CINXE.COM
Search results for: phenolic compounds
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: phenolic compounds</title> <meta name="description" content="Search results for: phenolic compounds"> <meta name="keywords" content="phenolic compounds"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="phenolic compounds" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="phenolic compounds"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2524</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: phenolic compounds</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2524</span> Olive Oils from Algeria: Phenolic Compounds Composition and Antibacterial Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Firdaousse%20Laincer">Firdaousse Laincer</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahima%20Laribi"> Rahima Laribi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abderazak%20Tamendjari"> Abderazak Tamendjari</a>, <a href="https://publications.waset.org/abstracts/search?q=Rovellini%20Venturini"> Rovellini Venturini </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phenolic compounds present in olive oil have received much attention in recent years due to their beneficial functional and nutritional effects. Phenolic composition, antibacterial activity of phenolic extracts of olive oil varieties from Algeria were investigated. The analysis of polyphenols was performed by Folin-Ciocalteu and HPLC. As a result, many phenolic compounds were identified and quantified by using HPLC; derivatives of oleuropein and ligstroside, hydroxytyrosol, tyrosol, flavonoids, and lignans reporting unique and characteristic phenolic profile. These phenolic fractions also differentiate the total antibacterial activity. Among the bacteria tested, S. aureus and, to a lesser extent, B. subtilis showed the highest sensitivity; the MIC varied from 0.6 to 1.6 mg•mL-1 and 1.2 to 1.8 mg•mL-1, respectively. The results obtained denote that Algerian olive oils may constitute a good source of healthy compounds, phenolics compounds, in the diet, suggesting that their consumption could be useful in the prevention of diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title="antibacterial activity">antibacterial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20oil" title=" olive oil"> olive oil</a>, <a href="https://publications.waset.org/abstracts/search?q=phenols" title=" phenols"> phenols</a>, <a href="https://publications.waset.org/abstracts/search?q=HPLC" title=" HPLC"> HPLC</a> </p> <a href="https://publications.waset.org/abstracts/13202/olive-oils-from-algeria-phenolic-compounds-composition-and-antibacterial-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2523</span> In vitro Bioacessibility of Phenolic Compounds from Fruit Spray Dried and Lyophilized Powder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carolina%20Beres">Carolina Beres</a>, <a href="https://publications.waset.org/abstracts/search?q=Laurine%20Da%20Silva"> Laurine Da Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Danielle%20Pereira"> Danielle Pereira</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Ribeiro"> Ana Ribeiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Renata%20Tonon"> Renata Tonon</a>, <a href="https://publications.waset.org/abstracts/search?q=Caroline%20Mellinger-Silva"> Caroline Mellinger-Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Karina%20Dos%20Santos"> Karina Dos Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=Flavia%20Gomes"> Flavia Gomes</a>, <a href="https://publications.waset.org/abstracts/search?q=Lourdes%20Cabral"> Lourdes Cabral</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The health benefits of bioactive compounds such as phenolics are well known. The main source of these compounds are fruits and derivates. This study had the objective to study the bioacessibility of phenolic compounds from grape pomace and juçara dried extracts. For this purpose both characterized extracts were submitted to a simulated human digestion and the total phenolic content, total anthocyanins and antioxidant scavenging capacity was determinate in digestive fractions (oral, gastric, intestinal and colonic). Juçara had a higher anthocianins bioacessibility (17.16%) when compared to grape pomace (2.08%). The opposite result was found for total phenolic compound, where the higher bioacessibility was for grape (400%). The phenolic compound increase indicates a more accessible compound in the human gut. The lyophilized process had a beneficial impact in the final accessibility of the phenolic compounds being a more promising technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioacessibility" title="bioacessibility">bioacessibility</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=grape" title=" grape"> grape</a>, <a href="https://publications.waset.org/abstracts/search?q=ju%C3%A7ara" title=" juçara"> juçara</a> </p> <a href="https://publications.waset.org/abstracts/95136/in-vitro-bioacessibility-of-phenolic-compounds-from-fruit-spray-dried-and-lyophilized-powder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95136.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2522</span> Substitution of Formaldehyde in Phenolic Resins with Innovative and Bio-Based Vanillin Derived Compounds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sylvain%20Caillol">Sylvain Caillol</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghislain%20David"> Ghislain David</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phenolic resins are industrially used in a wide range of applications from commodity and construction materials to high-technology aerospace industry. They are mainly produced from the reaction between phenolic compounds and formaldehyde. Nevertheless, formaldehyde is a highly volatile and hazardous compound, classified as a Carcinogenic, Mutagenic and Reprotoxic chemical (CMR). Vanillin is a bio-based and non-toxic aromatic aldehyde compound obtained from the abundant lignin resources. Also, its aromaticity is very interesting for the synthesis of phenolic resins with high thermal stability. However, because of the relatively low reactivity of its aldehyde function toward phenolic compounds, it has never been used to synthesize phenolic resins. We developed innovative functionalization reactions and designed new bio-based aromatic aldehyde compounds from vanillin. Those innovative compounds present improved reactivity toward phenolic compounds compared to vanillin. Moreover, they have target structures to synthesize highly cross-linked phenolic resins with high aromatic densities. We have obtained phenolic resins from substituted vanillin, thus without the use of any aldehyde compound classified as CMR. The analytical tests of the cured resins confirmed that those bio-based resins exhibit high levels of performance with high thermal stability and high rigidity properties <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phenolic%20resins" title="phenolic resins">phenolic resins</a>, <a href="https://publications.waset.org/abstracts/search?q=formaldehyde-free" title=" formaldehyde-free"> formaldehyde-free</a>, <a href="https://publications.waset.org/abstracts/search?q=vanillin" title=" vanillin"> vanillin</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-based" title=" bio-based"> bio-based</a>, <a href="https://publications.waset.org/abstracts/search?q=non-toxic" title=" non-toxic"> non-toxic</a> </p> <a href="https://publications.waset.org/abstracts/40492/substitution-of-formaldehyde-in-phenolic-resins-with-innovative-and-bio-based-vanillin-derived-compounds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2521</span> Variation of Phenolic Compounds in Latvian Apple Juices and Their Suitability for Cider Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rita%20Riekstina-Dolge">Rita Riekstina-Dolge</a>, <a href="https://publications.waset.org/abstracts/search?q=Zanda%20Kruma"> Zanda Kruma</a>, <a href="https://publications.waset.org/abstracts/search?q=Fredijs%20Dimins"> Fredijs Dimins</a>, <a href="https://publications.waset.org/abstracts/search?q=Inta%20Krasnova"> Inta Krasnova</a>, <a href="https://publications.waset.org/abstracts/search?q=Daina%20Karklina"> Daina Karklina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Apple juice is the main raw material for cider production. In this study apple juices obtained from 14 dessert and crab apples grown in Latvia were investigated. For all samples total phenolic compounds, tannins and individual phenolic compounds content were determined. The total phenolic content of different variety apple juices ranged from 650mg L-1 to 4265mg L-1. Chlorogenic acid is the predominant phenolic compound in all juice samples and ranged from 143.99mg L-1 in ‘Quaker Beauty’ apple juice to 617.66mg L-1 in ‘Kerr’ juice. Some dessert and crab apple juices have similar phenolic composition, but in several varieties such as ‘Cornelie’, ‘Hyslop’ and ‘Riku’ it was significantly higher. For cider production it is better to blend different kinds of apple juices including apples rich in high phenol content ('Rick', 'Cornelie') and also, for successful fermentation, apples rich in sugars and soluble solids content should be used in blends. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apple%20juice" title="apple juice">apple juice</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20cluster%20analysis" title=" hierarchical cluster analysis"> hierarchical cluster analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=cider%20production" title=" cider production"> cider production</a> </p> <a href="https://publications.waset.org/abstracts/7885/variation-of-phenolic-compounds-in-latvian-apple-juices-and-their-suitability-for-cider-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7885.