CINXE.COM

Physical organic chemistry - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Physical organic chemistry - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"3e31bbca-b0e7-4cbb-964d-ae42853d216b","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Physical_organic_chemistry","wgTitle":"Physical organic chemistry","wgCurRevisionId":1228477052,"wgRevisionId":1228477052,"wgArticleId":11304514,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Wikipedia articles needing page number citations from June 2015","Articles with short description","Short description matches Wikidata","Articles lacking reliable references from June 2015","All articles lacking reliable references","Articles lacking page references from June 2015","Articles with multiple maintenance issues","All articles with unsourced statements","Articles with unsourced statements from June 2015", "Wikipedia articles needing clarification from June 2015","All articles needing examples","Articles needing examples from December 2017","All pages needing factual verification","Wikipedia articles needing factual verification from June 2015","Articles with unsourced statements from February 2020","Physical organic chemistry","Organic chemistry"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Physical_organic_chemistry","wgRelevantArticleId":11304514,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true, "tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":50000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q652513","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready", "jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Physical organic chemistry - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Physical_organic_chemistry"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Physical_organic_chemistry&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Physical_organic_chemistry"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Physical_organic_chemistry rootpage-Physical_organic_chemistry skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Physical+organic+chemistry" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Physical+organic+chemistry" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Physical+organic+chemistry" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Physical+organic+chemistry" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Application" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Application"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Application</span> </div> </a> <ul id="toc-Application-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Scope" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Scope"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Scope</span> </div> </a> <ul id="toc-Scope-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Chemical_structure_and_thermodynamics" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Chemical_structure_and_thermodynamics"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Chemical structure and thermodynamics</span> </div> </a> <button aria-controls="toc-Chemical_structure_and_thermodynamics-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Chemical structure and thermodynamics subsection</span> </button> <ul id="toc-Chemical_structure_and_thermodynamics-sublist" class="vector-toc-list"> <li id="toc-Thermochemistry" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Thermochemistry"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Thermochemistry</span> </div> </a> <ul id="toc-Thermochemistry-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Conformational_analysis" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Conformational_analysis"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Conformational analysis</span> </div> </a> <ul id="toc-Conformational_analysis-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Non-covalent_interactions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Non-covalent_interactions"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Non-covalent interactions</span> </div> </a> <ul id="toc-Non-covalent_interactions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Acid–base_chemistry" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Acid–base_chemistry"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Acid–base chemistry</span> </div> </a> <ul id="toc-Acid–base_chemistry-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Kinetics" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Kinetics"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Kinetics</span> </div> </a> <button aria-controls="toc-Kinetics-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Kinetics subsection</span> </button> <ul id="toc-Kinetics-sublist" class="vector-toc-list"> <li id="toc-Rate_laws" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Rate_laws"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Rate laws</span> </div> </a> <ul id="toc-Rate_laws-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Catalysis" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Catalysis"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Catalysis</span> </div> </a> <ul id="toc-Catalysis-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Kinetic_isotope_effect" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Kinetic_isotope_effect"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Kinetic isotope effect</span> </div> </a> <ul id="toc-Kinetic_isotope_effect-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Substituent_effects" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Substituent_effects"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.4</span> <span>Substituent effects</span> </div> </a> <ul id="toc-Substituent_effects-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Solvent_effects" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Solvent_effects"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.5</span> <span>Solvent effects</span> </div> </a> <ul id="toc-Solvent_effects-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Quantum_chemistry" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Quantum_chemistry"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Quantum chemistry</span> </div> </a> <ul id="toc-Quantum_chemistry-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Spectroscopy,_spectrometry,_and_crystallography" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Spectroscopy,_spectrometry,_and_crystallography"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Spectroscopy, spectrometry, and crystallography</span> </div> </a> <button aria-controls="toc-Spectroscopy,_spectrometry,_and_crystallography-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Spectroscopy, spectrometry, and crystallography subsection</span> </button> <ul id="toc-Spectroscopy,_spectrometry,_and_crystallography-sublist" class="vector-toc-list"> <li id="toc-NMR_and_EPR_spectroscopy" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#NMR_and_EPR_spectroscopy"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>NMR and EPR spectroscopy</span> </div> </a> <ul id="toc-NMR_and_EPR_spectroscopy-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Vibrational_spectroscopy" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Vibrational_spectroscopy"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>Vibrational spectroscopy</span> </div> </a> <ul id="toc-Vibrational_spectroscopy-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Electronic_excitation_spectroscopy" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Electronic_excitation_spectroscopy"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.3</span> <span>Electronic excitation spectroscopy</span> </div> </a> <ul id="toc-Electronic_excitation_spectroscopy-sublist" class="vector-toc-list"> <li id="toc-Mass_spectrometry" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Mass_spectrometry"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.3.1</span> <span>Mass spectrometry</span> </div> </a> <ul id="toc-Mass_spectrometry-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Crystallography" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Crystallography"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.3.2</span> <span>Crystallography</span> </div> </a> <ul id="toc-Crystallography-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Further reading</span> </div> </a> <button aria-controls="toc-Further_reading-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Further reading subsection</span> </button> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> <li id="toc-General" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#General"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.1</span> <span>General</span> </div> </a> <ul id="toc-General-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-History_2" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#History_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.2</span> <span>History</span> </div> </a> <ul id="toc-History_2-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Thermochemistry_2" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Thermochemistry_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.3</span> <span>Thermochemistry</span> </div> </a> <ul id="toc-Thermochemistry_2-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Physical organic chemistry</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 17 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-17" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">17 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Fisies-organiese_chemie" title="Fisies-organiese chemie – Afrikaans" lang="af" hreflang="af" data-title="Fisies-organiese chemie" data-language-autonym="Afrikaans" data-language-local-name="Afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%83%D9%8A%D9%85%D9%8A%D8%A7%D8%A1_%D8%B9%D8%B6%D9%88%D9%8A%D8%A9_%D9%81%D9%8A%D8%B2%D9%8A%D8%A7%D8%A6%D9%8A%D8%A9" title="كيمياء عضوية فيزيائية – Arabic" lang="ar" hreflang="ar" data-title="كيمياء عضوية فيزيائية" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%A4%D0%B8%D0%B7%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0_%D0%BE%D1%80%D0%B3%D0%B0%D0%BD%D0%B8%D1%87%D0%BD%D0%B0_%D1%85%D0%B8%D0%BC%D0%B8%D1%8F" title="Физическа органична химия – Bulgarian" lang="bg" hreflang="bg" data-title="Физическа органична химия" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Physikalische_Organische_Chemie" title="Physikalische Organische Chemie – German" lang="de" hreflang="de" data-title="Physikalische Organische Chemie" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Fisicoqu%C3%ADmica_org%C3%A1nica" title="Fisicoquímica orgánica – Spanish" lang="es" hreflang="es" data-title="Fisicoquímica orgánica" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Chimie_organique_physique" title="Chimie organique physique – French" lang="fr" hreflang="fr" data-title="Chimie organique physique" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%AC%BC%EB%A6%AC%EC%9C%A0%EA%B8%B0%ED%99%94%ED%95%99" title="물리유기화학 – Korean" lang="ko" hreflang="ko" data-title="물리유기화학" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Kimia_organik_fisik" title="Kimia organik fisik – Indonesian" lang="id" hreflang="id" data-title="Kimia organik fisik" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Chimica_organica_fisica" title="Chimica organica fisica – Italian" lang="it" hreflang="it" data-title="Chimica organica fisica" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Fysische_organische_chemie" title="Fysische organische chemie – Dutch" lang="nl" hreflang="nl" data-title="Fysische organische chemie" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E7%89%A9%E7%90%86%E6%9C%89%E6%A9%9F%E5%8C%96%E5%AD%A6" title="物理有機化学 – Japanese" lang="ja" hreflang="ja" data-title="物理有機化学" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/F%C3%ADsico-qu%C3%ADmica_org%C3%A2nica" title="Físico-química orgânica – Portuguese" lang="pt" hreflang="pt" data-title="Físico-química orgânica" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/Fizi%C4%8Dka_organska_hemija" title="Fizička organska hemija – Serbian" lang="sr" hreflang="sr" data-title="Fizička organska hemija" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Fizi%C4%8Dka_organska_hemija" title="Fizička organska hemija – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Fizička organska hemija" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A4%D1%96%D0%B7%D0%B8%D0%BA%D0%BE-%D0%BE%D1%80%D0%B3%D0%B0%D0%BD%D1%96%D1%87%D0%BD%D0%B0_%D1%85%D1%96%D0%BC%D1%96%D1%8F" title="Фізико-органічна хімія – Ukrainian" lang="uk" hreflang="uk" data-title="Фізико-органічна хімія" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E7%89%A9%E7%90%86%E6%9C%89%E6%A9%9F%E5%8C%96%E5%AD%B8" title="物理有機化學 – Cantonese" lang="yue" hreflang="yue" data-title="物理有機化學" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E7%89%A9%E7%90%86%E6%9C%89%E6%9C%BA%E5%8C%96%E5%AD%A6" title="物理有机化学 – Chinese" lang="zh" hreflang="zh" data-title="物理有机化学" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q652513#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Physical_organic_chemistry" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Physical_organic_chemistry" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Physical_organic_chemistry"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Physical_organic_chemistry&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Physical_organic_chemistry&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Physical_organic_chemistry"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Physical_organic_chemistry&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Physical_organic_chemistry&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Physical_organic_chemistry" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Physical_organic_chemistry" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Physical_organic_chemistry&amp;oldid=1228477052" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Physical_organic_chemistry&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Physical_organic_chemistry&amp;id=1228477052&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPhysical_organic_chemistry"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPhysical_organic_chemistry"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Physical_organic_chemistry&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Physical_organic_chemistry&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Physical_organic_chemistry" hreflang="en"><span>Wikimedia Commons</span></a></li><li class="wb-otherproject-link wb-otherproject-wikiversity mw-list-item"><a href="https://en.wikiversity.org/wiki/Physical_chemistry" hreflang="en"><span>Wikiversity</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q652513" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Discipline of organic chemistry</div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><style data-mw-deduplicate="TemplateStyles:r1248332772">.mw-parser-output .multiple-issues-text{width:95%;margin:0.2em 0}.mw-parser-output .multiple-issues-text>.mw-collapsible-content{margin-top:0.3em}.mw-parser-output .compact-ambox .ambox{border:none;border-collapse:collapse;background-color:transparent;margin:0 0 0 1.6em!important;padding:0!important;width:auto;display:block}body.mediawiki .mw-parser-output .compact-ambox .ambox.mbox-small-left{font-size:100%;width:auto;margin:0}.mw-parser-output .compact-ambox .ambox .mbox-text{padding:0!important;margin:0!important}.mw-parser-output .compact-ambox .ambox .mbox-text-span{display:list-item;line-height:1.5em;list-style-type:disc}body.skin-minerva .mw-parser-output .multiple-issues-text>.mw-collapsible-toggle,.mw-parser-output .compact-ambox .ambox .mbox-image,.mw-parser-output .compact-ambox .ambox .mbox-imageright,.mw-parser-output .compact-ambox .ambox .mbox-empty-cell,.mw-parser-output .compact-ambox .hide-when-compact{display:none}</style><table class="box-Multiple_issues plainlinks metadata ambox ambox-content ambox-multiple_issues compact-ambox" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/b/b4/Ambox_important.svg/40px-Ambox_important.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/b/b4/Ambox_important.svg/60px-Ambox_important.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/b/b4/Ambox_important.svg/80px-Ambox_important.svg.png 2x" data-file-width="40" data-file-height="40" /></span></span></div></td><td class="mbox-text"><div class="mbox-text-span"><div class="multiple-issues-text mw-collapsible"><b>This article has multiple issues.</b> Please help <b><a href="/wiki/Special:EditPage/Physical_organic_chemistry" title="Special:EditPage/Physical organic chemistry">improve it</a></b> or discuss these issues on the <b><a href="/wiki/Talk:Physical_organic_chemistry" title="Talk:Physical organic chemistry">talk page</a></b>. <small><i>(<a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove these messages</a>)</i></small> <div class="mw-collapsible-content"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444"><table class="box-Primary_sources plainlinks metadata ambox ambox-content ambox-Primary_sources" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This article <b>relies excessively on <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">references</a> to <a href="/wiki/Wikipedia:No_original_research#Primary,_secondary_and_tertiary_sources" title="Wikipedia:No original research">primary sources</a></b>.<span class="hide-when-compact"> Please improve this article by adding <a href="/wiki/Wikipedia:No_original_research#Primary,_secondary_and_tertiary_sources" title="Wikipedia:No original research">secondary or tertiary sources</a>. <br /><small><span class="plainlinks"><i>Find sources:</i>&#160;<a rel="nofollow" class="external text" href="https://www.google.com/search?as_eq=wikipedia&amp;q=%22Physical+organic+chemistry%22">"Physical organic chemistry"</a>&#160;–&#160;<a rel="nofollow" class="external text" href="https://www.google.com/search?tbm=nws&amp;q=%22Physical+organic+chemistry%22+-wikipedia&amp;tbs=ar:1">news</a>&#160;<b>·</b> <a rel="nofollow" class="external text" href="https://www.google.com/search?&amp;q=%22Physical+organic+chemistry%22&amp;tbs=bkt:s&amp;tbm=bks">newspapers</a>&#160;<b>·</b> <a rel="nofollow" class="external text" href="https://www.google.com/search?tbs=bks:1&amp;q=%22Physical+organic+chemistry%22+-wikipedia">books</a>&#160;<b>·</b> <a rel="nofollow" class="external text" href="https://scholar.google.com/scholar?q=%22Physical+organic+chemistry%22">scholar</a>&#160;<b>·</b> <a rel="nofollow" class="external text" href="https://www.jstor.org/action/doBasicSearch?Query=%22Physical+organic+chemistry%22&amp;acc=on&amp;wc=on">JSTOR</a></span></small></span> <span class="date-container"><i>(<span class="date">June 2015</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444"><table class="box-Page_numbers_needed plainlinks metadata ambox ambox-style" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3b/Text_document_with_page_number_icon.svg/40px-Text_document_with_page_number_icon.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3b/Text_document_with_page_number_icon.svg/60px-Text_document_with_page_number_icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3b/Text_document_with_page_number_icon.svg/80px-Text_document_with_page_number_icon.svg.png 2x" data-file-width="48" data-file-height="48" /></span></span></div></td><td class="mbox-text"><div class="mbox-text-span">This article cites its <a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources">sources</a> but <b>does not provide <a href="/wiki/Wikipedia:CITEHOW" class="mw-redirect" title="Wikipedia:CITEHOW">page references</a></b>.<span class="hide-when-compact"> You can help by providing page numbers for existing citations.