CINXE.COM
Search results for: aerodynamics of flying car
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: aerodynamics of flying car</title> <meta name="description" content="Search results for: aerodynamics of flying car"> <meta name="keywords" content="aerodynamics of flying car"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="aerodynamics of flying car" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="aerodynamics of flying car"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 242</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: aerodynamics of flying car</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">242</span> 3D Numerical Studies on External Aerodynamics of a Flying Car </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sasitharan%20Ambicapathy">Sasitharan Ambicapathy</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Vignesh"> J. Vignesh</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Sivaraj"> P. Sivaraj</a>, <a href="https://publications.waset.org/abstracts/search?q=Godfrey%20Derek%20Sams"> Godfrey Derek Sams</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Sabarinath"> K. Sabarinath</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20R.%20Sanal%20Kumar"> V. R. Sanal Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The external flow simulation of a flying car at take off phase is a daunting task owing to the fact that the prediction of the transient unsteady flow features during its deployment phase is very complex. In this paper 3D numerical simulations of external flow of Ferrari F430 proposed flying car with different NACA 9618 rectangular wings have been carried. Additionally, the aerodynamics characteristics have been generated for optimizing its geometry for achieving the minimum take off velocity with better overall performance in both road and air. The three-dimensional standard k-omega turbulence model has been used for capturing the intrinsic flow physics during the take off phase. In the numerical study, a fully implicit finite volume scheme of the compressible, Reynolds-Averaged, Navier-Stokes equations is employed. Through the detailed parametric analytical studies we have conjectured that Ferrari F430 flying car facilitated with high wings having three different deployment histories during the take off phase is the best choice for accomplishing its better performance for the commercial applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics%20of%20flying%20car" title="aerodynamics of flying car">aerodynamics of flying car</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20taxi" title=" air taxi"> air taxi</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20lift" title=" negative lift"> negative lift</a>, <a href="https://publications.waset.org/abstracts/search?q=roadable%20airplane" title=" roadable airplane"> roadable airplane</a> </p> <a href="https://publications.waset.org/abstracts/8656/3d-numerical-studies-on-external-aerodynamics-of-a-flying-car" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8656.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">241</span> Research on Space Discharge Flying Saucers Cruising Between Planets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiang%20Hua%20Zhou">Jiang Hua Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> According to the article "New Theoretical System of Physics in the 21st Century" published by the author, it is proposed to use the "scientific principle" of the "balanced distance" between "gravity" and "repulsion" between "planets" to "research" - "space flying saucer", and The formula for the law of universal repulsion between substances is proposed. Under the guidance of the new theoretical system, according to the principle of "planet" gravitational and repulsive force, the research and development idea of developing discharge-type "space flying saucer" is put forward. This paper expounds the reasons why flying saucers have the following characteristics: Flying Saucers can fly at high speed, change direction immediately, hover at any height on the earth, and there is no sound when flying. With the birth of the theoretical system of physics in the 21st century advocated by the author, a era of interstellar "space flying saucer" research will be created. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=planet" title="planet">planet</a>, <a href="https://publications.waset.org/abstracts/search?q=attraction" title=" attraction"> attraction</a>, <a href="https://publications.waset.org/abstracts/search?q=repulsive%20force" title=" repulsive force"> repulsive force</a>, <a href="https://publications.waset.org/abstracts/search?q=balance%20spacing" title=" balance spacing"> balance spacing</a>, <a href="https://publications.waset.org/abstracts/search?q=scientific%20principles" title=" scientific principles"> scientific principles</a>, <a href="https://publications.waset.org/abstracts/search?q=research" title=" research"> research</a>, <a href="https://publications.waset.org/abstracts/search?q=space" title=" space"> space</a>, <a href="https://publications.waset.org/abstracts/search?q=flying%20saucer" title=" flying saucer"> flying saucer</a> </p> <a href="https://publications.waset.org/abstracts/154486/research-on-space-discharge-flying-saucers-cruising-between-planets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154486.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">240</span> Aerodynamic Design Optimization of Ferrari F430 Flying Car with Enhanced Takeoff Performance </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Manikandan">E. Manikandan</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Chilambarasan"> C. Chilambarasan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sulthan%20Ariff%20Rahman"> M. Sulthan Ariff Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Kanagaraj"> S. Kanagaraj</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhimanyu%20Pugazhandhi"> Abhimanyu Pugazhandhi</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20R.%20Sanal%20Kumar"> V. R. Sanal Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The designer of any flying car has the major concern on the creation of upward force with low takeoff velocity, with minimum drag, coupled with better stability and control warranting its overall high performance both in road and air. In this paper, 3D numerical simulations of external flow of a Ferrari F430 fitted with different NACA series rectangular wings have been carried out for finding the best aerodynamic design option in road and air. The principle that allows a car to rise off the ground by creating lift using deployable wings with desirable lifting characteristics is the main theme of our paper. Additionally, the car body is streamlined in accordance with the speed range. Further, the rounded and tapered shape of the top of the car is designed to slice through the air and minimize the wind resistance. The 3D SST k-ω turbulence model has been used for capturing the intrinsic flow physics during the take off phase. In the numerical study, a fully implicit finite volume scheme of the compressible, Reynolds-Averaged, Navier-Stokes equations is employed. Through the detailed parametric analytical studies, we have conjectured that Ferrari F430 can be converted into a lucrative flying car with best fit NACA wing through a proper aerodynamic design optimization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics%20of%20flying%20car" title="aerodynamics of flying car">aerodynamics of flying car</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20taxi" title=" air taxi"> air taxi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ferrari%20F430" title=" Ferrari F430"> Ferrari F430</a>, <a href="https://publications.waset.org/abstracts/search?q=roadable%20airplane" title=" roadable airplane"> roadable airplane</a> </p> <a href="https://publications.waset.org/abstracts/89195/aerodynamic-design-optimization-of-ferrari-f430-flying-car-with-enhanced-takeoff-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89195.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">239</span> Experimental Studies of Dragonfly Flight Aerodynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Izmir%20Bin%20Yamin">Mohd Izmir Bin Yamin</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Arthur%20Ward"> Thomas Arthur Ward</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Past aerodynamic studies of flapping wing flight have shown that it has increased aerodynamic performances compared to fixed wing steady flight. One of the dominant mechanisms that is responsible for causing this phenomenon is a leading edge vortex, generated by the flapping motion of a flexible wing. Wind tunnel experiments were conducted to observe the aerodynamic profile of a flapping wing, by measuring the lift, drag and thrust. Analysis was done to explain how unsteady aerodynamics leads towards better power performances than a fixed wing flight. The information from this study can be used as a base line for designing future Bio-mimetic Micro Air Vehicles that are based on flying insect aerodynamic mechanisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flapping%20wing%20flight" title="flapping wing flight">flapping wing flight</a>, <a href="https://publications.waset.org/abstracts/search?q=leading%20edge%20vortex" title=" leading edge vortex"> leading edge vortex</a>, <a href="https://publications.waset.org/abstracts/search?q=aerodynamics%20performances" title=" aerodynamics performances"> aerodynamics performances</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel%20test" title=" wind tunnel test"> wind tunnel test</a> </p> <a href="https://publications.waset.org/abstracts/26556/experimental-studies-of-dragonfly-flight-aerodynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26556.