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2520</span> Comparison of Phenolic and Urushiol Contents of Different Parts of Rhus verniciflua and Their Antimicrobial Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jae%20Young%20Jang">Jae Young Jang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Hoon%20Ahn"> Jong Hoon Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Woong%20Lim"> Jae-Woong Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=So%20Young%20Kang"> So Young Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Mi%20Kyeong%20Lee"> Mi Kyeong Lee </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rhus verniciflua is commonly known as a lacquer tree in Korea. Stem barks of R. verniciflua have been used as an immunostimulator in traditional medicine. It contains phenolic compounds and is known for diverse biological activities such as antioxidant and antimicrobial activity. However, it also causes allergic dermatitis due to urushiols derivatives. For the development of active natural resources with less toxicity, the content of phenolic compounds and urushiols of different parts of R. verniciflua such as stem barks, lignum and leaves were quantitated by colorimetric assay and HPLC analysis. The urushiols content were the highest in stem barks, and followed by leaves. The lignum contained trace amount of urushiols. The phenolic contents, however, were the most abundant in lignum, and followed by leaves and stem barks. These results clear showed that the content of urushiols and phenolic differs depending on the parts of R. verniciflua. Antimicrobial activity of different parts of R. verniciflua against fish pathogenic bacteria was also investigated using Edwardsiella tarda. Lignum of R. verniciflua was the most effective in antimicrobial activity against E. tarda and phenolic constituents are suggested to be active constituents for activity. Taken together, phenolic compounds are responsible for antimicrobial activity of R. verniciflua. The lignum of R. verniciflua contains high content of phenolic compounds with less urushiols, which suggests efficient antimicrobial activity with less toxicity. Therefore, lignum of R. verniciflua are suggested as good sources for antimicrobial activity against fish bacterial diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=different%20parts" title="different parts">different parts</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=Rhus%20verniciflua" title=" Rhus verniciflua"> Rhus verniciflua</a>, <a href="https://publications.waset.org/abstracts/search?q=urushiols" title=" urushiols "> urushiols </a> </p> <a href="https://publications.waset.org/abstracts/56183/comparison-of-phenolic-and-urushiol-contents-of-different-parts-of-rhus-verniciflua-and-their-antimicrobial-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2519</span> Identification and Quantification of Phenolic Compounds In Cassia tora Collected from Three Different Locations Using Ultra High Performance Liquid Chromatography – Electro Spray Ionization – Mass Spectrometry (UHPLC-ESI-MS-MS)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shipra%20Shukla">Shipra Shukla</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaurav%20Chaudhary"> Gaurav Chaudhary</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Tewari"> S. K. Tewari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahesh%20Pal"> Mahesh Pal</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20K.%20Upreti"> D. K. Upreti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cassia tora L. is widely distributed in tropical Asian countries, commonly known as sickle pod. Various parts of the plant are reported for their medicinal value due to presence of anthraquinones, phenolic compounds, emodin, β-sitosterol, and chrysophanol. Therefore a sensitive analytical procedure using UHPLC-ESI-MS/MS was developed and validated for simultaneous quantification of five phenolic compounds in leaf, stem and root extracts of Cassia tora. Rapid chromatographic separation of compounds was achieved on Acquity UHPLC BEH C18 column (50 mm×2.1 mm id, 1.7µm) column in 2.5 min. Quantification was carried out using negative electrospray ionization in multiple-reaction monitoring mode. The method was validated as per ICH guidelines and showed good linearity (r2 ≥ 0.9985) over the concentration range of 0.5-200 ng/mL. The intra- and inter-day precisions and accuracy were within RSDs ≤ 1.93% and ≤ 1.90%, respectively. The developed method was applied to investigate variation of five phenolic compounds in the three geographical collections. Results indicated significant variation among analyzed samples collected from different locations in India. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cassia%20tora" title="Cassia tora">Cassia tora</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=quantification" title=" quantification"> quantification</a>, <a href="https://publications.waset.org/abstracts/search?q=UHPLC-ESI-MS%2FMS" title=" UHPLC-ESI-MS/MS"> UHPLC-ESI-MS/MS</a> </p> <a href="https://publications.waset.org/abstracts/56791/identification-and-quantification-of-phenolic-compounds-in-cassia-tora-collected-from-three-different-locations-using-ultra-high-performance-liquid-chromatography-electro-spray-ionization-mass-spectrometry-uhplc-esi-ms-ms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56791.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2518</span> Isolation, Preparation and Biological Properties of Soybean-Flaxseed Protein Co-Precipitates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20H.%20Alu%E2%80%99datt">Muhammad H. Alu’datt</a>, <a href="https://publications.waset.org/abstracts/search?q=Inteaz%20Alli"> Inteaz Alli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted to prepare and evaluate the biological properties of protein co-precipitates from flaxseed and soybean. Protein was prepared by NaOH extraction through the mixing of soybean flour (Sf) and flaxseed flour (Ff) or mixtures of soybean extract (Se) and flaxseed extract (Fe). The protein co-precipitates were precipitated by isoelectric (IEP) and isoelectric-heating (IEPH) co-precipitation techniques. Effects of extraction and co-precipitation techniques on co-precipitate yield were investigated. Native-PAGE, SDS-PAGE were used to study the molecular characterization. Content and antioxidant activity of extracted free and bound phenolic compounds were evaluated for protein co-precipitates. Removal of free and bound phenolic compounds from protein co-precipitates showed little effects on the electrophoretic behavior of the proteins or the protein subunits of protein co-precipitates. Results showed that he highest protein contents and yield were obtained in for Sf-Ff/IEP co-precipitate with values of 53.28 and 25.58% respectively as compared to protein isolates and other co-precipitates. Results revealed that the Sf-Ff/IEP showed a higher content of bound phenolic compounds (53.49% from total phenolic content) as compared to free phenolic compounds (46.51% from total phenolic content). Antioxidant activities of extracted bound phenolic compounds with and without heat treatment from Sf-Ff/IEHP were higher as compared to free phenolic compounds extracted from other protein co-precipitates (29.68 and 22.84%, respectively). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title="antioxidant">antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=phenol" title=" phenol"> phenol</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20co-precipitate" title=" protein co-precipitate"> protein co-precipitate</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/47994/isolation-preparation-and-biological-properties-of-soybean-flaxseed-protein-co-precipitates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47994.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2517</span> Optimization of Extraction Conditions for Phenolic Compounds from Deverra Scoparia Coss and Dur</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roukia%20Hammoudi">Roukia Hammoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chabrouk%20Farid"> Chabrouk Farid</a>, <a href="https://publications.waset.org/abstracts/search?q=Dehak%20Karima"> Dehak Karima</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahfoud%20Hadj%20Mahammed"> Mahfoud Hadj Mahammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Didi%20Ouldelhadj"> Mohamed Didi Ouldelhadj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to optimise the extraction conditions for phenolic compounds from Deverra scoparia Coss and Dur. Apiaceae plant by ultrasound assisted extraction (UAE). The effects of solvent type (acetone, ethanol and methanol), solvent concentration (%), extraction time (mins) and extraction temperature (°C) on total phenolic content (TPC) were determined. The optimum extraction conditions were found to be acetone concentration of 80%, extraction time of 25 min and extraction temperature of 25°C. Under the optimized conditions, the value for TPC was 9.68 ± 1.05 mg GAE/g of extract. The study of the antioxidant power of these oils was performed by the method of DPPH. The results showed that antioxidant activity of the Deverra scoparia essential oil was more effective as compared to ascorbic acid and trolox. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deverra%20scoparia" title="Deverra scoparia">Deverra scoparia</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound%20assisted%20extraction" title=" ultrasound assisted extraction"> ultrasound assisted extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenolic%20content" title=" total phenolic content"> total phenolic content</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a> </p> <a href="https://publications.waset.org/abstracts/23755/optimization-of-extraction-conditions-for-phenolic-compounds-from-deverra-scoparia-coss-and-dur" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23755.