</span> <span class="date-container"><i>(<span class="date">June 2015</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> </div> </div><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p><b>Physical organic chemistry</b>, a term coined by <a href="/wiki/Louis_Hammett" class="mw-redirect" title="Louis Hammett">Louis Hammett</a> in 1940, refers to a discipline of <a href="/wiki/Organic_chemistry" title="Organic chemistry">organic chemistry</a> that focuses on the relationship between <a href="/wiki/Chemical_structure" title="Chemical structure">chemical structures</a> and <a href="/wiki/Chemical_reaction" title="Chemical reaction">reactivity</a>, in particular, applying experimental tools of <a href="/wiki/Physical_chemistry" title="Physical chemistry">physical chemistry</a> to the study of <a href="/wiki/Organic_molecules" class="mw-redirect" title="Organic molecules">organic molecules</a>. Specific focal points of study include the <a href="/wiki/Chemical_kinetics" title="Chemical kinetics">rates</a> of <a href="/wiki/Organic_reactions" class="mw-redirect" title="Organic reactions">organic reactions</a>, the relative <a href="/wiki/Chemical_stability" title="Chemical stability">chemical stabilities</a> of the starting materials, <a href="/wiki/Reactive_intermediate" title="Reactive intermediate">reactive intermediates</a>, <a href="/wiki/Transition_state" title="Transition state">transition states</a>, and products of <a href="/wiki/Chemical_reaction" title="Chemical reaction">chemical reactions</a>, and non-covalent aspects of <a href="/wiki/Solvation" title="Solvation">solvation</a> and <a href="/wiki/Intermolecular_interaction" class="mw-redirect" title="Intermolecular interaction">molecular interactions</a> that influence chemical reactivity. Such studies provide theoretical and practical frameworks to understand how changes in structure in solution or solid-state contexts impact <a href="/wiki/Reaction_mechanism" title="Reaction mechanism">reaction mechanism</a> and <a href="/wiki/Reaction_rate" title="Reaction rate">rate</a> for each <a href="/wiki/Organic_chemistry" title="Organic chemistry">organic reaction</a> of interest. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Application">Application</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Physical_organic_chemistry&amp;action=edit&amp;section=1" title="Edit section: Application"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Physical organic chemists use <a href="/wiki/Theory" title="Theory">theoretical</a> and experimental approaches work to understand these foundational problems in <a href="/wiki/Organic_chemistry" title="Organic chemistry">organic chemistry</a>, including classical and statistical <a href="/wiki/Chemical_thermodynamics" title="Chemical thermodynamics">thermodynamic</a> calculations, <a href="/wiki/Quantum_chemistry" title="Quantum chemistry">quantum mechanical theory</a> and <a href="/wiki/Computational_chemistry" title="Computational chemistry">computational chemistry</a>, as well as experimental <a href="/wiki/Spectroscopy" title="Spectroscopy">spectroscopy</a> (e.g., <a href="/wiki/Nuclear_magnetic_resonance" title="Nuclear magnetic resonance">NMR</a>), <a href="/wiki/Spectrometer" title="Spectrometer">spectrometry</a> (e.g., <a href="/wiki/Mass_spectrometry" title="Mass spectrometry">MS</a>), and <a href="/wiki/Crystallography" title="Crystallography">crystallography</a> approaches. The field therefore has applications to a wide variety of more specialized fields, including <a href="/wiki/Electrochemistry" title="Electrochemistry">electro-</a> and <a href="/wiki/Photochemistry" title="Photochemistry">photochemistry</a>, <a href="/wiki/Polymer_chemistry" title="Polymer chemistry">polymer</a> and <a href="/wiki/Supramolecular_chemistry" title="Supramolecular chemistry">supramolecular chemistry</a>, and <a href="/wiki/Bioorganic_chemistry" title="Bioorganic chemistry">bioorganic chemistry</a>, <a href="/wiki/Enzymology" class="mw-redirect" title="Enzymology">enzymology</a>, and <a href="/wiki/Chemical_biology" title="Chemical biology">chemical biology</a>, as well as to commercial enterprises involving <a href="/wiki/Process_chemistry" title="Process chemistry">process chemistry</a>, <a href="/wiki/Chemical_engineering" title="Chemical engineering">chemical engineering</a>, <a href="/wiki/Materials_science" title="Materials science">materials science</a> and <a href="/wiki/Nanotechnology" title="Nanotechnology">nanotechnology</a>, and <a href="/wiki/Pharmacology" title="Pharmacology">pharmacology</a> in <a href="/wiki/Drug_discovery" title="Drug discovery">drug discovery</a> by design. </p> <div class="mw-heading mw-heading2"><h2 id="Scope">Scope</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Physical_organic_chemistry&amp;action=edit&amp;section=2" title="Edit section: Scope"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Physical organic chemistry is the study of the relationship between structure and reactivity of <a href="/wiki/Organic_molecules" class="mw-redirect" title="Organic molecules">organic molecules</a>. More specifically, physical organic chemistry applies the experimental tools of <a href="/wiki/Physical_chemistry" title="Physical chemistry">physical chemistry</a> to the study of the structure of <a href="/wiki/Organic_molecules" class="mw-redirect" title="Organic molecules">organic molecules</a> and provides a theoretical framework that interprets how structure influences both <a href="/wiki/Reaction_mechanism" title="Reaction mechanism">mechanisms</a> and <a href="/wiki/Reaction_rate" title="Reaction rate">rates</a> of <a href="/wiki/Organic_chemistry" title="Organic chemistry">organic reactions</a>. It can be thought of as a subfield that bridges <a href="/wiki/Organic_chemistry" title="Organic chemistry">organic chemistry</a> with <a href="/wiki/Physical_chemistry" title="Physical chemistry">physical chemistry</a>. </p><p>Physical organic chemists use both experimental and theoretical disciplines such as <a href="/wiki/Spectroscopy" title="Spectroscopy">spectroscopy</a>, <a href="/wiki/Spectrometer" title="Spectrometer">spectrometry</a>, <a href="/wiki/Crystallography" title="Crystallography">crystallography</a>, <a href="/wiki/Computational_chemistry" title="Computational chemistry">computational chemistry</a>, and <a href="/wiki/Quantum_chemistry" title="Quantum chemistry">quantum theory</a> to study both the <a href="/wiki/Chemical_kinetics" title="Chemical kinetics">rates</a> of <a href="/wiki/Organic_reactions" class="mw-redirect" title="Organic reactions">organic reactions</a> and the relative <a href="/wiki/Chemical_stability" title="Chemical stability">chemical stability</a> of the starting materials, <a href="/wiki/Transition_state" title="Transition state">transition states</a>, and products.<sup id="cite_ref-Anslyn_1-0" class="reference"><a href="#cite_note-Anslyn-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (June 2015)">page&#160;needed</span></a></i>&#93;</sup> Chemists in this field work to understand the physical underpinnings of modern <a href="/wiki/Organic_chemistry" title="Organic chemistry">organic chemistry</a>, and therefore physical organic chemistry has applications in specialized areas including <a href="/wiki/Polymer_chemistry" title="Polymer chemistry">polymer chemistry</a>, <a href="/wiki/Supramolecular_chemistry" title="Supramolecular chemistry">supramolecular chemistry</a>, <a href="/wiki/Electrochemistry" title="Electrochemistry">electrochemistry</a>, and <a href="/wiki/Photochemistry" title="Photochemistry">photochemistry</a>.<sup id="cite_ref-Anslyn_1-1" class="reference"><a href="#cite_note-Anslyn-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (June 2015)">page&#160;needed</span></a></i>&#93;</sup> </p> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Physical_organic_chemistry&amp;action=edit&amp;section=3" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The term <i>physical organic chemistry</i> was itself coined by <a href="/wiki/Louis_Hammett" class="mw-redirect" title="Louis Hammett">Louis Hammett</a> in 1940 when he used the phrase as a title for his textbook.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Chemical_structure_and_thermodynamics">Chemical structure and thermodynamics</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Physical_organic_chemistry&amp;action=edit&amp;section=4" title="Edit section: Chemical structure and thermodynamics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Thermochemistry">Thermochemistry</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Physical_organic_chemistry&amp;action=edit&amp;section=5" title="Edit section: Thermochemistry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Thermochemistry" title="Thermochemistry">Thermochemistry</a> and <a href="/wiki/Chemical_thermodynamics" title="Chemical thermodynamics">Chemical thermodynamics</a></div> <p>Organic chemists use the tools of <a href="/wiki/Thermodynamics" title="Thermodynamics">thermodynamics</a> to study the <a href="/wiki/Chemical_bond" title="Chemical bond">bonding</a>, <a href="/wiki/Chemical_stability" title="Chemical stability">stability</a>, and energetics of chemical systems. This includes experiments to measure or determine the <a href="/wiki/Enthalpy" title="Enthalpy">enthalpy</a> (Δ<i>H</i>), <a href="/wiki/Entropy" title="Entropy">entropy</a> (Δ<i>S</i>), and <a href="/wiki/Gibbs%27_free_energy" class="mw-redirect" title="Gibbs&#39; free energy">Gibbs' free energy</a> (Δ<i>G</i>) of a reaction, transformation, or isomerization. Chemists may use various chemical and mathematical analyses, such as a <a href="/wiki/Van_%27t_Hoff_plot" class="mw-redirect" title="Van &#39;t Hoff plot">Van 't Hoff plot</a>, to calculate these values. </p><p>Empirical constants such as <a href="/wiki/Bond_dissociation_energy" class="mw-redirect" title="Bond dissociation energy">bond dissociation energy</a>, <a href="/wiki/Standard_heat_of_formation" class="mw-redirect" title="Standard heat of formation">standard heat of formation</a> (Δ<sub>f</sub><i>H</i>°), and <a href="/wiki/Heat_of_combustion" title="Heat of combustion">heat of combustion</a> (Δ<sub>c</sub><i>H</i>°) are used to predict the stability of molecules and the change in <a href="/wiki/Enthalpy" title="Enthalpy">enthalpy</a> (Δ<i>H</i>) through the course of the reactions. For complex molecules, a Δ<sub>f</sub><i>H</i>° value may not be available but can be estimated using molecular fragments with known <a href="/wiki/Enthalpy_of_formation" class="mw-redirect" title="Enthalpy of formation">heats of formation</a>. This type of analysis is often referred to as <a href="/wiki/Benson_group_increment_theory" title="Benson group increment theory">Benson group increment theory</a>, after chemist Sidney Benson who spent a career developing the concept.<sup id="cite_ref-Anslyn_1-2" class="reference"><a href="#cite_note-Anslyn-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (June 2015)">page&#160;needed</span></a></i>&#93;</sup> <sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p><p>The thermochemistry of reactive intermediates—<a href="/wiki/Carbocations" class="mw-redirect" title="Carbocations">carbocations</a>, <a href="/wiki/Carbanions" class="mw-redirect" title="Carbanions">carbanions</a>, and <a href="/wiki/Radical_(chemistry)" title="Radical (chemistry)">radicals</a>—is also of interest to physical organic chemists. Group increment data are available for radical systems.<sup id="cite_ref-Anslyn_1-3" class="reference"><a href="#cite_note-Anslyn-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (June 2015)">page&#160;needed</span></a></i>&#93;</sup> Carbocation and carbanion stabilities can be assessed using hydride ion affinities and <a href="/wiki/Acid_dissociation_constant" title="Acid dissociation constant">pK<sub>a</sub> values</a>, respectively.<sup id="cite_ref-Anslyn_1-4" class="reference"><a href="#cite_note-Anslyn-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (June 2015)">page&#160;needed</span></a></i>&#93;</sup> </p> <div class="mw-heading mw-heading3"><h3 id="Conformational_analysis">Conformational analysis</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Physical_organic_chemistry&amp;action=edit&amp;section=6" title="Edit section: Conformational analysis"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>One of the primary methods for evaluating chemical stability and energetics is <a href="/wiki/Conformational_isomerism" title="Conformational isomerism">conformational analysis</a>. Physical organic chemists use conformational analysis to evaluate the various types of <a href="/wiki/Strain_(chemistry)" title="Strain (chemistry)">strain</a> present in a molecule to predict reaction products.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (June 2015)">page&#160;needed</span></a></i>&#93;</sup> Strain can be found in both acyclic and cyclic molecules, manifesting itself in diverse systems as <a href="/wiki/Alkane_stereochemistry" class="mw-redirect" title="Alkane stereochemistry">torsional strain</a>, <a href="/wiki/Allylic_strain" title="Allylic strain">allylic strain</a>, <a href="/wiki/Ring_strain" title="Ring strain">ring strain</a>, and <a href="/wiki/Pentane_interference" title="Pentane interference"><i>syn</i>-pentane strain</a>.<sup id="cite_ref-Anslyn_1-5" class="reference"><a href="#cite_note-Anslyn-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (June 2015)">page&#160;needed</span></a></i>&#93;</sup> <a href="/wiki/A-values" class="mw-redirect" title="A-values">A-values</a> provide a quantitative basis for predicting the <a href="/wiki/Conformational_analysis" class="mw-redirect" title="Conformational analysis">conformation</a> of a substituted <a href="/wiki/Cyclohexane" title="Cyclohexane">cyclohexane</a>, an important class of cyclic organic compounds whose reactivity is strongly guided by conformational effects. The <a href="/wiki/A_value" title="A value">A-value</a> is the difference in the <a href="/wiki/Gibbs%27_free_energy" class="mw-redirect" title="Gibbs&#39; free energy">Gibbs' free energy</a> between the axial and equatorial forms of substituted cyclohexane, and by adding together the <a href="/wiki/A-values" class="mw-redirect" title="A-values">A-values</a> of various <a href="/wiki/Substituent" title="Substituent">substituents</a> it is possible to quantitatively predict the preferred conformation of a cyclohexane derivative. </p><p>In addition to molecular stability, conformational analysis is used to predict reaction products. One commonly cited example of the use of <a href="/wiki/Conformational_analysis" class="mw-redirect" title="Conformational analysis">conformational analysis</a> is a bi-molecular <a href="/wiki/Elimination_reaction" title="Elimination reaction">elimination reaction</a> (E2). This reaction proceeds most readily when the nucleophile attacks the species that is <a href="/wiki/Antiperiplanar" class="mw-redirect" title="Antiperiplanar">antiperiplanar</a> to the leaving group. A <a href="/wiki/Molecular_orbital" title="Molecular orbital">molecular orbital</a> analysis of this phenomenon suggest that this conformation provides the best overlap between the electrons in the R-H σ <a href="/wiki/Bonding_orbital" class="mw-redirect" title="Bonding orbital">bonding orbital</a> that is undergoing nucleophilic attack and the empty σ* <a href="/wiki/Antibonding" class="mw-redirect" title="Antibonding">antibonding</a> orbital of the R-X bond that is being broken.<sup id="cite_ref-Isaacs95_6-0" class="reference"><a href="#cite_note-Isaacs95-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (June 2015)">page&#160;needed</span></a></i>&#93;</sup> By exploiting this effect, <a href="/wiki/Conformational_analysis" class="mw-redirect" title="Conformational analysis">conformational analysis</a> can be used to design molecules that possess enhanced reactivity. </p><p>The physical processes which give rise to <a href="/wiki/Alkane_stereochemistry" class="mw-redirect" title="Alkane stereochemistry">bond rotation barriers</a> are complex, and these barriers have been extensively studied through experimental and theoretical methods.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> A number of recent articles have investigated the predominance of the <a href="/wiki/Steric_effects" title="Steric effects">steric</a>, <a href="/wiki/Intermolecular_force" title="Intermolecular force">electrostatic</a>, and <a href="/wiki/Hyperconjugation" title="Hyperconjugation">hyperconjugative</a> contributions to rotational barriers in <a href="/wiki/Ethane#ethane_barrier" title="Ethane">ethane</a>, <a href="/wiki/Butane" title="Butane">butane</a>, and more substituted molecules.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Non-covalent_interactions">Non-covalent interactions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Physical_organic_chemistry&amp;action=edit&amp;section=7" title="Edit section: Non-covalent interactions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Noncovalent_bonding" class="mw-redirect" title="Noncovalent bonding">Noncovalent bonding</a></div> <figure class="mw-default-size mw-halign-left" typeof="mw:File/Thumb"><a href="/wiki/File:Cryptand_complex.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9e/Cryptand_complex.svg/250px-Cryptand_complex.svg.png" decoding="async" width="250" height="146" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9e/Cryptand_complex.svg/375px-Cryptand_complex.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9e/Cryptand_complex.svg/500px-Cryptand_complex.svg.png 2x" data-file-width="493" data-file-height="287" /></a><figcaption><a href="/wiki/Cryptand" title="Cryptand">Cryptand</a> with a metal <a href="/wiki/Cation" class="mw-redirect" title="Cation">cation</a> demonstrating <a href="/wiki/Host%E2%80%93guest_chemistry" title="Host–guest chemistry">host–guest chemistry</a>. Cryptands are tricyclic compounds that tightly encapsulate the guest cation via <a href="/wiki/Intermolecular_force" title="Intermolecular force">electrostatic interactions</a> (ion-dipole interaction).</figcaption></figure> <p>Chemists use the study of intramolecular and intermolecular <a href="/wiki/Non-covalent_bonding" class="mw-redirect" title="Non-covalent bonding">non-covalent bonding/interactions</a> in molecules to evaluate reactivity. Such interactions include, but are not limited to, <a href="/wiki/Hydrogen_bonding" class="mw-redirect" title="Hydrogen bonding">hydrogen bonding</a>, <a href="/wiki/Intermolecular_force" title="Intermolecular force">electrostatic interactions</a> between charged molecules, <a href="/wiki/Dipole-dipole_interactions" class="mw-redirect" title="Dipole-dipole interactions">dipole-dipole interactions</a>, <a href="/wiki/Pi_interaction" class="mw-redirect" title="Pi interaction">polar-π</a> and <a href="/wiki/Cation-pi_interaction" class="mw-redirect" title="Cation-pi interaction">cation-π</a> interactions, <a href="/wiki/Stacking_(chemistry)" title="Stacking (chemistry)">π-stacking</a>, <a href="/wiki/Charge-transfer_complex" title="Charge-transfer complex">donor-acceptor</a> chemistry, and <a href="/wiki/Halogen_bonding" class="mw-redirect" title="Halogen bonding">halogen bonding</a>. In addition, the <a href="/wiki/Hydrophobic_effect" title="Hydrophobic effect">hydrophobic effect</a>—the association of organic compounds in water—is an electrostatic, <a href="/wiki/Non-covalent_interaction" title="Non-covalent interaction">non-covalent interaction</a> of interest to chemists. The precise physical origin of the hydrophobic effect originates from many <a href="/wiki/Entropic_force#Hydrophobic_force" title="Entropic force">complex interactions</a>, but it is believed to be the most important component of <a href="/wiki/Molecular_recognition" title="Molecular recognition">biomolecular recognition</a> in water.