions have been evaluated depending on responses such as amount of wet crude polysaccharide, total carbohydrate content and dried sample. Pretreated hazelnut skin powders were used for the experiments. 10 grams of samples were suspended in 100 ml water in a jacketed vessel with additional magnetic stirring. Mixture was sonicated by immersing ultrasonic probe processor. After the extraction procedures, ethanol soluble and insoluble sides were separated for further examinations. The obtained experimental data were analyzed by analysis of variance (ANOVA). Second order polynomial models were developed using multiple regression analysis. The individual and interactive effects of applied variables were evaluated by Box Behnken Design. The models developed from the experimental design were predictive and good fit with the experimental data with high correlation coefficient value (R2 more than 0.95). Extracted polysaccharides from hazelnut skin are assumed to be pectic polysaccharides according to the literature survey of Fourier Transform Spectrometry (FTIR) analysis results. No more change can be observed between spectrums of different sonication times. Application of UAE at optimized condition has an important effect on extraction of hemicellulose from plant material by satisfying partial hydrolysis to break the bounds with other components in plant cell wall material. This effect can be summarized by varied intensity of microjets and microstreaming at varied sonication conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hazelnut%20skin" title="hazelnut skin">hazelnut skin</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=polysaccharide" title=" polysaccharide"> polysaccharide</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound%20assisted%20extraction" title=" ultrasound assisted extraction"> ultrasound assisted extraction</a> </p> <a href="https://publications.waset.org/abstracts/12967/optimization-of-ultrasound-assisted-extraction-of-polysaccharides-from-plant-waste-materials-selected-model-material-is-hazelnut-skin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3121</span> Response Surface Methodology for the Optimization of Sugar Extraction from Phoenix dactylifera L.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lila%20Boulekbache-Makhlouf">Lila Boulekbache-Makhlouf</a>, <a href="https://publications.waset.org/abstracts/search?q=Kahina%20Djaoud"> Kahina Djaoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Myriam%20Tazarourte"> Myriam Tazarourte</a>, <a href="https://publications.waset.org/abstracts/search?q=Samir%20Hadjal"> Samir Hadjal</a>, <a href="https://publications.waset.org/abstracts/search?q=Khodir%20Madani"> Khodir Madani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Algeria, important quantities of secondary date variety (Phoenix dactylifera L.) are generated in each campaign; their chemical composition is similar to that of commercial dates. The present work aims to valorize this common date variety (Degla-Beida) which is often poorly exploited. In this context, we tried to prepare syrup from the secondary date variety and to evaluate the effect of conventional extraction (CE) or water bath extraction (WBE) and alternative extraction (microwaves assisted extraction (MAE), and ultrasounds assisted extraction (UAE)) on its total sugar content (TSC), using response surface methodology (RSM). Then, the analysis of individual sugars was performed by high-performance liquid chromatography (HPLC). Maximum predicted TSC recoveries under the optimized conditions for MAE, UAE and CE were 233.248 ± 3.594 g/l, 202.889 ± 5.797 g/l, and 233.535 ± 5.412 g/l, respectively, which were close to the experimental values: 233.796 ± 1.898 g/l; 202.037 ± 3.401 g/l and 234.380 ± 2.425 g/l. HPLC analysis revealed high similarity in the sugar composition of date juices obtained by MAE (60.11% sucrose, 16.64% glucose and 23.25% fructose) and CE (50.78% sucrose, 20.67% glucose and 28.55% fructose), although a large difference was detected for that obtained by UAE (0.00% sucrose, 46.94% glucose and 53.06% fructose). Microwave-assisted extraction was the best method for the preparation of date syrup with an optimal recovery of total sugar content. However, ultrasound-assisted extraction was the best one for the preparation of date syrup with high content of reducing sugars. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dates" title="dates">dates</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=RSM" title=" RSM"> RSM</a>, <a href="https://publications.waset.org/abstracts/search?q=sugars" title=" sugars"> sugars</a>, <a href="https://publications.waset.org/abstracts/search?q=syrup" title=" syrup"> syrup</a> </p> <a href="https://publications.waset.org/abstracts/104783/response-surface-methodology-for-the-optimization-of-sugar-extraction-from-phoenix-dactylifera-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3120</span> Nanocrystalline Cellulose from Oil Palm Fiber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ridzuan%20Ramli">Ridzuan Ramli</a>, <a href="https://publications.waset.org/abstracts/search?q=Zianor%20Azrina%20Zianon%20Abdin"> Zianor Azrina Zianon Abdin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Dalour%20Beg"> Mohammad Dalour Beg</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosli%20M.%20Yunus"> Rosli M. Yunus </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanocrystalline cellulose (NCC) were produced by using the ultrasound assisted acid hydrolysis from oil palm empty fruit bunch (EFB) pulp with different hydrolysis time then were analyzed by using FESEM and TGA as in comparison with EFB fiber and EFB pulp. Based on the FESEM analysis, it was found that NCC has a rod like shaped under the acid hydrolysis with an assistant of ultrasound. According to thermal stability, the NCC obtained show remarkable sign of high thermal stability compared to EFB fiber and EFB pulp. However, as the hydrolysis time increase, the thermal stability of NCC was deceased. As in conclusion, the NCC can be prepared by using ultrasound assisted acid hydrolysis. The NCC obtained have good thermal stability and have a great potential as the reinforcement in composite materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nanocrystalline%20cellulose" title="Nanocrystalline cellulose">Nanocrystalline cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound%20assisted%20acid%20hydrolysis" title=" ultrasound assisted acid hydrolysis"> ultrasound assisted acid hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20stability" title=" thermal stability"> thermal stability</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology" title=" morphology"> morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=empty%20fruit%20bunch%20%28EFB%29" title=" empty fruit bunch (EFB)"> empty fruit bunch (EFB)</a> </p> <a href="https://publications.waset.org/abstracts/16060/nanocrystalline-cellulose-from-oil-palm-fiber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">479</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3119</span> Supercritical CO2 Extraction of Cymbopogon martini Essential Oil and Comparison of Its Composition with Traditionally Extracted Oils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aarti%20Singh">Aarti Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Anees%20Ahmad"> Anees Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Essential oil was extracted from lemon grass (Cymbopogon martini) with supercritical carbondioxide (SC-CO2) at pressure of 140 bar and temperature of 55 °C and CO2 flow rate of 8 gmin-1, and its composition and yield were compared with other conventional extraction methods of oil, HD (Hydrodistillation), SE (Solvent Extraction), UAE (Ultrasound Assisted Extraction). SC-CO2 extraction is a green and sustainable extraction technique. Each oil was analysed by GC-MS, the major constituents were neral (44%), Z-citral (43%), geranial (27%), caryophyllene (4.6%) and linalool (1%). The essential oil of lemon grass is valued for its neral and citral concentration. The oil obtained by supercritical carbon-dioxide extraction contained maximum concentration of neral (55.05%) whereas ultrasonication extracted oil contained minimum content (5.24%) and it was absent in solvent extracted oil. The antioxidant properties have been assessed by DPPH and superoxide scavenging methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cymbopogon%20martini" title="cymbopogon martini">cymbopogon martini</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title=" essential oil"> essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=FT-IR" title=" FT-IR"> FT-IR</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-MS" title=" GC-MS"> GC-MS</a>, <a href="https://publications.waset.org/abstracts/search?q=HPTLC" title=" HPTLC"> HPTLC</a>, <a href="https://publications.waset.org/abstracts/search?q=SC-CO2" title=" SC-CO2"> SC-CO2</a> </p> <a href="https://publications.waset.org/abstracts/36550/supercritical-co2-extraction-of-cymbopogon-martini-essential-oil-and-comparison-of-its-composition-with-traditionally-extracted-oils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36550.