CINXE.COM

Edith Beaulieu - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Edith Beaulieu - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="SLdHjSeR7z1yTo2MYNA3qm6p/V2zP6/m6g/Lvz3xzsySf5ghj4pDFIvVVs2eDpz8F7TqXgONJXPOzuvT6ATG6w==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-1c712297ae3ac71207193b1bae0ecf1aae125886850f62c9c0139dd867630797.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="edith beaulieu" /> <meta name="description" content="Edith Beaulieu: 4 Followers, 3 Following, 35 Research papers. Research interests: Calcium, Glioblastoma Multiforme, and Brain cancer." /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '49879c2402910372f4abc62630a427bbe033d190'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15276,"monthly_visitors":"112 million","monthly_visitor_count":112794806,"monthly_visitor_count_in_millions":112,"user_count":277208919,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732478971000); window.Aedu.timeDifference = new Date().getTime() - 1732478971000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-296162c7af6fd81dcdd76f1a94f1fad04fb5f647401337d136fe8b68742170b1.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-8d53a22151f33ab413d88fa1c02f979c3f8706d470fc1bced09852c72a9f3454.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-f8fe82512740391f81c9e8cc48220144024b425b359b08194e316f4de070b9e8.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://independent.academia.edu/EdithBeaulieu" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-9601d1cc3d68aa07c0a9901d03d3611aec04cc07d2a2039718ebef4ad4d148ca.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":37591436,"first_name":"Edith","middle_initials":null,"last_name":"Beaulieu","page_name":"EdithBeaulieu","domain_name":"independent","created_at":"2015-11-03T14:27:08.767-08:00","display_name":"Edith Beaulieu","url":"https://independent.academia.edu/EdithBeaulieu","photo":"/images/s65_no_pic.png","has_photo":false,"is_analytics_public":false,"interests":[{"id":9534,"name":"Calcium","url":"https://www.academia.edu/Documents/in/Calcium"},{"id":463461,"name":"Glioblastoma Multiforme","url":"https://www.academia.edu/Documents/in/Glioblastoma_Multiforme"},{"id":23165,"name":"Brain cancer","url":"https://www.academia.edu/Documents/in/Brain_cancer"},{"id":14109,"name":"Leukemia","url":"https://www.academia.edu/Documents/in/Leukemia"},{"id":61093,"name":"Mesenchymal stem cells","url":"https://www.academia.edu/Documents/in/Mesenchymal_stem_cells"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://independent.academia.edu/EdithBeaulieu&quot;,&quot;location&quot;:&quot;/EdithBeaulieu&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;independent.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/EdithBeaulieu&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-fd40f440-ea65-4def-a84b-825ba6ccb758"></div> <div id="ProfileCheckPaperUpdate-react-component-fd40f440-ea65-4def-a84b-825ba6ccb758"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Edith Beaulieu</h1><div class="affiliations-container fake-truncate js-profile-affiliations"></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Edith" data-follow-user-id="37591436" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="37591436"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">4</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">3</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">3</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="37591436" href="https://www.academia.edu/Documents/in/Calcium"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://independent.academia.edu/EdithBeaulieu&quot;,&quot;location&quot;:&quot;/EdithBeaulieu&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;independent.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/EdithBeaulieu&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Calcium&quot;]}" data-trace="false" data-dom-id="Pill-react-component-e975a869-8bcf-4985-b0d4-639b1b4c588c"></div> <div id="Pill-react-component-e975a869-8bcf-4985-b0d4-639b1b4c588c"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="37591436" href="https://www.academia.edu/Documents/in/Glioblastoma_Multiforme"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Glioblastoma Multiforme&quot;]}" data-trace="false" data-dom-id="Pill-react-component-ebc151c7-b67e-415c-8d9c-4b7c787c9700"></div> <div id="Pill-react-component-ebc151c7-b67e-415c-8d9c-4b7c787c9700"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="37591436" href="https://www.academia.edu/Documents/in/Brain_cancer"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Brain cancer&quot;]}" data-trace="false" data-dom-id="Pill-react-component-795a3684-32ae-4bb1-bf0d-e4a59bd93613"></div> <div id="Pill-react-component-795a3684-32ae-4bb1-bf0d-e4a59bd93613"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="37591436" href="https://www.academia.edu/Documents/in/Leukemia"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Leukemia&quot;]}" data-trace="false" data-dom-id="Pill-react-component-9c450d46-5108-48e1-8454-a735f886d741"></div> <div id="Pill-react-component-9c450d46-5108-48e1-8454-a735f886d741"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="37591436" href="https://www.academia.edu/Documents/in/Mesenchymal_stem_cells"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Mesenchymal stem cells&quot;]}" data-trace="false" data-dom-id="Pill-react-component-a3fbb5b2-86f9-4b08-9320-a2d1b8024365"></div> <div id="Pill-react-component-a3fbb5b2-86f9-4b08-9320-a2d1b8024365"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Edith Beaulieu</h3></div><div class="js-work-strip profile--work_container" data-work-id="71505309"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/71505309/The_antiangiogenic_agent_Neovastat_AE_941_induces_endothelial_cell_apoptosis"><img alt="Research paper thumbnail of The antiangiogenic agent Neovastat (AE-941) induces endothelial cell apoptosis" class="work-thumbnail" src="https://attachments.academia-assets.com/80818760/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/71505309/The_antiangiogenic_agent_Neovastat_AE_941_induces_endothelial_cell_apoptosis">The antiangiogenic agent Neovastat (AE-941) induces endothelial cell apoptosis</a></div><div class="wp-workCard_item"><span>Molecular Cancer Therapeutics</span><span>, 2002</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Neovastat (AE-941), a naturally occurring multifunctional antiangiogenic agent, has been shown to...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Neovastat (AE-941), a naturally occurring multifunctional antiangiogenic agent, has been shown to inhibit key components of the angiogenic process, including matrix metalloproteinases and vascular endothelial growth factor-mediated signaling events. In this study, we report the presence of a proapoptotic activity within this compound. Neovastat treatment of bovine aortic endothelial cells caused cell death with characteristics of apoptosis, including chromatin condensation and DNA fragmentation. Neovastat markedly induced caspase-3, caspase-8, and caspase-9 activities, at similar levels to those measured in cells treated with tumor necrosis factor-alpha. Activation of caspases by Neovastat appears to be essential for its proapoptotic effects because all apoptotic features were blocked by zVAD-fmk, a broad-spectrum caspase inhibitor. The activation of caspases was correlated with the cleavage of the nuclear substrate poly(ADP-ribose) polymerase, and by a concomitant release of cytoch...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="172c17cc4c62b8ff0ce79f1cbf8d63f1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:80818760,&quot;asset_id&quot;:71505309,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/80818760/download_file?st=MTczMjQ3ODk3MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="71505309"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="71505309"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 71505309; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=71505309]").text(description); $(".js-view-count[data-work-id=71505309]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 71505309; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='71505309']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 71505309, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "172c17cc4c62b8ff0ce79f1cbf8d63f1" } } $('.js-work-strip[data-work-id=71505309]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":71505309,"title":"The antiangiogenic agent Neovastat (AE-941) induces endothelial cell apoptosis","translated_title":"","metadata":{"abstract":"Neovastat (AE-941), a naturally occurring multifunctional antiangiogenic agent, has been shown to inhibit key components of the angiogenic process, including matrix metalloproteinases and vascular endothelial growth factor-mediated signaling events. In this study, we report the presence of a proapoptotic activity within this compound. Neovastat treatment of bovine aortic endothelial cells caused cell death with characteristics of apoptosis, including chromatin condensation and DNA fragmentation. Neovastat markedly induced caspase-3, caspase-8, and caspase-9 activities, at similar levels to those measured in cells treated with tumor necrosis factor-alpha. Activation of caspases by Neovastat appears to be essential for its proapoptotic effects because all apoptotic features were blocked by zVAD-fmk, a broad-spectrum caspase inhibitor. The activation of caspases was correlated with the cleavage of the nuclear substrate poly(ADP-ribose) polymerase, and by a concomitant release of cytoch...","publication_date":{"day":null,"month":null,"year":2002,"errors":{}},"publication_name":"Molecular Cancer Therapeutics"},"translated_abstract":"Neovastat (AE-941), a naturally occurring multifunctional antiangiogenic agent, has been shown to inhibit key components of the angiogenic process, including matrix metalloproteinases and vascular endothelial growth factor-mediated signaling events. In this study, we report the presence of a proapoptotic activity within this compound. Neovastat treatment of bovine aortic endothelial cells caused cell death with characteristics of apoptosis, including chromatin condensation and DNA fragmentation. Neovastat markedly induced caspase-3, caspase-8, and caspase-9 activities, at similar levels to those measured in cells treated with tumor necrosis factor-alpha. Activation of caspases by Neovastat appears to be essential for its proapoptotic effects because all apoptotic features were blocked by zVAD-fmk, a broad-spectrum caspase inhibitor. The activation of caspases was correlated with the cleavage of the nuclear substrate poly(ADP-ribose) polymerase, and by a concomitant release of cytoch...","internal_url":"https://www.academia.edu/71505309/The_antiangiogenic_agent_Neovastat_AE_941_induces_endothelial_cell_apoptosis","translated_internal_url":"","created_at":"2022-02-14T07:31:17.084-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":37591436,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":80818760,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80818760/thumbnails/1.jpg","file_name":"795.full.pdf","download_url":"https://www.academia.edu/attachments/80818760/download_file?st=MTczMjQ3ODk3MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_antiangiogenic_agent_Neovastat_AE_94.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80818760/795.full-libre.pdf?1644853414=\u0026response-content-disposition=attachment%3B+filename%3DThe_antiangiogenic_agent_Neovastat_AE_94.pdf\u0026Expires=1732482570\u0026Signature=RIVKqYV3R3BwJNx1ekY~CSE4ulq2AvRtIObOwC8FGE1pFmZRCvECS9q4veAKpqeW5BLRf0YPUPNt82hLg1pQNC~nQ7v2d6m6VV7c2ovKBpEen5~86FAA5K97tLPAiwGTX3UjmTwpDTTjmzK6DqFimzzW4-fOW0h2RvtR4IVgxKzMJ8iUSFficAYkhsgcG5m8OXseSNpYeR7t3zPxrFUTQ7c49CirB-vrmKAGVnYO4JLRhj93V7rXINLhGgHDnwM7Vw~X3psggr8rMwAY2nBwYnrWrRBCtnnM4EU9wOz4tt-utuN7ZkvXYdkfKaiqyBoT~sAU0wXR8JHSihqqsna7Iw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_antiangiogenic_agent_Neovastat_AE_941_induces_endothelial_cell_apoptosis","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":37591436,"first_name":"Edith","middle_initials":null,"last_name":"Beaulieu","page_name":"EdithBeaulieu","domain_name":"independent","created_at":"2015-11-03T14:27:08.767-08:00","display_name":"Edith Beaulieu","url":"https://independent.academia.edu/EdithBeaulieu"},"attachments":[{"id":80818760,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80818760/thumbnails/1.jpg","file_name":"795.full.pdf","download_url":"https://www.academia.edu/attachments/80818760/download_file?st=MTczMjQ3ODk3MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_antiangiogenic_agent_Neovastat_AE_94.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80818760/795.full-libre.pdf?1644853414=\u0026response-content-disposition=attachment%3B+filename%3DThe_antiangiogenic_agent_Neovastat_AE_94.pdf\u0026Expires=1732482570\u0026Signature=RIVKqYV3R3BwJNx1ekY~CSE4ulq2AvRtIObOwC8FGE1pFmZRCvECS9q4veAKpqeW5BLRf0YPUPNt82hLg1pQNC~nQ7v2d6m6VV7c2ovKBpEen5~86FAA5K97tLPAiwGTX3UjmTwpDTTjmzK6DqFimzzW4-fOW0h2RvtR4IVgxKzMJ8iUSFficAYkhsgcG5m8OXseSNpYeR7t3zPxrFUTQ7c49CirB-vrmKAGVnYO4JLRhj93V7rXINLhGgHDnwM7Vw~X3psggr8rMwAY2nBwYnrWrRBCtnnM4EU9wOz4tt-utuN7ZkvXYdkfKaiqyBoT~sAU0wXR8JHSihqqsna7Iw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":80818761,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80818761/thumbnails/1.jpg","file_name":"795.full.pdf","download_url":"https://www.academia.edu/attachments/80818761/download_file","bulk_download_file_name":"The_antiangiogenic_agent_Neovastat_AE_94.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80818761/795.full-libre.pdf?1644853413=\u0026response-content-disposition=attachment%3B+filename%3DThe_antiangiogenic_agent_Neovastat_AE_94.pdf\u0026Expires=1732482570\u0026Signature=DHthzY8mpQEUQgL8PrxlV5SoJsMOqQRKvv5EAVE~-1KIOh3G74ikqrxdIVsoHBNp3uQH2QA~BxNcyoECjgn-4v01eaWQskkulWSaIdVV93fYdzIxVvzf0JOJ2eb~UK9GkhLhoBRq7vGSfm5Rg5FOiA3PPiXxyrELVEhLpO1P41xywO4TD3VwLKXktUj1GOm2QXZgg2ZPN9oLyRocDwmijtqV26ycfk5AVR959X7ZI8zEv48VwP2THAHFGpUKMHvT18m9~5VxdBYmQL2xcSioWe88PgJHZqHYGbP1B8KSxnadxx~MJGeCwIfMgjt5N-WTSS7dIKr0c2aME1dEpisAtA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"},{"id":12981,"name":"Enzyme Inhibitors","url":"https://www.academia.edu/Documents/in/Enzyme_Inhibitors"},{"id":24731,"name":"Apoptosis","url":"https://www.academia.edu/Documents/in/Apoptosis"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":48057,"name":"DNA","url":"https://www.academia.edu/Documents/in/DNA"},{"id":50841,"name":"Caspases","url":"https://www.academia.edu/Documents/in/Caspases"},{"id":57808,"name":"Cell line","url":"https://www.academia.edu/Documents/in/Cell_line"},{"id":64568,"name":"Humans","url":"https://www.academia.edu/Documents/in/Humans"},{"id":84760,"name":"Mice","url":"https://www.academia.edu/Documents/in/Mice"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":112576,"name":"Cell Death","url":"https://www.academia.edu/Documents/in/Cell_Death"},{"id":238813,"name":"Chromatin","url":"https://www.academia.edu/Documents/in/Chromatin"},{"id":247477,"name":"Caspase","url":"https://www.academia.edu/Documents/in/Caspase"},{"id":260829,"name":"Cattle","url":"https://www.academia.edu/Documents/in/Cattle"},{"id":1035092,"name":"Aorta","url":"https://www.academia.edu/Documents/in/Aorta"},{"id":1157148,"name":"Cell Survival","url":"https://www.academia.edu/Documents/in/Cell_Survival"},{"id":2058817,"name":"Immunoblotting","url":"https://www.academia.edu/Documents/in/Immunoblotting"},{"id":2208075,"name":"Cysteine Proteinase Inhibitors","url":"https://www.academia.edu/Documents/in/Cysteine_Proteinase_Inhibitors"},{"id":2256666,"name":"DNA fragmentation","url":"https://www.academia.edu/Documents/in/DNA_fragmentation"},{"id":3314116,"name":"Angiogenesis inhibitors","url":"https://www.academia.edu/Documents/in/Angiogenesis_inhibitors"}],"urls":[{"id":17674512,"url":"https://mct.aacrjournals.org/content/molcanther/1/10/795.full.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="71505308"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/71505308/Manuscript_Author_manuscript_published_in_and_quot_Thrombosis_Research_2007_121_2_203_12_and_quot"><img alt="Research paper thumbnail of Manuscript Author manuscript, published in &amp;quot;Thrombosis Research 2007;121(2):203-12&amp;quot" class="work-thumbnail" src="https://attachments.academia-assets.com/80818759/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/71505308/Manuscript_Author_manuscript_published_in_and_quot_Thrombosis_Research_2007_121_2_203_12_and_quot">Manuscript Author manuscript, published in &amp;quot;Thrombosis Research 2007;121(2):203-12&amp;quot</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">VEGF increases the fibrinolytic activity of endothelial cells within fibrin matrices. Involvement...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">VEGF increases the fibrinolytic activity of endothelial cells within fibrin matrices. Involvement of VEGFR-2, tissue type plasminogen activator and matrix metalloproteinases ¶</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="26304c02c0783da0a8748fd4388adbd1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:80818759,&quot;asset_id&quot;:71505308,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/80818759/download_file?st=MTczMjQ3ODk3MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="71505308"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="71505308"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 71505308; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=71505308]").text(description); $(".js-view-count[data-work-id=71505308]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 71505308; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='71505308']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 71505308, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "26304c02c0783da0a8748fd4388adbd1" } } $('.js-work-strip[data-work-id=71505308]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":71505308,"title":"Manuscript Author manuscript, published in \u0026quot;Thrombosis Research 2007;121(2):203-12\u0026quot","translated_title":"","metadata":{"abstract":"VEGF increases the fibrinolytic activity of endothelial cells within fibrin matrices. Involvement of VEGFR-2, tissue type plasminogen activator and matrix metalloproteinases ¶","publication_date":{"day":null,"month":null,"year":2009,"errors":{}}},"translated_abstract":"VEGF increases the fibrinolytic activity of endothelial cells within fibrin matrices. Involvement of VEGFR-2, tissue type plasminogen activator and matrix metalloproteinases ¶","internal_url":"https://www.academia.edu/71505308/Manuscript_Author_manuscript_published_in_and_quot_Thrombosis_Research_2007_121_2_203_12_and_quot","translated_internal_url":"","created_at":"2022-02-14T07:31:16.893-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":37591436,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":80818759,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80818759/thumbnails/1.jpg","file_name":"download.pdf","download_url":"https://www.academia.edu/attachments/80818759/download_file?st=MTczMjQ3ODk3MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Manuscript_Author_manuscript_published_i.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80818759/download-libre.pdf?1644853414=\u0026response-content-disposition=attachment%3B+filename%3DManuscript_Author_manuscript_published_i.pdf\u0026Expires=1732482570\u0026Signature=RGeEmuIVhuhWxJC1m65hi8l4pLsvjUJN75l2rJ3zFHxfs5XRMk3uxSpBhLisINt3v49CPUMOm0t6VZCjwaMXRVZdlfdzEPKokMkFJ5OEehKXgpPw2eivLiuR0sdoRVCzJAkTDn~C1acVubrtu0Qqhnzs9e10UIhdjGbvPeKxpjNhFkUAMG-TOk0MW82wSup7HiZOeqP~D2drtuOp9yy0gBDxjcR3x9MWDpAkw4czmtyI3bk0zwwU-zqMsfI-gCHvgmjeU7VuUq5Dnp3Avo8lstPPtZ041mBTgp7YXZAVBvEqf46A-MzTVyNZ3VHE6B3yby52YcjR9jisD6D~Blu0Gg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Manuscript_Author_manuscript_published_in_and_quot_Thrombosis_Research_2007_121_2_203_12_and_quot","translated_slug":"","page_count":31,"language":"en","content_type":"Work","owner":{"id":37591436,"first_name":"Edith","middle_initials":null,"last_name":"Beaulieu","page_name":"EdithBeaulieu","domain_name":"independent","created_at":"2015-11-03T14:27:08.767-08:00","display_name":"Edith Beaulieu","url":"https://independent.academia.edu/EdithBeaulieu"},"attachments":[{"id":80818759,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80818759/thumbnails/1.jpg","file_name":"download.pdf","download_url":"https://www.academia.edu/attachments/80818759/download_file?st=MTczMjQ3ODk3MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Manuscript_Author_manuscript_published_i.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80818759/download-libre.pdf?1644853414=\u0026response-content-disposition=attachment%3B+filename%3DManuscript_Author_manuscript_published_i.pdf\u0026Expires=1732482570\u0026Signature=RGeEmuIVhuhWxJC1m65hi8l4pLsvjUJN75l2rJ3zFHxfs5XRMk3uxSpBhLisINt3v49CPUMOm0t6VZCjwaMXRVZdlfdzEPKokMkFJ5OEehKXgpPw2eivLiuR0sdoRVCzJAkTDn~C1acVubrtu0Qqhnzs9e10UIhdjGbvPeKxpjNhFkUAMG-TOk0MW82wSup7HiZOeqP~D2drtuOp9yy0gBDxjcR3x9MWDpAkw4czmtyI3bk0zwwU-zqMsfI-gCHvgmjeU7VuUq5Dnp3Avo8lstPPtZ041mBTgp7YXZAVBvEqf46A-MzTVyNZ3VHE6B3yby52YcjR9jisD6D~Blu0Gg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":80818758,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80818758/thumbnails/1.jpg","file_name":"download.pdf","download_url":"https://www.academia.edu/attachments/80818758/download_file","bulk_download_file_name":"Manuscript_Author_manuscript_published_i.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80818758/download-libre.pdf?1644853415=\u0026response-content-disposition=attachment%3B+filename%3DManuscript_Author_manuscript_published_i.pdf\u0026Expires=1732482570\u0026Signature=F9p4yLXcRjNWPCFizNpEco~aVju90laINwcJ-zOVh9OiuLx4HiM9zytdSs1XtOcUbGceaqoqxjyPkUPQCNiUObHmUlx8LACZCMMGKNCdYfKMhpY~4zvQgzH-PWqiI-v0LTFa43TavdogMfvPMdkgOXVGakE1UXb4SlJfiasCEbjRUUezgZdjsxySTvOKMY2w2Jzs4oJG7d7iXDR0sjpilcQkzclYdQoJ~SQnX6z03aDYTVZ7zlTFh-819xVYYGNwMthF229HKm-t4pD9okqFcXgU9ZiCUbdtArRBF3GecybabU866jfsK6mygmBahcT61iXf1ZccL-7DVhRLTxlwsg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":1953384,"name":"Activator","url":"https://www.academia.edu/Documents/in/Activator"}],"urls":[{"id":17674511,"url":"http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.386.2278\u0026rep=rep1\u0026type=pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="71500699"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/71500699/The_antiangiogenic_agent_neovastat_AE_941_inhibits_vascular_endothelial_growth_factor_mediated_biological_effects"><img alt="Research paper thumbnail of The antiangiogenic agent neovastat (AE-941) inhibits vascular endothelial growth factor-mediated biological effects" class="work-thumbnail" src="https://attachments.academia-assets.com/80816108/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/71500699/The_antiangiogenic_agent_neovastat_AE_941_inhibits_vascular_endothelial_growth_factor_mediated_biological_effects">The antiangiogenic agent neovastat (AE-941) inhibits vascular endothelial growth factor-mediated biological effects</a></div><div class="wp-workCard_item"><span>Clinical Cancer Research</span><span>, 2002</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Vascular endothelial growth factor (VEGF) is a potent regulator of angiogenesis, which exerts dir...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Vascular endothelial growth factor (VEGF) is a potent regulator of angiogenesis, which exerts direct effects on vascular endothelial cells, including endothelial cell proliferation and survival, tubulogenesis, and vascular permeability. In this study, we examined whether Neovastat, a naturally occurring multifunctional antiangiogenic drug, could inhibit the endothelial cell response to VEGF stimulation. We demonstrated that Neovastat was able to block the VEGF-dependent microvessel sprouting from Matrigel-embedded rat aortic rings, and it also blocked the VEGF-induced endothelial cell tubulogenesis in vitro. In vivo studies showed that Neovastat was able to specifically inhibit VEGF-induced plasma extravasation in numerous tissues, including pancreas and skin. The mechanism of action of Neovastat on VEGF-mediated effects was also evaluated at the molecular level. Neovastat was shown to compete against the binding of VEGF to its receptor in endothelial cells and significantly inhibit...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f1ce9c9f47a779d6d6189ff93a42c063" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:80816108,&quot;asset_id&quot;:71500699,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/80816108/download_file?st=MTczMjQ3ODk3MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="71500699"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="71500699"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 71500699; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=71500699]").text(description); $(".js-view-count[data-work-id=71500699]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 71500699; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='71500699']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 71500699, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f1ce9c9f47a779d6d6189ff93a42c063" } } $('.js-work-strip[data-work-id=71500699]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":71500699,"title":"The antiangiogenic agent neovastat (AE-941) inhibits vascular endothelial growth factor-mediated biological effects","translated_title":"","metadata":{"abstract":"Vascular endothelial growth factor (VEGF) is a potent regulator of angiogenesis, which exerts direct effects on vascular endothelial cells, including endothelial cell proliferation and survival, tubulogenesis, and vascular permeability. In this study, we examined whether Neovastat, a naturally occurring multifunctional antiangiogenic drug, could inhibit the endothelial cell response to VEGF stimulation. We demonstrated that Neovastat was able to block the VEGF-dependent microvessel sprouting from Matrigel-embedded rat aortic rings, and it also blocked the VEGF-induced endothelial cell tubulogenesis in vitro. In vivo studies showed that Neovastat was able to specifically inhibit VEGF-induced plasma extravasation in numerous tissues, including pancreas and skin. The mechanism of action of Neovastat on VEGF-mediated effects was also evaluated at the molecular level. Neovastat was shown to compete against the binding of VEGF to its receptor in endothelial cells and significantly inhibit...","publication_date":{"day":null,"month":null,"year":2002,"errors":{}},"publication_name":"Clinical Cancer Research"},"translated_abstract":"Vascular endothelial growth factor (VEGF) is a potent regulator of angiogenesis, which exerts direct effects on vascular endothelial cells, including endothelial cell proliferation and survival, tubulogenesis, and vascular permeability. In this study, we examined whether Neovastat, a naturally occurring multifunctional antiangiogenic drug, could inhibit the endothelial cell response to VEGF stimulation. We demonstrated that Neovastat was able to block the VEGF-dependent microvessel sprouting from Matrigel-embedded rat aortic rings, and it also blocked the VEGF-induced endothelial cell tubulogenesis in vitro. In vivo studies showed that Neovastat was able to specifically inhibit VEGF-induced plasma extravasation in numerous tissues, including pancreas and skin. The mechanism of action of Neovastat on VEGF-mediated effects was also evaluated at the molecular level. Neovastat was shown to compete against the binding of VEGF to its receptor in endothelial cells and significantly inhibit...","internal_url":"https://www.academia.edu/71500699/The_antiangiogenic_agent_neovastat_AE_941_inhibits_vascular_endothelial_growth_factor_mediated_biological_effects","translated_internal_url":"","created_at":"2022-02-14T06:57:22.656-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":37591436,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":80816108,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80816108/thumbnails/1.jpg","file_name":"1242.full.pdf","download_url":"https://www.academia.edu/attachments/80816108/download_file?st=MTczMjQ3ODk3MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_antiangiogenic_agent_neovastat_AE_94.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80816108/1242.full-libre.pdf?1644872528=\u0026response-content-disposition=attachment%3B+filename%3DThe_antiangiogenic_agent_neovastat_AE_94.pdf\u0026Expires=1732482570\u0026Signature=KrrQVC-Gfh8Cp15zQ28Je2sElnmkf0QI~TOABJKmU6iZSMV7RoF2HXOd1IYNnMrOEMiaobhs3LBqt33OE5QYOBWevHRS91zUBCWNb-niKt28BQDa-YQ-sZ3gMni~QStnEmO4S55nAeMS5IJ6Y3c4GBcnDzqF6BF7lY1iUMNc4tfWcKJzICAK1xkG1R9d5tKAaE7l9hpML8w4EH61FEOz4nKApDqk8ZYzCqwJULLHs3cFwkCNV~mwmumnKpY53Zjos1IHWEasJtRImPllDRfRy0gtTzakzroiC~5-ad44PjbWvMIcLkG98pcmuPT2OCufsCFZJtqrgv5rG1DqRtrllg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_antiangiogenic_agent_neovastat_AE_941_inhibits_vascular_endothelial_growth_factor_mediated_biological_effects","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":37591436,"first_name":"Edith","middle_initials":null,"last_name":"Beaulieu","page_name":"EdithBeaulieu","domain_name":"independent","created_at":"2015-11-03T14:27:08.767-08:00","display_name":"Edith Beaulieu","url":"https://independent.academia.edu/EdithBeaulieu"},"attachments":[{"id":80816108,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80816108/thumbnails/1.jpg","file_name":"1242.full.pdf","download_url":"https://www.academia.edu/attachments/80816108/download_file?st=MTczMjQ3ODk3MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_antiangiogenic_agent_neovastat_AE_94.