<sup id="cite_ref-Anslyn_1-6" class="reference"><a href="#cite_note-Anslyn-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (June 2015)">page&#160;needed</span></a></i>&#93;</sup> For example, researchers elucidated the structural basis for folic acid recognition by folate acid receptor proteins.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> The strong interaction between <a href="/wiki/Folic_acid" class="mw-redirect" title="Folic acid">folic acid</a> and <a href="/wiki/Folate_receptor" title="Folate receptor">folate receptor</a> was attributed to both <a href="/wiki/Hydrogen_bonds" class="mw-redirect" title="Hydrogen bonds">hydrogen bonds</a> and <a href="/wiki/Hydrophobic_interactions" class="mw-redirect" title="Hydrophobic interactions">hydrophobic interactions</a>. The study of <a href="/wiki/Non-covalent_interactions" class="mw-redirect" title="Non-covalent interactions">non-covalent interactions</a> is also used to study binding and <a href="/wiki/Host%E2%80%93guest_chemistry#Cooperativity" title="Host–guest chemistry">cooperativity</a> in <a href="/wiki/Supramolecular" class="mw-redirect" title="Supramolecular">supramolecular</a> assemblies and <a href="/wiki/Macrocyclic_compounds" class="mw-redirect" title="Macrocyclic compounds">macrocyclic compounds</a> such as <a href="/wiki/Crown_ethers" class="mw-redirect" title="Crown ethers">crown ethers</a> and <a href="/wiki/Cryptands" class="mw-redirect" title="Cryptands">cryptands</a>, which can act as hosts to guest molecules. </p> <div class="mw-heading mw-heading3"><h3 id="Acid–base_chemistry"><span id="Acid.E2.80.93base_chemistry"></span>Acid–base chemistry</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Physical_organic_chemistry&amp;action=edit&amp;section=8" title="Edit section: Acid–base chemistry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Acid%E2%80%93base_reaction" title="Acid–base reaction">Acid–base reaction</a></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:PKa_phenol_vs_nitrophenol.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c0/PKa_phenol_vs_nitrophenol.svg/300px-PKa_phenol_vs_nitrophenol.svg.png" decoding="async" width="300" height="218" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c0/PKa_phenol_vs_nitrophenol.svg/450px-PKa_phenol_vs_nitrophenol.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c0/PKa_phenol_vs_nitrophenol.svg/600px-PKa_phenol_vs_nitrophenol.svg.png 2x" data-file-width="512" data-file-height="372" /></a><figcaption>The principles of <a href="/wiki/Inductive_effect" title="Inductive effect">Induction</a> and <a href="/wiki/Resonance_(chemistry)" title="Resonance (chemistry)">resonance</a> can be used to explain the different <a href="/wiki/Acid_dissociation_constant" title="Acid dissociation constant">acid dissociation constant</a> (or pK<sub>a</sub>) values for <a href="/wiki/Phenol" title="Phenol">phenol</a> (<b>A</b>) and <i>p</i>-nitrophenol (<b>B</b>). For <b>B</b>, the <a href="/wiki/Electronegative" class="mw-redirect" title="Electronegative">electronegative</a> <a href="/wiki/Nitro_group" class="mw-redirect" title="Nitro group">nitro group</a> stabilizes the conjugate base (phenoxide <a href="/wiki/Anion" class="mw-redirect" title="Anion">anion</a>) via induction and through resonance by delocalizing the negative charge.</figcaption></figure> <p>The properties of <a href="/wiki/Acid" title="Acid">acids</a> and <a href="/wiki/Base_(chemistry)" title="Base (chemistry)">bases</a> are relevant to physical organic chemistry. Organic chemists are primarily concerned with <a href="/wiki/Br%C3%B8nsted%E2%80%93Lowry" class="mw-redirect" title="Brønsted–Lowry">Brønsted–Lowry</a> acids/bases as proton donors/acceptors and <a href="/wiki/Lewis_acids_and_bases" title="Lewis acids and bases">Lewis acids/bases</a> as electron acceptors/donors in organic reactions. Chemists use a series of factors developed from physical chemistry -- <a href="/wiki/Electronegativity" title="Electronegativity">electronegativity</a>/<a href="/wiki/Inductive_effect" title="Inductive effect">Induction</a>, <a href="/wiki/Bond-dissociation_energy" title="Bond-dissociation energy">bond strengths</a>, <a href="/wiki/Chemical_resonance" class="mw-redirect" title="Chemical resonance">resonance</a>, <a href="/wiki/Orbital_hybridisation" title="Orbital hybridisation">hybridization</a>, <a href="/wiki/Aromaticity" title="Aromaticity">aromaticity</a>, and <a href="/wiki/Solvation" title="Solvation">solvation</a>—to predict relative acidities and basicities. </p><p>The <a href="/wiki/HSAB_theory" title="HSAB theory">hard/soft acid/base principle</a> is utilized to predict molecular interactions and reaction direction. In general, interactions between molecules of the same type are preferred. That is, hard acids will associate with hard bases, and soft acids with soft bases. The concept of hard acids and bases is often exploited in the synthesis of inorganic <a href="/wiki/Coordination_complex" title="Coordination complex">coordination complexes</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Kinetics">Kinetics</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Physical_organic_chemistry&amp;action=edit&amp;section=9" title="Edit section: Kinetics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Chemical_kinetics" title="Chemical kinetics">Chemical kinetics</a></div> <p>Physical organic chemists use the mathematical foundation of chemical kinetics to study the rates of reactions and reaction mechanisms. Unlike thermodynamics, which is concerned with the relative stabilities of the products and reactants (Δ<i>G</i>°) and their equilibrium concentrations, the study of kinetics focuses on the <a href="/wiki/Activation_energy" title="Activation energy">free energy of activation</a> (Δ<i>G</i><sup>‡</sup>) -- the difference in free energy between the reactant structure and the transition state structure—of a reaction, and therefore allows a chemist to study the process of <a href="/wiki/Chemical_equilibrium" title="Chemical equilibrium">equilibration</a>.<sup id="cite_ref-Anslyn_1-7" class="reference"><a href="#cite_note-Anslyn-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (June 2015)">page&#160;needed</span></a></i>&#93;</sup> Mathematically derived formalisms such as the <a href="/wiki/Hammond%27s_postulate" title="Hammond&#39;s postulate">Hammond Postulate</a>, the <a href="/wiki/Curtin-Hammett_principle" class="mw-redirect" title="Curtin-Hammett principle">Curtin-Hammett principle</a>, and the <a href="/wiki/Microscopic_reversibility" title="Microscopic reversibility">theory of microscopic reversibility</a> are often applied to <a href="/wiki/Organic_chemistry" title="Organic chemistry">organic chemistry</a>. Chemists have also used the principle of <a href="/wiki/Thermodynamic_versus_kinetic_reaction_control" title="Thermodynamic versus kinetic reaction control">thermodynamic versus kinetic control</a> to influence reaction products. </p> <div class="mw-heading mw-heading3"><h3 id="Rate_laws">Rate laws</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Physical_organic_chemistry&amp;action=edit&amp;section=10" title="Edit section: Rate laws"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Rate_equation" title="Rate equation">Rate equation</a></div> <p>The study of <a href="/wiki/Chemical_kinetics" title="Chemical kinetics">chemical kinetics</a> is used to determine the <a href="/wiki/Rate_law" class="mw-redirect" title="Rate law">rate law</a> for a reaction. The rate law provides a quantitative relationship between the rate of a <a href="/wiki/Chemical_reaction" title="Chemical reaction">chemical reaction</a> and the <a href="/wiki/Concentrations" class="mw-redirect" title="Concentrations">concentrations</a> or <a href="/wiki/Pressures" class="mw-redirect" title="Pressures">pressures</a> of the chemical species present.<sup id="cite_ref-McQuarrie_12-0" class="reference"><a href="#cite_note-McQuarrie-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (June 2015)">page&#160;needed</span></a></i>&#93;</sup> Rate laws must be determined by experimental measurement and generally cannot be elucidated from the <a href="/wiki/Chemical_equation" title="Chemical equation">chemical equation</a>. The experimentally determined rate law refers to the stoichiometry of the <a href="/wiki/Transition_state" title="Transition state">transition state structure</a> relative to the ground state structure. Determination of the rate law was historically accomplished by monitoring the concentration of a reactant during a reaction through <a href="/wiki/Gravimetric_analysis" title="Gravimetric analysis">gravimetric analysis</a>, but today it is almost exclusively done through fast and unambiguous <a href="/wiki/Spectroscopic" class="mw-redirect" title="Spectroscopic">spectroscopic</a> techniques. In most cases, the determination of rate equations is simplified by adding a large excess ("flooding") all but one of the reactants. </p> <div class="mw-heading mw-heading3"><h3 id="Catalysis">Catalysis</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Physical_organic_chemistry&amp;action=edit&amp;section=11" title="Edit section: Catalysis"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Catalysis" title="Catalysis">Catalysis</a></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Catalytic_reaction_coordinate.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1e/Catalytic_reaction_coordinate.jpg/300px-Catalytic_reaction_coordinate.jpg" decoding="async" width="300" height="225" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1e/Catalytic_reaction_coordinate.jpg/450px-Catalytic_reaction_coordinate.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1e/Catalytic_reaction_coordinate.jpg/600px-Catalytic_reaction_coordinate.jpg 2x" data-file-width="640" data-file-height="480" /></a><figcaption><b>Reaction coordinate energy diagram for uncatalysed and catalysed reactions, the latter without and with change in mechanism.</b><sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (June 2015)">citation needed</span></a></i>&#93;</sup> <i>Trace A.</i> presents the uncatalysed reaction pathway (orange), with its free energy of activation. <i>Trace B.</i> presents a catalysed reaction pathway (blue), with its lowered relative free energy of activation. <i>Trace C.</i> presents a complex, altered reaction pathway (brown) for the same reaction proceeding by a different mechanism involving two kinetically discrete <a href="/wiki/Reactive_intermediates" class="mw-redirect" title="Reactive intermediates">intermediates</a>.</figcaption></figure> <p>The study of <a href="/wiki/Catalysis" title="Catalysis">catalysis</a> and catalytic reactions is very important to the field of physical organic chemistry. A <a href="/wiki/Catalyst" class="mw-redirect" title="Catalyst">catalyst</a> participates in the chemical reaction but is not consumed in the process.<sup id="cite_ref-McQuarrie_12-1" class="reference"><a href="#cite_note-McQuarrie-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (June 2015)">page&#160;needed</span></a></i>&#93;</sup> A catalyst lowers the <a href="/wiki/Activation_energy" title="Activation energy">activation energy</a> barrier (Δ<i>G</i><sup>‡</sup>), increasing the rate of a reaction by either stabilizing the transition state structure or destabilizing a key reaction intermediate, and as only a small amount of catalyst is required it can provide economic access to otherwise expensive or difficult to synthesize organic molecules. Catalysts may also influence a reaction rate by changing the <a href="/wiki/Reaction_mechanism" title="Reaction mechanism">mechanism</a> of the reaction.<sup id="cite_ref-Anslyn_1-8" class="reference"><a href="#cite_note-Anslyn-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (June 2015)">page&#160;needed</span></a></i>&#93;</sup> </p> <div class="mw-heading mw-heading3"><h3 id="Kinetic_isotope_effect">Kinetic isotope effect</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Physical_organic_chemistry&amp;action=edit&amp;section=12" title="Edit section: Kinetic isotope effect"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Kinetic_isotope_effect" title="Kinetic isotope effect">Kinetic isotope effect</a></div> <p>Although a rate law provides the stoichiometry of the <a href="/wiki/Transition_state" title="Transition state">transition state</a> structure, it does not provide any information about breaking or forming bonds.<sup id="cite_ref-Anslyn_1-9" class="reference"><a href="#cite_note-Anslyn-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (June 2015)">page&#160;needed</span></a></i>&#93;</sup> The substitution of an isotope near a reactive position often leads to a change in the rate of a reaction. Isotopic substitution changes the potential energy of reaction intermediates and transition states because heavier isotopes form stronger bonds with other atoms. Atomic mass affects the zero-point <a href="/wiki/Molecular_vibrations" class="mw-redirect" title="Molecular vibrations">vibrational state</a> of the associated molecules, shorter and stronger bonds in molecules with heavier isotopes and longer, weaker bonds in molecules with light isotopes.<sup id="cite_ref-Isaacs95_6-1" class="reference"><a href="#cite_note-Isaacs95-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (June 2015)">page&#160;needed</span></a></i>&#93;</sup> Because vibrational motions will often change during a course of a reaction, due to the making and breaking of bonds, the frequencies will be affected, and the substitution of an isotope can provide insight into the reaction mechanism and rate law. </p> <div class="mw-heading mw-heading3"><h3 id="Substituent_effects">Substituent effects</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Physical_organic_chemistry&amp;action=edit&amp;section=13" title="Edit section: Substituent effects"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The study of how substituents affect the reactivity of a molecule or the rate of reactions is of significant interest to chemists. Substituents can exert an effect through both <a href="/wiki/Steric" class="mw-redirect" title="Steric">steric</a> and electronic interactions, the latter of which include <a href="/wiki/Resonance" title="Resonance">resonance</a> and <a href="/wiki/Inductive_effects" class="mw-redirect" title="Inductive effects">inductive effects</a>. The <a href="/wiki/Polarizability" title="Polarizability">polarizability</a> of molecule can also be affected. Most substituent effects are analyzed through <a href="/wiki/Free-energy_relationship" title="Free-energy relationship">linear free energy relationships</a> (LFERs). The most common of these is the <a href="/wiki/Hammett_equation" title="Hammett equation">Hammett Plot Analysis</a>.<sup id="cite_ref-Anslyn_1-10" class="reference"><a href="#cite_note-Anslyn-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (June 2015)">page&#160;needed</span></a></i>&#93;</sup> This analysis compares the effect of various substituents on the ionization of <a href="/wiki/Benzoic_acid" title="Benzoic acid">benzoic acid</a> with their impact on diverse chemical systems. The parameters of the Hammett plots are sigma (σ) and rho (ρ). The value of σ indicates the acidity of substituted benzoic acid relative to the unsubstituted form. A positive σ value indicates the compound is more acidic, while a negative value indicates that the substituted version is less acidic. The ρ value is a measure of the sensitivity of the reaction to the change in substituent, but only measures inductive effects. Therefore, two new scales were produced that evaluate the stabilization of localized charge through resonance. One is σ<sup>+</sup>, which concerns substituents that stabilize positive charges via resonance, and the other is σ<sup>−</sup> which is for groups that stabilize negative charges via resonance. <a href="/wiki/Hammett_equation" title="Hammett equation">Hammett analysis</a> can be used to help elucidate the possible mechanisms of a reaction. For example, if it is predicted that the <a href="/wiki/Transition_state" title="Transition state">transition state</a> structure has a build-up of negative charge relative to the ground state structure, then <a href="/wiki/Polar_effect" class="mw-redirect" title="Polar effect">electron-donating groups</a> would be expected to increase the rate of the reaction.<sup id="cite_ref-Anslyn_1-11" class="reference"><a href="#cite_note-Anslyn-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (June 2015)">page&#160;needed</span></a></i>&#93;</sup> </p><p>Other <a href="/wiki/Linear_free-energy_relationship" class="mw-redirect" title="Linear free-energy relationship">LFER</a> scales have been developed. <a href="/wiki/Steric_effects" title="Steric effects">Steric</a> and polar effects are analyzed through <a href="/wiki/Taft_equation" title="Taft equation">Taft Parameters</a>. Changing the solvent instead of the reactant can provide insight into changes in charge during the reaction. The <a href="/wiki/Grunwald-Winstein_equation" class="mw-redirect" title="Grunwald-Winstein equation">Grunwald-Winstein Plot</a> provides quantitative insight into these effects.<sup id="cite_ref-Anslyn_1-12" class="reference"><a href="#cite_note-Anslyn-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (June 2015)">page&#160;needed</span></a></i>&#93;</sup> <sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Solvent_effects">Solvent effects</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Physical_organic_chemistry&amp;action=edit&amp;section=14" title="Edit section: Solvent effects"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Solvent_effects" title="Solvent effects">Solvent effects</a></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444"><table class="box-Primary_sources plainlinks metadata ambox ambox-content ambox-Primary_sources" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section <b>relies excessively on <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">references</a> to <a href="/wiki/Wikipedia:No_original_research#Primary,_secondary_and_tertiary_sources" title="Wikipedia:No original research">primary sources</a></b>.<span class="hide-when-compact"> Please improve this section by adding <a href="/wiki/Wikipedia:No_original_research#Primary,_secondary_and_tertiary_sources" title="Wikipedia:No original research">secondary or tertiary sources</a>. <br /><small><span class="plainlinks"><i>Find sources:</i>&#160;<a rel="nofollow" class="external text" href="https://www.google.com/search?as_eq=wikipedia&amp;q=%22Physical+organic+chemistry%22">"Physical organic chemistry"</a>&#160;–&#160;<a rel="nofollow" class="external text" href="https://www.google.com/search?tbm=nws&amp;q=%22Physical+organic+chemistry%22+-wikipedia&amp;tbs=ar:1">news</a>&#160;<b>·</b> <a rel="nofollow" class="external text" href="https://www.google.com/search?&amp;q=%22Physical+organic+chemistry%22&amp;tbs=bkt:s&amp;tbm=bks">newspapers</a>&#160;<b>·</b> <a rel="nofollow" class="external text" href="https://www.google.com/search?tbs=bks:1&amp;q=%22Physical+organic+chemistry%22+-wikipedia">books</a>&#160;<b>·</b> <a rel="nofollow" class="external text" href="https://scholar.google.com/scholar?q=%22Physical+organic+chemistry%22">scholar</a>&#160;<b>·</b> <a rel="nofollow" class="external text" href="https://www.jstor.org/action/doBasicSearch?Query=%22Physical+organic+chemistry%22&amp;acc=on&amp;wc=on">JSTOR</a></span></small></span> <span class="date-container"><i>(<span class="date">June 2015</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p><a href="/wiki/Solvents" class="mw-redirect" title="Solvents">Solvents</a> can have a powerful effect on <a href="/wiki/Solubility" title="Solubility">solubility</a>, <a href="/wiki/Chemical_stability" title="Chemical stability">stability</a>, and <a href="/wiki/Reaction_rate" title="Reaction rate">reaction rate</a>. A change in solvent can also allow a chemist to influence the <a href="/wiki/Thermodynamic_versus_kinetic_reaction_control" title="Thermodynamic versus kinetic reaction control">thermodynamic or kinetic control</a> of the reaction. Reactions proceed at different rates in different solvents due to the change in charge distribution during a chemical transformation. Solvent effects may operate on the ground state and/or <a href="/wiki/Transition_state" title="Transition state">transition state</a> structures.