CINXE.COM
Jan Paseka - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Jan Paseka - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="aKA0bXprNOFTT3oD846Euk6XuJezTZPdzIh406todo4ecmsER6yi7nmjBEUBCv7_eOMW6ruk3EX-x1lzBLHz8g" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-3d36c19b4875b226bfed0fcba1dcea3f2fe61148383d97c0465c016b8c969290.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-79e78ce59bef0a338eb6540ec3d93b4a7952115b56c57f1760943128f4544d42.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-95367dc03b794f6737f30123738a886cf53b7a65cdef98a922a98591d60063e3.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-bfbac2a470372e2f3a6661a65fa7ff0a0fbf7aa32534d9a831d683d2a6f9e01b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-170d1319f0e354621e81ca17054bb147da2856ec0702fe440a99af314a6338c5.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-2b6f90dbd75f5941bc38f4ad716615f3ac449e7398313bb3bc225fba451cd9fa.css" /> <meta name="author" content="jan paseka" /> <meta name="description" content="Jan Paseka: 1 Following, 37 Research papers. Research interests: Quantum Information Theory, Quantum Logic, and Belief Revision (Computer Science)." /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = 'f73ddb1f64547579c00ec5aef0f3a71e90663cca'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":14016,"monthly_visitors":"107 million","monthly_visitor_count":107440917,"monthly_visitor_count_in_millions":107,"user_count":283723520,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1740524733000); window.Aedu.timeDifference = new Date().getTime() - 1740524733000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link rel="preload" href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" as="style" onload="this.rel='stylesheet'"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-1eb081e01ca8bc0c1b1d866df79d9eb4dd2c484e4beecf76e79a7806c72fee08.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-63c3b84e278fb86e50772ccc2ac0281a0f74ac7e2f88741ecad58131583d4c47.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-95e48715d3d10232d4198c2d2e4f6bbe0ce1c2e1745aba153ba50ec2827812b6.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://independent.academia.edu/JPaseka" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-741ed0533e396df3f7f54fabdec8345ba17e37de8226ef8ee33798e71fde4265.js" defer="defer"></script><script>$viewedUser = Aedu.User.set_viewed( {"id":241431338,"first_name":"Jan","middle_initials":null,"last_name":"Paseka","page_name":"JPaseka","domain_name":"independent","created_at":"2022-10-20T23:38:14.667-07:00","display_name":"Jan Paseka","url":"https://independent.academia.edu/JPaseka","photo":"https://0.academia-photos.com/241431338/96413177/85448018/s65_jan.paseka.png","has_photo":true,"is_analytics_public":false,"interests":[{"id":65543,"name":"Quantum Information Theory","url":"https://www.academia.edu/Documents/in/Quantum_Information_Theory"},{"id":44285,"name":"Quantum Logic","url":"https://www.academia.edu/Documents/in/Quantum_Logic"},{"id":2531,"name":"Belief Revision (Computer Science)","url":"https://www.academia.edu/Documents/in/Belief_Revision_Computer_Science_"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://independent.academia.edu/JPaseka","location":"/JPaseka","scheme":"https","host":"independent.academia.edu","port":null,"pathname":"/JPaseka","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-62a3c2a1-958b-4444-b3c4-3aab2310ade2"></div> <div id="ProfileCheckPaperUpdate-react-component-62a3c2a1-958b-4444-b3c4-3aab2310ade2"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Jan Paseka" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/241431338/96413177/85448018/s200_jan.paseka.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Jan Paseka</h1><div class="affiliations-container fake-truncate js-profile-affiliations"></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Jan" data-follow-user-id="241431338" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="241431338"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">0</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">1</p></div></a><div class="js-mentions-count-container" style="display: none;"><a href="/JPaseka/mentions"><div class="stat-container"><p class="label">Mentions</p><p class="data"></p></div></a></div><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="suggested-academics-container"><div class="suggested-academics--header"><p class="ds2-5-body-md-bold">Related Authors</p></div><ul class="suggested-user-card-list"><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://muni.academia.edu/JanPaseka"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://muni.academia.edu/JanPaseka">Jan Paseka</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Masaryk University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://oxford.academia.edu/BobCoecke"><img class="profile-avatar u-positionAbsolute" alt="Bob Coecke" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/112917/30501/94990939/s200_bob.coecke.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://oxford.academia.edu/BobCoecke">Bob Coecke</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Oxford</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/PeterSarkoci"><img class="profile-avatar u-positionAbsolute" alt="Peter Sarkoci" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" src="https://gravatar.com/avatar/29b3e9c085b04c4f88b4097c04e08b21?s=200" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/PeterSarkoci">Peter Sarkoci</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://edinburgh.academia.edu/ChrisHeunen"><img class="profile-avatar u-positionAbsolute" alt="Chris Heunen" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/159034/58462/59862/s200_chris.heunen.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://edinburgh.academia.edu/ChrisHeunen">Chris Heunen</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Edinburgh</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/RGreechie"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/RGreechie">R. Greechie</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/yongmingli2"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/yongmingli2">yongming li</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://unica-it.academia.edu/robertogiuntini"><img class="profile-avatar u-positionAbsolute" alt="Roberto Giuntini" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/13452631/50106367/38104570/s200_roberto.giuntini.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://unica-it.academia.edu/robertogiuntini">Roberto Giuntini</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Università degli Studi di Cagliari</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/IvanChajda"><img class="profile-avatar u-positionAbsolute" alt="Ivan Chajda" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/38744841/22834727/21988958/s200_ivan.chajda.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/IvanChajda">Ivan Chajda</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/PinucciaBarbieri"><img class="profile-avatar u-positionAbsolute" alt="Pinuccia Barbieri" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/56806793/14930949/15691031/s200_pinuccia.barbieri.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/PinucciaBarbieri">Pinuccia Barbieri</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/PaoloVitolo"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/PaoloVitolo">Paolo Vitolo</a></div></div></ul></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="241431338" href="https://www.academia.edu/Documents/in/Quantum_Information_Theory"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://independent.academia.edu/JPaseka","location":"/JPaseka","scheme":"https","host":"independent.academia.edu","port":null,"pathname":"/JPaseka","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Quantum Information Theory"]}" data-trace="false" data-dom-id="Pill-react-component-0cb54ac7-2711-4350-b0c0-7e17c82478a0"></div> <div id="Pill-react-component-0cb54ac7-2711-4350-b0c0-7e17c82478a0"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="241431338" href="https://www.academia.edu/Documents/in/Quantum_Logic"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Quantum Logic"]}" data-trace="false" data-dom-id="Pill-react-component-7e044411-ee19-45f4-9f8f-4cc669b32895"></div> <div id="Pill-react-component-7e044411-ee19-45f4-9f8f-4cc669b32895"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="241431338" href="https://www.academia.edu/Documents/in/Belief_Revision_Computer_Science_"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Belief Revision (Computer Science)"]}" data-trace="false" data-dom-id="Pill-react-component-cdf9fdb5-5dec-43f4-ad43-df65f6b66425"></div> <div id="Pill-react-component-cdf9fdb5-5dec-43f4-ad43-df65f6b66425"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="241431338" href="https://www.academia.edu/Documents/in/Pure_Mathematics"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Pure Mathematics"]}" data-trace="false" data-dom-id="Pill-react-component-31b99987-16ee-4fce-8a8a-a1f75b255781"></div> <div id="Pill-react-component-31b99987-16ee-4fce-8a8a-a1f75b255781"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="241431338" href="https://www.academia.edu/Documents/in/Cognitive_Science"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Cognitive Science"]}" data-trace="false" data-dom-id="Pill-react-component-dd311905-9b45-47f6-9811-0a1c6d9ab43f"></div> <div id="Pill-react-component-dd311905-9b45-47f6-9811-0a1c6d9ab43f"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Jan Paseka</h3></div><div class="js-work-strip profile--work_container" data-work-id="100206064"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100206064/Atomicity_of_lattice_effect_algebras_and_their_sub_lattice_effect_algebras"><img alt="Research paper thumbnail of Atomicity of lattice effect algebras and their sub-lattice effect algebras" class="work-thumbnail" src="https://attachments.academia-assets.com/101094897/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100206064/Atomicity_of_lattice_effect_algebras_and_their_sub_lattice_effect_algebras">Atomicity of lattice effect algebras and their sub-lattice effect algebras</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">summary:We show some families of lattice effect algebras (a common generalization of orthomodular...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">summary:We show some families of lattice effect algebras (a common generalization of orthomodular lattices and MV-effect algebras) each element E of which has atomic center C(E) or the subset S(E) of all sharp elements, resp. the center of compatibility B(E) or every block M of E. The atomicity of E or its sub-lattice effect algebras C(E), S(E), B(E) and blocks M of E is very useful equipment for the investigations of its algebraic and topological properties, the existence or smearing of states on E, questions about isomorphisms and so. Namely we touch the families of complete lattice effect algebras, or lattice effect algebras with finitely many blocks, or complete atomic lattice effect algebra E with Hausdorff interval topology</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6525d2ed91437d03bd47f178ee8e21fb" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101094897,"asset_id":100206064,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101094897/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100206064"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100206064"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100206064; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100206064]").text(description); $(".js-view-count[data-work-id=100206064]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100206064; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100206064']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6525d2ed91437d03bd47f178ee8e21fb" } } $('.js-work-strip[data-work-id=100206064]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100206064,"title":"Atomicity of lattice effect algebras and their sub-lattice effect algebras","internal_url":"https://www.academia.edu/100206064/Atomicity_of_lattice_effect_algebras_and_their_sub_lattice_effect_algebras","owner_id":241431338,"coauthors_can_edit":true,"owner":{"id":241431338,"first_name":"Jan","middle_initials":null,"last_name":"Paseka","page_name":"JPaseka","domain_name":"independent","created_at":"2022-10-20T23:38:14.667-07:00","display_name":"Jan Paseka","url":"https://independent.academia.edu/JPaseka"},"attachments":[{"id":101094897,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101094897/thumbnails/1.jpg","file_name":"216013659.pdf","download_url":"https://www.academia.edu/attachments/101094897/download_file","bulk_download_file_name":"Atomicity_of_lattice_effect_algebras_and.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101094897/216013659-libre.pdf?1681545839=\u0026response-content-disposition=attachment%3B+filename%3DAtomicity_of_lattice_effect_algebras_and.pdf\u0026Expires=1740528332\u0026Signature=K7okyqOTglEc9FvkmDC~6LH2hUqTTWOsHlr32s-sLvuC1vTzWyqYnx9zk4uVUKUuDmv5UDeNWt5SLDLX-ppI1J5wXLBHQILBJFc1dCXGzZTm6BUNxzsQN9l6-YBLHjq1yKo2rQzBvHESDR4YAkE25pweEo4F6mtlqFwRtwKbL6enQI7MfHemDxNfPrJ0CRoU-6hio0WFVVS~cgaSoY~jPPe535l~qWoSimOqLSsgBzNvbbCW~5ALek8uIDmyZmRnDVj5YvI54o4bBQUpLO5naXEChufa4TDuOwUXFjlMuOvSJWGiH0Dd6ZEYcl0pkt5TObCajjkB8NkWmtAH~OoeCA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":101094898,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101094898/thumbnails/1.jpg","file_name":"216013659.pdf","download_url":"https://www.academia.edu/attachments/101094898/download_file","bulk_download_file_name":"Atomicity_of_lattice_effect_algebras_and.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101094898/216013659-libre.pdf?1681545842=\u0026response-content-disposition=attachment%3B+filename%3DAtomicity_of_lattice_effect_algebras_and.pdf\u0026Expires=1740528332\u0026Signature=er6B9KpJEYl61oDjnm3Mr4v8zlB8KN0OOMNJ-VhNEdULHVY6KN7OyGCdkkjnJPM6V-cEzF1-OxpFaZ6~pLd14di9rGn4HCoQeTqgxhreg8waDS~WVOCXQvxw54m5d42DmnchmScoouguDO-IsfZa4TYCPPaOsNcxrW3Xg1TVBy220VWZNL7YZqOOa5MT5XJ~cCzxxiBRO70terDl45DkMr8AAwnlnLcL1ApGRzyQ0DnsYC7oc8XKvmqh~fKg8Zsr~pAQcPuoSs0YAkRw7j0rr9wLDxI9Rue7b1uhSzMwOR2ngIJA9RFFDPZOBU420TaSSVhZtuXFJhPzJQKkLBMJwA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100206063"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100206063/Modularity_atomicity_and_states"><img alt="Research paper thumbnail of Modularity, atomicity and states" class="work-thumbnail" src="https://attachments.academia-assets.com/101094938/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100206063/Modularity_atomicity_and_states">Modularity, atomicity and states</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Effect algebras are a generalization of many structures which arise in quantum physics and in mat...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Effect algebras are a generalization of many structures which arise in quantum physics and in mathematical economics. We show that, in every modular Archimedean atomic lattice effect algebra E that is not an orthomodular lattice there exists an (o)continuous state ω on E, which is subadditive. Moreover, we show properties of finite and compact elements of such lattice effect algebras.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b8fa5eb72589ad58dce15bb7dcc37347" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101094938,"asset_id":100206063,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101094938/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100206063"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100206063"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100206063; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100206063]").text(description); $(".js-view-count[data-work-id=100206063]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100206063; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100206063']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b8fa5eb72589ad58dce15bb7dcc37347" } } $('.js-work-strip[data-work-id=100206063]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100206063,"title":"Modularity, atomicity and states","internal_url":"https://www.academia.edu/100206063/Modularity_atomicity_and_states","owner_id":241431338,"coauthors_can_edit":true,"owner":{"id":241431338,"first_name":"Jan","middle_initials":null,"last_name":"Paseka","page_name":"JPaseka","domain_name":"independent","created_at":"2022-10-20T23:38:14.667-07:00","display_name":"Jan Paseka","url":"https://independent.academia.edu/JPaseka"},"attachments":[{"id":101094938,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101094938/thumbnails/1.jpg","file_name":"1001.1322.pdf","download_url":"https://www.academia.edu/attachments/101094938/download_file","bulk_download_file_name":"Modularity_atomicity_and_states.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101094938/1001.1322-libre.pdf?1681545834=\u0026response-content-disposition=attachment%3B+filename%3DModularity_atomicity_and_states.pdf\u0026Expires=1740528332\u0026Signature=NP1dbfDm0MhXCLUX1KDXefHFjnmWYz-RvauGr6Jeo~0ARBfkw-ci3igwxtgbGxBt6sSVgeKFndTwxigqvmoU5yg7wCR6WXiFU~qeGZIUKsfDXEEwsq5hB--zZH7tDCDBg-0oc4FYypbbNmH6uO6o25NUFKf-uWwCMoFhmlrOKFu0sHTUGkncgLocYDea7FN5eis2fpTaqyblNFdVwioauD6G86irBJJJsR~-BYdvjZKKD5Q0lQMJ1EE2xdTb8I9aDarVTZsM9x5OdqiMI9amREcJXHGcTm67C99Hw9FQvHDEOHIKBsZTadk7KXUmbfOKzzeTBWbsb731t2edmXEIrA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100206062"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100206062/Inherited_Properties_of_Effect_Algebras_Preserved_by_Isomorphisms"><img alt="Research paper thumbnail of Inherited Properties of Effect Algebras Preserved by Isomorphisms" class="work-thumbnail" src="https://attachments.academia-assets.com/101094896/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100206062/Inherited_Properties_of_Effect_Algebras_Preserved_by_Isomorphisms">Inherited Properties of Effect Algebras Preserved by Isomorphisms</a></div><div class="wp-workCard_item"><span>Acta Polytechnica</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We show that isomorphism of effect algebras preserves properties of effect algebras derived from ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We show that isomorphism of effect algebras preserves properties of effect algebras derived from effect algebraic sum ? of elements. These are partial order, order convergence, order topology, existence of states and other important properties. However, there are properties of effect algebras for which the preservation of the ?-operation is not substantial and they need not be preserved.