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">602</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2516</span> Optimization of Extraction Conditions for Phenolic Compounds from Deverra scoparia Coss. and Dur</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roukia%20Hammoudi">Roukia Hammoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Dehak%20Karima"> Dehak Karima</a>, <a href="https://publications.waset.org/abstracts/search?q=Chabrouk%20Farid"> Chabrouk Farid</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahfoud%20Hadj%20Mahammed"> Mahfoud Hadj Mahammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Didi%20Ouldelhadj"> Mohamed Didi Ouldelhadj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to optimise the extraction conditions for phenolic compounds from Deverra scoparia Coss and Dur. Apiaceae plant by ultrasound assisted extraction (UAE). The effects of solvent type (Acetone, Ethanol and methanol), solvent concentration (%), extraction time (mins) and extraction temperature (°C) on total phenolic content (TPC) were determined. the optimum extraction conditions were found to be acetone concentration of 80%, extraction time of 25 min and extraction temperature of 25°C. Under the optimized conditions, the value for TPC was 9.68 ± 1.05 mg GAE/g of extract. The study of the antioxidant power of these oils was performed by the method of DPPH. The results showed that antioxidant activity of the Deverra scoparia essential oil was more effective as compared to ascorbic acid and trolox. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deverra%20scoparia" title="Deverra scoparia">Deverra scoparia</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound%20assisted%20extraction" title=" ultrasound assisted extraction"> ultrasound assisted extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenolic%20content" title=" total phenolic content"> total phenolic content</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a> </p> <a href="https://publications.waset.org/abstracts/25874/optimization-of-extraction-conditions-for-phenolic-compounds-from-deverra-scoparia-coss-and-dur" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25874.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">595</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2515</span> Determination of Phenolic Compounds in Apples Grown in Different Geographical Regions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mindaugas%20Liaudanskas">Mindaugas Liaudanskas</a>, <a href="https://publications.waset.org/abstracts/search?q=Monika%20Tallat-Kelpsaite"> Monika Tallat-Kelpsaite</a>, <a href="https://publications.waset.org/abstracts/search?q=Darius%20Kviklys"> Darius Kviklys</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonas%20Viskelis"> Jonas Viskelis</a>, <a href="https://publications.waset.org/abstracts/search?q=Pranas%20Viskelis"> Pranas Viskelis</a>, <a href="https://publications.waset.org/abstracts/search?q=Norbertas%20Uselis"> Norbertas Uselis</a>, <a href="https://publications.waset.org/abstracts/search?q=Juozas%20Lanauskas"> Juozas Lanauskas</a>, <a href="https://publications.waset.org/abstracts/search?q=Valdimaras%20Janulis"> Valdimaras Janulis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Apples are an important source of various biologically active compounds used for human health. Phenolic compounds detected in apples are natural antioxidants and have antimicrobial, anti-inflammatory, anticarcinogenic, and cardiovascular protective activity. The quantitative composition of phenolic compounds in apples may be affected by various factors. It is important to investigate it in order to provide the consumer with high-quality well-known composition apples and products made out of it. The objective of this study was to evaluate phenolic compounds quantitative composition in apple fruits grown in a different geographical region. In this study, biological replicates of apple cv. 'Ligol', grown in Lithuania, Latvia, Poland, and Estonia, were investigated. Three biological replicates were analyzed; one of each contained 10 apples. Samples of lyophilized apple fruits were extracted with 70% ethanol (v/v) for 20 min at 40∘C temperature using the ultrasonic bath. The ethanol extracts of apple fruits were analyzed by the high-performance liquid chromatography method. The study found that the geographical location of apple-trees had an impact on the composition of phenolic compounds in apples. The number of quercetin glycosides varied from 314.78±9.47 µg/g (Poland) to 648.17±5.61 µg/g (Estonia). The same trend was also observed with flavan-3-ols (from 829.56±47.17 µg/g to 2300.85±35.49 µg/g), phloridzin (from 55.29±1.7 µg/g to 208.78±0.35 µg/g), and chlorogenic acid (from 501.39±28.84 µg/g to 1704.35±22.65 µg/g). It was observed that the amount of investigated phenolic compounds tended to increase from apples grown in the southern location (Poland) (1701.02±75.38 µg/g) to apples grown northern location (Estonia) (4862.15±56.37 µg/g). Apples (cv. 'Ligol') grown in Estonia accumulated approx. 2.86 times higher amount of phenolic compounds than apples grown in Poland. Acknowledgment: This work was supported by a grant from the Research Council of Lithuania, project No. S-MIP-17-8. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apples" title="apples">apples</a>, <a href="https://publications.waset.org/abstracts/search?q=cultivar%20%27Ligol%27" title=" cultivar 'Ligol'"> cultivar 'Ligol'</a>, <a href="https://publications.waset.org/abstracts/search?q=geographical%20regions" title=" geographical regions"> geographical regions</a>, <a href="https://publications.waset.org/abstracts/search?q=HPLC" title=" HPLC"> HPLC</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a> </p> <a href="https://publications.waset.org/abstracts/104498/determination-of-phenolic-compounds-in-apples-grown-in-different-geographical-regions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104498.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2514</span> Bioactive Compounds and Antioxidant Capacity of Instant Fruit Green Tea Powders</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akanit%20Pisalwadcharin">Akanit Pisalwadcharin</a>, <a href="https://publications.waset.org/abstracts/search?q=Komate%20Satayawut"> Komate Satayawut</a>, <a href="https://publications.waset.org/abstracts/search?q=Virachnee%20Lohachoompol"> Virachnee Lohachoompol</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green tea, mangosteen and pomegranate contain high levels of bioactive compounds which have antioxidant effects and great potential in food applications. The aim of this study was to produce and determine catechin contents, total phenolic contents, antioxidant activity and phenolic compounds of two instant fruit green tea powders which were green tea fortified with mangosteen juice and green tea fortified with pomegranate juice. Seventy percent of hot water extract of green tea was mixed with 30% of mangosteen juice or pomegranate juice, and then spray-dried using a spray dryer. The results showed that the drying conditions optimized for the highest total phenolic contents, catechin contents and antioxidant activity of both powders were the inlet air temperature of 170°C, outlet air temperatures of 90°C and maltodextrin concentration of 30%. The instant green tea with mangosteen powder had total phenolic contents, catechin contents and antioxidant activity of 19.18 (mg gallic acid/kg), 85.44 (mg/kg) and 4,334 (µmoles TE/100 g), respectively. The instant green tea with pomegranate powder had total phenolic contents, catechin contents and antioxidant activity of 32.72 (mg gallic acid/kg), 156.36 (mg/kg) and 6,283 (µmoles TE/100 g), respectively. The phenolic compounds in instant green tea with mangosteen powder comprised of tannic acid (2,156.87 mg/kg), epigallocatechin-3-gallate (898.23 mg/kg) and rutin (13.74 mg/kg). Also, the phenolic compounds in instant green tea with pomegranate powder comprised of tannic acid (2,275.82 mg/kg), epigallocatechin-3-gallate (981.23 mg/kg), rutin (14.97 mg/kg) and i-quercetin (5.86 mg/kg). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20tea" title="green tea">green tea</a>, <a href="https://publications.waset.org/abstracts/search?q=mangosteen" title=" mangosteen"> mangosteen</a>, <a href="https://publications.waset.org/abstracts/search?q=pomegranate" title=" pomegranate"> pomegranate</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a> </p> <a href="https://publications.waset.org/abstracts/58736/bioactive-compounds-and-antioxidant-capacity-of-instant-fruit-green-tea-powders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58736.