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">238</span> Three-Dimensional Optimal Path Planning of a Flying Robot for Terrain Following/Terrain Avoidance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amirreza%20Kosari">Amirreza Kosari</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Maghsoudi"> Hossein Maghsoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Malahat%20Givar"> Malahat Givar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the three-dimensional optimal path planning of a flying robot for Terrain Following / Terrain Avoidance (TF/TA) purposes using Direct Collocation has been investigated. To this purpose, firstly, the appropriate equations of motion representing the flying robot translational movement have been described. The three-dimensional optimal path planning of the flying vehicle in terrain following/terrain avoidance maneuver is formulated as an optimal control problem. The terrain profile, as the main allowable height constraint has been modeled using Fractal Generation Method. The resulting optimal control problem is discretized by applying Direct Collocation numerical technique, and then transformed into a Nonlinear Programming Problem (NLP). The efficacy of the proposed method is demonstrated by extensive simulations, and in particular, it is verified that this approach could produce a solution satisfying almost all performance and environmental constraints encountering a low-level flying maneuver <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=path%20planning" title="path planning">path planning</a>, <a href="https://publications.waset.org/abstracts/search?q=terrain%20following" title=" terrain following"> terrain following</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20control" title=" optimal control"> optimal control</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20programming" title=" nonlinear programming"> nonlinear programming</a> </p> <a href="https://publications.waset.org/abstracts/98941/three-dimensional-optimal-path-planning-of-a-flying-robot-for-terrain-followingterrain-avoidance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98941.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">237</span> Design and Analysis of Formula One Car Halo</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Indira%20priyadarshini">Indira priyadarshini</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Tulja%20Lal"> B. Tulja Lal</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Anusha"> K. Anusha</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Sai%20Varun"> P. Sai Varun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Formula One cars are the fastest road course racing cars in the world, owing to very high cornering speeds achieved through the generation of large amounts of aerodynamic downforce. The main intentions and goals of this paper are to reduce the accidents and improving the safety without affecting the visibility of the driver by redesigning Halo that was developed by Mercedes in conjunction with the FIA to deflect flying debris, such as a loose wheel, away from a driver’s head while the hinged locking mechanism can quickly be removed for easy access. Halo design has been modified in order to reduce the weight without affecting the aerodynamics of the car. CFD simulation is carried out to observe the flow over the Halo. The velocity profile and pressure contours were analyzed. Halo is designed using SOLIDWORKS Furthermore, using the software ANSYS FLUENT 3D simulation of the airflow contour around the Halo in order to make changes in the geometry to improve the design by reducing air resistance and improving aerodynamics. According to our assumption, new 3D Halo model has better aerodynamic properties in order to analyse possible improvements compared to the initial design. Structural analysis is also done by using ANSYS by making an F1 tire colliding with Halo at 225 kmph in order to know the deflections in the structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title="aerodynamics">aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=Halo" title=" Halo"> Halo</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a>, <a href="https://publications.waset.org/abstracts/search?q=visibility" title=" visibility"> visibility</a> </p> <a href="https://publications.waset.org/abstracts/56429/design-and-analysis-of-formula-one-car-halo" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">236</span> 3D Numerical Studies and Design Optimization of a Swallowtail Butterfly with Twin Tail</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arunkumar%20Balamurugan">Arunkumar Balamurugan</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Soundharya%20Lakshmi"> G. Soundharya Lakshmi</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Thenmozhi"> V. Thenmozhi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Jegannath"> M. Jegannath</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20R.%20Sanal%20Kumar"> V. R. Sanal Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aerodynamics of insects is of topical interest in aeronautical industries due to its wide applications on various types of Micro Air Vehicles (MAVs). Note that the MAVs are having smaller geometric dimensions operate at significantly lower speeds on the order of 10 m/s and their Reynolds numbers range is approximately 1,50,000 or lower. In this paper, numerical study has been carried out to capture the flow physics of a biological inspired Swallowtail Butterfly with fixed wing having twin tail at a flight speed of 10 m/s. Comprehensive numerical simulations have been carried out on swallow butterfly with twin tail flying at a speed of 10 m/s with uniform upper and lower angles of attack in both lateral and longitudinal position for identifying the best wing orientation with better aerodynamic efficiency. Grid system in the computational domain is selected after a detailed grid refinement exercises. Parametric analytical studies have been carried out with different lateral and longitudinal angles of attack for finding the better aerodynamic efficiency at the same flight speed. The results reveal that lift coefficient significantly increases with marginal changes in the longitudinal angle and vice versa. But in the case of drag coefficient the conventional changes have been noticed, viz., drag increases at high longitudinal angles. We observed that the change of twin tail section has a significant impact on the formation of vortices and aerodynamic efficiency of the MAV’s. We concluded that for every lateral angle there is an exact longitudinal orientation for the existence of an aerodynamically efficient flying condition of any MAV. This numerical study is a pointer towards for the design optimization of Twin tail MAVs with flapping wings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics%20of%20insects" title="aerodynamics of insects">aerodynamics of insects</a>, <a href="https://publications.waset.org/abstracts/search?q=MAV" title=" MAV"> MAV</a>, <a href="https://publications.waset.org/abstracts/search?q=swallowtail%20butterfly" title=" swallowtail butterfly"> swallowtail butterfly</a>, <a href="https://publications.waset.org/abstracts/search?q=twin%20tail%20MAV%20design" title=" twin tail MAV design"> twin tail MAV design</a> </p> <a href="https://publications.waset.org/abstracts/69861/3d-numerical-studies-and-design-optimization-of-a-swallowtail-butterfly-with-twin-tail" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69861.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">235</span> Improved Multilevel Inverter with Hybrid Power Selector and Solar Panel Cleaner in a Solar System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Oladoyinbo">S. Oladoyinbo</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Tijani"> A. A. Tijani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multilevel inverters (MLI) are used at high power application based on their operation. There are 3 main types of multilevel inverters (MLI); diode clamped, flying capacitor and cascaded MLI. A cascaded MLI requires the least number of components to achieve same number of voltage levels when compared to other types of MLI while the flying capacitor has the minimum harmonic distortion. However, maximizing the advantage of cascaded H-bridge MLI and flying capacitor MLI, an improved MLI can be achieved with fewer components and better performance. In this paper an improved MLI is presented by asymmetrically integrating a flying capacitor to a cascaded H-bridge MLI also integrating an auxiliary transformer to the main transformer to decrease the total harmonics distortion (THD) with increased number of output voltage levels. Furthermore, the system is incorporated with a hybrid time and climate based solar panel cleaner and power selector which intelligently manage the input of the MLI and clean the solar panel weekly ensuring the environmental factor effect on the panel is reduced to minimum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multilevel%20inverter" title="multilevel inverter">multilevel inverter</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20harmonics%20distortion" title=" total harmonics distortion"> total harmonics distortion</a>, <a href="https://publications.waset.org/abstracts/search?q=cascaded%20h-bridge%20inverter" title=" cascaded h-bridge inverter"> cascaded h-bridge inverter</a>, <a href="https://publications.waset.org/abstracts/search?q=flying%20capacitor" title=" flying capacitor"> flying capacitor</a> </p> <a href="https://publications.waset.org/abstracts/36730/improved-multilevel-inverter-with-hybrid-power-selector-and-solar-panel-cleaner-in-a-solar-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">234</span> Flying Women in Chinese Folklore – Male Narrator’s Rejection of Gender Role Division in Patriarchal Societies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emma%20H.