<sup id="cite_ref-Anslyn_1-13" class="reference"><a href="#cite_note-Anslyn-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (June 2015)">page&#160;needed</span></a></i>&#93;</sup> </p><p>An example of the effect of solvent on organic reactions is seen in the <a href="/wiki/Solvent_effects#Reaction_examples" title="Solvent effects">comparison of S<sub>N</sub>1 and S<sub>N</sub>2 reactions</a>.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Please_clarify" title="Wikipedia:Please clarify"><span title="The text near this tag needs further explanation. (June 2015)">further explanation needed</span></a></i>&#93;</sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:AUDIENCE" class="mw-redirect" title="Wikipedia:AUDIENCE"><span title="An editor has requested that an example be provided. (December 2017)">example needed</span></a></i>&#93;</sup> </p><p><a href="/wiki/Solvent" title="Solvent">Solvent</a> can also have a significant effect on the <a href="/wiki/Thermodynamic_equilibrium" title="Thermodynamic equilibrium">thermodynamic equilibrium</a> of a system, for instance as in the case of <a href="/wiki/Solvent_effects#Keto_enol_equilibria" title="Solvent effects">keto-enol tautomerizations</a>. In <a href="/wiki/Protic_solvent" title="Protic solvent">non-polar aprotic</a> solvents, the <a href="/wiki/Enol" title="Enol">enol</a> form is strongly favored due to the formation of an intramolecular <a href="/wiki/Hydrogen-bond" class="mw-redirect" title="Hydrogen-bond">hydrogen-bond</a>, while in <a href="/wiki/Chemical_polarity" title="Chemical polarity">polar</a> <a href="/wiki/Aprotic" class="mw-redirect" title="Aprotic">aprotic</a> solvents, such as <a href="/wiki/Methylene_chloride" class="mw-redirect" title="Methylene chloride">methylene chloride</a>, the <a href="/wiki/Enol" title="Enol">enol</a> form is less favored due to the interaction between the polar solvent and the polar <a href="/wiki/Diketone" class="mw-redirect" title="Diketone">diketone</a>.<sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:AUDIENCE" class="mw-redirect" title="Wikipedia:AUDIENCE"><span title="An editor has requested that an example be provided. (December 2017)">example needed</span></a></i>&#93;</sup> In <a href="/wiki/Protic" class="mw-redirect" title="Protic">protic</a> solvents, the equilibrium lies towards the keto form as the intramolecular <a href="/wiki/Hydrogen_bond" title="Hydrogen bond">hydrogen bond</a> competes with hydrogen bonds originating from the solvent.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template noprint Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:No_original_research#Primary,_secondary_and_tertiary_sources" title="Wikipedia:No original research"><span title="This claim needs references to reliable secondary sources. (June 2015)">non-primary source needed</span></a></i>&#93;</sup><sup class="noprint Inline-Template noprint Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:No_original_research#Primary,_secondary_and_tertiary_sources" title="Wikipedia:No original research"><span title="This claim needs references to reliable secondary sources. (June 2015)">non-primary source needed</span></a></i>&#93;</sup> <sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template noprint Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:No_original_research#Primary,_secondary_and_tertiary_sources" title="Wikipedia:No original research"><span title="This claim needs references to reliable secondary sources. (June 2015)">non-primary source needed</span></a></i>&#93;</sup><sup class="noprint Inline-Template noprint Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:No_original_research#Primary,_secondary_and_tertiary_sources" title="Wikipedia:No original research"><span title="This claim needs references to reliable secondary sources. (June 2015)">non-primary source needed</span></a></i>&#93;</sup> <sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template noprint Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:No_original_research#Primary,_secondary_and_tertiary_sources" title="Wikipedia:No original research"><span title="This claim needs references to reliable secondary sources. (June 2015)">non-primary source needed</span></a></i>&#93;</sup><sup class="noprint Inline-Template noprint Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:No_original_research#Primary,_secondary_and_tertiary_sources" title="Wikipedia:No original research"><span title="This claim needs references to reliable secondary sources. (June 2015)">non-primary source needed</span></a></i>&#93;</sup> </p> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Epimerization.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/af/Epimerization.jpg/440px-Epimerization.jpg" decoding="async" width="440" height="80" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/a/af/Epimerization.jpg 1.5x" data-file-width="510" data-file-height="93" /></a><figcaption> <b><a href="/wiki/Solvent_effects" title="Solvent effects">Solvent effects</a> and the <a href="/wiki/Epimerization" class="mw-redirect" title="Epimerization">epimerization</a> of a <a href="/wiki/Chiral_(chemistry)" class="mw-redirect" title="Chiral (chemistry)">chiral</a> <a href="/wiki/Grignard_reagent" title="Grignard reagent">Grignard reagent</a>.</b><sup id="cite_ref-GaoJACS13_18-0" class="reference"><a href="#cite_note-GaoJACS13-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template noprint Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:No_original_research#Primary,_secondary_and_tertiary_sources" title="Wikipedia:No original research"><span title="This claim needs references to reliable secondary sources. (June 2015)">non-primary source needed</span></a></i>&#93;</sup> The <i>cis</i> form of the reagent is stabilized, and so more strongly favored, in the reaction solvent <a href="/wiki/THF" class="mw-redirect" title="THF">THF</a>, over <a href="/wiki/Diethyl_ether" title="Diethyl ether">diethyl ether</a>; a larger equilibrium constant is observed in <a href="/wiki/THF" class="mw-redirect" title="THF">THF</a>.</figcaption></figure> <p>A modern example of the study of <a href="/wiki/Solvent_effects" title="Solvent effects">solvent effects</a> on <a href="/wiki/Chemical_equilibrium" title="Chemical equilibrium">chemical equilibrium</a> can be seen in a study of the <a href="/wiki/Epimerization" class="mw-redirect" title="Epimerization">epimerization</a> of <a href="/wiki/Chirality_(chemistry)" title="Chirality (chemistry)">chiral</a> cyclopropylnitrile <a href="/wiki/Grignard_reagents" class="mw-redirect" title="Grignard reagents">Grignard reagents</a>.<sup id="cite_ref-GaoJACS13_18-1" class="reference"><a href="#cite_note-GaoJACS13-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template noprint Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:No_original_research#Primary,_secondary_and_tertiary_sources" title="Wikipedia:No original research"><span title="This claim needs references to reliable secondary sources. (June 2015)">non-primary source needed</span></a></i>&#93;</sup><sup class="noprint Inline-Template noprint Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:No_original_research#Primary,_secondary_and_tertiary_sources" title="Wikipedia:No original research"><span title="This claim needs references to reliable secondary sources. (June 2015)">non-primary source needed</span></a></i>&#93;</sup> This study reports that the <a href="/wiki/Equilibrium_constant" title="Equilibrium constant">equilibrium constant</a> for the <a href="/wiki/Cis-trans_isomerism" class="mw-redirect" title="Cis-trans isomerism"><i>cis</i> to <i>trans</i> isomerization</a> of the <a href="/wiki/Grignard_reagent" title="Grignard reagent">Grignard reagent</a> is much greater—the preference for the <i>cis</i> form is enhanced—in <a href="/wiki/THF" class="mw-redirect" title="THF">THF</a> as a reaction solvent, over <a href="/wiki/Diethyl_ether" title="Diethyl ether">diethyl ether</a>. However, the faster rate of <i><a href="/wiki/Cis-trans_isomerism" class="mw-redirect" title="Cis-trans isomerism">cis-trans isomerization</a></i> in <a href="/wiki/THF" class="mw-redirect" title="THF">THF</a> results in a loss of <a href="/wiki/Stereochemical" class="mw-redirect" title="Stereochemical">stereochemical</a> purity. This is a case where understanding the effect of solvent on the stability of the <a href="/wiki/Molecular_configuration" title="Molecular configuration">molecular configuration</a> of a reagent is important with regard to the selectivity observed in an <a href="/wiki/Asymmetric_synthesis" class="mw-redirect" title="Asymmetric synthesis">asymmetric synthesis</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Quantum_chemistry">Quantum chemistry</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Physical_organic_chemistry&amp;action=edit&amp;section=15" title="Edit section: Quantum chemistry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Quantum_chemistry" title="Quantum chemistry">Quantum chemistry</a></div> <p>Many aspects of the structure-reactivity relationship in organic chemistry can be rationalized through <a href="/wiki/Resonance_(chemistry)" title="Resonance (chemistry)">resonance</a>, electron pushing, <a href="/wiki/Inductive_effects" class="mw-redirect" title="Inductive effects">induction</a>, the <a href="/wiki/Octet_rule" title="Octet rule">eight electron rule</a>, and s-p <a href="/wiki/Orbital_hybridization" class="mw-redirect" title="Orbital hybridization">hybridization</a>, but these are only helpful formalisms and do not represent physical reality. Due to these limitations, a true understanding of physical organic chemistry requires a more rigorous approach grounded in <a href="/wiki/Particle_physics" title="Particle physics">particle physics</a>. <a href="/wiki/Quantum_chemistry" title="Quantum chemistry">Quantum chemistry</a> provides a rigorous theoretical framework capable of predicting the properties of molecules through calculation of a molecule's electronic structure, and it has become a readily available tool in physical organic chemists in the form of popular software packages.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (June 2015)">citation needed</span></a></i>&#93;</sup> The power of quantum chemistry is built on the wave model of the <a href="/wiki/Atom" title="Atom">atom</a>, in which the <a href="/wiki/Atomic_nucleus" title="Atomic nucleus">nucleus</a> is a very small, positively charged sphere surrounded by a diffuse <a href="/wiki/Electron" title="Electron">electron</a> cloud. Particles are defined by their associated <a href="/wiki/Wavefunction" class="mw-redirect" title="Wavefunction">wavefunction</a>, an equation which contains all information associated with that particle.<sup id="cite_ref-McQuarrie_12-2" class="reference"><a href="#cite_note-McQuarrie-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (June 2015)">page&#160;needed</span></a></i>&#93;</sup> All information about the system is contained in the wavefunction. This information is extracted from the <a href="/wiki/Wavefunction" class="mw-redirect" title="Wavefunction">wavefunction</a> through the use of mathematical operators. </p> <div class="equation-box" style="margin: 0 0 0 1.6em;padding: 5px; border-width:2px; border-style: solid; border-color: #50C878; color: inherit;text-align: center; display: table"><b>Time-independent Schrödinger equation</b> (<i>general</i>) <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E\Psi ={\hat {H}}\Psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mi mathvariant="normal">&#x03A8;<!-- Ψ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>H</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mi mathvariant="normal">&#x03A8;<!-- Ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E\Psi ={\hat {H}}\Psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d95b678eca2b5fa7660bf89b1edd3f08733921a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.554ex; height:2.843ex;" alt="{\displaystyle E\Psi ={\hat {H}}\Psi }"></span> </p> </div> <p>The energy associated with a particular <a href="/wiki/Wavefunction" class="mw-redirect" title="Wavefunction">wavefunction</a>, perhaps the most important information contained in a wavefunction, can be extracted by solving the <a href="/wiki/Schr%C3%B6dinger_equation" title="Schrödinger equation">Schrödinger equation</a> (above, Ψ is the wavefunction, E is the energy, and Ĥ is the Hamiltonian operator)<sup id="cite_ref-McQuarrie_12-3" class="reference"><a href="#cite_note-McQuarrie-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (June 2015)">page&#160;needed</span></a></i>&#93;</sup> in which an appropriate <a href="/wiki/Hamiltonian_operator" class="mw-redirect" title="Hamiltonian operator">Hamiltonian operator</a> is applied. In the various forms of the Schrödinger equation, the overall size of a particle's probability distribution increases with decreasing particle mass. For this reason, nuclei are of negligible size in relation to much lighter <a href="/wiki/Electrons" class="mw-redirect" title="Electrons">electrons</a> and are treated as point charges in practical applications of quantum chemistry. </p><p>Due to complex interactions which arise from electron-electron repulsion, algebraic solutions of the Schrödinger equation are only possible for systems with one electron such as the <a href="/wiki/Hydrogen" title="Hydrogen">hydrogen</a> atom, H<sub>2</sub><sup>+</sup>, H<sub>3</sub><sup>2+</sup>, etc.; however, from these simple models arise all the familiar <a href="/wiki/Atomic_orbitals" class="mw-redirect" title="Atomic orbitals">atomic</a> (s,p,d,f) and bonding (σ,π) orbitals. In systems with multiple electrons, an overall multielectron wavefunction describes all of their properties at once. Such wavefunctions are generated through the linear addition of single electron wavefunctions to generate an initial guess, which is repeatedly modified until its associated energy is minimized. Thousands of guesses are often required until a satisfactory solution is found, so such calculations are performed by powerful computers. Importantly, the solutions for atoms with multiple electrons give properties such as diameter and <a href="/wiki/Electronegativity" title="Electronegativity">electronegativity</a> which closely mirror experimental data and the patterns found in the <a href="/wiki/Periodic_table" title="Periodic table">periodic table</a>. The solutions for molecules, such as <a href="/wiki/Methane" title="Methane">methane</a>, provide exact representations of their <a href="/wiki/Electronic_structure" class="mw-redirect" title="Electronic structure">electronic structure</a> which are unobtainable by experimental methods.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (June 2015)">citation needed</span></a></i>&#93;</sup> Instead of four discrete σ-bonds from carbon to each hydrogen atom, theory predicts a set of four bonding molecular orbitals which are delocalized across the entire molecule. Similarly, the true electronic structure of <a href="/wiki/1,3-butadiene" class="mw-redirect" title="1,3-butadiene">1,3-butadiene</a> shows delocalized <a href="/wiki/Pi_bond" title="Pi bond">π-bonding</a> <a href="/wiki/Molecular_orbitals" class="mw-redirect" title="Molecular orbitals">molecular orbitals</a> stretching through the entire molecule rather than two isolated double bonds as predicted by a simple <a href="/wiki/Lewis_structure" title="Lewis structure">Lewis structure</a>.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (June 2015)">citation needed</span></a></i>&#93;</sup> </p><p>A complete electronic structure offers great predictive power for organic transformations and dynamics, especially in cases concerning <a href="/wiki/Aromaticity" title="Aromaticity">aromatic molecules</a>, extended <a href="/wiki/Pi_bond" title="Pi bond">π systems</a>, <a href="/wiki/Organometallic_chemistry" title="Organometallic chemistry">bonds between metal ions and organic molecules</a>, molecules containing nonstandard <a href="/wiki/Heteroatoms" class="mw-redirect" title="Heteroatoms">heteroatoms</a> like <a href="/wiki/Organoselenium_chemistry" title="Organoselenium chemistry">selenium</a> and <a href="/wiki/Organoboron_chemistry" title="Organoboron chemistry">boron</a>, and the <a href="/wiki/Conformational_isomerism" title="Conformational isomerism">conformational dynamics</a> of large molecules such as <a href="/wiki/Proteins" class="mw-redirect" title="Proteins">proteins</a> wherein the many approximations in chemical formalisms make structure and reactivity prediction impossible. An example of how electronic structure determination is a useful tool for the physical organic chemist is the metal-catalyzed dearomatization of <a href="/wiki/Benzene" title="Benzene">benzene</a>. <a href="/wiki/(Benzene)chromium_tricarbonyl" title="(Benzene)chromium tricarbonyl">Chromium tricarbonyl</a> is highly <a href="/wiki/Electrophilic" class="mw-redirect" title="Electrophilic">electrophilic</a> due to the withdrawal of electron density from filled <a href="/wiki/Chromium" title="Chromium">chromium</a> d-orbitals into <a href="/wiki/Antibonding" class="mw-redirect" title="Antibonding">antibonding</a> <a href="/wiki/Carbon_monoxide" title="Carbon monoxide">CO</a> orbitals, and is able to <a href="/wiki/Covalent_bond" title="Covalent bond">covalently bond</a> to the face of a benzene molecule through delocalized <a href="/wiki/Molecular_orbitals" class="mw-redirect" title="Molecular orbitals">molecular orbitals</a>. The CO <a href="/wiki/Ligands" class="mw-redirect" title="Ligands">ligands</a> <a href="/wiki/Inductive_effect" title="Inductive effect">inductively</a> draw electron density from benzene through the <a href="/wiki/Chromium" title="Chromium">chromium</a> atom, and dramatically activate benzene to <a href="/wiki/Nucleophilic" class="mw-redirect" title="Nucleophilic">nucleophilic</a> attack. Nucleophiles are then able to react to make hexacyclodienes, which can be used in further transformations such as <a href="/wiki/Diels-Alder_Reaction" class="mw-redirect" title="Diels-Alder Reaction">Diels Alder cycloadditions</a>.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> </p> <figure class="mw-default-size mw-halign-center" typeof="mw:File/Thumb"><a href="/wiki/File:Chromium_Promoted_Dearomatization_of_Benzene.tif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Chromium_Promoted_Dearomatization_of_Benzene.tif/lossy-page1-500px-Chromium_Promoted_Dearomatization_of_Benzene.tif.jpg" decoding="async" width="500" height="144" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Chromium_Promoted_Dearomatization_of_Benzene.tif/lossy-page1-750px-Chromium_Promoted_Dearomatization_of_Benzene.tif.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/65/Chromium_Promoted_Dearomatization_of_Benzene.tif/lossy-page1-1000px-Chromium_Promoted_Dearomatization_of_Benzene.tif.jpg 2x" data-file-width="10963" data-file-height="3147" /></a><figcaption>Chromium's unoccupied d-orbitals mediate electron withdrawal from benzene, greatly enhancing its electrophilicity.</figcaption></figure> <p>Quantum chemistry can also provide insight into the mechanism of an organic transformation without the collection of any experimental data. Because wavefunctions provide the total energy of a given molecular state, guessed molecular geometries can be optimized to give relaxed molecular structures very similar to those found through experimental methods.