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3118</span> Microwave Assisted Extraction (MAE) of Castor Oil from Castor Bean</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghazi%20Faisal%20Najmuldeen">Ghazi Faisal Najmuldeen</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosli%20Mohd%20Yunus"> Rosli Mohd Yunus</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurfarahin%20Bt%20Harun"> Nurfarahin Bt Harun</a>, <a href="https://publications.waset.org/abstracts/search?q=Mardhiana%20Binti%20Ismail"> Mardhiana Binti Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The microwave extraction has attracted great interest among the researchers. The main virtue of the microwave technique is cost-effective, time saving and simple handling procedure. Castor beans was chosen because of its high content in fatty acid, especially ricinoleic acid. The purpose of this research is to extract the castor oil by using the microwave assisted extraction (MAE) using ethanol as solvent and to investigate the influence of extraction time on castor oil yield and to characterize the main composition of the produced castor oil by using the GC-MS. It was found that there is a direct dependence between the oil yield and the time of extraction as it increases from 45% to 58% as the time increase from 10 min to 60 min. The major components of castor oil detected by GC-MS were ricinoleic acid, linoleic acid and oleic acid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microwave%20assisted%20extraction%20%28MAE%29" title="microwave assisted extraction (MAE)">microwave assisted extraction (MAE)</a>, <a href="https://publications.waset.org/abstracts/search?q=castor%20oil" title=" castor oil"> castor oil</a>, <a href="https://publications.waset.org/abstracts/search?q=ricinoleic%20acid" title=" ricinoleic acid"> ricinoleic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=linoleic%20acid" title=" linoleic acid"> linoleic acid</a> </p> <a href="https://publications.waset.org/abstracts/10844/microwave-assisted-extraction-mae-of-castor-oil-from-castor-bean" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10844.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3117</span> Branched Chain Amino Acid Kinesio PVP Gel Tape from Extract of Pea (Pisum sativum L.) Based on Ultrasound-Assisted Extraction Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doni%20Dermawan">Doni Dermawan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modern sports competition as a consequence of the increase in the value of the business and entertainment in the field of sport has been demanding athletes to always have excellent physical endurance performance. Physical exercise is done in a long time, and intensive may pose a risk of muscle tissue damage caused by the increase of the enzyme creatine kinase. Branched Chain Amino Acids (BCAA) is an essential amino acid that is composed of leucine, isoleucine, and valine which serves to maintain muscle tissue, keeping the immune system, and prevent further loss of coordination and muscle pain. Pea (Pisum sativum L.) is a kind of leguminous plants that are rich in Branched Chain Amino Acids (BCAA) where every one gram of protein pea contains 82.7 mg of leucine; 56.3 mg isoleucine; and 56.0 mg of valine. This research aims to develop Branched Chain Amino Acids (BCAA) from pea extract is applied in dosage forms Gel PVP Kinesio Tape technology using Ultrasound-assisted Extraction. The method used in the writing of this paper is the Cochrane Collaboration Review that includes literature studies, testing the quality of the study, the characteristics of the data collection, analysis, interpretation of results, and clinical trials as well as recommendations for further research. Extraction of BCAA in pea done using ultrasound-assisted extraction technology with optimization variables includes the type of solvent extraction (NaOH 0.1%), temperature (20-250C), time (15-30 minutes) power (80 watt) and ultrasonic frequency (35 KHz). The advantages of this extraction method are the level of penetration of the solvent into the membrane of the cell is high and can increase the transfer period so that the BCAA substance separation process more efficient. BCAA extraction results are then applied to the polymer PVP (Polyvinylpyrrolidone) Gel powder composed of PVP K30 and K100 HPMC dissolved in 10 mL of water-methanol (1: 1) v / v. Preparations Kinesio Tape Gel PVP is the BCAA in the gel are absorbed into the muscle tissue, and joints through tensile force then provides stimulation to the muscle circulation with variable pressure so that the muscle can increase the biomechanical movement and prevent damage to the muscle enzyme creatine kinase. Analysis and evaluation of test preparation include interaction, thickness, weight uniformity, humidity, water vapor permeability, the levels of the active substance, content uniformity, percentage elongation, stability testing, release profile, permeation in vitro and in vivo skin irritation