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80816108/1242.full-libre.pdf?1644872528=\u0026response-content-disposition=attachment%3B+filename%3DThe_antiangiogenic_agent_neovastat_AE_94.pdf\u0026Expires=1732482570\u0026Signature=KrrQVC-Gfh8Cp15zQ28Je2sElnmkf0QI~TOABJKmU6iZSMV7RoF2HXOd1IYNnMrOEMiaobhs3LBqt33OE5QYOBWevHRS91zUBCWNb-niKt28BQDa-YQ-sZ3gMni~QStnEmO4S55nAeMS5IJ6Y3c4GBcnDzqF6BF7lY1iUMNc4tfWcKJzICAK1xkG1R9d5tKAaE7l9hpML8w4EH61FEOz4nKApDqk8ZYzCqwJULLHs3cFwkCNV~mwmumnKpY53Zjos1IHWEasJtRImPllDRfRy0gtTzakzroiC~5-ad44PjbWvMIcLkG98pcmuPT2OCufsCFZJtqrgv5rG1DqRtrllg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":80816109,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80816109/thumbnails/1.jpg","file_name":"1242.full.pdf","download_url":"https://www.academia.edu/attachments/80816109/download_file","bulk_download_file_name":"The_antiangiogenic_agent_neovastat_AE_94.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80816109/1242.full-libre.pdf?1644872468=\u0026response-content-disposition=attachment%3B+filename%3DThe_antiangiogenic_agent_neovastat_AE_94.pdf\u0026Expires=1732482570\u0026Signature=CVABIA1z8AaWFVGLPs7xSbcn0W5nn5JlslWqUaLMQsugrJqSx9NtNssGeoJziGw2x40PQ-AxflM3uT~xqENDviLYNoj8ayJEY0NW6YC0w3gOqYGUmdNTMNhEx5BgdM4dSIMNcSSWdBUD3UKLSOhyXvrf0QeRJ-ubkHTtJqUp18SzLpLJULPG0G7-daVI1rOEFoORsWj--bCUu9ylRoqJGFuEenPkw-QKIz8Z9Hwk9iZucEo8Bw23XnO6Z~pAFK6UtpsFRfyv-RNCYumr70iZYE8nmj3xrxLaEzQEmi7Cnc5DSotzpFE-c4agMfk4jhD0UPezQh0DVLSDEtXGGFLkcg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":38650,"name":"Cell Division","url":"https://www.academia.edu/Documents/in/Cell_Division"},{"id":64568,"name":"Humans","url":"https://www.academia.edu/Documents/in/Humans"},{"id":71421,"name":"Capillaries","url":"https://www.academia.edu/Documents/in/Capillaries"},{"id":81148,"name":"Epidermal Growth Factor/ErbB receptors","url":"https://www.academia.edu/Documents/in/Epidermal_Growth_Factor_ErbB_receptors"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":138877,"name":"Vascular endothelium","url":"https://www.academia.edu/Documents/in/Vascular_endothelium"},{"id":172083,"name":"Phosphorylation","url":"https://www.academia.edu/Documents/in/Phosphorylation"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":1010725,"name":"Protein Binding","url":"https://www.academia.edu/Documents/in/Protein_Binding"},{"id":1035092,"name":"Aorta","url":"https://www.academia.edu/Documents/in/Aorta"},{"id":1663739,"name":"Tyrosine","url":"https://www.academia.edu/Documents/in/Tyrosine"},{"id":3314116,"name":"Angiogenesis inhibitors","url":"https://www.academia.edu/Documents/in/Angiogenesis_inhibitors"},{"id":3881526,"name":"In Vitro Techniques","url":"https://www.academia.edu/Documents/in/In_Vitro_Techniques"},{"id":4043962,"name":"Vascular endothelial growth factors","url":"https://www.academia.edu/Documents/in/Vascular_endothelial_growth_factors"}],"urls":[{"id":17672691,"url":"https://clincancerres.aacrjournals.org/content/clincanres/8/4/1242.full.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65500584"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/65500584/The_antiangiogenic_agent_Neovastat_AE_941_induces_endothelial_cell_apoptosis"><img alt="Research paper thumbnail of The antiangiogenic agent Neovastat (AE-941) induces endothelial cell apoptosis" class="work-thumbnail" src="https://attachments.academia-assets.com/77069464/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/65500584/The_antiangiogenic_agent_Neovastat_AE_941_induces_endothelial_cell_apoptosis">The antiangiogenic agent Neovastat (AE-941) induces endothelial cell apoptosis</a></div><div class="wp-workCard_item"><span>Molecular cancer therapeutics</span><span>, 2002</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Neovastat (AE-941), a naturally occurring multifunctional antiangiogenic agent, has been shown to...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Neovastat (AE-941), a naturally occurring multifunctional antiangiogenic agent, has been shown to inhibit key components of the angiogenic process, including matrix metalloproteinases and vascular endothelial growth factor-mediated signaling events. In this study, we report the presence of a proapoptotic activity within this compound. Neovastat treatment of bovine aortic endothelial cells caused cell death with characteristics of apoptosis, including chromatin condensation and DNA fragmentation. Neovastat markedly induced caspase-3, caspase-8, and caspase-9 activities, at similar levels to those measured in cells treated with tumor necrosis factor-alpha. Activation of caspases by Neovastat appears to be essential for its proapoptotic effects because all apoptotic features were blocked by zVAD-fmk, a broad-spectrum caspase inhibitor. The activation of caspases was correlated with the cleavage of the nuclear substrate poly(ADP-ribose) polymerase, and by a concomitant release of cytoch...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2289b99dbd029cd9c1e7518750a09625" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:77069464,&quot;asset_id&quot;:65500584,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/77069464/download_file?st=MTczMjQ3ODk3MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65500584"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65500584"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65500584; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65500584]").text(description); $(".js-view-count[data-work-id=65500584]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65500584; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65500584']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65500584, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2289b99dbd029cd9c1e7518750a09625" } } $('.js-work-strip[data-work-id=65500584]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65500584,"title":"The antiangiogenic agent Neovastat (AE-941) induces endothelial cell apoptosis","translated_title":"","metadata":{"abstract":"Neovastat (AE-941), a naturally occurring multifunctional antiangiogenic agent, has been shown to inhibit key components of the angiogenic process, including matrix metalloproteinases and vascular endothelial growth factor-mediated signaling events. In this study, we report the presence of a proapoptotic activity within this compound. Neovastat treatment of bovine aortic endothelial cells caused cell death with characteristics of apoptosis, including chromatin condensation and DNA fragmentation. Neovastat markedly induced caspase-3, caspase-8, and caspase-9 activities, at similar levels to those measured in cells treated with tumor necrosis factor-alpha. Activation of caspases by Neovastat appears to be essential for its proapoptotic effects because all apoptotic features were blocked by zVAD-fmk, a broad-spectrum caspase inhibitor. The activation of caspases was correlated with the cleavage of the nuclear substrate poly(ADP-ribose) polymerase, and by a concomitant release of cytoch...","publisher":"Molecular cancer therapeutics","publication_date":{"day":null,"month":null,"year":2002,"errors":{}},"publication_name":"Molecular cancer therapeutics"},"translated_abstract":"Neovastat (AE-941), a naturally occurring multifunctional antiangiogenic agent, has been shown to inhibit key components of the angiogenic process, including matrix metalloproteinases and vascular endothelial growth factor-mediated signaling events. In this study, we report the presence of a proapoptotic activity within this compound. Neovastat treatment of bovine aortic endothelial cells caused cell death with characteristics of apoptosis, including chromatin condensation and DNA fragmentation. Neovastat markedly induced caspase-3, caspase-8, and caspase-9 activities, at similar levels to those measured in cells treated with tumor necrosis factor-alpha. Activation of caspases by Neovastat appears to be essential for its proapoptotic effects because all apoptotic features were blocked by zVAD-fmk, a broad-spectrum caspase inhibitor. The activation of caspases was correlated with the cleavage of the nuclear substrate poly(ADP-ribose) polymerase, and by a concomitant release of cytoch...","internal_url":"https://www.academia.edu/65500584/The_antiangiogenic_agent_Neovastat_AE_941_induces_endothelial_cell_apoptosis","translated_internal_url":"","created_at":"2021-12-22T06:19:49.796-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":37591436,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":77069464,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/77069464/thumbnails/1.jpg","file_name":"795.full.pdf","download_url":"https://www.academia.edu/attachments/77069464/download_file?st=MTczMjQ3ODk3MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_antiangiogenic_agent_Neovastat_AE_94.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/77069464/795.full-libre.pdf?1640183441=\u0026response-content-disposition=attachment%3B+filename%3DThe_antiangiogenic_agent_Neovastat_AE_94.pdf\u0026Expires=1732482570\u0026Signature=XoDcPtPTE-IKmgQ~lx7DdD1AIk07SwubzikZe4y4QueuUl5ai1jHCQoDG1PAlGreDx2a5dh1BKUSxB~Qh~TJJii6d-btrYRKL-zBaNNjQhw8c95OqbuONEUCLtEnH1kDLzkPMEO3mVhLgHxZmKLvjViD4-AoHyDoXDh~vE6fxbIt3NYrpf3~y2DzrqzS2ZPG1D01v-sb7UaRG0whZw8s7uKDx2gnPWYFjDT2oCOPuy~LPNhMJX34tvLYltju~J9oAJGgttKk12VJ5x8imH42sV4rNsvVAjuKm3cI9IXCBWc3JPphAx-0JuOBss5QPazc~UFbqcq8uhTyPulbQpx7hg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_antiangiogenic_agent_Neovastat_AE_941_induces_endothelial_cell_apoptosis","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":37591436,"first_name":"Edith","middle_initials":null,"last_name":"Beaulieu","page_name":"EdithBeaulieu","domain_name":"independent","created_at":"2015-11-03T14:27:08.767-08:00","display_name":"Edith Beaulieu","url":"https://independent.academia.edu/EdithBeaulieu"},"attachments":[{"id":77069464,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/77069464/thumbnails/1.jpg","file_name":"795.full.pdf","download_url":"https://www.academia.edu/attachments/77069464/download_file?st=MTczMjQ3ODk3MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_antiangiogenic_agent_Neovastat_AE_94.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/77069464/795.full-libre.pdf?1640183441=\u0026response-content-disposition=attachment%3B+filename%3DThe_antiangiogenic_agent_Neovastat_AE_94.pdf\u0026Expires=1732482570\u0026Signature=XoDcPtPTE-IKmgQ~lx7DdD1AIk07SwubzikZe4y4QueuUl5ai1jHCQoDG1PAlGreDx2a5dh1BKUSxB~Qh~TJJii6d-btrYRKL-zBaNNjQhw8c95OqbuONEUCLtEnH1kDLzkPMEO3mVhLgHxZmKLvjViD4-AoHyDoXDh~vE6fxbIt3NYrpf3~y2DzrqzS2ZPG1D01v-sb7UaRG0whZw8s7uKDx2gnPWYFjDT2oCOPuy~LPNhMJX34tvLYltju~J9oAJGgttKk12VJ5x8imH42sV4rNsvVAjuKm3cI9IXCBWc3JPphAx-0JuOBss5QPazc~UFbqcq8uhTyPulbQpx7hg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"},{"id":12981,"name":"Enzyme Inhibitors","url":"https://www.academia.edu/Documents/in/Enzyme_Inhibitors"},{"id":24731,"name":"Apoptosis","url":"https://www.academia.edu/Documents/in/Apoptosis"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":48057,"name":"DNA","url":"https://www.academia.edu/Documents/in/DNA"},{"id":50841,"name":"Caspases","url":"https://www.academia.edu/Documents/in/Caspases"},{"id":57808,"name":"Cell line","url":"https://www.academia.edu/Documents/in/Cell_line"},{"id":64568,"name":"Humans","url":"https://www.academia.edu/Documents/in/Humans"},{"id":84760,"name":"Mice","url":"https://www.academia.edu/Documents/in/Mice"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":112576,"name":"Cell Death","url":"https://www.academia.edu/Documents/in/Cell_Death"},{"id":238813,"name":"Chromatin","url":"https://www.academia.edu/Documents/in/Chromatin"},{"id":247477,"name":"Caspase","url":"https://www.academia.edu/Documents/in/Caspase"},{"id":260829,"name":"Cattle","url":"https://www.academia.edu/Documents/in/Cattle"},{"id":1035092,"name":"Aorta","url":"https://www.academia.edu/Documents/in/Aorta"},{"id":1157148,"name":"Cell Survival","url":"https://www.academia.edu/Documents/in/Cell_Survival"},{"id":2058817,"name":"Immunoblotting","url":"https://www.academia.edu/Documents/in/Immunoblotting"},{"id":2208075,"name":"Cysteine Proteinase Inhibitors","url":"https://www.academia.edu/Documents/in/Cysteine_Proteinase_Inhibitors"},{"id":2256666,"name":"DNA fragmentation","url":"https://www.academia.edu/Documents/in/DNA_fragmentation"},{"id":3314116,"name":"Angiogenesis inhibitors","url":"https://www.academia.edu/Documents/in/Angiogenesis_inhibitors"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65500583"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/65500583/Tissue_factor_pathway_inhibitor_TFPI_interferes_with_endothelial_cell_migration_via_ERK_parthway_and_proteins_involved_in_focal_complexes"><img alt="Research paper thumbnail of Tissue factor pathway inhibitor (TFPI) interferes with endothelial cell migration via ERK parthway and proteins involved in focal complexes" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/65500583/Tissue_factor_pathway_inhibitor_TFPI_interferes_with_endothelial_cell_migration_via_ERK_parthway_and_proteins_involved_in_focal_complexes">Tissue factor pathway inhibitor (TFPI) interferes with endothelial cell migration via ERK parthway and proteins involved in focal complexes</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A32 Introduction: Tissue factor pathway inhibitor (TFPI) is a plasma Kunitz-type serine protease ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A32 Introduction: Tissue factor pathway inhibitor (TFPI) is a plasma Kunitz-type serine protease inhibitor that is mainly known for its inhibition of tissue factor-mediated coagulation. In addition to its anticoagulant properties, emerging data showed that TFPI may also regulate endothelial cell functions via a non-haemostatic pathway.
 Methodology: In order to evaluate the antiangiogenic effects of TFPI on endothelial cells, recombinant human TFPI was obtained by cloning the full-length human TFPI cDNA and subsequent expression of the protein in Escherichia coli. After refolding, TFPI was used in vitro to characterize its effect on endothelial cell migration and capillary-like formation. The impact of TFPI on intracellular signalling pathway was studied using western blot and immunoprecipitation techniques. Finally, cell morphology and focal adhesion proteins were visualized by immunofluorescence and confocal microscopy.
 Results: In this work, we demonstrate physiologic concentrat...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65500583"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65500583"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65500583; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65500583]").text(description); $(".js-view-count[data-work-id=65500583]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65500583; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65500583']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65500583, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=65500583]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65500583,"title":"Tissue factor pathway inhibitor (TFPI) interferes with endothelial cell migration via ERK parthway and proteins involved in focal complexes","translated_title":"","metadata":{"abstract":"A32 Introduction: Tissue factor pathway inhibitor (TFPI) is a plasma Kunitz-type serine protease inhibitor that is mainly known for its inhibition of tissue factor-mediated coagulation. In addition to its anticoagulant properties, emerging data showed that TFPI may also regulate endothelial cell functions via a non-haemostatic pathway.\u2028 Methodology: In order to evaluate the antiangiogenic effects of TFPI on endothelial cells, recombinant human TFPI was obtained by cloning the full-length human TFPI cDNA and subsequent expression of the protein in Escherichia coli. After refolding, TFPI was used in vitro to characterize its effect on endothelial cell migration and capillary-like formation. The impact of TFPI on intracellular signalling pathway was studied using western blot and immunoprecipitation techniques. Finally, cell morphology and focal adhesion proteins were visualized by immunofluorescence and confocal microscopy.\u2028 Results: In this work, we demonstrate physiologic concentrat...","publication_date":{"day":null,"month":null,"year":2007,"errors":{}}},"translated_abstract":"A32 Introduction: Tissue factor pathway inhibitor (TFPI) is a plasma Kunitz-type serine protease inhibitor that is mainly known for its inhibition of tissue factor-mediated coagulation. In addition to its anticoagulant properties, emerging data showed that TFPI may also regulate endothelial cell functions via a non-haemostatic pathway.\u2028 Methodology: In order to evaluate the antiangiogenic effects of TFPI on endothelial cells, recombinant human TFPI was obtained by cloning the full-length human TFPI cDNA and subsequent expression of the protein in Escherichia coli. After refolding, TFPI was used in vitro to characterize its effect on endothelial cell migration and capillary-like formation. The impact of TFPI on intracellular signalling pathway was studied using western blot and immunoprecipitation techniques. Finally, cell morphology and focal adhesion proteins were visualized by immunofluorescence and confocal microscopy.\u2028 Results: In this work, we demonstrate physiologic concentrat...","internal_url":"https://www.academia.edu/65500583/Tissue_factor_pathway_inhibitor_TFPI_interferes_with_endothelial_cell_migration_via_ERK_parthway_and_proteins_involved_in_focal_complexes","translated_internal_url":"","created_at":"2021-12-22T06:19:49.703-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":37591436,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Tissue_factor_pathway_inhibitor_TFPI_interferes_with_endothelial_cell_migration_via_ERK_parthway_and_proteins_involved_in_focal_complexes","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":37591436,"first_name":"Edith","middle_initials":null,"last_name":"Beaulieu","page_name":"EdithBeaulieu","domain_name":"independent","created_at":"2015-11-03T14:27:08.767-08:00","display_name":"Edith Beaulieu","url":"https://independent.academia.edu/EdithBeaulieu"},"attachments":[],"research_interests":[{"id":8863,"name":"Cell Migration","url":"https://www.academia.edu/Documents/in/Cell_Migration"},{"id":28505,"name":"Adhesion","url":"https://www.academia.edu/Documents/in/Adhesion"},{"id":38831,"name":"Signal Transduction","url":"https://www.academia.edu/Documents/in/Signal_Transduction"},{"id":168057,"name":"Haemostasis and Thrombosis","url":"https://www.academia.edu/Documents/in/Haemostasis_and_Thrombosis"},{"id":213910,"name":"Mitogen Activated Protein Kinase","url":"https://www.academia.edu/Documents/in/Mitogen_Activated_Protein_Kinase"},{"id":401214,"name":"Endothelial cell","url":"https://www.academia.edu/Documents/in/Endothelial_cell"},{"id":787715,"name":"Molecular Cancer Therapeutics","url":"https://www.academia.edu/Documents/in/Molecular_Cancer_Therapeutics"},{"id":1274621,"name":"Extracellular","url":"https://www.academia.edu/Documents/in/Extracellular"},{"id":1909024,"name":"Cell Motility","url":"https://www.academia.edu/Documents/in/Cell_Motility"},{"id":3016998,"name":"Extracellular signal regulated kinases ","url":"https://www.academia.edu/Documents/in/Extracellular_signal_regulated_kinases"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65500582"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/65500582/The_antiangiogenic_agent_neovastat_AE_941_inhibits_vascular_endothelial_growth_factor_mediated_biological_effects"><img alt="Research paper thumbnail of The antiangiogenic agent neovastat (AE-941) inhibits vascular endothelial growth factor-mediated biological effects" class="work-thumbnail" src="https://attachments.academia-assets.com/77069333/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/65500582/The_antiangiogenic_agent_neovastat_AE_941_inhibits_vascular_endothelial_growth_factor_mediated_biological_effects">The antiangiogenic agent neovastat (AE-941) inhibits vascular endothelial growth factor-mediated biological effects</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">PURPOSE Vascular endothelial growth factor (VEGF) is a potent regulator of angiogenesis, which ex...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">PURPOSE Vascular endothelial growth factor (VEGF) is a potent regulator of angiogenesis, which exerts direct effects on vascular endothelial cells, including endothelial cell proliferation and survival, tubulogenesis, and vascular permeability. In this study, we examined whether Neovastat, a naturally occurring multifunctional antiangiogenic drug, could inhibit the endothelial cell response to VEGF stimulation. RESULTS We demonstrated that Neovastat was able to block the VEGF-dependent microvessel sprouting from Matrigel-embedded rat aortic rings, and it also blocked the VEGF-induced endothelial cell tubulogenesis in vitro. In vivo studies showed that Neovastat was able to specifically inhibit VEGF-induced plasma extravasation in numerous tissues, including pancreas and skin. The mechanism of action of Neovastat on VEGF-mediated effects was also evaluated at the molecular level. Neovastat was shown to compete against the binding of VEGF to its receptor in endothelial cells and signi...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="803794ed699e5929be5e641dc6e81796" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:77069333,&quot;asset_id&quot;:65500582,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/77069333/download_file?st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65500582"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65500582"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65500582; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65500582]").text(description); $(".js-view-count[data-work-id=65500582]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65500582; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65500582']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65500582, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "803794ed699e5929be5e641dc6e81796" } } $('.js-work-strip[data-work-id=65500582]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65500582,"title":"The antiangiogenic agent neovastat (AE-941) inhibits vascular endothelial growth factor-mediated biological effects","translated_title":"","metadata":{"abstract":"PURPOSE Vascular endothelial growth factor (VEGF) is a potent regulator of angiogenesis, which exerts direct effects on vascular endothelial cells, including endothelial cell proliferation and survival, tubulogenesis, and vascular permeability. In this study, we examined whether Neovastat, a naturally occurring multifunctional antiangiogenic drug, could inhibit the endothelial cell response to VEGF stimulation. RESULTS We demonstrated that Neovastat was able to block the VEGF-dependent microvessel sprouting from Matrigel-embedded rat aortic rings, and it also blocked the VEGF-induced endothelial cell tubulogenesis in vitro. In vivo studies showed that Neovastat was able to specifically inhibit VEGF-induced plasma extravasation in numerous tissues, including pancreas and skin. The mechanism of action of Neovastat on VEGF-mediated effects was also evaluated at the molecular level. Neovastat was shown to compete against the binding of VEGF to its receptor in endothelial cells and signi...","publisher":"Clinical cancer research : an official journal of the American Association for Cancer Research","publication_date":{"day":null,"month":null,"year":2002,"errors":{}}},"translated_abstract":"PURPOSE Vascular endothelial growth factor (VEGF) is a potent regulator of angiogenesis, which exerts direct effects on vascular endothelial cells, including endothelial cell proliferation and survival, tubulogenesis, and vascular permeability. In this study, we examined whether Neovastat, a naturally occurring multifunctional antiangiogenic drug, could inhibit the endothelial cell response to VEGF stimulation. RESULTS We demonstrated that Neovastat was able to block the VEGF-dependent microvessel sprouting from Matrigel-embedded rat aortic rings, and it also blocked the VEGF-induced endothelial cell tubulogenesis in vitro. In vivo studies showed that Neovastat was able to specifically inhibit VEGF-induced plasma extravasation in numerous tissues, including pancreas and skin. The mechanism of action of Neovastat on VEGF-mediated effects was also evaluated at the molecular level. Neovastat was shown to compete against the binding of VEGF to its receptor in endothelial cells and signi...","internal_url":"https://www.academia.edu/65500582/The_antiangiogenic_agent_neovastat_AE_941_inhibits_vascular_endothelial_growth_factor_mediated_biological_effects","translated_internal_url":"","created_at":"2021-12-22T06:19:49.564-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":37591436,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":77069333,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/77069333/thumbnails/1.jpg","file_name":"1242.full.pdf","download_url":"https://www.academia.edu/attachments/77069333/download_file?st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_antiangiogenic_agent_neovastat_AE_94.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/77069333/1242.full-libre.pdf?1640183453=\u0026response-content-disposition=attachment%3B+filename%3DThe_antiangiogenic_agent_neovastat_AE_94.pdf\u0026Expires=1732482570\u0026Signature=byeMRQ68804hNth7M07a8XZNGHXOVtI9V8ZbzbkXNTs734vXtyQ8AN0zT~EzBElFGSbv~271rDM57UxqaKgZff8GvYNzVoqWZbYTrduk1m4Sgn8V0RriSyW2-4EG007CJRO5zNFqalS4WFcItgtS81zLspxoYbsX-qmNE6REzcIwIYZQ9STlxk4Su6ukDHMaExyAgyyak2PuU5EysmyihAcaxEuljBJRD6M2ohFgGfRDlS5yuYtMeo0rzIf8y1cOb1NsAmJPwH9KS5Ts0f~MwYWxx0N5z1qIr0~QWOEO0JJXfoMz2tA1k7jiqOsBDU~ddsJLlcUe7PYQKJLTRh38yw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_antiangiogenic_agent_neovastat_AE_941_inhibits_vascular_endothelial_growth_factor_mediated_biological_effects","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":37591436,"first_name":"Edith","middle_initials":null,"last_name":"Beaulieu","page_name":"EdithBeaulieu","domain_name":"independent","created_at":"2015-11-03T14:27:08.767-08:00","display_name":"Edith Beaulieu","url":"https://independent.academia.edu/EdithBeaulieu"},"attachments":[{"id":77069333,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/77069333/thumbnails/1.jpg","file_name":"1242.full.pdf","download_url":"https://www.academia.edu/attachments/77069333/download_file?st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_antiangiogenic_agent_neovastat_AE_94.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/77069333/1242.full-libre.pdf?1640183453=\u0026response-content-disposition=attachment%3B+filename%3DThe_antiangiogenic_agent_neovastat_AE_94.pdf\u0026Expires=1732482570\u0026Signature=byeMRQ68804hNth7M07a8XZNGHXOVtI9V8ZbzbkXNTs734vXtyQ8AN0zT~EzBElFGSbv~271rDM57UxqaKgZff8GvYNzVoqWZbYTrduk1m4Sgn8V0RriSyW2-4EG007CJRO5zNFqalS4WFcItgtS81zLspxoYbsX-qmNE6REzcIwIYZQ9STlxk4Su6ukDHMaExyAgyyak2PuU5EysmyihAcaxEuljBJRD6M2ohFgGfRDlS5yuYtMeo0rzIf8y1cOb1NsAmJPwH9KS5Ts0f~MwYWxx0N5z1qIr0~QWOEO0JJXfoMz2tA1k7jiqOsBDU~ddsJLlcUe7PYQKJLTRh38yw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":38650,"name":"Cell Division","url":"https://www.academia.edu/Documents/in/Cell_Division"},{"id":64568,"name":"Humans","url":"https://www.academia.edu/Documents/in/Humans"},{"id":71421,"name":"Capillaries","url":"https://www.academia.edu/Documents/in/Capillaries"},{"id":81148,"name":"Epidermal Growth Factor/ErbB receptors","url":"https://www.academia.edu/Documents/in/Epidermal_Growth_Factor_ErbB_receptors"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":138877,"name":"Vascular endothelium","url":"https://www.academia.edu/Documents/in/Vascular_endothelium"},{"id":172083,"name":"Phosphorylation","url":"https://www.academia.edu/Documents/in/Phosphorylation"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":1010725,"name":"Protein Binding","url":"https://www.academia.edu/Documents/in/Protein_Binding"},{"id":1035092,"name":"Aorta","url":"https://www.academia.edu/Documents/in/Aorta"},{"id":1663739,"name":"Tyrosine","url":"https://www.academia.edu/Documents/in/Tyrosine"},{"id":3314116,"name":"Angiogenesis inhibitors","url":"https://www.academia.edu/Documents/in/Angiogenesis_inhibitors"},{"id":3881526,"name":"In Vitro Techniques","url":"https://www.academia.edu/Documents/in/In_Vitro_Techniques"},{"id":4043962,"name":"Vascular endothelial growth factors","url":"https://www.academia.edu/Documents/in/Vascular_endothelial_growth_factors"}],"urls":[{"id":15532211,"url":"http://clincancerres.aacrjournals.org/content/clincanres/8/4/1242.full.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65500581"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/65500581/Impaired_membrane_type_1_matrix_metalloproteinase_phosphorylation_results_in_blocking_3D_collagen_invasion_by_tumor_cells_through_cell_cycle_arrest_in_G0_G1_phase"><img alt="Research paper thumbnail of Impaired membrane-type 1 matrix metalloproteinase phosphorylation results in blocking 3D-collagen invasion by tumor cells through cell cycle arrest in G0/G1 phase" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/65500581/Impaired_membrane_type_1_matrix_metalloproteinase_phosphorylation_results_in_blocking_3D_collagen_invasion_by_tumor_cells_through_cell_cycle_arrest_in_G0_G1_phase">Impaired membrane-type 1 matrix metalloproteinase phosphorylation results in blocking 3D-collagen invasion by tumor cells through cell cycle arrest in G0/G1 phase</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">B200 Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a transmembrane matrix metalloproteina...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">B200 Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a transmembrane matrix metalloproteinase (MMP) that degrades several component of the extracellular matrix, and this activity has been shown to be important for both tumor growth and invasion. We have recently shown that MT1-MMP is phosphorylated on its unique cytoplasmic tyrosine 573, and that this phosphorylation is necessary for in vitro tumor cell migration. In this study, we investigate the mechanisms involved in phosphoMT1-MMP- mediated tumor cell proliferation and invasion.
 Fibrosarcoma cells (HT-1080) were stably transfected with the wild type or the non-phosphorylable (Y573F mutant) forms of MT1-MMP. Cell proliferation and invasion studies were performed on 2D- or within a 3D-type 1 collagen matrix. MT1-MMP expression was determined by reverse transcription PCR, western blot or zymography. Cell cycle was analysed by flow cytometry.