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="24b6c4d9ad89a99969fc04a1dfb89051" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101094896,"asset_id":100206062,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101094896/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100206062"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100206062"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100206062; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100206062]").text(description); $(".js-view-count[data-work-id=100206062]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100206062; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100206062']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "24b6c4d9ad89a99969fc04a1dfb89051" } } $('.js-work-strip[data-work-id=100206062]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100206062,"title":"Inherited Properties of Effect Algebras Preserved by Isomorphisms","internal_url":"https://www.academia.edu/100206062/Inherited_Properties_of_Effect_Algebras_Preserved_by_Isomorphisms","owner_id":241431338,"coauthors_can_edit":true,"owner":{"id":241431338,"first_name":"Jan","middle_initials":null,"last_name":"Paseka","page_name":"JPaseka","domain_name":"independent","created_at":"2022-10-20T23:38:14.667-07:00","display_name":"Jan Paseka","url":"https://independent.academia.edu/JPaseka"},"attachments":[{"id":101094896,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101094896/thumbnails/1.jpg","file_name":"1647.pdf","download_url":"https://www.academia.edu/attachments/101094896/download_file","bulk_download_file_name":"Inherited_Properties_of_Effect_Algebras.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101094896/1647-libre.pdf?1681545843=\u0026response-content-disposition=attachment%3B+filename%3DInherited_Properties_of_Effect_Algebras.pdf\u0026Expires=1740528332\u0026Signature=c~DdFJJx0odJiWrv14z4Dwx7oEJMjaOenDXhXMna9gERij4uWOnqYZc95JuWoeDKuvIKvipWznfiPGSJy~stObWvW9nUNKkK55Ms~XNJhJkvm7M2wcM7ts~4~wJMhVTypeuBxHFUz3HzQCny-9BM8dZKWMil5NwsrHIOoFNsCWKUUOqAJz~384OkrevEvnYKtw8Y2~UCAbQM4gIpxsY~u3s81KNITUfgFq7LW26w0O22KxA~PWuRdn33GKm5C4KAwROfjQEu0bXh1lgnv5s9Z6vqpqzAeQLPUymRgvA9w6LeM1XZ0OHlYg-zp7CH1ipcSDKNAGLpDs~~4hHRPnOnpQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":101094895,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101094895/thumbnails/1.jpg","file_name":"1647.pdf","download_url":"https://www.academia.edu/attachments/101094895/download_file","bulk_download_file_name":"Inherited_Properties_of_Effect_Algebras.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101094895/1647-libre.pdf?1681545842=\u0026response-content-disposition=attachment%3B+filename%3DInherited_Properties_of_Effect_Algebras.pdf\u0026Expires=1740528332\u0026Signature=DAJTexWHmd3w1OMeghZNB3XPpBXd3zXFH516rvVmCHoxno8QrqnZUybhTcKfr6xZ0~wnb0WH7zDY~zjK6Q8d6SlASNBWw1dw7VmS3OpFYSku5vUwN88ItuleWA9yBJ8JRyaUNtobnhdHSsAVJGkYrVBuaY0CrIYN6GDMyj8sUcmMPYYKnflL3wQa1EWh~2L9D2QIMqe64mnZfq4edPgW7Rlw3QINHnWFI9FXh9KvCBG1uLOLHSSKWav55fpyNAtoadFY59tWMAWegfC6b8aam1GgfuWl8XoRpVbtk1t-yX4m0c01LcmO~Y1vnI~tGd8h8XgDQ4ee6rdRRwG1YueGag__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100206061"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100206061/Algebraic_Properties_of_Paraorthomodular_Posets"><img alt="Research paper thumbnail of Algebraic Properties of Paraorthomodular Posets" class="work-thumbnail" src="https://attachments.academia-assets.com/101094943/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100206061/Algebraic_Properties_of_Paraorthomodular_Posets">Algebraic Properties of Paraorthomodular Posets</a></div><div class="wp-workCard_item"><span>Logic Journal of the IGPL</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Paraorthomodular posets are bounded partially ordered sets with an antitone involution induced by...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Paraorthomodular posets are bounded partially ordered sets with an antitone involution induced by quantum structures arising from the logico-algebraic approach to quantum mechanics. The aim of the present work is starting a systematic inquiry into paraorthomodular posets theory both from algebraic and order-theoretic perspectives. On the one hand, we show that paraorthomodular posets are amenable of an algebraic treatment by means of a smooth representation in terms of bounded directoids with antitone involution. On the other, we investigate their order-theoretical features in terms of forbidden configurations. Moreover, sufficient and necessary conditions characterizing bounded posets with an antitone involution whose Dedekind–MacNeille completion is paraorthomodular are provided.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="80bf3e0868099d2bacc8e158dc1d5441" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101094943,"asset_id":100206061,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101094943/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100206061"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100206061"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100206061; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100206061]").text(description); $(".js-view-count[data-work-id=100206061]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100206061; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100206061']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "80bf3e0868099d2bacc8e158dc1d5441" } } $('.js-work-strip[data-work-id=100206061]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100206061,"title":"Algebraic Properties of Paraorthomodular Posets","internal_url":"https://www.academia.edu/100206061/Algebraic_Properties_of_Paraorthomodular_Posets","owner_id":241431338,"coauthors_can_edit":true,"owner":{"id":241431338,"first_name":"Jan","middle_initials":null,"last_name":"Paseka","page_name":"JPaseka","domain_name":"independent","created_at":"2022-10-20T23:38:14.667-07:00","display_name":"Jan Paseka","url":"https://independent.academia.edu/JPaseka"},"attachments":[{"id":101094943,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101094943/thumbnails/1.jpg","file_name":"2011.12791.pdf","download_url":"https://www.academia.edu/attachments/101094943/download_file","bulk_download_file_name":"Algebraic_Properties_of_Paraorthomodular.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101094943/2011.12791-libre.pdf?1681545834=\u0026response-content-disposition=attachment%3B+filename%3DAlgebraic_Properties_of_Paraorthomodular.pdf\u0026Expires=1740528332\u0026Signature=Qx70EaC84EU0hnvX2jsVe6wuoInjkMqC3L-QSIgGdprv-HQ~fBSh4pErHjqE9i2Now3Opcb9TE9oeeGfOBf7oY9sAT0uDVSLHcXQQ7h6pGU9jKQAzpeLBnR7HTup~N3dcqzKz-BgpcO2HO03JfkH3sCs9NHFDenjIAlcf2VtnNW5UVCvkvW~i2gqfUOTNB4MND8YNiinkGkMsuclgIK69TebB2TyOOxstPN6Leskw7NUsZf55c7mxA0GQ988dnFPMlE13vQG3XroDP9Pe6YSz5rMDg79bGcoeWQCOBy07oLYVMfkpk88XqLaDQj2NaVkXQmTAL5ePFPJ9Geuwuqu0g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100206060"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100206060/Dynamic_Logic_Assigned_to_Automata"><img alt="Research paper thumbnail of Dynamic Logic Assigned to Automata" class="work-thumbnail" src="https://attachments.academia-assets.com/101094893/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100206060/Dynamic_Logic_Assigned_to_Automata">Dynamic Logic Assigned to Automata</a></div><div class="wp-workCard_item"><span>International Journal of Theoretical Physics</span><span>, Feb 22, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A dynamic logic B can be assigned to every automaton A without regard if A is deterministic or no...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A dynamic logic B can be assigned to every automaton A without regard if A is deterministic or nondeterministic. This logic enables us to formulate observations on A in the form of composed propositions and, due to a transition functor T , it captures the dynamic behaviour of A. There are formulated conditions under which the automaton A can be recovered by means of B and T .</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9abb9921c5043b9e3405cf22a9f3187b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101094893,"asset_id":100206060,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101094893/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100206060"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100206060"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100206060; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100206060]").text(description); $(".js-view-count[data-work-id=100206060]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100206060; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100206060']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9abb9921c5043b9e3405cf22a9f3187b" } } $('.js-work-strip[data-work-id=100206060]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100206060,"title":"Dynamic Logic Assigned to Automata","internal_url":"https://www.academia.edu/100206060/Dynamic_Logic_Assigned_to_Automata","owner_id":241431338,"coauthors_can_edit":true,"owner":{"id":241431338,"first_name":"Jan","middle_initials":null,"last_name":"Paseka","page_name":"JPaseka","domain_name":"independent","created_at":"2022-10-20T23:38:14.667-07:00","display_name":"Jan Paseka","url":"https://independent.academia.edu/JPaseka"},"attachments":[{"id":101094893,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101094893/thumbnails/1.jpg","file_name":"1809.pdf","download_url":"https://www.academia.edu/attachments/101094893/download_file","bulk_download_file_name":"Dynamic_Logic_Assigned_to_Automata.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101094893/1809-libre.pdf?1681545842=\u0026response-content-disposition=attachment%3B+filename%3DDynamic_Logic_Assigned_to_Automata.pdf\u0026Expires=1740528332\u0026Signature=fmbcLpVxw~r856xfq7hAnYbr5KOd5tJTVfsyC~bis-1PTvJ29F-DIOHlPDGklexgecm0Gy7bQwRO5biWYprJEClRnNp2wmv-fXpx9CZz6EV67PcPOOAnwJyXGCHAem~nYk-xaHnKzfKm0CXXPc7v7qyM5RQcySXXKKCA4gZTqWNvgEfiAo~le9DTdN8aoU5qXBrz3W8Wttfc4ulFi0GiaxLYXlDvGGgWA6esqUCqiNyAw-dmUFOxw5XWDfXl7f835fhyZ-3Nut6hFtEpdlJO7JBSjKMfe2NrHQEA-o91fquQw4mwHZX6l7kb5ZlcW6ECBHo86VvB6UGO24gCVbkcmA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":101094894,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101094894/thumbnails/1.jpg","file_name":"1809.pdf","download_url":"https://www.academia.edu/attachments/101094894/download_file","bulk_download_file_name":"Dynamic_Logic_Assigned_to_Automata.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101094894/1809-libre.pdf?1681545841=\u0026response-content-disposition=attachment%3B+filename%3DDynamic_Logic_Assigned_to_Automata.pdf\u0026Expires=1740528332\u0026Signature=OhtKhu~AOKhvad8TxGAG5dLb3IXZ0XgHOsPkNmPxfJEq8KXl-UT1sQPh0rb42PHB62M9ecCZyKHUe3wSiAkPf6Jy8s-LeDKzDFfbLrv2Tpm0hZmRJSKfHJEYs5fbYRiv-LmqbhevKGkhGYzh6SCFQktGO9Zxvo3cF0Su1IjJY8VxPn2mRVztS6N22o3x4aDRdz4-FH3fsKuv4M3f7H-yeod~yarFkPZqKYQBkd9K4kTYrIqhQy-G09xWNRvOBxXSghBDY0ixyjW--Y9MdTJMCfvS-rH6iNb4osDyTnJdYWbU2oElEzqHh~bDOTpxlzqm-hhMZdZFTgaYFcEoaSezag__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100206059"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100206059/A_Representation_Theorem_for_Quantale_Valued_sup_algebras"><img alt="Research paper thumbnail of A Representation Theorem for Quantale Valued sup-algebras" class="work-thumbnail" src="https://attachments.academia-assets.com/101094892/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100206059/A_Representation_Theorem_for_Quantale_Valued_sup_algebras">A Representation Theorem for Quantale Valued sup-algebras</a></div><div class="wp-workCard_item"><span>2018 IEEE 48th International Symposium on Multiple-Valued Logic (ISMVL)</span><span>, May 1, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">With this paper we hope to contribute to the theory of quantales and quantale-like structures. It...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">With this paper we hope to contribute to the theory of quantales and quantale-like structures. It considers the notion of Q-sup-algebra and shows a representation theorem for such structures generalizing the well-known representation theorems for quantales and sup-algebras. In addition, we present some important properties of the category of Q-sup-algebras.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="62bca1e6fb1c521db1dc4a6a31a5258f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101094892,"asset_id":100206059,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101094892/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100206059"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100206059"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100206059; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100206059]").text(description); $(".js-view-count[data-work-id=100206059]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100206059; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100206059']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "62bca1e6fb1c521db1dc4a6a31a5258f" } } $('.js-work-strip[data-work-id=100206059]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100206059,"title":"A Representation Theorem for Quantale Valued sup-algebras","internal_url":"https://www.academia.edu/100206059/A_Representation_Theorem_for_Quantale_Valued_sup_algebras","owner_id":241431338,"coauthors_can_edit":true,"owner":{"id":241431338,"first_name":"Jan","middle_initials":null,"last_name":"Paseka","page_name":"JPaseka","domain_name":"independent","created_at":"2022-10-20T23:38:14.667-07:00","display_name":"Jan Paseka","url":"https://independent.academia.edu/JPaseka"},"attachments":[{"id":101094892,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101094892/thumbnails/1.jpg","file_name":"1810.pdf","download_url":"https://www.academia.edu/attachments/101094892/download_file","bulk_download_file_name":"A_Representation_Theorem_for_Quantale_Va.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101094892/1810-libre.pdf?1681545838=\u0026response-content-disposition=attachment%3B+filename%3DA_Representation_Theorem_for_Quantale_Va.pdf\u0026Expires=1740528332\u0026Signature=BjgEK8He0a5i822X5Ab4dcVx0-E~9r1ue5Yb8jCyebEMaO4HFhjzqCHgtBz~BnHV4uS95NWAxK4P~RMr8J-JdsJRH3WAEJPzLbRxH-kfA1LTMfgUVUEr7Ed3-Tufi4AWWw6sxx6hdkysYnK09PsN6SiHQky7qvQCjxR7usKycumy-Si1n6gSq3lJDwQn-MZc7PhGGRrlvZN8eYO4fTRIiiG-BCAi4PqWpC1ThBxz7nlHi5Zfieya62aHrNWvUbcLGra-Kv9O5Pwyqsokx6xZNI241f43YDfF~A3rFwIJmWSM-qc9ML0a89UzrkMnYNvzct2WO3pt8UcdN7iC1c6ytw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":101094891,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101094891/thumbnails/1.jpg","file_name":"1810.pdf","download_url":"https://www.academia.edu/attachments/101094891/download_file","bulk_download_file_name":"A_Representation_Theorem_for_Quantale_Va.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101094891/1810-libre.pdf?1681545842=\u0026response-content-disposition=attachment%3B+filename%3DA_Representation_Theorem_for_Quantale_Va.pdf\u0026Expires=1740528332\u0026Signature=RdkSCHqWpZZwHkJ5ZeiL-z-ewGrklw0u4mt6-Bsq6sc00m23ipBHIwPLL0xvNXoS13NtGSRuG0tJaZKEtB7zWWKRBoouMRBr90g0KNJSoajOoP~0reJokbvRFepoHXddvQ90sHQ6WCVuFeGcs-l-xuvlh~O42V0axs1~DWKEvxdE6b28qg7OPCV3CB~woLi9WtLPPu-5GoBnqqG8phHyUEptyzaW58VXU5DervfiJ0sj4mVDtNi-SvTlQZi4iv4h~NXhvFZwOC80yZ5YieoHfaM9SnfP6rj6fVaAFxGUa7sLkHMBGuAbADZ8gR9sG0fJJ3aw37hwqr6BeSc8J9KG4g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100206058"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100206058/On_the_Coextension_of_Cut_Continuous_Pomonoids"><img alt="Research paper thumbnail of On the Coextension of Cut-Continuous Pomonoids" class="work-thumbnail" src="https://attachments.academia-assets.com/101094890/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100206058/On_the_Coextension_of_Cut_Continuous_Pomonoids">On the Coextension of Cut-Continuous Pomonoids</a></div><div class="wp-workCard_item"><span>Order</span><span>, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We introduce cut-continuous pomonoids, which generalise residuated posets. The latter's defining ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We introduce cut-continuous pomonoids, which generalise residuated posets. The latter's defining condition is that the monoidal product is residuated in each argument; we define cut-continuous pomonoids by requiring that the monoidal product is in each argument just cut-continuous. In the case of a total order, the condition of cut-continuity means that multiplication distributes over existing suprema. Morphisms between cut-continuous pomonoids can be chosen either in analogy with unital quantales or with residuated lattices. Under the assumption of commutativity and integrality, congruences are in the latter case induced by filters, in the same way as known for residuated lattices. We are interested in the construction of coextensions: given cut-continuous pomonoids K and C, we raise the question how we can determine the cut-continuous pomonoids L such that C is a filter of L and the quotient of L induced by C is isomorphic to K. In this context, we are in particular concerned with tensor products of modules over cut-continuous pomonoids. Using results of M. Erné and J. Picado on closure spaces, we show that such tensor products exist. An application is the construction of residuated structures related to fuzzy logics, in particular left-continuous t-norms.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f869809013c1be86eeba82d73fee2d4e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101094890,"asset_id":100206058,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101094890/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100206058"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100206058"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100206058; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100206058]").text(description); $(".js-view-count[data-work-id=100206058]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100206058; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100206058']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f869809013c1be86eeba82d73fee2d4e" } } $('.js-work-strip[data-work-id=100206058]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100206058,"title":"On the Coextension of Cut-Continuous Pomonoids","internal_url":"https://www.academia.edu/100206058/On_the_Coextension_of_Cut_Continuous_Pomonoids","owner_id":241431338,"coauthors_can_edit":true,"owner":{"id":241431338,"first_name":"Jan","middle_initials":null,"last_name":"Paseka","page_name":"JPaseka","domain_name":"independent","created_at":"2022-10-20T23:38:14.667-07:00","display_name":"Jan Paseka","url":"https://independent.academia.edu/JPaseka"},"attachments":[{"id":101094890,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101094890/thumbnails/1.jpg","file_name":"s11083-018-9466-3.pdf","download_url":"https://www.academia.edu/attachments/101094890/download_file","bulk_download_file_name":"On_the_Coextension_of_Cut_Continuous_Pom.