testing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=branched%20chain%20amino%20acid" title="branched chain amino acid">branched chain amino acid</a>, <a href="https://publications.waset.org/abstracts/search?q=BCAA" title=" BCAA"> BCAA</a>, <a href="https://publications.waset.org/abstracts/search?q=Kinesio%20tape" title=" Kinesio tape"> Kinesio tape</a>, <a href="https://publications.waset.org/abstracts/search?q=pea" title=" pea"> pea</a>, <a href="https://publications.waset.org/abstracts/search?q=PVP%20gel" title=" PVP gel"> PVP gel</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound-assisted%20extraction" title=" ultrasound-assisted extraction"> ultrasound-assisted extraction</a> </p> <a href="https://publications.waset.org/abstracts/68499/branched-chain-amino-acid-kinesio-pvp-gel-tape-from-extract-of-pea-pisum-sativum-l-based-on-ultrasound-assisted-extraction-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68499.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3116</span> Evaluation of Pretreatment and Bioactive Compounds Recovery from Chlorella vulgaris</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marina%20Stramarkou">Marina Stramarkou</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofia%20Papadaki"> Sofia Papadaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Konstantina%20Kyriakopoulou"> Konstantina Kyriakopoulou</a>, <a href="https://publications.waset.org/abstracts/search?q=Magdalini%20Krokida"> Magdalini Krokida</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, microalgae represent the diverse branch of microorganism that is used not only in fish farming, but also in food, cosmetics, pharmaceuticals and biofuel production as they can produce a wide range of unique functional ingredients. In the present work, a remarkable microalga Chlorella vulgaris (CV) was selected as a raw material for the recovery of multifunctional extracts. First of all, the drying of raw biomass was examined with freeze-drying showing the best behavior. Ultrasonic-assisted extraction (UAE) using different solvents was applied under the specific optimized conditions. In case of raw biomass, ethanol was the suitable solvent, whereas on dried samples water performed better. The total carotenoid, β-carotene, chlorophyll and protein content in the raw materials, extracts and extraction residues was determined using UV-Vis spectrometry. The microalgae biomass and the extracts were evaluated regarding their antiradical activity using the DPPH method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=pigments" title=" pigments"> pigments</a>, <a href="https://publications.waset.org/abstracts/search?q=proteins" title=" proteins"> proteins</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound%20assisted%20extraction" title=" ultrasound assisted extraction"> ultrasound assisted extraction</a> </p> <a href="https://publications.waset.org/abstracts/48634/evaluation-of-pretreatment-and-bioactive-compounds-recovery-from-chlorella-vulgaris" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48634.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3115</span> Ultrasound/Microwave Assisted Extraction Recovery and Identification of Bioactive Compounds (Polyphenols) from Tarbush (Fluorensia cernua)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marisol%20Rodriguez-Duarte">Marisol Rodriguez-Duarte</a>, <a href="https://publications.waset.org/abstracts/search?q=Aide%20Saenz-Galindo"> Aide Saenz-Galindo</a>, <a href="https://publications.waset.org/abstracts/search?q=Carolina%20Flores-Gallegos"> Carolina Flores-Gallegos</a>, <a href="https://publications.waset.org/abstracts/search?q=Raul%20Rodriguez-Herrera"> Raul Rodriguez-Herrera</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20Ascacio-Valdes"> Juan Ascacio-Valdes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The plant known as tarbush (Fluorensia cernua) is a plant originating in northern Mexico, mainly in the states of Coahuila, Durango, San Luis Potosí, Zacatecas and Chihuahua. It is a branched shrub that belongs to the family Asteraceae, has oval leaves of 6 to 11 cm in length and also has small yellow flowers. In Mexico, the tarbush is a very appreciated plant because it has been used as a traditional medicinal agent, for the treatment of gastrointestinal diseases, skin infections and as a healing agent. This plant has been used mainly as an infusion. Due to its traditional use, the content and type of phytochemicals present in the plant are currently unknown and are responsible for its biological properties, so its recovery and identification is very important because the compounds that it contains have relevant applications in the field of food, pharmaceuticals and