CINXE.COM

Search results for: computational aeroacoustics

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <script> var _paq = window._paq = window._paq || []; /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ _paq.push(['trackPageView']); _paq.push(['enableLinkTracking']); (function() { var u="//matomo.waset.org/"; _paq.push(['setTrackerUrl', u+'matomo.php']); _paq.push(['setSiteId', '2']); var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); })(); </script> <!-- End Matomo Code --> <title>Search results for: computational aeroacoustics</title> <meta name="description" content="Search results for: computational aeroacoustics"> <meta name="keywords" content="computational aeroacoustics"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="computational aeroacoustics" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2025/2026/2027">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="computational aeroacoustics"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2072</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: computational aeroacoustics</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2072</span> Computational Aerodynamics and Aeroacoustics of a Nose Landing Gear</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamal%20Haider">Kamal Haider</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical simulations over landing gear of simplified and partially-dressed configurations with closed cavity have been performed to compute aerodynamically and aeroacoustics parameters using commercial engineering software. The objective of numerical computations is two folds. Firstly, to validate experimental data of newly built nose landing gear and secondly perform high-fidelity calculations using CFD/FW-H hybrid approach, as future engineering challenges need more advanced aircraft configurations such as performance noise and efficiency. Both geometries are used for multi-block structured, and unstructured/hybrid meshed to develop some understanding of physics in terms of aerodynamics and aeroacoustics. Detached Eddy Simulation (DES) approach is employed to compute surface pressure. Also far-field noise calculations have been generated by Ffowcs-William and Hawking solver. Both results of aerodynamics and aeroacoustics are compared with experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=landing%20gear" title="landing gear">landing gear</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20aeroacoustics" title=" computational aeroacoustics"> computational aeroacoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20aerodynamics" title=" computational aerodynamics"> computational aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=detached%20eddy%20simulation" title=" detached eddy simulation"> detached eddy simulation</a> </p> <a href="https://publications.waset.org/abstracts/59488/computational-aerodynamics-and-aeroacoustics-of-a-nose-landing-gear" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2071</span> Numerical Aeroacoustics Investigation of Eroded and Coated Leading Edge of NACA 64- 618 Airfoil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zeinab%20Gharibi">Zeinab Gharibi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Stoevesandt"> B. Stoevesandt</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Peinke"> J. Peinke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Long term surface erosion of wind turbine blades, especially at the leading edge, impairs aerodynamic performance; therefore, lowers efficiency of the blades mostly in the high-speed rotor tip regions. Blade protection provides significant improvements in annual energy production, reduces costly downtime, and protects the integrity of the blades. However, this protection still influences the aerodynamic behavior, and broadband noise caused by interaction between the impinging turbulence and blade’s leading edge. This paper presents an extensive numerical aeroacoustics approach by investigating the sound power spectra of the eroded and coated NACA 64-618 wind turbine airfoil and evaluates aeroacoustics improvements after the protection procedure. Using computational fluid dynamics (CFD), different quasi 2D numerical grids were implemented and special attention was paid to the refinement of the boundary layers. The noise sources were captured and decoupled with acoustic propagation via the derived formulation of Curle’s analogy implemented in OpenFOAM. Therefore, the noise spectra were compared for clean, coated and eroded profiles in the range of chord-based Reynolds number (1.6e6 ≤ Re ≤ 11.5e6). Angle of attack was zero in all cases. Verifications were conducted for the clean profile using available experimental data. Sensitivity studies for the far-field were done on different observational positions. Furthermore, beamforming studies were done simulating an Archimedean spiral microphone array for far-field noise directivity patterns. Comparing the noise spectra of the coated and eroded geometries, results show that, coating clearly improves aerodynamic and acoustic performance of the eroded airfoil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title="computational fluid dynamics">computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20aeroacoustics" title=" computational aeroacoustics"> computational aeroacoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=leading%20edge" title=" leading edge"> leading edge</a>, <a href="https://publications.waset.org/abstracts/search?q=OpenFOAM" title=" OpenFOAM"> OpenFOAM</a> </p> <a href="https://publications.waset.org/abstracts/77658/numerical-aeroacoustics-investigation-of-eroded-and-coated-leading-edge-of-naca-64-618-airfoil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77658.