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2513</span> Preparation and Characterization of Maltodextrin Microcapsules Containing Walnut Green Husk Extract </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Cheraghali">Fatemeh Cheraghali</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeedeh%20Shojaee-Aliabadi"> Saeedeh Shojaee-Aliabadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyede%20Marzieh%20Hosseini"> Seyede Marzieh Hosseini</a>, <a href="https://publications.waset.org/abstracts/search?q=Leila%20Mirmoghtadaie"> Leila Mirmoghtadaie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the field of natural antimicrobial and antioxidant compounds is one of the main research topics in the food industry. Application of agricultural residues is mainly cheap, and available resources are receiving increased attention. Walnut green husk is one of the agricultural residues that is considered as natural compounds with biological properties because of phenolic compounds. In this study, maltodextrin 10% was used for microencapsulation of walnut green husk extract. At first, the extract was examined to consider extraction yield, total phenolic compounds, and antioxidant activation. The results showed the extraction yield of 81.43%, total phenolic compounds of 3997 [mg GAE/100 g], antioxidant activity [DPPH] of 84.85% for walnut green husk extract. Antioxidant activity is about 75%-81% and by DPPH. At the next stage, microencapsulation was done by spry-drying method. The microencapsulation efficiency was 72%-79%. The results of SEM tests confirmed this microencapsulation process. In addition, microencapsulated and free extract was more effective on gram-positive bacteria’s rather than the gram-negative ones. According to the study, walnut green husk can be used as a cheap antioxidant and antimicrobial compounds due to sufficient value of phenolic compounds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biopolymer" title="biopolymer">biopolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=microencapsulation" title=" microencapsulation"> microencapsulation</a>, <a href="https://publications.waset.org/abstracts/search?q=spray-drying" title=" spray-drying"> spray-drying</a>, <a href="https://publications.waset.org/abstracts/search?q=walnut%20green%20husk" title=" walnut green husk"> walnut green husk</a> </p> <a href="https://publications.waset.org/abstracts/98739/preparation-and-characterization-of-maltodextrin-microcapsules-containing-walnut-green-husk-extract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98739.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2512</span> Management Prospects of Winery By-Products Based on Phenolic Compounds and Antioxidant Activity of Grape Skins: The Case of Greek Ionian Islands</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marinos%20Xagoraris">Marinos Xagoraris</a>, <a href="https://publications.waset.org/abstracts/search?q=Iliada%20K.%20Lappa"> Iliada K. Lappa</a>, <a href="https://publications.waset.org/abstracts/search?q=Charalambos%20Kanakis"> Charalambos Kanakis</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitra%20Daferera"> Dimitra Daferera</a>, <a href="https://publications.waset.org/abstracts/search?q=Christina%20Papadopoulou"> Christina Papadopoulou</a>, <a href="https://publications.waset.org/abstracts/search?q=Georgios%20Sourounis"> Georgios Sourounis</a>, <a href="https://publications.waset.org/abstracts/search?q=Charilaos%20Giotis"> Charilaos Giotis</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavlos%20Bouchagier"> Pavlos Bouchagier</a>, <a href="https://publications.waset.org/abstracts/search?q=Christos%20S.%20Pappas"> Christos S. Pappas</a>, <a href="https://publications.waset.org/abstracts/search?q=Petros%20A.%20Tarantilis"> Petros A. Tarantilis</a>, <a href="https://publications.waset.org/abstracts/search?q=Efstathia%20Skotti"> Efstathia Skotti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work was to recover phenolic compounds from grape skins produced in Greek varieties of the Ionian Islands in order to form the basis of calculations for their further utilization in the context of the circular economy. Isolation and further utilization of phenolic compounds is an important issue in winery by-products. For this purpose, 37 samples were collected, extracted, and analyzed in an attempt to provide the appropriate basis for their sustainable exploitation. Extraction of the bioactive compounds was held using an eco-friendly, non-toxic, and highly effective water-glycerol solvent system. Then, extracts were analyzed using UV-Vis, liquid chromatography-mass spectrometry (LC-MS), FTIR, and Raman spectroscopy. Also, total phenolic content and antioxidant activity were measured. LC-MS chromatography showed qualitative differences between different varieties. Peaks were attributed to monomeric 3-flavanols as well as monomeric, dimeric, and trimeric proanthocyanidins. The FT-IR and Raman spectra agreed with the chromatographic data and contributed to identifying phenolic compounds. Grape skins exhibited high total phenolic content (TPC), and it was proved that during vinification, a large number of polyphenols remained in the pomace. This study confirmed that grape skins from Ionian Islands are a promising source of bioactive compounds, suggesting their utilization under a bio-economic and environmental strategic framework. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=grape%20skin" title=" grape skin"> grape skin</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20recovery" title=" waste recovery"> waste recovery</a> </p> <a href="https://publications.waset.org/abstracts/134702/management-prospects-of-winery-by-products-based-on-phenolic-compounds-and-antioxidant-activity-of-grape-skins-the-case-of-greek-ionian-islands" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134702.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2511</span> Effects of Cooking and Drying on the Phenolic Compounds, and Antioxidant Activity of Cleome gynandra (Spider Plant)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Kayitesi">E. Kayitesi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Moyo"> S. Moyo</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Mavumengwana"> V. Mavumengwana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cleome gynandra (spider plant) is an African green leafy vegetable categorized as an indigenous, underutilized and has been reported to contain essential phenolic compounds. Phenolic compounds play a significant role in human diets due to their proposed health benefits. These compounds however may be affected by different processing methods such as cooking and drying. Cleome gynandra was subjected to boiling, steam blanching, and drying processes and analysed for Total Phenolic Content (TPC), Total Flavonoid Content (TFC), antioxidant activity and flavonoid composition. Cooking and drying significantly (p < 0.05) increased the levels of phenolic compounds and antioxidant activity of the vegetable. The boiled sample filtrate exhibited the lowest TPC followed by the raw sample while the steamed sample depicted the highest TPC levels. Antioxidant activity results showed that steamed sample showed the highest DPPH, FRAP and ABTS with mean values of 499.38 ± 2.44, 578.68 ± 5.19, and 214.39 ± 12.33 μM Trolox Equivalent/g respectively. An increase in quercetin-3-rutinoside, quercetin-rhamnoside and kaempferol-3-rutinoside occurred after all the cooking and drying methods employed. Cooking and drying exerted positive effects on the vegetable’s phenolic content, antioxidant activity as a whole, but with varied effects on the individual flavonoid molecules. The results obtained help in defining the importance of African green leafy vegetable and resultant processed products as functional foods and their potential to exert health promoting properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cleome%20gynandra" title="Cleome gynandra">Cleome gynandra</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=cooking" title=" cooking"> cooking</a>, <a href="https://publications.waset.org/abstracts/search?q=drying" title=" drying"> drying</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20promoting%20properties" title=" health promoting properties"> health promoting properties</a> </p> <a href="https://publications.waset.org/abstracts/82511/effects-of-cooking-and-drying-on-the-phenolic-compounds-and-antioxidant-activity-of-cleome-gynandra-spider-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82511.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2510</span> Phenolic Compounds and Antimicrobial Properties of Pomegranate (Punica granatum) Peel Extracts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Rahnemoon">P. Rahnemoon</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sarabi%20Jamab"> M. Sarabi Jamab</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Javanmard%20Dakheli"> M. Javanmard Dakheli</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bostan"> A. Bostan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, tendency to use of natural antimicrobial agents in food industry has increased. Pomegranate peels containing phenolic compounds and anti-microbial agents, are counted as valuable source for extraction of these compounds. In this study, the extraction of pomegranate peel extract was carried out at different ethanol/water ratios (40:60, 60:40, and 80:20), temperatures (25, 40, and 55 ˚C), and time durations (20, 24, and 28 h). The extraction yield, phenolic compounds, flavonoids, and anthocyanins were measured. ‎Antimicrobial activity of pomegranate peel extracts were determined against some food-borne ‎microorganisms such as <em>Salmonella enteritidis</em>, <em>Escherichia coli</em>, <em>Listeria monocytogenes</em>, ‎‎<em>Staphylococcus aureus</em>, <em>Aspergillus niger,</em> and <em>Saccharomyces cerevisiae </em>by agar diffusion and MIC methods. Results showed that at ethanol/water ratio 60:40, 25 ˚C and 24 h maximum amount of phenolic compounds ‎<span dir="RTL">‏</span>(‎<span dir="RTL">‏</span>‎349.518‎<span dir="RTL">‏ ‏</span>mg gallic acid<span dir="RTL">‏/‏</span>g dried extract), ‎flavonoids (250.124 mg rutin<span dir="RTL">‏/‏</span>g dried extract), anthocyanins (252.047 ‎<span dir="RTL">‏‏</span>mg ‎cyanidin<span dir="RTL">‏</span>‎3‎<span dir="RTL">‏</span>glucoside<span dir="RTL">‏/‏</span>‎100 g dried extract), and the strongest antimicrobial activity were obtained. ‎All extracts’ antimicrobial activities were demonstrated against every tested ‎‎microorganisms<span dir="RTL">‏</span>.