medicine. The objective of this work was to determine the best extraction condition of phytochemical compounds (mainly polyphenolic compounds) from the leaf using ultrasound/microwave assisted extraction (U/M-AE). To reach the objective, U/M-AE extractions were performed evaluating three mass/volume ratios (1:8, 1:12, 1:16), three ethanol/water solvent concentrations (0%, 30% and 70%), ultrasound extraction time of 20 min and 5 min at 70°C of microwave treatment. All experiments were performed using a fractional factorial experimental design. Once the best extraction condition was defined, the compounds were recovered by liquid column chromatography using Amberlite XAD-16, the polyphenolic fraction was recovered with ethanol and then evaporated. The recovered polyphenolic compounds were quantified by spectrophotometric techniques and identified by HPLC/ESI/MS. The results obtained showed that the best extraction condition of the compounds was using a mass/volume ratio of 1:8 and solvent ethanol/water concentration of 70%. The concentration obtained from polyphenolic compounds using this condition was 22.74 mg/g and finally, 16 compounds of polyphenolic origin were identified. The results obtained in this work allow us to postulate the Mexican plant known as tarbush as a relevant source of bioactive polyphenolic compounds of food, pharmaceutical and medicinal interest. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=U%2FM-AE" title="U/M-AE">U/M-AE</a>, <a href="https://publications.waset.org/abstracts/search?q=tarbush" title=" tarbush"> tarbush</a>, <a href="https://publications.waset.org/abstracts/search?q=polyphenols" title=" polyphenols"> polyphenols</a>, <a href="https://publications.waset.org/abstracts/search?q=identification" title=" identification"> identification</a> </p> <a href="https://publications.waset.org/abstracts/102851/ultrasoundmicrowave-assisted-extraction-recovery-and-identification-of-bioactive-compounds-polyphenols-from-tarbush-fluorensia-cernua" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3114</span> Recovery and Εncapsulation of Μarine Derived Antifouling Agents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marina%20Stramarkou">Marina Stramarkou</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofia%20Papadaki"> Sofia Papadaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Kaloupi"> Maria Kaloupi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ioannis%20Batzakas"> Ioannis Batzakas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biofouling is a complex problem of the aquaculture industry, as it reduces the efficiency of the equipment and causes significant losses of cultured organisms. Nowadays, the current antifouling methods are proved to be labor intensive, have limited lifetime and use toxic substances that result in fish mortality. Several species of marine algae produce a wide variety of biogenic compounds with antibacterial and antifouling properties, which are effective in the prevention and control of biofouling and can be incorporated in antifouling coatings. In the present work, Fucus spiralis, a species of macro algae, and Chlorella vulgaris, a well-known species of microalgae, were used for the isolation and recovery of bioactive compounds, belonging to groups of fatty acids, lipopeptides and amides. The recovery of the compounds was achieved through the application of the ultrasound- assisted extraction, an environmentally friendly method, using green, non-toxic solvents. Moreover, the coating of the antifouling agents was done by innovative encapsulation and coating methods, such as electro-hydrodynamic process. For the encapsulation of the bioactive compounds natural matrices were used, such as polysaccharides and proteins. Water extracts that were incorporated in protein matrices were considered the most efficient antifouling coating. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algae" title="algae">algae</a>, <a href="https://publications.waset.org/abstracts/search?q=electrospinning" title=" electrospinning"> electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acids" title=" fatty acids"> fatty acids</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound-assisted%20extraction" title=" ultrasound-assisted extraction"> ultrasound-assisted extraction</a> </p> <a href="https://publications.waset.org/abstracts/69052/recovery-and-encapsulation-of-marine-derived-antifouling-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3113</span> Ultrasound-Assisted Soil Washing Process for the Removal of Heavy Metals from Clays</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sophie%20Herr">Sophie Herr</a>, <a href="https://publications.waset.org/abstracts/search?q=Antoine%20Leybros"> Antoine