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2070</span> Aeroacoustics Investigations of Unsteady 3D Airfoil for Different Angle Using Computational Fluid Dynamics Software</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haydar%20Kepek%C3%A7i">Haydar Kepekçi</a>, <a href="https://publications.waset.org/abstracts/search?q=Baha%20Zafer"> Baha Zafer</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasan%20R%C4%B1za%20G%C3%BCven"> Hasan Rıza Güven</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Noise disturbance is one of the major factors considered in the fast development of aircraft technology. This paper reviews the flow field, which is examined on the 2D NACA0015 and 3D NACA0012 blade profile using SST k-&omega; turbulence model to compute the unsteady flow field. We inserted the time-dependent flow area variables in Ffowcs-Williams and Hawkings (FW-H) equations as an input and Sound Pressure Level (SPL) values will be computed for different angles of attack (AoA) from the microphone which is positioned in the computational domain to investigate effect of augmentation of unsteady 2D and 3D airfoil region noise level. The computed results will be compared with experimental data which are available in the open literature. As results; one of the calculated Cp is slightly lower than the experimental value. This difference could be due to the higher Reynolds number of the experimental data. The ANSYS Fluent software was used in this study. Fluent includes well-validated physical modeling capabilities to deliver fast, accurate results across the widest range of CFD and multiphysics applications. This paper includes a study which is on external flow over an airfoil. The case of 2D NACA0015 has approximately 7 million elements and solves compressible fluid flow with heat transfer using the SST turbulence model. The other case of 3D NACA0012 has approximately 3 million elements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20blade%20profile" title="3D blade profile">3D blade profile</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20disturbance" title=" noise disturbance"> noise disturbance</a>, <a href="https://publications.waset.org/abstracts/search?q=aeroacoustics" title=" aeroacoustics"> aeroacoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=Ffowcs-Williams%20and%20Hawkings%20%28FW-H%29%20equations" title=" Ffowcs-Williams and Hawkings (FW-H) equations"> Ffowcs-Williams and Hawkings (FW-H) equations</a>, <a href="https://publications.waset.org/abstracts/search?q=k-%CF%89-SST%20turbulence%20model" title=" k-ω-SST turbulence model"> k-ω-SST turbulence model</a> </p> <a href="https://publications.waset.org/abstracts/92117/aeroacoustics-investigations-of-unsteady-3d-airfoil-for-different-angle-using-computational-fluid-dynamics-software" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92117.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2069</span> Investigation of Flow Effects of Soundwaves Incident on an Airfoil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thirsa%20Sherry">Thirsa Sherry</a>, <a href="https://publications.waset.org/abstracts/search?q=Utkarsh%20Shrivastav"> Utkarsh Shrivastav</a>, <a href="https://publications.waset.org/abstracts/search?q=Kannan%20B.%20T."> Kannan B. T.</a>, <a href="https://publications.waset.org/abstracts/search?q=Iynthezhuton%20K."> Iynthezhuton K.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The field of aerodynamics and aeroacoustics remains one of the most poignant and well-researched fields of today. The current paper aims to investigate the predominant problem concerning the effects of noise of varying frequencies and waveforms on airflow surrounding an airfoil. Using a single speaker beneath the airfoil at different positions, we wish to simulate the effects of sound directly impinging on an airfoil and study its direct effects on airflow. We wish to study the same using smoke visualization methods with incense as our smoke-generating material in a variable-speed subsonic wind tunnel. Using frequencies and wavelengths similar to those of common engine noise, we wish to simulate real-world conditions of engine noise interfering with airflow and document the arising trends. These results will allow us to look into the real-world effects of noise on airflow and how to minimize them and expand on the possible relation between waveforms and noise. The parameters used in the study include frequency, Reynolds number, waveforms, angle of attack, and the effects on airflow when varying these parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=engine%20noise" title="engine noise">engine noise</a>, <a href="https://publications.waset.org/abstracts/search?q=aeroacoustics" title=" aeroacoustics"> aeroacoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20excitation" title=" acoustic excitation"> acoustic excitation</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20speed" title=" low speed"> low speed</a> </p> <a href="https://publications.waset.org/abstracts/159050/investigation-of-flow-effects-of-soundwaves-incident-on-an-airfoil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159050.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2068</span> Experimental Investigation of the Aeroacoustics Field for a Rectangular Jet Impinging on a Slotted Plate: Stereoscopic Particle Image Velocimetry Measurement before and after the Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nour%20Eldin%20Afyouni">Nour Eldin Afyouni</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Assoum"> Hassan Assoum</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamel%20Abed-Meraim"> Kamel Abed-Meraim</a>, <a href="https://publications.waset.org/abstracts/search?q=Anas%20Sakout"> Anas Sakout</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The acoustic of an impinging jet holds significant importance in the engineering field. In HVAC systems, the jet impingement, in some cases, generates noise that destroys acoustic comfort. This paper presents an experimental study of a rectangular air jet impinging on a slotted plate to investigate the correlation between sound emission and turbulence dynamics. The experiment was conducted with an impact ratio L/H = 4 and a Reynolds number Re = 4700. The survey shows that coherent structures within the impinging jet are responsible for self-sustaining tone production. To achieve this, a specific experimental setup consisting of two simultaneous Stereoscopic Particle Image Velocimetry (S-PIV) measurements was developed to track vortical structures both before and after the plate, in addition to acoustic measurements. The results reveal a significant correlation between acoustic waves and the passage of coherent structures. Variations in the arrangement of vortical structures between the upstream and downstream sides of the plate were observed. This analysis of flow dynamics can enhance our understanding of slot noise. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=impinging%20jet" title="impinging jet">impinging jet</a>, <a href="https://publications.waset.org/abstracts/search?q=coherent%20structures" title=" coherent structures"> coherent structures</a>, <a href="https://publications.waset.org/abstracts/search?q=SPIV" title=" SPIV"> SPIV</a>, <a href="https://publications.waset.org/abstracts/search?q=aeroacoustics" title=" aeroacoustics"> aeroacoustics</a> </p> <a href="https://publications.waset.org/abstracts/172777/experimental-investigation-of-the-aeroacoustics-field-for-a-rectangular-jet-impinging-on-a-slotted-plate-stereoscopic-particle-image-velocimetry-measurement-before-and-after-the-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172777.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2067</span> Constructing a Physics Guided Machine Learning Neural Network to Predict Tonal Noise Emitted by a Propeller</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arthur%20D.%20Wiedemann">Arthur D. Wiedemann</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Fuller"> Christopher Fuller</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyle%20A.%20Pascioni"> Kyle A. Pascioni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the introduction of electric motors, small unmanned aerial vehicle designers have to consider trade-offs between acoustic noise and thrust generated. Currently, there are few low-computational tools available for predicting acoustic noise emitted by a propeller into the far-field. Artificial neural networks offer a highly non-linear and adaptive model for predicting isolated and interactive tonal noise. But neural networks require large data sets, exceeding practical considerations in modeling experimental results. A methodology known as physics guided machine learning has been applied in this study to reduce the required data set to train the network. After building and evaluating several neural networks, the best model is investigated to determine how the network successfully predicts the acoustic waveform. Lastly, a post-network transfer function is developed to remove discontinuity from the predicted waveform. Overall, methodologies from physics guided machine learning show a notable improvement in prediction performance, but additional loss functions are necessary for constructing predictive networks on small datasets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aeroacoustics" title="aeroacoustics">aeroacoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=propeller" title=" propeller"> propeller</a>, <a href="https://publications.waset.org/abstracts/search?q=rotor" title=" rotor"> rotor</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=physics%20guided%20machine%20learning" title=" physics guided machine learning"> physics guided machine learning</a> </p> <a href="https://publications.waset.org/abstracts/142280/constructing-a-physics-guided-machine-learning-neural-network-to-predict-tonal-noise-emitted-by-a-propeller" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2066</span> Effect of Mach Number for Gust-Airfoil Interatcion Noise</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=ShuJiang%20Jiang">ShuJiang Jiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The interaction of turbulence with airfoil is an important noise source in many engineering fields, including helicopters, turbofan, and contra-rotating open rotor engines, where turbulence generated in the wake of upstream blades interacts with the leading edge of downstream blades and produces aerodynamic noise. One approach to study turbulence-airfoil interaction noise is to model the oncoming turbulence as harmonic gusts. A compact noise source produces a dipole-like sound directivity pattern. However, when the acoustic wavelength is much smaller than the airfoil chord length, the airfoil needs to be treated as a non-compact source, and the gust-airfoil interaction becomes more complicated and results in multiple lobes generated in the radiated sound directivity. Capturing the short acoustic wavelength is a challenge for numerical simulations. In this work, simulations are performed for gust-airfoil interaction at different Mach numbers, using a high-fidelity direct Computational AeroAcoustic (CAA) approach based on a spectral/hp element method, verified by a CAA benchmark case. It is found that the squared sound pressure varies approximately as the 5th power of Mach number, which changes slightly with the observer location. This scaling law can give a better sound prediction than the flat-plate theory for thicker airfoils. Besides, another prediction method, based on the flat-plate theory and CAA simulation, has been proposed to give better predictions than the scaling law for thicker airfoils. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aeroacoustics" title="aeroacoustics">aeroacoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=gust-airfoil%20interaction" title=" gust-airfoil interaction"> gust-airfoil interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=CAA" title=" CAA"> CAA</a> </p> <a href="https://publications.waset.org/abstracts/168371/effect-of-mach-number-for-gust-airfoil-interatcion-noise" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2065</span> Architecture of a Preliminary Course on Computational Thinking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mintu%20Philip">Mintu Philip</a>, <a href="https://publications.waset.org/abstracts/search?q=Renumol%20V.