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101094890/s11083-018-9466-3-libre.pdf?1681545843=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_Coextension_of_Cut_Continuous_Pom.pdf\u0026Expires=1740528332\u0026Signature=SEqAhcALzDhslOHseZ~YVdmt2k0R~XsyiL6cFrlQupUcq8-5AJUsNEXMWkcSEfVlo2doseO9xHJPC1Ax1g-dYLFUC6UxwqDLKGLuhnRTIuoCJyhW2BeS4nC5oc16EB~Lqo9sOzM0iHhE2t3w3C4UjGqSv9r1aHFCt-Ixa6eX5CfDqMRiiXTGuyJccVOU~-wMZ2wnTUUKi0JH1U4NpWokLa8vuJknL21mLPTuMS4rfpAH94mbuwxnd4~lbpcbhXvifyuUAq3lI8symHOYQ1zQq3AZ-h5G81PLJA3CBU7tw2qbG-VOnf4HTyKCDQIm9dCl7rbej6WKrX4M02TAAOYUPg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100206057"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100206057/Editorial_Quantum_structures_states_and_related_topics"><img alt="Research paper thumbnail of Editorial: Quantum structures, states and related topics" class="work-thumbnail" src="https://attachments.academia-assets.com/101094937/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100206057/Editorial_Quantum_structures_states_and_related_topics">Editorial: Quantum structures, states and related topics</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c2df6b3e78d715f89b6d2ebb2f3040e6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101094937,"asset_id":100206057,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101094937/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100206057"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100206057"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100206057; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100206057]").text(description); $(".js-view-count[data-work-id=100206057]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100206057; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100206057']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c2df6b3e78d715f89b6d2ebb2f3040e6" } } $('.js-work-strip[data-work-id=100206057]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100206057,"title":"Editorial: Quantum structures, states and related topics","internal_url":"https://www.academia.edu/100206057/Editorial_Quantum_structures_states_and_related_topics","owner_id":241431338,"coauthors_can_edit":true,"owner":{"id":241431338,"first_name":"Jan","middle_initials":null,"last_name":"Paseka","page_name":"JPaseka","domain_name":"independent","created_at":"2022-10-20T23:38:14.667-07:00","display_name":"Jan Paseka","url":"https://independent.academia.edu/JPaseka"},"attachments":[{"id":101094937,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101094937/thumbnails/1.jpg","file_name":"paper.pdf","download_url":"https://www.academia.edu/attachments/101094937/download_file","bulk_download_file_name":"Editorial_Quantum_structures_states_and.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101094937/paper-libre.pdf?1681545827=\u0026response-content-disposition=attachment%3B+filename%3DEditorial_Quantum_structures_states_and.pdf\u0026Expires=1740528332\u0026Signature=Lqs~tgNvHNNk5PHuxqCETl1eXWSv6kdZPf6wqBz4jVLe1j3lRRHa2972-F8XL7juln0pjj1XjThePzFMpMIaxKu6W5gYAbpIYlyuK~PozgRCQTAlHAngg1UysPS9EgoR2Af5QWNnqITRfx9TrqMMYHQYKtDjU8jmb0mLASEAKE1nnVxe2Mp1qXEH0Mljrn2EQfgSexcyQAfNj0QDgoKOcAP1ZhqyTvKAFJFwkdm~tUH5cVoknkJ349lsQ5QNFH4hG19z6DWsLyROYLU3-9kh1HbY~arSWpBTILf2C8pXFGOPfwfsqoPJ0R46r06QViaMRg3gfOZOQGCimFwPBq0amw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100206056"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100206056/Categorical_foundations_of_variety_based_bornology"><img alt="Research paper thumbnail of Categorical foundations of variety-based bornology" class="work-thumbnail" src="https://attachments.academia-assets.com/101094933/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100206056/Categorical_foundations_of_variety_based_bornology">Categorical foundations of variety-based bornology</a></div><div class="wp-workCard_item"><span>Fuzzy Sets and Systems</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Following the concept of topological theory of S. E. Rodabaugh, this paper introduces a new appro...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Following the concept of topological theory of S. E. Rodabaugh, this paper introduces a new approach to (lattice-valued) bornology, which is based in bornological theories, and which is called variety-based bornology. In particular, motivated by the notion of topological system of S. Vickers, we introduce the concept of variety-based bornological system, and show that the category of variety-based bornological spaces is isomorphic to a full reflective subcategory of the category of variety-based bornological systems.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ae1118912c845ce8e823192002839ec7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101094933,"asset_id":100206056,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101094933/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100206056"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100206056"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100206056; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100206056]").text(description); $(".js-view-count[data-work-id=100206056]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100206056; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100206056']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ae1118912c845ce8e823192002839ec7" } } $('.js-work-strip[data-work-id=100206056]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100206056,"title":"Categorical foundations of variety-based bornology","internal_url":"https://www.academia.edu/100206056/Categorical_foundations_of_variety_based_bornology","owner_id":241431338,"coauthors_can_edit":true,"owner":{"id":241431338,"first_name":"Jan","middle_initials":null,"last_name":"Paseka","page_name":"JPaseka","domain_name":"independent","created_at":"2022-10-20T23:38:14.667-07:00","display_name":"Jan Paseka","url":"https://independent.academia.edu/JPaseka"},"attachments":[{"id":101094933,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101094933/thumbnails/1.jpg","file_name":"1809.pdf","download_url":"https://www.academia.edu/attachments/101094933/download_file","bulk_download_file_name":"Categorical_foundations_of_variety_based.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101094933/1809-libre.pdf?1681545831=\u0026response-content-disposition=attachment%3B+filename%3DCategorical_foundations_of_variety_based.pdf\u0026Expires=1740528332\u0026Signature=Vf8HHB6SoxVYW5PSG7lwss27J1ZI724btpueLgR2qbk5CCtC3jeWqOs-Jk6NkV6K3xA1kFieagwQLaA0QR4X374NKswX5xOpj1MAY-3W6u07C-0qkuoOfRZ8p01qgBJOEZwNdzBku9W018WONO8Q1~m9T~p7u41K6zx95zaH-uZjqyiBOw-~-hTRGHVZVWIuz42lozN8obHX~SBMSFHJRVOTUZAWswnAteo9xPCs7Jf0LLrxGH5KWuNrdF4BhebnXxXuwpbtr9OiTy3AqweCz-JpzZLk6dZ3lCqjOsqEJNd5xbnQX4Q8IyIoDVRMi2UawxPeqcKgYR3~q0kBacguBA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100206055"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100206055/Galois_connections_and_tense_operators_on_q_effect_algebras"><img alt="Research paper thumbnail of Galois connections and tense operators on q-effect algebras" class="work-thumbnail" src="https://attachments.academia-assets.com/101094940/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100206055/Galois_connections_and_tense_operators_on_q_effect_algebras">Galois connections and tense operators on q-effect algebras</a></div><div class="wp-workCard_item"><span>Fuzzy Sets and Systems</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">For effect algebras, the so-called tense operators were already introduced by Chajda and Paseka. ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">For effect algebras, the so-called tense operators were already introduced by Chajda and Paseka. They presented also a canonical construction of them using the notion of a time frame. Tense operators express the quantifiers "it is always going to be the case that" and "it has always been the case that" and hence enable us to express the dimension of time both in the logic of quantum mechanics and in the many-valued logic. A crucial problem concerning tense operators is their representation. Having an effect algebra with tense operators, we can ask if there exists a time frame such that each of these operators can be obtained by the canonical construction. To approximate physical real systems as best as possible, we introduce the notion of a q-effect algebra and we solve this problem for q-tense operators on q-representable q-Jauch-Piron q-effect algebras.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0837fecb1ea1691c9a8d3283fb55ac7d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101094940,"asset_id":100206055,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101094940/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100206055"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100206055"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100206055; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100206055]").text(description); $(".js-view-count[data-work-id=100206055]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100206055; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100206055']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0837fecb1ea1691c9a8d3283fb55ac7d" } } $('.js-work-strip[data-work-id=100206055]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100206055,"title":"Galois connections and tense operators on q-effect algebras","internal_url":"https://www.academia.edu/100206055/Galois_connections_and_tense_operators_on_q_effect_algebras","owner_id":241431338,"coauthors_can_edit":true,"owner":{"id":241431338,"first_name":"Jan","middle_initials":null,"last_name":"Paseka","page_name":"JPaseka","domain_name":"independent","created_at":"2022-10-20T23:38:14.667-07:00","display_name":"Jan Paseka","url":"https://independent.academia.edu/JPaseka"},"attachments":[{"id":101094940,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101094940/thumbnails/1.jpg","file_name":"1809.pdf","download_url":"https://www.academia.edu/attachments/101094940/download_file","bulk_download_file_name":"Galois_connections_and_tense_operators_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101094940/1809-libre.pdf?1681545836=\u0026response-content-disposition=attachment%3B+filename%3DGalois_connections_and_tense_operators_o.pdf\u0026Expires=1740528332\u0026Signature=C46fq3lG86qDNzN78tTEFmEoiLhJ2fHWhwP6LQVnZgCFDODrZx0ma3VfL3nmRzJ~5t5La0IbhHF2-wTTxuPkE4222GKLNa9AfCKOgxZcU70kK4RL2LmNyZwk1t7taO7p4N0qZyQ7A2szEvvXaEI5hlvLIEhfuRWk6cktybwoctCXWsb2OqrLcZv4nS-MFv7Nur5hwvqi~zb7yWZg3V1jj7scDibtPUxsI2LyZ9YPUsZ-W8qLxYcEquC1CDBmkr~ATsd6muB9JetQCC7RGfJp5sUFiGEDxknPJQ26QTgPMPHCe4FJ4BUIfruZOQRhqy0qMEQhl3bznZ3~M25urGhWLQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100206053"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100206053/Filters_on_Some_Classes_of_Quantum_B_Algebras"><img alt="Research paper thumbnail of Filters on Some Classes of Quantum B-Algebras" class="work-thumbnail" src="https://attachments.academia-assets.com/101094931/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100206053/Filters_on_Some_Classes_of_Quantum_B_Algebras">Filters on Some Classes of Quantum B-Algebras</a></div><div class="wp-workCard_item"><span>International Journal of Theoretical Physics</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper, we continue the study of quantum B-algebras with emphasis on filters on integral q...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper, we continue the study of quantum B-algebras with emphasis on filters on integral quantum B-algebras. We then study filters in the setting of pseudo-hoops. First, we establish an embedding of a cartesion product of polars of a pseudo-hoop into itself. Second, we give sufficient conditions for a pseudohoop to be subdirectly reducible. We also extend the result of Kondo and Turunen to the setting of noncommutative residuated ∨-semilattices that, if prime filters and ∨-prime filters of a residuated ∨-semilattice A coincide, then A must be a pseudo MTL-algebra.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e4258935209f6a25ec1e49e128821930" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101094931,"asset_id":100206053,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101094931/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100206053"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100206053"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100206053; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100206053]").text(description); $(".js-view-count[data-work-id=100206053]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100206053; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100206053']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e4258935209f6a25ec1e49e128821930" } } $('.js-work-strip[data-work-id=100206053]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100206053,"title":"Filters on Some Classes of Quantum B-Algebras","internal_url":"https://www.academia.edu/100206053/Filters_on_Some_Classes_of_Quantum_B_Algebras","owner_id":241431338,"coauthors_can_edit":true,"owner":{"id":241431338,"first_name":"Jan","middle_initials":null,"last_name":"Paseka","page_name":"JPaseka","domain_name":"independent","created_at":"2022-10-20T23:38:14.667-07:00","display_name":"Jan Paseka","url":"https://independent.academia.edu/JPaseka"},"attachments":[{"id":101094931,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101094931/thumbnails/1.jpg","file_name":"1809.pdf","download_url":"https://www.academia.edu/attachments/101094931/download_file","bulk_download_file_name":"Filters_on_Some_Classes_of_Quantum_B_Alg.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101094931/1809-libre.pdf?1681545840=\u0026response-content-disposition=attachment%3B+filename%3DFilters_on_Some_Classes_of_Quantum_B_Alg.pdf\u0026Expires=1740528332\u0026Signature=SfPf6mkkCqCUfkgAXQYv3HjZ7AiEFBA7m9MFMWHvVEwQGLdl4XYlrmMaazu6-iwuQRee~G2FtF-RoB72tqnZZ-o88SGEKVSriE3Ov3YVHl8qRKYmsoP0gGCwmVfb2ALPcRwiK2vPg6TWveYMnyOGWGMpxZ9LGopUFOgBP2wg8vl0UZGEDc0H820Q3c1~-YEYETk5yYnmTBCY2RWkeQ7yzBobYELWNlehet0Hp8-borjmiPmSxwtuYnpwJl-5IEMRRVJNImdiVRE-2H4aWtrFz~0BRDtXQMBEDPabqFNMaSUcSw72k9KpJvkycV6-iyTVSTZFE71jZ9NZJUIXKCl2lw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100206052"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100206052/Tense_Operators_and_Dynamic_De_Morgan_Algebras"><img alt="Research paper thumbnail of Tense Operators and Dynamic De Morgan Algebras" class="work-thumbnail" src="https://attachments.academia-assets.com/101094934/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100206052/Tense_Operators_and_Dynamic_De_Morgan_Algebras">Tense Operators and Dynamic De Morgan Algebras</a></div><div class="wp-workCard_item"><span>2013 IEEE 43rd International Symposium on Multiple-Valued Logic</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">By a De Morgan algebra is meant a bounded poset equipped with an antitone involution considered a...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">By a De Morgan algebra is meant a bounded poset equipped with an antitone involution considered as negation. Such an algebra can be considered as an algebraic axiomatization of a propositional logic satisfying the double negation law. Our aim is to introduce the socalled tense operators in every De Morgan algebra for to get an algebraic counterpart of a tense logic with negation satisfying the double negation law which need not be Boolean. Following the standard construction of tense operators G and H by a frame we solve the following question: if a dynamic De Morgan algebra is given, how to find a frame such that its tense operators G and H can be reached by this construction. Index Terms-De Morgan lattice, De Morgan poset, semi-tense operators, tense operators, (partial) dynamic De Morgan algebra.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="140d68416d9c9c630e707bb7cbb9976c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101094934,"asset_id":100206052,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101094934/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100206052"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100206052"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100206052; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100206052]").text(description); $(".js-view-count[data-work-id=100206052]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100206052; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100206052']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "140d68416d9c9c630e707bb7cbb9976c" } } $('.js-work-strip[data-work-id=100206052]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100206052,"title":"Tense Operators and Dynamic De Morgan Algebras","internal_url":"https://www.academia.edu/100206052/Tense_Operators_and_Dynamic_De_Morgan_Algebras","owner_id":241431338,"coauthors_can_edit":true,"owner":{"id":241431338,"first_name":"Jan","middle_initials":null,"last_name":"Paseka","page_name":"JPaseka","domain_name":"independent","created_at":"2022-10-20T23:38:14.667-07:00","display_name":"Jan Paseka","url":"https://independent.academia.edu/JPaseka"},"attachments":[{"id":101094934,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101094934/thumbnails/1.jpg","file_name":"1810.pdf","download_url":"https://www.academia.edu/attachments/101094934/download_file","bulk_download_file_name":"Tense_Operators_and_Dynamic_De_Morgan_Al.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101094934/1810-libre.pdf?1681545832=\u0026response-content-disposition=attachment%3B+filename%3DTense_Operators_and_Dynamic_De_Morgan_Al.pdf\u0026Expires=1740528332\u0026Signature=SyRC2~h~CQdh2R10nbScscSuBCDk0btUHK6U451jq4a-jMYF-64yAAVfGDaba0X1QOLDygW03OPktS26WYlZTidEsKuK3XEc65EJawrbYnRsDwDEr0gEpKSQhPwTWg9orrf-erMTEwNjyZefjY0DT3zsiUKCmurOArzg3xyEmWZZj4sjpOMD6qw6RWIXf5hhdebaQOeAUEtR5yT5skZimZhaRJbDaLL2xzw0LM4gMz-5w~MZB6QYUR4ho~e-EC4EjcWGGyznh3WP~wOMGw0vP-VBCdzYPVfDH8Hd6o3d6o4P~NxsDuIxSkPyasuLRmaV32dlkhWqHgst8w2F43ddUg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100206051"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100206051/Projective_sup_algebras_a_general_view"><img alt="Research paper thumbnail of Projective sup-algebras: a general view" class="work-thumbnail" src="https://attachments.academia-assets.com/101094935/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100206051/Projective_sup_algebras_a_general_view">Projective sup-algebras: a general view</a></div><div class="wp-workCard_item"><span>Topology and its Applications</span><span>, 2008</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We begin with the notion of K-flat projectivity. For each sup-algebra L we then introduce a binar...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We begin with the notion of K-flat projectivity. For each sup-algebra L we then introduce a binary relation L on it. The K-flat projective sup-algebras are exactly such sup-algebras with each element a approximated by the element x, x L a and the relation L being stable with respect to the operations on L. Further on, we introduce the notion of a K-comonad and characterize K-flat projective sup-algebras as such sup-algebras having a coalgebra structure for the K-comonad.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="74ab5ea0822a27c8db5b332c67351265" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101094935,"asset_id":100206051,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101094935/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100206051"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100206051"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100206051; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100206051]").text(description); $(".js-view-count[data-work-id=100206051]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100206051; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100206051']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "74ab5ea0822a27c8db5b332c67351265" } } $('.js-work-strip[data-work-id=100206051]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100206051,"title":"Projective sup-algebras: a general view","internal_url":"https://www.academia.edu/100206051/Projective_sup_algebras_a_general_view","owner_id":241431338,"coauthors_can_edit":true,"owner":{"id":241431338,"first_name":"Jan","middle_initials":null,"last_name":"Paseka","page_name":"JPaseka","domain_name":"independent","created_at":"2022-10-20T23:38:14.667-07:00","display_name":"Jan Paseka","url":"https://independent.academia.edu/JPaseka"},"attachments":[{"id":101094935,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101094935/thumbnails/1.jpg","file_name":"82510684.pdf","download_url":"https://www.academia.edu/attachments/101094935/download_file","bulk_download_file_name":"Projective_sup_algebras_a_general_view.