Leybros</a>, <a href="https://publications.waset.org/abstracts/search?q=Yves%20Barre"> Yves Barre</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergey%20Nikitenko"> Sergey Nikitenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachel%20Pflieger"> Rachel Pflieger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The proportion of soil contaminated by a wide range of pollutants (heavy metals, PCBs, pesticides, etc.) of anthropogenic origin is constantly increasing, and it is becoming urgent to address this issue. Among remediation methods, soil washing is an effective, relatively fast, and widely used process. This study assesses its coupling with ultrasound: indeed, sonication induces the formation of cavitation bubbles in solution that enhance local mass transfer through agitation and particle erosion. The removal of target toxic elements Ni(II) and Zn(II) from vermiculite clay has been studied under 20 kHz ultrasound and silent conditions. Several acids were tested, and HCl was chosen as the solvent. The effects of solid/liquid ratio and particle size were investigated. Metal repartition in the clay has been followed by Tessier's sequential extraction procedure. The results showed that more metal elements bound to the challenging residual phase were desorbed with 20 kHz ultrasound than in silent conditions. This supports the promising application of ultrasound for heavy metal desorption in difficult conditions. Further experiments were performed at high-frequency US (362 kHz), and it was shown that fragmentation of the vermiculite particles is then limited, while positive effects of US in the decontamination are kept. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=desorption" title="desorption">desorption</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a>, <a href="https://publications.waset.org/abstracts/search?q=vermiculite" title=" vermiculite"> vermiculite</a> </p> <a href="https://publications.waset.org/abstracts/147404/ultrasound-assisted-soil-washing-process-for-the-removal-of-heavy-metals-from-clays" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3112</span> Microwave-Assisted Extraction of Lycopene from Gac Arils (Momordica cochinchinensis (Lour.) Spreng)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yardfon%20Tanongkankit">Yardfon Tanongkankit</a>, <a href="https://publications.waset.org/abstracts/search?q=Kanjana%20Narkprasom"> Kanjana Narkprasom</a>, <a href="https://publications.waset.org/abstracts/search?q=Nukrob%20Narkprasom"> Nukrob Narkprasom</a>, <a href="https://publications.waset.org/abstracts/search?q=Khwanruthai%20Saiupparat"> Khwanruthai Saiupparat</a>, <a href="https://publications.waset.org/abstracts/search?q=Phatthareeya%20Siriwat"> Phatthareeya Siriwat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gac fruit (Momordica cochinchinensis (Lour.) Spreng) possesses high potential for health food as it contains high lycopene contents. The objective of this study was to optimize the extraction of lycopene from gac arils using the microwave extraction method. Response surface method was used to find the conditions that optimize the extraction of lycopene from gac arils. The parameters of extraction used in this study were extraction time (120-600 seconds), the solvent to sample ratio (10:1, 20:1, 30:1, 40:1 and 50:1 mL/g) and set microwave power (100-800 watts). The results showed that the microwave extraction condition at the extraction time of 360 seconds, the sample ratio of 30:1 mL/g and the microwave power of 450 watts were suggested since it exhibited the highest value of lycopene content of 9.86 mg/gDW. It was also observed that lycopene contents extracted from gac arils by microwave method were higher than that by the conventional method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conventional%20extraction" title="conventional extraction">conventional extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=Gac%20arils" title=" Gac arils"> Gac arils</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave-assisted%20extraction" title=" microwave-assisted extraction"> microwave-assisted extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=Lycopene" title=" Lycopene"> Lycopene</a> </p> <a href="https://publications.waset.org/abstracts/62117/microwave-assisted-extraction-of-lycopene-from-gac-arils-momordica-cochinchinensis-lour-spreng" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62117.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3111</span> Sequential Pulsed Electric Field and Ultrasound Assisted Extraction of Bioactive Enriched Fractions from Button Mushroom Stalks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bibha%20Kumari">Bibha Kumari</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigel%20P.