%20G."> Renumol V. G.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An introductory programming course is a major challenge faced in Computing Education. Many of the introductory programming courses fail because student concentrate mainly on writing programs using a programming language rather than involving in problem solving. Computational thinking is a general approach to solve problems. This paper proposes a new preliminary course that aims to develop computational thinking skills in students, which may help them to become good programmers. The proposed course is designed based on the four basic components of computational thinking - abstract thinking, logical thinking, modeling thinking and constructive thinking. In this course, students are engaged in hands-on problem solving activities using a new problem solving model proposed in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20thinking" title="computational thinking">computational thinking</a>, <a href="https://publications.waset.org/abstracts/search?q=computing%20education" title=" computing education"> computing education</a>, <a href="https://publications.waset.org/abstracts/search?q=abstraction" title=" abstraction"> abstraction</a>, <a href="https://publications.waset.org/abstracts/search?q=constructive%20thinking" title=" constructive thinking"> constructive thinking</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling%20thinking" title=" modelling thinking "> modelling thinking </a> </p> <a href="https://publications.waset.org/abstracts/17479/architecture-of-a-preliminary-course-on-computational-thinking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17479.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2064</span> Effect of Synthetic Jet on Wind Turbine Noise</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reda%20Mankbadi">Reda Mankbadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current work explores the use of Synthetic Jet Actuators (SJAs) for control of the acoustic radiation of a low-speed transitioning airfoil in a uniform stream. In the adopted numerical procedure, the actuator is modeled without its resonator cavity through imposing a simple fluctuating-velocity boundary condition at the bottom of the actuator's orifice. The orifice cavity, with the properly defined boundary condition, is then embedded into the airfoil surface. High-accuracy viscous simulations are then conducted to study the effects of the actuation on sound radiated by the airfoil. Results show that SJA can considerably suppress the radiated sound of the airfoil in uniform incoming stream. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=simulations" title="simulations">simulations</a>, <a href="https://publications.waset.org/abstracts/search?q=aeroacoustics" title=" aeroacoustics"> aeroacoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine%20noise" title=" wind turbine noise"> wind turbine noise</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20jet%20actuators%20%28SJAs%29" title=" synthetic jet actuators (SJAs)"> synthetic jet actuators (SJAs)</a> </p> <a href="https://publications.waset.org/abstracts/28530/effect-of-synthetic-jet-on-wind-turbine-noise" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28530.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2063</span> An Empirical Study of the Effect of Robot Programming Education on the Computational Thinking of Young Children: The Role of Flowcharts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wei%20Sun">Wei Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Dong"> Yan Dong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is an increasing interest in introducing computational thinking at an early age. Computational thinking, like mathematical thinking, engineering thinking, and scientific thinking, is a kind of analytical thinking. Learning computational thinking skills is not only to improve technological literacy, but also allows learners to equip with practicable skills such as problem-solving skills. As people realize the importance of computational thinking, the field of educational technology faces a problem: how to choose appropriate tools and activities to help students develop computational thinking skills. Robots are gradually becoming a popular teaching tool, as robots provide a tangible way for young children to access to technology, and controlling a robot through programming offers them opportunities to engage in developing computational thinking. This study explores whether the introduction of flowcharts into the robotics programming courses can help children convert natural language into a programming language more easily, and then to better cultivate their computational thinking skills. An experimental study was adopted with a sample of children ages six to seven (N = 16) participated, and a one-meter-tall humanoid robot was used as the teaching tool. Results show that children can master basic programming concepts through robotic courses. Children&#39;s computational thinking has been significantly improved. Besides, results suggest that flowcharts do have an impact on young children&rsquo;s computational thinking skills development, but it only has a significant effect on the &quot;sequencing&quot; and &quot;correspondence&quot; skills. Overall, the study demonstrates that the humanoid robot and flowcharts have qualities that foster young children to learn programming and develop computational thinking skills. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=robotics" title="robotics">robotics</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20thinking" title=" computational thinking"> computational thinking</a>, <a href="https://publications.waset.org/abstracts/search?q=programming" title=" programming"> programming</a>, <a href="https://publications.waset.org/abstracts/search?q=young%20children" title=" young children"> young children</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20chart" title=" flow chart"> flow chart</a> </p> <a href="https://publications.waset.org/abstracts/129881/an-empirical-study-of-the-effect-of-robot-programming-education-on-the-computational-thinking-of-young-children-the-role-of-flowcharts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129881.