 Flow cytometry analysis of the stable transfectants showed that MT1-MMP was express...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65500581"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65500581"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65500581; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65500581]").text(description); $(".js-view-count[data-work-id=65500581]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65500581; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65500581']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65500581, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=65500581]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65500581,"title":"Impaired membrane-type 1 matrix metalloproteinase phosphorylation results in blocking 3D-collagen invasion by tumor cells through cell cycle arrest in G0/G1 phase","translated_title":"","metadata":{"abstract":"B200 Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a transmembrane matrix metalloproteinase (MMP) that degrades several component of the extracellular matrix, and this activity has been shown to be important for both tumor growth and invasion. We have recently shown that MT1-MMP is phosphorylated on its unique cytoplasmic tyrosine 573, and that this phosphorylation is necessary for in vitro tumor cell migration. In this study, we investigate the mechanisms involved in phosphoMT1-MMP- mediated tumor cell proliferation and invasion.\u2028 Fibrosarcoma cells (HT-1080) were stably transfected with the wild type or the non-phosphorylable (Y573F mutant) forms of MT1-MMP. Cell proliferation and invasion studies were performed on 2D- or within a 3D-type 1 collagen matrix. MT1-MMP expression was determined by reverse transcription PCR, western blot or zymography. Cell cycle was analysed by flow cytometry.\u2028 Flow cytometry analysis of the stable transfectants showed that MT1-MMP was express...","publication_date":{"day":null,"month":null,"year":2007,"errors":{}}},"translated_abstract":"B200 Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a transmembrane matrix metalloproteinase (MMP) that degrades several component of the extracellular matrix, and this activity has been shown to be important for both tumor growth and invasion. We have recently shown that MT1-MMP is phosphorylated on its unique cytoplasmic tyrosine 573, and that this phosphorylation is necessary for in vitro tumor cell migration. In this study, we investigate the mechanisms involved in phosphoMT1-MMP- mediated tumor cell proliferation and invasion.\u2028 Fibrosarcoma cells (HT-1080) were stably transfected with the wild type or the non-phosphorylable (Y573F mutant) forms of MT1-MMP. Cell proliferation and invasion studies were performed on 2D- or within a 3D-type 1 collagen matrix. MT1-MMP expression was determined by reverse transcription PCR, western blot or zymography. Cell cycle was analysed by flow cytometry.\u2028 Flow cytometry analysis of the stable transfectants showed that MT1-MMP was express...","internal_url":"https://www.academia.edu/65500581/Impaired_membrane_type_1_matrix_metalloproteinase_phosphorylation_results_in_blocking_3D_collagen_invasion_by_tumor_cells_through_cell_cycle_arrest_in_G0_G1_phase","translated_internal_url":"","created_at":"2021-12-22T06:19:49.468-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":37591436,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Impaired_membrane_type_1_matrix_metalloproteinase_phosphorylation_results_in_blocking_3D_collagen_invasion_by_tumor_cells_through_cell_cycle_arrest_in_G0_G1_phase","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":37591436,"first_name":"Edith","middle_initials":null,"last_name":"Beaulieu","page_name":"EdithBeaulieu","domain_name":"independent","created_at":"2015-11-03T14:27:08.767-08:00","display_name":"Edith Beaulieu","url":"https://independent.academia.edu/EdithBeaulieu"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65500007"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/65500007/Matrix_Metalloproteinases_and_Their_Inhibitors_in_Human_Pituitary_Tumors"><img alt="Research paper thumbnail of Matrix Metalloproteinases and Their Inhibitors in Human Pituitary Tumors" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/65500007/Matrix_Metalloproteinases_and_Their_Inhibitors_in_Human_Pituitary_Tumors">Matrix Metalloproteinases and Their Inhibitors in Human Pituitary Tumors</a></div><div class="wp-workCard_item"><span>Neurosurgery</span><span>, 1999</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65500007"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65500007"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65500007; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65500007]").text(description); $(".js-view-count[data-work-id=65500007]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65500007; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65500007']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65500007, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=65500007]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65500007,"title":"Matrix Metalloproteinases and Their Inhibitors in Human Pituitary Tumors","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1999,"errors":{}},"publication_name":"Neurosurgery"},"translated_abstract":null,"internal_url":"https://www.academia.edu/65500007/Matrix_Metalloproteinases_and_Their_Inhibitors_in_Human_Pituitary_Tumors","translated_internal_url":"","created_at":"2021-12-22T06:15:44.172-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":37591436,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Matrix_Metalloproteinases_and_Their_Inhibitors_in_Human_Pituitary_Tumors","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":37591436,"first_name":"Edith","middle_initials":null,"last_name":"Beaulieu","page_name":"EdithBeaulieu","domain_name":"independent","created_at":"2015-11-03T14:27:08.767-08:00","display_name":"Edith Beaulieu","url":"https://independent.academia.edu/EdithBeaulieu"},"attachments":[],"research_interests":[{"id":650,"name":"Neurosurgery","url":"https://www.academia.edu/Documents/in/Neurosurgery"},{"id":1920779,"name":"Matrix Metalloproteinase","url":"https://www.academia.edu/Documents/in/Matrix_Metalloproteinase"}],"urls":[{"id":15531993,"url":"http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage\u0026an=00006123-199912000-00033"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="47914415"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/47914415/Inhibition_of_P_glycoprotein_by_cyclosporin_A_analogues_and_metabolites"><img alt="Research paper thumbnail of Inhibition of P-glycoprotein by cyclosporin A analogues and metabolites" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/47914415/Inhibition_of_P_glycoprotein_by_cyclosporin_A_analogues_and_metabolites">Inhibition of P-glycoprotein by cyclosporin A analogues and metabolites</a></div><div class="wp-workCard_item"><span>Biochemistry and Cell Biology</span><span>, Jan 24, 2011</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The interaction between P-glycoprotein (P-gp) from membranes isolated from multidrug-resistant Ch...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The interaction between P-glycoprotein (P-gp) from membranes isolated from multidrug-resistant Chinese hamster ovary cells and cyclosporin A (CsA) analogues and its metabolites was characterized. Screening of these latter as chemosensitizers was performed using three different assays: (i) vinblastine uptake, (ii) photoaffinity labeling by [125I]iodoaryl azidoprazosin, and (iii) P-gp ATPase activity. Oxidation of the hydroxyl group at position 1 of CsA (200-096), CsG (215-834), or CsD (PSC-833) increased their inhibition of P-gp. CsA analogues (208-032, 208-183) modified at position 11 retained their ability to inhibit P-gp while analogues modified at position 2 (CsC and CsD) lost their efficiency. The inhibitions induced by metabolites of CsA were also compared to those obtained with CsG metabolites. From all the molecules tested, PSC-833 and 280-446 peptolide were the strongest inhibitors. Our results indicate that modifications of CsA analogues at position 1 and 2 are critical for their interaction with P-gp and that CsA metabolites retain a portion of the inhibitory activity of the parent drug.Key words: P-glycoprotein, cyclosporin A, vinblastine uptake, photolabeling, ATPase activity.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="47914415"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="47914415"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47914415; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47914415]").text(description); $(".js-view-count[data-work-id=47914415]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47914415; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='47914415']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 47914415, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=47914415]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":47914415,"title":"Inhibition of P-glycoprotein by cyclosporin A analogues and metabolites","translated_title":"","metadata":{"abstract":"The interaction between P-glycoprotein (P-gp) from membranes isolated from multidrug-resistant Chinese hamster ovary cells and cyclosporin A (CsA) analogues and its metabolites was characterized. Screening of these latter as chemosensitizers was performed using three different assays: (i) vinblastine uptake, (ii) photoaffinity labeling by [125I]iodoaryl azidoprazosin, and (iii) P-gp ATPase activity. Oxidation of the hydroxyl group at position 1 of CsA (200-096), CsG (215-834), or CsD (PSC-833) increased their inhibition of P-gp. CsA analogues (208-032, 208-183) modified at position 11 retained their ability to inhibit P-gp while analogues modified at position 2 (CsC and CsD) lost their efficiency. The inhibitions induced by metabolites of CsA were also compared to those obtained with CsG metabolites. From all the molecules tested, PSC-833 and 280-446 peptolide were the strongest inhibitors. Our results indicate that modifications of CsA analogues at position 1 and 2 are critical for their interaction with P-gp and that CsA metabolites retain a portion of the inhibitory activity of the parent drug.Key words: P-glycoprotein, cyclosporin A, vinblastine uptake, photolabeling, ATPase activity.","publication_date":{"day":24,"month":1,"year":2011,"errors":{}},"publication_name":"Biochemistry and Cell Biology"},"translated_abstract":"The interaction between P-glycoprotein (P-gp) from membranes isolated from multidrug-resistant Chinese hamster ovary cells and cyclosporin A (CsA) analogues and its metabolites was characterized. Screening of these latter as chemosensitizers was performed using three different assays: (i) vinblastine uptake, (ii) photoaffinity labeling by [125I]iodoaryl azidoprazosin, and (iii) P-gp ATPase activity. Oxidation of the hydroxyl group at position 1 of CsA (200-096), CsG (215-834), or CsD (PSC-833) increased their inhibition of P-gp. CsA analogues (208-032, 208-183) modified at position 11 retained their ability to inhibit P-gp while analogues modified at position 2 (CsC and CsD) lost their efficiency. The inhibitions induced by metabolites of CsA were also compared to those obtained with CsG metabolites. From all the molecules tested, PSC-833 and 280-446 peptolide were the strongest inhibitors. Our results indicate that modifications of CsA analogues at position 1 and 2 are critical for their interaction with P-gp and that CsA metabolites retain a portion of the inhibitory activity of the parent drug.Key words: P-glycoprotein, cyclosporin A, vinblastine uptake, photolabeling, ATPase activity.","internal_url":"https://www.academia.edu/47914415/Inhibition_of_P_glycoprotein_by_cyclosporin_A_analogues_and_metabolites","translated_internal_url":"","created_at":"2021-05-03T06:35:25.401-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":37591436,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Inhibition_of_P_glycoprotein_by_cyclosporin_A_analogues_and_metabolites","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":37591436,"first_name":"Edith","middle_initials":null,"last_name":"Beaulieu","page_name":"EdithBeaulieu","domain_name":"independent","created_at":"2015-11-03T14:27:08.767-08:00","display_name":"Edith Beaulieu","url":"https://independent.academia.edu/EdithBeaulieu"},"attachments":[],"research_interests":[{"id":13827,"name":"Cell Biology","url":"https://www.academia.edu/Documents/in/Cell_Biology"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":126972,"name":"P-glycoprotein","url":"https://www.academia.edu/Documents/in/P-glycoprotein"},{"id":168352,"name":"Cyclosporine","url":"https://www.academia.edu/Documents/in/Cyclosporine"},{"id":413195,"name":"Time Factors","url":"https://www.academia.edu/Documents/in/Time_Factors"},{"id":1254280,"name":"Endosomes","url":"https://www.academia.edu/Documents/in/Endosomes"},{"id":1540375,"name":"Vinblastine","url":"https://www.academia.edu/Documents/in/Vinblastine"},{"id":1681026,"name":"Biochemistry and cell biology","url":"https://www.academia.edu/Documents/in/Biochemistry_and_cell_biology"},{"id":1722637,"name":"Verapamil","url":"https://www.academia.edu/Documents/in/Verapamil"},{"id":1816594,"name":"Adenosine Triphosphate","url":"https://www.academia.edu/Documents/in/Adenosine_Triphosphate"},{"id":2468093,"name":"Cell Membrane","url":"https://www.academia.edu/Documents/in/Cell_Membrane"},{"id":3004151,"name":"CHO cells","url":"https://www.academia.edu/Documents/in/CHO_cells"},{"id":3214915,"name":"Cricetinae","url":"https://www.academia.edu/Documents/in/Cricetinae"},{"id":3763225,"name":"Medical and Health Sciences","url":"https://www.academia.edu/Documents/in/Medical_and_Health_Sciences"}],"urls":[{"id":9920613,"url":"http://www.nrcresearchpress.com/doi/abs/10.1139/o99-011"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="47914414"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/47914414/Expression_of_matrix_metalloproteinases_and_their_inhibitors_in_human_brain_tumors"><img alt="Research paper thumbnail of Expression of matrix metalloproteinases and their inhibitors in human brain tumors" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/47914414/Expression_of_matrix_metalloproteinases_and_their_inhibitors_in_human_brain_tumors">Expression of matrix metalloproteinases and their inhibitors in human brain tumors</a></div><div class="wp-workCard_item"><span>Clinical and Experimental Metastasis</span><span>, Feb 1, 1999</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Sixty human brain tumors, classified according to the New World Health Organization (WHO) classif...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Sixty human brain tumors, classified according to the New World Health Organization (WHO) classification including, grade I schwannomas, meningiomas and pilocytic astrocytomas, grade II astrocytomas, grade III anaplastic astrocytomas, grade IV glioblastomas, grade III anaplastic oligodendrogliomas and grade IV glioblastomas and lung and melanoma metastases were analyzed for the expression of three matrix metalloproteinases (MMPs), two tissue inhibitors of MMPs (TIMPs) and for MMP activity. Some correlation was found between MMP expression and the degree of malignancy. Western blotting analysis revealed a more uniform pattern of distribution of MMP-2 (gelatinase A) than of MMP-9 (gelatinase B) and MMP-12 (metalloelastase) among tumors. MMP-9 levels were found to be significantly higher in grade III anaplastic astrocytomas and anaplastic oligodendrogliomas than those in grade I schwannomas and meningiomas. Anaplastic astrocytomas and Grade IV glioblastomas expressed significantly higher levels MMP-12 than grade I meningiomas. All sixty tumors showed a similar pattern of activity in zymography, proMMP-9 being the major species detected. Interestingly, TIMP-1 and TIMP-2 expression levels were especially low in tumors of grade II and grade III but significantly higher in tumors of grade I, particularly in schwannomas. Taken together, these data suggest that: 1) a balance between MMPs and TIMPs has an important role to play in human brain tumors; 2) TIMP expression may be valuable markers for tumor malignancy.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="47914414"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="47914414"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47914414; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47914414]").text(description); $(".js-view-count[data-work-id=47914414]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47914414; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='47914414']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 47914414, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=47914414]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":47914414,"title":"Expression of matrix metalloproteinases and their inhibitors in human brain tumors","translated_title":"","metadata":{"abstract":"Sixty human brain tumors, classified according to the New World Health Organization (WHO) classification including, grade I schwannomas, meningiomas and pilocytic astrocytomas, grade II astrocytomas, grade III anaplastic astrocytomas, grade IV glioblastomas, grade III anaplastic oligodendrogliomas and grade IV glioblastomas and lung and melanoma metastases were analyzed for the expression of three matrix metalloproteinases (MMPs), two tissue inhibitors of MMPs (TIMPs) and for MMP activity. Some correlation was found between MMP expression and the degree of malignancy. Western blotting analysis revealed a more uniform pattern of distribution of MMP-2 (gelatinase A) than of MMP-9 (gelatinase B) and MMP-12 (metalloelastase) among tumors. MMP-9 levels were found to be significantly higher in grade III anaplastic astrocytomas and anaplastic oligodendrogliomas than those in grade I schwannomas and meningiomas. Anaplastic astrocytomas and Grade IV glioblastomas expressed significantly higher levels MMP-12 than grade I meningiomas. All sixty tumors showed a similar pattern of activity in zymography, proMMP-9 being the major species detected. Interestingly, TIMP-1 and TIMP-2 expression levels were especially low in tumors of grade II and grade III but significantly higher in tumors of grade I, particularly in schwannomas. Taken together, these data suggest that: 1) a balance between MMPs and TIMPs has an important role to play in human brain tumors; 2) TIMP expression may be valuable markers for tumor malignancy.","publication_date":{"day":1,"month":2,"year":1999,"errors":{}},"publication_name":"Clinical and Experimental Metastasis"},"translated_abstract":"Sixty human brain tumors, classified according to the New World Health Organization (WHO) classification including, grade I schwannomas, meningiomas and pilocytic astrocytomas, grade II astrocytomas, grade III anaplastic astrocytomas, grade IV glioblastomas, grade III anaplastic oligodendrogliomas and grade IV glioblastomas and lung and melanoma metastases were analyzed for the expression of three matrix metalloproteinases (MMPs), two tissue inhibitors of MMPs (TIMPs) and for MMP activity. Some correlation was found between MMP expression and the degree of malignancy. Western blotting analysis revealed a more uniform pattern of distribution of MMP-2 (gelatinase A) than of MMP-9 (gelatinase B) and MMP-12 (metalloelastase) among tumors. MMP-9 levels were found to be significantly higher in grade III anaplastic astrocytomas and anaplastic oligodendrogliomas than those in grade I schwannomas and meningiomas. Anaplastic astrocytomas and Grade IV glioblastomas expressed significantly higher levels MMP-12 than grade I meningiomas. All sixty tumors showed a similar pattern of activity in zymography, proMMP-9 being the major species detected. Interestingly, TIMP-1 and TIMP-2 expression levels were especially low in tumors of grade II and grade III but significantly higher in tumors of grade I, particularly in schwannomas. Taken together, these data suggest that: 1) a balance between MMPs and TIMPs has an important role to play in human brain tumors; 2) TIMP expression may be valuable markers for tumor malignancy.","internal_url":"https://www.academia.edu/47914414/Expression_of_matrix_metalloproteinases_and_their_inhibitors_in_human_brain_tumors","translated_internal_url":"","created_at":"2021-05-03T06:35:25.267-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":37591436,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Expression_of_matrix_metalloproteinases_and_their_inhibitors_in_human_brain_tumors","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":37591436,"first_name":"Edith","middle_initials":null,"last_name":"Beaulieu","page_name":"EdithBeaulieu","domain_name":"independent","created_at":"2015-11-03T14:27:08.767-08:00","display_name":"Edith Beaulieu","url":"https://independent.academia.edu/EdithBeaulieu"},"attachments":[],"research_interests":[{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"}],"urls":[{"id":9920612,"url":"http://www.ncbi.nlm.nih.gov/pubmed/10845554"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="47914413"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/47914413/The_Antiangiogenic_Agent_Neovastat_%C3%86_941_Inhibits_Vascular_Endothelial_Growth_Factor_mediated_Biological_Effects"><img alt="Research paper thumbnail of The Antiangiogenic Agent Neovastat (Æ-941) Inhibits Vascular Endothelial Growth Factor-mediated Biological Effects" class="work-thumbnail" src="https://attachments.academia-assets.com/66797205/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/47914413/The_Antiangiogenic_Agent_Neovastat_%C3%86_941_Inhibits_Vascular_Endothelial_Growth_Factor_mediated_Biological_Effects">The Antiangiogenic Agent Neovastat (Æ-941) Inhibits Vascular Endothelial Growth Factor-mediated Biological Effects</a></div><div class="wp-workCard_item"><span>Clinical Cancer Research</span><span>, Apr 1, 2002</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="28f7b6cf1d074d723f16fa4a48729bf5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:66797205,&quot;asset_id&quot;:47914413,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/66797205/download_file?st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="47914413"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="47914413"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47914413; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47914413]").text(description); $(".js-view-count[data-work-id=47914413]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47914413; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='47914413']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 47914413, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "28f7b6cf1d074d723f16fa4a48729bf5" } } $('.js-work-strip[data-work-id=47914413]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":47914413,"title":"The Antiangiogenic Agent Neovastat (Æ-941) Inhibits Vascular Endothelial Growth Factor-mediated Biological Effects","translated_title":"","metadata":{"grobid_abstract":"Purpose: Vascular endothelial growth factor (VEGF) is a potent regulator of angiogenesis, which exerts direct effects on vascular endothelial cells, including endothelial cell proliferation and survival, tubulogenesis, and vascular permeability. In this study, we examined whether Neovastat, a naturally occurring multifunctional antiangiogenic drug, could inhibit the endothelial cell response to VEGF stimulation.","publication_date":{"day":1,"month":4,"year":2002,"errors":{}},"publication_name":"Clinical Cancer Research","grobid_abstract_attachment_id":66797205},"translated_abstract":null,"internal_url":"https://www.academia.edu/47914413/The_Antiangiogenic_Agent_Neovastat_%C3%86_941_Inhibits_Vascular_Endothelial_Growth_Factor_mediated_Biological_Effects","translated_internal_url":"","created_at":"2021-05-03T06:35:25.134-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":37591436,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":66797205,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/66797205/thumbnails/1.jpg","file_name":"1242.full.pdf","download_url":"https://www.academia.edu/attachments/66797205/download_file?st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Antiangiogenic_Agent_Neovastat_Ae_941.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/66797205/1242.full-libre.pdf?1620050785=\u0026response-content-disposition=attachment%3B+filename%3DThe_Antiangiogenic_Agent_Neovastat_Ae_941.pdf\u0026Expires=1732482571\u0026Signature=AZECOI0AAuyuiBl8VBfmFIRJfwQK9z6CzyZhVS6G-fjb-h1x98UqhAqd2Nx1LdYNN~jx~0MAptCIIu3CzkJLLFr9pjZksM2QAhaYldWXPJuHpgcfGsKxXNQbF5DFnraS0l2rIcNxS7m9Mw-fn20scsY5N627ITIOrwHpWcyM0xI-V5Ww2e6omsTgD9BBZLuKdEk0Dddk1Lut2lPA2wJ3djddTsJ8dRqC~wT2duBGD6~jKGNutOJ0ptzBNwbZRlIzUJLTPFk212aAnvNWDnEbFvhQeKw3z1i9mcvlq93X~~Qny~LUR8Vm2W3jkwmg9a8gVRpLZjzE3iMH5ZgCMo6C-Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Antiangiogenic_Agent_Neovastat_Æ_941_Inhibits_Vascular_Endothelial_Growth_Factor_mediated_Biological_Effects","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":37591436,"first_name":"Edith","middle_initials":null,"last_name":"Beaulieu","page_name":"EdithBeaulieu","domain_name":"independent","created_at":"2015-11-03T14:27:08.767-08:00","display_name":"Edith Beaulieu","url":"https://independent.academia.edu/EdithBeaulieu"},"attachments":[{"id":66797205,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/66797205/thumbnails/1.jpg","file_name":"1242.full.pdf","download_url":"https://www.academia.edu/attachments/66797205/download_file?st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Antiangiogenic_Agent_Neovastat_Ae_941.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/66797205/1242.full-libre.pdf?1620050785=\u0026response-content-disposition=attachment%3B+filename%3DThe_Antiangiogenic_Agent_Neovastat_Ae_941.pdf\u0026Expires=1732482571\u0026Signature=AZECOI0AAuyuiBl8VBfmFIRJfwQK9z6CzyZhVS6G-fjb-h1x98UqhAqd2Nx1LdYNN~jx~0MAptCIIu3CzkJLLFr9pjZksM2QAhaYldWXPJuHpgcfGsKxXNQbF5DFnraS0l2rIcNxS7m9Mw-fn20scsY5N627ITIOrwHpWcyM0xI-V5Ww2e6omsTgD9BBZLuKdEk0Dddk1Lut2lPA2wJ3djddTsJ8dRqC~wT2duBGD6~jKGNutOJ0ptzBNwbZRlIzUJLTPFk212aAnvNWDnEbFvhQeKw3z1i9mcvlq93X~~Qny~LUR8Vm2W3jkwmg9a8gVRpLZjzE3iMH5ZgCMo6C-Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":8942,"name":"Treatment","url":"https://www.academia.edu/Documents/in/Treatment"},{"id":59370,"name":"In Vitro","url":"https://www.academia.edu/Documents/in/In_Vitro"},{"id":302037,"name":"In Vivo","url":"https://www.academia.edu/Documents/in/In_Vivo"},{"id":401214,"name":"Endothelial cell","url":"https://www.academia.edu/Documents/in/Endothelial_cell"},{"id":782251,"name":"Cell Proliferation","url":"https://www.academia.edu/Documents/in/Cell_Proliferation"},{"id":783432,"name":"Biological activity","url":"https://www.academia.edu/Documents/in/Biological_activity"}],"urls":[{"id":9920611,"url":"http://cat.inist.fr/?aModele=afficheN\u0026cpsidt=13599147"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="47914412"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/47914412/Tissue_factor_pathway_inhibitor_TFPI_interferes_with_endothelial_cell_migration_via_ERK_parthway_and_proteins_involved_in_focal_complexes"><img alt="Research paper thumbnail of Tissue factor pathway inhibitor (TFPI) interferes with endothelial cell migration via ERK parthway and proteins involved in focal complexes" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/47914412/Tissue_factor_pathway_inhibitor_TFPI_interferes_with_endothelial_cell_migration_via_ERK_parthway_and_proteins_involved_in_focal_complexes">Tissue factor pathway inhibitor (TFPI) interferes with endothelial cell migration via ERK parthway and proteins involved in focal complexes</a></div><div class="wp-workCard_item"><span>Molecular Cancer Therapeutics</span><span>, Nov 1, 2007</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="47914412"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="47914412"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47914412; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47914412]").text(description); $(".js-view-count[data-work-id=47914412]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47914412; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='47914412']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 47914412, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=47914412]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":47914412,"title":"Tissue factor pathway inhibitor (TFPI) interferes with endothelial cell migration via ERK parthway and proteins involved in focal complexes","translated_title":"","metadata":{"publication_date":{"day":1,"month":11,"year":2007,"errors":{}},"publication_name":"Molecular Cancer Therapeutics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/47914412/Tissue_factor_pathway_inhibitor_TFPI_interferes_with_endothelial_cell_migration_via_ERK_parthway_and_proteins_involved_in_focal_complexes","translated_internal_url":"","created_at":"2021-05-03T06:35:24.974-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":37591436,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Tissue_factor_pathway_inhibitor_TFPI_interferes_with_endothelial_cell_migration_via_ERK_parthway_and_proteins_involved_in_focal_complexes","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":37591436,"first_name":"Edith","middle_initials":null,"last_name":"Beaulieu","page_name":"EdithBeaulieu","domain_name":"independent","created_at":"2015-11-03T14:27:08.767-08:00","display_name":"Edith Beaulieu","url":"https://independent.academia.edu/EdithBeaulieu"},"attachments":[],"research_interests":[{"id":787715,"name":"Molecular Cancer Therapeutics","url":"https://www.academia.edu/Documents/in/Molecular_Cancer_Therapeutics"}],"urls":[{"id":9920610,"url":"http://mct.aacrjournals.org/content/6/11_Supplement/A32.short"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="47914411"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/47914411/The_antiangiogenic_agent_Neovastat_AE_941_induces_endothelial_cell_apoptosis"><img alt="Research paper thumbnail of The antiangiogenic agent Neovastat (AE-941) induces endothelial cell apoptosis" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/47914411/The_antiangiogenic_agent_Neovastat_AE_941_induces_endothelial_cell_apoptosis">The antiangiogenic agent Neovastat (AE-941) induces endothelial cell apoptosis</a></div><div class="wp-workCard_item"><span>Molecular cancer therapeutics</span><span>, 2002</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Neovastat (AE-941), a naturally occurring multifunctional antiangiogenic agent, has been shown to...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Neovastat (AE-941), a naturally occurring multifunctional antiangiogenic agent, has been shown to inhibit key components of the angiogenic process, including matrix metalloproteinases and vascular endothelial growth factor-mediated signaling events. In this study, we report the presence of a proapoptotic activity within this compound. Neovastat treatment of bovine aortic endothelial cells caused cell death with characteristics of apoptosis, including chromatin condensation and DNA fragmentation. Neovastat markedly induced caspase-3, caspase-8, and caspase-9 activities, at similar levels to those measured in cells treated with tumor necrosis factor-alpha. Activation of caspases by Neovastat appears to be essential for its proapoptotic effects because all apoptotic features were blocked by zVAD-fmk, a broad-spectrum caspase inhibitor. The activation of caspases was correlated with the cleavage of the nuclear substrate poly(ADP-ribose) polymerase, and by a concomitant release of cytoch...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="47914411"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="47914411"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47914411; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47914411]").text(description); $(".js-view-count[data-work-id=47914411]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47914411; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='47914411']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 47914411, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=47914411]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":47914411,"title":"The antiangiogenic agent Neovastat (AE-941) induces endothelial cell apoptosis","translated_title":"","metadata":{"abstract":"Neovastat (AE-941), a naturally occurring multifunctional antiangiogenic agent, has been shown to inhibit key components of the angiogenic process, including matrix metalloproteinases and vascular endothelial growth factor-mediated signaling events. In this study, we report the presence of a proapoptotic activity within this compound. Neovastat treatment of bovine aortic endothelial cells caused cell death with characteristics of apoptosis, including chromatin condensation and DNA fragmentation. Neovastat markedly induced caspase-3, caspase-8, and caspase-9 activities, at similar levels to those measured in cells treated with tumor necrosis factor-alpha. Activation of caspases by Neovastat appears to be essential for its proapoptotic effects because all apoptotic features were blocked by zVAD-fmk, a broad-spectrum caspase inhibitor. The activation of caspases was correlated with the cleavage of the nuclear substrate poly(ADP-ribose) polymerase, and by a concomitant release of cytoch...","publication_date":{"day":null,"month":null,"year":2002,"errors":{}},"publication_name":"Molecular cancer therapeutics"},"translated_abstract":"Neovastat (AE-941), a naturally occurring multifunctional antiangiogenic agent, has been shown to inhibit key components of the angiogenic process, including matrix metalloproteinases and vascular endothelial growth factor-mediated signaling events. In this study, we report the presence of a proapoptotic activity within this compound. Neovastat treatment of bovine aortic endothelial cells caused cell death with characteristics of apoptosis, including chromatin condensation and DNA fragmentation. Neovastat markedly induced caspase-3, caspase-8, and caspase-9 activities, at similar levels to those measured in cells treated with tumor necrosis factor-alpha. Activation of caspases by Neovastat appears to be essential for its proapoptotic effects because all apoptotic features were blocked by zVAD-fmk, a broad-spectrum caspase inhibitor. The activation of caspases was correlated with the cleavage of the nuclear substrate poly(ADP-ribose) polymerase, and by a concomitant release of cytoch...","internal_url":"https://www.academia.edu/47914411/The_antiangiogenic_agent_Neovastat_AE_941_induces_endothelial_cell_apoptosis","translated_internal_url":"","created_at":"2021-05-03T06:35:24.897-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":37591436,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_antiangiogenic_agent_Neovastat_AE_941_induces_endothelial_cell_apoptosis","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":37591436,"first_name":"Edith","middle_initials":null,"last_name":"Beaulieu","page_name":"EdithBeaulieu","domain_name":"independent","created_at":"2015-11-03T14:27:08.767-08:00","display_name":"Edith Beaulieu","url":"https://independent.academia.edu/EdithBeaulieu"},"attachments":[],"research_interests":[{"id":12981,"name":"Enzyme Inhibitors","url":"https://www.academia.edu/Documents/in/Enzyme_Inhibitors"},{"id":15719,"name":"Mitochondria","url":"https://www.academia.edu/Documents/in/Mitochondria"},{"id":24731,"name":"Apoptosis","url":"https://www.academia.edu/Documents/in/Apoptosis"},{"id":48057,"name":"DNA","url":"https://www.academia.edu/Documents/in/DNA"},{"id":50841,"name":"Caspases","url":"https://www.academia.edu/Documents/in/Caspases"},{"id":57808,"name":"Cell line","url":"https://www.academia.edu/Documents/in/Cell_line"},{"id":64568,"name":"Humans","url":"https://www.academia.edu/Documents/in/Humans"},{"id":84760,"name":"Mice","url":"https://www.academia.edu/Documents/in/Mice"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":112576,"name":"Cell Death","url":"https://www.academia.edu/Documents/in/Cell_Death"},{"id":238813,"name":"Chromatin","url":"https://www.academia.edu/Documents/in/Chromatin"},{"id":247477,"name":"Caspase","url":"https://www.academia.edu/Documents/in/Caspase"},{"id":260829,"name":"Cattle","url":"https://www.academia.edu/Documents/in/Cattle"},{"id":787715,"name":"Molecular Cancer Therapeutics","url":"https://www.academia.edu/Documents/in/Molecular_Cancer_Therapeutics"},{"id":1035092,"name":"Aorta","url":"https://www.academia.edu/Documents/in/Aorta"},{"id":1157148,"name":"Cell Survival","url":"https://www.academia.edu/Documents/in/Cell_Survival"},{"id":2058817,"name":"Immunoblotting","url":"https://www.academia.edu/Documents/in/Immunoblotting"},{"id":2208075,"name":"Cysteine Proteinase Inhibitors","url":"https://www.academia.edu/Documents/in/Cysteine_Proteinase_Inhibitors"},{"id":2256666,"name":"DNA fragmentation","url":"https://www.academia.edu/Documents/in/DNA_fragmentation"},{"id":3314116,"name":"Angiogenesis inhibitors","url":"https://www.academia.edu/Documents/in/Angiogenesis_inhibitors"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="47914410"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/47914410/The_Strongest_Expression_of_P_Glycoprotein_is_in_the_Blood_Brain_Barrier"><img alt="Research paper thumbnail of The Strongest Expression of P-Glycoprotein is in the Blood-Brain Barrier" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/47914410/The_Strongest_Expression_of_P_Glycoprotein_is_in_the_Blood_Brain_Barrier">The Strongest Expression of P-Glycoprotein is in the Blood-Brain Barrier</a></div><div class="wp-workCard_item"><span>Advances in Behavioral Biology</span><span>, 1996</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="47914410"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="47914410"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47914410; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47914410]").text(description); $(".js-view-count[data-work-id=47914410]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47914410; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='47914410']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 47914410, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=47914410]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":47914410,"title":"The Strongest Expression of P-Glycoprotein is in the Blood-Brain Barrier","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1996,"errors":{}},"publication_name":"Advances in Behavioral Biology"},"translated_abstract":null,"internal_url":"https://www.academia.edu/47914410/The_Strongest_Expression_of_P_Glycoprotein_is_in_the_Blood_Brain_Barrier","translated_internal_url":"","created_at":"2021-05-03T06:35:24.819-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":37591436,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_Strongest_Expression_of_P_Glycoprotein_is_in_the_Blood_Brain_Barrier","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":37591436,"first_name":"Edith","middle_initials":null,"last_name":"Beaulieu","page_name":"EdithBeaulieu","domain_name":"independent","created_at":"2015-11-03T14:27:08.767-08:00","display_name":"Edith Beaulieu","url":"https://independent.academia.edu/EdithBeaulieu"},"attachments":[],"research_interests":[{"id":620289,"name":"Behavioral Biology","url":"https://www.academia.edu/Documents/in/Behavioral_Biology"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="47914409"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/47914409/Direct_acting_fibrinolytic_enzymes_in_shark_cartilage_extractPotential_therapeutic_role_in_vascular_disorders"><img alt="Research paper thumbnail of Direct-acting fibrinolytic enzymes in shark cartilage extractPotential therapeutic role in vascular disorders" class="work-thumbnail" src="https://attachments.academia-assets.com/66797244/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/47914409/Direct_acting_fibrinolytic_enzymes_in_shark_cartilage_extractPotential_therapeutic_role_in_vascular_disorders">Direct-acting fibrinolytic enzymes in shark cartilage extractPotential therapeutic role in vascular disorders</a></div><div class="wp-workCard_item"><span>Thrombosis Research</span><span>, 2005</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6f0b46e66ec6af52694e780aa5d24c05" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:66797244,&quot;asset_id&quot;:47914409,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/66797244/download_file?st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="47914409"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="47914409"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47914409; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47914409]").text(description); $(".js-view-count[data-work-id=47914409]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47914409; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='47914409']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 47914409, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6f0b46e66ec6af52694e780aa5d24c05" } } $('.js-work-strip[data-work-id=47914409]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":47914409,"title":"Direct-acting fibrinolytic enzymes in shark cartilage extractPotential therapeutic role in vascular disorders","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"Fibrinogen and fibrin are molecules with overlapping roles in blood clotting, fibrinolysis, wound healing, inflammation, matrix and cellular interactions and neoplasia. There is currently much interest in the possible use of fibrinolytic agents in human therapeutics. In this study, we report the presence of fibrinolytic activities in shark cartilage extract (SCE). In vitro, SCE at 100 Ag/ml completely degraded fibrin gel in an aprotinin-insensitive manner, suggesting a non-plasmin molecular nature. SCE was able to cleave all chains of fibrinogen and fibrin and the cleavage was completely inhibited by 1,10-phenanthroline, suggesting an essential role for metalloprotease(s) in this process. Using fibrinogen zymography, we show that SCE contains two plasmin-independent fibrinolytic activities and that these activities are correlated with the presence of 58 and 62 kDa proteases in the extract. SCE-fibrinolytic activities are inhibited by dithiothreitol, suggesting that disulfide bonds are necessary for the protease structure. Finally, using thromboelastography, SCE markedly induced retraction of human platelet-rich plasma (PRP) clot, this process being completely abolished by 1,10-phenanthroline. These data suggest the presence of novel non-plasmin fibrinolytic activities within SCE. This extract may thus represent a potential source of new therapeutic molecules to prevent and treat vaso-occlusive and thromboembolic disorders. D","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"Thrombosis Research","grobid_abstract_attachment_id":66797244},"translated_abstract":null,"internal_url":"https://www.academia.edu/47914409/Direct_acting_fibrinolytic_enzymes_in_shark_cartilage_extractPotential_therapeutic_role_in_vascular_disorders","translated_internal_url":"","created_at":"2021-05-03T06:35:24.743-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":37591436,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":66797244,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/66797244/thumbnails/1.jpg","file_name":"S0049-3848_2804_2900409-820210503-29105-wq3vpc.pdf","download_url":"https://www.academia.edu/attachments/66797244/download_file?st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Direct_acting_fibrinolytic_enzymes_in_sh.