‎<span dir="RTL">‏ </span><em>Staphylococcus aureus</em> showed the highest sensitivity among the tested ‎‎‎microorganisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20agents" title="antimicrobial agents">antimicrobial agents</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=pomegranate%20peel" title=" pomegranate peel"> pomegranate peel</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent%20extraction%E2%80%8E" title=" solvent extraction"> solvent extraction</a> </p> <a href="https://publications.waset.org/abstracts/56500/phenolic-compounds-and-antimicrobial-properties-of-pomegranate-punica-granatum-peel-extracts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56500.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2509</span> Identification of Phenolic Compounds with Antibacterial Activity in Raisin Extract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yousef%20M.%20Abouzeed%20A.%20Elfahem">Yousef M. Abouzeed A. Elfahem</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Zgheel"> F. Zgheel</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Saad"> M. A. Saad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20O.%20Ahmed"> Mohamed O. Ahmed </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The bioactive properties of phytochemicals indicate their potential as natural drug products to prevent and treat human disease; in particular, compounds with antioxidant and antimicrobial activities may represent a novel class of safe and effective drugs. Following desiccation, grapes (Vitis vinifera) become more resistant to microbial-based degradation, suggesting that raisins may be a source of antimicrobial compounds. To investigate this hypothesis, total phenolic extracts were obtained from common raisins, local market-sourced. The acetone extract was tested for antibacterial activity against four prevalent bacterial pathogens (Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella spp. and Escherichia coli). Antibiotic sensitivity and the Minimum Inhibitory Concentration (MIC) were determined for each bacterium. High performance liquid chromatography was used to identify compounds in the total phenolic extract. The raisin phenolic extract inhibited growth of all the tested bacteria; the greatest inhibitive effect (normalized to cefotaxime sodium control antibiotic) occurred against P. aeruginosa, followed by S. aureus > Salmonella spp.= E. coli. The phenolic extracts contained the bioactive compounds catechin, quercetin, and rutin. Thus, phytochemicals in raisin extract have antibacterial properties; this plant-based extract, or its bioactive constituents, may represent a promising natural preservative or antimicrobial agent for the food industry or anti-infective drug. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vitis%20vinifera%20raisin" title="Vitis vinifera raisin">Vitis vinifera raisin</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title=" antibacterial activity "> antibacterial activity </a> </p> <a href="https://publications.waset.org/abstracts/18882/identification-of-phenolic-compounds-with-antibacterial-activity-in-raisin-extract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18882.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">606</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2508</span> Phenolic Compounds and Antioxidant Capacity of Tuckeroo (Cupaniopsis anacardioides) Fruits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ngoc%20Minh%20Quynh%20Pham">Ngoc Minh Quynh Pham</a>, <a href="https://publications.waset.org/abstracts/search?q=Quan%20V.%20Vuong"> Quan V. Vuong</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20C.%20Bowyer"> Michael C. Bowyer</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20J.%20Scarlett"> Christopher J. Scarlett</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tuckeroo (Cupaniopsis anacardioides) is an Australian native plant and is grown in the coastal regions in New South Wales, Queensland and Northern Australia. Its fruits have been eaten by birds; however there is no information on phytochemical and antioxidant capacity of these fruits. This study aimed to determine the phenolic compounds (TPC), flavonoids (TFC), proanthocyanidins (TPro) and antioxidant capacity in the whole or different parts of tuckeroo fruit including skin, flesh and seed. Whole and partly tuckeroo fruits were collected and immediately freeze dried to constant weight and then ground to small particle sizes (<1mm mesh). Samples were extracted in 50% methanol using an ultrasonic bath set at temperature 40 °C for 30 minutes. TPC, TFC, TPro and antioxidant capacity were measured by spectrophotometric analysis. The results showed that the whole fruits contained 106.23 mg GAE/g of TPC, 67.67 mg CAE/g of TFC and 56.74 mg CAE/g of TPro. These fruits also possessed high antioxidant capacity (DPPH: 263.78 mg TroE/g, ABTS: 346.98 mg TroE/g, CUPRAC: 370.12 mg TroE/g and FRAP: 176.30 mg TroE/g), revealing that these fruits are rich source of antioxidants. The results also showed that distribution of the antioxidants was varied in different parts of the fruits. Skin had the highest levels of TPC, TFC, and TPro as well as antioxidant properties, followed by the seed and flesh had the lowest levels of phenolic compounds and antioxidant capacity. Of note, levels of phenolic compounds and antioxidant capacity of the skin were significantly higher than those of the whole fruits. Therefore, the skin of tuckeroo fruits is recommended as a starting material for extraction and purification of phenolic compounds as potential antioxidants for further utilisation in the food and pharmaceutical industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20capacity" title="antioxidant capacity">antioxidant capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=Cupaniopsis%20anacardioides" title=" Cupaniopsis anacardioides"> Cupaniopsis anacardioides</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=tuckeroo%20fruit" title=" tuckeroo fruit"> tuckeroo fruit</a> </p> <a href="https://publications.waset.org/abstracts/54949/phenolic-compounds-and-antioxidant-capacity-of-tuckeroo-cupaniopsis-anacardioides-fruits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54949.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2507</span> Characterization of Caneberry Juices Enriched by Natural Antioxidants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jelena%20Vuli%C4%87">Jelena Vulić</a>, <a href="https://publications.waset.org/abstracts/search?q=Jasna%20%C4%8Canadanovi%C4%87-Brunet"> Jasna Čanadanović-Brunet</a>, <a href="https://publications.waset.org/abstracts/search?q=Gordana%20%C4%86etkovi%C4%87"> Gordana Ćetković</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonja%20Djilas"> Sonja Djilas</a>, <a href="https://publications.waset.org/abstracts/search?q=Vesna%20Tumbas%20%C5%A0aponjac"> Vesna Tumbas Šaponjac</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Caneberries (raspberries and blackberries) are among the most popular berries in the world, which are consumed as fresh and processed to juice, jams, confitures and other products or as ingredients for different foods. These fruits are known as a rich source of phenolic compounds such as phenolic acids and anthocyanins. Antioxidant activity (AA) of caneberry juices was improved by addition of phenolic compounds which were extracted from two raspberry cultivars (Rubus idaeus, cv. 'Willamette' (RW) and 'Meeker' (RM)) and two blackberry cultivars (Rubus fruticosus, cv. 'Čačanka' (BC) and 'Thornfree' (BT)) pomace, a by-product in juice processing. The total phenolic contents in raspberry and blackberry pomace extracts were determined spectrophotometrically using the Folin-Ciocalteu reagens. The phenolic concentrations in caneberries (RW, RM, BC and BT) pomace extracts were 43.67 ± 2.13 mg GAE/g, 26.25 ± 1.18 mg GAE/g, 46.01 ± 3.26 mg GAE/g and 61.59 ± 1.14 mg GAE/g, respectively. In order to obtain enriched juices, phenolic compounds were applied at concentration of 0.05 mg GAE/ 100 ml. Antioxidant activities of caneberry juices and caneberry enriched juices were measured using stable 1.1-diphenyl-2-picrylhydrazyl (DPPH) radicals. AADPPH of RW, RM, BC and BT juices and enriched juices with addition of 0.01 µg GAE/ml, changed from 37.12% to 93.01%, 23.26% to 91.57%, 53.61% to 95.65% and 52.06% to 93.13%, respectively, while IC50 values of RW, RM, BC and BT juices and enriched juices were diminished 6.33, 19.00, 6.33 and 4.75 times, respectively. Based on the obtained results it can be concluded that phenolic enriched juices were significantly more effective on DPPH radicals. Caneberry juices enriched with waste material are a good source of natural pigments and antioxidants and could be used as functional foods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=caneberry" title="caneberry">caneberry</a>, <a href="https://publications.waset.org/abstracts/search?q=enriched%20juice" title=" enriched juice"> enriched juice</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20antioxidant" title=" phenolic antioxidant"> phenolic antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=DPPH%20radical" title=" DPPH radical"> DPPH radical</a> </p> <a href="https://publications.waset.org/abstracts/4894/characterization-of-caneberry-juices-enriched-by-natural-antioxidants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4894.