%20Zhang">Emma H. Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Women Who Fly (2018), Serinity Young connects tales and legends of flying women in Greco-Roman, Indo-European, Mesopotamian, and Asian cultures with ancient matriarchal bird goddesses and argues that tales of flying women are reminiscent of the rituals and rites related to the worship of goddesses in pre-patriarchal times and that flying women, including swan maidens, harpies, fairies, and witches are “abnormal women” because they reject patriarchal order, defy, and desert their domestic roles. Tales of flying women in Chinese folklore, exemplified by the story of The Cowherd and the Weaver Girl, replicated in countless tales that depicts the courtship between a mortal man and a divine or magical woman suggest otherwise. In these tales, the divine woman exhibits idealized Confucian femininity and fulfills the needs of the male protagonist by providing him with marriage, children, social status, and financial affluence. This paper argues that the flying women in Chinese folklores are not a symbol of defiance but are exemplars that embodyideal Confucian femininity. These tales are instead a reflection of male rejection of gender division in patriarchal societies. The male protagonists, like the male storytellers, reject the necessity to pursue and provide for women in courtship and marriage. Though these tales show their authors’ and readers’ discontent with gender role division, they do not subvert the patriarchal social order but rather offers an escape through fantasy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bird%20goddess" title="bird goddess">bird goddess</a>, <a href="https://publications.waset.org/abstracts/search?q=folklore" title=" folklore"> folklore</a>, <a href="https://publications.waset.org/abstracts/search?q=gender%20role%20division" title=" gender role division"> gender role division</a>, <a href="https://publications.waset.org/abstracts/search?q=patriarchy" title=" patriarchy"> patriarchy</a> </p> <a href="https://publications.waset.org/abstracts/146123/flying-women-in-chinese-folklore-male-narrators-rejection-of-gender-role-division-in-patriarchal-societies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146123.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">233</span> A Comparative Analysis of Multicarrier SPWM Strategies for Five-Level Flying Capacitor Inverter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bachir%20Belmadani">Bachir Belmadani</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Taleb"> Rachid Taleb</a>, <a href="https://publications.waset.org/abstracts/search?q=Zinelaabidine%20Boudjema"> Zinelaabidine Boudjema</a>, <a href="https://publications.waset.org/abstracts/search?q=Adil%20Yahdou"> Adil Yahdou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carrier-based methods have been used widely for switching of multilevel inverters due to their simplicity, flexibility and reduced computational requirements compared to space vector modulation (SVM). This paper focuses on Multicarrier Sinusoidal Pulse Width Modulation (MCSPWM) strategy for the three phase Five-Level Flying Capacitor Inverter (5LFCI). The inverter is simulated for Induction Motor (IM) load and Total Harmonic Distortion (THD) for output waveforms is observed for different controlling schemes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flying%20capacitor%20inverter" title="flying capacitor inverter">flying capacitor inverter</a>, <a href="https://publications.waset.org/abstracts/search?q=multicarrier%20sinusoidal%20pulse%20width%20modulation" title=" multicarrier sinusoidal pulse width modulation"> multicarrier sinusoidal pulse width modulation</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20vector%20modulation" title=" space vector modulation"> space vector modulation</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20harmonic%20distortion" title=" total harmonic distortion"> total harmonic distortion</a>, <a href="https://publications.waset.org/abstracts/search?q=induction%20motor" title=" induction motor"> induction motor</a> </p> <a href="https://publications.waset.org/abstracts/45816/a-comparative-analysis-of-multicarrier-spwm-strategies-for-five-level-flying-capacitor-inverter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45816.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">232</span> Surveillance of Mycoplasma gallisepticum in Pet, Game and Free Flying Birds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shamas%20Ul%20Hassan">Shamas Ul Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasir%20Mukhtar"> Nasir Mukhtar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sajjad%20Ur%20Rehman"> Sajjad Ur Rehman</a>, <a href="https://publications.waset.org/abstracts/search?q=Asghar%20Ali%20Mian"> Asghar Ali Mian</a>, <a href="https://publications.waset.org/abstracts/search?q=Iftikhar%20Hussain"> Iftikhar Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Safdar%20Anjum"> Muhammad Safdar Anjum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Mycoplasma gallisepticum (MG) is the major cause of economic looses in birds which is transmitted by free flying birds in the environment. These demands for improving the biosecurity measures at farm level including proper disposal of farm mortality and other wastes along with the inclusion of zoos and wild life parks in the MG surveillance programme. For the purpose of doing surveillance of MG in different pet, game and free flying birds a total of 12 samples each of peacocks, pheasants, ducks, pigeons, parrots, and house crows were included in the first ever study of its nature in Pakistan. During the study, the relevant samples along with recording clinical and postmortem findings were subjected to sero-prevalence, culture isolation and PCR system. Further PCR being more sensitive proves to be a better epidemiological tool. Seropositive findings revealed in peacocks, pheasants, ducks, pigeons, parrots, and crows were 66.7%, 58.3%, 41.7%, 41.7%, 16.7% and 16.7% respectively with some free flying birds giving ambiguous reactions. Whereas in the same order the culture/isolation positive results were recorded as 25%, 16.7%, 8.3%, 16.7%, 16.7%, and 25%. The samples were further confirmed on the basis of 732 bp product in PCR system. High rate of prevalence of MG in the pet, game and free flying birds regardless to their clinical findings demands to improve the biosecurity measures at the farm level with the minimum interaction of these birds with commercial poultry. Further the proper and timely disposal of all sorts of carcasses contaminated litter and wasted feed in such ways that the free flying birds are denied of picking up at those wastages. Moreover, MG surveillance system including the advances diagnostic techniques in wildlife parks and zoos be devised with proper timely preventive and therapeutic measures. The study proves that a variety of birds other then chicken either with or without clinical exhibitions carry MG organism which could be the potential source of infection for commercial poultry. The routine surveillance will be done to reduce the economic losses in poultry production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epidemiology" title="epidemiology">epidemiology</a>, <a href="https://publications.waset.org/abstracts/search?q=Mycoplasma%20gallisepticum%20%28MG%29" title=" Mycoplasma gallisepticum (MG)"> Mycoplasma gallisepticum (MG)</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20flying%20birds" title=" free flying birds"> free flying birds</a>, <a href="https://publications.waset.org/abstracts/search?q=surveillance" title=" surveillance"> surveillance</a>, <a href="https://publications.waset.org/abstracts/search?q=PCR" title=" PCR"> PCR</a> </p> <a href="https://publications.waset.org/abstracts/36811/surveillance-of-mycoplasma-gallisepticum-in-pet-game-and-free-flying-birds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36811.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">231</span> Measurement of Thermal Protrusion Profile in Magnetic Recording Heads via Wyko Interferometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Christopher%20R.