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/66797244/S0049-3848_2804_2900409-820210503-29105-wq3vpc-libre.pdf?1620050782=\u0026response-content-disposition=attachment%3B+filename%3DDirect_acting_fibrinolytic_enzymes_in_sh.pdf\u0026Expires=1732482571\u0026Signature=fDR7V3SuVDoYgjEnWuaZt2B3nL7GXLqKvnSoRMngkd86gcw4Loe6c5LAOUof9GVSAZiPnUCHiGGZuP6RMTke~hUDJVHvunWEvUGn3jn3BwldDn84CSKYX89chsiDJqKs-mj6AhV5MIec4hC0ZdtbfACnnFxvpyyRifREDgS8LmNwnb5UvNA6lM7L44~goOyt93u5fUXKM~AJQHKHVl8KWT28ObZs1k4sCEy88rfTpjnuvnikUjG9xZSpQEsH2ColsXzNcT~UPYuyFprt8ef7JxJUHjvWZZlfe8mTEfHXXkht07N-FDfGbNeOoAhbfAp0Ul5QZt27lgleCBmftq06OQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Direct_acting_fibrinolytic_enzymes_in_shark_cartilage_extractPotential_therapeutic_role_in_vascular_disorders","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":37591436,"first_name":"Edith","middle_initials":null,"last_name":"Beaulieu","page_name":"EdithBeaulieu","domain_name":"independent","created_at":"2015-11-03T14:27:08.767-08:00","display_name":"Edith Beaulieu","url":"https://independent.academia.edu/EdithBeaulieu"},"attachments":[{"id":66797244,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/66797244/thumbnails/1.jpg","file_name":"S0049-3848_2804_2900409-820210503-29105-wq3vpc.pdf","download_url":"https://www.academia.edu/attachments/66797244/download_file?st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Direct_acting_fibrinolytic_enzymes_in_sh.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/66797244/S0049-3848_2804_2900409-820210503-29105-wq3vpc-libre.pdf?1620050782=\u0026response-content-disposition=attachment%3B+filename%3DDirect_acting_fibrinolytic_enzymes_in_sh.pdf\u0026Expires=1732482571\u0026Signature=fDR7V3SuVDoYgjEnWuaZt2B3nL7GXLqKvnSoRMngkd86gcw4Loe6c5LAOUof9GVSAZiPnUCHiGGZuP6RMTke~hUDJVHvunWEvUGn3jn3BwldDn84CSKYX89chsiDJqKs-mj6AhV5MIec4hC0ZdtbfACnnFxvpyyRifREDgS8LmNwnb5UvNA6lM7L44~goOyt93u5fUXKM~AJQHKHVl8KWT28ObZs1k4sCEy88rfTpjnuvnikUjG9xZSpQEsH2ColsXzNcT~UPYuyFprt8ef7JxJUHjvWZZlfe8mTEfHXXkht07N-FDfGbNeOoAhbfAp0Ul5QZt27lgleCBmftq06OQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":8942,"name":"Treatment","url":"https://www.academia.edu/Documents/in/Treatment"},{"id":52136,"name":"Platelet","url":"https://www.academia.edu/Documents/in/Platelet"},{"id":53044,"name":"Fibrinogen","url":"https://www.academia.edu/Documents/in/Fibrinogen"},{"id":55163,"name":"Enzymes","url":"https://www.academia.edu/Documents/in/Enzymes"},{"id":61095,"name":"Fibrin","url":"https://www.academia.edu/Documents/in/Fibrin"},{"id":64568,"name":"Humans","url":"https://www.academia.edu/Documents/in/Humans"},{"id":71124,"name":"Sharks","url":"https://www.academia.edu/Documents/in/Sharks"},{"id":78188,"name":"Cartilage","url":"https://www.academia.edu/Documents/in/Cartilage"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":179799,"name":"Page","url":"https://www.academia.edu/Documents/in/Page"},{"id":231661,"name":"Enzyme","url":"https://www.academia.edu/Documents/in/Enzyme"},{"id":244814,"name":"Clinical Sciences","url":"https://www.academia.edu/Documents/in/Clinical_Sciences"},{"id":335964,"name":"PrP","url":"https://www.academia.edu/Documents/in/PrP"},{"id":353724,"name":"Platelet Rich Plasma","url":"https://www.academia.edu/Documents/in/Platelet_Rich_Plasma"},{"id":496063,"name":"Thrombosis","url":"https://www.academia.edu/Documents/in/Thrombosis"},{"id":512756,"name":"Cleavage","url":"https://www.academia.edu/Documents/in/Cleavage"},{"id":695018,"name":"Molecular weight","url":"https://www.academia.edu/Documents/in/Molecular_weight"},{"id":2026170,"name":"Metalloproteases","url":"https://www.academia.edu/Documents/in/Metalloproteases"},{"id":2112553,"name":"Disulfide bond","url":"https://www.academia.edu/Documents/in/Disulfide_bond"},{"id":2532970,"name":"Vascular Diseases","url":"https://www.academia.edu/Documents/in/Vascular_Diseases"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="47914408"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/47914408/VEGF_increases_the_fibrinolytic_activity_of_endothelial_cells_within_fibrin_matrices_Involvement_of_VEGFR_2_tissue_type_plasminogen_activator_and_matrix_metalloproteinases"><img alt="Research paper thumbnail of VEGF increases the fibrinolytic activity of endothelial cells within fibrin matrices: Involvement of VEGFR-2, tissue type plasminogen activator and matrix metalloproteinases" class="work-thumbnail" src="https://attachments.academia-assets.com/66797206/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/47914408/VEGF_increases_the_fibrinolytic_activity_of_endothelial_cells_within_fibrin_matrices_Involvement_of_VEGFR_2_tissue_type_plasminogen_activator_and_matrix_metalloproteinases">VEGF increases the fibrinolytic activity of endothelial cells within fibrin matrices: Involvement of VEGFR-2, tissue type plasminogen activator and matrix metalloproteinases</a></div><div class="wp-workCard_item"><span>Thrombosis Research</span><span>, 2007</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1ece3e7434f6d14960b806a6e61b65a8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:66797206,&quot;asset_id&quot;:47914408,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/66797206/download_file?st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="47914408"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="47914408"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47914408; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47914408]").text(description); $(".js-view-count[data-work-id=47914408]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47914408; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='47914408']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 47914408, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1ece3e7434f6d14960b806a6e61b65a8" } } $('.js-work-strip[data-work-id=47914408]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":47914408,"title":"VEGF increases the fibrinolytic activity of endothelial cells within fibrin matrices: Involvement of VEGFR-2, tissue type plasminogen activator and matrix metalloproteinases","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2007,"errors":{}},"publication_name":"Thrombosis Research"},"translated_abstract":null,"internal_url":"https://www.academia.edu/47914408/VEGF_increases_the_fibrinolytic_activity_of_endothelial_cells_within_fibrin_matrices_Involvement_of_VEGFR_2_tissue_type_plasminogen_activator_and_matrix_metalloproteinases","translated_internal_url":"","created_at":"2021-05-03T06:35:24.666-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":37591436,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":66797206,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/66797206/thumbnails/1.jpg","file_name":"document.pdf","download_url":"https://www.academia.edu/attachments/66797206/download_file?st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"VEGF_increases_the_fibrinolytic_activity.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/66797206/document-libre.pdf?1620050790=\u0026response-content-disposition=attachment%3B+filename%3DVEGF_increases_the_fibrinolytic_activity.pdf\u0026Expires=1732482571\u0026Signature=eSA-Bzh7Da28dM1F1h0HKlMsog66Bx74vabZK-p~kk9TGqv1AvrABO9fF4aktOZ10hadWnl2OOwX0bK-H1gbrEVE70tJHCdW4Sw6rGS5-uIhLQhTeOH6QMT0CdjE9AD~gH-Eu~tVjNZrWr5fvLowNWVXC5vtslOvUmHyLjEht89MLvLXveqIWbHhVchunznEAJvPKYvvAZXtofG2VksnR2wzTzEeSu5dr35aLGtFwAS7yyWNKoUVdqx1ATYY7B9EbP3n6P-b5a3Rq-1ompcbb~AvTuYarGRuY6MYmhBPnu0czVWMxBFXDSXjBiy0A1ytBTkItJTyWIVRgs7Kj2zAVQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"VEGF_increases_the_fibrinolytic_activity_of_endothelial_cells_within_fibrin_matrices_Involvement_of_VEGFR_2_tissue_type_plasminogen_activator_and_matrix_metalloproteinases","translated_slug":"","page_count":32,"language":"en","content_type":"Work","owner":{"id":37591436,"first_name":"Edith","middle_initials":null,"last_name":"Beaulieu","page_name":"EdithBeaulieu","domain_name":"independent","created_at":"2015-11-03T14:27:08.767-08:00","display_name":"Edith Beaulieu","url":"https://independent.academia.edu/EdithBeaulieu"},"attachments":[{"id":66797206,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/66797206/thumbnails/1.jpg","file_name":"document.pdf","download_url":"https://www.academia.edu/attachments/66797206/download_file?st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"VEGF_increases_the_fibrinolytic_activity.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/66797206/document-libre.pdf?1620050790=\u0026response-content-disposition=attachment%3B+filename%3DVEGF_increases_the_fibrinolytic_activity.pdf\u0026Expires=1732482571\u0026Signature=eSA-Bzh7Da28dM1F1h0HKlMsog66Bx74vabZK-p~kk9TGqv1AvrABO9fF4aktOZ10hadWnl2OOwX0bK-H1gbrEVE70tJHCdW4Sw6rGS5-uIhLQhTeOH6QMT0CdjE9AD~gH-Eu~tVjNZrWr5fvLowNWVXC5vtslOvUmHyLjEht89MLvLXveqIWbHhVchunznEAJvPKYvvAZXtofG2VksnR2wzTzEeSu5dr35aLGtFwAS7yyWNKoUVdqx1ATYY7B9EbP3n6P-b5a3Rq-1ompcbb~AvTuYarGRuY6MYmhBPnu0czVWMxBFXDSXjBiy0A1ytBTkItJTyWIVRgs7Kj2zAVQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":61095,"name":"Fibrin","url":"https://www.academia.edu/Documents/in/Fibrin"},{"id":64568,"name":"Humans","url":"https://www.academia.edu/Documents/in/Humans"},{"id":71510,"name":"Endothelial Cells","url":"https://www.academia.edu/Documents/in/Endothelial_Cells"},{"id":91281,"name":"VEGF","url":"https://www.academia.edu/Documents/in/VEGF"},{"id":138877,"name":"Vascular endothelium","url":"https://www.academia.edu/Documents/in/Vascular_endothelium"},{"id":179799,"name":"Page","url":"https://www.academia.edu/Documents/in/Page"},{"id":244814,"name":"Clinical Sciences","url":"https://www.academia.edu/Documents/in/Clinical_Sciences"},{"id":401214,"name":"Endothelial cell","url":"https://www.academia.edu/Documents/in/Endothelial_cell"},{"id":496063,"name":"Thrombosis","url":"https://www.academia.edu/Documents/in/Thrombosis"},{"id":504035,"name":"Three Dimensional","url":"https://www.academia.edu/Documents/in/Three_Dimensional"},{"id":527895,"name":"MMP","url":"https://www.academia.edu/Documents/in/MMP"},{"id":527897,"name":"Matrix Metalloproteinases","url":"https://www.academia.edu/Documents/in/Matrix_Metalloproteinases"},{"id":789989,"name":"Tissue Plasminogen Activator","url":"https://www.academia.edu/Documents/in/Tissue_Plasminogen_Activator"},{"id":1220800,"name":"Fibrinolysis","url":"https://www.academia.edu/Documents/in/Fibrinolysis"},{"id":1661073,"name":"Plasminogen Activator","url":"https://www.academia.edu/Documents/in/Plasminogen_Activator"},{"id":1703190,"name":"Neutralizing antibodies","url":"https://www.academia.edu/Documents/in/Neutralizing_antibodies"},{"id":1796877,"name":"Vascular Endothelial Growth Factor","url":"https://www.academia.edu/Documents/in/Vascular_Endothelial_Growth_Factor"},{"id":1920779,"name":"Matrix Metalloproteinase","url":"https://www.academia.edu/Documents/in/Matrix_Metalloproteinase"},{"id":1947596,"name":"Vascular endothelial growth factor receptor","url":"https://www.academia.edu/Documents/in/Vascular_endothelial_growth_factor_receptor"},{"id":2026170,"name":"Metalloproteases","url":"https://www.academia.edu/Documents/in/Metalloproteases"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="47914407"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/47914407/Tissue_factor_pathway_inhibitor_TFPI_interferes_with_endothelial_cell_migration_by_inhibition_of_both_the_Erk_pathway_and_focal_adhesion_proteins"><img alt="Research paper thumbnail of Tissue factor pathway inhibitor (TFPI) interferes with endothelial cell migration by inhibition of both the Erk pathway and focal adhesion proteins" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/47914407/Tissue_factor_pathway_inhibitor_TFPI_interferes_with_endothelial_cell_migration_by_inhibition_of_both_the_Erk_pathway_and_focal_adhesion_proteins">Tissue factor pathway inhibitor (TFPI) interferes with endothelial cell migration by inhibition of both the Erk pathway and focal adhesion proteins</a></div><div class="wp-workCard_item"><span>Thrombosis and Haemostasis</span><span>, 2008</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">SummaryTissue factor pathway inhibitor (TFPI) is a plasma Kunitz-type serine protease inhibitor t...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">SummaryTissue factor pathway inhibitor (TFPI) is a plasma Kunitz-type serine protease inhibitor that is mainly known for its inhibition of tissue factor-mediated coagulation. In addition to its anticoagulant properties, emerging data show that TFPI may also regulate endothelial cell functions via a non-haemostatic pathway. In this work we demonstrate that at concentrations within the physiological range,TFPI inhibits both endothelial cell migration and their differentiation into capillary-like structures in vitro. These effects were specific to endothelial cells since no inhibitory effect was observed on the migration of tumor (glio- blastoma) cells. Inhibition of endothelial cell migration was correlated with a concomitant loss in cell adhesion,suggesting an alteration of focal adhesion complex integrity. Accordingly,we observed thatTFPI inhibited the phosphorylation of focal adhesion kinase and paxillin,two key proteins involved in the scaffolding of these complexes, and that this...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="47914407"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="47914407"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47914407; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47914407]").text(description); $(".js-view-count[data-work-id=47914407]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47914407; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='47914407']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 47914407, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=47914407]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":47914407,"title":"Tissue factor pathway inhibitor (TFPI) interferes with endothelial cell migration by inhibition of both the Erk pathway and focal adhesion proteins","translated_title":"","metadata":{"abstract":"SummaryTissue factor pathway inhibitor (TFPI) is a plasma Kunitz-type serine protease inhibitor that is mainly known for its inhibition of tissue factor-mediated coagulation. In addition to its anticoagulant properties, emerging data show that TFPI may also regulate endothelial cell functions via a non-haemostatic pathway. In this work we demonstrate that at concentrations within the physiological range,TFPI inhibits both endothelial cell migration and their differentiation into capillary-like structures in vitro. These effects were specific to endothelial cells since no inhibitory effect was observed on the migration of tumor (glio- blastoma) cells. Inhibition of endothelial cell migration was correlated with a concomitant loss in cell adhesion,suggesting an alteration of focal adhesion complex integrity. Accordingly,we observed thatTFPI inhibited the phosphorylation of focal adhesion kinase and paxillin,two key proteins involved in the scaffolding of these complexes, and that this...","publisher":"Georg Thieme Verlag KG","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"Thrombosis and Haemostasis"},"translated_abstract":"SummaryTissue factor pathway inhibitor (TFPI) is a plasma Kunitz-type serine protease inhibitor that is mainly known for its inhibition of tissue factor-mediated coagulation. In addition to its anticoagulant properties, emerging data show that TFPI may also regulate endothelial cell functions via a non-haemostatic pathway. In this work we demonstrate that at concentrations within the physiological range,TFPI inhibits both endothelial cell migration and their differentiation into capillary-like structures in vitro. These effects were specific to endothelial cells since no inhibitory effect was observed on the migration of tumor (glio- blastoma) cells. Inhibition of endothelial cell migration was correlated with a concomitant loss in cell adhesion,suggesting an alteration of focal adhesion complex integrity. Accordingly,we observed thatTFPI inhibited the phosphorylation of focal adhesion kinase and paxillin,two key proteins involved in the scaffolding of these complexes, and that this...","internal_url":"https://www.academia.edu/47914407/Tissue_factor_pathway_inhibitor_TFPI_interferes_with_endothelial_cell_migration_by_inhibition_of_both_the_Erk_pathway_and_focal_adhesion_proteins","translated_internal_url":"","created_at":"2021-05-03T06:35:24.590-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":37591436,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Tissue_factor_pathway_inhibitor_TFPI_interferes_with_endothelial_cell_migration_by_inhibition_of_both_the_Erk_pathway_and_focal_adhesion_proteins","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":37591436,"first_name":"Edith","middle_initials":null,"last_name":"Beaulieu","page_name":"EdithBeaulieu","domain_name":"independent","created_at":"2015-11-03T14:27:08.767-08:00","display_name":"Edith Beaulieu","url":"https://independent.academia.edu/EdithBeaulieu"},"attachments":[],"research_interests":[{"id":8863,"name":"Cell Migration","url":"https://www.academia.edu/Documents/in/Cell_Migration"},{"id":10055,"name":"Cell Adhesion","url":"https://www.academia.edu/Documents/in/Cell_Adhesion"},{"id":28505,"name":"Adhesion","url":"https://www.academia.edu/Documents/in/Adhesion"},{"id":38831,"name":"Signal Transduction","url":"https://www.academia.edu/Documents/in/Signal_Transduction"},{"id":60436,"name":"Cell Differentiation","url":"https://www.academia.edu/Documents/in/Cell_Differentiation"},{"id":64568,"name":"Humans","url":"https://www.academia.edu/Documents/in/Humans"},{"id":71510,"name":"Endothelial Cells","url":"https://www.academia.edu/Documents/in/Endothelial_Cells"},{"id":172083,"name":"Phosphorylation","url":"https://www.academia.edu/Documents/in/Phosphorylation"},{"id":213910,"name":"Mitogen Activated Protein Kinase","url":"https://www.academia.edu/Documents/in/Mitogen_Activated_Protein_Kinase"},{"id":244814,"name":"Clinical Sciences","url":"https://www.academia.edu/Documents/in/Clinical_Sciences"},{"id":295728,"name":"Molecular cloning","url":"https://www.academia.edu/Documents/in/Molecular_cloning"},{"id":401214,"name":"Endothelial cell","url":"https://www.academia.edu/Documents/in/Endothelial_cell"},{"id":458879,"name":"Lipoproteins","url":"https://www.academia.edu/Documents/in/Lipoproteins"},{"id":499747,"name":"Cell Shape","url":"https://www.academia.edu/Documents/in/Cell_Shape"},{"id":990417,"name":"Recombinant Proteins","url":"https://www.academia.edu/Documents/in/Recombinant_Proteins"},{"id":1274621,"name":"Extracellular","url":"https://www.academia.edu/Documents/in/Extracellular"},{"id":1909024,"name":"Cell Motility","url":"https://www.academia.edu/Documents/in/Cell_Motility"},{"id":2003019,"name":"Sphingosine","url":"https://www.academia.edu/Documents/in/Sphingosine"},{"id":2277448,"name":"Paxillin","url":"https://www.academia.edu/Documents/in/Paxillin"},{"id":3789879,"name":"Cardiovascular medicine and haematology","url":"https://www.academia.edu/Documents/in/Cardiovascular_medicine_and_haematology"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="47914406"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/47914406/Matrix_Metalloproteinases_and_Their_Inhibitors_in_Human_Pituitary_Tumors"><img alt="Research paper thumbnail of Matrix Metalloproteinases and Their Inhibitors in Human Pituitary Tumors" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/47914406/Matrix_Metalloproteinases_and_Their_Inhibitors_in_Human_Pituitary_Tumors">Matrix Metalloproteinases and Their Inhibitors in Human Pituitary Tumors</a></div><div class="wp-workCard_item"><span>Neurosurgery</span><span>, 1999</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="47914406"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="47914406"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47914406; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47914406]").text(description); $(".js-view-count[data-work-id=47914406]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47914406; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='47914406']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 47914406, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=47914406]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":47914406,"title":"Matrix Metalloproteinases and Their Inhibitors in Human Pituitary Tumors","translated_title":"","metadata":{"publisher":"Oxford University Press (OUP)","publication_date":{"day":null,"month":null,"year":1999,"errors":{}},"publication_name":"Neurosurgery"},"translated_abstract":null,"internal_url":"https://www.academia.edu/47914406/Matrix_Metalloproteinases_and_Their_Inhibitors_in_Human_Pituitary_Tumors","translated_internal_url":"","created_at":"2021-05-03T06:35:24.514-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":37591436,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Matrix_Metalloproteinases_and_Their_Inhibitors_in_Human_Pituitary_Tumors","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":37591436,"first_name":"Edith","middle_initials":null,"last_name":"Beaulieu","page_name":"EdithBeaulieu","domain_name":"independent","created_at":"2015-11-03T14:27:08.767-08:00","display_name":"Edith Beaulieu","url":"https://independent.academia.edu/EdithBeaulieu"},"attachments":[],"research_interests":[{"id":650,"name":"Neurosurgery","url":"https://www.academia.edu/Documents/in/Neurosurgery"},{"id":1920779,"name":"Matrix Metalloproteinase","url":"https://www.academia.edu/Documents/in/Matrix_Metalloproteinase"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="47914405"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/47914405/Src_dependent_Phosphorylation_of_Membrane_Type_I_Matrix_Metalloproteinase_on_Cytoplasmic_Tyrosine_573_ROLE_IN_ENDOTHELIAL_AND_TUMOR_CELL_MIGRATION"><img alt="Research paper thumbnail of Src-dependent Phosphorylation of Membrane Type I Matrix Metalloproteinase on Cytoplasmic Tyrosine 573: ROLE IN ENDOTHELIAL AND TUMOR CELL MIGRATION" class="work-thumbnail" src="https://attachments.academia-assets.com/66797201/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/47914405/Src_dependent_Phosphorylation_of_Membrane_Type_I_Matrix_Metalloproteinase_on_Cytoplasmic_Tyrosine_573_ROLE_IN_ENDOTHELIAL_AND_TUMOR_CELL_MIGRATION">Src-dependent Phosphorylation of Membrane Type I Matrix Metalloproteinase on Cytoplasmic Tyrosine 573: ROLE IN ENDOTHELIAL AND TUMOR CELL MIGRATION</a></div><div class="wp-workCard_item"><span>Journal of Biological Chemistry</span><span>, 2007</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="809796fcd09fc4a17768b5536b0349ac" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:66797201,&quot;asset_id&quot;:47914405,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/66797201/download_file?st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="47914405"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="47914405"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47914405; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47914405]").text(description); $(".js-view-count[data-work-id=47914405]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47914405; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='47914405']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 47914405, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "809796fcd09fc4a17768b5536b0349ac" } } $('.js-work-strip[data-work-id=47914405]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":47914405,"title":"Src-dependent Phosphorylation of Membrane Type I Matrix Metalloproteinase on Cytoplasmic Tyrosine 573: ROLE IN ENDOTHELIAL AND TUMOR CELL MIGRATION","translated_title":"","metadata":{"publisher":"American Society for Biochemistry \u0026 Molecular Biology (ASBMB)","grobid_abstract":"Membrane type 1 matrix metalloproteinase (MT1-MMP) is a transmembrane MMP that plays important roles in migratory processes underlying tumor invasion and angiogenesis. In addition to its matrix degrading activity, MT1-MMP also contains a short cytoplasmic domain whose involvement in cell locomotion seems important but remains poorly understood. In this study, we show that MT1-MMP is phosphorylated on the unique tyrosine residue located within this cytoplasmic sequence (Tyr 573 ) and that this phosphorylation requires the kinase Src. Using phosphospecific antibodies recognizing MT1-MMP phosphorylated on Tyr 573 , we observed that tyrosine phosphorylation of the enzyme is rapidly induced upon stimulation of tumor and endothelial cells with the platelet-derived chemoattractant sphingosine-1-phosphate, suggesting a role in migration triggered by this lysophospholipid.","publication_date":{"day":null,"month":null,"year":2007,"errors":{}},"publication_name":"Journal of Biological Chemistry","grobid_abstract_attachment_id":66797201},"translated_abstract":null,"internal_url":"https://www.academia.edu/47914405/Src_dependent_Phosphorylation_of_Membrane_Type_I_Matrix_Metalloproteinase_on_Cytoplasmic_Tyrosine_573_ROLE_IN_ENDOTHELIAL_AND_TUMOR_CELL_MIGRATION","translated_internal_url":"","created_at":"2021-05-03T06:35:24.437-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":37591436,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":66797201,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/66797201/thumbnails/1.jpg","file_name":"15690.full.pdf","download_url":"https://www.academia.edu/attachments/66797201/download_file?st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Src_dependent_Phosphorylation_of_Membran.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/66797201/15690.full-libre.pdf?1620050787=\u0026response-content-disposition=attachment%3B+filename%3DSrc_dependent_Phosphorylation_of_Membran.pdf\u0026Expires=1732482571\u0026Signature=HZv4u7SCAXc~UJKY-lT8DsZkVZk18HzSZcBiyxBUBRIfIt3uPOj~3XvainrCjoKKGkma9z1HAfJ5JhArfz8YJSgaJeVMgsANKhLhGkbEDteLa8ObAJ74nqupcA1HUumDDn9FQuydwtQAfEQnhkm9ls6QOW9NLZ3ARz0Mq3g-M4FgmAarb5lKHEYcuMAkeJ0KB37BmgJE9rZLOG2GDG50RU0n~SujbEl~~HyGqVWDhQIkKst-jdX5gSI6WXmDWZobI-QyxgL-vAMi1dXL6sUbq8q1wihIX3jB8~3oNsJlaHGDlknpnRl7BHZjbToo-14qKHKerZAc~K0Nw9l~EgjGBg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Src_dependent_Phosphorylation_of_Membrane_Type_I_Matrix_Metalloproteinase_on_Cytoplasmic_Tyrosine_573_ROLE_IN_ENDOTHELIAL_AND_TUMOR_CELL_MIGRATION","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":37591436,"first_name":"Edith","middle_initials":null,"last_name":"Beaulieu","page_name":"EdithBeaulieu","domain_name":"independent","created_at":"2015-11-03T14:27:08.767-08:00","display_name":"Edith Beaulieu","url":"https://independent.academia.edu/EdithBeaulieu"},"attachments":[{"id":66797201,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/66797201/thumbnails/1.jpg","file_name":"15690.full.pdf","download_url":"https://www.academia.edu/attachments/66797201/download_file?st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Src_dependent_Phosphorylation_of_Membran.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/66797201/15690.full-libre.pdf?1620050787=\u0026response-content-disposition=attachment%3B+filename%3DSrc_dependent_Phosphorylation_of_Membran.pdf\u0026Expires=1732482571\u0026Signature=HZv4u7SCAXc~UJKY-lT8DsZkVZk18HzSZcBiyxBUBRIfIt3uPOj~3XvainrCjoKKGkma9z1HAfJ5JhArfz8YJSgaJeVMgsANKhLhGkbEDteLa8ObAJ74nqupcA1HUumDDn9FQuydwtQAfEQnhkm9ls6QOW9NLZ3ARz0Mq3g-M4FgmAarb5lKHEYcuMAkeJ0KB37BmgJE9rZLOG2GDG50RU0n~SujbEl~~HyGqVWDhQIkKst-jdX5gSI6WXmDWZobI-QyxgL-vAMi1dXL6sUbq8q1wihIX3jB8~3oNsJlaHGDlknpnRl7BHZjbToo-14qKHKerZAc~K0Nw9l~EgjGBg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":18520,"name":"Biological Chemistry","url":"https://www.academia.edu/Documents/in/Biological_Chemistry"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":57570,"name":"Cercopithecus aethiops","url":"https://www.academia.edu/Documents/in/Cercopithecus_aethiops"},{"id":64568,"name":"Humans","url":"https://www.academia.edu/Documents/in/Humans"},{"id":71510,"name":"Endothelial Cells","url":"https://www.academia.edu/Documents/in/Endothelial_Cells"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":117643,"name":"Biological","url":"https://www.academia.edu/Documents/in/Biological"},{"id":172083,"name":"Phosphorylation","url":"https://www.academia.edu/Documents/in/Phosphorylation"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":260829,"name":"Cattle","url":"https://www.academia.edu/Documents/in/Cattle"},{"id":469018,"name":"Neoplasms","url":"https://www.academia.edu/Documents/in/Neoplasms"},{"id":894908,"name":"Amino Acid Substitution Rates","url":"https://www.academia.edu/Documents/in/Amino_Acid_Substitution_Rates"},{"id":1035092,"name":"Aorta","url":"https://www.academia.edu/Documents/in/Aorta"},{"id":1920779,"name":"Matrix Metalloproteinase","url":"https://www.academia.edu/Documents/in/Matrix_Metalloproteinase"},{"id":2003019,"name":"Sphingosine","url":"https://www.academia.edu/Documents/in/Sphingosine"},{"id":3551478,"name":"Src family kinases","url":"https://www.academia.edu/Documents/in/Src_family_kinases"},{"id":3763225,"name":"Medical and Health Sciences","url":"https://www.academia.edu/Documents/in/Medical_and_Health_Sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="47914403"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/47914403/Antiproliferative_and_antioxidant_activities_of_common_vegetables_A_comparative_study"><img alt="Research paper thumbnail of Antiproliferative and antioxidant activities of common vegetables: A comparative study" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/47914403/Antiproliferative_and_antioxidant_activities_of_common_vegetables_A_comparative_study">Antiproliferative and antioxidant activities of common vegetables: A comparative study</a></div><div class="wp-workCard_item"><span>Food Chemistry</span><span>, 2009</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="47914403"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="47914403"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47914403; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47914403]").text(description); $(".js-view-count[data-work-id=47914403]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47914403; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='47914403']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 47914403, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=47914403]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":47914403,"title":"Antiproliferative and antioxidant activities of common vegetables: A comparative study","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"Food Chemistry"},"translated_abstract":null,"internal_url":"https://www.academia.edu/47914403/Antiproliferative_and_antioxidant_activities_of_common_vegetables_A_comparative_study","translated_internal_url":"","created_at":"2021-05-03T06:35:24.361-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":37591436,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Antiproliferative_and_antioxidant_activities_of_common_vegetables_A_comparative_study","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":37591436,"first_name":"Edith","middle_initials":null,"last_name":"Beaulieu","page_name":"EdithBeaulieu","domain_name":"independent","created_at":"2015-11-03T14:27:08.767-08:00","display_name":"Edith Beaulieu","url":"https://independent.academia.edu/EdithBeaulieu"},"attachments":[],"research_interests":[{"id":6021,"name":"Cancer","url":"https://www.academia.edu/Documents/in/Cancer"},{"id":16137,"name":"Food Chemistry","url":"https://www.academia.edu/Documents/in/Food_Chemistry"},{"id":23890,"name":"Comparative Study","url":"https://www.academia.edu/Documents/in/Comparative_Study"},{"id":27240,"name":"Prevention","url":"https://www.academia.edu/Documents/in/Prevention"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":57808,"name":"Cell line","url":"https://www.academia.edu/Documents/in/Cell_line"},{"id":2779808,"name":"Cell Lines","url":"https://www.academia.edu/Documents/in/Cell_Lines"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="3919481" id="papers"><div class="js-work-strip profile--work_container" data-work-id="71505309"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/71505309/The_antiangiogenic_agent_Neovastat_AE_941_induces_endothelial_cell_apoptosis"><img alt="Research paper thumbnail of The antiangiogenic agent Neovastat (AE-941) induces endothelial cell apoptosis" class="work-thumbnail" src="https://attachments.academia-assets.com/80818760/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/71505309/The_antiangiogenic_agent_Neovastat_AE_941_induces_endothelial_cell_apoptosis">The antiangiogenic agent Neovastat (AE-941) induces endothelial cell apoptosis</a></div><div class="wp-workCard_item"><span>Molecular Cancer Therapeutics</span><span>, 2002</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Neovastat (AE-941), a naturally occurring multifunctional antiangiogenic agent, has been shown to...