<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (June 2015)">page&#160;needed</span></a></i>&#93;</sup> <a href="/wiki/Reaction_coordinate" title="Reaction coordinate">Reaction coordinates</a> can then be simulated, and <a href="/wiki/Transition_state" title="Transition state">transition state</a> structures solved. Solving a complete energy surface for a given reaction is therefore possible, and such calculations have been applied to many problems in organic chemistry where kinetic data is unavailable or difficult to acquire.<sup id="cite_ref-Anslyn_1-14" class="reference"><a href="#cite_note-Anslyn-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (June 2015)">page&#160;needed</span></a></i>&#93;</sup> </p> <div class="mw-heading mw-heading2"><h2 id="Spectroscopy,_spectrometry,_and_crystallography"><span id="Spectroscopy.2C_spectrometry.2C_and_crystallography"></span>Spectroscopy, spectrometry, and crystallography</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Physical_organic_chemistry&amp;action=edit&amp;section=16" title="Edit section: Spectroscopy, spectrometry, and crystallography"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Physical organic chemistry often entails the identification of molecular structure, dynamics, and the concentration of reactants in the course of a reaction. The interaction of molecules with light can afford a wealth of data about such properties through nondestructive <a href="/wiki/Spectroscopy" title="Spectroscopy">spectroscopic experiments</a>, with <a href="/wiki/Light" title="Light">light</a> absorbed when the energy of a photon matches the difference in energy between two <a href="/wiki/Energy_level" title="Energy level">states</a> in a molecule and emitted when an excited state in a molecule collapses to a lower energy state. Spectroscopic techniques are broadly classified by the type of excitation being probed, such as <a href="/wiki/Infrared_spectroscopy" title="Infrared spectroscopy">vibrational</a>, <a href="/wiki/Rotational_spectroscopy" title="Rotational spectroscopy">rotational</a>, <a href="/wiki/Ultraviolet%E2%80%93visible_spectroscopy" title="Ultraviolet–visible spectroscopy">electronic</a>, <a href="/wiki/Nuclear_magnetic_resonance" title="Nuclear magnetic resonance">nuclear magnetic resonance</a> (NMR), and <a href="/wiki/Electron_paramagnetic_resonance" title="Electron paramagnetic resonance">electron paramagnetic resonance</a> spectroscopy. In addition to spectroscopic data, structure determination is often aided by complementary data collected from <a href="/wiki/Crystallography" title="Crystallography">X-Ray diffraction</a> and <a href="/wiki/Mass_spectrometry" title="Mass spectrometry">mass spectrometric</a> experiments.<sup id="cite_ref-drago_21-0" class="reference"><a href="#cite_note-drago-21"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (June 2015)">page&#160;needed</span></a></i>&#93;</sup> </p> <div class="mw-heading mw-heading3"><h3 id="NMR_and_EPR_spectroscopy">NMR and EPR spectroscopy</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Physical_organic_chemistry&amp;action=edit&amp;section=17" title="Edit section: NMR and EPR spectroscopy"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Nuclear_magnetic_resonance" title="Nuclear magnetic resonance">Nuclear magnetic resonance</a> and <a href="/wiki/Electron_paramagnetic_resonance" title="Electron paramagnetic resonance">Electron paramagnetic resonance</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:NMR_splitting.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/67/NMR_splitting.gif/290px-NMR_splitting.gif" decoding="async" width="290" height="189" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/67/NMR_splitting.gif/435px-NMR_splitting.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/67/NMR_splitting.gif/580px-NMR_splitting.gif 2x" data-file-width="2376" data-file-height="1548" /></a><figcaption>Splitting of nuclei spin states in an external magnetic field</figcaption></figure> <p>One of the most powerful tools in physical organic chemistry is <a href="/wiki/NMR_spectroscopy" class="mw-redirect" title="NMR spectroscopy">NMR spectroscopy</a>. An external <a href="/wiki/Magnetic_field" title="Magnetic field">magnetic field</a> applied to a <a href="/wiki/Paramagnetism" title="Paramagnetism">paramagnetic</a> nucleus generates two discrete states, with positive and negative <a href="/wiki/Spin_(physics)" title="Spin (physics)">spin</a> values diverging in <a href="/wiki/Energy" title="Energy">energy</a>; the difference in energy can then be probed by determining the frequency of light needed to excite a change in spin state for a given magnetic field. Nuclei that are not indistinguishable in a given molecule absorb at different frequencies, and the integrated peak area in an NMR spectrum is proportional to the number of nuclei responding to that frequency.<sup id="cite_ref-keeler-2_22-0" class="reference"><a href="#cite_note-keeler-2-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> It is possible to quantify the relative concentration of different organic molecules simply by <a href="/wiki/Integral" title="Integral">integration</a> peaks in the spectrum, and many kinetic experiments can be easily and quickly performed by following the progress of a reaction within one NMR sample. <a href="/wiki/Proton_NMR" class="mw-redirect" title="Proton NMR">Proton NMR</a> is often used by the synthetic organic chemist because protons associated with certain <a href="/wiki/Functional_groups" class="mw-redirect" title="Functional groups">functional groups</a> give characteristic absorption energies, but NMR spectroscopy can also be performed on <a href="/wiki/Isotopes" class="mw-redirect" title="Isotopes">isotopes</a> of <a href="/wiki/Nitrogen" title="Nitrogen">nitrogen</a>, <a href="/wiki/Carbon" title="Carbon">carbon</a>, <a href="/wiki/Fluorine" title="Fluorine">fluorine</a>, <a href="/wiki/Phosphorus" title="Phosphorus">phosphorus</a>, <a href="/wiki/Boron" title="Boron">boron</a>, and a <a href="/wiki/Nuclear_magnetic_resonance#isotopes" title="Nuclear magnetic resonance">host of other elements</a>. In addition to simple absorption experiments, it is also possible to determine the rate of fast atom exchange reactions through suppression exchange measurements, interatomic distances through multidimensional <a href="/wiki/Nuclear_overhauser_effect" class="mw-redirect" title="Nuclear overhauser effect">nuclear Overhauser effect</a> experiments, and through-bond spin-spin coupling through <a href="/wiki/Two-dimensional_nuclear_magnetic_resonance_spectroscopy" title="Two-dimensional nuclear magnetic resonance spectroscopy">homonuclear correlation spectroscopy</a>.<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> In addition to the spin excitation properties of nuclei, it is also possible to study the properties of organic <a href="/wiki/Radical_(chemistry)" title="Radical (chemistry)">radicals</a> through the same fundamental technique. Unpaired electrons also have a net <a href="/wiki/Electron_magnetic_moment" title="Electron magnetic moment">spin</a>, and an external magnetic field allows for the extraction of similar information through <a href="/wiki/Electron_paramagnetic_resonance" title="Electron paramagnetic resonance">electron paramagnetic resonance</a> (EPR) spectroscopy.<sup id="cite_ref-Anslyn_1-15" class="reference"><a href="#cite_note-Anslyn-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (June 2015)">page&#160;needed</span></a></i>&#93;</sup> </p> <div class="mw-heading mw-heading3"><h3 id="Vibrational_spectroscopy">Vibrational spectroscopy</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Physical_organic_chemistry&amp;action=edit&amp;section=18" title="Edit section: Vibrational spectroscopy"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Infrared_spectroscopy" title="Infrared spectroscopy">Infrared spectroscopy</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:HarmOsziFunktionen.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9e/HarmOsziFunktionen.png/350px-HarmOsziFunktionen.png" decoding="async" width="350" height="236" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9e/HarmOsziFunktionen.png/525px-HarmOsziFunktionen.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9e/HarmOsziFunktionen.png/700px-HarmOsziFunktionen.png 2x" data-file-width="748" data-file-height="505" /></a><figcaption>The first eight states in a quantum harmonic oscillator. The horizontal axis shows the position <i>x</i>, and the vertical axis shows the energy. Note the even spacing of the energy levels: all excitations between adjacent states require the same energy, and therefore absorb the same wavelength of light</figcaption></figure> <p><a href="/wiki/Infrared_spectroscopy" title="Infrared spectroscopy">Vibrational spectroscopy</a>, or infrared (IR) spectroscopy, allows for the identification of <a href="/wiki/Functional_groups" class="mw-redirect" title="Functional groups">functional groups</a> and, due to its low expense and robustness, is often used in teaching labs and the real-time monitoring of reaction progress in difficult to reach environments (high pressure, high temperature, gas phase, <a href="/wiki/Phase_boundaries" class="mw-redirect" title="Phase boundaries">phase boundaries</a>). <a href="/wiki/Molecular_vibrations" class="mw-redirect" title="Molecular vibrations">Molecular vibrations</a> are quantized in an analogous manner to electronic wavefunctions, with integer increases in frequency leading to higher <a href="/wiki/Energy_level" title="Energy level">energy states</a>. The difference in energy between vibrational states is nearly constant, often falling in the energy range corresponding to infrared photons, because at normal temperatures molecular vibrations closely resemble <a href="/wiki/Harmonic_oscillators" class="mw-redirect" title="Harmonic oscillators">harmonic oscillators</a>. It allows for the crude identification of <a href="/wiki/Functional_groups" class="mw-redirect" title="Functional groups">functional groups</a> in <a href="/wiki/Organic_molecules" class="mw-redirect" title="Organic molecules">organic molecules</a>, but spectra are complicated by vibrational coupling between nearby functional groups in complex molecules. Therefore, its utility in structure determination is usually limited to simple molecules. Further complicating matters is that some vibrations do not induce a change in the <a href="/wiki/Dipole#molecular_dipoles" title="Dipole">molecular dipole moment</a> and will not be observable with standard IR absorption spectroscopy. These can instead be probed through <a href="/wiki/Raman_spectroscopy" title="Raman spectroscopy">Raman spectroscopy</a>, but this technique requires a more elaborate apparatus and is less commonly performed. However, as Raman spectroscopy relies on light scattering it can be performed on microscopic samples such as the surface of a <a href="/wiki/Heterogeneous_catalyst" class="mw-redirect" title="Heterogeneous catalyst">heterogeneous catalyst</a>, a <a href="/wiki/Phase_boundary" title="Phase boundary">phase boundary</a>, or on a one microliter (μL) subsample within a larger liquid volume.<sup id="cite_ref-drago_21-1" class="reference"><a href="#cite_note-drago-21"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (June 2015)">page&#160;needed</span></a></i>&#93;</sup> The applications of <a href="/wiki/Vibrational_spectroscopy" class="mw-redirect" title="Vibrational spectroscopy">vibrational spectroscopy</a> are often used by astronomers to study the composition of <a href="/wiki/Molecular_cloud" title="Molecular cloud">molecular gas clouds</a>, <a href="/wiki/Extrasolar_planet" class="mw-redirect" title="Extrasolar planet">extrasolar planetary atmospheres</a>, and <a href="/wiki/Planet" title="Planet">planetary surfaces</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Electronic_excitation_spectroscopy">Electronic excitation spectroscopy</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Physical_organic_chemistry&amp;action=edit&amp;section=19" title="Edit section: Electronic excitation spectroscopy"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Ultraviolet-visible_spectroscopy" class="mw-redirect" title="Ultraviolet-visible spectroscopy">Ultraviolet-visible spectroscopy</a></div> <p><a href="/wiki/Ultraviolet%E2%80%93visible_spectroscopy" title="Ultraviolet–visible spectroscopy">Electronic excitation spectroscopy</a>, or ultraviolet-visible (UV-vis) spectroscopy, is performed in the <a href="/wiki/Visible_spectrum" title="Visible spectrum">visible</a> and <a href="/wiki/Ultraviolet" title="Ultraviolet">ultraviolet</a> regions of the <a href="/wiki/Electromagnetic_spectrum" title="Electromagnetic spectrum">electromagnetic spectrum</a> and is useful for probing the difference in energy between the highest energy occupied (HOMO) and lowest energy unoccupied (LUMO) <a href="/wiki/Molecular_orbital" title="Molecular orbital">molecular orbitals</a>. This information is useful to physical organic chemists in the design of organic <a href="/wiki/Photochemistry" title="Photochemistry">photochemical</a> systems and <a href="/wiki/Dye" title="Dye">dyes</a>, as absorption of different wavelengths of <a href="/wiki/Visible_light" class="mw-redirect" title="Visible light">visible light</a> give <a href="/wiki/Organic_molecules" class="mw-redirect" title="Organic molecules">organic molecules</a> color. A detailed understanding of an electronic structure is therefore helpful in explaining electronic excitations, and through careful control of molecular structure it is possible to tune the HOMO-LUMO gap to give desired colors and excited state properties.<sup id="cite_ref-Visible_and_Ultraviolet_Spectroscopy_24-0" class="reference"><a href="#cite_note-Visible_and_Ultraviolet_Spectroscopy-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Mass_spectrometry">Mass spectrometry</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Physical_organic_chemistry&amp;action=edit&amp;section=20" title="Edit section: Mass spectrometry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Mass_spectrometry" title="Mass spectrometry">Mass spectrometry</a></div> <p><a href="/wiki/Mass_spectrometry" title="Mass spectrometry">Mass spectrometry</a> is a technique which allows for the measurement of <a href="/wiki/Molecular_mass" title="Molecular mass">molecular mass</a> and offers complementary data to <a href="/wiki/Spectroscopic" class="mw-redirect" title="Spectroscopic">spectroscopic</a> techniques for structural identification. In a typical experiment a gas phase sample of an <a href="/wiki/Organic_material" class="mw-redirect" title="Organic material">organic material</a> is <a href="/wiki/Ionized" class="mw-redirect" title="Ionized">ionized</a> and the resulting <a href="/wiki/Ion" title="Ion">ionic species</a> are accelerated by an applied <a href="/wiki/Electric_field" title="Electric field">electric field</a> into a <a href="/wiki/Magnetic_field" title="Magnetic field">magnetic field</a>. The deflection imparted by the magnetic field, often combined with the time it takes for the molecule to reach a detector, is then used to calculate the <a href="/wiki/Molecular_mass" title="Molecular mass">mass</a> of the molecule. Often in the course of sample <a href="/wiki/Ionization" title="Ionization">ionization</a> large molecules break apart, and the resulting data show a parent mass and a number of smaller fragment masses; such fragmentation can give rich insight into the sequence of proteins and nucleic acid polymers. In addition to the mass of a molecule and its fragments, the distribution of <a href="/wiki/Isotope" title="Isotope">isotopic variant</a> masses can also be determined and the qualitative presence of certain elements identified due to their characteristic natural <a href="/wiki/Isotope_analysis" title="Isotope analysis">isotope distribution</a>. The ratio of fragment mass population to the parent ion population can be compared against a library of empirical fragmentation data and matched to a known molecular structure.<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup> Combined <a href="/wiki/Gas_chromatography%E2%80%93mass_spectrometry" title="Gas chromatography–mass spectrometry">gas chromatography and mass spectrometry</a> is used to qualitatively identify molecules and quantitatively measure concentration with great precision and accuracy, and is widely used to test for small quantities of biomolecules and illicit narcotics in blood samples. For synthetic organic chemists it is a useful tool for the characterization of new compounds and reaction products. </p> <div class="mw-heading mw-heading4"><h4 id="Crystallography">Crystallography</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Physical_organic_chemistry&amp;action=edit&amp;section=21" title="Edit section: Crystallography"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Crystallography" title="Crystallography">Crystallography</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Buckycatcher_JACS_2007_V129_p3843.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e8/Buckycatcher_JACS_2007_V129_p3843.jpg/220px-Buckycatcher_JACS_2007_V129_p3843.jpg" decoding="async" width="220" height="182" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e8/Buckycatcher_JACS_2007_V129_p3843.jpg/330px-Buckycatcher_JACS_2007_V129_p3843.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e8/Buckycatcher_JACS_2007_V129_p3843.jpg/440px-Buckycatcher_JACS_2007_V129_p3843.jpg 2x" data-file-width="1157" data-file-height="959" /></a><figcaption>Single crystal structure of a <a href="/wiki/Fullerene" title="Fullerene">fullerene</a> caught in molecular tweezers.</figcaption></figure> <p>Unlike spectroscopic methods, <a href="/wiki/X-ray_crystallography" title="X-ray crystallography">X-ray crystallography</a> always allows for unambiguous structure determination and provides precise bond angles and lengths totally unavailable through spectroscopy. It is often used in physical organic chemistry to provide an absolute <a href="/wiki/Molecular_geometry" title="Molecular geometry">molecular configuration</a> and is an important tool in improving the synthesis of a pure <a href="/wiki/Enantiomeric" class="mw-redirect" title="Enantiomeric">enantiomeric</a> substance. It is also the only way to identify the position and bonding of elements that lack an <a href="/wiki/NMR_spectroscopy" class="mw-redirect" title="NMR spectroscopy">NMR</a> active <a href="/wiki/Atomic_nucleus" title="Atomic nucleus">nucleus</a> such as <a href="/wiki/Oxygen" title="Oxygen">oxygen</a>. Indeed, before x-ray structural determination methods were made available in the early 20th century all organic structures were entirely conjectural: <a href="/wiki/Tetrahedral_molecular_geometry" title="Tetrahedral molecular geometry">tetrahedral</a> <a href="/wiki/Carbon" title="Carbon">carbon</a>, for example, was only confirmed by the <a href="/wiki/Crystal_structure" title="Crystal structure">crystal structure</a> of <a href="/wiki/Diamond" title="Diamond">diamond</a>,<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup> and the delocalized structure of benzene was confirmed by the <a href="/wiki/Crystal_structure" title="Crystal structure">crystal structure</a> of <a href="/wiki/Hexamethylbenzene" title="Hexamethylbenzene">hexamethylbenzene</a>.<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup> While <a href="/wiki/Crystallography" title="Crystallography">crystallography</a> provides organic chemists with highly satisfying data, it is not an everyday technique in organic chemistry because a perfect <a href="/wiki/Single_crystal" title="Single crystal">single crystal</a> of a target compound must be grown. Only complex molecules, for which NMR data cannot be unambiguously interpreted, require this technique. In the example below, the structure of the host–guest complex would have been quite difficult to solve without a single crystal structure: there are no protons on the <a href="/wiki/Fullerene" title="Fullerene">fullerene</a>, and with no covalent bonds between the two halves of the organic complex spectroscopy alone was unable to prove the hypothesized structure.