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2506</span> Biotechnological Recycling of Apple By-Products: A Reservoir Model to Produce a Dietary Supplement Fortified with Biogenic Phenolic Compounds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Zein%20Aalabiden%20Tlais">Ali Zein Aalabiden Tlais</a>, <a href="https://publications.waset.org/abstracts/search?q=Alessio%20Da%20Ros"> Alessio Da Ros</a>, <a href="https://publications.waset.org/abstracts/search?q=Pasquale%20Filannino"> Pasquale Filannino</a>, <a href="https://publications.waset.org/abstracts/search?q=Olimpia%20Vincentini"> Olimpia Vincentini</a>, <a href="https://publications.waset.org/abstracts/search?q=Marco%20Gobbetti"> Marco Gobbetti</a>, <a href="https://publications.waset.org/abstracts/search?q=Raffaella%20Di%20Cagno"> Raffaella Di Cagno</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is an example of apple by-products (AP) recycling through a designed fermentation by selected autochthonous Lactobacillus plantarum AFI5 and Lactobacillus fabifermentans ALI6 used singly or as binary cultures with the selected Saccharomyces cerevisiae AYI7. Compared to Raw-, Unstarted- and Chemically Acidified-AP, Fermented-AP promoted the highest levels of total and insoluble dietary fibers, antioxidant activity, and free phenolics. The binary culture of L. plantarum AFI5 and S. cerevisiae AYI7 had the best effect on the bioavailability phenolic compounds as resulted by the Liquid chromatography-mass spectrometry validated method. The accumulation of phenolic acid derivatives highlighted microbial metabolism during AP fermentation. Bio-converted phenolic compounds were likely responsible for the increased antioxidant activity. The potential health-promoting effects of Fermented-AP were highlighted using Caco-2 cells. With variations among single and binary cultures, fermented-AP counteracted the inflammatory processes and the effects of oxidative stress in Caco-2 cells and preserved the integrity of tight junctions. An alternative and suitable model for food by-products recycling to manufacture a dietary supplement fortified with biogenic compounds was proposed. Highlighting the microbial metabolism of several phenolic compounds, undoubted additional value to such downstream wastes was created. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apple%20by-products" title="apple by-products">apple by-products</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a> </p> <a href="https://publications.waset.org/abstracts/128471/biotechnological-recycling-of-apple-by-products-a-reservoir-model-to-produce-a-dietary-supplement-fortified-with-biogenic-phenolic-compounds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2505</span> Future Trends in Sources of Natural Antioxidants from Indigenous Foods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20El-Ghorab">Ahmed El-Ghorab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Indigenous foods are promising sources of various chemical bioactive compounds such as vitamins, phenolic compounds and carotenoids. Therefore, the presence o different bioactive compounds in fruits could be used to retard or prevent various diseases such as cardiovascular and cancer. This is an update report on nutritional compositions and health promoting phytochemicals of different indigenous food . This different type of fruits and/ or other sources such as spices, aromatic plants, grains by-products, which containing bioactive compounds might be used as functional foods or for nutraceutical purposes. most common bioactive compounds are vitamin C, polyphenol, β- carotene and lycopene contents. In recent years, there has been a global trend toward the use of natural phytochemical as antioxidants and functional ingredients, which are present in natural resources such as vegetables, fruits, oilseeds and herbs.. Our future trend the Use of Natural antioxidants as a promising alternative to use of synthetic antioxidants and the Production of natural antioxidant on commercial scale to maximize the value addition of indigenous food waste as a good source of bioactive compounds such as antioxidants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioactive%20compounds" title="bioactive compounds">bioactive compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidants" title=" antioxidants"> antioxidants</a>, <a href="https://publications.waset.org/abstracts/search?q=by-product" title=" by-product"> by-product</a>, <a href="https://publications.waset.org/abstracts/search?q=indigenous%20foods" title=" indigenous foods"> indigenous foods</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a> </p> <a href="https://publications.waset.org/abstracts/16743/future-trends-in-sources-of-natural-antioxidants-from-indigenous-foods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16743.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2504</span> From Binary Solutions to Real Bio-Oils: A Multi-Step Extraction Story of Phenolic Compounds with Ionic Liquid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Cesari">L. Cesari</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Canabady-Rochelle"> L. Canabady-Rochelle</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Mutelet"> F. Mutelet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The thermal conversion of lignin produces bio-oils that contain many compounds with high added-value such as phenolic compounds. In order to efficiently extract these compounds, the possible use of choline bis(trifluoromethylsulfonyl)imide [Choline][NTf2] ionic liquid was explored. To this end, a multistep approach was implemented. First, binary (phenolic compound and solvent) and ternary (phenolic compound and solvent and ionic liquid) solutions were investigated. Eight binary systems of phenolic compound and water were investigated at atmospheric pressure. These systems were quantified using the turbidity method and UV-spectroscopy. Ternary systems (phenolic compound and water and [Choline][NTf2]) were investigated at room temperature and atmospheric pressure. After stirring, the solutions were let to settle down, and a sample of each phase was collected. The analysis of the phases was performed using gas chromatography with an internal standard. These results were used to quantify the values of the interaction parameters of thermodynamic models. Then, extractions were performed on synthetic solutions to determine the influence of several operating conditions (temperature, kinetics, amount of [Choline][NTf2]). With this knowledge, it has been possible to design and simulate an extraction process composed of one extraction column and one flash. Finally, the extraction efficiency of [Choline][NTf2] was quantified with real bio-oils from lignin pyrolysis. Qualitative and quantitative analysis were performed using gas chromatographic connected to mass spectroscopy and flame ionization detector. The experimental measurements show that the extraction of phenolic compounds is efficient at room temperature, quick and does not require a high amount of [Choline][NTf2]. Moreover, the simulations of the extraction process demonstrate that [Choline][NTf2] process requires less energy than an organic one. Finally, the efficiency of [Choline][NTf2] was confirmed in real situations with the experiments on lignin pyrolysis bio-oils. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-oils" title="bio-oils">bio-oils</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=lignin" title=" lignin"> lignin</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a> </p> <a href="https://publications.waset.org/abstracts/106225/from-binary-solutions-to-real-bio-oils-a-multi-step-extraction-story-of-phenolic-compounds-with-ionic-liquid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2503</span> Evaluation of Bioactive Phenols in Blueberries from Different Cultivars</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christophe%20Gon%C3%A7alves">Christophe Gonçalves</a>, <a href="https://publications.waset.org/abstracts/search?q=Raquel%20P.%20F.%20Guin%C3%A9"> Raquel P. F. Guiné</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniela%20Teixeira"> Daniela Teixeira</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernando%20J.%20Gon%C3%A7alves"> Fernando J. Gonçalves</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Blueberries are widely valued for their high content in phenolic compounds with antioxidant activity, and hence beneficial for the human health. In this way, a study was done to determine the phenolic composition (total phenols, anthocyanins and tannins) and antioxidant activity of blueberries from three cultivars (Duke, Bluecrop, and Ozarblue) grown in two different Portuguese farms. Initially two successive extractions were done with methanol followed by two extractions with aqueous acetone solutions. These extracts obtained were then used to evaluate the amount of phenolic compounds and the antioxidant activity. The total phenols were observed to vary from 4.9 to 8.2 mg GAE/g fresh weight, with anthocyanin’s contents in the range 1.5-2.8 mg EMv3G/g and tannins contents in the range 1.5- 3.8 mg/g. The results for antioxidant activity ranged from 9.3 to 23.2 mol TE/g, and from 24.7 to 53.4 mol TE/g, when measured, respectively, by DPPH and ABTS methods. In conclusion it was observed that, in general, the cultivar had a visible effect on the phenols present, and furthermore, the geographical origin showed relevance either in the phenols contents or the antioxidant activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anthocyanins" title="anthocyanins">anthocyanins</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=blueberry%20cultivar" title=" blueberry cultivar"> blueberry cultivar</a>, <a href="https://publications.waset.org/abstracts/search?q=geographical%20origin" title=" geographical