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Neovastat (AE-941), a naturally occurring multifunctional antiangiogenic agent, has been shown to inhibit key components of the angiogenic process, including matrix metalloproteinases and vascular endothelial growth factor-mediated signaling events. In this study, we report the presence of a proapoptotic activity within this compound. Neovastat treatment of bovine aortic endothelial cells caused cell death with characteristics of apoptosis, including chromatin condensation and DNA fragmentation. Neovastat markedly induced caspase-3, caspase-8, and caspase-9 activities, at similar levels to those measured in cells treated with tumor necrosis factor-alpha. Activation of caspases by Neovastat appears to be essential for its proapoptotic effects because all apoptotic features were blocked by zVAD-fmk, a broad-spectrum caspase inhibitor. The activation of caspases was correlated with the cleavage of the nuclear substrate poly(ADP-ribose) polymerase, and by a concomitant release of cytoch...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="172c17cc4c62b8ff0ce79f1cbf8d63f1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:80818760,&quot;asset_id&quot;:71505309,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/80818760/download_file?st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&st=MTczMjQ3ODk3MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="71505309"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="71505309"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 71505309; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=71505309]").text(description); $(".js-view-count[data-work-id=71505309]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 71505309; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='71505309']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 71505309, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "172c17cc4c62b8ff0ce79f1cbf8d63f1" } } $('.js-work-strip[data-work-id=71505309]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":71505309,"title":"The antiangiogenic agent Neovastat (AE-941) induces endothelial cell apoptosis","translated_title":"","metadata":{"abstract":"Neovastat (AE-941), a naturally occurring multifunctional antiangiogenic agent, has been shown to inhibit key components of the angiogenic process, including matrix metalloproteinases and vascular endothelial growth factor-mediated signaling events. In this study, we report the presence of a proapoptotic activity within this compound. Neovastat treatment of bovine aortic endothelial cells caused cell death with characteristics of apoptosis, including chromatin condensation and DNA fragmentation. Neovastat markedly induced caspase-3, caspase-8, and caspase-9 activities, at similar levels to those measured in cells treated with tumor necrosis factor-alpha. Activation of caspases by Neovastat appears to be essential for its proapoptotic effects because all apoptotic features were blocked by zVAD-fmk, a broad-spectrum caspase inhibitor. The activation of caspases was correlated with the cleavage of the nuclear substrate poly(ADP-ribose) polymerase, and by a concomitant release of cytoch...","publication_date":{"day":null,"month":null,"year":2002,"errors":{}},"publication_name":"Molecular Cancer Therapeutics"},"translated_abstract":"Neovastat (AE-941), a naturally occurring multifunctional antiangiogenic agent, has been shown to inhibit key components of the angiogenic process, including matrix metalloproteinases and vascular endothelial growth factor-mediated signaling events. In this study, we report the presence of a proapoptotic activity within this compound. Neovastat treatment of bovine aortic endothelial cells caused cell death with characteristics of apoptosis, including chromatin condensation and DNA fragmentation. Neovastat markedly induced caspase-3, caspase-8, and caspase-9 activities, at similar levels to those measured in cells treated with tumor necrosis factor-alpha. Activation of caspases by Neovastat appears to be essential for its proapoptotic effects because all apoptotic features were blocked by zVAD-fmk, a broad-spectrum caspase inhibitor. The activation of caspases was correlated with the cleavage of the nuclear substrate poly(ADP-ribose) polymerase, and by a concomitant release of cytoch...","internal_url":"https://www.academia.edu/71505309/The_antiangiogenic_agent_Neovastat_AE_941_induces_endothelial_cell_apoptosis","translated_internal_url":"","created_at":"2022-02-14T07:31:17.084-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":37591436,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":80818760,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80818760/thumbnails/1.jpg","file_name":"795.full.pdf","download_url":"https://www.academia.edu/attachments/80818760/download_file?st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&st=MTczMjQ3ODk3MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_antiangiogenic_agent_Neovastat_AE_94.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80818760/795.full-libre.pdf?1644853414=\u0026response-content-disposition=attachment%3B+filename%3DThe_antiangiogenic_agent_Neovastat_AE_94.pdf\u0026Expires=1732482570\u0026Signature=RIVKqYV3R3BwJNx1ekY~CSE4ulq2AvRtIObOwC8FGE1pFmZRCvECS9q4veAKpqeW5BLRf0YPUPNt82hLg1pQNC~nQ7v2d6m6VV7c2ovKBpEen5~86FAA5K97tLPAiwGTX3UjmTwpDTTjmzK6DqFimzzW4-fOW0h2RvtR4IVgxKzMJ8iUSFficAYkhsgcG5m8OXseSNpYeR7t3zPxrFUTQ7c49CirB-vrmKAGVnYO4JLRhj93V7rXINLhGgHDnwM7Vw~X3psggr8rMwAY2nBwYnrWrRBCtnnM4EU9wOz4tt-utuN7ZkvXYdkfKaiqyBoT~sAU0wXR8JHSihqqsna7Iw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_antiangiogenic_agent_Neovastat_AE_941_induces_endothelial_cell_apoptosis","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":37591436,"first_name":"Edith","middle_initials":null,"last_name":"Beaulieu","page_name":"EdithBeaulieu","domain_name":"independent","created_at":"2015-11-03T14:27:08.767-08:00","display_name":"Edith Beaulieu","url":"https://independent.academia.edu/EdithBeaulieu"},"attachments":[{"id":80818760,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80818760/thumbnails/1.jpg","file_name":"795.full.pdf","download_url":"https://www.academia.edu/attachments/80818760/download_file?st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&st=MTczMjQ3ODk3MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_antiangiogenic_agent_Neovastat_AE_94.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80818760/795.full-libre.pdf?1644853414=\u0026response-content-disposition=attachment%3B+filename%3DThe_antiangiogenic_agent_Neovastat_AE_94.pdf\u0026Expires=1732482570\u0026Signature=RIVKqYV3R3BwJNx1ekY~CSE4ulq2AvRtIObOwC8FGE1pFmZRCvECS9q4veAKpqeW5BLRf0YPUPNt82hLg1pQNC~nQ7v2d6m6VV7c2ovKBpEen5~86FAA5K97tLPAiwGTX3UjmTwpDTTjmzK6DqFimzzW4-fOW0h2RvtR4IVgxKzMJ8iUSFficAYkhsgcG5m8OXseSNpYeR7t3zPxrFUTQ7c49CirB-vrmKAGVnYO4JLRhj93V7rXINLhGgHDnwM7Vw~X3psggr8rMwAY2nBwYnrWrRBCtnnM4EU9wOz4tt-utuN7ZkvXYdkfKaiqyBoT~sAU0wXR8JHSihqqsna7Iw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":80818761,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80818761/thumbnails/1.jpg","file_name":"795.full.pdf","download_url":"https://www.academia.edu/attachments/80818761/download_file","bulk_download_file_name":"The_antiangiogenic_agent_Neovastat_AE_94.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80818761/795.full-libre.pdf?1644853413=\u0026response-content-disposition=attachment%3B+filename%3DThe_antiangiogenic_agent_Neovastat_AE_94.pdf\u0026Expires=1732482570\u0026Signature=DHthzY8mpQEUQgL8PrxlV5SoJsMOqQRKvv5EAVE~-1KIOh3G74ikqrxdIVsoHBNp3uQH2QA~BxNcyoECjgn-4v01eaWQskkulWSaIdVV93fYdzIxVvzf0JOJ2eb~UK9GkhLhoBRq7vGSfm5Rg5FOiA3PPiXxyrELVEhLpO1P41xywO4TD3VwLKXktUj1GOm2QXZgg2ZPN9oLyRocDwmijtqV26ycfk5AVR959X7ZI8zEv48VwP2THAHFGpUKMHvT18m9~5VxdBYmQL2xcSioWe88PgJHZqHYGbP1B8KSxnadxx~MJGeCwIfMgjt5N-WTSS7dIKr0c2aME1dEpisAtA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"},{"id":12981,"name":"Enzyme Inhibitors","url":"https://www.academia.edu/Documents/in/Enzyme_Inhibitors"},{"id":24731,"name":"Apoptosis","url":"https://www.academia.edu/Documents/in/Apoptosis"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":48057,"name":"DNA","url":"https://www.academia.edu/Documents/in/DNA"},{"id":50841,"name":"Caspases","url":"https://www.academia.edu/Documents/in/Caspases"},{"id":57808,"name":"Cell line","url":"https://www.academia.edu/Documents/in/Cell_line"},{"id":64568,"name":"Humans","url":"https://www.academia.edu/Documents/in/Humans"},{"id":84760,"name":"Mice","url":"https://www.academia.edu/Documents/in/Mice"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":112576,"name":"Cell Death","url":"https://www.academia.edu/Documents/in/Cell_Death"},{"id":238813,"name":"Chromatin","url":"https://www.academia.edu/Documents/in/Chromatin"},{"id":247477,"name":"Caspase","url":"https://www.academia.edu/Documents/in/Caspase"},{"id":260829,"name":"Cattle","url":"https://www.academia.edu/Documents/in/Cattle"},{"id":1035092,"name":"Aorta","url":"https://www.academia.edu/Documents/in/Aorta"},{"id":1157148,"name":"Cell Survival","url":"https://www.academia.edu/Documents/in/Cell_Survival"},{"id":2058817,"name":"Immunoblotting","url":"https://www.academia.edu/Documents/in/Immunoblotting"},{"id":2208075,"name":"Cysteine Proteinase Inhibitors","url":"https://www.academia.edu/Documents/in/Cysteine_Proteinase_Inhibitors"},{"id":2256666,"name":"DNA fragmentation","url":"https://www.academia.edu/Documents/in/DNA_fragmentation"},{"id":3314116,"name":"Angiogenesis inhibitors","url":"https://www.academia.edu/Documents/in/Angiogenesis_inhibitors"}],"urls":[{"id":17674512,"url":"https://mct.aacrjournals.org/content/molcanther/1/10/795.full.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="71505308"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/71505308/Manuscript_Author_manuscript_published_in_and_quot_Thrombosis_Research_2007_121_2_203_12_and_quot"><img alt="Research paper thumbnail of Manuscript Author manuscript, published in &amp;quot;Thrombosis Research 2007;121(2):203-12&amp;quot" class="work-thumbnail" src="https://attachments.academia-assets.com/80818759/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/71505308/Manuscript_Author_manuscript_published_in_and_quot_Thrombosis_Research_2007_121_2_203_12_and_quot">Manuscript Author manuscript, published in &amp;quot;Thrombosis Research 2007;121(2):203-12&amp;quot</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">VEGF increases the fibrinolytic activity of endothelial cells within fibrin matrices. Involvement...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">VEGF increases the fibrinolytic activity of endothelial cells within fibrin matrices. Involvement of VEGFR-2, tissue type plasminogen activator and matrix metalloproteinases ¶</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="26304c02c0783da0a8748fd4388adbd1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:80818759,&quot;asset_id&quot;:71505308,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/80818759/download_file?st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&st=MTczMjQ3ODk3MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="71505308"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="71505308"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 71505308; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=71505308]").text(description); $(".js-view-count[data-work-id=71505308]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 71505308; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='71505308']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 71505308, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "26304c02c0783da0a8748fd4388adbd1" } } $('.js-work-strip[data-work-id=71505308]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":71505308,"title":"Manuscript Author manuscript, published in \u0026quot;Thrombosis Research 2007;121(2):203-12\u0026quot","translated_title":"","metadata":{"abstract":"VEGF increases the fibrinolytic activity of endothelial cells within fibrin matrices. Involvement of VEGFR-2, tissue type plasminogen activator and matrix metalloproteinases ¶","publication_date":{"day":null,"month":null,"year":2009,"errors":{}}},"translated_abstract":"VEGF increases the fibrinolytic activity of endothelial cells within fibrin matrices. Involvement of VEGFR-2, tissue type plasminogen activator and matrix metalloproteinases ¶","internal_url":"https://www.academia.edu/71505308/Manuscript_Author_manuscript_published_in_and_quot_Thrombosis_Research_2007_121_2_203_12_and_quot","translated_internal_url":"","created_at":"2022-02-14T07:31:16.893-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":37591436,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":80818759,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80818759/thumbnails/1.jpg","file_name":"download.pdf","download_url":"https://www.academia.edu/attachments/80818759/download_file?st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&st=MTczMjQ3ODk3MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Manuscript_Author_manuscript_published_i.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80818759/download-libre.pdf?1644853414=\u0026response-content-disposition=attachment%3B+filename%3DManuscript_Author_manuscript_published_i.pdf\u0026Expires=1732482570\u0026Signature=RGeEmuIVhuhWxJC1m65hi8l4pLsvjUJN75l2rJ3zFHxfs5XRMk3uxSpBhLisINt3v49CPUMOm0t6VZCjwaMXRVZdlfdzEPKokMkFJ5OEehKXgpPw2eivLiuR0sdoRVCzJAkTDn~C1acVubrtu0Qqhnzs9e10UIhdjGbvPeKxpjNhFkUAMG-TOk0MW82wSup7HiZOeqP~D2drtuOp9yy0gBDxjcR3x9MWDpAkw4czmtyI3bk0zwwU-zqMsfI-gCHvgmjeU7VuUq5Dnp3Avo8lstPPtZ041mBTgp7YXZAVBvEqf46A-MzTVyNZ3VHE6B3yby52YcjR9jisD6D~Blu0Gg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Manuscript_Author_manuscript_published_in_and_quot_Thrombosis_Research_2007_121_2_203_12_and_quot","translated_slug":"","page_count":31,"language":"en","content_type":"Work","owner":{"id":37591436,"first_name":"Edith","middle_initials":null,"last_name":"Beaulieu","page_name":"EdithBeaulieu","domain_name":"independent","created_at":"2015-11-03T14:27:08.767-08:00","display_name":"Edith Beaulieu","url":"https://independent.academia.edu/EdithBeaulieu"},"attachments":[{"id":80818759,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80818759/thumbnails/1.jpg","file_name":"download.pdf","download_url":"https://www.academia.edu/attachments/80818759/download_file?st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&st=MTczMjQ3ODk3MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Manuscript_Author_manuscript_published_i.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80818759/download-libre.pdf?1644853414=\u0026response-content-disposition=attachment%3B+filename%3DManuscript_Author_manuscript_published_i.pdf\u0026Expires=1732482570\u0026Signature=RGeEmuIVhuhWxJC1m65hi8l4pLsvjUJN75l2rJ3zFHxfs5XRMk3uxSpBhLisINt3v49CPUMOm0t6VZCjwaMXRVZdlfdzEPKokMkFJ5OEehKXgpPw2eivLiuR0sdoRVCzJAkTDn~C1acVubrtu0Qqhnzs9e10UIhdjGbvPeKxpjNhFkUAMG-TOk0MW82wSup7HiZOeqP~D2drtuOp9yy0gBDxjcR3x9MWDpAkw4czmtyI3bk0zwwU-zqMsfI-gCHvgmjeU7VuUq5Dnp3Avo8lstPPtZ041mBTgp7YXZAVBvEqf46A-MzTVyNZ3VHE6B3yby52YcjR9jisD6D~Blu0Gg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":80818758,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80818758/thumbnails/1.jpg","file_name":"download.pdf","download_url":"https://www.academia.edu/attachments/80818758/download_file","bulk_download_file_name":"Manuscript_Author_manuscript_published_i.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80818758/download-libre.pdf?1644853415=\u0026response-content-disposition=attachment%3B+filename%3DManuscript_Author_manuscript_published_i.pdf\u0026Expires=1732482570\u0026Signature=F9p4yLXcRjNWPCFizNpEco~aVju90laINwcJ-zOVh9OiuLx4HiM9zytdSs1XtOcUbGceaqoqxjyPkUPQCNiUObHmUlx8LACZCMMGKNCdYfKMhpY~4zvQgzH-PWqiI-v0LTFa43TavdogMfvPMdkgOXVGakE1UXb4SlJfiasCEbjRUUezgZdjsxySTvOKMY2w2Jzs4oJG7d7iXDR0sjpilcQkzclYdQoJ~SQnX6z03aDYTVZ7zlTFh-819xVYYGNwMthF229HKm-t4pD9okqFcXgU9ZiCUbdtArRBF3GecybabU866jfsK6mygmBahcT61iXf1ZccL-7DVhRLTxlwsg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":1953384,"name":"Activator","url":"https://www.academia.edu/Documents/in/Activator"}],"urls":[{"id":17674511,"url":"http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.386.2278\u0026rep=rep1\u0026type=pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="71500699"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/71500699/The_antiangiogenic_agent_neovastat_AE_941_inhibits_vascular_endothelial_growth_factor_mediated_biological_effects"><img alt="Research paper thumbnail of The antiangiogenic agent neovastat (AE-941) inhibits vascular endothelial growth factor-mediated biological effects" class="work-thumbnail" src="https://attachments.academia-assets.com/80816108/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/71500699/The_antiangiogenic_agent_neovastat_AE_941_inhibits_vascular_endothelial_growth_factor_mediated_biological_effects">The antiangiogenic agent neovastat (AE-941) inhibits vascular endothelial growth factor-mediated biological effects</a></div><div class="wp-workCard_item"><span>Clinical Cancer Research</span><span>, 2002</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Vascular endothelial growth factor (VEGF) is a potent regulator of angiogenesis, which exerts dir...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Vascular endothelial growth factor (VEGF) is a potent regulator of angiogenesis, which exerts direct effects on vascular endothelial cells, including endothelial cell proliferation and survival, tubulogenesis, and vascular permeability. In this study, we examined whether Neovastat, a naturally occurring multifunctional antiangiogenic drug, could inhibit the endothelial cell response to VEGF stimulation. We demonstrated that Neovastat was able to block the VEGF-dependent microvessel sprouting from Matrigel-embedded rat aortic rings, and it also blocked the VEGF-induced endothelial cell tubulogenesis in vitro. In vivo studies showed that Neovastat was able to specifically inhibit VEGF-induced plasma extravasation in numerous tissues, including pancreas and skin. The mechanism of action of Neovastat on VEGF-mediated effects was also evaluated at the molecular level. Neovastat was shown to compete against the binding of VEGF to its receptor in endothelial cells and significantly inhibit...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f1ce9c9f47a779d6d6189ff93a42c063" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:80816108,&quot;asset_id&quot;:71500699,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/80816108/download_file?st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&st=MTczMjQ3ODk3MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="71500699"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="71500699"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 71500699; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=71500699]").text(description); $(".js-view-count[data-work-id=71500699]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 71500699; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='71500699']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 71500699, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f1ce9c9f47a779d6d6189ff93a42c063" } } $('.js-work-strip[data-work-id=71500699]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":71500699,"title":"The antiangiogenic agent neovastat (AE-941) inhibits vascular endothelial growth factor-mediated biological effects","translated_title":"","metadata":{"abstract":"Vascular endothelial growth factor (VEGF) is a potent regulator of angiogenesis, which exerts direct effects on vascular endothelial cells, including endothelial cell proliferation and survival, tubulogenesis, and vascular permeability. In this study, we examined whether Neovastat, a naturally occurring multifunctional antiangiogenic drug, could inhibit the endothelial cell response to VEGF stimulation. We demonstrated that Neovastat was able to block the VEGF-dependent microvessel sprouting from Matrigel-embedded rat aortic rings, and it also blocked the VEGF-induced endothelial cell tubulogenesis in vitro. In vivo studies showed that Neovastat was able to specifically inhibit VEGF-induced plasma extravasation in numerous tissues, including pancreas and skin. The mechanism of action of Neovastat on VEGF-mediated effects was also evaluated at the molecular level. Neovastat was shown to compete against the binding of VEGF to its receptor in endothelial cells and significantly inhibit...","publication_date":{"day":null,"month":null,"year":2002,"errors":{}},"publication_name":"Clinical Cancer Research"},"translated_abstract":"Vascular endothelial growth factor (VEGF) is a potent regulator of angiogenesis, which exerts direct effects on vascular endothelial cells, including endothelial cell proliferation and survival, tubulogenesis, and vascular permeability. In this study, we examined whether Neovastat, a naturally occurring multifunctional antiangiogenic drug, could inhibit the endothelial cell response to VEGF stimulation. We demonstrated that Neovastat was able to block the VEGF-dependent microvessel sprouting from Matrigel-embedded rat aortic rings, and it also blocked the VEGF-induced endothelial cell tubulogenesis in vitro. In vivo studies showed that Neovastat was able to specifically inhibit VEGF-induced plasma extravasation in numerous tissues, including pancreas and skin. The mechanism of action of Neovastat on VEGF-mediated effects was also evaluated at the molecular level. Neovastat was shown to compete against the binding of VEGF to its receptor in endothelial cells and significantly inhibit...","internal_url":"https://www.academia.edu/71500699/The_antiangiogenic_agent_neovastat_AE_941_inhibits_vascular_endothelial_growth_factor_mediated_biological_effects","translated_internal_url":"","created_at":"2022-02-14T06:57:22.656-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":37591436,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":80816108,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80816108/thumbnails/1.jpg","file_name":"1242.full.pdf","download_url":"https://www.academia.edu/attachments/80816108/download_file?st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&st=MTczMjQ3ODk3MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_antiangiogenic_agent_neovastat_AE_94.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80816108/1242.full-libre.pdf?1644872528=\u0026response-content-disposition=attachment%3B+filename%3DThe_antiangiogenic_agent_neovastat_AE_94.pdf\u0026Expires=1732482570\u0026Signature=KrrQVC-Gfh8Cp15zQ28Je2sElnmkf0QI~TOABJKmU6iZSMV7RoF2HXOd1IYNnMrOEMiaobhs3LBqt33OE5QYOBWevHRS91zUBCWNb-niKt28BQDa-YQ-sZ3gMni~QStnEmO4S55nAeMS5IJ6Y3c4GBcnDzqF6BF7lY1iUMNc4tfWcKJzICAK1xkG1R9d5tKAaE7l9hpML8w4EH61FEOz4nKApDqk8ZYzCqwJULLHs3cFwkCNV~mwmumnKpY53Zjos1IHWEasJtRImPllDRfRy0gtTzakzroiC~5-ad44PjbWvMIcLkG98pcmuPT2OCufsCFZJtqrgv5rG1DqRtrllg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_antiangiogenic_agent_neovastat_AE_941_inhibits_vascular_endothelial_growth_factor_mediated_biological_effects","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":37591436,"first_name":"Edith","middle_initials":null,"last_name":"Beaulieu","page_name":"EdithBeaulieu","domain_name":"independent","created_at":"2015-11-03T14:27:08.767-08:00","display_name":"Edith Beaulieu","url":"https://independent.academia.edu/EdithBeaulieu"},"attachments":[{"id":80816108,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80816108/thumbnails/1.jpg","file_name":"1242.full.pdf","download_url":"https://www.academia.edu/attachments/80816108/download_file?st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&st=MTczMjQ3ODk3MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_antiangiogenic_agent_neovastat_AE_94.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80816108/1242.full-libre.pdf?1644872528=\u0026response-content-disposition=attachment%3B+filename%3DThe_antiangiogenic_agent_neovastat_AE_94.pdf\u0026Expires=1732482570\u0026Signature=KrrQVC-Gfh8Cp15zQ28Je2sElnmkf0QI~TOABJKmU6iZSMV7RoF2HXOd1IYNnMrOEMiaobhs3LBqt33OE5QYOBWevHRS91zUBCWNb-niKt28BQDa-YQ-sZ3gMni~QStnEmO4S55nAeMS5IJ6Y3c4GBcnDzqF6BF7lY1iUMNc4tfWcKJzICAK1xkG1R9d5tKAaE7l9hpML8w4EH61FEOz4nKApDqk8ZYzCqwJULLHs3cFwkCNV~mwmumnKpY53Zjos1IHWEasJtRImPllDRfRy0gtTzakzroiC~5-ad44PjbWvMIcLkG98pcmuPT2OCufsCFZJtqrgv5rG1DqRtrllg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":80816109,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80816109/thumbnails/1.jpg","file_name":"1242.full.pdf","download_url":"https://www.academia.edu/attachments/80816109/download_file","bulk_download_file_name":"The_antiangiogenic_agent_neovastat_AE_94.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80816109/1242.full-libre.pdf?1644872468=\u0026response-content-disposition=attachment%3B+filename%3DThe_antiangiogenic_agent_neovastat_AE_94.pdf\u0026Expires=1732482570\u0026Signature=CVABIA1z8AaWFVGLPs7xSbcn0W5nn5JlslWqUaLMQsugrJqSx9NtNssGeoJziGw2x40PQ-AxflM3uT~xqENDviLYNoj8ayJEY0NW6YC0w3gOqYGUmdNTMNhEx5BgdM4dSIMNcSSWdBUD3UKLSOhyXvrf0QeRJ-ubkHTtJqUp18SzLpLJULPG0G7-daVI1rOEFoORsWj--bCUu9ylRoqJGFuEenPkw-QKIz8Z9Hwk9iZucEo8Bw23XnO6Z~pAFK6UtpsFRfyv-RNCYumr70iZYE8nmj3xrxLaEzQEmi7Cnc5DSotzpFE-c4agMfk4jhD0UPezQh0DVLSDEtXGGFLkcg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":38650,"name":"Cell Division","url":"https://www.academia.edu/Documents/in/Cell_Division"},{"id":64568,"name":"Humans","url":"https://www.academia.edu/Documents/in/Humans"},{"id":71421,"name":"Capillaries","url":"https://www.academia.edu/Documents/in/Capillaries"},{"id":81148,"name":"Epidermal Growth Factor/ErbB receptors","url":"https://www.academia.edu/Documents/in/Epidermal_Growth_Factor_ErbB_receptors"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":138877,"name":"Vascular endothelium","url":"https://www.academia.edu/Documents/in/Vascular_endothelium"},{"id":172083,"name":"Phosphorylation","url":"https://www.academia.edu/Documents/in/Phosphorylation"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":1010725,"name":"Protein Binding","url":"https://www.academia.edu/Documents/in/Protein_Binding"},{"id":1035092,"name":"Aorta","url":"https://www.academia.edu/Documents/in/Aorta"},{"id":1663739,"name":"Tyrosine","url":"https://www.academia.edu/Documents/in/Tyrosine"},{"id":3314116,"name":"Angiogenesis inhibitors","url":"https://www.academia.edu/Documents/in/Angiogenesis_inhibitors"},{"id":3881526,"name":"In Vitro Techniques","url":"https://www.academia.edu/Documents/in/In_Vitro_Techniques"},{"id":4043962,"name":"Vascular endothelial growth factors","url":"https://www.academia.edu/Documents/in/Vascular_endothelial_growth_factors"}],"urls":[{"id":17672691,"url":"https://clincancerres.aacrjournals.org/content/clincanres/8/4/1242.full.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65500584"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/65500584/The_antiangiogenic_agent_Neovastat_AE_941_induces_endothelial_cell_apoptosis"><img alt="Research paper thumbnail of The antiangiogenic agent Neovastat (AE-941) induces endothelial cell apoptosis" class="work-thumbnail" src="https://attachments.academia-assets.com/77069464/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/65500584/The_antiangiogenic_agent_Neovastat_AE_941_induces_endothelial_cell_apoptosis">The antiangiogenic agent Neovastat (AE-941) induces endothelial cell apoptosis</a></div><div class="wp-workCard_item"><span>Molecular cancer therapeutics</span><span>, 2002</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Neovastat (AE-941), a naturally occurring multifunctional antiangiogenic agent, has been shown to...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Neovastat (AE-941), a naturally occurring multifunctional antiangiogenic agent, has been shown to inhibit key components of the angiogenic process, including matrix metalloproteinases and vascular endothelial growth factor-mediated signaling events. In this study, we report the presence of a proapoptotic activity within this compound. Neovastat treatment of bovine aortic endothelial cells caused cell death with characteristics of apoptosis, including chromatin condensation and DNA fragmentation. Neovastat markedly induced caspase-3, caspase-8, and caspase-9 activities, at similar levels to those measured in cells treated with tumor necrosis factor-alpha. Activation of caspases by Neovastat appears to be essential for its proapoptotic effects because all apoptotic features were blocked by zVAD-fmk, a broad-spectrum caspase inhibitor. The activation of caspases was correlated with the cleavage of the nuclear substrate poly(ADP-ribose) polymerase, and by a concomitant release of cytoch...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2289b99dbd029cd9c1e7518750a09625" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:77069464,&quot;asset_id&quot;:65500584,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/77069464/download_file?st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&st=MTczMjQ3ODk3MCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65500584"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65500584"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65500584; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65500584]").text(description); $(".js-view-count[data-work-id=65500584]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65500584; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65500584']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65500584, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2289b99dbd029cd9c1e7518750a09625" } } $('.js-work-strip[data-work-id=65500584]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65500584,"title":"The antiangiogenic agent Neovastat (AE-941) induces endothelial cell apoptosis","translated_title":"","metadata":{"abstract":"Neovastat (AE-941), a naturally occurring multifunctional antiangiogenic agent, has been shown to inhibit key components of the angiogenic process, including matrix metalloproteinases and vascular endothelial growth factor-mediated signaling events. In this study, we report the presence of a proapoptotic activity within this compound. Neovastat treatment of bovine aortic endothelial cells caused cell death with characteristics of apoptosis, including chromatin condensation and DNA fragmentation. Neovastat markedly induced caspase-3, caspase-8, and caspase-9 activities, at similar levels to those measured in cells treated with tumor necrosis factor-alpha. Activation of caspases by Neovastat appears to be essential for its proapoptotic effects because all apoptotic features were blocked by zVAD-fmk, a broad-spectrum caspase inhibitor. The activation of caspases was correlated with the cleavage of the nuclear substrate poly(ADP-ribose) polymerase, and by a concomitant release of cytoch...","publisher":"Molecular cancer therapeutics","publication_date":{"day":null,"month":null,"year":2002,"errors":{}},"publication_name":"Molecular cancer therapeutics"},"translated_abstract":"Neovastat (AE-941), a naturally occurring multifunctional antiangiogenic agent, has been shown to inhibit key components of the angiogenic process, including matrix metalloproteinases and vascular endothelial growth factor-mediated signaling events. In this study, we report the presence of a proapoptotic activity within this compound. Neovastat treatment of bovine aortic endothelial cells caused cell death with characteristics of apoptosis, including chromatin condensation and DNA fragmentation. Neovastat markedly induced caspase-3, caspase-8, and caspase-9 activities, at similar levels to those measured in cells treated with tumor necrosis factor-alpha. Activation of caspases by Neovastat appears to be essential for its proapoptotic effects because all apoptotic features were blocked by zVAD-fmk, a broad-spectrum caspase inhibitor. The activation of caspases was correlated with the cleavage of the nuclear substrate poly(ADP-ribose) polymerase, and by a concomitant release of cytoch...","internal_url":"https://www.academia.edu/65500584/The_antiangiogenic_agent_Neovastat_AE_941_induces_endothelial_cell_apoptosis","translated_internal_url":"","created_at":"2021-12-22T06:19:49.796-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":37591436,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":77069464,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/77069464/thumbnails/1.jpg","file_name":"795.full.pdf","download_url":"https://www.academia.edu/attachments/77069464/download_file?st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&st=MTczMjQ3ODk3MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_antiangiogenic_agent_Neovastat_AE_94.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/77069464/795.full-libre.pdf?1640183441=\u0026response-content-disposition=attachment%3B+filename%3DThe_antiangiogenic_agent_Neovastat_AE_94.pdf\u0026Expires=1732482570\u0026Signature=XoDcPtPTE-IKmgQ~lx7DdD1AIk07SwubzikZe4y4QueuUl5ai1jHCQoDG1PAlGreDx2a5dh1BKUSxB~Qh~TJJii6d-btrYRKL-zBaNNjQhw8c95OqbuONEUCLtEnH1kDLzkPMEO3mVhLgHxZmKLvjViD4-AoHyDoXDh~vE6fxbIt3NYrpf3~y2DzrqzS2ZPG1D01v-sb7UaRG0whZw8s7uKDx2gnPWYFjDT2oCOPuy~LPNhMJX34tvLYltju~J9oAJGgttKk12VJ5x8imH42sV4rNsvVAjuKm3cI9IXCBWc3JPphAx-0JuOBss5QPazc~UFbqcq8uhTyPulbQpx7hg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_antiangiogenic_agent_Neovastat_AE_941_induces_endothelial_cell_apoptosis","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":37591436,"first_name":"Edith","middle_initials":null,"last_name":"Beaulieu","page_name":"EdithBeaulieu","domain_name":"independent","created_at":"2015-11-03T14:27:08.767-08:00","display_name":"Edith Beaulieu","url":"https://independent.academia.edu/EdithBeaulieu"},"attachments":[{"id":77069464,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/77069464/thumbnails/1.jpg","file_name":"795.full.pdf","download_url":"https://www.academia.edu/attachments/77069464/download_file?st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&st=MTczMjQ3ODk3MCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_antiangiogenic_agent_Neovastat_AE_94.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/77069464/795.full-libre.pdf?1640183441=\u0026response-content-disposition=attachment%3B+filename%3DThe_antiangiogenic_agent_Neovastat_AE_94.pdf\u0026Expires=1732482570\u0026Signature=XoDcPtPTE-IKmgQ~lx7DdD1AIk07SwubzikZe4y4QueuUl5ai1jHCQoDG1PAlGreDx2a5dh1BKUSxB~Qh~TJJii6d-btrYRKL-zBaNNjQhw8c95OqbuONEUCLtEnH1kDLzkPMEO3mVhLgHxZmKLvjViD4-AoHyDoXDh~vE6fxbIt3NYrpf3~y2DzrqzS2ZPG1D01v-sb7UaRG0whZw8s7uKDx2gnPWYFjDT2oCOPuy~LPNhMJX34tvLYltju~J9oAJGgttKk12VJ5x8imH42sV4rNsvVAjuKm3cI9IXCBWc3JPphAx-0JuOBss5QPazc~UFbqcq8uhTyPulbQpx7hg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"},{"id":12981,"name":"Enzyme Inhibitors","url":"https://www.academia.edu/Documents/in/Enzyme_Inhibitors"},{"id":24731,"name":"Apoptosis","url":"https://www.academia.edu/Documents/in/Apoptosis"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":48057,"name":"DNA","url":"https://www.academia.edu/Documents/in/DNA"},{"id":50841,"name":"Caspases","url":"https://www.academia.edu/Documents/in/Caspases"},{"id":57808,"name":"Cell line","url":"https://www.academia.edu/Documents/in/Cell_line"},{"id":64568,"name":"Humans","url":"https://www.academia.edu/Documents/in/Humans"},{"id":84760,"name":"Mice","url":"https://www.academia.edu/Documents/in/Mice"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":112576,"name":"Cell Death","url":"https://www.academia.edu/Documents/in/Cell_Death"},{"id":238813,"name":"Chromatin","url":"https://www.academia.edu/Documents/in/Chromatin"},{"id":247477,"name":"Caspase","url":"https://www.academia.edu/Documents/in/Caspase"},{"id":260829,"name":"Cattle","url":"https://www.academia.edu/Documents/in/Cattle"},{"id":1035092,"name":"Aorta","url":"https://www.academia.edu/Documents/in/Aorta"},{"id":1157148,"name":"Cell Survival","url":"https://www.academia.edu/Documents/in/Cell_Survival"},{"id":2058817,"name":"Immunoblotting","url":"https://www.academia.edu/Documents/in/Immunoblotting"},{"id":2208075,"name":"Cysteine Proteinase Inhibitors","url":"https://www.academia.edu/Documents/in/Cysteine_Proteinase_Inhibitors"},{"id":2256666,"name":"DNA fragmentation","url":"https://www.academia.edu/Documents/in/DNA_fragmentation"},{"id":3314116,"name":"Angiogenesis inhibitors","url":"https://www.academia.edu/Documents/in/Angiogenesis_inhibitors"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65500583"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/65500583/Tissue_factor_pathway_inhibitor_TFPI_interferes_with_endothelial_cell_migration_via_ERK_parthway_and_proteins_involved_in_focal_complexes"><img alt="Research paper thumbnail of Tissue factor pathway inhibitor (TFPI) interferes with endothelial cell migration via ERK parthway and proteins involved in focal complexes" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/65500583/Tissue_factor_pathway_inhibitor_TFPI_interferes_with_endothelial_cell_migration_via_ERK_parthway_and_proteins_involved_in_focal_complexes">Tissue factor pathway inhibitor (TFPI) interferes with endothelial cell migration via ERK parthway and proteins involved in focal complexes</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A32 Introduction: Tissue factor pathway inhibitor (TFPI) is a plasma Kunitz-type serine protease ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A32 Introduction: Tissue factor pathway inhibitor (TFPI) is a plasma Kunitz-type serine protease inhibitor that is mainly known for its inhibition of tissue factor-mediated coagulation. In addition to its anticoagulant properties, emerging data showed that TFPI may also regulate endothelial cell functions via a non-haemostatic pathway.