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2062</span> Introduction of the Fluid-Structure Coupling into the Force Analysis Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oc%C3%A9ane%20Grosset">Océane Grosset</a>, <a href="https://publications.waset.org/abstracts/search?q=Charles%20P%C3%A9zerat"> Charles Pézerat</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Hugh%20Thomas"> Jean-Hugh Thomas</a>, <a href="https://publications.waset.org/abstracts/search?q=Fr%C3%A9d%C3%A9ric%20Ablitzer"> Frédéric Ablitzer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a method to take into account the fluid-structure coupling into an inverse method, the Force Analysis Technique (FAT). The FAT method, also called RIFF method (Filtered Windowed Inverse Resolution), allows to identify the force distribution from local vibration field. In order to only identify the external force applied on a structure, it is necessary to quantify the fluid-structure coupling, especially in naval application, where the fluid is heavy. This method can be decomposed in two parts, the first one consists in identifying the fluid-structure coupling and the second one to introduced it in the FAT method to reconstruct the external force. Results of simulations on a plate coupled with a cavity filled with water are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aeroacoustics" title="aeroacoustics">aeroacoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid-structure%20coupling" title=" fluid-structure coupling"> fluid-structure coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20methods" title=" inverse methods"> inverse methods</a>, <a href="https://publications.waset.org/abstracts/search?q=naval" title=" naval"> naval</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20flow" title=" turbulent flow"> turbulent flow</a> </p> <a href="https://publications.waset.org/abstracts/58380/introduction-of-the-fluid-structure-coupling-into-the-force-analysis-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58380.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">530</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2061</span> A Computational Study of the Electron Transport in HgCdTe Bulk Semiconductor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Dahbi">N. Dahbi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Daoudi"> M. Daoudi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the use of computational method based on Monte Carlo simulation in order to investigate the transport phenomena of the electron in HgCdTe narrow band gap semiconductor. Via this method we can evaluate the time dependence of the transport parameters: velocity, energy and mobility of electrons through matter (HgCdTe). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo" title="Monte Carlo">Monte Carlo</a>, <a href="https://publications.waset.org/abstracts/search?q=transport%20parameters" title=" transport parameters"> transport parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=HgCdTe" title=" HgCdTe"> HgCdTe</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20mechanics" title=" computational mechanics"> computational mechanics</a> </p> <a href="https://publications.waset.org/abstracts/4221/a-computational-study-of-the-electron-transport-in-hgcdte-bulk-semiconductor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">481</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2060</span> Research Activity in Computational Science Using High Performance Computing: Co-Authorship Network Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sul-Ah%20Ahn">Sul-Ah Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Youngim%20Jung"> Youngim Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research activities of the computational scientists using high-performance computing are analyzed using bibliometric approaches. This study aims at providing computational scientists using high-performance computing and relevant policy planners with useful bibliometric results for an assessment of research activities. In order to achieve this purpose, we carried out a co-authorship network analysis of journal articles to assess the research activities of computational scientists using high-performance computing as a case study. For this study, we used journal articles of the Scopus database from Elsevier covering the time period of 2006-2015. We extracted the author rank in the computational science field using high-performance computing by the number of papers published during ten years from 2006. Finally, we drew the co-authorship network for 50 top-authors and their coauthors and described some features of the co-authorship network in relation to the author rank. Suggestions for further studies are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=co-authorship%20network%20analysis" title="co-authorship network analysis">co-authorship network analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20science" title=" computational science"> computational science</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20performance%20computing" title=" high performance computing"> high performance computing</a>, <a href="https://publications.waset.org/abstracts/search?q=research%20activity" title=" research activity"> research activity</a> </p> <a href="https://publications.waset.org/abstracts/52665/research-activity-in-computational-science-using-high-performance-computing-co-authorship-network-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52665.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2059</span> Alternative Computational Arrangements on g-Group (g &gt; 2) Profile Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20U.