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (February 2020)">citation needed</span></a></i>&#93;</sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Physical_organic_chemistry&amp;action=edit&amp;section=22" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><i><a href="/wiki/Journal_of_Physical_Organic_Chemistry" title="Journal of Physical Organic Chemistry">Journal of Physical Organic Chemistry</a></i></li> <li><a rel="nofollow" class="external text" href="https://www.gaussian.com/">Gaussian, an example of a commercially available quantum mechanical software package used. particularly, in academic settings</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Physical_organic_chemistry&amp;action=edit&amp;section=23" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-Anslyn-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-Anslyn_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Anslyn_1-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Anslyn_1-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Anslyn_1-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Anslyn_1-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Anslyn_1-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Anslyn_1-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-Anslyn_1-7"><sup><i><b>h</b></i></sup></a> <a href="#cite_ref-Anslyn_1-8"><sup><i><b>i</b></i></sup></a> <a href="#cite_ref-Anslyn_1-9"><sup><i><b>j</b></i></sup></a> <a href="#cite_ref-Anslyn_1-10"><sup><i><b>k</b></i></sup></a> <a href="#cite_ref-Anslyn_1-11"><sup><i><b>l</b></i></sup></a> <a href="#cite_ref-Anslyn_1-12"><sup><i><b>m</b></i></sup></a> <a href="#cite_ref-Anslyn_1-13"><sup><i><b>n</b></i></sup></a> <a href="#cite_ref-Anslyn_1-14"><sup><i><b>o</b></i></sup></a> <a href="#cite_ref-Anslyn_1-15"><sup><i><b>p</b></i></sup></a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFDoughertyAnslyn2006" class="citation book cs1">Dougherty, Dennis A.; Anslyn, Eric V. (2006). <i>Modern Physical Organic Chemistry</i>. Sausalito, CA, USA: University Science Books. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9781891389313" title="Special:BookSources/9781891389313"><bdi>9781891389313</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Modern+Physical+Organic+Chemistry&amp;rft.place=Sausalito%2C+CA%2C+USA&amp;rft.pub=University+Science+Books&amp;rft.date=2006&amp;rft.isbn=9781891389313&amp;rft.aulast=Dougherty&amp;rft.aufirst=Dennis+A.&amp;rft.au=Anslyn%2C+Eric+V.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APhysical+organic+chemistry" class="Z3988"></span><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (June 2015)">page&#160;needed</span></a></i>&#93;</sup></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTaftDenoSkell1958" class="citation journal cs1">Taft, R W; Deno, N C; Skell, P S (October 1958). <a rel="nofollow" class="external text" href="https://www.annualreviews.org/doi/10.1146/annurev.pc.09.100158.001443">"Physical Organic Chemistry"</a>. <i>Annual Review of Physical Chemistry</i>. <b>9</b> (1): 287–314. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1958ARPC....9..287T">1958ARPC....9..287T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1146%2Fannurev.pc.09.100158.001443">10.1146/annurev.pc.09.100158.001443</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0066-426X">0066-426X</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Annual+Review+of+Physical+Chemistry&amp;rft.atitle=Physical+Organic+Chemistry&amp;rft.volume=9&amp;rft.issue=1&amp;rft.pages=287-314&amp;rft.date=1958-10&amp;rft.issn=0066-426X&amp;rft_id=info%3Adoi%2F10.1146%2Fannurev.pc.09.100158.001443&amp;rft_id=info%3Abibcode%2F1958ARPC....9..287T&amp;rft.aulast=Taft&amp;rft.aufirst=R+W&amp;rft.au=Deno%2C+N+C&amp;rft.au=Skell%2C+P+S&amp;rft_id=https%3A%2F%2Fwww.annualreviews.org%2Fdoi%2F10.1146%2Fannurev.pc.09.100158.001443&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APhysical+organic+chemistry" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCohenBenson,_S._W.1993" class="citation journal cs1">Cohen, N.; Benson, S. W. (1 November 1993). "Estimation of heats of formation of organic compounds by additivity methods". <i>Chemical Reviews</i>. <b>93</b> (7): 2419–2438. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fcr00023a005">10.1021/cr00023a005</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Chemical+Reviews&amp;rft.atitle=Estimation+of+heats+of+formation+of+organic+compounds+by+additivity+methods&amp;rft.volume=93&amp;rft.issue=7&amp;rft.pages=2419-2438&amp;rft.date=1993-11-01&amp;rft_id=info%3Adoi%2F10.1021%2Fcr00023a005&amp;rft.aulast=Cohen&amp;rft.aufirst=N.&amp;rft.au=Benson%2C+S.+W.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APhysical+organic+chemistry" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBensonCruickshank,_F._R.Golden,_D._M.Haugen,_Gilbert_R.1969" class="citation journal cs1">Benson, Sidney W.; Cruickshank, F. R.; Golden, D. M.; Haugen, Gilbert R.; O'Neal, H. E.; Rodgers, A. S.; Shaw, Robert; Walsh, R. (1 June 1969). "Additivity rules for the estimation of thermochemical properties". <i>Chemical Reviews</i>. <b>69</b> (3): 279–324. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fcr60259a002">10.1021/cr60259a002</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Chemical+Reviews&amp;rft.atitle=Additivity+rules+for+the+estimation+of+thermochemical+properties&amp;rft.volume=69&amp;rft.issue=3&amp;rft.pages=279-324&amp;rft.date=1969-06-01&amp;rft_id=info%3Adoi%2F10.1021%2Fcr60259a002&amp;rft.aulast=Benson&amp;rft.aufirst=Sidney+W.&amp;rft.au=Cruickshank%2C+F.+R.&amp;rft.au=Golden%2C+D.+M.&amp;rft.au=Haugen%2C+Gilbert+R.&amp;rft.au=O%27Neal%2C+H.+E.&amp;rft.au=Rodgers%2C+A.+S.&amp;rft.au=Shaw%2C+Robert&amp;rft.au=Walsh%2C+R.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APhysical+organic+chemistry" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCarey2008" class="citation book cs1">Carey, Francis A. (2008). <i>Organic Chemistry</i> (7th&#160;ed.). Boston, MA, USA: McGraw-Hill. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780073047874" title="Special:BookSources/9780073047874"><bdi>9780073047874</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Organic+Chemistry&amp;rft.place=Boston%2C+MA%2C+USA&amp;rft.edition=7th&amp;rft.pub=McGraw-Hill&amp;rft.date=2008&amp;rft.isbn=9780073047874&amp;rft.aulast=Carey&amp;rft.aufirst=Francis+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APhysical+organic+chemistry" class="Z3988"></span><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (June 2015)">page&#160;needed</span></a></i>&#93;</sup></span> </li> <li id="cite_note-Isaacs95-6"><span class="mw-cite-backlink">^ <a href="#cite_ref-Isaacs95_6-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Isaacs95_6-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIsaacs1995" class="citation book cs1">Isaacs, Neil S. (1995). <a rel="nofollow" class="external text" href="https://archive.org/details/physicalorganicc00neil"><i>Physical Organic Chemistry</i></a> (2nd&#160;ed.). Harlow, ESS, ENG: Longman Scientific &amp; Technical. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0582218635" title="Special:BookSources/978-0582218635"><bdi>978-0582218635</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Physical+Organic+Chemistry&amp;rft.place=Harlow%2C+ESS%2C+ENG&amp;rft.edition=2nd&amp;rft.pub=Longman+Scientific+%26+Technical&amp;rft.date=1995&amp;rft.isbn=978-0582218635&amp;rft.aulast=Isaacs&amp;rft.aufirst=Neil+S.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fphysicalorganicc00neil&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APhysical+organic+chemistry" class="Z3988"></span><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (June 2015)">page&#160;needed</span></a></i>&#93;</sup></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMoGao,_Jiali2007" class="citation journal cs1">Mo, Yirong; Gao, Jiali (1 February 2007). "Theoretical Analysis of the Rotational Barrier of Ethane". <i>Accounts of Chemical Research</i>. <b>40</b> (2): 113–119. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Far068073w">10.1021/ar068073w</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17309192">17309192</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:16332261">16332261</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Accounts+of+Chemical+Research&amp;rft.atitle=Theoretical+Analysis+of+the+Rotational+Barrier+of+Ethane&amp;rft.volume=40&amp;rft.issue=2&amp;rft.pages=113-119&amp;rft.date=2007-02-01&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A16332261%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F17309192&amp;rft_id=info%3Adoi%2F10.1021%2Far068073w&amp;rft.aulast=Mo&amp;rft.aufirst=Yirong&amp;rft.au=Gao%2C+Jiali&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APhysical+organic+chemistry" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiu2013" class="citation journal cs1">Liu, Shubin (7 February 2013). "Origin and Nature of Bond Rotation Barriers: A Unified View". <i>The Journal of Physical Chemistry A</i>. <b>117</b> (5): 962–965. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013JPCA..117..962L">2013JPCA..117..962L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fjp312521z">10.1021/jp312521z</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23327680">23327680</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Journal+of+Physical+Chemistry+A&amp;rft.atitle=Origin+and+Nature+of+Bond+Rotation+Barriers%3A+A+Unified+View&amp;rft.volume=117&amp;rft.issue=5&amp;rft.pages=962-965&amp;rft.date=2013-02-07&amp;rft_id=info%3Apmid%2F23327680&amp;rft_id=info%3Adoi%2F10.1021%2Fjp312521z&amp;rft_id=info%3Abibcode%2F2013JPCA..117..962L&amp;rft.aulast=Liu&amp;rft.aufirst=Shubin&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APhysical+organic+chemistry" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiuGovind,_Niranjan2008" class="citation journal cs1">Liu, Shubin; Govind, Niranjan (1 July 2008). "Toward Understanding the Nature of Internal Rotation Barriers with a New Energy Partition Scheme: Ethane and-Butane". <i>The Journal of Physical Chemistry A</i>. <b>112</b> (29): 6690–6699. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008JPCA..112.6690L">2008JPCA..112.6690L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fjp800376a">10.1021/jp800376a</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/18563887">18563887</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Journal+of+Physical+Chemistry+A&amp;rft.atitle=Toward+Understanding+the+Nature+of+Internal+Rotation+Barriers+with+a+New+Energy+Partition+Scheme%3A+Ethane+and-Butane&amp;rft.volume=112&amp;rft.issue=29&amp;rft.pages=6690-6699&amp;rft.date=2008-07-01&amp;rft_id=info%3Apmid%2F18563887&amp;rft_id=info%3Adoi%2F10.1021%2Fjp800376a&amp;rft_id=info%3Abibcode%2F2008JPCA..112.6690L&amp;rft.aulast=Liu&amp;rft.aufirst=Shubin&amp;rft.au=Govind%2C+Niranjan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APhysical+organic+chemistry" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYamamotoChen,_Pi-YuLin,_GuangxinBłoch-Mechkour,_Anna2012" class="citation journal cs1">Yamamoto, Takuhei; Chen, Pi-Yu; Lin, Guangxin; Błoch-Mechkour, Anna; Jacobsen, Neil E.; Bally, Thomas; Glass, Richard S. (1 October 2012). <a rel="nofollow" class="external text" href="http://doc.rero.ch/record/29566/files/bal_srb.pdf">"Synthesis and rotation barriers in 2, 6-Di-(-anisyl) anisole"</a> <span class="cs1-format">(PDF)</span>. <i>Journal of Physical Organic Chemistry</i>. <b>25</b> (10): 878–882. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fpoc.2939">10.1002/poc.2939</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Physical+Organic+Chemistry&amp;rft.atitle=Synthesis+and+rotation+barriers+in+2%2C+6-Di-%28-anisyl%29+anisole&amp;rft.volume=25&amp;rft.issue=10&amp;rft.pages=878-882&amp;rft.date=2012-10-01&amp;rft_id=info%3Adoi%2F10.1002%2Fpoc.2939&amp;rft.aulast=Yamamoto&amp;rft.aufirst=Takuhei&amp;rft.au=Chen%2C+Pi-Yu&amp;rft.au=Lin%2C+Guangxin&amp;rft.au=B%C5%82och-Mechkour%2C+Anna&amp;rft.au=Jacobsen%2C+Neil+E.&amp;rft.au=Bally%2C+Thomas&amp;rft.au=Glass%2C+Richard+S.&amp;rft_id=http%3A%2F%2Fdoc.rero.ch%2Frecord%2F29566%2Ffiles%2Fbal_srb.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APhysical+organic+chemistry" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChenKeZhouYi2013" class="citation journal cs1">Chen, Chen; Ke, Jiyuan; Zhou, X. Edward; Yi, Wei; Brunzelle, Joseph S.; Li, Jun; Yong, Eu-Leong; Xu, H. Eric; Melcher, Karsten (14 July 2013). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5797940">"Structural basis for molecular recognition of folic acid by folate receptors"</a>. <i>Nature</i>. <b>500</b> (7463): 486–489. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013Natur.500..486C">2013Natur.500..486C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature12327">10.1038/nature12327</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5797940">5797940</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23851396">23851396</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=Structural+basis+for+molecular+recognition+of+folic+acid+by+folate+receptors&amp;rft.volume=500&amp;rft.issue=7463&amp;rft.pages=486-489&amp;rft.date=2013-07-14&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5797940%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F23851396&amp;rft_id=info%3Adoi%2F10.1038%2Fnature12327&amp;rft_id=info%3Abibcode%2F2013Natur.500..486C&amp;rft.aulast=Chen&amp;rft.aufirst=Chen&amp;rft.au=Ke%2C+Jiyuan&amp;rft.au=Zhou%2C+X.+Edward&amp;rft.au=Yi%2C+Wei&amp;rft.au=Brunzelle%2C+Joseph+S.&amp;rft.au=Li%2C+Jun&amp;rft.au=Yong%2C+Eu-Leong&amp;rft.au=Xu%2C+H.+Eric&amp;rft.au=Melcher%2C+Karsten&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5797940&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APhysical+organic+chemistry" class="Z3988"></span></span> </li> <li id="cite_note-McQuarrie-12"><span class="mw-cite-backlink">^ <a href="#cite_ref-McQuarrie_12-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-McQuarrie_12-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-McQuarrie_12-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-McQuarrie_12-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMcQuarrieSimon1997" class="citation book cs1">McQuarrie, Donald A.; Simon, John D. (1997). <a rel="nofollow" class="external text" href="https://books.google.com/books?isbn=0935702997"><i>Physical Chemistry: A Molecular Approach</i></a> (Rev.&#160;ed.). Sausalito, CA, USA: University Science Books. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780935702996" title="Special:BookSources/9780935702996"><bdi>9780935702996</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">21 June</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Physical+Chemistry%3A+A+Molecular+Approach&amp;rft.place=Sausalito%2C+CA%2C+USA&amp;rft.edition=Rev.&amp;rft.pub=University+Science+Books&amp;rft.date=1997&amp;rft.isbn=9780935702996&amp;rft.aulast=McQuarrie&amp;rft.aufirst=Donald+A.&amp;rft.au=Simon%2C+John+D.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fisbn%3D0935702997&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APhysical+organic+chemistry" class="Z3988"></span> Note, Amazon rather than Google allows access into this text.<sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (June 2015)">page&#160;needed</span></a></i>&#93;</sup></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKevillD&#39;Souza,_Malcolm_J.1992" class="citation journal cs1">Kevill, Dennis N.; D'Souza, Malcolm J. (1 June 1992). "Concerning the development of scales of solvent ionizing power based on solvolyses of benzylic substrates". <i>Journal of Physical Organic Chemistry</i>. <b>5</b> (6): 287–294. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fpoc.610050602">10.1002/poc.610050602</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Physical+Organic+Chemistry&amp;rft.atitle=Concerning+the+development+of+scales+of+solvent+ionizing+power+based+on+solvolyses+of+benzylic+substrates&amp;rft.volume=5&amp;rft.issue=6&amp;rft.pages=287-294&amp;rft.date=1992-06-01&amp;rft_id=info%3Adoi%2F10.1002%2Fpoc.610050602&amp;rft.aulast=Kevill&amp;rft.aufirst=Dennis+N.&amp;rft.au=D%27Souza%2C+Malcolm+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APhysical+organic+chemistry" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFReichardtWelton2011" class="citation book cs1">Reichardt, Christian; Welton, Thomas (2011). <i>Solvents and solvent effects in organic chemistry</i> (4th, updated and enl.&#160;ed.). Weinheim, Germany: Wiley-VCH. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-527-32473-6" title="Special:BookSources/978-3-527-32473-6"><bdi>978-3-527-32473-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Solvents+and+solvent+effects+in+organic+chemistry.&amp;rft.place=Weinheim%2C+Germany&amp;rft.edition=4th%2C+updated+and+enl.&amp;rft.pub=Wiley-VCH&amp;rft.date=2011&amp;rft.isbn=978-3-527-32473-6&amp;rft.aulast=Reichardt&amp;rft.aufirst=Christian&amp;rft.au=Welton%2C+Thomas&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APhysical+organic+chemistry" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMillsBeak,_Peter1985" class="citation journal cs1">Mills, Sander G.; Beak, Peter (1 April 1985). "Solvent effects on keto-enol equilibria: tests of quantitative models". <i>The Journal of Organic Chemistry</i>. <b>50</b> (8): 1216–1224. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fjo00208a014">10.1021/jo00208a014</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Journal+of+Organic+Chemistry&amp;rft.atitle=Solvent+effects+on+keto-enol+equilibria%3A+tests+of+quantitative+models&amp;rft.volume=50&amp;rft.issue=8&amp;rft.pages=1216-1224&amp;rft.date=1985-04-01&amp;rft_id=info%3Adoi%2F10.1021%2Fjo00208a014&amp;rft.aulast=Mills&amp;rft.aufirst=Sander+G.&amp;rft.au=Beak%2C+Peter&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APhysical+organic+chemistry" class="Z3988"></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEmsleyFreeman,_Neville_J.1987" class="citation journal cs1">Emsley, John; Freeman, Neville J. (1 October 1987). "β-diketone interactions". <i>Journal of Molecular Structure</i>. <b>161</b> (1–2): 193–204. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1987JMoSt.161..193E">1987JMoSt.161..193E</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0022-2860%2887%2985074-3">10.1016/0022-2860(87)85074-3</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Molecular+Structure&amp;rft.atitle=%CE%B2-diketone+interactions&amp;rft.volume=161&amp;rft.issue=1%E2%80%932&amp;rft.pages=193-204&amp;rft.date=1987-10-01&amp;rft_id=info%3Adoi%2F10.1016%2F0022-2860%2887%2985074-3&amp;rft_id=info%3Abibcode%2F1987JMoSt.161..193E&amp;rft.aulast=Emsley&amp;rft.aufirst=John&amp;rft.au=Freeman%2C+Neville+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APhysical+organic+chemistry" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchlundBasílio_Janke,_Eline_M.Weisz,_KlausEngels,_Bernd2009" class="citation journal cs1">Schlund, Sebastian; Basílio Janke, Eline M.; Weisz, Klaus; Engels, Bernd (1 January 2009). "Predicting the tautomeric equilibrium of acetylacetone in solution. I. The right answer for the wrong reason?". <i>Journal of Computational Chemistry</i>. <b>31</b> (4): 665–70. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fjcc.21354">10.1002/jcc.21354</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19557765">19557765</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:6003410">6003410</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Computational+Chemistry&amp;rft.atitle=Predicting+the+tautomeric+equilibrium+of+acetylacetone+in+solution.+I.