 Methodology: In order to evaluate the antiangiogenic effects of TFPI on endothelial cells, recombinant human TFPI was obtained by cloning the full-length human TFPI cDNA and subsequent expression of the protein in Escherichia coli. After refolding, TFPI was used in vitro to characterize its effect on endothelial cell migration and capillary-like formation. The impact of TFPI on intracellular signalling pathway was studied using western blot and immunoprecipitation techniques. Finally, cell morphology and focal adhesion proteins were visualized by immunofluorescence and confocal microscopy.
 Results: In this work, we demonstrate physiologic concentrat...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65500583"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65500583"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65500583; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65500583]").text(description); $(".js-view-count[data-work-id=65500583]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65500583; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65500583']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65500583, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=65500583]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65500583,"title":"Tissue factor pathway inhibitor (TFPI) interferes with endothelial cell migration via ERK parthway and proteins involved in focal complexes","translated_title":"","metadata":{"abstract":"A32 Introduction: Tissue factor pathway inhibitor (TFPI) is a plasma Kunitz-type serine protease inhibitor that is mainly known for its inhibition of tissue factor-mediated coagulation. In addition to its anticoagulant properties, emerging data showed that TFPI may also regulate endothelial cell functions via a non-haemostatic pathway.\u2028 Methodology: In order to evaluate the antiangiogenic effects of TFPI on endothelial cells, recombinant human TFPI was obtained by cloning the full-length human TFPI cDNA and subsequent expression of the protein in Escherichia coli. After refolding, TFPI was used in vitro to characterize its effect on endothelial cell migration and capillary-like formation. The impact of TFPI on intracellular signalling pathway was studied using western blot and immunoprecipitation techniques. Finally, cell morphology and focal adhesion proteins were visualized by immunofluorescence and confocal microscopy.\u2028 Results: In this work, we demonstrate physiologic concentrat...","publication_date":{"day":null,"month":null,"year":2007,"errors":{}}},"translated_abstract":"A32 Introduction: Tissue factor pathway inhibitor (TFPI) is a plasma Kunitz-type serine protease inhibitor that is mainly known for its inhibition of tissue factor-mediated coagulation. In addition to its anticoagulant properties, emerging data showed that TFPI may also regulate endothelial cell functions via a non-haemostatic pathway.\u2028 Methodology: In order to evaluate the antiangiogenic effects of TFPI on endothelial cells, recombinant human TFPI was obtained by cloning the full-length human TFPI cDNA and subsequent expression of the protein in Escherichia coli. After refolding, TFPI was used in vitro to characterize its effect on endothelial cell migration and capillary-like formation. The impact of TFPI on intracellular signalling pathway was studied using western blot and immunoprecipitation techniques. Finally, cell morphology and focal adhesion proteins were visualized by immunofluorescence and confocal microscopy.\u2028 Results: In this work, we demonstrate physiologic concentrat...","internal_url":"https://www.academia.edu/65500583/Tissue_factor_pathway_inhibitor_TFPI_interferes_with_endothelial_cell_migration_via_ERK_parthway_and_proteins_involved_in_focal_complexes","translated_internal_url":"","created_at":"2021-12-22T06:19:49.703-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":37591436,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Tissue_factor_pathway_inhibitor_TFPI_interferes_with_endothelial_cell_migration_via_ERK_parthway_and_proteins_involved_in_focal_complexes","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":37591436,"first_name":"Edith","middle_initials":null,"last_name":"Beaulieu","page_name":"EdithBeaulieu","domain_name":"independent","created_at":"2015-11-03T14:27:08.767-08:00","display_name":"Edith Beaulieu","url":"https://independent.academia.edu/EdithBeaulieu"},"attachments":[],"research_interests":[{"id":8863,"name":"Cell Migration","url":"https://www.academia.edu/Documents/in/Cell_Migration"},{"id":28505,"name":"Adhesion","url":"https://www.academia.edu/Documents/in/Adhesion"},{"id":38831,"name":"Signal Transduction","url":"https://www.academia.edu/Documents/in/Signal_Transduction"},{"id":168057,"name":"Haemostasis and Thrombosis","url":"https://www.academia.edu/Documents/in/Haemostasis_and_Thrombosis"},{"id":213910,"name":"Mitogen Activated Protein Kinase","url":"https://www.academia.edu/Documents/in/Mitogen_Activated_Protein_Kinase"},{"id":401214,"name":"Endothelial cell","url":"https://www.academia.edu/Documents/in/Endothelial_cell"},{"id":787715,"name":"Molecular Cancer Therapeutics","url":"https://www.academia.edu/Documents/in/Molecular_Cancer_Therapeutics"},{"id":1274621,"name":"Extracellular","url":"https://www.academia.edu/Documents/in/Extracellular"},{"id":1909024,"name":"Cell Motility","url":"https://www.academia.edu/Documents/in/Cell_Motility"},{"id":3016998,"name":"Extracellular signal regulated kinases ","url":"https://www.academia.edu/Documents/in/Extracellular_signal_regulated_kinases"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65500582"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/65500582/The_antiangiogenic_agent_neovastat_AE_941_inhibits_vascular_endothelial_growth_factor_mediated_biological_effects"><img alt="Research paper thumbnail of The antiangiogenic agent neovastat (AE-941) inhibits vascular endothelial growth factor-mediated biological effects" class="work-thumbnail" src="https://attachments.academia-assets.com/77069333/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/65500582/The_antiangiogenic_agent_neovastat_AE_941_inhibits_vascular_endothelial_growth_factor_mediated_biological_effects">The antiangiogenic agent neovastat (AE-941) inhibits vascular endothelial growth factor-mediated biological effects</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">PURPOSE Vascular endothelial growth factor (VEGF) is a potent regulator of angiogenesis, which ex...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">PURPOSE Vascular endothelial growth factor (VEGF) is a potent regulator of angiogenesis, which exerts direct effects on vascular endothelial cells, including endothelial cell proliferation and survival, tubulogenesis, and vascular permeability. In this study, we examined whether Neovastat, a naturally occurring multifunctional antiangiogenic drug, could inhibit the endothelial cell response to VEGF stimulation. RESULTS We demonstrated that Neovastat was able to block the VEGF-dependent microvessel sprouting from Matrigel-embedded rat aortic rings, and it also blocked the VEGF-induced endothelial cell tubulogenesis in vitro. In vivo studies showed that Neovastat was able to specifically inhibit VEGF-induced plasma extravasation in numerous tissues, including pancreas and skin. The mechanism of action of Neovastat on VEGF-mediated effects was also evaluated at the molecular level. Neovastat was shown to compete against the binding of VEGF to its receptor in endothelial cells and signi...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="803794ed699e5929be5e641dc6e81796" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:77069333,&quot;asset_id&quot;:65500582,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/77069333/download_file?st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65500582"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65500582"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65500582; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65500582]").text(description); $(".js-view-count[data-work-id=65500582]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65500582; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65500582']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65500582, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "803794ed699e5929be5e641dc6e81796" } } $('.js-work-strip[data-work-id=65500582]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65500582,"title":"The antiangiogenic agent neovastat (AE-941) inhibits vascular endothelial growth factor-mediated biological effects","translated_title":"","metadata":{"abstract":"PURPOSE Vascular endothelial growth factor (VEGF) is a potent regulator of angiogenesis, which exerts direct effects on vascular endothelial cells, including endothelial cell proliferation and survival, tubulogenesis, and vascular permeability. In this study, we examined whether Neovastat, a naturally occurring multifunctional antiangiogenic drug, could inhibit the endothelial cell response to VEGF stimulation. RESULTS We demonstrated that Neovastat was able to block the VEGF-dependent microvessel sprouting from Matrigel-embedded rat aortic rings, and it also blocked the VEGF-induced endothelial cell tubulogenesis in vitro. In vivo studies showed that Neovastat was able to specifically inhibit VEGF-induced plasma extravasation in numerous tissues, including pancreas and skin. The mechanism of action of Neovastat on VEGF-mediated effects was also evaluated at the molecular level. Neovastat was shown to compete against the binding of VEGF to its receptor in endothelial cells and signi...","publisher":"Clinical cancer research : an official journal of the American Association for Cancer Research","publication_date":{"day":null,"month":null,"year":2002,"errors":{}}},"translated_abstract":"PURPOSE Vascular endothelial growth factor (VEGF) is a potent regulator of angiogenesis, which exerts direct effects on vascular endothelial cells, including endothelial cell proliferation and survival, tubulogenesis, and vascular permeability. In this study, we examined whether Neovastat, a naturally occurring multifunctional antiangiogenic drug, could inhibit the endothelial cell response to VEGF stimulation. RESULTS We demonstrated that Neovastat was able to block the VEGF-dependent microvessel sprouting from Matrigel-embedded rat aortic rings, and it also blocked the VEGF-induced endothelial cell tubulogenesis in vitro. In vivo studies showed that Neovastat was able to specifically inhibit VEGF-induced plasma extravasation in numerous tissues, including pancreas and skin. The mechanism of action of Neovastat on VEGF-mediated effects was also evaluated at the molecular level. Neovastat was shown to compete against the binding of VEGF to its receptor in endothelial cells and signi...","internal_url":"https://www.academia.edu/65500582/The_antiangiogenic_agent_neovastat_AE_941_inhibits_vascular_endothelial_growth_factor_mediated_biological_effects","translated_internal_url":"","created_at":"2021-12-22T06:19:49.564-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":37591436,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":77069333,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/77069333/thumbnails/1.jpg","file_name":"1242.full.pdf","download_url":"https://www.academia.edu/attachments/77069333/download_file?st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_antiangiogenic_agent_neovastat_AE_94.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/77069333/1242.full-libre.pdf?1640183453=\u0026response-content-disposition=attachment%3B+filename%3DThe_antiangiogenic_agent_neovastat_AE_94.pdf\u0026Expires=1732482570\u0026Signature=byeMRQ68804hNth7M07a8XZNGHXOVtI9V8ZbzbkXNTs734vXtyQ8AN0zT~EzBElFGSbv~271rDM57UxqaKgZff8GvYNzVoqWZbYTrduk1m4Sgn8V0RriSyW2-4EG007CJRO5zNFqalS4WFcItgtS81zLspxoYbsX-qmNE6REzcIwIYZQ9STlxk4Su6ukDHMaExyAgyyak2PuU5EysmyihAcaxEuljBJRD6M2ohFgGfRDlS5yuYtMeo0rzIf8y1cOb1NsAmJPwH9KS5Ts0f~MwYWxx0N5z1qIr0~QWOEO0JJXfoMz2tA1k7jiqOsBDU~ddsJLlcUe7PYQKJLTRh38yw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_antiangiogenic_agent_neovastat_AE_941_inhibits_vascular_endothelial_growth_factor_mediated_biological_effects","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":37591436,"first_name":"Edith","middle_initials":null,"last_name":"Beaulieu","page_name":"EdithBeaulieu","domain_name":"independent","created_at":"2015-11-03T14:27:08.767-08:00","display_name":"Edith Beaulieu","url":"https://independent.academia.edu/EdithBeaulieu"},"attachments":[{"id":77069333,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/77069333/thumbnails/1.jpg","file_name":"1242.full.pdf","download_url":"https://www.academia.edu/attachments/77069333/download_file?st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_antiangiogenic_agent_neovastat_AE_94.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/77069333/1242.full-libre.pdf?1640183453=\u0026response-content-disposition=attachment%3B+filename%3DThe_antiangiogenic_agent_neovastat_AE_94.pdf\u0026Expires=1732482570\u0026Signature=byeMRQ68804hNth7M07a8XZNGHXOVtI9V8ZbzbkXNTs734vXtyQ8AN0zT~EzBElFGSbv~271rDM57UxqaKgZff8GvYNzVoqWZbYTrduk1m4Sgn8V0RriSyW2-4EG007CJRO5zNFqalS4WFcItgtS81zLspxoYbsX-qmNE6REzcIwIYZQ9STlxk4Su6ukDHMaExyAgyyak2PuU5EysmyihAcaxEuljBJRD6M2ohFgGfRDlS5yuYtMeo0rzIf8y1cOb1NsAmJPwH9KS5Ts0f~MwYWxx0N5z1qIr0~QWOEO0JJXfoMz2tA1k7jiqOsBDU~ddsJLlcUe7PYQKJLTRh38yw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":38650,"name":"Cell Division","url":"https://www.academia.edu/Documents/in/Cell_Division"},{"id":64568,"name":"Humans","url":"https://www.academia.edu/Documents/in/Humans"},{"id":71421,"name":"Capillaries","url":"https://www.academia.edu/Documents/in/Capillaries"},{"id":81148,"name":"Epidermal Growth Factor/ErbB receptors","url":"https://www.academia.edu/Documents/in/Epidermal_Growth_Factor_ErbB_receptors"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":138877,"name":"Vascular endothelium","url":"https://www.academia.edu/Documents/in/Vascular_endothelium"},{"id":172083,"name":"Phosphorylation","url":"https://www.academia.edu/Documents/in/Phosphorylation"},{"id":375054,"name":"Rats","url":"https://www.academia.edu/Documents/in/Rats"},{"id":1010725,"name":"Protein Binding","url":"https://www.academia.edu/Documents/in/Protein_Binding"},{"id":1035092,"name":"Aorta","url":"https://www.academia.edu/Documents/in/Aorta"},{"id":1663739,"name":"Tyrosine","url":"https://www.academia.edu/Documents/in/Tyrosine"},{"id":3314116,"name":"Angiogenesis inhibitors","url":"https://www.academia.edu/Documents/in/Angiogenesis_inhibitors"},{"id":3881526,"name":"In Vitro Techniques","url":"https://www.academia.edu/Documents/in/In_Vitro_Techniques"},{"id":4043962,"name":"Vascular endothelial growth factors","url":"https://www.academia.edu/Documents/in/Vascular_endothelial_growth_factors"}],"urls":[{"id":15532211,"url":"http://clincancerres.aacrjournals.org/content/clincanres/8/4/1242.full.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65500581"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/65500581/Impaired_membrane_type_1_matrix_metalloproteinase_phosphorylation_results_in_blocking_3D_collagen_invasion_by_tumor_cells_through_cell_cycle_arrest_in_G0_G1_phase"><img alt="Research paper thumbnail of Impaired membrane-type 1 matrix metalloproteinase phosphorylation results in blocking 3D-collagen invasion by tumor cells through cell cycle arrest in G0/G1 phase" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/65500581/Impaired_membrane_type_1_matrix_metalloproteinase_phosphorylation_results_in_blocking_3D_collagen_invasion_by_tumor_cells_through_cell_cycle_arrest_in_G0_G1_phase">Impaired membrane-type 1 matrix metalloproteinase phosphorylation results in blocking 3D-collagen invasion by tumor cells through cell cycle arrest in G0/G1 phase</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">B200 Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a transmembrane matrix metalloproteina...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">B200 Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a transmembrane matrix metalloproteinase (MMP) that degrades several component of the extracellular matrix, and this activity has been shown to be important for both tumor growth and invasion. We have recently shown that MT1-MMP is phosphorylated on its unique cytoplasmic tyrosine 573, and that this phosphorylation is necessary for in vitro tumor cell migration. In this study, we investigate the mechanisms involved in phosphoMT1-MMP- mediated tumor cell proliferation and invasion.
 Fibrosarcoma cells (HT-1080) were stably transfected with the wild type or the non-phosphorylable (Y573F mutant) forms of MT1-MMP. Cell proliferation and invasion studies were performed on 2D- or within a 3D-type 1 collagen matrix. MT1-MMP expression was determined by reverse transcription PCR, western blot or zymography. Cell cycle was analysed by flow cytometry.