%20Ohaegbulem">Emmanuel U. Ohaegbulem</a>, <a href="https://publications.waset.org/abstracts/search?q=Felix%20N.%20Nwobi"> Felix N. Nwobi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alternative and simple computational arrangements in carrying out multivariate profile analysis when more than two groups (populations) are involved are presented. These arrangements have been demonstrated to not only yield equivalent results for the test statistics (the Wilks lambdas), but they have less computational efforts relative to other arrangements so far presented in the literature; in addition to being quite simple and easy to apply. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coincident%20profiles" title="coincident profiles">coincident profiles</a>, <a href="https://publications.waset.org/abstracts/search?q=g-group%20profile%20analysis" title=" g-group profile analysis"> g-group profile analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=level%20profiles" title=" level profiles"> level profiles</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20profiles" title=" parallel profiles"> parallel profiles</a>, <a href="https://publications.waset.org/abstracts/search?q=repeated%20measures%20MANOVA" title=" repeated measures MANOVA"> repeated measures MANOVA</a> </p> <a href="https://publications.waset.org/abstracts/31406/alternative-computational-arrangements-on-g-group-g-2-profile-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31406.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2058</span> Integrating and Evaluating Computational Thinking in an Undergraduate Marine Science Course</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dana%20Christensen">Dana Christensen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Undergraduate students, particularly in the environmental sciences, have difficulty displaying quantitative skills in their laboratory courses. Students spend time sampling in the field, often using new methods, and are expected to make sense of the data they collect. Computational thinking may be used to navigate these new experiences. We developed a curriculum for the marine science department at a small liberal arts college in the Northeastern United States based on previous computational thinking frameworks. This curriculum incorporates marine science data sets with specific objectives and topics selected by the faculty at the College. The curriculum was distributed to all students enrolled in introductory marine science classes as a mandatory module. Two pre-tests and post-tests will be used to quantitatively assess student progress on both content-based and computational principles. Student artifacts are being collected with each lesson to be coded for content-specific and computational-specific items in qualitative assessment. There is an overall gap in marine science education research, especially curricula that focus on computational thinking and associated quantitative assessment. The curricula itself, the assessments, and our results may be modified and applied to other environmental science courses due to the nature of the inquiry-based laboratory components that use quantitative skills to understand nature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=marine%20science" title="marine science">marine science</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20thinking" title=" computational thinking"> computational thinking</a>, <a href="https://publications.waset.org/abstracts/search?q=curriculum%20assessment" title=" curriculum assessment"> curriculum assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=quantitative%20skills" title=" quantitative skills"> quantitative skills</a> </p> <a href="https://publications.waset.org/abstracts/173934/integrating-and-evaluating-computational-thinking-in-an-undergraduate-marine-science-course" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173934.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2057</span> Lexical Bundles in the Alexiad of Anna Comnena: Computational and Discourse Analysis Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Georgios%20Alexandropoulos">Georgios Alexandropoulos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to examine the historical text of Alexiad by Anna Comnena using computational tools for the extraction of lexical bundles containing the name of her father, Alexius Comnenus. For this reason, in this research we apply corpus linguistics techniques for the automatic extraction of lexical bundles and through them we will draw conclusions about how these lexical bundles serve her support provided to her father. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lexical%20bundles" title="lexical bundles">lexical bundles</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20literature" title=" computational literature"> computational literature</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20discourse%20analysis" title=" critical discourse analysis"> critical discourse analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexiad" title=" Alexiad"> Alexiad</a> </p> <a href="https://publications.waset.org/abstracts/10503/lexical-bundles-in-the-alexiad-of-anna-comnena-computational-and-discourse-analysis-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10503.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">634</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2056</span> Binarized-Weight Bilateral Filter for Low Computational Cost Image Smoothing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu%20Zhang">Yu Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kohei%20Inoue"> Kohei Inoue</a>, <a href="https://publications.waset.org/abstracts/search?q=Kiichi%20Urahama"> Kiichi Urahama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We propose a simplified bilateral filter with binarized coefficients for accelerating it. Its computational cost is further decreased by sampling pixels. This computationally low cost filter is useful for smoothing or denoising images by using mobile devices with limited computational power. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bilateral%20filter" title="bilateral filter">bilateral filter</a>, <a href="https://publications.waset.org/abstracts/search?q=binarized-weight%20bilateral%20filter" title=" binarized-weight bilateral filter"> binarized-weight bilateral filter</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20smoothing" title=" image smoothing"> image smoothing</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20denoising" title=" image denoising"> image denoising</a>, <a href="https://publications.waset.org/abstracts/search?q=pixel%20sampling" title=" pixel sampling"> pixel sampling</a> </p> <a href="https://publications.waset.org/abstracts/8980/binarized-weight-bilateral-filter-for-low-computational-cost-image-smoothing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">479</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2055</span> Perspectives of Computational Modeling in Sanskrit Lexicons</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Baldev%20Ram%20Khandoliyan">Baldev Ram Khandoliyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ram%20Kishor"> Ram Kishor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> India has a classical tradition of Sanskrit Lexicons. Research work has been done on the study of Indian lexicography. India has seen amazing strides in Information and Communication Technology (ICT) applications for Indian languages in general and for Sanskrit in particular. Since Machine Translation from Sanskrit to other Indian languages is often the desired goal, traditional Sanskrit lexicography has attracted a lot of attention from the ICT and Computational Linguistics community. From Nighaŋţu and Nirukta to Amarakośa and Medinīkośa, Sanskrit owns a rich history of lexicography. As these kośas do not follow the same typology or standard in the selection and arrangement of the words and the information related to them, several types of Kośa-styles have emerged in this tradition. The model of a grammar given by Aṣṭādhyāyī is well appreciated by Indian and western linguists and grammarians. But the different models provided by lexicographic tradition also have importance. The general usefulness of Sanskrit traditional Kośas is well discussed by some scholars. That is most of the matter made available in the text. Some also have discussed the good arrangement of lexica. This paper aims to discuss some more use of the different models of Sanskrit lexicography especially focusing on its computational modeling and its use in different computational operations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20lexicography" title="computational lexicography">computational lexicography</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanskrit%20Lexicons" title=" Sanskrit Lexicons"> Sanskrit Lexicons</a>, <a href="https://publications.waset.org/abstracts/search?q=nighan%E1%B9%ADu" title=" nighanṭu"> nighanṭu</a>, <a href="https://publications.waset.org/abstracts/search?q=ko%C5%9Ba" title=" kośa"> kośa</a>, <a href="https://publications.waset.org/abstracts/search?q=Amarkosa" title=" Amarkosa"> Amarkosa</a> </p> <a href="https://publications.waset.org/abstracts/144671/perspectives-of-computational-modeling-in-sanskrit-lexicons" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144671.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2054</span> Simulation of Photocatalytic Degradation of Rhodamine B in Annular Photocatalytic Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jatinder%20Kumar">Jatinder Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Bansal"> Ajay Bansal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Simulation of a photocatalytic reactor helps in understanding the complex behavior of the photocatalytic degradation. Simulation also aids the designing and optimization of the photocatalytic reactor. Lack of simulation strategies is a huge hindrance in the commercialization of the photocatalytic technology. With the increased performance of computational resources, and development of simulation software, computational fluid dynamics (CFD) is becoming an affordable engineering tool to simulate and optimize reactor designs. In the present paper, a CFD (Computational fluid dynamics) model for simulating the performance of an immobilized-titanium dioxide based annular photocatalytic reactor was developed. The computational model integrates hydrodynamics, species mass transport, and chemical reaction kinetics using a commercial CFD code Fluent 6.3.26. The CFD model was based on the intrinsic kinetic parameters determined experimentally in a perfectly mixed batch reactor. Rhodamine B, a complex organic compound, was selected as a test pollutant for photocatalytic degradation. It was observed that CFD could become a valuable tool to understand and improve the photocatalytic systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=simulation" title="simulation">simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics%20%28CFD%29" title=" computational fluid dynamics (CFD)"> computational fluid dynamics (CFD)</a>, <a href="https://publications.waset.org/abstracts/search?q=annular%20photocatalytic%20reactor" title=" annular photocatalytic reactor"> annular photocatalytic reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20dioxide" title=" titanium dioxide"> titanium dioxide</a> </p> <a href="https://publications.waset.org/abstracts/27827/simulation-of-photocatalytic-degradation-of-rhodamine-b-in-annular-photocatalytic-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">592</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2053</span> Continuum-Based Modelling Approaches for Cell Mechanics </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yogesh%20D.