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101094935/82510684-libre.pdf?1681545831=\u0026response-content-disposition=attachment%3B+filename%3DProjective_sup_algebras_a_general_view.pdf\u0026Expires=1740528332\u0026Signature=AGgyxL1Dh14HU8oSsfNvpfmO3t-M5vSchsBME4Hd-CLqdp3Tl9H4E4q-EmdRMQY874Hv30r9aRQzDb9TCr3AGhdsBbliAPm447tp9dnXjvvEE36BC3i3ZCJIzu6KrGhQHdEN7zXTb7292kC00v0unBTinp0xkw~R-WYSnSEJHT-CvWGzrx-UU4d0r1G4gpaRB~oqvt9ZPE4sHKkuubS99Yqch~dPOJDWFe-HreXyY2~1Wr2f8tfiRrnBBfEGCEmlOUM4vWydyiQkxvxjEOSBj3zJNTCwfIpRmV~OSjcaPZmmX6CgVFbnCF~Y0-mmozKAtavPukjrrgKiVgH8SGA5Mg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100206049"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/100206049/On_tense_MV_algebras"><img alt="Research paper thumbnail of On tense MV-algebras" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/100206049/On_tense_MV_algebras">On tense MV-algebras</a></div><div class="wp-workCard_item"><span>Fuzzy Sets and Systems</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100206049"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100206049"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100206049; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100206049]").text(description); $(".js-view-count[data-work-id=100206049]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100206049; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100206049']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=100206049]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100206049,"title":"On tense MV-algebras","internal_url":"https://www.academia.edu/100206049/On_tense_MV_algebras","owner_id":241431338,"coauthors_can_edit":true,"owner":{"id":241431338,"first_name":"Jan","middle_initials":null,"last_name":"Paseka","page_name":"JPaseka","domain_name":"independent","created_at":"2022-10-20T23:38:14.667-07:00","display_name":"Jan Paseka","url":"https://independent.academia.edu/JPaseka"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100206048"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100206048/A_dynamic_Effect_Algebras_with_Dual_Operation"><img alt="Research paper thumbnail of A dynamic Effect Algebras with Dual Operation" class="work-thumbnail" src="https://attachments.academia-assets.com/101094939/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100206048/A_dynamic_Effect_Algebras_with_Dual_Operation">A dynamic Effect Algebras with Dual Operation</a></div><div class="wp-workCard_item"><span>MATHEMATICS FOR APPLICATIONS</span><span>, 2012</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Tense operators for MV-algebras were introduced by Diaconescu and Georgescu. Based on their defin...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Tense operators for MV-algebras were introduced by Diaconescu and Georgescu. Based on their definition Chajda and Kolařík presented the definition of tense operators for lattice effect algebras. Chajda and Paseka tackled the problem of axiomatizing tense operators on an effect algebra by introducing the notion of a partial dynamic effect algebra. They also gave representation theorems for dynamic effect algebras. We continue to extend their work for partial S-dynamic effect algebras i.e. in the case when tense operators satisfy required conditions also for the dual effect algebraic operation •. We show that whenever tense operators are total our stronger notion coincides with their definition. We give also a representation theorem for partial S-dynamic effect algebras and its version for strict dynamic effect algebras.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e6daf47988983a6a1a00118739d93715" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101094939,"asset_id":100206048,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101094939/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100206048"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100206048"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100206048; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100206048]").text(description); $(".js-view-count[data-work-id=100206048]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100206048; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100206048']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e6daf47988983a6a1a00118739d93715" } } $('.js-work-strip[data-work-id=100206048]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100206048,"title":"A dynamic Effect Algebras with Dual Operation","internal_url":"https://www.academia.edu/100206048/A_dynamic_Effect_Algebras_with_Dual_Operation","owner_id":241431338,"coauthors_can_edit":true,"owner":{"id":241431338,"first_name":"Jan","middle_initials":null,"last_name":"Paseka","page_name":"JPaseka","domain_name":"independent","created_at":"2022-10-20T23:38:14.667-07:00","display_name":"Jan Paseka","url":"https://independent.academia.edu/JPaseka"},"attachments":[{"id":101094939,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101094939/thumbnails/1.jpg","file_name":"15eb2b8a7cd4953446c0c75d496cf76ddbeb.pdf","download_url":"https://www.academia.edu/attachments/101094939/download_file","bulk_download_file_name":"A_dynamic_Effect_Algebras_with_Dual_Oper.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101094939/15eb2b8a7cd4953446c0c75d496cf76ddbeb-libre.pdf?1681545833=\u0026response-content-disposition=attachment%3B+filename%3DA_dynamic_Effect_Algebras_with_Dual_Oper.pdf\u0026Expires=1740528332\u0026Signature=Erxs-~ORV~fvf1uLfQWvopFOxmR6kwcDbFDj1KMw7Zaie3rKz6iuNZRj2e6ScWuixHRFV-zL5yP0A4Rg8kSzR0~FsQrmkpHdCUiA4lYDGY2aaZsOc4j8Fl-o9s4Y2VbNryC2klfxsh2zXtg-GzpHL4R4pBfbh5oH1JPcXMfcsTj8s-VoBPY~XFht9VpP5ZknTz0DtJQFARQvAsQ1JcX-tPrL7iFV0DNlsZG2OGKeOdXe0UprRvRGg7PllixQsFM9BdBbqFWvTS9QZN9zLYLmnGRtdxjqsO00K6CojvUr7OLFy9FARf6pKCbQfZC5QfOkdWYwmgjGjkWyJcwdce6H1A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100206047"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100206047/Representations_of_zero_cancellative_pomonoids"><img alt="Research paper thumbnail of Representations of zero-cancellative pomonoids" class="work-thumbnail" src="https://attachments.academia-assets.com/101094936/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100206047/Representations_of_zero_cancellative_pomonoids">Representations of zero-cancellative pomonoids</a></div><div class="wp-workCard_item"><span>Mathematica Slovaca</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Several familiar results on representations of MV-algebras shape the idea that the use of solving...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Several familiar results on representations of MV-algebras shape the idea that the use of solving systems of linear equations can be studied also in the setting of zero-cancellative commutative pomonoids. This paper investigates this idea and shows that for the class of linearly representable zero-cancellative commutative pomonoids the respective results apply as well.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a428cb8ad801521eb28853bca05347a0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101094936,"asset_id":100206047,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101094936/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100206047"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100206047"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100206047; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100206047]").text(description); $(".js-view-count[data-work-id=100206047]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100206047; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100206047']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a428cb8ad801521eb28853bca05347a0" } } $('.js-work-strip[data-work-id=100206047]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100206047,"title":"Representations of zero-cancellative pomonoids","internal_url":"https://www.academia.edu/100206047/Representations_of_zero_cancellative_pomonoids","owner_id":241431338,"coauthors_can_edit":true,"owner":{"id":241431338,"first_name":"Jan","middle_initials":null,"last_name":"Paseka","page_name":"JPaseka","domain_name":"independent","created_at":"2022-10-20T23:38:14.667-07:00","display_name":"Jan Paseka","url":"https://independent.academia.edu/JPaseka"},"attachments":[{"id":101094936,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101094936/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/101094936/download_file","bulk_download_file_name":"Representations_of_zero_cancellative_pom.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101094936/pdf-libre.pdf?1681545831=\u0026response-content-disposition=attachment%3B+filename%3DRepresentations_of_zero_cancellative_pom.pdf\u0026Expires=1740528332\u0026Signature=IWitvFmpXa62hHQKRMX96nPXbkkB3ikeuZ1bNfuVNokBzgDN5z7I4HyD9pfjIMAkijZDDB8TsMG5OZwyEU8XKtoEYPhHkZGNliEAU-~B~7lbRFjjbwzOnM2c5QsH5jZzHZxKu~UdpNkcmoRG0RhFbHyXDR5oH6SHq0c4cx9SNYo23I-Wth0pigUhQ1h1p0pBTImSNekLp8O7s9jSjrpy2CnUfSypH-LFl-y~ecSr-mUdm-NP2Cxb~85eH7y3rEAc8oeRoEyRInVw8Nh3voVRTIWZPWQzxbRQKuMkv0YhjUkJGGsFtMaI9JJ-KZc20GG~IIZHyd~pDXCr0LUP9XchnA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100206046"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100206046/Note_on_distributive_posets"><img alt="Research paper thumbnail of Note on distributive posets" class="work-thumbnail" src="https://attachments.academia-assets.com/101094887/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100206046/Note_on_distributive_posets">Note on distributive posets</a></div><div class="wp-workCard_item"><span>MATHEMATICS FOR APPLICATIONS</span><span>, 2012</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this note we study distributive posets. We discuss several notions of distributivity in posets...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this note we study distributive posets. We discuss several notions of distributivity in posets and show their equivalence. Moreover, the Prime Ideal Theorem for Distributive Posets is shown to be equivalent with the famous Prime Ideal Theorem for Distributive Lattices using distributive ideal approach. n i=1 X i we put U(X 1 ,. .. , X n) = U(X) (L(X 1 ,. .. , X n) = L(X)). If, moreover, for some i, 1 ≤ i ≤ n, X i = {a i }, we substitute X i by a i as follows U(X</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="45a0c783acdd9ced5deae6e07cae84ba" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101094887,"asset_id":100206046,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101094887/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100206046"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100206046"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100206046; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100206046]").text(description); $(".js-view-count[data-work-id=100206046]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100206046; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100206046']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "45a0c783acdd9ced5deae6e07cae84ba" } } $('.js-work-strip[data-work-id=100206046]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100206046,"title":"Note on distributive posets","internal_url":"https://www.academia.edu/100206046/Note_on_distributive_posets","owner_id":241431338,"coauthors_can_edit":true,"owner":{"id":241431338,"first_name":"Jan","middle_initials":null,"last_name":"Paseka","page_name":"JPaseka","domain_name":"independent","created_at":"2022-10-20T23:38:14.667-07:00","display_name":"Jan Paseka","url":"https://independent.academia.edu/JPaseka"},"attachments":[{"id":101094887,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101094887/thumbnails/1.jpg","file_name":"2012-13-paseka.pdf","download_url":"https://www.academia.edu/attachments/101094887/download_file","bulk_download_file_name":"Note_on_distributive_posets.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101094887/2012-13-paseka-libre.pdf?1681545840=\u0026response-content-disposition=attachment%3B+filename%3DNote_on_distributive_posets.pdf\u0026Expires=1740528332\u0026Signature=Ibh~D14L2dTKlyUvOlLeMR8LmyalBbOmP3rfpD2~IBC83SWY4as3BAaoOyqgvQbeQpE3nB8~9uAo2tzA1y5jFjgNd3VWPkgqB7b2uMI9vGuZk3p3U7rlLeNxrGUVKtK0Qc7dfhmpxYOukQYGPDqZqr7dM7CE2x96NyEETmn9yMug0F7b7a7y4AXcdwMJuIlQvr4XB0qKp07IAnqXydetZqwxOA-LROet0R8is29OYAzk8GlN27BddHYfQ0WGXTLPbVm-2hqyaa7MH7QYsXmpz4R6uvwMjAHJ7Un9NtFIYTlXPWEl3PX73VoR2qxjwGYWztHzlVme37ysZkHPeOzMbw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":101094888,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101094888/thumbnails/1.jpg","file_name":"2012-13-paseka.pdf","download_url":"https://www.academia.edu/attachments/101094888/download_file","bulk_download_file_name":"Note_on_distributive_posets.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101094888/2012-13-paseka-libre.pdf?1681545844=\u0026response-content-disposition=attachment%3B+filename%3DNote_on_distributive_posets.pdf\u0026Expires=1740528333\u0026Signature=X~H1HuxQawKrMdgggOyUJOZKQh-zHbajxXQHM~LGXNRNUGyLMGDrmcro66z~fbpGI2CYD~Rel~IYB0LAMFgu2wkZsTU5G~3wACbQn7bxlZeOnbEB5dh8uD3Up-aq2MTqPIkqpc0CZ1Eb7TvEDPWmYedrp4EQmDl5hr2Vfv57-Lq9h0znrBCCv3Su70NyYFUE25RQxxZB7jiBtQHj-eV5uQl-1XexxQQyN28aqGlcgrWxVllA-GBXb-~KTOE~XPCX8lJCQ669~W0UyjVWHrk38q33RCsxVVgNg3rAd0prh14PqaU5-ZZUmqLv3pYxUOmoO6kqsdzt1NKOHEmwIoteUA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100206044"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100206044/Modularity_Atomicity_and_States_in_Archimedean_Lattice_Effect_Algebras"><img alt="Research paper thumbnail of Modularity, Atomicity and States in Archimedean Lattice Effect Algebras" class="work-thumbnail" src="https://attachments.academia-assets.com/101094932/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100206044/Modularity_Atomicity_and_States_in_Archimedean_Lattice_Effect_Algebras">Modularity, Atomicity and States in Archimedean Lattice Effect Algebras</a></div><div class="wp-workCard_item"><span>Symmetry, Integrability and Geometry: Methods and Applications</span><span>, 2010</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Effect algebras are a generalization of many structures which arise in quantum physics and in mat...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Effect algebras are a generalization of many structures which arise in quantum physics and in mathematical economics. We show that, in every modular Archimedean atomic lattice effect algebra E that is not an orthomodular lattice there exists an (o)continuous state ω on E, which is subadditive. Moreover, we show properties of finite and compact elements of such lattice effect algebras.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5c49a2b3ef8452afd74a175ae9a9b91d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101094932,"asset_id":100206044,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101094932/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100206044"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100206044"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100206044; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100206044]").text(description); $(".js-view-count[data-work-id=100206044]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100206044; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100206044']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5c49a2b3ef8452afd74a175ae9a9b91d" } } $('.js-work-strip[data-work-id=100206044]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100206044,"title":"Modularity, Atomicity and States in Archimedean Lattice Effect Algebras","internal_url":"https://www.academia.edu/100206044/Modularity_Atomicity_and_States_in_Archimedean_Lattice_Effect_Algebras","owner_id":241431338,"coauthors_can_edit":true,"owner":{"id":241431338,"first_name":"Jan","middle_initials":null,"last_name":"Paseka","page_name":"JPaseka","domain_name":"independent","created_at":"2022-10-20T23:38:14.667-07:00","display_name":"Jan Paseka","url":"https://independent.academia.edu/JPaseka"},"attachments":[{"id":101094932,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101094932/thumbnails/1.jpg","file_name":"sigma10-003.pdf","download_url":"https://www.academia.edu/attachments/101094932/download_file","bulk_download_file_name":"Modularity_Atomicity_and_States_in_Archi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101094932/sigma10-003-libre.pdf?1681545834=\u0026response-content-disposition=attachment%3B+filename%3DModularity_Atomicity_and_States_in_Archi.pdf\u0026Expires=1740528333\u0026Signature=es9n9bFFJ3UYmHl0LzTdXzj8G0uozuJ~dYVHy6uG-Md~HpJsdisWM7xYZE2doNF~ZbZjzInupR8nLx4mMH12DfcZGA234mL6N5l~DR1RVPorANzyD~UJ9F5F0i6v22-pSp3rsvt9jOoD1GXAINBBaVLSTluq5qUMCMsGrztXmz6eTTlU4auLIsvMnkCI6JXOuhjXjTq-~EekLXge8MJMC3c2y3b5LttNDb3CtjZTBkoaB7lq-O6rrOalteWSqlxuRn0lFEuUJ9RmXrG48WkP99NeBrs4Mg9J1eAyJhKxbAtJtXo0uEGpbXm0GOqseFoUd5eoWCOO~O7FgKVlEzPMxQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100206043"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100206043/Rieffel_induction_and_strong_Morita_equivalence_in_the_context_of_Hilbert_modules"><img alt="Research paper thumbnail of Rieffel induction and strong Morita equivalence in the context of Hilbert modules" class="work-thumbnail" src="https://attachments.academia-assets.com/101094930/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100206043/Rieffel_induction_and_strong_Morita_equivalence_in_the_context_of_Hilbert_modules">Rieffel induction and strong Morita equivalence in the context of Hilbert modules</a></div><div class="wp-workCard_item"><span>Soft Computing</span><span>, 2005</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper we consider m-regular involutive quantales. We develop the notions of Rieffel induc...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper we consider m-regular involutive quantales. We develop the notions of Rieffel induction and strong Morita equivalence for this category analogously to the situation for C *-algebras.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="00096a191dc96d6fd4102ed8dc6c48a0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101094930,"asset_id":100206043,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101094930/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100206043"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100206043"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100206043; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100206043]").text(description); $(".js-view-count[data-work-id=100206043]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100206043; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100206043']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "00096a191dc96d6fd4102ed8dc6c48a0" } } $('.js-work-strip[data-work-id=100206043]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100206043,"title":"Rieffel induction and strong Morita equivalence in the context of Hilbert modules","internal_url":"https://www.academia.edu/100206043/Rieffel_induction_and_strong_Morita_equivalence_in_the_context_of_Hilbert_modules","owner_id":241431338,"coauthors_can_edit":true,"owner":{"id":241431338,"first_name":"Jan","middle_initials":null,"last_name":"Paseka","page_name":"JPaseka","domain_name":"independent","created_at":"2022-10-20T23:38:14.667-07:00","display_name":"Jan Paseka","url":"https://independent.academia.edu/JPaseka"},"attachments":[{"id":101094930,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101094930/thumbnails/1.jpg","file_name":"g1r1h32654450204.pdf","download_url":"https://www.academia.edu/attachments/101094930/download_file","bulk_download_file_name":"Rieffel_induction_and_strong_Morita_equi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101094930/g1r1h32654450204-libre.pdf?1681545833=\u0026response-content-disposition=attachment%3B+filename%3DRieffel_induction_and_strong_Morita_equi.pdf\u0026Expires=1740528333\u0026Signature=NjGGbGP4XpZpsB-akREzvjW1F8ayprk~9J~OCQPx0Qbur-trSCQfWVWep8iy2~rQv~Pa9KbAu1SnU9wBgI0KU1CD1l3p06t0YzDF8BfsBPbqwVzpgRqAAq168-yRmNkd6sgXwHkbGUOrnkh3CUuxvMiT1-D7gPV2Y1B~YJRMuMZ11e~IrWEYHD87X~u~nmpe06n3QhGsHjpqJm52uLGjATHEiWc0LDlKGJ5JIZgVH2nGyHGHlC-ipd6Rm6zHB63t0qje~Nuy~QSSELs2urnqgtIOrGtYzXqDolAP5rg18kX5ZJC3SYMiaYgE7bC9pGcbjtAGM9agMgE1mfbvhjuVTQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100206042"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100206042/On_Realization_of_Generalized_Effect_Algebras"><img alt="Research paper thumbnail of On Realization of Generalized Effect Algebras" class="work-thumbnail" src="https://attachments.academia-assets.com/101094924/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100206042/On_Realization_of_Generalized_Effect_Algebras">On Realization of Generalized Effect Algebras</a></div><div class="wp-workCard_item"><span>Reports on Mathematical Physics</span><span>, 2012</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A well known fact is that there is a finite orthomodular lattice with an order determining set of...