%20Ragasa">Joseph Christopher R. Ragasa</a>, <a href="https://publications.waset.org/abstracts/search?q=Paolo%20Gabriel%20P.%20Casas"> Paolo Gabriel P. Casas</a>, <a href="https://publications.waset.org/abstracts/search?q=Nemesio%20S.%20Mangila"> Nemesio S. Mangila</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Emma%20C.%20Villamin"> Maria Emma C. Villamin</a>, <a href="https://publications.waset.org/abstracts/search?q=Myra%20G.%20Bungag"> Myra G. Bungag </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A procedure in measuring the thermal protrusion profiles of magnetic recording heads was developed using a Wyko HD-8100 optical interference-based instrument. The protrusions in the heads were made by the application of a constant power through the thermal flying height controller pads. It was found that the thermally-induced bubble is confined to form in the same head locations, primarily in the reader and writer regions, regardless of the direction of approach of temperature. An application of power to the thermal flying height control pads ranging from 0 to 50 milliWatts showed that the protrusions demonstrate a linear dependence with the supplied power. The efficiencies calculated using this method were compared to that obtained through Guzik and found to be 19.57% greater due to the static testing environment used in the testing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20protrusion%20profile" title="thermal protrusion profile">thermal protrusion profile</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20recording%20heads" title=" magnetic recording heads"> magnetic recording heads</a>, <a href="https://publications.waset.org/abstracts/search?q=wyko%20interferometry" title=" wyko interferometry"> wyko interferometry</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20flying%20height%20control" title=" thermal flying height control"> thermal flying height control</a> </p> <a href="https://publications.waset.org/abstracts/30358/measurement-of-thermal-protrusion-profile-in-magnetic-recording-heads-via-wyko-interferometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">230</span> A New Family of Flying Wing Low Reynolds Number Airfoils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ciro%20Sobrinho%20Campolina%20Martins">Ciro Sobrinho Campolina Martins</a>, <a href="https://publications.waset.org/abstracts/search?q=Halison%20da%20Silva%20Pereira"> Halison da Silva Pereira</a>, <a href="https://publications.waset.org/abstracts/search?q=Vitor%20Mainenti%20Leal%20Lopes"> Vitor Mainenti Leal Lopes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Unmanned Aerial vehicles (UAVs) has been used in a wide range of applications, from precise agriculture monitoring for irrigation and fertilization to military attack missions. Long range performance is required for many of these applications. Tailless aircrafts are commonly used as long-range configurations and, due to its small amount of stability, the airfoil shape design of its wings plays a central role on the performance of the airplane. In this work, a new family of flying wing airfoils is designed for low Reynolds number flows, typical of small-middle UAVs. Camber, thickness and their maximum positions in the chord are variables used for the airfoil geometry optimization. Aerodynamic non-dimensional coefficients were obtained by the well-established Panel Method. High efficient airfoils with small pitch moment coefficient are obtained from the analysis described and its aerodynamic polars are plotted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airfoil%20design" title="airfoil design">airfoil design</a>, <a href="https://publications.waset.org/abstracts/search?q=flying%20wing" title=" flying wing"> flying wing</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20Reynolds%20number" title=" low Reynolds number"> low Reynolds number</a>, <a href="https://publications.waset.org/abstracts/search?q=tailless%20aircraft" title=" tailless aircraft"> tailless aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=UAV" title=" UAV"> UAV</a> </p> <a href="https://publications.waset.org/abstracts/33946/a-new-family-of-flying-wing-low-reynolds-number-airfoils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">629</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">229</span> Aerodynamic Study of Formula 1 Car in Upsight Down Configuration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hrishit%20Mitra">Hrishit Mitra</a>, <a href="https://publications.waset.org/abstracts/search?q=Saptarshi%20Mandal"> Saptarshi Mandal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of aerodynamics for Formula 1 cars is very crucial in determining their performance. In the current F1 industry, when each engine manufacturer exhibits a torque and peak speed that differ by less than 5%, the emphasis on maximizing performance is dependent heavily on the utilization of aerodynamics. This work examines the aerodynamic characteristics of an F1 car by utilizing computational fluid dynamics in order to substantiate the hypothesis that an F1 car can go upside down in a tunnel without any external assistance, only due to the downforce it produces. In addition to this, this study also suggests the implementation of a 'flexi-wing' front in F1 cars to optimize downforce and reduce drag. Furthermore, this paper provides a concise overview of the historical development of aerodynamics in F1, with a specific emphasis on the progression of aerodynamics and the impact of downforce on the dynamics of vehicles. Next, an examination of wings has been provided, comparing the performance of the suggested wing at high speeds and low speeds. Three simulations have been conducted: one to test the complete aerodynamics and validate the hypothesis discussed above, and two specifically focused on the flexi wing, one at high speed and one at low speed. The collected results have been examined to analyze the performance of the front flexi wing. Performance analysis was conducted from the measurement of downforce and drag coefficient, as well as the pressure and velocity distributions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20speed%20flexi%20wing" title="high speed flexi wing">high speed flexi wing</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20speed%20flexi%20wing" title=" low speed flexi wing"> low speed flexi wing</a>, <a href="https://publications.waset.org/abstracts/search?q=F1%20car%20aerodynamics" title=" F1 car aerodynamics"> F1 car aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=F1%20car%20drag%20reduction" title=" F1 car drag reduction"> F1 car drag reduction</a> </p> <a href="https://publications.waset.org/abstracts/193464/aerodynamic-study-of-formula-1-car-in-upsight-down-configuration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">12</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">228</span> Post Coronary Artery Stenting Reflighting: Need for Change in Policy with Changing Antiplatelet Therapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keshavamurthy%20Ganapathy%20Bhat">Keshavamurthy Ganapathy Bhat</a>, <a href="https://publications.waset.org/abstracts/search?q=Manvinderpal%20Singh%20Marwaha"> Manvinderpal Singh Marwaha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Coronary artery Disease (CAD) is a common cause of morbidity, mortality and reason for unfitness amongst aircrew. Coronary angioplasty and stenting are the standard of care for CAD. Antiplatelet drugs like Aspirin and Clopidogrel(Dual Antiplatelet therapy) are routinely prescribed post-stenting which are permitted for flying. However, in the recent past, Ticagrelor is being used in place of Clopidogrel as per ACC AHA and ESC guidelines. However Ticagrelor is not permitted for flying. Case Presentation: A 55-year-old pilot suffered Anterior Wall Myocardial Infarction. Angiography showed blockages in Left Anterior Descending Artery(LAD) and Right coronary artery (RCA). He underwent primary angioplasty and stenting LAD and subsequent stenting to RCA. Recovery was uneventful. One year later he was asymptomatic with normal Left ventricular function and no reversible perfusion defect on stress MPI. He had patent stents and coronaries on check angiogram. However, he was not allowed to fly since he was on Ticagrelor. He had to be switched over to Clopidogrel from Ticagrelor one year after stenting to permit him for flying. Similarly, switching had to be done in a 45-year-old pilot. Ticagrelor has been proven to be more effective than clopidogrel and as safe as Clopidogrel in preventing stent thrombosis. If Clopidogrel is being permitted, there is no need to restrict Ticagrelor. Hence "Policy" needs to be changed. Conclusions: Dual Antiplatelet therapy is the standard of care post coronary stenting which has been proved safe and effective. Policy needs to be changed to permit flying with Ticagrelor which is more effective than Clopidogrel and equally safe. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antiplatelet%20drugs" title="antiplatelet drugs">antiplatelet drugs</a>, <a href="https://publications.waset.org/abstracts/search?q=coronary%20artery%20disease" title=" coronary artery disease"> coronary artery disease</a>, <a href="https://publications.waset.org/abstracts/search?q=stenting" title=" stenting"> stenting</a>, <a href="https://publications.waset.org/abstracts/search?q=ticagrelor" title=" ticagrelor"> ticagrelor</a> </p> <a href="https://publications.waset.org/abstracts/83402/post-coronary-artery-stenting-reflighting-need-for-change-in-policy-with-changing-antiplatelet-therapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83402.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">227</span> [Keynote Speech]: Conceptual Design of a Short Take-Off and Landing (STOL) Light Sport Aircraft</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zamri%20Omar">Zamri Omar</a>, <a href="https://publications.waset.org/abstracts/search?q=Alifi%20Zainal%20Abidin"> Alifi Zainal Abidin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although flying machines have made their tremendous technological advancement since the first successfully flight of the heavier-than-air aircraft, its benefits to the greater community are still belittled. One of the reasons for this drawback is due to the relatively high cost needed to fly on the typical light aircraft. A smaller and lighter plane, widely known as Light Sport Aircraft (LSA) has the potential to attract more people to actively participate in numerous flying activities, such as for recreational, business trips or other personal purposes. In this paper, we propose a new LSA design with some simple, yet important analysis required in the aircraft conceptual design stage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=light%20sport%20aircraft" title="light sport aircraft">light sport aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=conceptual%20design" title=" conceptual design"> conceptual design</a>, <a href="https://publications.waset.org/abstracts/search?q=aircraft%20layout" title=" aircraft layout"> aircraft layout</a>, <a href="https://publications.waset.org/abstracts/search?q=aircraft" title=" aircraft"> aircraft</a> </p> <a href="https://publications.waset.org/abstracts/63570/keynote-speech-conceptual-design-of-a-short-take-off-and-landing-stol-light-sport-aircraft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63570.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">226</span> Habitat Suitability, Genetic Diversity and Population Structure of Two Sympatric Fruit Bat Species Reveal the Need of an Urgent Conservation Action</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Thani%20Ibouroi">Mohamed Thani Ibouroi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Cheha"> Ali Cheha</a>, <a href="https://publications.waset.org/abstracts/search?q=Claudine%20Montgelard"> Claudine Montgelard</a>, <a href="https://publications.waset.org/abstracts/search?q=Veronique%20Arnal"> Veronique Arnal</a>, <a href="https://publications.waset.org/abstracts/search?q=Dawiyat%20Massoudi"> Dawiyat Massoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Guillelme%20Astruc"> Guillelme Astruc</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Ali%20Ousseni%20Dhurham"> Said Ali Ousseni Dhurham</a>, <a href="https://publications.waset.org/abstracts/search?q=Aurelien%20Besnard"> Aurelien Besnard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Livingstone's flying fox (Pteropus livingstonii) and the Comorian fruit bat (P.seychellensis comorensis) are two endemic fruit bat species among the mostly threatened animals of the Comoros archipelagos. Despite their role as important ecosystem service providers like all flying fox species as pollinators and seed dispersers, little is known about their ecologies, population genetics and structures making difficult the development of evidence-based conservation strategies. In this study, we assess spatial distribution and ecological niche of both species using Species Distribution Modeling (SDM) based on the recent Ensemble of Small Models (ESMs) approach using presence-only data. Population structure and genetic diversity of the two species were assessed using both mitochondrial and microsatellite markers based on non-invasive genetic samples. Our ESMs highlight a clear niche partitioning of the two sympatric species. Livingstone’s flying fox has a very limited distribution, restricted on steep slope of natural forests at high elevation. On the contrary, the Comorian fruit bat has a relatively large geographic range spread over low elevations in farmlands and villages. Our genetic analysis shows a low genetic diversity for both fruit bats species. They also show that the Livingstone’s flying fox population of the two islands were genetically isolated while no evidence of genetic differentiation was detected for the Comorian fruit bats between islands. Our results support the idea that natural habitat loss, especially the natural forest loss and fragmentation are the important factors impacting the distribution of the Livingstone’s flying fox by limiting its foraging area and reducing its potential roosting sites. On the contrary, the Comorian fruit bats seem to be favored by human activities probably because its diets are less specialized. By this study, we concluded that the Livingstone’s flying fox species and its habitat are of high priority in term of conservation at the Comoros archipelagos scale. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Comoros%20islands" title="Comoros islands">Comoros islands</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20niche" title=" ecological niche"> ecological niche</a>, <a href="https://publications.waset.org/abstracts/search?q=habitat%20loss" title=" habitat loss"> habitat loss</a>, <a href="https://publications.waset.org/abstracts/search?q=population%20genetics" title=" population genetics"> population genetics</a>, <a href="https://publications.waset.org/abstracts/search?q=fruit%20bats" title=" fruit bats"> fruit bats</a>, <a href="https://publications.waset.org/abstracts/search?q=conservation%20biology" title=" conservation biology"> conservation biology</a> </p> <a href="https://publications.waset.org/abstracts/62161/habitat-suitability-genetic-diversity-and-population-structure-of-two-sympatric-fruit-bat-species-reveal-the-need-of-an-urgent-conservation-action" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62161.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">225</span> Computational Aerodynamics and Aeroacoustics of a Nose Landing Gear</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamal%20Haider">Kamal Haider</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical simulations over landing gear of simplified and partially-dressed configurations with closed cavity have been performed to compute aerodynamically and aeroacoustics parameters using commercial engineering software. The objective of numerical computations is two folds. Firstly, to validate experimental data of newly built nose landing gear and secondly perform high-fidelity calculations using CFD/FW-H hybrid approach, as future engineering challenges need more advanced aircraft configurations such as performance noise and efficiency. Both geometries are used for multi-block structured, and unstructured/hybrid meshed to develop some understanding of physics in terms of aerodynamics and aeroacoustics. Detached Eddy Simulation (DES) approach is employed to compute surface pressure. Also far-field noise calculations have been generated by Ffowcs-William and Hawking solver. Both results of aerodynamics and aeroacoustics are compared with experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=landing%20gear" title="landing gear">landing gear</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20aeroacoustics" title=" computational aeroacoustics"> computational aeroacoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20aerodynamics" title=" computational aerodynamics"> computational aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=detached%20eddy%20simulation" title=" detached eddy simulation"> detached eddy simulation</a> </p> <a href="https://publications.waset.org/abstracts/59488/computational-aerodynamics-and-aeroacoustics-of-a-nose-landing-gear" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">224</span> Aerodynamics of Spherical Combat Platform Levitation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aelina%20Franz">Aelina Franz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the scientific community has witnessed a paradigm shift in the exploration of unconventional levitation methods, particularly in the domain of spherical combat platforms. This paper explores aerodynamics and levitational dynamics inherent in these spheres by examining interactions at the quantum level. Our research unravels the nuanced aerodynamic phenomena governing the levitation of spherical combat platforms. Through an analysis of the quantum fluid dynamics surrounding these spheres, we reveal the crucial interactions between air resistance, surface irregularities, and the quantum fluctuations that influence their levitational behavior. Our findings challenge conventional understanding, providing a perspective on the aerodynamic forces at play during the levitation of spherical combat platforms. Furthermore, we propose design modifications and control strategies informed by both classical aerodynamics and quantum information processing principles. These advancements not only enhance the stability and maneuverability of the combat platforms but also open new avenues for exploration in the interdisciplinary realm of engineering and quantum information sciences. This paper aims to contribute to levitation technologies and their applications in the field of spherical combat platforms. We anticipate that our work will stimulate further research to create a deeper understanding of aerodynamics and quantum phenomena in unconventional levitation systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spherical%20combat%20platforms" title="spherical combat platforms">spherical combat platforms</a>, <a href="https://publications.waset.org/abstracts/search?q=levitation%20technologies" title=" levitation technologies"> levitation technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title=" aerodynamics"> aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=maneuverable%20platforms" title=" maneuverable platforms"> maneuverable platforms</a> </p> <a href="https://publications.waset.org/abstracts/183818/aerodynamics-of-spherical-combat-platform-levitation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183818.