+The+right+answer+for+the+wrong+reason%3F&amp;rft.volume=31&amp;rft.issue=4&amp;rft.pages=665-70&amp;rft.date=2009-01-01&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A6003410%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F19557765&amp;rft_id=info%3Adoi%2F10.1002%2Fjcc.21354&amp;rft.aulast=Schlund&amp;rft.aufirst=Sebastian&amp;rft.au=Bas%C3%ADlio+Janke%2C+Eline+M.&amp;rft.au=Weisz%2C+Klaus&amp;rft.au=Engels%2C+Bernd&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APhysical+organic+chemistry" class="Z3988"></span></span> </li> <li id="cite_note-GaoJACS13-18"><span class="mw-cite-backlink">^ <a href="#cite_ref-GaoJACS13_18-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-GaoJACS13_18-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGaoPatwardhan,_Neeraj_N.Carlier,_Paul_R.2013" class="citation journal cs1">Gao, Ming; Patwardhan, Neeraj N.; Carlier, Paul R. (2013). "Stereochemical Inversion of a Cyano-Stabilized Grignard Reagent: Remarkable Effects of the Ethereal Solvent Structure and Concentration". <i><a href="/wiki/Journal_of_the_American_Chemical_Society" title="Journal of the American Chemical Society">J. Am. Chem. Soc.</a></i> <b>135</b> (38): 14390–14400. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fja407348s">10.1021/ja407348s</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23978216">23978216</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=J.+Am.+Chem.+Soc.&amp;rft.atitle=Stereochemical+Inversion+of+a+Cyano-Stabilized+Grignard+Reagent%3A+Remarkable+Effects+of+the+Ethereal+Solvent+Structure+and+Concentration&amp;rft.volume=135&amp;rft.issue=38&amp;rft.pages=14390-14400&amp;rft.date=2013&amp;rft_id=info%3Adoi%2F10.1021%2Fja407348s&amp;rft_id=info%3Apmid%2F23978216&amp;rft.aulast=Gao&amp;rft.aufirst=Ming&amp;rft.au=Patwardhan%2C+Neeraj+N.&amp;rft.au=Carlier%2C+Paul+R.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APhysical+organic+chemistry" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSemmelhackHallYoshifuji1976" class="citation journal cs1">Semmelhack, M. F.; Hall, H. T.; Yoshifuji, M. (September 1976). ".eta.5-Cyclohexadienyltricarbonylchromium(0) intermediates in the reaction of carbanions with .eta.6-arenetricarbonylchromium(0)". <i>Journal of the American Chemical Society</i>. <b>98</b> (20): 6387–6389. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fja00436a056">10.1021/ja00436a056</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+the+American+Chemical+Society&amp;rft.atitle=.eta.5-Cyclohexadienyltricarbonylchromium%280%29+intermediates+in+the+reaction+of+carbanions+with+.eta.6-arenetricarbonylchromium%280%29&amp;rft.volume=98&amp;rft.issue=20&amp;rft.pages=6387-6389&amp;rft.date=1976-09&amp;rft_id=info%3Adoi%2F10.1021%2Fja00436a056&amp;rft.aulast=Semmelhack&amp;rft.aufirst=M.+F.&amp;rft.au=Hall%2C+H.+T.&amp;rft.au=Yoshifuji%2C+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APhysical+organic+chemistry" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchaefer_III2004" class="citation book cs1">Schaefer III, Henry F. (2004). <a rel="nofollow" class="external text" href="https://books.google.com/books?isbn=0486432467"><i>Quantum Chemistry: The Development of </i>ab initio<i> Methods in Molecular Electronic Structure Theory</i></a>. Chicago, IL, USA: R.R. Donnelly (Courier, Dover). <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0486432465" title="Special:BookSources/978-0486432465"><bdi>978-0486432465</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">21 June</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Quantum+Chemistry%3A+The+Development+of+ab+initio+Methods+in+Molecular+Electronic+Structure+Theory&amp;rft.place=Chicago%2C+IL%2C+USA&amp;rft.pub=R.R.+Donnelly+%28Courier%2C+Dover%29&amp;rft.date=2004&amp;rft.isbn=978-0486432465&amp;rft.aulast=Schaefer+III&amp;rft.aufirst=Henry+F.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fisbn%3D0486432467&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APhysical+organic+chemistry" class="Z3988"></span><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (June 2015)">page&#160;needed</span></a></i>&#93;</sup></span> </li> <li id="cite_note-drago-21"><span class="mw-cite-backlink">^ <a href="#cite_ref-drago_21-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-drago_21-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDrago1992" class="citation book cs1">Drago, Russell S. (1992). <a rel="nofollow" class="external text" href="https://books.google.com/books?isbn=0030970377"><i>Physical Methods for Chemists</i></a> (2nd&#160;ed.). Ft. Worth, TX, USA: Saunders. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780030970375" title="Special:BookSources/9780030970375"><bdi>9780030970375</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">22 June</span> 2014</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Physical+Methods+for+Chemists&amp;rft.place=Ft.+Worth%2C+TX%2C+USA&amp;rft.edition=2nd&amp;rft.pub=Saunders&amp;rft.date=1992&amp;rft.isbn=9780030970375&amp;rft.aulast=Drago&amp;rft.aufirst=Russell+S.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fisbn%3D0030970377&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APhysical+organic+chemistry" class="Z3988"></span><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (June 2015)">page&#160;needed</span></a></i>&#93;</sup></span> </li> <li id="cite_note-keeler-2-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-keeler-2_22-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJames_Keeler" class="citation web cs1">James Keeler. <a rel="nofollow" class="external text" href="http://www-keeler.ch.cam.ac.uk/lectures/Irvine/chapter2.pdf">"NMR and energy levels (Ch.2)"</a> <span class="cs1-format">(PDF)</span>. <i>Understanding NMR Spectroscopy</i>. <a href="/wiki/University_of_California,_Irvine" title="University of California, Irvine">University of California, Irvine</a><span class="reference-accessdate">. Retrieved <span class="nowrap">2013-10-26</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Understanding+NMR+Spectroscopy&amp;rft.atitle=NMR+and+energy+levels+%28Ch.2%29&amp;rft.au=James+Keeler&amp;rft_id=http%3A%2F%2Fwww-keeler.ch.cam.ac.uk%2Flectures%2FIrvine%2Fchapter2.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APhysical+organic+chemistry" class="Z3988"></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKeeler2010" class="citation book cs1">Keeler, James (2010). <i>Understanding NMR spectroscopy</i> (2nd&#160;ed.). Chichester: Wiley. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-470-74608-0" title="Special:BookSources/978-0-470-74608-0"><bdi>978-0-470-74608-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Understanding+NMR+spectroscopy&amp;rft.place=Chichester&amp;rft.edition=2nd&amp;rft.pub=Wiley&amp;rft.date=2010&amp;rft.isbn=978-0-470-74608-0&amp;rft.aulast=Keeler&amp;rft.aufirst=James&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APhysical+organic+chemistry" class="Z3988"></span></span> </li> <li id="cite_note-Visible_and_Ultraviolet_Spectroscopy-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-Visible_and_Ultraviolet_Spectroscopy_24-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFReusch" class="citation web cs1">Reusch, William. <a rel="nofollow" class="external text" href="http://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/Spectrpy/UV-Vis/spectrum.htm">"Visible and Ultraviolet Spectroscopy"</a>. <i>Michigan State University Website</i>. Michigan State University<span class="reference-accessdate">. Retrieved <span class="nowrap">26 October</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Michigan+State+University+Website&amp;rft.atitle=Visible+and+Ultraviolet+Spectroscopy&amp;rft.aulast=Reusch&amp;rft.aufirst=William&amp;rft_id=http%3A%2F%2Fwww2.chemistry.msu.edu%2Ffaculty%2Freusch%2FVirtTxtJml%2FSpectrpy%2FUV-Vis%2Fspectrum.htm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APhysical+organic+chemistry" class="Z3988"></span></span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlan_J._HandleyEdward_R._Adlard2000" class="citation book cs1">Alan J. Handley; Edward R. Adlard, eds. (2000). <i>Gas chromatographic techniques and applications</i>. Boca Raton, FL: CRC Press. p.&#160;168. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8493-0514-6" title="Special:BookSources/978-0-8493-0514-6"><bdi>978-0-8493-0514-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Gas+chromatographic+techniques+and+applications&amp;rft.place=Boca+Raton%2C+FL&amp;rft.pages=168&amp;rft.pub=CRC+Press&amp;rft.date=2000&amp;rft.isbn=978-0-8493-0514-6&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APhysical+organic+chemistry" class="Z3988"></span></span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBraggBragg1913" class="citation journal cs1">Bragg, W. H.; Bragg, W. L. (July 1913). <a rel="nofollow" class="external text" href="https://zenodo.org/record/1429564">"The Structure of the Diamond"</a>. <i>Nature</i>. <b>91</b> (2283): 557. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1913Natur..91..557B">1913Natur..91..557B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F091557a0">10.1038/091557a0</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:3987932">3987932</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=The+Structure+of+the+Diamond&amp;rft.volume=91&amp;rft.issue=2283&amp;rft.pages=557&amp;rft.date=1913-07&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A3987932%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1038%2F091557a0&amp;rft_id=info%3Abibcode%2F1913Natur..91..557B&amp;rft.aulast=Bragg&amp;rft.aufirst=W.+H.&amp;rft.au=Bragg%2C+W.+L.&amp;rft_id=https%3A%2F%2Fzenodo.org%2Frecord%2F1429564&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APhysical+organic+chemistry" class="Z3988"></span></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLonsdale1928" class="citation journal cs1">Lonsdale, K. (November 1928). <a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F122810c0">"The Structure of the Benzene Ring"</a>. <i>Nature</i>. <b>122</b> (3082): 810. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1928Natur.122..810L">1928Natur.122..810L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F122810c0">10.1038/122810c0</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4105837">4105837</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=The+Structure+of+the+Benzene+Ring&amp;rft.volume=122&amp;rft.issue=3082&amp;rft.pages=810&amp;rft.date=1928-11&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4105837%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1038%2F122810c0&amp;rft_id=info%3Abibcode%2F1928Natur.122..810L&amp;rft.aulast=Lonsdale&amp;rft.aufirst=K.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1038%252F122810c0&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APhysical+organic+chemistry" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Physical_organic_chemistry&amp;action=edit&amp;section=24" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="General">General</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Physical_organic_chemistry&amp;action=edit&amp;section=25" title="Edit section: General"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Peter Atkins &amp; Julio de Paula, 2006, "Physical chemistry," 8th Edn., New York, NY, USA:Macmillan, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0716787598" title="Special:BookSources/0716787598">0716787598</a>, accessed 21 June 2015. [E.g., see p.&#160;422 for a group theoretical/symmetry description of <a href="/wiki/Atomic_orbital" title="Atomic orbital">atomic orbitals</a> contributing to bonding in methane, CH<sub>4</sub>, and pp.&#160;390f for estimation of π-electron binding energy for <a href="/wiki/1,3-butadiene" class="mw-redirect" title="1,3-butadiene">1,3-butadiene</a> by the Hückel method.]</li> <li>Thomas H. Lowry &amp; Kathleen Schueller Richardson, 1987, <i>Mechanism and Theory in Organic Chemistry,</i> 3rd Edn., New York, NY, USA:Harper &amp; Row, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0060440848" title="Special:BookSources/0060440848">0060440848</a>, accessed 20 June 2015. [The authoritative textbook on the subject, containing a number of appendices that provide technical details on molecular orbital theory, kinetic isotope effects, transition state theory, and radical chemistry.]</li> <li>Eric V. Anslyn &amp; Dennis A. Dougherty, 2006, <i>Modern Physical Organic Chemistry</i>, Sausalito, Calif.: University Science Books, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/1891389319" title="Special:BookSources/1891389319">1891389319</a>. [A modernized and streamlined treatment with an emphasis on applications and cross-disciplinary connections.]</li> <li>Michael B. Smith &amp; Jerry March, 2007, "March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure," 6th Ed., New York, NY, USA:Wiley &amp; Sons, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0470084944" title="Special:BookSources/0470084944">0470084944</a>, accessed 19 June 2015.</li> <li>Francis A. Carey &amp; Richard J. Sundberg, 2006, "Advanced Organic Chemistry: Part A: Structure and Mechanisms," 4th Edn., New York, NY, USA:Springer Science &amp; Business Media, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0306468565" title="Special:BookSources/0306468565">0306468565</a>, accessed 19 June 2015.</li> <li>Hammett, Louis P. (1940) <i><a rel="nofollow" class="external text" href="https://archive.org/details/in.ernet.dli.2015.168388">Physical Organic Chemistry</a></i>, New York, NY, USA: McGraw Hill, accessed 20 June 2015.</li></ul> <div class="mw-heading mw-heading3"><h3 id="History_2">History</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Physical_organic_chemistry&amp;action=edit&amp;section=26" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHammond1997" class="citation journal cs1">Hammond, George S. (1997). <a rel="nofollow" class="external text" href="http://pac.iupac.org/publications/pac/pdf/1997/pdf/6909x1919.pdf">"Physical organic chemistry after 50 years: It has changed, but is it still there?"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Pure_and_Applied_Chemistry" title="Pure and Applied Chemistry">Pure Appl. Chem.</a></i> <b>69</b> (9): 1919–22. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1351%2Fpac199769091919">10.1351/pac199769091919</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:53723796">53723796</a><span class="reference-accessdate">. Retrieved <span class="nowrap">20 June</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Pure+Appl.+Chem.&amp;rft.atitle=Physical+organic+chemistry+after+50+years%3A+It+has+changed%2C+but+is+it+still+there%3F&amp;rft.volume=69&amp;rft.issue=9&amp;rft.pages=1919-22&amp;rft.date=1997&amp;rft_id=info%3Adoi%2F10.1351%2Fpac199769091919&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A53723796%23id-name%3DS2CID&amp;rft.aulast=Hammond&amp;rft.aufirst=George+S.&amp;rft_id=http%3A%2F%2Fpac.iupac.org%2Fpublications%2Fpac%2Fpdf%2F1997%2Fpdf%2F6909x1919.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APhysical+organic+chemistry" class="Z3988"></span> [An outstanding starting point on the history of the field, from a critically important contributor, referencing and discussing the early Hammett text, etc.]</li></ul> <div class="mw-heading mw-heading3"><h3 id="Thermochemistry_2">Thermochemistry</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Physical_organic_chemistry&amp;action=edit&amp;section=27" title="Edit section: Thermochemistry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/L._K._Doraiswamy" title="L. K. Doraiswamy">L. K. Doraiswamy</a>, 2005, "Estimation of properties of organic compounds (Ch. 3)," pp.&#160;36–51, 118-124 (refs.), in <i>Organic Synthesis Engineering,</i> Oxford, Oxon, ENG:Oxford University Press, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0198025696" title="Special:BookSources/0198025696">0198025696</a>, accessed 22 June 2015. (This book chapter surveys a very wide range of physical properties and their estimation, including the narrow list of thermochemical properties appearing in the June 2015 WP article, placing the Benson et al. method alongside many other methods. L. K. Doraiswamy is <i>Anson Marston Distinguished Professor of Engineering</i> at <a href="/wiki/Iowa_State_University" title="Iowa State University">Iowa State University</a>.)</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIrikuraFrurip1998" class="citation book cs1">Irikura, Karl K.; Frurip, David J. (1998). "Computational Thermochemistry". In Irikura, Karl K.; Frurip, David J. (eds.). <i>Computational Thermochemistry: Prediction and Estimation of Molecular Thermodynamics</i>. ACS Symposium Series. Vol.&#160;677. American Chemical Society. pp.&#160;2–18. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fbk-1998-0677.ch001">10.1021/bk-1998-0677.ch001</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8412-3533-5" title="Special:BookSources/978-0-8412-3533-5"><bdi>978-0-8412-3533-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Computational+Thermochemistry&amp;rft.btitle=Computational+Thermochemistry%3A+Prediction+and+Estimation+of+Molecular+Thermodynamics&amp;rft.series=ACS+Symposium+Series&amp;rft.pages=2-18&amp;rft.pub=American+Chemical+Society&amp;rft.date=1998&amp;rft_id=info%3Adoi%2F10.1021%2Fbk-1998-0677.ch001&amp;rft.isbn=978-0-8412-3533-5&amp;rft.aulast=Irikura&amp;rft.aufirst=Karl+K.