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A well known fact is that there is a finite orthomodular lattice with an order determining set of states which is not representable in the standard quantum logic, the lattice L(H) of all closed subspaces of a separable complex Hilbert space. We show that a generalized effect algebra is representable in the operator generalized effect algebra G D (H) of effects of a complex Hilbert space H iff it has an order determining set of generalized states. This extends the corresponding results for effect algebras of Riečanová and Zajac. Further, any operator generalized effect algebra G D (H) possesses an order determining set of generalized states MSC: 03G12; 06D35; 06F25; 81P10</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="605e51e60ac48294dbc8373f4af92fbc" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101094924,"asset_id":100206042,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101094924/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100206042"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100206042"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100206042; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100206042]").text(description); $(".js-view-count[data-work-id=100206042]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100206042; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100206042']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "605e51e60ac48294dbc8373f4af92fbc" } } $('.js-work-strip[data-work-id=100206042]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100206042,"title":"On Realization of Generalized Effect Algebras","internal_url":"https://www.academia.edu/100206042/On_Realization_of_Generalized_Effect_Algebras","owner_id":241431338,"coauthors_can_edit":true,"owner":{"id":241431338,"first_name":"Jan","middle_initials":null,"last_name":"Paseka","page_name":"JPaseka","domain_name":"independent","created_at":"2022-10-20T23:38:14.667-07:00","display_name":"Jan Paseka","url":"https://independent.academia.edu/JPaseka"},"attachments":[{"id":101094924,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101094924/thumbnails/1.jpg","file_name":"1208.pdf","download_url":"https://www.academia.edu/attachments/101094924/download_file","bulk_download_file_name":"On_Realization_of_Generalized_Effect_Alg.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101094924/1208-libre.pdf?1681545833=\u0026response-content-disposition=attachment%3B+filename%3DOn_Realization_of_Generalized_Effect_Alg.pdf\u0026Expires=1740528333\u0026Signature=NBMIFP-LmD61s~-rSi1iqTrH98BgdT8hmnszasRkCWHtXVlKNXKUZI55oivxSYBzbf80~EhR89xwJAqGITEejKY6WksLvaSjF2QVXZfCMCIFtEAsdNwrVM4wqVlr8EDKnqk7u0TMI4xViXMVrJtHb9foUZ-PnLjPltb342XDtAO~z3G5R~CCs0kcgO8FQUlYIZIfRiVuJDxTtUQiZVYL-6nuFAe9Xb1My56BhzupS6LuUXcpgjUAxm9emf03svT0fRC4OZhWf-eYoCpw3nKPZR-NhEliCMepYQqUTJl3R7EglS~SVIVXes6ojiQrHcESSIbRuTpmWCl8YFjC6UYbuQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="16125946" id="papers"><div class="js-work-strip profile--work_container" data-work-id="100206064"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100206064/Atomicity_of_lattice_effect_algebras_and_their_sub_lattice_effect_algebras"><img alt="Research paper thumbnail of Atomicity of lattice effect algebras and their sub-lattice effect algebras" class="work-thumbnail" src="https://attachments.academia-assets.com/101094897/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100206064/Atomicity_of_lattice_effect_algebras_and_their_sub_lattice_effect_algebras">Atomicity of lattice effect algebras and their sub-lattice effect algebras</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">summary:We show some families of lattice effect algebras (a common generalization of orthomodular...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">summary:We show some families of lattice effect algebras (a common generalization of orthomodular lattices and MV-effect algebras) each element E of which has atomic center C(E) or the subset S(E) of all sharp elements, resp. the center of compatibility B(E) or every block M of E. The atomicity of E or its sub-lattice effect algebras C(E), S(E), B(E) and blocks M of E is very useful equipment for the investigations of its algebraic and topological properties, the existence or smearing of states on E, questions about isomorphisms and so. Namely we touch the families of complete lattice effect algebras, or lattice effect algebras with finitely many blocks, or complete atomic lattice effect algebra E with Hausdorff interval topology</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6525d2ed91437d03bd47f178ee8e21fb" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101094897,"asset_id":100206064,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101094897/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100206064"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100206064"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100206064; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100206064]").text(description); $(".js-view-count[data-work-id=100206064]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100206064; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100206064']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6525d2ed91437d03bd47f178ee8e21fb" } } $('.js-work-strip[data-work-id=100206064]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100206064,"title":"Atomicity of lattice effect algebras and their sub-lattice effect algebras","internal_url":"https://www.academia.edu/100206064/Atomicity_of_lattice_effect_algebras_and_their_sub_lattice_effect_algebras","owner_id":241431338,"coauthors_can_edit":true,"owner":{"id":241431338,"first_name":"Jan","middle_initials":null,"last_name":"Paseka","page_name":"JPaseka","domain_name":"independent","created_at":"2022-10-20T23:38:14.667-07:00","display_name":"Jan Paseka","url":"https://independent.academia.edu/JPaseka"},"attachments":[{"id":101094897,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101094897/thumbnails/1.jpg","file_name":"216013659.pdf","download_url":"https://www.academia.edu/attachments/101094897/download_file","bulk_download_file_name":"Atomicity_of_lattice_effect_algebras_and.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101094897/216013659-libre.pdf?1681545839=\u0026response-content-disposition=attachment%3B+filename%3DAtomicity_of_lattice_effect_algebras_and.pdf\u0026Expires=1740528332\u0026Signature=K7okyqOTglEc9FvkmDC~6LH2hUqTTWOsHlr32s-sLvuC1vTzWyqYnx9zk4uVUKUuDmv5UDeNWt5SLDLX-ppI1J5wXLBHQILBJFc1dCXGzZTm6BUNxzsQN9l6-YBLHjq1yKo2rQzBvHESDR4YAkE25pweEo4F6mtlqFwRtwKbL6enQI7MfHemDxNfPrJ0CRoU-6hio0WFVVS~cgaSoY~jPPe535l~qWoSimOqLSsgBzNvbbCW~5ALek8uIDmyZmRnDVj5YvI54o4bBQUpLO5naXEChufa4TDuOwUXFjlMuOvSJWGiH0Dd6ZEYcl0pkt5TObCajjkB8NkWmtAH~OoeCA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":101094898,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101094898/thumbnails/1.jpg","file_name":"216013659.pdf","download_url":"https://www.academia.edu/attachments/101094898/download_file","bulk_download_file_name":"Atomicity_of_lattice_effect_algebras_and.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101094898/216013659-libre.pdf?1681545842=\u0026response-content-disposition=attachment%3B+filename%3DAtomicity_of_lattice_effect_algebras_and.pdf\u0026Expires=1740528332\u0026Signature=er6B9KpJEYl61oDjnm3Mr4v8zlB8KN0OOMNJ-VhNEdULHVY6KN7OyGCdkkjnJPM6V-cEzF1-OxpFaZ6~pLd14di9rGn4HCoQeTqgxhreg8waDS~WVOCXQvxw54m5d42DmnchmScoouguDO-IsfZa4TYCPPaOsNcxrW3Xg1TVBy220VWZNL7YZqOOa5MT5XJ~cCzxxiBRO70terDl45DkMr8AAwnlnLcL1ApGRzyQ0DnsYC7oc8XKvmqh~fKg8Zsr~pAQcPuoSs0YAkRw7j0rr9wLDxI9Rue7b1uhSzMwOR2ngIJA9RFFDPZOBU420TaSSVhZtuXFJhPzJQKkLBMJwA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100206063"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100206063/Modularity_atomicity_and_states"><img alt="Research paper thumbnail of Modularity, atomicity and states" class="work-thumbnail" src="https://attachments.academia-assets.com/101094938/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100206063/Modularity_atomicity_and_states">Modularity, atomicity and states</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Effect algebras are a generalization of many structures which arise in quantum physics and in mat...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Effect algebras are a generalization of many structures which arise in quantum physics and in mathematical economics. We show that, in every modular Archimedean atomic lattice effect algebra E that is not an orthomodular lattice there exists an (o)continuous state ω on E, which is subadditive. Moreover, we show properties of finite and compact elements of such lattice effect algebras.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b8fa5eb72589ad58dce15bb7dcc37347" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101094938,"asset_id":100206063,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101094938/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100206063"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100206063"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100206063; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100206063]").text(description); $(".js-view-count[data-work-id=100206063]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100206063; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100206063']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b8fa5eb72589ad58dce15bb7dcc37347" } } $('.js-work-strip[data-work-id=100206063]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100206063,"title":"Modularity, atomicity and states","internal_url":"https://www.academia.edu/100206063/Modularity_atomicity_and_states","owner_id":241431338,"coauthors_can_edit":true,"owner":{"id":241431338,"first_name":"Jan","middle_initials":null,"last_name":"Paseka","page_name":"JPaseka","domain_name":"independent","created_at":"2022-10-20T23:38:14.667-07:00","display_name":"Jan Paseka","url":"https://independent.academia.edu/JPaseka"},"attachments":[{"id":101094938,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101094938/thumbnails/1.jpg","file_name":"1001.1322.pdf","download_url":"https://www.academia.edu/attachments/101094938/download_file","bulk_download_file_name":"Modularity_atomicity_and_states.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101094938/1001.1322-libre.pdf?1681545834=\u0026response-content-disposition=attachment%3B+filename%3DModularity_atomicity_and_states.pdf\u0026Expires=1740528332\u0026Signature=NP1dbfDm0MhXCLUX1KDXefHFjnmWYz-RvauGr6Jeo~0ARBfkw-ci3igwxtgbGxBt6sSVgeKFndTwxigqvmoU5yg7wCR6WXiFU~qeGZIUKsfDXEEwsq5hB--zZH7tDCDBg-0oc4FYypbbNmH6uO6o25NUFKf-uWwCMoFhmlrOKFu0sHTUGkncgLocYDea7FN5eis2fpTaqyblNFdVwioauD6G86irBJJJsR~-BYdvjZKKD5Q0lQMJ1EE2xdTb8I9aDarVTZsM9x5OdqiMI9amREcJXHGcTm67C99Hw9FQvHDEOHIKBsZTadk7KXUmbfOKzzeTBWbsb731t2edmXEIrA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100206062"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100206062/Inherited_Properties_of_Effect_Algebras_Preserved_by_Isomorphisms"><img alt="Research paper thumbnail of Inherited Properties of Effect Algebras Preserved by Isomorphisms" class="work-thumbnail" src="https://attachments.academia-assets.com/101094896/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100206062/Inherited_Properties_of_Effect_Algebras_Preserved_by_Isomorphisms">Inherited Properties of Effect Algebras Preserved by Isomorphisms</a></div><div class="wp-workCard_item"><span>Acta Polytechnica</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We show that isomorphism of effect algebras preserves properties of effect algebras derived from ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We show that isomorphism of effect algebras preserves properties of effect algebras derived from effect algebraic sum ? of elements. These are partial order, order convergence, order topology, existence of states and other important properties. However, there are properties of effect algebras for which the preservation of the ?-operation is not substantial and they need not be preserved.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="24b6c4d9ad89a99969fc04a1dfb89051" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101094896,"asset_id":100206062,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101094896/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100206062"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100206062"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100206062; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100206062]").text(description); $(".js-view-count[data-work-id=100206062]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100206062; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100206062']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "24b6c4d9ad89a99969fc04a1dfb89051" } } $('.js-work-strip[data-work-id=100206062]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100206062,"title":"Inherited Properties of Effect Algebras Preserved by Isomorphisms","internal_url":"https://www.academia.edu/100206062/Inherited_Properties_of_Effect_Algebras_Preserved_by_Isomorphisms","owner_id":241431338,"coauthors_can_edit":true,"owner":{"id":241431338,"first_name":"Jan","middle_initials":null,"last_name":"Paseka","page_name":"JPaseka","domain_name":"independent","created_at":"2022-10-20T23:38:14.667-07:00","display_name":"Jan Paseka","url":"https://independent.academia.edu/JPaseka"},"attachments":[{"id":101094896,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101094896/thumbnails/1.jpg","file_name":"1647.pdf","download_url":"https://www.academia.edu/attachments/101094896/download_file","bulk_download_file_name":"Inherited_Properties_of_Effect_Algebras.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101094896/1647-libre.pdf?1681545843=\u0026response-content-disposition=attachment%3B+filename%3DInherited_Properties_of_Effect_Algebras.pdf\u0026Expires=1740528332\u0026Signature=c~DdFJJx0odJiWrv14z4Dwx7oEJMjaOenDXhXMna9gERij4uWOnqYZc95JuWoeDKuvIKvipWznfiPGSJy~stObWvW9nUNKkK55Ms~XNJhJkvm7M2wcM7ts~4~wJMhVTypeuBxHFUz3HzQCny-9BM8dZKWMil5NwsrHIOoFNsCWKUUOqAJz~384OkrevEvnYKtw8Y2~UCAbQM4gIpxsY~u3s81KNITUfgFq7LW26w0O22KxA~PWuRdn33GKm5C4KAwROfjQEu0bXh1lgnv5s9Z6vqpqzAeQLPUymRgvA9w6LeM1XZ0OHlYg-zp7CH1ipcSDKNAGLpDs~~4hHRPnOnpQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":101094895,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101094895/thumbnails/1.jpg","file_name":"1647.pdf","download_url":"https://www.academia.edu/attachments/101094895/download_file","bulk_download_file_name":"Inherited_Properties_of_Effect_Algebras.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101094895/1647-libre.pdf?1681545842=\u0026response-content-disposition=attachment%3B+filename%3DInherited_Properties_of_Effect_Algebras.pdf\u0026Expires=1740528332\u0026Signature=DAJTexWHmd3w1OMeghZNB3XPpBXd3zXFH516rvVmCHoxno8QrqnZUybhTcKfr6xZ0~wnb0WH7zDY~zjK6Q8d6SlASNBWw1dw7VmS3OpFYSku5vUwN88ItuleWA9yBJ8JRyaUNtobnhdHSsAVJGkYrVBuaY0CrIYN6GDMyj8sUcmMPYYKnflL3wQa1EWh~2L9D2QIMqe64mnZfq4edPgW7Rlw3QINHnWFI9FXh9KvCBG1uLOLHSSKWav55fpyNAtoadFY59tWMAWegfC6b8aam1GgfuWl8XoRpVbtk1t-yX4m0c01LcmO~Y1vnI~tGd8h8XgDQ4ee6rdRRwG1YueGag__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100206061"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100206061/Algebraic_Properties_of_Paraorthomodular_Posets"><img alt="Research paper thumbnail of Algebraic Properties of Paraorthomodular Posets" class="work-thumbnail" src="https://attachments.academia-assets.com/101094943/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100206061/Algebraic_Properties_of_Paraorthomodular_Posets">Algebraic Properties of Paraorthomodular Posets</a></div><div class="wp-workCard_item"><span>Logic Journal of the IGPL</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Paraorthomodular posets are bounded partially ordered sets with an antitone involution induced by...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Paraorthomodular posets are bounded partially ordered sets with an antitone involution induced by quantum structures arising from the logico-algebraic approach to quantum mechanics. The aim of the present work is starting a systematic inquiry into paraorthomodular posets theory both from algebraic and order-theoretic perspectives. On the one hand, we show that paraorthomodular posets are amenable of an algebraic treatment by means of a smooth representation in terms of bounded directoids with antitone involution. On the other, we investigate their order-theoretical features in terms of forbidden configurations. Moreover, sufficient and necessary conditions characterizing bounded posets with an antitone involution whose Dedekind–MacNeille completion is paraorthomodular are provided.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="80bf3e0868099d2bacc8e158dc1d5441" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101094943,"asset_id":100206061,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101094943/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100206061"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100206061"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100206061; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100206061]").text(description); $(".js-view-count[data-work-id=100206061]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100206061; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100206061']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "80bf3e0868099d2bacc8e158dc1d5441" } } $('.js-work-strip[data-work-id=100206061]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100206061,"title":"Algebraic Properties of Paraorthomodular Posets","internal_url":"https://www.academia.edu/100206061/Algebraic_Properties_of_Paraorthomodular_Posets","owner_id":241431338,"coauthors_can_edit":true,"owner":{"id":241431338,"first_name":"Jan","middle_initials":null,"last_name":"Paseka","page_name":"JPaseka","domain_name":"independent","created_at":"2022-10-20T23:38:14.667-07:00","display_name":"Jan Paseka","url":"https://independent.academia.edu/JPaseka"},"attachments":[{"id":101094943,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101094943/thumbnails/1.jpg","file_name":"2011.12791.pdf","download_url":"https://www.academia.edu/attachments/101094943/download_file","bulk_download_file_name":"Algebraic_Properties_of_Paraorthomodular.