origin"> geographical origin</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a> </p> <a href="https://publications.waset.org/abstracts/22045/evaluation-of-bioactive-phenols-in-blueberries-from-different-cultivars" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2502</span> Natural Antioxidant Changes in Fresh and Dried Spices and Vegetables</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liga%20Priecina">Liga Priecina</a>, <a href="https://publications.waset.org/abstracts/search?q=Daina%20Karklina"> Daina Karklina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Antioxidants are became the most analyzed substances in last decades. Antioxidants act as in activator for free radicals. Spices and vegetables are one of major antioxidant sources. Most common antioxidants in vegetables and spices are vitamin C, E, phenolic compounds, carotenoids. Therefore, it is important to get some view about antioxidant changes in spices and vegetables during processing. In this article was analyzed nine fresh and dried spices and vegetables- celery (Apium graveolens), parsley (Petroselinum crispum), dill (Anethum graveolens), leek (Allium ampeloprasum L.), garlic (Allium sativum L.), onion (Allium cepa), celery root (Apium graveolens var. rapaceum), pumpkin (Curcubica maxima), carrot (Daucus carota)- grown in Latvia 2013. Total carotenoids and phenolic compounds and their antiradical scavenging activity were determined for all samples. Dry matter content was calculated from moisture content. After drying process carotenoid content significantly decreases in all analyzed samples, except one -carotenoid content increases in parsley. Phenolic composition was different and depends on sample – fresh or dried. Total phenolic, flavonoid and phenolic acid content increases in dried spices. Flavan-3-ol content is not detected in fresh spice samples. For dried vegetables- phenolic acid content decreases significantly, but increases flavan-3-ols content. The higher antiradical scavenging activity was observed in samples with higher flavonoid and phenolic acid content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antiradical%20scavenging%20activity" title="antiradical scavenging activity">antiradical scavenging activity</a>, <a href="https://publications.waset.org/abstracts/search?q=carotenoids" title=" carotenoids"> carotenoids</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=spices" title=" spices"> spices</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetables" title=" vegetables"> vegetables</a> </p> <a href="https://publications.waset.org/abstracts/8667/natural-antioxidant-changes-in-fresh-and-dried-spices-and-vegetables" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8667.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2501</span> Optimisation of Extraction of Phenolic Compounds in Algerian Lavandula multifida, Algeria, NW</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustapha%20Mahmoud%20Dif">Mustapha Mahmoud Dif</a>, <a href="https://publications.waset.org/abstracts/search?q=Fouzia%20Benali-Toumi"> Fouzia Benali-Toumi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Benyahia"> Mohamed Benyahia</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofiane%20Bouazza"> Sofiane Bouazza</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbes%20Dellal"> Abbes Dellal</a>, <a href="https://publications.waset.org/abstracts/search?q=Slimane%20Baha"> Slimane Baha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> L. multifida is applied to treat rheumatism and cold and has hypoglycemic and anti-inflammatory properties. The present study is to optimize the extraction of phenolic compounds in Algerian Lavandula multifida. The influences of parameters including temperature (decoction and maceration) and extraction time (15min to 45 min) on the flavonoids concentration are studied. The optimal conditions are determined and the quadratic response surfaces draw from the mathematical models. Total phenols were evaluated using Folin sicaltieu methods, total flavonoids were estimated using the Tri chloral aluminum method. The maximum concentration extracted, for total flavonoids, equal to 0.043 mg/g was achieved with decoction and extraction time of 41.55 min. However, for total phenol compounds highest concentration of 0.218 mg/g, is obtained with 45 min at 49.99°C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=L%20multifidi" title="L multifidi">L multifidi</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20content" title=" phenolic content"> phenolic content</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=time" title=" time"> time</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a> </p> <a href="https://publications.waset.org/abstracts/46388/optimisation-of-extraction-of-phenolic-compounds-in-algerian-lavandula-multifida-algeria-nw" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2500</span> Changes in Amounts of Glycyrrhizin and Phenolic Compounds of Glycrrhiza glabra L. Seedlings Treated by Copper and Zinc Oxide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roya%20Razavizadeh">Roya Razavizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Razieh%20Soltaninejad"> Razieh Soltaninejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Hakimeh%20Oloumi"> Hakimeh Oloumi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glycyrrhiza glabra L. (Licorice) is one of the oldest medicinal plants in Iran and secondary metabolites present in the plant root is used in food and pharmaceutical industries. With the use of heavy metals as elicitors, plant secondary metabolite production can be increased. In this study, the effects of the concentrations of 1 and 10 μM of zinc oxide and copper oxide on the contents of reducing sugars (as precursor of secondary metabolites), proline, glycyrrhizin, total phenolic compounds, flavonoids and anthocyanin in Glycyrrhiza glabra seedlings were investigated. Also, the correlation between the content of these metabolites in the treated seedlings was examined using Pearson's test. The amount of reducing sugars at concentration of 10 μM zinc oxide was decreased. Whereas, the amounts of proline and glycyrrhizin under treatment 1 and 10 μM copper oxide and 1 μM zinc oxide compared with the control plants was increased. The content of total phenolic compounds was increased with increasing concentrations of copper oxide. The highest amount of flavonoids was observed at concentrations of 1 and 10 μM copper oxide. Anthocyanin content was increased in concentration of 1 μM copper oxide. Also, the tannin content of the Glycyrrhiza glabra seedlings at concentrations of 10 μM zinc oxide was increased. Based on the result it seemed that at concentrations of 1 and 10 μM copper oxide the amount of glycyrrhizin, phenolic compounds, flavonoids, anthocyanins were significantly increased, whereas, zinc oxide had no significant impact on the levels of these metabolites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=zinc%20oxide" title="zinc oxide">zinc oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20oxide" title=" copper oxide"> copper oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=licorice%20%28glycyrrhiza%20glabra%20L.%29" title=" licorice (glycyrrhiza glabra L.)"> licorice (glycyrrhiza glabra L.)</a>, <a href="https://publications.waset.org/abstracts/search?q=glycyrrhizin" title=" glycyrrhizin"> glycyrrhizin</a> </p> <a href="https://publications.waset.org/abstracts/23030/changes-in-amounts-of-glycyrrhizin-and-phenolic-compounds-of-glycrrhiza-glabra-l-seedlings-treated-by-copper-and-zinc-oxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23030.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2499</span> Study of Antibacterial Activity of Phenolic Compounds Extracted from Algerian Medicinal Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khadri%20Sihem">Khadri Sihem</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbaci%20Nafissa"> Abbaci Nafissa</a>, <a href="https://publications.waset.org/abstracts/search?q=Zerari%20Labiba"> Zerari Labiba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the context of the search for new bioactive natural products, we were interested in evaluating some antibacterial properties of two plant extracts: total phenols and flavonoids of Algerian medicinal plant. Our study occurs in two axes: The first concerns the extraction of phenolic compounds and flavonoids with methanol by liquid-liquid extraction, followed by quantification of the levels of these compounds in the end the analysis of the chemical composition of extracts. In the second axis, we studied the antibacterial power of the studied plant extracts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title="antibacterial activity">antibacterial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=flavonoids" title=" flavonoids"> flavonoids</a>, <a href="https://publications.waset.org/abstracts/search?q=medicinal%20plants" title=" medicinal plants"> medicinal plants</a>, <a href="https://publications.waset.org/abstracts/search?q=polyphenols" title=" polyphenols"> polyphenols</a> </p> <a href="https://publications.waset.org/abstracts/18485/study-of-antibacterial-activity-of-phenolic-compounds-extracted-from-algerian-medicinal-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">554</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2498</span> Impact of Pulsing and Trickle Flow on Catalytic Wet Air Oxidation of Phenolic Compounds in Waste Water at High Pressure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Safa%27a%20M.%20Rasheed">Safa'a M. Rasheed</a>, <a href="https://publications.waset.org/abstracts/search?q=Saba%20A.