&amp;rft.au=Frurip%2C+David+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APhysical+organic+chemistry" class="Z3988"></span></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Branches_of_chemistry" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Branches_of_chemistry" title="Template:Branches of chemistry"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Branches_of_chemistry" title="Template talk:Branches of chemistry"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Branches_of_chemistry" title="Special:EditPage/Template:Branches of chemistry"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Branches_of_chemistry" style="font-size:114%;margin:0 4em">Branches of <a href="/wiki/Chemistry" title="Chemistry">chemistry</a></div></th></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><a href="/wiki/Glossary_of_chemical_formulae" title="Glossary of chemical formulae">Glossary of chemical formulae</a></li> <li><a href="/wiki/List_of_biomolecules" title="List of biomolecules">List of biomolecules</a></li> <li><a href="/wiki/List_of_inorganic_compounds" title="List of inorganic compounds">List of inorganic compounds</a></li> <li><a href="/wiki/Periodic_table" title="Periodic table">Periodic table</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Analytical_chemistry" title="Analytical chemistry">Analytical</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Instrumental_chemistry" title="Instrumental chemistry">Instrumental chemistry</a></li> <li><a href="/wiki/Electroanalytical_methods" title="Electroanalytical methods">Electroanalytical methods</a></li> <li><a href="/wiki/Spectroscopy" title="Spectroscopy">Spectroscopy</a> <ul><li><a href="/wiki/Infrared_spectroscopy" title="Infrared spectroscopy">IR</a></li> <li><a href="/wiki/Raman_spectroscopy" title="Raman spectroscopy">Raman</a></li> <li><a href="/wiki/Ultraviolet%E2%80%93visible_spectroscopy" title="Ultraviolet–visible spectroscopy">UV-Vis</a></li> <li><a href="/wiki/Nuclear_magnetic_resonance_spectroscopy" title="Nuclear magnetic resonance spectroscopy">NMR</a></li></ul></li> <li><a href="/wiki/Mass_spectrometry" title="Mass spectrometry">Mass spectrometry</a> <ul><li><a href="/wiki/Electron_ionization" title="Electron ionization">EI</a></li> <li><a href="/wiki/Inductively_coupled_plasma_mass_spectrometry" title="Inductively coupled plasma mass spectrometry">ICP</a></li> <li><a href="/wiki/Matrix-assisted_laser_desorption/ionization" title="Matrix-assisted laser desorption/ionization">MALDI</a></li></ul></li> <li><a href="/wiki/Separation_process" title="Separation process">Separation process</a></li> <li><a href="/wiki/Chromatography" title="Chromatography">Chromatography</a> <ul><li><a href="/wiki/Gas_chromatography" title="Gas chromatography">GC</a></li> <li><a href="/wiki/High-performance_liquid_chromatography" title="High-performance liquid chromatography">HPLC</a></li></ul></li> <li><a href="/wiki/Crystallography" title="Crystallography">Crystallography</a></li> <li><a href="/wiki/Characterization_(materials_science)" title="Characterization (materials science)">Characterization</a></li> <li><a href="/wiki/Titration" title="Titration">Titration</a></li> <li><a href="/wiki/Wet_chemistry" title="Wet chemistry">Wet chemistry</a></li> <li><a href="/wiki/Calorimetry" title="Calorimetry">Calorimetry</a></li> <li><a href="/wiki/Elemental_analysis" title="Elemental analysis">Elemental analysis</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Theoretical_chemistry" title="Theoretical chemistry">Theoretical</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Quantum_chemistry" title="Quantum chemistry">Quantum chemistry</a></li> <li><a href="/wiki/Computational_chemistry" title="Computational chemistry">Computational chemistry</a> <ul><li><a href="/wiki/Mathematical_chemistry" title="Mathematical chemistry">Mathematical chemistry</a></li></ul></li> <li><a href="/wiki/Molecular_modelling" title="Molecular modelling">Molecular modelling</a></li> <li><a href="/wiki/Molecular_mechanics" title="Molecular mechanics">Molecular mechanics</a></li> <li><a href="/wiki/Molecular_dynamics" title="Molecular dynamics">Molecular dynamics</a></li> <li><a href="/wiki/Molecular_geometry" title="Molecular geometry">Molecular geometry</a> <ul><li><a href="/wiki/VSEPR_theory" title="VSEPR theory">VSEPR theory</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Physical_chemistry" title="Physical chemistry">Physical</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Electrochemistry" title="Electrochemistry">Electrochemistry</a> <ul><li><a href="/wiki/Spectroelectrochemistry" title="Spectroelectrochemistry">Spectroelectrochemistry</a></li> <li><a href="/wiki/Photoelectrochemistry" title="Photoelectrochemistry">Photoelectrochemistry</a></li></ul></li> <li><a href="/wiki/Thermochemistry" title="Thermochemistry">Thermochemistry</a></li> <li><a href="/wiki/Chemical_thermodynamics" title="Chemical thermodynamics">Chemical thermodynamics</a></li> <li><a href="/wiki/Surface_science" title="Surface science">Surface science</a></li> <li><a href="/wiki/Interface_and_colloid_science" title="Interface and colloid science">Interface and colloid science</a> <ul><li><a href="/wiki/Micromeritics" title="Micromeritics">Micromeritics</a></li></ul></li> <li><a href="/wiki/Cryochemistry" title="Cryochemistry">Cryochemistry</a></li> <li><a href="/wiki/Sonochemistry" title="Sonochemistry">Sonochemistry</a></li> <li><a href="/wiki/Structural_chemistry" title="Structural chemistry">Structural chemistry</a></li> <li><a href="/wiki/Chemical_physics" title="Chemical physics">Chemical physics</a> <ul><li><a href="/wiki/Molecular_physics" title="Molecular physics">Molecular physics</a></li></ul></li> <li><a href="/wiki/Femtochemistry" title="Femtochemistry">Femtochemistry</a></li> <li><a href="/wiki/Chemical_kinetics" title="Chemical kinetics">Chemical kinetics</a></li> <li><a href="/wiki/Spectroscopy" title="Spectroscopy">Spectroscopy</a></li> <li><a href="/wiki/Photochemistry" title="Photochemistry">Photochemistry</a></li> <li><a href="/wiki/Spin_chemistry" title="Spin chemistry">Spin chemistry</a></li> <li><a href="/wiki/Microwave_chemistry" title="Microwave chemistry">Microwave chemistry</a></li> <li><a href="/wiki/Equilibrium_chemistry" title="Equilibrium chemistry">Equilibrium chemistry</a></li> <li><a href="/wiki/Mechanochemistry" title="Mechanochemistry">Mechanochemistry</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Inorganic_chemistry" title="Inorganic chemistry">Inorganic</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Coordination_complex" title="Coordination complex">Coordination chemistry</a></li> <li><a href="/wiki/Magnetochemistry" title="Magnetochemistry">Magnetochemistry</a></li> <li><a href="/wiki/Organometallic_chemistry" title="Organometallic chemistry">Organometallic chemistry</a> <ul><li><a href="/wiki/Organolanthanide_chemistry" title="Organolanthanide chemistry">Organolanthanide chemistry</a></li></ul></li> <li><a href="/wiki/Atom_cluster" class="mw-redirect" title="Atom cluster">Cluster chemistry</a></li> <li><a href="/wiki/Solid-state_chemistry" title="Solid-state chemistry">Solid-state chemistry</a></li> <li><a href="/wiki/Ceramic_chemistry" class="mw-redirect" title="Ceramic chemistry">Ceramic chemistry</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Organic_chemistry" title="Organic chemistry">Organic</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Stereochemistry" title="Stereochemistry">Stereochemistry</a> <ul><li><a href="/wiki/Alkane_stereochemistry" class="mw-redirect" title="Alkane stereochemistry">Alkane stereochemistry</a></li></ul></li> <li><a class="mw-selflink selflink">Physical organic chemistry</a></li> <li><a href="/wiki/Organic_reactions" class="mw-redirect" title="Organic reactions">Organic reactions</a></li> <li><a href="/wiki/Organic_synthesis" title="Organic synthesis">Organic synthesis</a></li> <li><a href="/wiki/Retrosynthetic_analysis" title="Retrosynthetic analysis">Retrosynthetic analysis</a></li> <li><a href="/wiki/Enantioselective_synthesis" title="Enantioselective synthesis">Enantioselective synthesis</a></li> <li><a href="/wiki/Total_synthesis" title="Total synthesis">Total synthesis</a> / <a href="/wiki/Semisynthesis" title="Semisynthesis">Semisynthesis</a></li> <li><a href="/wiki/Fullerene_chemistry" title="Fullerene chemistry">Fullerene chemistry</a></li> <li><a href="/wiki/Polymer_chemistry" title="Polymer chemistry">Polymer chemistry</a></li> <li><a href="/wiki/Petrochemistry" class="mw-redirect" title="Petrochemistry">Petrochemistry</a></li> <li><a href="/wiki/Dynamic_covalent_chemistry" title="Dynamic covalent chemistry">Dynamic covalent chemistry</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Biochemistry" title="Biochemistry">Biological</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Biochemistry" title="Biochemistry">Biochemistry</a> <ul><li><a href="/wiki/Molecular_biology" title="Molecular biology">Molecular biology</a></li> <li><a href="/wiki/Cell_biology" title="Cell biology">Cell biology</a></li></ul></li> <li><a href="/wiki/Chemical_biology" title="Chemical biology">Chemical biology</a> <ul><li><a href="/wiki/Bioorthogonal_chemistry" title="Bioorthogonal chemistry">Bioorthogonal chemistry</a></li></ul></li> <li><a href="/wiki/Medicinal_chemistry" title="Medicinal chemistry">Medicinal chemistry</a> <ul><li><a href="/wiki/Pharmacology" title="Pharmacology">Pharmacology</a></li></ul></li> <li><a href="/wiki/Clinical_chemistry" title="Clinical chemistry">Clinical chemistry</a></li> <li><a href="/wiki/Neurochemistry" title="Neurochemistry">Neurochemistry</a></li> <li><a href="/wiki/Bioorganic_chemistry" title="Bioorganic chemistry">Bioorganic chemistry</a></li> <li><a href="/wiki/Bioorganometallic_chemistry" title="Bioorganometallic chemistry">Bioorganometallic chemistry</a></li> <li><a href="/wiki/Bioinorganic_chemistry" title="Bioinorganic chemistry">Bioinorganic chemistry</a></li> <li><a href="/wiki/Biophysical_chemistry" title="Biophysical chemistry">Biophysical chemistry</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Interdisciplinarity" title="Interdisciplinarity">Interdisciplinarity</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Nuclear_chemistry" title="Nuclear chemistry">Nuclear chemistry</a> <ul><li><a href="/wiki/Radiochemistry" title="Radiochemistry">Radiochemistry</a></li> <li><a href="/wiki/Radiation_chemistry" title="Radiation chemistry">Radiation chemistry</a></li> <li><a href="/wiki/Actinide_chemistry" title="Actinide chemistry">Actinide chemistry</a></li></ul></li> <li><a href="/wiki/Cosmochemistry" title="Cosmochemistry">Cosmochemistry</a> / <a href="/wiki/Astrochemistry" title="Astrochemistry">Astrochemistry</a> / <a href="/wiki/Stellar_chemistry" title="Stellar chemistry">Stellar chemistry</a></li> <li><a href="/wiki/Geochemistry" title="Geochemistry">Geochemistry</a> <ul><li><a href="/wiki/Biogeochemistry" title="Biogeochemistry">Biogeochemistry</a></li> <li><a href="/wiki/Photogeochemistry" title="Photogeochemistry">Photogeochemistry</a></li></ul></li></ul> <ul><li><a href="/wiki/Environmental_chemistry" title="Environmental chemistry">Environmental chemistry</a> <ul><li><a href="/wiki/Atmospheric_chemistry" title="Atmospheric chemistry">Atmospheric chemistry</a></li> <li><a href="/wiki/Ocean_chemistry" class="mw-redirect" title="Ocean chemistry">Ocean chemistry</a></li></ul></li> <li><a href="/wiki/Clay_chemistry" title="Clay chemistry">Clay chemistry</a></li> <li><a href="/wiki/Carbochemistry" title="Carbochemistry">Carbochemistry</a></li> <li><a href="/wiki/Food_chemistry" title="Food chemistry">Food chemistry</a> <ul><li><a href="/wiki/Carbohydrate_chemistry" class="mw-redirect" title="Carbohydrate chemistry">Carbohydrate chemistry</a></li> <li><a href="/wiki/Food_physical_chemistry" title="Food physical chemistry">Food physical chemistry</a></li></ul></li> <li><a href="/wiki/Agricultural_chemistry" title="Agricultural chemistry">Agricultural chemistry</a> <ul><li><a href="/wiki/Soil_chemistry" title="Soil chemistry">Soil chemistry</a></li></ul></li></ul> <ul><li><a href="/wiki/Chemistry_education" title="Chemistry education">Chemistry education</a> <ul><li><a href="/wiki/Amateur_chemistry" title="Amateur chemistry">Amateur chemistry</a></li> <li><a href="/wiki/General_chemistry" title="General chemistry">General chemistry</a></li></ul></li> <li><a href="/wiki/Clandestine_chemistry" title="Clandestine chemistry">Clandestine chemistry</a></li> <li><a href="/wiki/Forensic_chemistry" title="Forensic chemistry">Forensic chemistry</a> <ul><li><a href="/wiki/Forensic_toxicology" title="Forensic toxicology">Forensic toxicology</a></li> <li><a href="/wiki/Post-mortem_chemistry" title="Post-mortem chemistry">Post-mortem chemistry</a></li></ul></li></ul> <ul><li><a href="/wiki/Nanochemistry" title="Nanochemistry">Nanochemistry</a> <ul><li><a href="/wiki/Supramolecular_chemistry" title="Supramolecular chemistry">Supramolecular chemistry</a></li></ul></li> <li><a href="/wiki/Chemical_synthesis" title="Chemical synthesis">Chemical synthesis</a> <ul><li><a href="/wiki/Green_chemistry" title="Green chemistry">Green chemistry</a></li> <li><a href="/wiki/Click_chemistry" title="Click chemistry">Click chemistry</a></li> <li><a href="/wiki/Combinatorial_chemistry" title="Combinatorial chemistry">Combinatorial chemistry</a></li> <li><a href="/wiki/Biosynthesis" title="Biosynthesis">Biosynthesis</a></li></ul></li> <li><a href="/wiki/Chemical_engineering" title="Chemical engineering">Chemical engineering</a> <ul><li><a href="/wiki/Stoichiometry" title="Stoichiometry">Stoichiometry</a></li></ul></li> <li><a href="/wiki/Materials_science" title="Materials science">Materials science</a> <ul><li><a href="/wiki/Metallurgy" title="Metallurgy">Metallurgy</a></li> <li><a href="/wiki/Ceramic_engineering" title="Ceramic engineering">Ceramic engineering</a></li> <li><a href="/wiki/Polymer_science" title="Polymer science">Polymer science</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">See also</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/History_of_chemistry" title="History of chemistry">History of chemistry</a></li> <li><a href="/wiki/Nobel_Prize_in_Chemistry" title="Nobel Prize in Chemistry">Nobel Prize in Chemistry</a></li> <li><a href="/wiki/Timeline_of_chemistry" title="Timeline of chemistry">Timeline of chemistry</a> <ul><li><a href="/wiki/Discovery_of_chemical_elements" title="Discovery of chemical elements">of element discoveries</a></li></ul></li> <li>"<a href="/wiki/The_central_science" title="The central science">The central science</a>"</li> <li><a href="/wiki/Chemical_reaction" title="Chemical reaction">Chemical reaction</a> <ul><li><a href="/wiki/Catalysis" title="Catalysis">Catalysis</a></li></ul></li> <li><a href="/wiki/Chemical_element" title="Chemical element">Chemical element</a></li> <li><a href="/wiki/Chemical_compound" title="Chemical compound">Chemical compound</a></li> <li><a href="/wiki/Atom" title="Atom">Atom</a></li> <li><a href="/wiki/Molecule" title="Molecule">Molecule</a></li> <li><a href="/wiki/Ion" title="Ion">Ion</a></li> <li><a href="/wiki/Chemical_substance" title="Chemical substance">Chemical substance</a></li> <li><a href="/wiki/Chemical_bond" title="Chemical bond">Chemical bond</a></li> <li><a href="/wiki/Alchemy" title="Alchemy">Alchemy</a></li> <li><a href="/wiki/Quantum_mechanics" title="Quantum mechanics">Quantum mechanics</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <b><a href="/wiki/Category:Chemistry" title="Category:Chemistry">Category</a></b></li> <li><span class="noviewer" typeof="mw:File"><span title="Commons page"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span> <b><a href="https://commons.wikimedia.org/wiki/Category:Chemistry" class="extiw" title="commons:Category:Chemistry">Commons</a></b></li> <li><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Symbol_portal_class.svg" class="mw-file-description" title="Portal"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/e/e2/Symbol_portal_class.svg/16px-Symbol_portal_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/e/e2/Symbol_portal_class.svg/23px-Symbol_portal_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/e/e2/Symbol_portal_class.svg/31px-Symbol_portal_class.svg.png 2x" data-file-width="180" data-file-height="185" /></a></span> <b><a href="/wiki/Portal:Chemistry" title="Portal:Chemistry">Portal</a></b></li> <li><span class="noviewer" typeof="mw:File"><span title="WikiProject"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/37/People_icon.svg/16px-People_icon.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/37/People_icon.svg/24px-People_icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/37/People_icon.svg/32px-People_icon.svg.png 2x" data-file-width="100" data-file-height="100" /></span></span> <b><a href="/wiki/Wikipedia:WikiProject_Chemistry" title="Wikipedia:WikiProject Chemistry">WikiProject</a></b></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐5dc468848‐q2cm9 Cached time: 20241122142432 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.329 seconds Real time usage: 1.586 seconds Preprocessor visited node count: 14105/1000000 Post‐expand include size: 251466/2097152 bytes Template argument size: 37172/2097152 bytes Highest expansion depth: 19/100 Expensive parser function count: 25/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 144787/5000000 bytes Lua time usage: 0.823/10.000 seconds Lua memory usage: 6903774/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1356.886 1 -total 38.11% 517.117 49 Template:Fix 33.54% 455.115 32 Template:Page_needed 30.83% 418.360 81 Template:Delink 25.68% 348.403 1 Template:Reflist 9.62% 130.553 10 Template:Cite_book 8.03% 109.018 1 Template:BranchesofChemistry 7.80% 105.828 86 Template:Category_handler 7.75% 105.093 1 Template:Navbox 7.66% 103.933 14 Template:Main --> <!-- Saved in parser cache with key enwiki:pcache:idhash:11304514-0!canonical and timestamp 20241122142432 and revision id 1228477052. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Physical_organic_chemistry&amp;oldid=1228477052">https://en.wikipedia.org/w/index.php?title=Physical_organic_chemistry&amp;oldid=1228477052</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Physical_organic_chemistry" title="Category:Physical organic chemistry">Physical organic chemistry</a></li><li><a href="/wiki/Category:Organic_chemistry" title="Category:Organic chemistry">Organic chemistry</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Wikipedia_articles_needing_page_number_citations_from_June_2015" title="Category:Wikipedia articles needing page number citations from June 2015">Wikipedia articles needing page number citations from June 2015</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li><li><a href="/wiki/Category:Articles_lacking_reliable_references_from_June_2015" title="Category:Articles lacking reliable references from June 2015">Articles lacking reliable references from June 2015</a></li><li><a href="/wiki/Category:All_articles_lacking_reliable_references" title="Category:All articles lacking reliable references">All articles lacking reliable references</a></li><li><a href="/wiki/Category:Articles_lacking_page_references_from_June_2015" title="Category:Articles lacking page references from June 2015">Articles lacking page references from June 2015</a></li><li><a href="/wiki/Category:Articles_with_multiple_maintenance_issues" title="Category:Articles with multiple maintenance issues">Articles with multiple maintenance issues</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_June_2015" title="Category:Articles with unsourced statements from June 2015">Articles with unsourced statements from June 2015</a></li><li><a href="/wiki/Category:Wikipedia_articles_needing_clarification_from_June_2015" title="Category:Wikipedia articles needing clarification from June 2015">Wikipedia articles needing clarification from June 2015</a></li><li><a href="/wiki/Category:All_articles_needing_examples" title="Category:All articles needing examples">All articles needing examples</a></li><li><a href="/wiki/Category:Articles_needing_examples_from_December_2017" title="Category:Articles needing examples from December 2017">Articles needing examples from December 2017</a></li><li><a href="/wiki/Category:All_pages_needing_factual_verification" title="Category:All pages needing factual verification">All pages needing factual verification</a></li><li><a href="/wiki/Category:Wikipedia_articles_needing_factual_verification_from_June_2015" title="Category:Wikipedia articles needing factual verification from June 2015">Wikipedia articles needing factual verification from June 2015</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_February_2020" title="Category:Articles with unsourced statements from February 2020">Articles with unsourced statements from February 2020</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 11 June 2024, at 12:59<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Physical_organic_chemistry&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-tggkq","wgBackendResponseTime":160,"wgPageParseReport":{"limitreport":{"cputime":"1.329","walltime":"1.586","ppvisitednodes":{"value":14105,"limit":1000000},"postexpandincludesize":{"value":251466,"limit":2097152},"templateargumentsize":{"value":37172,"limit":2097152},"expansiondepth":{"value":19,"limit":100},"expensivefunctioncount":{"value":25,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":144787,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 1356.886 1 -total"," 38.11% 517.117 49 Template:Fix"," 33.54% 455.115 32 Template:Page_needed"," 30.83% 418.360 81 Template:Delink"," 25.68% 348.403 1 Template:Reflist"," 9.62% 130.553 10 Template:Cite_book"," 8.03% 109.018 1 Template:BranchesofChemistry"," 7.80% 105.828 86 Template:Category_handler"," 7.75% 105.093 1 Template:Navbox"," 7.66% 103.933 14 Template:Main"]},"scribunto":{"limitreport-timeusage":{"value":"0.823","limit":"10.000"},"limitreport-memusage":{"value":6903774,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-5dc468848-q2cm9","timestamp":"20241122142432","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Physical organic chemistry","url":"https:\/\/en.wikipedia.org\/wiki\/Physical_organic_chemistry","sameAs":"http:\/\/www.wikidata.org\/entity\/Q652513","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q652513","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2007-05-19T12:20:20Z","dateModified":"2024-06-11T12:59:37Z","headline":"discipline of organic chemistry"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10