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">57</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">223</span> Desktop High-Speed Aerodynamics by Shallow Water Analogy in a Tin Box for Engineering Students</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Etsuo%20Morishita">Etsuo Morishita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we show shallow water in a tin box as an analogous simulation tool for high-speed aerodynamics education and research. It is customary that we use a water tank to create shallow water flow. While a flow in a water tank is not necessarily uniform and is sometimes wavy, we can visualize a clear supercritical flow even when we move a body manually in stationary water in a simple shallow tin box. We can visualize a blunt shock wave around a moving circular cylinder together with a shock pattern around a diamond airfoil. Another interesting analogous experiment is a hydrodynamic shock tube with water and tea. We observe the contact surface clearly due to color difference of the two liquids those are invisible in the real gas dynamics experiment. We first revisit the similarities between high-speed aerodynamics and shallow water hydraulics. Several educational and research experiments are then introduced for engineering students. Shallow water experiments in a tin box simulate properly the high-speed flows. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics%20compressible%20flow" title="aerodynamics compressible flow">aerodynamics compressible flow</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20dynamics" title=" gas dynamics"> gas dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulics" title=" hydraulics"> hydraulics</a>, <a href="https://publications.waset.org/abstracts/search?q=shock%20wave" title=" shock wave"> shock wave</a> </p> <a href="https://publications.waset.org/abstracts/68545/desktop-high-speed-aerodynamics-by-shallow-water-analogy-in-a-tin-box-for-engineering-students" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68545.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">222</span> The Trajectory of the Ball in Football Game</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Motahari">Mahdi Motahari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Farzaneh"> Mojtaba Farzaneh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ebrahim%20Sepidbar"> Ebrahim Sepidbar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tracking of moving and flying targets is one of the most important issues in image processing topic. Estimating of trajectory of desired object in short-term and long-term scale is more important than tracking of moving and flying targets. In this paper, a new way of identifying and estimating of future trajectory of a moving ball in long-term scale is estimated by using synthesis and interaction of image processing algorithms including noise removal and image segmentation, Kalman filter algorithm in order to estimating of trajectory of ball in football game in short-term scale and intelligent adaptive neuro-fuzzy algorithm based on time series of traverse distance. The proposed system attain more than 96% identify accuracy by using aforesaid methods and relaying on aforesaid algorithms and data base video in format of synthesis and interaction. Although the present method has high precision, it is time consuming. By comparing this method with other methods we realize the accuracy and efficiency of that. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tracking" title="tracking">tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20processing" title=" signal processing"> signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20targets%20and%20flying" title=" moving targets and flying"> moving targets and flying</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligent%20systems" title=" artificial intelligent systems"> artificial intelligent systems</a>, <a href="https://publications.waset.org/abstracts/search?q=estimating%20of%20trajectory" title=" estimating of trajectory"> estimating of trajectory</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalman%20filter" title=" Kalman filter"> Kalman filter</a> </p> <a href="https://publications.waset.org/abstracts/4185/the-trajectory-of-the-ball-in-football-game" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4185.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">221</span> Stochastic Multicast Routing Protocol for Flying Ad-Hoc Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyunsun%20Lee">Hyunsun Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi%20Zhu"> Yi Zhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wireless ad-hoc network is a decentralized type of temporary machine-to-machine connection that is spontaneous or impromptu so that it does not rely on any fixed infrastructure and centralized administration. As unmanned aerial vehicles (UAVs), also called drones, have recently become more accessible and widely utilized in military and civilian domains such as surveillance, search and detection missions, traffic monitoring, remote filming, product delivery, to name a few. The communication between these UAVs become possible and materialized through Flying Ad-hoc Networks (FANETs). However, due to the high mobility of UAVs that may cause different types of transmission interference, it is vital to design robust routing protocols for FANETs. In this talk, the multicast routing method based on a modified stochastic branching process is proposed. The stochastic branching process is often used to describe an early stage of an infectious disease outbreak, and the reproductive number in the process is used to classify the outbreak into a major or minor outbreak. The reproductive number to regulate the local transmission rate is adapted and modified for flying ad-hoc network communication. The performance of the proposed routing method is compared with other well-known methods such as flooding method and gossip method based on three measures; average reachability, average node usage and average branching factor. The proposed routing method achieves average reachability very closer to flooding method, average node usage closer to gossip method, and outstanding average branching factor among methods. It can be concluded that the proposed multicast routing scheme is more efficient than well-known routing schemes such as flooding and gossip while it maintains high performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Flying%20Ad-hoc%20Networks" title="Flying Ad-hoc Networks">Flying Ad-hoc Networks</a>, <a href="https://publications.waset.org/abstracts/search?q=Multicast%20Routing" title=" Multicast Routing"> Multicast Routing</a>, <a href="https://publications.waset.org/abstracts/search?q=Stochastic%20Branching%20Process" title=" Stochastic Branching Process"> Stochastic Branching Process</a>, <a href="https://publications.waset.org/abstracts/search?q=Unmanned%20Aerial%20Vehicles" title=" Unmanned Aerial Vehicles"> Unmanned Aerial Vehicles</a> </p> <a href="https://publications.waset.org/abstracts/120727/stochastic-multicast-routing-protocol-for-flying-ad-hoc-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">220</span> Fault Detection and Isolation in Attitude Control Subsystem of Spacecraft Formation Flying Using Extended Kalman Filters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Ghasemi">S. Ghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Khorasani"> K. Khorasani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the problem of fault detection and isolation in the attitude control subsystem of spacecraft formation flying is considered. In order to design the fault detection method, an extended Kalman filter is utilized which is a nonlinear stochastic state estimation method. Three fault detection architectures, namely, centralized, decentralized, and semi-decentralized are designed based on the extended Kalman filters. Moreover, the residual generation and threshold selection techniques are proposed for these architectures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=component" title="component">component</a>, <a href="https://publications.waset.org/abstracts/search?q=formation%20flight%20of%20satellites" title=" formation flight of satellites"> formation flight of satellites</a>, <a href="https://publications.waset.org/abstracts/search?q=extended%20Kalman%20filter" title=" extended Kalman filter"> extended Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20detection%20and%20isolation" title=" fault detection and isolation"> fault detection and isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=actuator%20fault" title=" actuator fault"> actuator fault</a> </p> <a href="https://publications.waset.org/abstracts/26418/fault-detection-and-isolation-in-attitude-control-subsystem-of-spacecraft-formation-flying-using-extended-kalman-filters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26418.