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101094943/2011.12791-libre.pdf?1681545834=\u0026response-content-disposition=attachment%3B+filename%3DAlgebraic_Properties_of_Paraorthomodular.pdf\u0026Expires=1740528332\u0026Signature=Qx70EaC84EU0hnvX2jsVe6wuoInjkMqC3L-QSIgGdprv-HQ~fBSh4pErHjqE9i2Now3Opcb9TE9oeeGfOBf7oY9sAT0uDVSLHcXQQ7h6pGU9jKQAzpeLBnR7HTup~N3dcqzKz-BgpcO2HO03JfkH3sCs9NHFDenjIAlcf2VtnNW5UVCvkvW~i2gqfUOTNB4MND8YNiinkGkMsuclgIK69TebB2TyOOxstPN6Leskw7NUsZf55c7mxA0GQ988dnFPMlE13vQG3XroDP9Pe6YSz5rMDg79bGcoeWQCOBy07oLYVMfkpk88XqLaDQj2NaVkXQmTAL5ePFPJ9Geuwuqu0g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100206060"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100206060/Dynamic_Logic_Assigned_to_Automata"><img alt="Research paper thumbnail of Dynamic Logic Assigned to Automata" class="work-thumbnail" src="https://attachments.academia-assets.com/101094893/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100206060/Dynamic_Logic_Assigned_to_Automata">Dynamic Logic Assigned to Automata</a></div><div class="wp-workCard_item"><span>International Journal of Theoretical Physics</span><span>, Feb 22, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A dynamic logic B can be assigned to every automaton A without regard if A is deterministic or no...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A dynamic logic B can be assigned to every automaton A without regard if A is deterministic or nondeterministic. This logic enables us to formulate observations on A in the form of composed propositions and, due to a transition functor T , it captures the dynamic behaviour of A. There are formulated conditions under which the automaton A can be recovered by means of B and T .</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9abb9921c5043b9e3405cf22a9f3187b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101094893,"asset_id":100206060,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101094893/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100206060"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100206060"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100206060; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100206060]").text(description); $(".js-view-count[data-work-id=100206060]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100206060; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100206060']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9abb9921c5043b9e3405cf22a9f3187b" } } $('.js-work-strip[data-work-id=100206060]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100206060,"title":"Dynamic Logic Assigned to Automata","internal_url":"https://www.academia.edu/100206060/Dynamic_Logic_Assigned_to_Automata","owner_id":241431338,"coauthors_can_edit":true,"owner":{"id":241431338,"first_name":"Jan","middle_initials":null,"last_name":"Paseka","page_name":"JPaseka","domain_name":"independent","created_at":"2022-10-20T23:38:14.667-07:00","display_name":"Jan Paseka","url":"https://independent.academia.edu/JPaseka"},"attachments":[{"id":101094893,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101094893/thumbnails/1.jpg","file_name":"1809.pdf","download_url":"https://www.academia.edu/attachments/101094893/download_file","bulk_download_file_name":"Dynamic_Logic_Assigned_to_Automata.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101094893/1809-libre.pdf?1681545842=\u0026response-content-disposition=attachment%3B+filename%3DDynamic_Logic_Assigned_to_Automata.pdf\u0026Expires=1740528332\u0026Signature=fmbcLpVxw~r856xfq7hAnYbr5KOd5tJTVfsyC~bis-1PTvJ29F-DIOHlPDGklexgecm0Gy7bQwRO5biWYprJEClRnNp2wmv-fXpx9CZz6EV67PcPOOAnwJyXGCHAem~nYk-xaHnKzfKm0CXXPc7v7qyM5RQcySXXKKCA4gZTqWNvgEfiAo~le9DTdN8aoU5qXBrz3W8Wttfc4ulFi0GiaxLYXlDvGGgWA6esqUCqiNyAw-dmUFOxw5XWDfXl7f835fhyZ-3Nut6hFtEpdlJO7JBSjKMfe2NrHQEA-o91fquQw4mwHZX6l7kb5ZlcW6ECBHo86VvB6UGO24gCVbkcmA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":101094894,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101094894/thumbnails/1.jpg","file_name":"1809.pdf","download_url":"https://www.academia.edu/attachments/101094894/download_file","bulk_download_file_name":"Dynamic_Logic_Assigned_to_Automata.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101094894/1809-libre.pdf?1681545841=\u0026response-content-disposition=attachment%3B+filename%3DDynamic_Logic_Assigned_to_Automata.pdf\u0026Expires=1740528332\u0026Signature=OhtKhu~AOKhvad8TxGAG5dLb3IXZ0XgHOsPkNmPxfJEq8KXl-UT1sQPh0rb42PHB62M9ecCZyKHUe3wSiAkPf6Jy8s-LeDKzDFfbLrv2Tpm0hZmRJSKfHJEYs5fbYRiv-LmqbhevKGkhGYzh6SCFQktGO9Zxvo3cF0Su1IjJY8VxPn2mRVztS6N22o3x4aDRdz4-FH3fsKuv4M3f7H-yeod~yarFkPZqKYQBkd9K4kTYrIqhQy-G09xWNRvOBxXSghBDY0ixyjW--Y9MdTJMCfvS-rH6iNb4osDyTnJdYWbU2oElEzqHh~bDOTpxlzqm-hhMZdZFTgaYFcEoaSezag__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100206059"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100206059/A_Representation_Theorem_for_Quantale_Valued_sup_algebras"><img alt="Research paper thumbnail of A Representation Theorem for Quantale Valued sup-algebras" class="work-thumbnail" src="https://attachments.academia-assets.com/101094892/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100206059/A_Representation_Theorem_for_Quantale_Valued_sup_algebras">A Representation Theorem for Quantale Valued sup-algebras</a></div><div class="wp-workCard_item"><span>2018 IEEE 48th International Symposium on Multiple-Valued Logic (ISMVL)</span><span>, May 1, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">With this paper we hope to contribute to the theory of quantales and quantale-like structures. It...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">With this paper we hope to contribute to the theory of quantales and quantale-like structures. It considers the notion of Q-sup-algebra and shows a representation theorem for such structures generalizing the well-known representation theorems for quantales and sup-algebras. In addition, we present some important properties of the category of Q-sup-algebras.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="62bca1e6fb1c521db1dc4a6a31a5258f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101094892,"asset_id":100206059,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101094892/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100206059"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100206059"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100206059; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100206059]").text(description); $(".js-view-count[data-work-id=100206059]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100206059; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100206059']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "62bca1e6fb1c521db1dc4a6a31a5258f" } } $('.js-work-strip[data-work-id=100206059]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100206059,"title":"A Representation Theorem for Quantale Valued sup-algebras","internal_url":"https://www.academia.edu/100206059/A_Representation_Theorem_for_Quantale_Valued_sup_algebras","owner_id":241431338,"coauthors_can_edit":true,"owner":{"id":241431338,"first_name":"Jan","middle_initials":null,"last_name":"Paseka","page_name":"JPaseka","domain_name":"independent","created_at":"2022-10-20T23:38:14.667-07:00","display_name":"Jan Paseka","url":"https://independent.academia.edu/JPaseka"},"attachments":[{"id":101094892,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101094892/thumbnails/1.jpg","file_name":"1810.pdf","download_url":"https://www.academia.edu/attachments/101094892/download_file","bulk_download_file_name":"A_Representation_Theorem_for_Quantale_Va.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101094892/1810-libre.pdf?1681545838=\u0026response-content-disposition=attachment%3B+filename%3DA_Representation_Theorem_for_Quantale_Va.pdf\u0026Expires=1740528332\u0026Signature=BjgEK8He0a5i822X5Ab4dcVx0-E~9r1ue5Yb8jCyebEMaO4HFhjzqCHgtBz~BnHV4uS95NWAxK4P~RMr8J-JdsJRH3WAEJPzLbRxH-kfA1LTMfgUVUEr7Ed3-Tufi4AWWw6sxx6hdkysYnK09PsN6SiHQky7qvQCjxR7usKycumy-Si1n6gSq3lJDwQn-MZc7PhGGRrlvZN8eYO4fTRIiiG-BCAi4PqWpC1ThBxz7nlHi5Zfieya62aHrNWvUbcLGra-Kv9O5Pwyqsokx6xZNI241f43YDfF~A3rFwIJmWSM-qc9ML0a89UzrkMnYNvzct2WO3pt8UcdN7iC1c6ytw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":101094891,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101094891/thumbnails/1.jpg","file_name":"1810.pdf","download_url":"https://www.academia.edu/attachments/101094891/download_file","bulk_download_file_name":"A_Representation_Theorem_for_Quantale_Va.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101094891/1810-libre.pdf?1681545842=\u0026response-content-disposition=attachment%3B+filename%3DA_Representation_Theorem_for_Quantale_Va.pdf\u0026Expires=1740528332\u0026Signature=RdkSCHqWpZZwHkJ5ZeiL-z-ewGrklw0u4mt6-Bsq6sc00m23ipBHIwPLL0xvNXoS13NtGSRuG0tJaZKEtB7zWWKRBoouMRBr90g0KNJSoajOoP~0reJokbvRFepoHXddvQ90sHQ6WCVuFeGcs-l-xuvlh~O42V0axs1~DWKEvxdE6b28qg7OPCV3CB~woLi9WtLPPu-5GoBnqqG8phHyUEptyzaW58VXU5DervfiJ0sj4mVDtNi-SvTlQZi4iv4h~NXhvFZwOC80yZ5YieoHfaM9SnfP6rj6fVaAFxGUa7sLkHMBGuAbADZ8gR9sG0fJJ3aw37hwqr6BeSc8J9KG4g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100206058"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100206058/On_the_Coextension_of_Cut_Continuous_Pomonoids"><img alt="Research paper thumbnail of On the Coextension of Cut-Continuous Pomonoids" class="work-thumbnail" src="https://attachments.academia-assets.com/101094890/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100206058/On_the_Coextension_of_Cut_Continuous_Pomonoids">On the Coextension of Cut-Continuous Pomonoids</a></div><div class="wp-workCard_item"><span>Order</span><span>, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We introduce cut-continuous pomonoids, which generalise residuated posets. The latter's defining ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We introduce cut-continuous pomonoids, which generalise residuated posets. The latter's defining condition is that the monoidal product is residuated in each argument; we define cut-continuous pomonoids by requiring that the monoidal product is in each argument just cut-continuous. In the case of a total order, the condition of cut-continuity means that multiplication distributes over existing suprema. Morphisms between cut-continuous pomonoids can be chosen either in analogy with unital quantales or with residuated lattices. Under the assumption of commutativity and integrality, congruences are in the latter case induced by filters, in the same way as known for residuated lattices. We are interested in the construction of coextensions: given cut-continuous pomonoids K and C, we raise the question how we can determine the cut-continuous pomonoids L such that C is a filter of L and the quotient of L induced by C is isomorphic to K. In this context, we are in particular concerned with tensor products of modules over cut-continuous pomonoids. Using results of M. Erné and J. Picado on closure spaces, we show that such tensor products exist. An application is the construction of residuated structures related to fuzzy logics, in particular left-continuous t-norms.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f869809013c1be86eeba82d73fee2d4e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101094890,"asset_id":100206058,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101094890/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100206058"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100206058"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100206058; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100206058]").text(description); $(".js-view-count[data-work-id=100206058]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100206058; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100206058']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f869809013c1be86eeba82d73fee2d4e" } } $('.js-work-strip[data-work-id=100206058]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100206058,"title":"On the Coextension of Cut-Continuous Pomonoids","internal_url":"https://www.academia.edu/100206058/On_the_Coextension_of_Cut_Continuous_Pomonoids","owner_id":241431338,"coauthors_can_edit":true,"owner":{"id":241431338,"first_name":"Jan","middle_initials":null,"last_name":"Paseka","page_name":"JPaseka","domain_name":"independent","created_at":"2022-10-20T23:38:14.667-07:00","display_name":"Jan Paseka","url":"https://independent.academia.edu/JPaseka"},"attachments":[{"id":101094890,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101094890/thumbnails/1.jpg","file_name":"s11083-018-9466-3.pdf","download_url":"https://www.academia.edu/attachments/101094890/download_file","bulk_download_file_name":"On_the_Coextension_of_Cut_Continuous_Pom.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101094890/s11083-018-9466-3-libre.pdf?1681545843=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_Coextension_of_Cut_Continuous_Pom.pdf\u0026Expires=1740528332\u0026Signature=SEqAhcALzDhslOHseZ~YVdmt2k0R~XsyiL6cFrlQupUcq8-5AJUsNEXMWkcSEfVlo2doseO9xHJPC1Ax1g-dYLFUC6UxwqDLKGLuhnRTIuoCJyhW2BeS4nC5oc16EB~Lqo9sOzM0iHhE2t3w3C4UjGqSv9r1aHFCt-Ixa6eX5CfDqMRiiXTGuyJccVOU~-wMZ2wnTUUKi0JH1U4NpWokLa8vuJknL21mLPTuMS4rfpAH94mbuwxnd4~lbpcbhXvifyuUAq3lI8symHOYQ1zQq3AZ-h5G81PLJA3CBU7tw2qbG-VOnf4HTyKCDQIm9dCl7rbej6WKrX4M02TAAOYUPg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100206057"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100206057/Editorial_Quantum_structures_states_and_related_topics"><img alt="Research paper thumbnail of Editorial: Quantum structures, states and related topics" class="work-thumbnail" src="https://attachments.academia-assets.com/101094937/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100206057/Editorial_Quantum_structures_states_and_related_topics">Editorial: Quantum structures, states and related topics</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c2df6b3e78d715f89b6d2ebb2f3040e6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101094937,"asset_id":100206057,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101094937/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100206057"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100206057"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100206057; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100206057]").text(description); $(".js-view-count[data-work-id=100206057]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100206057; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100206057']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c2df6b3e78d715f89b6d2ebb2f3040e6" } } $('.js-work-strip[data-work-id=100206057]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100206057,"title":"Editorial: Quantum structures, states and related topics","internal_url":"https://www.academia.edu/100206057/Editorial_Quantum_structures_states_and_related_topics","owner_id":241431338,"coauthors_can_edit":true,"owner":{"id":241431338,"first_name":"Jan","middle_initials":null,"last_name":"Paseka","page_name":"JPaseka","domain_name":"independent","created_at":"2022-10-20T23:38:14.667-07:00","display_name":"Jan Paseka","url":"https://independent.academia.edu/JPaseka"},"attachments":[{"id":101094937,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101094937/thumbnails/1.jpg","file_name":"paper.pdf","download_url":"https://www.academia.edu/attachments/101094937/download_file","bulk_download_file_name":"Editorial_Quantum_structures_states_and.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101094937/paper-libre.pdf?1681545827=\u0026response-content-disposition=attachment%3B+filename%3DEditorial_Quantum_structures_states_and.pdf\u0026Expires=1740528332\u0026Signature=Lqs~tgNvHNNk5PHuxqCETl1eXWSv6kdZPf6wqBz4jVLe1j3lRRHa2972-F8XL7juln0pjj1XjThePzFMpMIaxKu6W5gYAbpIYlyuK~PozgRCQTAlHAngg1UysPS9EgoR2Af5QWNnqITRfx9TrqMMYHQYKtDjU8jmb0mLASEAKE1nnVxe2Mp1qXEH0Mljrn2EQfgSexcyQAfNj0QDgoKOcAP1ZhqyTvKAFJFwkdm~tUH5cVoknkJ349lsQ5QNFH4hG19z6DWsLyROYLU3-9kh1HbY~arSWpBTILf2C8pXFGOPfwfsqoPJ0R46r06QViaMRg3gfOZOQGCimFwPBq0amw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100206056"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100206056/Categorical_foundations_of_variety_based_bornology"><img alt="Research paper thumbnail of Categorical foundations of variety-based bornology" class="work-thumbnail" src="https://attachments.academia-assets.com/101094933/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100206056/Categorical_foundations_of_variety_based_bornology">Categorical foundations of variety-based bornology</a></div><div class="wp-workCard_item"><span>Fuzzy Sets and Systems</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Following the concept of topological theory of S. E. Rodabaugh, this paper introduces a new appro...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Following the concept of topological theory of S. E. Rodabaugh, this paper introduces a new approach to (lattice-valued) bornology, which is based in bornological theories, and which is called variety-based bornology. In particular, motivated by the notion of topological system of S. Vickers, we introduce the concept of variety-based bornological system, and show that the category of variety-based bornological spaces is isomorphic to a full reflective subcategory of the category of variety-based bornological systems.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ae1118912c845ce8e823192002839ec7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101094933,"asset_id":100206056,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101094933/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100206056"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100206056"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100206056; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100206056]").text(description); $(".js-view-count[data-work-id=100206056]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100206056; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100206056']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ae1118912c845ce8e823192002839ec7" } } $('.js-work-strip[data-work-id=100206056]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100206056,"title":"Categorical foundations of variety-based bornology","internal_url":"https://www.academia.edu/100206056/Categorical_foundations_of_variety_based_bornology","owner_id":241431338,"coauthors_can_edit":true,"owner":{"id":241431338,"first_name":"Jan","middle_initials":null,"last_name":"Paseka","page_name":"JPaseka","domain_name":"independent","created_at":"2022-10-20T23:38:14.667-07:00","display_name":"Jan Paseka","url":"https://independent.academia.edu/JPaseka"},"attachments":[{"id":101094933,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101094933/thumbnails/1.jpg","file_name":"1809.pdf","download_url":"https://www.academia.edu/attachments/101094933/download_file","bulk_download_file_name":"Categorical_foundations_of_variety_based.