 Flow cytometry analysis of the stable transfectants showed that MT1-MMP was express...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65500581"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65500581"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65500581; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65500581]").text(description); $(".js-view-count[data-work-id=65500581]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65500581; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65500581']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65500581, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=65500581]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65500581,"title":"Impaired membrane-type 1 matrix metalloproteinase phosphorylation results in blocking 3D-collagen invasion by tumor cells through cell cycle arrest in G0/G1 phase","translated_title":"","metadata":{"abstract":"B200 Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a transmembrane matrix metalloproteinase (MMP) that degrades several component of the extracellular matrix, and this activity has been shown to be important for both tumor growth and invasion. We have recently shown that MT1-MMP is phosphorylated on its unique cytoplasmic tyrosine 573, and that this phosphorylation is necessary for in vitro tumor cell migration. In this study, we investigate the mechanisms involved in phosphoMT1-MMP- mediated tumor cell proliferation and invasion.\u2028 Fibrosarcoma cells (HT-1080) were stably transfected with the wild type or the non-phosphorylable (Y573F mutant) forms of MT1-MMP. Cell proliferation and invasion studies were performed on 2D- or within a 3D-type 1 collagen matrix. MT1-MMP expression was determined by reverse transcription PCR, western blot or zymography. Cell cycle was analysed by flow cytometry.\u2028 Flow cytometry analysis of the stable transfectants showed that MT1-MMP was express...","publication_date":{"day":null,"month":null,"year":2007,"errors":{}}},"translated_abstract":"B200 Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a transmembrane matrix metalloproteinase (MMP) that degrades several component of the extracellular matrix, and this activity has been shown to be important for both tumor growth and invasion. We have recently shown that MT1-MMP is phosphorylated on its unique cytoplasmic tyrosine 573, and that this phosphorylation is necessary for in vitro tumor cell migration. In this study, we investigate the mechanisms involved in phosphoMT1-MMP- mediated tumor cell proliferation and invasion.\u2028 Fibrosarcoma cells (HT-1080) were stably transfected with the wild type or the non-phosphorylable (Y573F mutant) forms of MT1-MMP. Cell proliferation and invasion studies were performed on 2D- or within a 3D-type 1 collagen matrix. MT1-MMP expression was determined by reverse transcription PCR, western blot or zymography. Cell cycle was analysed by flow cytometry.\u2028 Flow cytometry analysis of the stable transfectants showed that MT1-MMP was express...","internal_url":"https://www.academia.edu/65500581/Impaired_membrane_type_1_matrix_metalloproteinase_phosphorylation_results_in_blocking_3D_collagen_invasion_by_tumor_cells_through_cell_cycle_arrest_in_G0_G1_phase","translated_internal_url":"","created_at":"2021-12-22T06:19:49.468-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":37591436,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Impaired_membrane_type_1_matrix_metalloproteinase_phosphorylation_results_in_blocking_3D_collagen_invasion_by_tumor_cells_through_cell_cycle_arrest_in_G0_G1_phase","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":37591436,"first_name":"Edith","middle_initials":null,"last_name":"Beaulieu","page_name":"EdithBeaulieu","domain_name":"independent","created_at":"2015-11-03T14:27:08.767-08:00","display_name":"Edith Beaulieu","url":"https://independent.academia.edu/EdithBeaulieu"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65500007"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/65500007/Matrix_Metalloproteinases_and_Their_Inhibitors_in_Human_Pituitary_Tumors"><img alt="Research paper thumbnail of Matrix Metalloproteinases and Their Inhibitors in Human Pituitary Tumors" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/65500007/Matrix_Metalloproteinases_and_Their_Inhibitors_in_Human_Pituitary_Tumors">Matrix Metalloproteinases and Their Inhibitors in Human Pituitary Tumors</a></div><div class="wp-workCard_item"><span>Neurosurgery</span><span>, 1999</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65500007"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65500007"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65500007; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65500007]").text(description); $(".js-view-count[data-work-id=65500007]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65500007; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65500007']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65500007, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=65500007]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65500007,"title":"Matrix Metalloproteinases and Their Inhibitors in Human Pituitary Tumors","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1999,"errors":{}},"publication_name":"Neurosurgery"},"translated_abstract":null,"internal_url":"https://www.academia.edu/65500007/Matrix_Metalloproteinases_and_Their_Inhibitors_in_Human_Pituitary_Tumors","translated_internal_url":"","created_at":"2021-12-22T06:15:44.172-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":37591436,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Matrix_Metalloproteinases_and_Their_Inhibitors_in_Human_Pituitary_Tumors","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":37591436,"first_name":"Edith","middle_initials":null,"last_name":"Beaulieu","page_name":"EdithBeaulieu","domain_name":"independent","created_at":"2015-11-03T14:27:08.767-08:00","display_name":"Edith Beaulieu","url":"https://independent.academia.edu/EdithBeaulieu"},"attachments":[],"research_interests":[{"id":650,"name":"Neurosurgery","url":"https://www.academia.edu/Documents/in/Neurosurgery"},{"id":1920779,"name":"Matrix Metalloproteinase","url":"https://www.academia.edu/Documents/in/Matrix_Metalloproteinase"}],"urls":[{"id":15531993,"url":"http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage\u0026an=00006123-199912000-00033"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="47914415"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/47914415/Inhibition_of_P_glycoprotein_by_cyclosporin_A_analogues_and_metabolites"><img alt="Research paper thumbnail of Inhibition of P-glycoprotein by cyclosporin A analogues and metabolites" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/47914415/Inhibition_of_P_glycoprotein_by_cyclosporin_A_analogues_and_metabolites">Inhibition of P-glycoprotein by cyclosporin A analogues and metabolites</a></div><div class="wp-workCard_item"><span>Biochemistry and Cell Biology</span><span>, Jan 24, 2011</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The interaction between P-glycoprotein (P-gp) from membranes isolated from multidrug-resistant Ch...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The interaction between P-glycoprotein (P-gp) from membranes isolated from multidrug-resistant Chinese hamster ovary cells and cyclosporin A (CsA) analogues and its metabolites was characterized. Screening of these latter as chemosensitizers was performed using three different assays: (i) vinblastine uptake, (ii) photoaffinity labeling by [125I]iodoaryl azidoprazosin, and (iii) P-gp ATPase activity. Oxidation of the hydroxyl group at position 1 of CsA (200-096), CsG (215-834), or CsD (PSC-833) increased their inhibition of P-gp. CsA analogues (208-032, 208-183) modified at position 11 retained their ability to inhibit P-gp while analogues modified at position 2 (CsC and CsD) lost their efficiency. The inhibitions induced by metabolites of CsA were also compared to those obtained with CsG metabolites. From all the molecules tested, PSC-833 and 280-446 peptolide were the strongest inhibitors. Our results indicate that modifications of CsA analogues at position 1 and 2 are critical for their interaction with P-gp and that CsA metabolites retain a portion of the inhibitory activity of the parent drug.Key words: P-glycoprotein, cyclosporin A, vinblastine uptake, photolabeling, ATPase activity.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="47914415"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="47914415"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47914415; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47914415]").text(description); $(".js-view-count[data-work-id=47914415]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47914415; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='47914415']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 47914415, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=47914415]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":47914415,"title":"Inhibition of P-glycoprotein by cyclosporin A analogues and metabolites","translated_title":"","metadata":{"abstract":"The interaction between P-glycoprotein (P-gp) from membranes isolated from multidrug-resistant Chinese hamster ovary cells and cyclosporin A (CsA) analogues and its metabolites was characterized. Screening of these latter as chemosensitizers was performed using three different assays: (i) vinblastine uptake, (ii) photoaffinity labeling by [125I]iodoaryl azidoprazosin, and (iii) P-gp ATPase activity. Oxidation of the hydroxyl group at position 1 of CsA (200-096), CsG (215-834), or CsD (PSC-833) increased their inhibition of P-gp. CsA analogues (208-032, 208-183) modified at position 11 retained their ability to inhibit P-gp while analogues modified at position 2 (CsC and CsD) lost their efficiency. The inhibitions induced by metabolites of CsA were also compared to those obtained with CsG metabolites. From all the molecules tested, PSC-833 and 280-446 peptolide were the strongest inhibitors. Our results indicate that modifications of CsA analogues at position 1 and 2 are critical for their interaction with P-gp and that CsA metabolites retain a portion of the inhibitory activity of the parent drug.Key words: P-glycoprotein, cyclosporin A, vinblastine uptake, photolabeling, ATPase activity.","publication_date":{"day":24,"month":1,"year":2011,"errors":{}},"publication_name":"Biochemistry and Cell Biology"},"translated_abstract":"The interaction between P-glycoprotein (P-gp) from membranes isolated from multidrug-resistant Chinese hamster ovary cells and cyclosporin A (CsA) analogues and its metabolites was characterized. Screening of these latter as chemosensitizers was performed using three different assays: (i) vinblastine uptake, (ii) photoaffinity labeling by [125I]iodoaryl azidoprazosin, and (iii) P-gp ATPase activity. Oxidation of the hydroxyl group at position 1 of CsA (200-096), CsG (215-834), or CsD (PSC-833) increased their inhibition of P-gp. CsA analogues (208-032, 208-183) modified at position 11 retained their ability to inhibit P-gp while analogues modified at position 2 (CsC and CsD) lost their efficiency. The inhibitions induced by metabolites of CsA were also compared to those obtained with CsG metabolites. From all the molecules tested, PSC-833 and 280-446 peptolide were the strongest inhibitors. Our results indicate that modifications of CsA analogues at position 1 and 2 are critical for their interaction with P-gp and that CsA metabolites retain a portion of the inhibitory activity of the parent drug.Key words: P-glycoprotein, cyclosporin A, vinblastine uptake, photolabeling, ATPase activity.","internal_url":"https://www.academia.edu/47914415/Inhibition_of_P_glycoprotein_by_cyclosporin_A_analogues_and_metabolites","translated_internal_url":"","created_at":"2021-05-03T06:35:25.401-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":37591436,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Inhibition_of_P_glycoprotein_by_cyclosporin_A_analogues_and_metabolites","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":37591436,"first_name":"Edith","middle_initials":null,"last_name":"Beaulieu","page_name":"EdithBeaulieu","domain_name":"independent","created_at":"2015-11-03T14:27:08.767-08:00","display_name":"Edith Beaulieu","url":"https://independent.academia.edu/EdithBeaulieu"},"attachments":[],"research_interests":[{"id":13827,"name":"Cell Biology","url":"https://www.academia.edu/Documents/in/Cell_Biology"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":126972,"name":"P-glycoprotein","url":"https://www.academia.edu/Documents/in/P-glycoprotein"},{"id":168352,"name":"Cyclosporine","url":"https://www.academia.edu/Documents/in/Cyclosporine"},{"id":413195,"name":"Time Factors","url":"https://www.academia.edu/Documents/in/Time_Factors"},{"id":1254280,"name":"Endosomes","url":"https://www.academia.edu/Documents/in/Endosomes"},{"id":1540375,"name":"Vinblastine","url":"https://www.academia.edu/Documents/in/Vinblastine"},{"id":1681026,"name":"Biochemistry and cell biology","url":"https://www.academia.edu/Documents/in/Biochemistry_and_cell_biology"},{"id":1722637,"name":"Verapamil","url":"https://www.academia.edu/Documents/in/Verapamil"},{"id":1816594,"name":"Adenosine Triphosphate","url":"https://www.academia.edu/Documents/in/Adenosine_Triphosphate"},{"id":2468093,"name":"Cell Membrane","url":"https://www.academia.edu/Documents/in/Cell_Membrane"},{"id":3004151,"name":"CHO cells","url":"https://www.academia.edu/Documents/in/CHO_cells"},{"id":3214915,"name":"Cricetinae","url":"https://www.academia.edu/Documents/in/Cricetinae"},{"id":3763225,"name":"Medical and Health Sciences","url":"https://www.academia.edu/Documents/in/Medical_and_Health_Sciences"}],"urls":[{"id":9920613,"url":"http://www.nrcresearchpress.com/doi/abs/10.1139/o99-011"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="47914414"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/47914414/Expression_of_matrix_metalloproteinases_and_their_inhibitors_in_human_brain_tumors"><img alt="Research paper thumbnail of Expression of matrix metalloproteinases and their inhibitors in human brain tumors" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/47914414/Expression_of_matrix_metalloproteinases_and_their_inhibitors_in_human_brain_tumors">Expression of matrix metalloproteinases and their inhibitors in human brain tumors</a></div><div class="wp-workCard_item"><span>Clinical and Experimental Metastasis</span><span>, Feb 1, 1999</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Sixty human brain tumors, classified according to the New World Health Organization (WHO) classif...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Sixty human brain tumors, classified according to the New World Health Organization (WHO) classification including, grade I schwannomas, meningiomas and pilocytic astrocytomas, grade II astrocytomas, grade III anaplastic astrocytomas, grade IV glioblastomas, grade III anaplastic oligodendrogliomas and grade IV glioblastomas and lung and melanoma metastases were analyzed for the expression of three matrix metalloproteinases (MMPs), two tissue inhibitors of MMPs (TIMPs) and for MMP activity. Some correlation was found between MMP expression and the degree of malignancy. Western blotting analysis revealed a more uniform pattern of distribution of MMP-2 (gelatinase A) than of MMP-9 (gelatinase B) and MMP-12 (metalloelastase) among tumors. MMP-9 levels were found to be significantly higher in grade III anaplastic astrocytomas and anaplastic oligodendrogliomas than those in grade I schwannomas and meningiomas. Anaplastic astrocytomas and Grade IV glioblastomas expressed significantly higher levels MMP-12 than grade I meningiomas. All sixty tumors showed a similar pattern of activity in zymography, proMMP-9 being the major species detected. Interestingly, TIMP-1 and TIMP-2 expression levels were especially low in tumors of grade II and grade III but significantly higher in tumors of grade I, particularly in schwannomas. Taken together, these data suggest that: 1) a balance between MMPs and TIMPs has an important role to play in human brain tumors; 2) TIMP expression may be valuable markers for tumor malignancy.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="47914414"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="47914414"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47914414; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47914414]").text(description); $(".js-view-count[data-work-id=47914414]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47914414; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='47914414']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 47914414, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=47914414]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":47914414,"title":"Expression of matrix metalloproteinases and their inhibitors in human brain tumors","translated_title":"","metadata":{"abstract":"Sixty human brain tumors, classified according to the New World Health Organization (WHO) classification including, grade I schwannomas, meningiomas and pilocytic astrocytomas, grade II astrocytomas, grade III anaplastic astrocytomas, grade IV glioblastomas, grade III anaplastic oligodendrogliomas and grade IV glioblastomas and lung and melanoma metastases were analyzed for the expression of three matrix metalloproteinases (MMPs), two tissue inhibitors of MMPs (TIMPs) and for MMP activity. Some correlation was found between MMP expression and the degree of malignancy. Western blotting analysis revealed a more uniform pattern of distribution of MMP-2 (gelatinase A) than of MMP-9 (gelatinase B) and MMP-12 (metalloelastase) among tumors. MMP-9 levels were found to be significantly higher in grade III anaplastic astrocytomas and anaplastic oligodendrogliomas than those in grade I schwannomas and meningiomas. Anaplastic astrocytomas and Grade IV glioblastomas expressed significantly higher levels MMP-12 than grade I meningiomas. All sixty tumors showed a similar pattern of activity in zymography, proMMP-9 being the major species detected. Interestingly, TIMP-1 and TIMP-2 expression levels were especially low in tumors of grade II and grade III but significantly higher in tumors of grade I, particularly in schwannomas. Taken together, these data suggest that: 1) a balance between MMPs and TIMPs has an important role to play in human brain tumors; 2) TIMP expression may be valuable markers for tumor malignancy.","publication_date":{"day":1,"month":2,"year":1999,"errors":{}},"publication_name":"Clinical and Experimental Metastasis"},"translated_abstract":"Sixty human brain tumors, classified according to the New World Health Organization (WHO) classification including, grade I schwannomas, meningiomas and pilocytic astrocytomas, grade II astrocytomas, grade III anaplastic astrocytomas, grade IV glioblastomas, grade III anaplastic oligodendrogliomas and grade IV glioblastomas and lung and melanoma metastases were analyzed for the expression of three matrix metalloproteinases (MMPs), two tissue inhibitors of MMPs (TIMPs) and for MMP activity. Some correlation was found between MMP expression and the degree of malignancy. Western blotting analysis revealed a more uniform pattern of distribution of MMP-2 (gelatinase A) than of MMP-9 (gelatinase B) and MMP-12 (metalloelastase) among tumors. MMP-9 levels were found to be significantly higher in grade III anaplastic astrocytomas and anaplastic oligodendrogliomas than those in grade I schwannomas and meningiomas. Anaplastic astrocytomas and Grade IV glioblastomas expressed significantly higher levels MMP-12 than grade I meningiomas. All sixty tumors showed a similar pattern of activity in zymography, proMMP-9 being the major species detected. Interestingly, TIMP-1 and TIMP-2 expression levels were especially low in tumors of grade II and grade III but significantly higher in tumors of grade I, particularly in schwannomas. Taken together, these data suggest that: 1) a balance between MMPs and TIMPs has an important role to play in human brain tumors; 2) TIMP expression may be valuable markers for tumor malignancy.","internal_url":"https://www.academia.edu/47914414/Expression_of_matrix_metalloproteinases_and_their_inhibitors_in_human_brain_tumors","translated_internal_url":"","created_at":"2021-05-03T06:35:25.267-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":37591436,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Expression_of_matrix_metalloproteinases_and_their_inhibitors_in_human_brain_tumors","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":37591436,"first_name":"Edith","middle_initials":null,"last_name":"Beaulieu","page_name":"EdithBeaulieu","domain_name":"independent","created_at":"2015-11-03T14:27:08.767-08:00","display_name":"Edith Beaulieu","url":"https://independent.academia.edu/EdithBeaulieu"},"attachments":[],"research_interests":[{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"}],"urls":[{"id":9920612,"url":"http://www.ncbi.nlm.nih.gov/pubmed/10845554"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="47914413"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/47914413/The_Antiangiogenic_Agent_Neovastat_%C3%86_941_Inhibits_Vascular_Endothelial_Growth_Factor_mediated_Biological_Effects"><img alt="Research paper thumbnail of The Antiangiogenic Agent Neovastat (Æ-941) Inhibits Vascular Endothelial Growth Factor-mediated Biological Effects" class="work-thumbnail" src="https://attachments.academia-assets.com/66797205/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/47914413/The_Antiangiogenic_Agent_Neovastat_%C3%86_941_Inhibits_Vascular_Endothelial_Growth_Factor_mediated_Biological_Effects">The Antiangiogenic Agent Neovastat (Æ-941) Inhibits Vascular Endothelial Growth Factor-mediated Biological Effects</a></div><div class="wp-workCard_item"><span>Clinical Cancer Research</span><span>, Apr 1, 2002</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="28f7b6cf1d074d723f16fa4a48729bf5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:66797205,&quot;asset_id&quot;:47914413,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/66797205/download_file?st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="47914413"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="47914413"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47914413; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47914413]").text(description); $(".js-view-count[data-work-id=47914413]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47914413; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='47914413']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 47914413, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "28f7b6cf1d074d723f16fa4a48729bf5" } } $('.js-work-strip[data-work-id=47914413]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":47914413,"title":"The Antiangiogenic Agent Neovastat (Æ-941) Inhibits Vascular Endothelial Growth Factor-mediated Biological Effects","translated_title":"","metadata":{"grobid_abstract":"Purpose: Vascular endothelial growth factor (VEGF) is a potent regulator of angiogenesis, which exerts direct effects on vascular endothelial cells, including endothelial cell proliferation and survival, tubulogenesis, and vascular permeability. In this study, we examined whether Neovastat, a naturally occurring multifunctional antiangiogenic drug, could inhibit the endothelial cell response to VEGF stimulation.","publication_date":{"day":1,"month":4,"year":2002,"errors":{}},"publication_name":"Clinical Cancer Research","grobid_abstract_attachment_id":66797205},"translated_abstract":null,"internal_url":"https://www.academia.edu/47914413/The_Antiangiogenic_Agent_Neovastat_%C3%86_941_Inhibits_Vascular_Endothelial_Growth_Factor_mediated_Biological_Effects","translated_internal_url":"","created_at":"2021-05-03T06:35:25.134-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":37591436,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":66797205,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/66797205/thumbnails/1.jpg","file_name":"1242.full.pdf","download_url":"https://www.academia.edu/attachments/66797205/download_file?st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Antiangiogenic_Agent_Neovastat_Ae_941.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/66797205/1242.full-libre.pdf?1620050785=\u0026response-content-disposition=attachment%3B+filename%3DThe_Antiangiogenic_Agent_Neovastat_Ae_941.pdf\u0026Expires=1732482571\u0026Signature=AZECOI0AAuyuiBl8VBfmFIRJfwQK9z6CzyZhVS6G-fjb-h1x98UqhAqd2Nx1LdYNN~jx~0MAptCIIu3CzkJLLFr9pjZksM2QAhaYldWXPJuHpgcfGsKxXNQbF5DFnraS0l2rIcNxS7m9Mw-fn20scsY5N627ITIOrwHpWcyM0xI-V5Ww2e6omsTgD9BBZLuKdEk0Dddk1Lut2lPA2wJ3djddTsJ8dRqC~wT2duBGD6~jKGNutOJ0ptzBNwbZRlIzUJLTPFk212aAnvNWDnEbFvhQeKw3z1i9mcvlq93X~~Qny~LUR8Vm2W3jkwmg9a8gVRpLZjzE3iMH5ZgCMo6C-Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Antiangiogenic_Agent_Neovastat_Æ_941_Inhibits_Vascular_Endothelial_Growth_Factor_mediated_Biological_Effects","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":37591436,"first_name":"Edith","middle_initials":null,"last_name":"Beaulieu","page_name":"EdithBeaulieu","domain_name":"independent","created_at":"2015-11-03T14:27:08.767-08:00","display_name":"Edith Beaulieu","url":"https://independent.academia.edu/EdithBeaulieu"},"attachments":[{"id":66797205,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/66797205/thumbnails/1.jpg","file_name":"1242.full.pdf","download_url":"https://www.academia.edu/attachments/66797205/download_file?st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Antiangiogenic_Agent_Neovastat_Ae_941.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/66797205/1242.full-libre.pdf?1620050785=\u0026response-content-disposition=attachment%3B+filename%3DThe_Antiangiogenic_Agent_Neovastat_Ae_941.pdf\u0026Expires=1732482571\u0026Signature=AZECOI0AAuyuiBl8VBfmFIRJfwQK9z6CzyZhVS6G-fjb-h1x98UqhAqd2Nx1LdYNN~jx~0MAptCIIu3CzkJLLFr9pjZksM2QAhaYldWXPJuHpgcfGsKxXNQbF5DFnraS0l2rIcNxS7m9Mw-fn20scsY5N627ITIOrwHpWcyM0xI-V5Ww2e6omsTgD9BBZLuKdEk0Dddk1Lut2lPA2wJ3djddTsJ8dRqC~wT2duBGD6~jKGNutOJ0ptzBNwbZRlIzUJLTPFk212aAnvNWDnEbFvhQeKw3z1i9mcvlq93X~~Qny~LUR8Vm2W3jkwmg9a8gVRpLZjzE3iMH5ZgCMo6C-Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":8942,"name":"Treatment","url":"https://www.academia.edu/Documents/in/Treatment"},{"id":59370,"name":"In Vitro","url":"https://www.academia.edu/Documents/in/In_Vitro"},{"id":302037,"name":"In Vivo","url":"https://www.academia.edu/Documents/in/In_Vivo"},{"id":401214,"name":"Endothelial cell","url":"https://www.academia.edu/Documents/in/Endothelial_cell"},{"id":782251,"name":"Cell Proliferation","url":"https://www.academia.edu/Documents/in/Cell_Proliferation"},{"id":783432,"name":"Biological activity","url":"https://www.academia.edu/Documents/in/Biological_activity"}],"urls":[{"id":9920611,"url":"http://cat.inist.fr/?aModele=afficheN\u0026cpsidt=13599147"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="47914412"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/47914412/Tissue_factor_pathway_inhibitor_TFPI_interferes_with_endothelial_cell_migration_via_ERK_parthway_and_proteins_involved_in_focal_complexes"><img alt="Research paper thumbnail of Tissue factor pathway inhibitor (TFPI) interferes with endothelial cell migration via ERK parthway and proteins involved in focal complexes" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/47914412/Tissue_factor_pathway_inhibitor_TFPI_interferes_with_endothelial_cell_migration_via_ERK_parthway_and_proteins_involved_in_focal_complexes">Tissue factor pathway inhibitor (TFPI) interferes with endothelial cell migration via ERK parthway and proteins involved in focal complexes</a></div><div class="wp-workCard_item"><span>Molecular Cancer Therapeutics</span><span>, Nov 1, 2007</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="47914412"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="47914412"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47914412; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47914412]").text(description); $(".js-view-count[data-work-id=47914412]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47914412; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='47914412']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 47914412, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=47914412]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":47914412,"title":"Tissue factor pathway inhibitor (TFPI) interferes with endothelial cell migration via ERK parthway and proteins involved in focal complexes","translated_title":"","metadata":{"publication_date":{"day":1,"month":11,"year":2007,"errors":{}},"publication_name":"Molecular Cancer Therapeutics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/47914412/Tissue_factor_pathway_inhibitor_TFPI_interferes_with_endothelial_cell_migration_via_ERK_parthway_and_proteins_involved_in_focal_complexes","translated_internal_url":"","created_at":"2021-05-03T06:35:24.974-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":37591436,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Tissue_factor_pathway_inhibitor_TFPI_interferes_with_endothelial_cell_migration_via_ERK_parthway_and_proteins_involved_in_focal_complexes","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":37591436,"first_name":"Edith","middle_initials":null,"last_name":"Beaulieu","page_name":"EdithBeaulieu","domain_name":"independent","created_at":"2015-11-03T14:27:08.767-08:00","display_name":"Edith Beaulieu","url":"https://independent.academia.edu/EdithBeaulieu"},"attachments":[],"research_interests":[{"id":787715,"name":"Molecular Cancer Therapeutics","url":"https://www.academia.edu/Documents/in/Molecular_Cancer_Therapeutics"}],"urls":[{"id":9920610,"url":"http://mct.aacrjournals.org/content/6/11_Supplement/A32.short"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="47914411"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/47914411/The_antiangiogenic_agent_Neovastat_AE_941_induces_endothelial_cell_apoptosis"><img alt="Research paper thumbnail of The antiangiogenic agent Neovastat (AE-941) induces endothelial cell apoptosis" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/47914411/The_antiangiogenic_agent_Neovastat_AE_941_induces_endothelial_cell_apoptosis">The antiangiogenic agent Neovastat (AE-941) induces endothelial cell apoptosis</a></div><div class="wp-workCard_item"><span>Molecular cancer therapeutics</span><span>, 2002</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Neovastat (AE-941), a naturally occurring multifunctional antiangiogenic agent, has been shown to...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Neovastat (AE-941), a naturally occurring multifunctional antiangiogenic agent, has been shown to inhibit key components of the angiogenic process, including matrix metalloproteinases and vascular endothelial growth factor-mediated signaling events. In this study, we report the presence of a proapoptotic activity within this compound. Neovastat treatment of bovine aortic endothelial cells caused cell death with characteristics of apoptosis, including chromatin condensation and DNA fragmentation. Neovastat markedly induced caspase-3, caspase-8, and caspase-9 activities, at similar levels to those measured in cells treated with tumor necrosis factor-alpha. Activation of caspases by Neovastat appears to be essential for its proapoptotic effects because all apoptotic features were blocked by zVAD-fmk, a broad-spectrum caspase inhibitor. The activation of caspases was correlated with the cleavage of the nuclear substrate poly(ADP-ribose) polymerase, and by a concomitant release of cytoch...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="47914411"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="47914411"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47914411; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47914411]").text(description); $(".js-view-count[data-work-id=47914411]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47914411; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='47914411']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 47914411, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=47914411]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":47914411,"title":"The antiangiogenic agent Neovastat (AE-941) induces endothelial cell apoptosis","translated_title":"","metadata":{"abstract":"Neovastat (AE-941), a naturally occurring multifunctional antiangiogenic agent, has been shown to inhibit key components of the angiogenic process, including matrix metalloproteinases and vascular endothelial growth factor-mediated signaling events. In this study, we report the presence of a proapoptotic activity within this compound. Neovastat treatment of bovine aortic endothelial cells caused cell death with characteristics of apoptosis, including chromatin condensation and DNA fragmentation. Neovastat markedly induced caspase-3, caspase-8, and caspase-9 activities, at similar levels to those measured in cells treated with tumor necrosis factor-alpha. Activation of caspases by Neovastat appears to be essential for its proapoptotic effects because all apoptotic features were blocked by zVAD-fmk, a broad-spectrum caspase inhibitor. The activation of caspases was correlated with the cleavage of the nuclear substrate poly(ADP-ribose) polymerase, and by a concomitant release of cytoch...","publication_date":{"day":null,"month":null,"year":2002,"errors":{}},"publication_name":"Molecular cancer therapeutics"},"translated_abstract":"Neovastat (AE-941), a naturally occurring multifunctional antiangiogenic agent, has been shown to inhibit key components of the angiogenic process, including matrix metalloproteinases and vascular endothelial growth factor-mediated signaling events. In this study, we report the presence of a proapoptotic activity within this compound. Neovastat treatment of bovine aortic endothelial cells caused cell death with characteristics of apoptosis, including chromatin condensation and DNA fragmentation. Neovastat markedly induced caspase-3, caspase-8, and caspase-9 activities, at similar levels to those measured in cells treated with tumor necrosis factor-alpha. Activation of caspases by Neovastat appears to be essential for its proapoptotic effects because all apoptotic features were blocked by zVAD-fmk, a broad-spectrum caspase inhibitor. The activation of caspases was correlated with the cleavage of the nuclear substrate poly(ADP-ribose) polymerase, and by a concomitant release of cytoch...","internal_url":"https://www.academia.edu/47914411/The_antiangiogenic_agent_Neovastat_AE_941_induces_endothelial_cell_apoptosis","translated_internal_url":"","created_at":"2021-05-03T06:35:24.897-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":37591436,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_antiangiogenic_agent_Neovastat_AE_941_induces_endothelial_cell_apoptosis","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":37591436,"first_name":"Edith","middle_initials":null,"last_name":"Beaulieu","page_name":"EdithBeaulieu","domain_name":"independent","created_at":"2015-11-03T14:27:08.767-08:00","display_name":"Edith Beaulieu","url":"https://independent.academia.edu/EdithBeaulieu"},"attachments":[],"research_interests":[{"id":12981,"name":"Enzyme Inhibitors","url":"https://www.academia.edu/Documents/in/Enzyme_Inhibitors"},{"id":15719,"name":"Mitochondria","url":"https://www.academia.edu/Documents/in/Mitochondria"},{"id":24731,"name":"Apoptosis","url":"https://www.academia.edu/Documents/in/Apoptosis"},{"id":48057,"name":"DNA","url":"https://www.academia.edu/Documents/in/DNA"},{"id":50841,"name":"Caspases","url":"https://www.academia.edu/Documents/in/Caspases"},{"id":57808,"name":"Cell line","url":"https://www.academia.edu/Documents/in/Cell_line"},{"id":64568,"name":"Humans","url":"https://www.academia.edu/Documents/in/Humans"},{"id":84760,"name":"Mice","url":"https://www.academia.edu/Documents/in/Mice"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":112576,"name":"Cell Death","url":"https://www.academia.edu/Documents/in/Cell_Death"},{"id":238813,"name":"Chromatin","url":"https://www.academia.edu/Documents/in/Chromatin"},{"id":247477,"name":"Caspase","url":"https://www.academia.edu/Documents/in/Caspase"},{"id":260829,"name":"Cattle","url":"https://www.academia.edu/Documents/in/Cattle"},{"id":787715,"name":"Molecular Cancer Therapeutics","url":"https://www.academia.edu/Documents/in/Molecular_Cancer_Therapeutics"},{"id":1035092,"name":"Aorta","url":"https://www.academia.edu/Documents/in/Aorta"},{"id":1157148,"name":"Cell Survival","url":"https://www.academia.edu/Documents/in/Cell_Survival"},{"id":2058817,"name":"Immunoblotting","url":"https://www.academia.edu/Documents/in/Immunoblotting"},{"id":2208075,"name":"Cysteine Proteinase Inhibitors","url":"https://www.academia.edu/Documents/in/Cysteine_Proteinase_Inhibitors"},{"id":2256666,"name":"DNA fragmentation","url":"https://www.academia.edu/Documents/in/DNA_fragmentation"},{"id":3314116,"name":"Angiogenesis inhibitors","url":"https://www.academia.edu/Documents/in/Angiogenesis_inhibitors"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="47914410"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/47914410/The_Strongest_Expression_of_P_Glycoprotein_is_in_the_Blood_Brain_Barrier"><img alt="Research paper thumbnail of The Strongest Expression of P-Glycoprotein is in the Blood-Brain Barrier" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/47914410/The_Strongest_Expression_of_P_Glycoprotein_is_in_the_Blood_Brain_Barrier">The Strongest Expression of P-Glycoprotein is in the Blood-Brain Barrier</a></div><div class="wp-workCard_item"><span>Advances in Behavioral Biology</span><span>, 1996</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="47914410"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="47914410"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47914410; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47914410]").text(description); $(".js-view-count[data-work-id=47914410]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47914410; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='47914410']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 47914410, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=47914410]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":47914410,"title":"The Strongest Expression of P-Glycoprotein is in the Blood-Brain Barrier","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1996,"errors":{}},"publication_name":"Advances in Behavioral Biology"},"translated_abstract":null,"internal_url":"https://www.academia.edu/47914410/The_Strongest_Expression_of_P_Glycoprotein_is_in_the_Blood_Brain_Barrier","translated_internal_url":"","created_at":"2021-05-03T06:35:24.819-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":37591436,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_Strongest_Expression_of_P_Glycoprotein_is_in_the_Blood_Brain_Barrier","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":37591436,"first_name":"Edith","middle_initials":null,"last_name":"Beaulieu","page_name":"EdithBeaulieu","domain_name":"independent","created_at":"2015-11-03T14:27:08.767-08:00","display_name":"Edith Beaulieu","url":"https://independent.academia.edu/EdithBeaulieu"},"attachments":[],"research_interests":[{"id":620289,"name":"Behavioral Biology","url":"https://www.academia.edu/Documents/in/Behavioral_Biology"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="47914409"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/47914409/Direct_acting_fibrinolytic_enzymes_in_shark_cartilage_extractPotential_therapeutic_role_in_vascular_disorders"><img alt="Research paper thumbnail of Direct-acting fibrinolytic enzymes in shark cartilage extractPotential therapeutic role in vascular disorders" class="work-thumbnail" src="https://attachments.academia-assets.com/66797244/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/47914409/Direct_acting_fibrinolytic_enzymes_in_shark_cartilage_extractPotential_therapeutic_role_in_vascular_disorders">Direct-acting fibrinolytic enzymes in shark cartilage extractPotential therapeutic role in vascular disorders</a></div><div class="wp-workCard_item"><span>Thrombosis Research</span><span>, 2005</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6f0b46e66ec6af52694e780aa5d24c05" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:66797244,&quot;asset_id&quot;:47914409,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/66797244/download_file?st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="47914409"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="47914409"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47914409; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47914409]").text(description); $(".js-view-count[data-work-id=47914409]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47914409; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='47914409']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 47914409, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6f0b46e66ec6af52694e780aa5d24c05" } } $('.js-work-strip[data-work-id=47914409]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":47914409,"title":"Direct-acting fibrinolytic enzymes in shark cartilage extractPotential therapeutic role in vascular disorders","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"Fibrinogen and fibrin are molecules with overlapping roles in blood clotting, fibrinolysis, wound healing, inflammation, matrix and cellular interactions and neoplasia. There is currently much interest in the possible use of fibrinolytic agents in human therapeutics. In this study, we report the presence of fibrinolytic activities in shark cartilage extract (SCE). In vitro, SCE at 100 Ag/ml completely degraded fibrin gel in an aprotinin-insensitive manner, suggesting a non-plasmin molecular nature. SCE was able to cleave all chains of fibrinogen and fibrin and the cleavage was completely inhibited by 1,10-phenanthroline, suggesting an essential role for metalloprotease(s) in this process. Using fibrinogen zymography, we show that SCE contains two plasmin-independent fibrinolytic activities and that these activities are correlated with the presence of 58 and 62 kDa proteases in the extract. SCE-fibrinolytic activities are inhibited by dithiothreitol, suggesting that disulfide bonds are necessary for the protease structure. Finally, using thromboelastography, SCE markedly induced retraction of human platelet-rich plasma (PRP) clot, this process being completely abolished by 1,10-phenanthroline. These data suggest the presence of novel non-plasmin fibrinolytic activities within SCE. This extract may thus represent a potential source of new therapeutic molecules to prevent and treat vaso-occlusive and thromboembolic disorders. D","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"Thrombosis Research","grobid_abstract_attachment_id":66797244},"translated_abstract":null,"internal_url":"https://www.academia.edu/47914409/Direct_acting_fibrinolytic_enzymes_in_shark_cartilage_extractPotential_therapeutic_role_in_vascular_disorders","translated_internal_url":"","created_at":"2021-05-03T06:35:24.743-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":37591436,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":66797244,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/66797244/thumbnails/1.jpg","file_name":"S0049-3848_2804_2900409-820210503-29105-wq3vpc.pdf","download_url":"https://www.academia.edu/attachments/66797244/download_file?st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Direct_acting_fibrinolytic_enzymes_in_sh.