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">219</span> Radar Track-based Classification of Birds and UAVs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Altilio%20Rosa">Altilio Rosa</a>, <a href="https://publications.waset.org/abstracts/search?q=Chirico%20Francesco"> Chirico Francesco</a>, <a href="https://publications.waset.org/abstracts/search?q=Foglia%20Goffredo"> Foglia Goffredo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the number of Unmanned Aerial Vehicles (UAVs) has significantly increased. The rapid development of commercial and recreational drones makes them an important part of our society. Despite the growing list of their applications, these vehicles pose a huge threat to civil and military installations: detection, classification and neutralization of such flying objects become an urgent need. Radar is an effective remote sensing tool for detecting and tracking flying objects, but scenarios characterized by the presence of a high number of tracks related to flying birds make especially challenging the drone detection task: operator PPI is cluttered with a huge number of potential threats and his reaction time can be severely affected. Flying birds compared to UAVs show similar velocity, RADAR cross-section and, in general, similar characteristics. Building from the absence of a single feature that is able to distinguish UAVs and birds, this paper uses a multiple features approach where an original feature selection technique is developed to feed binary classifiers trained to distinguish birds and UAVs. RADAR tracks acquired on the field and related to different UAVs and birds performing various trajectories were used to extract specifically designed target movement-related features based on velocity, trajectory and signal strength. An optimization strategy based on a genetic algorithm is also introduced to select the optimal subset of features and to estimate the performance of several classification algorithms (Neural network, SVM, Logistic regression…) both in terms of the number of selected features and misclassification error. Results show that the proposed methods are able to reduce the dimension of the data space and to remove almost all non-drone false targets with a suitable classification accuracy (higher than 95%). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=birds" title="birds">birds</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=UAVs" title=" UAVs"> UAVs</a> </p> <a href="https://publications.waset.org/abstracts/143397/radar-track-based-classification-of-birds-and-uavs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143397.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">218</span> Studies on Race Car Aerodynamics at Wing in Ground Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dharni%20Vasudhevan%20Venkatesan">Dharni Vasudhevan Venkatesan</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20E.%20Shanjay"> K. E. Shanjay</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Sujith%20Kumar"> H. Sujith Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20A.%20Abhilash"> N. A. Abhilash</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Aswin%20Ram"> D. Aswin Ram</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20R.%20Sanal%20Kumar"> V. R. Sanal Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical studies on race car aerodynamics at wing in ground effect have been carried out using a steady 3d, double precision, pressure-based, and standard k-epsilon turbulence model. Through various parametric analytical studies we have observed that at a particular speed and ground clearance of the wings a favorable negative lift was found high at a particular angle of attack for all the physical models considered in this paper. The fact is that if the ground clearance height to chord length (h/c) is too small, the developing boundary layers from either side (the ground and the lower surface of the wing) can interact, leading to an altered variation of the aerodynamic characteristics at wing in ground effect. Therefore a suitable ground clearance must be predicted throughout the racing for a better performance of the race car, which obviously depends upon the coupled effects of the topography, wing orientation with respect to the ground, the incoming flow features and/or the race car speed. We have concluded that for the design of high performance and high speed race cars the adjustable wings capable to alter the ground clearance and the angles of attack is the best design option for any race car for racing safely with variable speeds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=external%20aerodynamics" title="external aerodynamics">external aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20flow%20choking" title=" external flow choking"> external flow choking</a>, <a href="https://publications.waset.org/abstracts/search?q=race%20car%20aerodynamics" title=" race car aerodynamics"> race car aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=wing%20in%20ground%20effect" title=" wing in ground effect"> wing in ground effect</a> </p> <a href="https://publications.waset.org/abstracts/12103/studies-on-race-car-aerodynamics-at-wing-in-ground-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12103.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">217</span> Aerodynamics and Aeroelastics Studies of Hanger Bridge with H-Beam Profile Using Wind Tunnel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Matza%20Gusto%20Andika">Matza Gusto Andika</a>, <a href="https://publications.waset.org/abstracts/search?q=Malinda%20Sabrina"> Malinda Sabrina</a>, <a href="https://publications.waset.org/abstracts/search?q=Syarie%20Fatunnisa"> Syarie Fatunnisa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aerodynamic and aeroelastics studies on the hanger bridge profile are important to analyze the aerodynamic phenomenon and Aeroelastics stability of hanger. Wind tunnel tests were conducted on a model of H-beam profile from hanger bridge. The purpose of this study is to investigate steady aerodynamic characteristics such as lift coefficient (Cl), drag coefficient (Cd), and moment coefficient (Cm) under the different angle of attack for preliminary prediction of aeroelastics stability problems. After investigation the steady aerodynamics characteristics from the model, dynamic testing is also conducted in wind tunnel to know the aeroelastics phenomenon which occurs at the H-beam hanger bridge profile. The studies show that the torsional vortex induced vibration occur when the wind speed is 7.32 m/s until 9.19 m/s with maximum amplitude occur when the wind speed is 8.41 m/s. The result of wind tunnel testing is matching to hanger vibration where occur in the field, so wind tunnel studies has successful to model the problem. In order that the H-beam profile is not good enough for the hanger bridge and need to be modified to minimize the Aeroelastics problem. The modification can be done with structure dynamics modification or aerodynamics modification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title="aerodynamics">aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=aeroelastic" title=" aeroelastic"> aeroelastic</a>, <a href="https://publications.waset.org/abstracts/search?q=hanger%20bridge" title=" hanger bridge"> hanger bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=h-beam%20profile" title=" h-beam profile"> h-beam profile</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20induced%20vibration" title=" vortex induced vibration"> vortex induced vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel" title=" wind tunnel"> wind tunnel</a> </p> <a href="https://publications.waset.org/abstracts/52637/aerodynamics-and-aeroelastics-studies-of-hanger-bridge-with-h-beam-profile-using-wind-tunnel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52637.