%20Brunton"> Nigel P. Brunton</a>, <a href="https://publications.waset.org/abstracts/search?q=Dilip%20K.%20Rai"> Dilip K. Rai</a>, <a href="https://publications.waset.org/abstracts/search?q=Brijesh%20K.%20Tiwari"> Brijesh K. Tiwari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Edible mushrooms possess numerous functional components like homo- and hetero- β-glucans [β(1→3), β(1→4) and β(1→6) glucosidic linkages], chitins, ergosterols, bioactive polysaccharides and peptides imparting health beneficial properties to mushrooms. Some of the proven biological activities of mushroom extracts are antioxidant, antimicrobial, immunomodulatory, cholesterol lowering activity by inhibiting a key cholesterol metabolism enzyme i.e. 3-hydroxy-3-methyl-glutaryl CoA reductase (HMGCR), angiotensin I-converting enzyme (ACE) inhibition. Application of novel extraction technologies like pulsed electric field (PEF) and high power ultrasound offers clean, green, faster and efficient extraction alternatives with enhanced and good quality extracts. Sequential PEF followed by ultrasound assisted extraction (UAE) were applied to recover bioactive enriched fractions from industrial white button mushroom (Agaricus bisporus) stalk waste using environmentally friendly and GRAS solvents i.e. water and water/ethanol combinations. The PEF treatment was carried out at 60% output voltage, 2 Hz frequency for 500 pulses of 20 microseconds pulse width, using KCl salt solution of 0.6 mS/cm conductivity by the placing 35g of chopped fresh mushroom stalks and 25g of salt solution in the 4x4x4cm3 treatment chamber. Sequential UAE was carried out on the PEF pre-treated samples using ultrasonic-water-bath (USB) of three frequencies (25 KHz, 35 KHz and 45 KHz) for various treatment times (15-120 min) at 80°C. Individual treatment using either PEF or UAE were also investigation to compare the effect of each treatment along with the combined effect on the recovery and bioactivity of the crude extracts. The freeze dried mushroom stalk powder was characterised for proximate compositional parameters (dry weight basis) showing 64.11% total carbohydrate, 19.12% total protein, 7.21% total fat, 31.2% total dietary fiber, 7.9% chitin (as glucosamine equivalent) and 1.02% β-glucan content. The total phenolic contents (TPC) were determined by the Folin-Ciocalteu procedure and expressed as gallic-acid-equivalents (GAE). The antioxidant properties were ascertained using DPPH and FRAP assays and expressed as trolox-equivalents (TE). HMGCR activity and molecular mass of β-glucans will be measured using the commercial HMG-CoA Reductase Assay kit (Sigma-Aldrich) and size exclusion chromatography (HPLC-SEC), respectively. Effects of PEF, UAE and their combination on the antioxidant capacity, HMGCR inhibition and β-glucans content will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%B2-glucan" title="β-glucan">β-glucan</a>, <a href="https://publications.waset.org/abstracts/search?q=mushroom%20stalks" title=" mushroom stalks"> mushroom stalks</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsed%20electric%20field%20%28PEF%29" title=" pulsed electric field (PEF)"> pulsed electric field (PEF)</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound%20assisted%20extraction%20%28UAE%29" title=" ultrasound assisted extraction (UAE)"> ultrasound assisted extraction (UAE)</a> </p> <a href="https://publications.waset.org/abstracts/65769/sequential-pulsed-electric-field-and-ultrasound-assisted-extraction-of-bioactive-enriched-fractions-from-button-mushroom-stalks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ultrasound%20assisted%20extraction&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ultrasound%20assisted%20extraction&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ultrasound%20assisted%20extraction&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ultrasound%20assisted%20extraction&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ultrasound%20assisted%20extraction&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ultrasound%20assisted%20extraction&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ultrasound%20assisted%20extraction&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ultrasound%20assisted%20extraction&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ultrasound%20assisted%20extraction&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ultrasound%20assisted%20extraction&page=104">104</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ultrasound%20assisted%20extraction&page=105">105</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ultrasound%20assisted%20extraction&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>