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101094933/1809-libre.pdf?1681545831=\u0026response-content-disposition=attachment%3B+filename%3DCategorical_foundations_of_variety_based.pdf\u0026Expires=1740528332\u0026Signature=Vf8HHB6SoxVYW5PSG7lwss27J1ZI724btpueLgR2qbk5CCtC3jeWqOs-Jk6NkV6K3xA1kFieagwQLaA0QR4X374NKswX5xOpj1MAY-3W6u07C-0qkuoOfRZ8p01qgBJOEZwNdzBku9W018WONO8Q1~m9T~p7u41K6zx95zaH-uZjqyiBOw-~-hTRGHVZVWIuz42lozN8obHX~SBMSFHJRVOTUZAWswnAteo9xPCs7Jf0LLrxGH5KWuNrdF4BhebnXxXuwpbtr9OiTy3AqweCz-JpzZLk6dZ3lCqjOsqEJNd5xbnQX4Q8IyIoDVRMi2UawxPeqcKgYR3~q0kBacguBA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100206055"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100206055/Galois_connections_and_tense_operators_on_q_effect_algebras"><img alt="Research paper thumbnail of Galois connections and tense operators on q-effect algebras" class="work-thumbnail" src="https://attachments.academia-assets.com/101094940/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100206055/Galois_connections_and_tense_operators_on_q_effect_algebras">Galois connections and tense operators on q-effect algebras</a></div><div class="wp-workCard_item"><span>Fuzzy Sets and Systems</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">For effect algebras, the so-called tense operators were already introduced by Chajda and Paseka. ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">For effect algebras, the so-called tense operators were already introduced by Chajda and Paseka. They presented also a canonical construction of them using the notion of a time frame. Tense operators express the quantifiers "it is always going to be the case that" and "it has always been the case that" and hence enable us to express the dimension of time both in the logic of quantum mechanics and in the many-valued logic. A crucial problem concerning tense operators is their representation. Having an effect algebra with tense operators, we can ask if there exists a time frame such that each of these operators can be obtained by the canonical construction. To approximate physical real systems as best as possible, we introduce the notion of a q-effect algebra and we solve this problem for q-tense operators on q-representable q-Jauch-Piron q-effect algebras.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0837fecb1ea1691c9a8d3283fb55ac7d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101094940,"asset_id":100206055,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101094940/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100206055"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100206055"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100206055; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100206055]").text(description); $(".js-view-count[data-work-id=100206055]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100206055; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100206055']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0837fecb1ea1691c9a8d3283fb55ac7d" } } $('.js-work-strip[data-work-id=100206055]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100206055,"title":"Galois connections and tense operators on q-effect algebras","internal_url":"https://www.academia.edu/100206055/Galois_connections_and_tense_operators_on_q_effect_algebras","owner_id":241431338,"coauthors_can_edit":true,"owner":{"id":241431338,"first_name":"Jan","middle_initials":null,"last_name":"Paseka","page_name":"JPaseka","domain_name":"independent","created_at":"2022-10-20T23:38:14.667-07:00","display_name":"Jan Paseka","url":"https://independent.academia.edu/JPaseka"},"attachments":[{"id":101094940,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101094940/thumbnails/1.jpg","file_name":"1809.pdf","download_url":"https://www.academia.edu/attachments/101094940/download_file","bulk_download_file_name":"Galois_connections_and_tense_operators_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101094940/1809-libre.pdf?1681545836=\u0026response-content-disposition=attachment%3B+filename%3DGalois_connections_and_tense_operators_o.pdf\u0026Expires=1740528332\u0026Signature=C46fq3lG86qDNzN78tTEFmEoiLhJ2fHWhwP6LQVnZgCFDODrZx0ma3VfL3nmRzJ~5t5La0IbhHF2-wTTxuPkE4222GKLNa9AfCKOgxZcU70kK4RL2LmNyZwk1t7taO7p4N0qZyQ7A2szEvvXaEI5hlvLIEhfuRWk6cktybwoctCXWsb2OqrLcZv4nS-MFv7Nur5hwvqi~zb7yWZg3V1jj7scDibtPUxsI2LyZ9YPUsZ-W8qLxYcEquC1CDBmkr~ATsd6muB9JetQCC7RGfJp5sUFiGEDxknPJQ26QTgPMPHCe4FJ4BUIfruZOQRhqy0qMEQhl3bznZ3~M25urGhWLQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100206053"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100206053/Filters_on_Some_Classes_of_Quantum_B_Algebras"><img alt="Research paper thumbnail of Filters on Some Classes of Quantum B-Algebras" class="work-thumbnail" src="https://attachments.academia-assets.com/101094931/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100206053/Filters_on_Some_Classes_of_Quantum_B_Algebras">Filters on Some Classes of Quantum B-Algebras</a></div><div class="wp-workCard_item"><span>International Journal of Theoretical Physics</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper, we continue the study of quantum B-algebras with emphasis on filters on integral q...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper, we continue the study of quantum B-algebras with emphasis on filters on integral quantum B-algebras. We then study filters in the setting of pseudo-hoops. First, we establish an embedding of a cartesion product of polars of a pseudo-hoop into itself. Second, we give sufficient conditions for a pseudohoop to be subdirectly reducible. We also extend the result of Kondo and Turunen to the setting of noncommutative residuated ∨-semilattices that, if prime filters and ∨-prime filters of a residuated ∨-semilattice A coincide, then A must be a pseudo MTL-algebra.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e4258935209f6a25ec1e49e128821930" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101094931,"asset_id":100206053,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101094931/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100206053"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100206053"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100206053; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100206053]").text(description); $(".js-view-count[data-work-id=100206053]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100206053; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100206053']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e4258935209f6a25ec1e49e128821930" } } $('.js-work-strip[data-work-id=100206053]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100206053,"title":"Filters on Some Classes of Quantum B-Algebras","internal_url":"https://www.academia.edu/100206053/Filters_on_Some_Classes_of_Quantum_B_Algebras","owner_id":241431338,"coauthors_can_edit":true,"owner":{"id":241431338,"first_name":"Jan","middle_initials":null,"last_name":"Paseka","page_name":"JPaseka","domain_name":"independent","created_at":"2022-10-20T23:38:14.667-07:00","display_name":"Jan Paseka","url":"https://independent.academia.edu/JPaseka"},"attachments":[{"id":101094931,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101094931/thumbnails/1.jpg","file_name":"1809.pdf","download_url":"https://www.academia.edu/attachments/101094931/download_file","bulk_download_file_name":"Filters_on_Some_Classes_of_Quantum_B_Alg.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101094931/1809-libre.pdf?1681545840=\u0026response-content-disposition=attachment%3B+filename%3DFilters_on_Some_Classes_of_Quantum_B_Alg.pdf\u0026Expires=1740528332\u0026Signature=SfPf6mkkCqCUfkgAXQYv3HjZ7AiEFBA7m9MFMWHvVEwQGLdl4XYlrmMaazu6-iwuQRee~G2FtF-RoB72tqnZZ-o88SGEKVSriE3Ov3YVHl8qRKYmsoP0gGCwmVfb2ALPcRwiK2vPg6TWveYMnyOGWGMpxZ9LGopUFOgBP2wg8vl0UZGEDc0H820Q3c1~-YEYETk5yYnmTBCY2RWkeQ7yzBobYELWNlehet0Hp8-borjmiPmSxwtuYnpwJl-5IEMRRVJNImdiVRE-2H4aWtrFz~0BRDtXQMBEDPabqFNMaSUcSw72k9KpJvkycV6-iyTVSTZFE71jZ9NZJUIXKCl2lw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100206052"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100206052/Tense_Operators_and_Dynamic_De_Morgan_Algebras"><img alt="Research paper thumbnail of Tense Operators and Dynamic De Morgan Algebras" class="work-thumbnail" src="https://attachments.academia-assets.com/101094934/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100206052/Tense_Operators_and_Dynamic_De_Morgan_Algebras">Tense Operators and Dynamic De Morgan Algebras</a></div><div class="wp-workCard_item"><span>2013 IEEE 43rd International Symposium on Multiple-Valued Logic</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">By a De Morgan algebra is meant a bounded poset equipped with an antitone involution considered a...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">By a De Morgan algebra is meant a bounded poset equipped with an antitone involution considered as negation. Such an algebra can be considered as an algebraic axiomatization of a propositional logic satisfying the double negation law. Our aim is to introduce the socalled tense operators in every De Morgan algebra for to get an algebraic counterpart of a tense logic with negation satisfying the double negation law which need not be Boolean. Following the standard construction of tense operators G and H by a frame we solve the following question: if a dynamic De Morgan algebra is given, how to find a frame such that its tense operators G and H can be reached by this construction. Index Terms-De Morgan lattice, De Morgan poset, semi-tense operators, tense operators, (partial) dynamic De Morgan algebra.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="140d68416d9c9c630e707bb7cbb9976c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101094934,"asset_id":100206052,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101094934/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100206052"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100206052"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100206052; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100206052]").text(description); $(".js-view-count[data-work-id=100206052]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100206052; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100206052']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "140d68416d9c9c630e707bb7cbb9976c" } } $('.js-work-strip[data-work-id=100206052]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100206052,"title":"Tense Operators and Dynamic De Morgan Algebras","internal_url":"https://www.academia.edu/100206052/Tense_Operators_and_Dynamic_De_Morgan_Algebras","owner_id":241431338,"coauthors_can_edit":true,"owner":{"id":241431338,"first_name":"Jan","middle_initials":null,"last_name":"Paseka","page_name":"JPaseka","domain_name":"independent","created_at":"2022-10-20T23:38:14.667-07:00","display_name":"Jan Paseka","url":"https://independent.academia.edu/JPaseka"},"attachments":[{"id":101094934,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101094934/thumbnails/1.jpg","file_name":"1810.pdf","download_url":"https://www.academia.edu/attachments/101094934/download_file","bulk_download_file_name":"Tense_Operators_and_Dynamic_De_Morgan_Al.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101094934/1810-libre.pdf?1681545832=\u0026response-content-disposition=attachment%3B+filename%3DTense_Operators_and_Dynamic_De_Morgan_Al.pdf\u0026Expires=1740528332\u0026Signature=SyRC2~h~CQdh2R10nbScscSuBCDk0btUHK6U451jq4a-jMYF-64yAAVfGDaba0X1QOLDygW03OPktS26WYlZTidEsKuK3XEc65EJawrbYnRsDwDEr0gEpKSQhPwTWg9orrf-erMTEwNjyZefjY0DT3zsiUKCmurOArzg3xyEmWZZj4sjpOMD6qw6RWIXf5hhdebaQOeAUEtR5yT5skZimZhaRJbDaLL2xzw0LM4gMz-5w~MZB6QYUR4ho~e-EC4EjcWGGyznh3WP~wOMGw0vP-VBCdzYPVfDH8Hd6o3d6o4P~NxsDuIxSkPyasuLRmaV32dlkhWqHgst8w2F43ddUg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100206051"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100206051/Projective_sup_algebras_a_general_view"><img alt="Research paper thumbnail of Projective sup-algebras: a general view" class="work-thumbnail" src="https://attachments.academia-assets.com/101094935/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100206051/Projective_sup_algebras_a_general_view">Projective sup-algebras: a general view</a></div><div class="wp-workCard_item"><span>Topology and its Applications</span><span>, 2008</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We begin with the notion of K-flat projectivity. For each sup-algebra L we then introduce a binar...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We begin with the notion of K-flat projectivity. For each sup-algebra L we then introduce a binary relation L on it. The K-flat projective sup-algebras are exactly such sup-algebras with each element a approximated by the element x, x L a and the relation L being stable with respect to the operations on L. Further on, we introduce the notion of a K-comonad and characterize K-flat projective sup-algebras as such sup-algebras having a coalgebra structure for the K-comonad.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="74ab5ea0822a27c8db5b332c67351265" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101094935,"asset_id":100206051,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101094935/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100206051"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100206051"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100206051; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100206051]").text(description); $(".js-view-count[data-work-id=100206051]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100206051; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100206051']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "74ab5ea0822a27c8db5b332c67351265" } } $('.js-work-strip[data-work-id=100206051]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100206051,"title":"Projective sup-algebras: a general view","internal_url":"https://www.academia.edu/100206051/Projective_sup_algebras_a_general_view","owner_id":241431338,"coauthors_can_edit":true,"owner":{"id":241431338,"first_name":"Jan","middle_initials":null,"last_name":"Paseka","page_name":"JPaseka","domain_name":"independent","created_at":"2022-10-20T23:38:14.667-07:00","display_name":"Jan Paseka","url":"https://independent.academia.edu/JPaseka"},"attachments":[{"id":101094935,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101094935/thumbnails/1.jpg","file_name":"82510684.pdf","download_url":"https://www.academia.edu/attachments/101094935/download_file","bulk_download_file_name":"Projective_sup_algebras_a_general_view.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101094935/82510684-libre.pdf?1681545831=\u0026response-content-disposition=attachment%3B+filename%3DProjective_sup_algebras_a_general_view.pdf\u0026Expires=1740528332\u0026Signature=AGgyxL1Dh14HU8oSsfNvpfmO3t-M5vSchsBME4Hd-CLqdp3Tl9H4E4q-EmdRMQY874Hv30r9aRQzDb9TCr3AGhdsBbliAPm447tp9dnXjvvEE36BC3i3ZCJIzu6KrGhQHdEN7zXTb7292kC00v0unBTinp0xkw~R-WYSnSEJHT-CvWGzrx-UU4d0r1G4gpaRB~oqvt9ZPE4sHKkuubS99Yqch~dPOJDWFe-HreXyY2~1Wr2f8tfiRrnBBfEGCEmlOUM4vWydyiQkxvxjEOSBj3zJNTCwfIpRmV~OSjcaPZmmX6CgVFbnCF~Y0-mmozKAtavPukjrrgKiVgH8SGA5Mg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100206049"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/100206049/On_tense_MV_algebras"><img alt="Research paper thumbnail of On tense MV-algebras" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/100206049/On_tense_MV_algebras">On tense MV-algebras</a></div><div class="wp-workCard_item"><span>Fuzzy Sets and Systems</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100206049"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100206049"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100206049; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100206049]").text(description); $(".js-view-count[data-work-id=100206049]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100206049; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100206049']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=100206049]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100206049,"title":"On tense MV-algebras","internal_url":"https://www.academia.edu/100206049/On_tense_MV_algebras","owner_id":241431338,"coauthors_can_edit":true,"owner":{"id":241431338,"first_name":"Jan","middle_initials":null,"last_name":"Paseka","page_name":"JPaseka","domain_name":"independent","created_at":"2022-10-20T23:38:14.667-07:00","display_name":"Jan Paseka","url":"https://independent.academia.edu/JPaseka"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100206048"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100206048/A_dynamic_Effect_Algebras_with_Dual_Operation"><img alt="Research paper thumbnail of A dynamic Effect Algebras with Dual Operation" class="work-thumbnail" src="https://attachments.academia-assets.com/101094939/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100206048/A_dynamic_Effect_Algebras_with_Dual_Operation">A dynamic Effect Algebras with Dual Operation</a></div><div class="wp-workCard_item"><span>MATHEMATICS FOR APPLICATIONS</span><span>, 2012</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Tense operators for MV-algebras were introduced by Diaconescu and Georgescu. Based on their defin...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Tense operators for MV-algebras were introduced by Diaconescu and Georgescu. Based on their definition Chajda and Kolařík presented the definition of tense operators for lattice effect algebras. Chajda and Paseka tackled the problem of axiomatizing tense operators on an effect algebra by introducing the notion of a partial dynamic effect algebra. They also gave representation theorems for dynamic effect algebras. We continue to extend their work for partial S-dynamic effect algebras i.e. in the case when tense operators satisfy required conditions also for the dual effect algebraic operation •. We show that whenever tense operators are total our stronger notion coincides with their definition. We give also a representation theorem for partial S-dynamic effect algebras and its version for strict dynamic effect algebras.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e6daf47988983a6a1a00118739d93715" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101094939,"asset_id":100206048,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101094939/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100206048"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100206048"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100206048; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100206048]").text(description); $(".js-view-count[data-work-id=100206048]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100206048; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100206048']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e6daf47988983a6a1a00118739d93715" } } $('.js-work-strip[data-work-id=100206048]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100206048,"title":"A dynamic Effect Algebras with Dual Operation","internal_url":"https://www.academia.edu/100206048/A_dynamic_Effect_Algebras_with_Dual_Operation","owner_id":241431338,"coauthors_can_edit":true,"owner":{"id":241431338,"first_name":"Jan","middle_initials":null,"last_name":"Paseka","page_name":"JPaseka","domain_name":"independent","created_at":"2022-10-20T23:38:14.667-07:00","display_name":"Jan Paseka","url":"https://independent.academia.edu/JPaseka"},"attachments":[{"id":101094939,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101094939/thumbnails/1.jpg","file_name":"15eb2b8a7cd4953446c0c75d496cf76ddbeb.pdf","download_url":"https://www.academia.edu/attachments/101094939/download_file","bulk_download_file_name":"A_dynamic_Effect_Algebras_with_Dual_Oper.