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">216</span> Ta-DAH: Task Driven Automated Hardware Design of Free-Flying Space Robots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lucy%20Jackson">Lucy Jackson</a>, <a href="https://publications.waset.org/abstracts/search?q=Celyn%20Walters"> Celyn Walters</a>, <a href="https://publications.waset.org/abstracts/search?q=Steve%20Eckersley"> Steve Eckersley</a>, <a href="https://publications.waset.org/abstracts/search?q=Mini%20Rai"> Mini Rai</a>, <a href="https://publications.waset.org/abstracts/search?q=Simon%20Hadfield"> Simon Hadfield</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Space robots will play an integral part in exploring the universe and beyond. A correctly designed space robot will facilitate OOA, satellite servicing and ADR. However, problems arise when trying to design such a system as it is a highly complex multidimensional problem into which there is little research. Current design techniques are slow and specific to terrestrial manipulators. This paper presents a solution to the slow speed of robotic hardware design, and generalizes the technique to free-flying space robots. It presents Ta-DAH Design, an automated design approach that utilises a multi-objective cost function in an iterative and automated pipeline. The design approach leverages prior knowledge and facilitates the faster output of optimal designs. The result is a system that can optimise the size of the base spacecraft, manipulator and some key subsystems for any given task. Presented in this work is the methodology behind Ta-DAH Design and a number optimal space robot designs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=space%20robots" title="space robots">space robots</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20design" title=" automated design"> automated design</a>, <a href="https://publications.waset.org/abstracts/search?q=on-orbit%20operations" title=" on-orbit operations"> on-orbit operations</a>, <a href="https://publications.waset.org/abstracts/search?q=hardware%20design" title=" hardware design"> hardware design</a> </p> <a href="https://publications.waset.org/abstracts/150830/ta-dah-task-driven-automated-hardware-design-of-free-flying-space-robots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">215</span> Relative Navigation with Laser-Based Intermittent Measurement for Formation Flying Satellites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jongwoo%20Lee">Jongwoo Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Dae-Eun%20Kang"> Dae-Eun Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang-Young%20Park"> Sang-Young Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents a precise relative navigational method for satellites flying in formation using laser-based intermittent measurement data. The measurement data for the relative navigation between two satellites consist of a relative distance measured by a laser instrument and relative attitude angles measured by attitude determination. The relative navigation solutions are estimated by both the Extended Kalman filter (EKF) and unscented Kalman filter (UKF). The solutions estimated by the EKF may become inaccurate or even diverge as measurement outage time gets longer because the EKF utilizes a linearization approach. However, this study shows that the UKF with the appropriate scaling parameters provides a stable and accurate relative navigation solutions despite the long measurement outage time and large initial error as compared to the relative navigation solutions of the EKF. Various navigation results have been analyzed by adjusting the scaling parameters of the UKF. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=satellite%20relative%20navigation" title="satellite relative navigation">satellite relative navigation</a>, <a href="https://publications.waset.org/abstracts/search?q=laser-based%20measurement" title=" laser-based measurement"> laser-based measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=intermittent%20measurement" title=" intermittent measurement"> intermittent measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=unscented%20Kalman%20filter" title=" unscented Kalman filter"> unscented Kalman filter</a> </p> <a href="https://publications.waset.org/abstracts/80146/relative-navigation-with-laser-based-intermittent-measurement-for-formation-flying-satellites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80146.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">214</span> Quantification of Aerodynamic Variables Using Analytical Technique and Computational Fluid Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adil%20Loya">Adil Loya</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamran%20Maqsood"> Kamran Maqsood</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Duraid"> Muhammad Duraid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aerodynamic stability coefficients are necessary to be known before any unmanned aircraft flight is performed. This requires expertise on aerodynamics and stability control of the aircraft. To enable efficacious performance of aircraft requires that a well-defined flight path and aerodynamics should be defined beforehand. This paper presents a study on the aerodynamics of an unmanned aero vehicle (UAV) during flight conditions. Current research holds comparative studies of different parameters for flight aerodynamic, measured using two different open source analytical software programs. These software packages are DATCOM and XLRF5, which help in depicting the flight aerodynamic variables. Computational fluid dynamics (CFD) was also used to perform aerodynamic analysis for which Star CCM+ was used. Output trends of the study demonstrate high accuracies between the two software programs with that of CFD. It can be seen that the Coefficient of Lift (CL) obtained from DATCOM and XFLR is similar to CL of CFD simulation. In the similar manner, other potential aerodynamic stability parameters obtained from analytical software are in good agreement with CFD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=XFLR5" title="XFLR5">XFLR5</a>, <a href="https://publications.waset.org/abstracts/search?q=DATCOM" title=" DATCOM"> DATCOM</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamic" title=" computational fluid dynamic"> computational fluid dynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=unmanned%20aero%20vehicle" title=" unmanned aero vehicle"> unmanned aero vehicle</a> </p> <a href="https://publications.waset.org/abstracts/89932/quantification-of-aerodynamic-variables-using-analytical-technique-and-computational-fluid-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89932.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">213</span> Construction of Wind Tunnel for Aerodynamic </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elmo%20Thiago%20Lins%20C%C3%B6uras%20Ford">Elmo Thiago Lins Cöuras Ford</a>, <a href="https://publications.waset.org/abstracts/search?q=Valentina%20Alessandra%20Carvalho%20do%20Vale"> Valentina Alessandra Carvalho do Vale</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Ubiragi%20de%20Lima%20Mendes"> José Ubiragi de Lima Mendes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of the aerodynamics is related to the improvement in the acting of airplanes and automobiles with the objective of being reduced the effect of the attrition of the air on structures, providing larger speeds and smaller consumption of fuel. The application of the knowledge of the aerodynamics not more limits to the aeronautical and automobile industries. In that way, being tried the new demands with relationship to the aerodynamic study in the most several areas of the engineering, this work presents the stages of the project and construction of a wind tunnel for application in aerodynamic rehearsals. Among the several configurations of existent wind tunnels, opted to build open circuit, due to smaller construction complexity and installation; operational simplicity and cost reduced. Belonging to the type blower, to take advantage of a larger efficiency of the motor; and with diffusion so that flowed him of air it wins speed before reaching the section of rehearsals. The guidelines for project were: didactic practices: study of the layer it limits and analyze of the drainages on proof bodies with different geometries. For the pressure variation in the test section a connected manometer used a pitot tube. Quantitative and qualitative results showed to be satisfactory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel" title="wind tunnel">wind tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title=" aerodynamics"> aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=air" title=" air"> air</a>, <a href="https://publications.waset.org/abstracts/search?q=airplane" title=" airplane"> airplane</a> </p> <a href="https://publications.waset.org/abstracts/18670/construction-of-wind-tunnel-for-aerodynamic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">486</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aerodynamics%20of%20flying%20car&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aerodynamics%20of%20flying%20car&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aerodynamics%20of%20flying%20car&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aerodynamics%20of%20flying%20car&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aerodynamics%20of%20flying%20car&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aerodynamics%20of%20flying%20car&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aerodynamics%20of%20flying%20car&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aerodynamics%20of%20flying%20car&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aerodynamics%20of%20flying%20car&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>