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/66797244/S0049-3848_2804_2900409-820210503-29105-wq3vpc-libre.pdf?1620050782=\u0026response-content-disposition=attachment%3B+filename%3DDirect_acting_fibrinolytic_enzymes_in_sh.pdf\u0026Expires=1732482571\u0026Signature=fDR7V3SuVDoYgjEnWuaZt2B3nL7GXLqKvnSoRMngkd86gcw4Loe6c5LAOUof9GVSAZiPnUCHiGGZuP6RMTke~hUDJVHvunWEvUGn3jn3BwldDn84CSKYX89chsiDJqKs-mj6AhV5MIec4hC0ZdtbfACnnFxvpyyRifREDgS8LmNwnb5UvNA6lM7L44~goOyt93u5fUXKM~AJQHKHVl8KWT28ObZs1k4sCEy88rfTpjnuvnikUjG9xZSpQEsH2ColsXzNcT~UPYuyFprt8ef7JxJUHjvWZZlfe8mTEfHXXkht07N-FDfGbNeOoAhbfAp0Ul5QZt27lgleCBmftq06OQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Direct_acting_fibrinolytic_enzymes_in_shark_cartilage_extractPotential_therapeutic_role_in_vascular_disorders","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":37591436,"first_name":"Edith","middle_initials":null,"last_name":"Beaulieu","page_name":"EdithBeaulieu","domain_name":"independent","created_at":"2015-11-03T14:27:08.767-08:00","display_name":"Edith Beaulieu","url":"https://independent.academia.edu/EdithBeaulieu"},"attachments":[{"id":66797244,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/66797244/thumbnails/1.jpg","file_name":"S0049-3848_2804_2900409-820210503-29105-wq3vpc.pdf","download_url":"https://www.academia.edu/attachments/66797244/download_file?st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Direct_acting_fibrinolytic_enzymes_in_sh.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/66797244/S0049-3848_2804_2900409-820210503-29105-wq3vpc-libre.pdf?1620050782=\u0026response-content-disposition=attachment%3B+filename%3DDirect_acting_fibrinolytic_enzymes_in_sh.pdf\u0026Expires=1732482571\u0026Signature=fDR7V3SuVDoYgjEnWuaZt2B3nL7GXLqKvnSoRMngkd86gcw4Loe6c5LAOUof9GVSAZiPnUCHiGGZuP6RMTke~hUDJVHvunWEvUGn3jn3BwldDn84CSKYX89chsiDJqKs-mj6AhV5MIec4hC0ZdtbfACnnFxvpyyRifREDgS8LmNwnb5UvNA6lM7L44~goOyt93u5fUXKM~AJQHKHVl8KWT28ObZs1k4sCEy88rfTpjnuvnikUjG9xZSpQEsH2ColsXzNcT~UPYuyFprt8ef7JxJUHjvWZZlfe8mTEfHXXkht07N-FDfGbNeOoAhbfAp0Ul5QZt27lgleCBmftq06OQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":8942,"name":"Treatment","url":"https://www.academia.edu/Documents/in/Treatment"},{"id":52136,"name":"Platelet","url":"https://www.academia.edu/Documents/in/Platelet"},{"id":53044,"name":"Fibrinogen","url":"https://www.academia.edu/Documents/in/Fibrinogen"},{"id":55163,"name":"Enzymes","url":"https://www.academia.edu/Documents/in/Enzymes"},{"id":61095,"name":"Fibrin","url":"https://www.academia.edu/Documents/in/Fibrin"},{"id":64568,"name":"Humans","url":"https://www.academia.edu/Documents/in/Humans"},{"id":71124,"name":"Sharks","url":"https://www.academia.edu/Documents/in/Sharks"},{"id":78188,"name":"Cartilage","url":"https://www.academia.edu/Documents/in/Cartilage"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":179799,"name":"Page","url":"https://www.academia.edu/Documents/in/Page"},{"id":231661,"name":"Enzyme","url":"https://www.academia.edu/Documents/in/Enzyme"},{"id":244814,"name":"Clinical Sciences","url":"https://www.academia.edu/Documents/in/Clinical_Sciences"},{"id":335964,"name":"PrP","url":"https://www.academia.edu/Documents/in/PrP"},{"id":353724,"name":"Platelet Rich Plasma","url":"https://www.academia.edu/Documents/in/Platelet_Rich_Plasma"},{"id":496063,"name":"Thrombosis","url":"https://www.academia.edu/Documents/in/Thrombosis"},{"id":512756,"name":"Cleavage","url":"https://www.academia.edu/Documents/in/Cleavage"},{"id":695018,"name":"Molecular weight","url":"https://www.academia.edu/Documents/in/Molecular_weight"},{"id":2026170,"name":"Metalloproteases","url":"https://www.academia.edu/Documents/in/Metalloproteases"},{"id":2112553,"name":"Disulfide bond","url":"https://www.academia.edu/Documents/in/Disulfide_bond"},{"id":2532970,"name":"Vascular Diseases","url":"https://www.academia.edu/Documents/in/Vascular_Diseases"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="47914408"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/47914408/VEGF_increases_the_fibrinolytic_activity_of_endothelial_cells_within_fibrin_matrices_Involvement_of_VEGFR_2_tissue_type_plasminogen_activator_and_matrix_metalloproteinases"><img alt="Research paper thumbnail of VEGF increases the fibrinolytic activity of endothelial cells within fibrin matrices: Involvement of VEGFR-2, tissue type plasminogen activator and matrix metalloproteinases" class="work-thumbnail" src="https://attachments.academia-assets.com/66797206/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/47914408/VEGF_increases_the_fibrinolytic_activity_of_endothelial_cells_within_fibrin_matrices_Involvement_of_VEGFR_2_tissue_type_plasminogen_activator_and_matrix_metalloproteinases">VEGF increases the fibrinolytic activity of endothelial cells within fibrin matrices: Involvement of VEGFR-2, tissue type plasminogen activator and matrix metalloproteinases</a></div><div class="wp-workCard_item"><span>Thrombosis Research</span><span>, 2007</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1ece3e7434f6d14960b806a6e61b65a8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:66797206,&quot;asset_id&quot;:47914408,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/66797206/download_file?st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="47914408"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="47914408"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47914408; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47914408]").text(description); $(".js-view-count[data-work-id=47914408]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47914408; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='47914408']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 47914408, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1ece3e7434f6d14960b806a6e61b65a8" } } $('.js-work-strip[data-work-id=47914408]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":47914408,"title":"VEGF increases the fibrinolytic activity of endothelial cells within fibrin matrices: Involvement of VEGFR-2, tissue type plasminogen activator and matrix metalloproteinases","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2007,"errors":{}},"publication_name":"Thrombosis Research"},"translated_abstract":null,"internal_url":"https://www.academia.edu/47914408/VEGF_increases_the_fibrinolytic_activity_of_endothelial_cells_within_fibrin_matrices_Involvement_of_VEGFR_2_tissue_type_plasminogen_activator_and_matrix_metalloproteinases","translated_internal_url":"","created_at":"2021-05-03T06:35:24.666-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":37591436,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":66797206,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/66797206/thumbnails/1.jpg","file_name":"document.pdf","download_url":"https://www.academia.edu/attachments/66797206/download_file?st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"VEGF_increases_the_fibrinolytic_activity.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/66797206/document-libre.pdf?1620050790=\u0026response-content-disposition=attachment%3B+filename%3DVEGF_increases_the_fibrinolytic_activity.pdf\u0026Expires=1732482571\u0026Signature=eSA-Bzh7Da28dM1F1h0HKlMsog66Bx74vabZK-p~kk9TGqv1AvrABO9fF4aktOZ10hadWnl2OOwX0bK-H1gbrEVE70tJHCdW4Sw6rGS5-uIhLQhTeOH6QMT0CdjE9AD~gH-Eu~tVjNZrWr5fvLowNWVXC5vtslOvUmHyLjEht89MLvLXveqIWbHhVchunznEAJvPKYvvAZXtofG2VksnR2wzTzEeSu5dr35aLGtFwAS7yyWNKoUVdqx1ATYY7B9EbP3n6P-b5a3Rq-1ompcbb~AvTuYarGRuY6MYmhBPnu0czVWMxBFXDSXjBiy0A1ytBTkItJTyWIVRgs7Kj2zAVQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"VEGF_increases_the_fibrinolytic_activity_of_endothelial_cells_within_fibrin_matrices_Involvement_of_VEGFR_2_tissue_type_plasminogen_activator_and_matrix_metalloproteinases","translated_slug":"","page_count":32,"language":"en","content_type":"Work","owner":{"id":37591436,"first_name":"Edith","middle_initials":null,"last_name":"Beaulieu","page_name":"EdithBeaulieu","domain_name":"independent","created_at":"2015-11-03T14:27:08.767-08:00","display_name":"Edith Beaulieu","url":"https://independent.academia.edu/EdithBeaulieu"},"attachments":[{"id":66797206,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/66797206/thumbnails/1.jpg","file_name":"document.pdf","download_url":"https://www.academia.edu/attachments/66797206/download_file?st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"VEGF_increases_the_fibrinolytic_activity.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/66797206/document-libre.pdf?1620050790=\u0026response-content-disposition=attachment%3B+filename%3DVEGF_increases_the_fibrinolytic_activity.pdf\u0026Expires=1732482571\u0026Signature=eSA-Bzh7Da28dM1F1h0HKlMsog66Bx74vabZK-p~kk9TGqv1AvrABO9fF4aktOZ10hadWnl2OOwX0bK-H1gbrEVE70tJHCdW4Sw6rGS5-uIhLQhTeOH6QMT0CdjE9AD~gH-Eu~tVjNZrWr5fvLowNWVXC5vtslOvUmHyLjEht89MLvLXveqIWbHhVchunznEAJvPKYvvAZXtofG2VksnR2wzTzEeSu5dr35aLGtFwAS7yyWNKoUVdqx1ATYY7B9EbP3n6P-b5a3Rq-1ompcbb~AvTuYarGRuY6MYmhBPnu0czVWMxBFXDSXjBiy0A1ytBTkItJTyWIVRgs7Kj2zAVQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":61095,"name":"Fibrin","url":"https://www.academia.edu/Documents/in/Fibrin"},{"id":64568,"name":"Humans","url":"https://www.academia.edu/Documents/in/Humans"},{"id":71510,"name":"Endothelial Cells","url":"https://www.academia.edu/Documents/in/Endothelial_Cells"},{"id":91281,"name":"VEGF","url":"https://www.academia.edu/Documents/in/VEGF"},{"id":138877,"name":"Vascular endothelium","url":"https://www.academia.edu/Documents/in/Vascular_endothelium"},{"id":179799,"name":"Page","url":"https://www.academia.edu/Documents/in/Page"},{"id":244814,"name":"Clinical Sciences","url":"https://www.academia.edu/Documents/in/Clinical_Sciences"},{"id":401214,"name":"Endothelial cell","url":"https://www.academia.edu/Documents/in/Endothelial_cell"},{"id":496063,"name":"Thrombosis","url":"https://www.academia.edu/Documents/in/Thrombosis"},{"id":504035,"name":"Three Dimensional","url":"https://www.academia.edu/Documents/in/Three_Dimensional"},{"id":527895,"name":"MMP","url":"https://www.academia.edu/Documents/in/MMP"},{"id":527897,"name":"Matrix Metalloproteinases","url":"https://www.academia.edu/Documents/in/Matrix_Metalloproteinases"},{"id":789989,"name":"Tissue Plasminogen Activator","url":"https://www.academia.edu/Documents/in/Tissue_Plasminogen_Activator"},{"id":1220800,"name":"Fibrinolysis","url":"https://www.academia.edu/Documents/in/Fibrinolysis"},{"id":1661073,"name":"Plasminogen Activator","url":"https://www.academia.edu/Documents/in/Plasminogen_Activator"},{"id":1703190,"name":"Neutralizing antibodies","url":"https://www.academia.edu/Documents/in/Neutralizing_antibodies"},{"id":1796877,"name":"Vascular Endothelial Growth Factor","url":"https://www.academia.edu/Documents/in/Vascular_Endothelial_Growth_Factor"},{"id":1920779,"name":"Matrix Metalloproteinase","url":"https://www.academia.edu/Documents/in/Matrix_Metalloproteinase"},{"id":1947596,"name":"Vascular endothelial growth factor receptor","url":"https://www.academia.edu/Documents/in/Vascular_endothelial_growth_factor_receptor"},{"id":2026170,"name":"Metalloproteases","url":"https://www.academia.edu/Documents/in/Metalloproteases"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="47914407"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/47914407/Tissue_factor_pathway_inhibitor_TFPI_interferes_with_endothelial_cell_migration_by_inhibition_of_both_the_Erk_pathway_and_focal_adhesion_proteins"><img alt="Research paper thumbnail of Tissue factor pathway inhibitor (TFPI) interferes with endothelial cell migration by inhibition of both the Erk pathway and focal adhesion proteins" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/47914407/Tissue_factor_pathway_inhibitor_TFPI_interferes_with_endothelial_cell_migration_by_inhibition_of_both_the_Erk_pathway_and_focal_adhesion_proteins">Tissue factor pathway inhibitor (TFPI) interferes with endothelial cell migration by inhibition of both the Erk pathway and focal adhesion proteins</a></div><div class="wp-workCard_item"><span>Thrombosis and Haemostasis</span><span>, 2008</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">SummaryTissue factor pathway inhibitor (TFPI) is a plasma Kunitz-type serine protease inhibitor t...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">SummaryTissue factor pathway inhibitor (TFPI) is a plasma Kunitz-type serine protease inhibitor that is mainly known for its inhibition of tissue factor-mediated coagulation. In addition to its anticoagulant properties, emerging data show that TFPI may also regulate endothelial cell functions via a non-haemostatic pathway. In this work we demonstrate that at concentrations within the physiological range,TFPI inhibits both endothelial cell migration and their differentiation into capillary-like structures in vitro. These effects were specific to endothelial cells since no inhibitory effect was observed on the migration of tumor (glio- blastoma) cells. Inhibition of endothelial cell migration was correlated with a concomitant loss in cell adhesion,suggesting an alteration of focal adhesion complex integrity. Accordingly,we observed thatTFPI inhibited the phosphorylation of focal adhesion kinase and paxillin,two key proteins involved in the scaffolding of these complexes, and that this...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="47914407"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="47914407"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47914407; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47914407]").text(description); $(".js-view-count[data-work-id=47914407]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47914407; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='47914407']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 47914407, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=47914407]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":47914407,"title":"Tissue factor pathway inhibitor (TFPI) interferes with endothelial cell migration by inhibition of both the Erk pathway and focal adhesion proteins","translated_title":"","metadata":{"abstract":"SummaryTissue factor pathway inhibitor (TFPI) is a plasma Kunitz-type serine protease inhibitor that is mainly known for its inhibition of tissue factor-mediated coagulation. In addition to its anticoagulant properties, emerging data show that TFPI may also regulate endothelial cell functions via a non-haemostatic pathway. In this work we demonstrate that at concentrations within the physiological range,TFPI inhibits both endothelial cell migration and their differentiation into capillary-like structures in vitro. These effects were specific to endothelial cells since no inhibitory effect was observed on the migration of tumor (glio- blastoma) cells. Inhibition of endothelial cell migration was correlated with a concomitant loss in cell adhesion,suggesting an alteration of focal adhesion complex integrity. Accordingly,we observed thatTFPI inhibited the phosphorylation of focal adhesion kinase and paxillin,two key proteins involved in the scaffolding of these complexes, and that this...","publisher":"Georg Thieme Verlag KG","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"Thrombosis and Haemostasis"},"translated_abstract":"SummaryTissue factor pathway inhibitor (TFPI) is a plasma Kunitz-type serine protease inhibitor that is mainly known for its inhibition of tissue factor-mediated coagulation. In addition to its anticoagulant properties, emerging data show that TFPI may also regulate endothelial cell functions via a non-haemostatic pathway. In this work we demonstrate that at concentrations within the physiological range,TFPI inhibits both endothelial cell migration and their differentiation into capillary-like structures in vitro. These effects were specific to endothelial cells since no inhibitory effect was observed on the migration of tumor (glio- blastoma) cells. Inhibition of endothelial cell migration was correlated with a concomitant loss in cell adhesion,suggesting an alteration of focal adhesion complex integrity. Accordingly,we observed thatTFPI inhibited the phosphorylation of focal adhesion kinase and paxillin,two key proteins involved in the scaffolding of these complexes, and that this...","internal_url":"https://www.academia.edu/47914407/Tissue_factor_pathway_inhibitor_TFPI_interferes_with_endothelial_cell_migration_by_inhibition_of_both_the_Erk_pathway_and_focal_adhesion_proteins","translated_internal_url":"","created_at":"2021-05-03T06:35:24.590-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":37591436,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Tissue_factor_pathway_inhibitor_TFPI_interferes_with_endothelial_cell_migration_by_inhibition_of_both_the_Erk_pathway_and_focal_adhesion_proteins","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":37591436,"first_name":"Edith","middle_initials":null,"last_name":"Beaulieu","page_name":"EdithBeaulieu","domain_name":"independent","created_at":"2015-11-03T14:27:08.767-08:00","display_name":"Edith Beaulieu","url":"https://independent.academia.edu/EdithBeaulieu"},"attachments":[],"research_interests":[{"id":8863,"name":"Cell Migration","url":"https://www.academia.edu/Documents/in/Cell_Migration"},{"id":10055,"name":"Cell Adhesion","url":"https://www.academia.edu/Documents/in/Cell_Adhesion"},{"id":28505,"name":"Adhesion","url":"https://www.academia.edu/Documents/in/Adhesion"},{"id":38831,"name":"Signal Transduction","url":"https://www.academia.edu/Documents/in/Signal_Transduction"},{"id":60436,"name":"Cell Differentiation","url":"https://www.academia.edu/Documents/in/Cell_Differentiation"},{"id":64568,"name":"Humans","url":"https://www.academia.edu/Documents/in/Humans"},{"id":71510,"name":"Endothelial Cells","url":"https://www.academia.edu/Documents/in/Endothelial_Cells"},{"id":172083,"name":"Phosphorylation","url":"https://www.academia.edu/Documents/in/Phosphorylation"},{"id":213910,"name":"Mitogen Activated Protein Kinase","url":"https://www.academia.edu/Documents/in/Mitogen_Activated_Protein_Kinase"},{"id":244814,"name":"Clinical Sciences","url":"https://www.academia.edu/Documents/in/Clinical_Sciences"},{"id":295728,"name":"Molecular cloning","url":"https://www.academia.edu/Documents/in/Molecular_cloning"},{"id":401214,"name":"Endothelial cell","url":"https://www.academia.edu/Documents/in/Endothelial_cell"},{"id":458879,"name":"Lipoproteins","url":"https://www.academia.edu/Documents/in/Lipoproteins"},{"id":499747,"name":"Cell Shape","url":"https://www.academia.edu/Documents/in/Cell_Shape"},{"id":990417,"name":"Recombinant Proteins","url":"https://www.academia.edu/Documents/in/Recombinant_Proteins"},{"id":1274621,"name":"Extracellular","url":"https://www.academia.edu/Documents/in/Extracellular"},{"id":1909024,"name":"Cell Motility","url":"https://www.academia.edu/Documents/in/Cell_Motility"},{"id":2003019,"name":"Sphingosine","url":"https://www.academia.edu/Documents/in/Sphingosine"},{"id":2277448,"name":"Paxillin","url":"https://www.academia.edu/Documents/in/Paxillin"},{"id":3789879,"name":"Cardiovascular medicine and haematology","url":"https://www.academia.edu/Documents/in/Cardiovascular_medicine_and_haematology"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="47914406"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/47914406/Matrix_Metalloproteinases_and_Their_Inhibitors_in_Human_Pituitary_Tumors"><img alt="Research paper thumbnail of Matrix Metalloproteinases and Their Inhibitors in Human Pituitary Tumors" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/47914406/Matrix_Metalloproteinases_and_Their_Inhibitors_in_Human_Pituitary_Tumors">Matrix Metalloproteinases and Their Inhibitors in Human Pituitary Tumors</a></div><div class="wp-workCard_item"><span>Neurosurgery</span><span>, 1999</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="47914406"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="47914406"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47914406; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47914406]").text(description); $(".js-view-count[data-work-id=47914406]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47914406; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='47914406']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 47914406, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=47914406]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":47914406,"title":"Matrix Metalloproteinases and Their Inhibitors in Human Pituitary Tumors","translated_title":"","metadata":{"publisher":"Oxford University Press (OUP)","publication_date":{"day":null,"month":null,"year":1999,"errors":{}},"publication_name":"Neurosurgery"},"translated_abstract":null,"internal_url":"https://www.academia.edu/47914406/Matrix_Metalloproteinases_and_Their_Inhibitors_in_Human_Pituitary_Tumors","translated_internal_url":"","created_at":"2021-05-03T06:35:24.514-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":37591436,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Matrix_Metalloproteinases_and_Their_Inhibitors_in_Human_Pituitary_Tumors","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":37591436,"first_name":"Edith","middle_initials":null,"last_name":"Beaulieu","page_name":"EdithBeaulieu","domain_name":"independent","created_at":"2015-11-03T14:27:08.767-08:00","display_name":"Edith Beaulieu","url":"https://independent.academia.edu/EdithBeaulieu"},"attachments":[],"research_interests":[{"id":650,"name":"Neurosurgery","url":"https://www.academia.edu/Documents/in/Neurosurgery"},{"id":1920779,"name":"Matrix Metalloproteinase","url":"https://www.academia.edu/Documents/in/Matrix_Metalloproteinase"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="47914405"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/47914405/Src_dependent_Phosphorylation_of_Membrane_Type_I_Matrix_Metalloproteinase_on_Cytoplasmic_Tyrosine_573_ROLE_IN_ENDOTHELIAL_AND_TUMOR_CELL_MIGRATION"><img alt="Research paper thumbnail of Src-dependent Phosphorylation of Membrane Type I Matrix Metalloproteinase on Cytoplasmic Tyrosine 573: ROLE IN ENDOTHELIAL AND TUMOR CELL MIGRATION" class="work-thumbnail" src="https://attachments.academia-assets.com/66797201/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/47914405/Src_dependent_Phosphorylation_of_Membrane_Type_I_Matrix_Metalloproteinase_on_Cytoplasmic_Tyrosine_573_ROLE_IN_ENDOTHELIAL_AND_TUMOR_CELL_MIGRATION">Src-dependent Phosphorylation of Membrane Type I Matrix Metalloproteinase on Cytoplasmic Tyrosine 573: ROLE IN ENDOTHELIAL AND TUMOR CELL MIGRATION</a></div><div class="wp-workCard_item"><span>Journal of Biological Chemistry</span><span>, 2007</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="809796fcd09fc4a17768b5536b0349ac" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:66797201,&quot;asset_id&quot;:47914405,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/66797201/download_file?st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="47914405"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="47914405"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47914405; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47914405]").text(description); $(".js-view-count[data-work-id=47914405]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47914405; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='47914405']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 47914405, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "809796fcd09fc4a17768b5536b0349ac" } } $('.js-work-strip[data-work-id=47914405]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":47914405,"title":"Src-dependent Phosphorylation of Membrane Type I Matrix Metalloproteinase on Cytoplasmic Tyrosine 573: ROLE IN ENDOTHELIAL AND TUMOR CELL MIGRATION","translated_title":"","metadata":{"publisher":"American Society for Biochemistry \u0026 Molecular Biology (ASBMB)","grobid_abstract":"Membrane type 1 matrix metalloproteinase (MT1-MMP) is a transmembrane MMP that plays important roles in migratory processes underlying tumor invasion and angiogenesis. In addition to its matrix degrading activity, MT1-MMP also contains a short cytoplasmic domain whose involvement in cell locomotion seems important but remains poorly understood. In this study, we show that MT1-MMP is phosphorylated on the unique tyrosine residue located within this cytoplasmic sequence (Tyr 573 ) and that this phosphorylation requires the kinase Src. Using phosphospecific antibodies recognizing MT1-MMP phosphorylated on Tyr 573 , we observed that tyrosine phosphorylation of the enzyme is rapidly induced upon stimulation of tumor and endothelial cells with the platelet-derived chemoattractant sphingosine-1-phosphate, suggesting a role in migration triggered by this lysophospholipid.","publication_date":{"day":null,"month":null,"year":2007,"errors":{}},"publication_name":"Journal of Biological Chemistry","grobid_abstract_attachment_id":66797201},"translated_abstract":null,"internal_url":"https://www.academia.edu/47914405/Src_dependent_Phosphorylation_of_Membrane_Type_I_Matrix_Metalloproteinase_on_Cytoplasmic_Tyrosine_573_ROLE_IN_ENDOTHELIAL_AND_TUMOR_CELL_MIGRATION","translated_internal_url":"","created_at":"2021-05-03T06:35:24.437-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":37591436,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":66797201,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/66797201/thumbnails/1.jpg","file_name":"15690.full.pdf","download_url":"https://www.academia.edu/attachments/66797201/download_file?st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Src_dependent_Phosphorylation_of_Membran.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/66797201/15690.full-libre.pdf?1620050787=\u0026response-content-disposition=attachment%3B+filename%3DSrc_dependent_Phosphorylation_of_Membran.pdf\u0026Expires=1732482571\u0026Signature=HZv4u7SCAXc~UJKY-lT8DsZkVZk18HzSZcBiyxBUBRIfIt3uPOj~3XvainrCjoKKGkma9z1HAfJ5JhArfz8YJSgaJeVMgsANKhLhGkbEDteLa8ObAJ74nqupcA1HUumDDn9FQuydwtQAfEQnhkm9ls6QOW9NLZ3ARz0Mq3g-M4FgmAarb5lKHEYcuMAkeJ0KB37BmgJE9rZLOG2GDG50RU0n~SujbEl~~HyGqVWDhQIkKst-jdX5gSI6WXmDWZobI-QyxgL-vAMi1dXL6sUbq8q1wihIX3jB8~3oNsJlaHGDlknpnRl7BHZjbToo-14qKHKerZAc~K0Nw9l~EgjGBg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Src_dependent_Phosphorylation_of_Membrane_Type_I_Matrix_Metalloproteinase_on_Cytoplasmic_Tyrosine_573_ROLE_IN_ENDOTHELIAL_AND_TUMOR_CELL_MIGRATION","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":37591436,"first_name":"Edith","middle_initials":null,"last_name":"Beaulieu","page_name":"EdithBeaulieu","domain_name":"independent","created_at":"2015-11-03T14:27:08.767-08:00","display_name":"Edith Beaulieu","url":"https://independent.academia.edu/EdithBeaulieu"},"attachments":[{"id":66797201,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/66797201/thumbnails/1.jpg","file_name":"15690.full.pdf","download_url":"https://www.academia.edu/attachments/66797201/download_file?st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&st=MTczMjQ3ODk3MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Src_dependent_Phosphorylation_of_Membran.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/66797201/15690.full-libre.pdf?1620050787=\u0026response-content-disposition=attachment%3B+filename%3DSrc_dependent_Phosphorylation_of_Membran.pdf\u0026Expires=1732482571\u0026Signature=HZv4u7SCAXc~UJKY-lT8DsZkVZk18HzSZcBiyxBUBRIfIt3uPOj~3XvainrCjoKKGkma9z1HAfJ5JhArfz8YJSgaJeVMgsANKhLhGkbEDteLa8ObAJ74nqupcA1HUumDDn9FQuydwtQAfEQnhkm9ls6QOW9NLZ3ARz0Mq3g-M4FgmAarb5lKHEYcuMAkeJ0KB37BmgJE9rZLOG2GDG50RU0n~SujbEl~~HyGqVWDhQIkKst-jdX5gSI6WXmDWZobI-QyxgL-vAMi1dXL6sUbq8q1wihIX3jB8~3oNsJlaHGDlknpnRl7BHZjbToo-14qKHKerZAc~K0Nw9l~EgjGBg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":18520,"name":"Biological Chemistry","url":"https://www.academia.edu/Documents/in/Biological_Chemistry"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":57570,"name":"Cercopithecus aethiops","url":"https://www.academia.edu/Documents/in/Cercopithecus_aethiops"},{"id":64568,"name":"Humans","url":"https://www.academia.edu/Documents/in/Humans"},{"id":71510,"name":"Endothelial Cells","url":"https://www.academia.edu/Documents/in/Endothelial_Cells"},{"id":99234,"name":"Animals","url":"https://www.academia.edu/Documents/in/Animals"},{"id":117643,"name":"Biological","url":"https://www.academia.edu/Documents/in/Biological"},{"id":172083,"name":"Phosphorylation","url":"https://www.academia.edu/Documents/in/Phosphorylation"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":260829,"name":"Cattle","url":"https://www.academia.edu/Documents/in/Cattle"},{"id":469018,"name":"Neoplasms","url":"https://www.academia.edu/Documents/in/Neoplasms"},{"id":894908,"name":"Amino Acid Substitution Rates","url":"https://www.academia.edu/Documents/in/Amino_Acid_Substitution_Rates"},{"id":1035092,"name":"Aorta","url":"https://www.academia.edu/Documents/in/Aorta"},{"id":1920779,"name":"Matrix Metalloproteinase","url":"https://www.academia.edu/Documents/in/Matrix_Metalloproteinase"},{"id":2003019,"name":"Sphingosine","url":"https://www.academia.edu/Documents/in/Sphingosine"},{"id":3551478,"name":"Src family kinases","url":"https://www.academia.edu/Documents/in/Src_family_kinases"},{"id":3763225,"name":"Medical and Health Sciences","url":"https://www.academia.edu/Documents/in/Medical_and_Health_Sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="47914403"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/47914403/Antiproliferative_and_antioxidant_activities_of_common_vegetables_A_comparative_study"><img alt="Research paper thumbnail of Antiproliferative and antioxidant activities of common vegetables: A comparative study" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/47914403/Antiproliferative_and_antioxidant_activities_of_common_vegetables_A_comparative_study">Antiproliferative and antioxidant activities of common vegetables: A comparative study</a></div><div class="wp-workCard_item"><span>Food Chemistry</span><span>, 2009</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="47914403"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="47914403"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 47914403; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=47914403]").text(description); $(".js-view-count[data-work-id=47914403]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 47914403; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='47914403']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 47914403, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=47914403]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":47914403,"title":"Antiproliferative and antioxidant activities of common vegetables: A comparative study","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"Food Chemistry"},"translated_abstract":null,"internal_url":"https://www.academia.edu/47914403/Antiproliferative_and_antioxidant_activities_of_common_vegetables_A_comparative_study","translated_internal_url":"","created_at":"2021-05-03T06:35:24.361-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":37591436,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Antiproliferative_and_antioxidant_activities_of_common_vegetables_A_comparative_study","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":37591436,"first_name":"Edith","middle_initials":null,"last_name":"Beaulieu","page_name":"EdithBeaulieu","domain_name":"independent","created_at":"2015-11-03T14:27:08.767-08:00","display_name":"Edith Beaulieu","url":"https://independent.academia.edu/EdithBeaulieu"},"attachments":[],"research_interests":[{"id":6021,"name":"Cancer","url":"https://www.academia.edu/Documents/in/Cancer"},{"id":16137,"name":"Food Chemistry","url":"https://www.academia.edu/Documents/in/Food_Chemistry"},{"id":23890,"name":"Comparative Study","url":"https://www.academia.edu/Documents/in/Comparative_Study"},{"id":27240,"name":"Prevention","url":"https://www.academia.edu/Documents/in/Prevention"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":57808,"name":"Cell line","url":"https://www.academia.edu/Documents/in/Cell_line"},{"id":2779808,"name":"Cell Lines","url":"https://www.academia.edu/Documents/in/Cell_Lines"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "3a9773b85caeb68086b81bc50354b34d9e6879d451c48cd5230ba795b4adaeda", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="hVmrNO16XDX9D3fA90RPJckZI//igwByQf7/D8DOEsZfkXSYRWHwHASUrIEJmuRzsAQ0/FIxiudlP99jFTsa4Q==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://independent.academia.edu/EdithBeaulieu" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="LMQlkJ+yuHxBgE2UvVuKzR4W7H6i+jFbwNiDQqkbSPj2DPo8N6kUVbgbltVDhSGbZwv7fRJIu87kGaMufO5A3w==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10