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101094939/15eb2b8a7cd4953446c0c75d496cf76ddbeb-libre.pdf?1681545833=\u0026response-content-disposition=attachment%3B+filename%3DA_dynamic_Effect_Algebras_with_Dual_Oper.pdf\u0026Expires=1740528332\u0026Signature=Erxs-~ORV~fvf1uLfQWvopFOxmR6kwcDbFDj1KMw7Zaie3rKz6iuNZRj2e6ScWuixHRFV-zL5yP0A4Rg8kSzR0~FsQrmkpHdCUiA4lYDGY2aaZsOc4j8Fl-o9s4Y2VbNryC2klfxsh2zXtg-GzpHL4R4pBfbh5oH1JPcXMfcsTj8s-VoBPY~XFht9VpP5ZknTz0DtJQFARQvAsQ1JcX-tPrL7iFV0DNlsZG2OGKeOdXe0UprRvRGg7PllixQsFM9BdBbqFWvTS9QZN9zLYLmnGRtdxjqsO00K6CojvUr7OLFy9FARf6pKCbQfZC5QfOkdWYwmgjGjkWyJcwdce6H1A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100206047"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100206047/Representations_of_zero_cancellative_pomonoids"><img alt="Research paper thumbnail of Representations of zero-cancellative pomonoids" class="work-thumbnail" src="https://attachments.academia-assets.com/101094936/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100206047/Representations_of_zero_cancellative_pomonoids">Representations of zero-cancellative pomonoids</a></div><div class="wp-workCard_item"><span>Mathematica Slovaca</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Several familiar results on representations of MV-algebras shape the idea that the use of solving...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Several familiar results on representations of MV-algebras shape the idea that the use of solving systems of linear equations can be studied also in the setting of zero-cancellative commutative pomonoids. This paper investigates this idea and shows that for the class of linearly representable zero-cancellative commutative pomonoids the respective results apply as well.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a428cb8ad801521eb28853bca05347a0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101094936,"asset_id":100206047,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101094936/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100206047"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100206047"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100206047; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100206047]").text(description); $(".js-view-count[data-work-id=100206047]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100206047; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100206047']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a428cb8ad801521eb28853bca05347a0" } } $('.js-work-strip[data-work-id=100206047]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100206047,"title":"Representations of zero-cancellative pomonoids","internal_url":"https://www.academia.edu/100206047/Representations_of_zero_cancellative_pomonoids","owner_id":241431338,"coauthors_can_edit":true,"owner":{"id":241431338,"first_name":"Jan","middle_initials":null,"last_name":"Paseka","page_name":"JPaseka","domain_name":"independent","created_at":"2022-10-20T23:38:14.667-07:00","display_name":"Jan Paseka","url":"https://independent.academia.edu/JPaseka"},"attachments":[{"id":101094936,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101094936/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/101094936/download_file","bulk_download_file_name":"Representations_of_zero_cancellative_pom.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101094936/pdf-libre.pdf?1681545831=\u0026response-content-disposition=attachment%3B+filename%3DRepresentations_of_zero_cancellative_pom.pdf\u0026Expires=1740528332\u0026Signature=IWitvFmpXa62hHQKRMX96nPXbkkB3ikeuZ1bNfuVNokBzgDN5z7I4HyD9pfjIMAkijZDDB8TsMG5OZwyEU8XKtoEYPhHkZGNliEAU-~B~7lbRFjjbwzOnM2c5QsH5jZzHZxKu~UdpNkcmoRG0RhFbHyXDR5oH6SHq0c4cx9SNYo23I-Wth0pigUhQ1h1p0pBTImSNekLp8O7s9jSjrpy2CnUfSypH-LFl-y~ecSr-mUdm-NP2Cxb~85eH7y3rEAc8oeRoEyRInVw8Nh3voVRTIWZPWQzxbRQKuMkv0YhjUkJGGsFtMaI9JJ-KZc20GG~IIZHyd~pDXCr0LUP9XchnA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100206046"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100206046/Note_on_distributive_posets"><img alt="Research paper thumbnail of Note on distributive posets" class="work-thumbnail" src="https://attachments.academia-assets.com/101094887/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100206046/Note_on_distributive_posets">Note on distributive posets</a></div><div class="wp-workCard_item"><span>MATHEMATICS FOR APPLICATIONS</span><span>, 2012</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this note we study distributive posets. We discuss several notions of distributivity in posets...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this note we study distributive posets. We discuss several notions of distributivity in posets and show their equivalence. Moreover, the Prime Ideal Theorem for Distributive Posets is shown to be equivalent with the famous Prime Ideal Theorem for Distributive Lattices using distributive ideal approach. n i=1 X i we put U(X 1 ,. .. , X n) = U(X) (L(X 1 ,. .. , X n) = L(X)). If, moreover, for some i, 1 ≤ i ≤ n, X i = {a i }, we substitute X i by a i as follows U(X</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="45a0c783acdd9ced5deae6e07cae84ba" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101094887,"asset_id":100206046,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101094887/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100206046"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100206046"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100206046; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100206046]").text(description); $(".js-view-count[data-work-id=100206046]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100206046; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100206046']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "45a0c783acdd9ced5deae6e07cae84ba" } } $('.js-work-strip[data-work-id=100206046]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100206046,"title":"Note on distributive posets","internal_url":"https://www.academia.edu/100206046/Note_on_distributive_posets","owner_id":241431338,"coauthors_can_edit":true,"owner":{"id":241431338,"first_name":"Jan","middle_initials":null,"last_name":"Paseka","page_name":"JPaseka","domain_name":"independent","created_at":"2022-10-20T23:38:14.667-07:00","display_name":"Jan Paseka","url":"https://independent.academia.edu/JPaseka"},"attachments":[{"id":101094887,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101094887/thumbnails/1.jpg","file_name":"2012-13-paseka.pdf","download_url":"https://www.academia.edu/attachments/101094887/download_file","bulk_download_file_name":"Note_on_distributive_posets.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101094887/2012-13-paseka-libre.pdf?1681545840=\u0026response-content-disposition=attachment%3B+filename%3DNote_on_distributive_posets.pdf\u0026Expires=1740528332\u0026Signature=Ibh~D14L2dTKlyUvOlLeMR8LmyalBbOmP3rfpD2~IBC83SWY4as3BAaoOyqgvQbeQpE3nB8~9uAo2tzA1y5jFjgNd3VWPkgqB7b2uMI9vGuZk3p3U7rlLeNxrGUVKtK0Qc7dfhmpxYOukQYGPDqZqr7dM7CE2x96NyEETmn9yMug0F7b7a7y4AXcdwMJuIlQvr4XB0qKp07IAnqXydetZqwxOA-LROet0R8is29OYAzk8GlN27BddHYfQ0WGXTLPbVm-2hqyaa7MH7QYsXmpz4R6uvwMjAHJ7Un9NtFIYTlXPWEl3PX73VoR2qxjwGYWztHzlVme37ysZkHPeOzMbw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":101094888,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101094888/thumbnails/1.jpg","file_name":"2012-13-paseka.pdf","download_url":"https://www.academia.edu/attachments/101094888/download_file","bulk_download_file_name":"Note_on_distributive_posets.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101094888/2012-13-paseka-libre.pdf?1681545844=\u0026response-content-disposition=attachment%3B+filename%3DNote_on_distributive_posets.pdf\u0026Expires=1740528333\u0026Signature=X~H1HuxQawKrMdgggOyUJOZKQh-zHbajxXQHM~LGXNRNUGyLMGDrmcro66z~fbpGI2CYD~Rel~IYB0LAMFgu2wkZsTU5G~3wACbQn7bxlZeOnbEB5dh8uD3Up-aq2MTqPIkqpc0CZ1Eb7TvEDPWmYedrp4EQmDl5hr2Vfv57-Lq9h0znrBCCv3Su70NyYFUE25RQxxZB7jiBtQHj-eV5uQl-1XexxQQyN28aqGlcgrWxVllA-GBXb-~KTOE~XPCX8lJCQ669~W0UyjVWHrk38q33RCsxVVgNg3rAd0prh14PqaU5-ZZUmqLv3pYxUOmoO6kqsdzt1NKOHEmwIoteUA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100206044"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100206044/Modularity_Atomicity_and_States_in_Archimedean_Lattice_Effect_Algebras"><img alt="Research paper thumbnail of Modularity, Atomicity and States in Archimedean Lattice Effect Algebras" class="work-thumbnail" src="https://attachments.academia-assets.com/101094932/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100206044/Modularity_Atomicity_and_States_in_Archimedean_Lattice_Effect_Algebras">Modularity, Atomicity and States in Archimedean Lattice Effect Algebras</a></div><div class="wp-workCard_item"><span>Symmetry, Integrability and Geometry: Methods and Applications</span><span>, 2010</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Effect algebras are a generalization of many structures which arise in quantum physics and in mat...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Effect algebras are a generalization of many structures which arise in quantum physics and in mathematical economics. We show that, in every modular Archimedean atomic lattice effect algebra E that is not an orthomodular lattice there exists an (o)continuous state ω on E, which is subadditive. Moreover, we show properties of finite and compact elements of such lattice effect algebras.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5c49a2b3ef8452afd74a175ae9a9b91d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101094932,"asset_id":100206044,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101094932/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100206044"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100206044"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100206044; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100206044]").text(description); $(".js-view-count[data-work-id=100206044]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100206044; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100206044']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5c49a2b3ef8452afd74a175ae9a9b91d" } } $('.js-work-strip[data-work-id=100206044]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100206044,"title":"Modularity, Atomicity and States in Archimedean Lattice Effect Algebras","internal_url":"https://www.academia.edu/100206044/Modularity_Atomicity_and_States_in_Archimedean_Lattice_Effect_Algebras","owner_id":241431338,"coauthors_can_edit":true,"owner":{"id":241431338,"first_name":"Jan","middle_initials":null,"last_name":"Paseka","page_name":"JPaseka","domain_name":"independent","created_at":"2022-10-20T23:38:14.667-07:00","display_name":"Jan Paseka","url":"https://independent.academia.edu/JPaseka"},"attachments":[{"id":101094932,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101094932/thumbnails/1.jpg","file_name":"sigma10-003.pdf","download_url":"https://www.academia.edu/attachments/101094932/download_file","bulk_download_file_name":"Modularity_Atomicity_and_States_in_Archi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101094932/sigma10-003-libre.pdf?1681545834=\u0026response-content-disposition=attachment%3B+filename%3DModularity_Atomicity_and_States_in_Archi.pdf\u0026Expires=1740528333\u0026Signature=es9n9bFFJ3UYmHl0LzTdXzj8G0uozuJ~dYVHy6uG-Md~HpJsdisWM7xYZE2doNF~ZbZjzInupR8nLx4mMH12DfcZGA234mL6N5l~DR1RVPorANzyD~UJ9F5F0i6v22-pSp3rsvt9jOoD1GXAINBBaVLSTluq5qUMCMsGrztXmz6eTTlU4auLIsvMnkCI6JXOuhjXjTq-~EekLXge8MJMC3c2y3b5LttNDb3CtjZTBkoaB7lq-O6rrOalteWSqlxuRn0lFEuUJ9RmXrG48WkP99NeBrs4Mg9J1eAyJhKxbAtJtXo0uEGpbXm0GOqseFoUd5eoWCOO~O7FgKVlEzPMxQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100206043"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100206043/Rieffel_induction_and_strong_Morita_equivalence_in_the_context_of_Hilbert_modules"><img alt="Research paper thumbnail of Rieffel induction and strong Morita equivalence in the context of Hilbert modules" class="work-thumbnail" src="https://attachments.academia-assets.com/101094930/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100206043/Rieffel_induction_and_strong_Morita_equivalence_in_the_context_of_Hilbert_modules">Rieffel induction and strong Morita equivalence in the context of Hilbert modules</a></div><div class="wp-workCard_item"><span>Soft Computing</span><span>, 2005</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper we consider m-regular involutive quantales. We develop the notions of Rieffel induc...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper we consider m-regular involutive quantales. We develop the notions of Rieffel induction and strong Morita equivalence for this category analogously to the situation for C *-algebras.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="00096a191dc96d6fd4102ed8dc6c48a0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101094930,"asset_id":100206043,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101094930/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100206043"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100206043"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100206043; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100206043]").text(description); $(".js-view-count[data-work-id=100206043]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100206043; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100206043']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "00096a191dc96d6fd4102ed8dc6c48a0" } } $('.js-work-strip[data-work-id=100206043]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100206043,"title":"Rieffel induction and strong Morita equivalence in the context of Hilbert modules","internal_url":"https://www.academia.edu/100206043/Rieffel_induction_and_strong_Morita_equivalence_in_the_context_of_Hilbert_modules","owner_id":241431338,"coauthors_can_edit":true,"owner":{"id":241431338,"first_name":"Jan","middle_initials":null,"last_name":"Paseka","page_name":"JPaseka","domain_name":"independent","created_at":"2022-10-20T23:38:14.667-07:00","display_name":"Jan Paseka","url":"https://independent.academia.edu/JPaseka"},"attachments":[{"id":101094930,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101094930/thumbnails/1.jpg","file_name":"g1r1h32654450204.pdf","download_url":"https://www.academia.edu/attachments/101094930/download_file","bulk_download_file_name":"Rieffel_induction_and_strong_Morita_equi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101094930/g1r1h32654450204-libre.pdf?1681545833=\u0026response-content-disposition=attachment%3B+filename%3DRieffel_induction_and_strong_Morita_equi.pdf\u0026Expires=1740528333\u0026Signature=NjGGbGP4XpZpsB-akREzvjW1F8ayprk~9J~OCQPx0Qbur-trSCQfWVWep8iy2~rQv~Pa9KbAu1SnU9wBgI0KU1CD1l3p06t0YzDF8BfsBPbqwVzpgRqAAq168-yRmNkd6sgXwHkbGUOrnkh3CUuxvMiT1-D7gPV2Y1B~YJRMuMZ11e~IrWEYHD87X~u~nmpe06n3QhGsHjpqJm52uLGjATHEiWc0LDlKGJ5JIZgVH2nGyHGHlC-ipd6Rm6zHB63t0qje~Nuy~QSSELs2urnqgtIOrGtYzXqDolAP5rg18kX5ZJC3SYMiaYgE7bC9pGcbjtAGM9agMgE1mfbvhjuVTQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100206042"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100206042/On_Realization_of_Generalized_Effect_Algebras"><img alt="Research paper thumbnail of On Realization of Generalized Effect Algebras" class="work-thumbnail" src="https://attachments.academia-assets.com/101094924/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100206042/On_Realization_of_Generalized_Effect_Algebras">On Realization of Generalized Effect Algebras</a></div><div class="wp-workCard_item"><span>Reports on Mathematical Physics</span><span>, 2012</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A well known fact is that there is a finite orthomodular lattice with an order determining set of...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A well known fact is that there is a finite orthomodular lattice with an order determining set of states which is not representable in the standard quantum logic, the lattice L(H) of all closed subspaces of a separable complex Hilbert space. We show that a generalized effect algebra is representable in the operator generalized effect algebra G D (H) of effects of a complex Hilbert space H iff it has an order determining set of generalized states. This extends the corresponding results for effect algebras of Riečanová and Zajac. Further, any operator generalized effect algebra G D (H) possesses an order determining set of generalized states MSC: 03G12; 06D35; 06F25; 81P10</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="605e51e60ac48294dbc8373f4af92fbc" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101094924,"asset_id":100206042,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101094924/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100206042"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100206042"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100206042; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100206042]").text(description); $(".js-view-count[data-work-id=100206042]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100206042; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100206042']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "605e51e60ac48294dbc8373f4af92fbc" } } $('.js-work-strip[data-work-id=100206042]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100206042,"title":"On Realization of Generalized Effect Algebras","internal_url":"https://www.academia.edu/100206042/On_Realization_of_Generalized_Effect_Algebras","owner_id":241431338,"coauthors_can_edit":true,"owner":{"id":241431338,"first_name":"Jan","middle_initials":null,"last_name":"Paseka","page_name":"JPaseka","domain_name":"independent","created_at":"2022-10-20T23:38:14.667-07:00","display_name":"Jan Paseka","url":"https://independent.academia.edu/JPaseka"},"attachments":[{"id":101094924,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101094924/thumbnails/1.jpg","file_name":"1208.pdf","download_url":"https://www.academia.edu/attachments/101094924/download_file","bulk_download_file_name":"On_Realization_of_Generalized_Effect_Alg.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101094924/1208-libre.pdf?1681545833=\u0026response-content-disposition=attachment%3B+filename%3DOn_Realization_of_Generalized_Effect_Alg.pdf\u0026Expires=1740528333\u0026Signature=NBMIFP-LmD61s~-rSi1iqTrH98BgdT8hmnszasRkCWHtXVlKNXKUZI55oivxSYBzbf80~EhR89xwJAqGITEejKY6WksLvaSjF2QVXZfCMCIFtEAsdNwrVM4wqVlr8EDKnqk7u0TMI4xViXMVrJtHb9foUZ-PnLjPltb342XDtAO~z3G5R~CCs0kcgO8FQUlYIZIfRiVuJDxTtUQiZVYL-6nuFAe9Xb1My56BhzupS6LuUXcpgjUAxm9emf03svT0fRC4OZhWf-eYoCpw3nKPZR-NhEliCMepYQqUTJl3R7EglS~SVIVXes6ojiQrHcESSIbRuTpmWCl8YFjC6UYbuQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; } .sign-in-with-apple-button > div { margin: 0 auto; / This centers the Apple-rendered button horizontally }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "e1f9008693b47ffd3ab2931a39937b422d3c2acb0710943bbb40d62a43259262", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="5VWB7C8tJ13hyqAn4VFROo3audKRK4QbNuA2QRzC23-Th96FEuqxUssm3mET1St_u64Xr5nCy4MErxfhsxteAw" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://independent.academia.edu/JPaseka" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="-i-2NdyhPNKT45qVwyiAkUfclQhHV9zlRCERtBxl-NiM_elc4Waq3bkP5NMxrPrUcag7dU--k312bjAUs7x9pA" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2025</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>