%20Gheni"> Saba A. Gheni</a>, <a href="https://publications.waset.org/abstracts/search?q=Wadood%20T.%20Mohamed"> Wadood T. Mohamed </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phenolic compounds are the most carcinogenic pollutants in waste water in effluents of refineries and pulp industry. Catalytic wet air oxidation is an efficient industrial treatment process to oxidize phenolic compounds into unharmful organic compounds. Mode of flow of the fluid to be treated is a dominant factor in determining effectiveness of the catalytic process. The present study aims to obtain a mathematical model describing the conversion of phenolic compounds as a function of the process variables; mode of flow (trickling and pulsing), temperature, pressure, along with a high concentration of phenols and a platinum supported alumina catalyst. The model was validated with the results of experiments obtained in a fixed bed reactor. High pressure and temperature were employed at 8 bar and 140 °C. It has been found that conversion of phenols is highly influenced by mode of flow and the change is caused by changes occurred in hydrodynamic regime at the time of pulsing flow mode, thereby a temporal variation in wetting efficiency of platinum prevails; which in turn increases and/or decreases contact time with phenols in wastewater. The model obtained was validated with experimental results, and it is found that the model is a good agreement with the experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wastewater" title="wastewater">wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=phenol" title=" phenol"> phenol</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsing%20flow" title=" pulsing flow"> pulsing flow</a>, <a href="https://publications.waset.org/abstracts/search?q=wet%20oxidation" title=" wet oxidation"> wet oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20pressure" title=" high pressure"> high pressure</a> </p> <a href="https://publications.waset.org/abstracts/103492/impact-of-pulsing-and-trickle-flow-on-catalytic-wet-air-oxidation-of-phenolic-compounds-in-waste-water-at-high-pressure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2497</span> The Effect of Addition of White Mulberry Fruit on the Polyphenol Content in the New Developed Bioactive Bread</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kobus-Cisowska%20Joanna">Kobus-Cisowska Joanna</a>, <a href="https://publications.waset.org/abstracts/search?q=Flaczyk%20Ewa"> Flaczyk Ewa</a>, <a href="https://publications.waset.org/abstracts/search?q=Gramza-Michalowska%20Anna"> Gramza-Michalowska Anna</a>, <a href="https://publications.waset.org/abstracts/search?q=Kmiecik%20Dominik"> Kmiecik Dominik</a>, <a href="https://publications.waset.org/abstracts/search?q=Przeor%20Monika"> Przeor Monika</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcinkowska%20Agata"> Marcinkowska Agata </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, proceed to the attractiveness of typical bakery products. Expanding the education and nutrition knowledge society will develop the production of functional foods, which has a positive impact on human health. Therefore, the aim of the present study was to evaluate the effect of the addition of white mulberry fruit on the content of biologically active compounds in the new designed functional bread premixes designed for selected disease: anemia, diabetes, obesity and cardiovascular disease. For flavonols and phenolic acids content UPLC was conducted, using an NovaPack C18 column and a gradient elution system. It was found that all attempts bread characterized by a high content of biologically active compounds: polyphenols, phenolic acids, and flavonoids. The highest total content of polyphenolic compounds found in the samples of bread for anemia, diabetes and cardiovascular disease both before and after storage. The analyzed sample differed in content of phenolic acids. The highest content of these compounds were found in samples of bread for anemia and diabetes. It was found that the analyzed sample contained phenolic acids that are derivatives of hydroxybenzoic and hydroxycinnamic acid. The new designed bread contained significant amounts of flavonols, of which the dominant was routine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mulberry" title="mulberry">mulberry</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=polyphenols" title=" polyphenols"> polyphenols</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20acids" title=" phenolic acids"> phenolic acids</a>, <a href="https://publications.waset.org/abstracts/search?q=flavonols" title=" flavonols"> flavonols</a> </p> <a href="https://publications.waset.org/abstracts/11796/the-effect-of-addition-of-white-mulberry-fruit-on-the-polyphenol-content-in-the-new-developed-bioactive-bread" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2496</span> Study of the in vivo and in vitro Antioxidant Activity of the Methanol Extract from the Roots of the Barks of Zizyphus lotus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Djemai%20Zoughlache%20Soumia">Djemai Zoughlache Soumia</a>, <a href="https://publications.waset.org/abstracts/search?q=Yahia%20Mouloud"> Yahia Mouloud</a>, <a href="https://publications.waset.org/abstracts/search?q=Lekbir%20Adel"> Lekbir Adel</a>, <a href="https://publications.waset.org/abstracts/search?q=Meslem%20Meriem"> Meslem Meriem</a>, <a href="https://publications.waset.org/abstracts/search?q=Maouchi%20Madiha"> Maouchi Madiha</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahi%20Ahlem"> Bahi Ahlem</a>, <a href="https://publications.waset.org/abstracts/search?q=Benbia%20Souhila"> Benbia Souhila</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural extracts is known for their contents of biologically active molecules. In this context, we attempted to evaluate the antioxidant activity of the methanolic extract prepared from the bark of the roots of Zizyphus lotus. The quantitative analysis based on the dosage, phenolic compounds, flavonoids and tannins provided following values: 0.39 ± 0.007 ug EAG/mg of extract for phenolic compounds, 0.05 ± 0.02ug EQ/mg extract for flavonoids and 0.0025 ± 7.071 E-4 ECT ug/mg extract for tannins. The study of the antioxidant activity by the DPPH test in vitro showed a powerful antiradical power with an IC50 = 8,8 ug/ml. For the DPPH test in vivo we used two rats lots, one lot with a dose of 200 mg/kg of the methanol extract and a control lot. We found a significant difference in antiradical activity with p < 0.05. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zizyphus%20lotus" title="Zizyphus lotus">Zizyphus lotus</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=DPPH" title=" DPPH"> DPPH</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=flavonoids" title=" flavonoids"> flavonoids</a>, <a href="https://publications.waset.org/abstracts/search?q=tannins" title=" tannins"> tannins</a> </p> <a href="https://publications.waset.org/abstracts/5758/study-of-the-in-vivo-and-in-vitro-antioxidant-activity-of-the-methanol-extract-from-the-roots-of-the-barks-of-zizyphus-lotus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">509</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2495</span> Photocatalytic Degradation of Phenolic Compounds in Wastewater Using Magnetically Recoverable Catalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20K.%20Sharaby">Ahmed K. Sharaby</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20S.%20El-Gendy"> Ahmed S. El-Gendy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phenolic compounds (PCs) exist in the wastewater effluents of some industries such as oil refinery, pharmaceutical and cosmetics. Phenolic compounds are extremely hazardous pollutants that can cause severe problems to the aquatic life and human beings if disposed of without treatment. One of the most efficient treatment methods of PCs is photocatalytic degradation. The current work studies the performance of composite nanomaterial of titanium dioxide with magnetite as a photo-catalyst in the degradation of PCs. The current work aims at optimizing the synthesized photocatalyst dosage and contact time as part of the operational parameters at different initial concentrations of PCs and pH values in the wastewater. The study was performed in a lab-scale batch reactor under fixed conditions of light intensity and aeration rate. The initial concentrations of PCs and the pH values were in the range of (10-200 mg/l) and (3-9), respectively. Results of the study indicate that the dosage of the catalyst and contact time for total mineralization is proportional to the initial concentrations of PCs, while the optimum pH conditions for highly efficient degradation is at pH 3. Exceeding the concentration levels of the catalyst beyond certain limits leads to the decrease in the degradation efficiency due to the dissipation of light. The performance of the catalyst for degradation was also investigated in comparison to the pure TiO2 Degussa (P-25). The dosage required for the synthesized catalyst for photocatalytic degradation was approximately 1.5 times that needed from the pure titania. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=industrial" title="industrial">industrial</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title=" photocatalysis"> photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/49882/photocatalytic-degradation-of-phenolic-compounds-in-wastewater-using-magnetically-recoverable-catalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49882.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds&page=84">84</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds&page=85">85</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>