%20Bansod">Yogesh D. Bansod</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiri%20Bursa"> Jiri Bursa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The quantitative study of cell mechanics is of paramount interest since it regulates the behavior of the living cells in response to the myriad of extracellular and intracellular mechanical stimuli. The novel experimental techniques together with robust computational approaches have given rise to new theories and models, which describe cell mechanics as a combination of biomechanical and biochemical processes. This review paper encapsulates the existing continuum-based computational approaches that have been developed for interpreting the mechanical responses of living cells under different loading and boundary conditions. The salient features and drawbacks of each model are discussed from both structural and biological points of view. This discussion can contribute to the development of even more precise and realistic computational models of cell mechanics based on continuum approaches or on their combination with microstructural approaches, which in turn may provide a better understanding of mechanotransduction in living cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%20mechanics" title="cell mechanics">cell mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20models" title=" computational models"> computational models</a>, <a href="https://publications.waset.org/abstracts/search?q=continuum%20approach" title=" continuum approach"> continuum approach</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20models" title=" mechanical models"> mechanical models</a> </p> <a href="https://publications.waset.org/abstracts/29027/continuum-based-modelling-approaches-for-cell-mechanics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29027.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2052</span> All-or-None Principle and Weakness of Hodgkin-Huxley Mathematical Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Sadegh%20Zadeh">S. A. Sadegh Zadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Kambhampati"> C. Kambhampati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mathematical and computational modellings are the necessary tools for reviewing, analysing, and predicting processes and events in the wide spectrum range of scientific fields. Therefore, in a field as rapidly developing as neuroscience, the combination of these two modellings can have a significant role in helping to guide the direction the field takes. The paper combined mathematical and computational modelling to prove a weakness in a very precious model in neuroscience. This paper is intended to analyse all-or-none principle in Hodgkin-Huxley mathematical model. By implementation the computational model of Hodgkin-Huxley model and applying the concept of all-or-none principle, an investigation on this mathematical model has been performed. The results clearly showed that the mathematical model of Hodgkin-Huxley does not observe this fundamental law in neurophysiology to generating action potentials. This study shows that further mathematical studies on the Hodgkin-Huxley model are needed in order to create a model without this weakness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=all-or-none" title="all-or-none">all-or-none</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20modelling" title=" computational modelling"> computational modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title=" mathematical model"> mathematical model</a>, <a href="https://publications.waset.org/abstracts/search?q=transmembrane%20voltage" title=" transmembrane voltage"> transmembrane voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=action%20potential" title=" action potential"> action potential</a> </p> <a href="https://publications.waset.org/abstracts/80739/all-or-none-principle-and-weakness-of-hodgkin-huxley-mathematical-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80739.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">622</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2051</span> Using the Cluster Computing to Improve the Computational Speed of the Modular Exponentiation in RSA Cryptography System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Te-Jen%20Chang">Te-Jen Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ping-Sheng%20Huang"> Ping-Sheng Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shan-Ten%20Cheng"> Shan-Ten Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Lin%20Lin"> Chih-Lin Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=I-Hui%20Pan"> I-Hui Pan</a>, <a href="https://publications.waset.org/abstracts/search?q=Tsung-%20Hsien%20Lin"> Tsung- Hsien Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> RSA system is a great contribution for the encryption and the decryption. It is based on the modular exponentiation. We call this system as “a large of numbers for calculation”. The operation of a large of numbers is a very heavy burden for CPU. For increasing the computational speed, in addition to improve these algorithms, such as the binary method, the sliding window method, the addition chain method, and so on, the cluster computer can be used to advance computational speed. The cluster system is composed of the computers which are installed the MPICH2 in laboratory. The parallel procedures of the modular exponentiation can be processed by combining the sliding window method with the addition chain method. It will significantly reduce the computational time of the modular exponentiation whose digits are more than 512 bits and even more than 1024 bits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cluster%20system" title="cluster system">cluster system</a>, <a href="https://publications.waset.org/abstracts/search?q=modular%20exponentiation" title=" modular exponentiation"> modular exponentiation</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20window" title=" sliding window"> sliding window</a>, <a href="https://publications.waset.org/abstracts/search?q=addition%20chain" title=" addition chain"> addition chain</a> </p> <a href="https://publications.waset.org/abstracts/9093/using-the-cluster-computing-to-improve-the-computational-speed-of-the-modular-exponentiation-in-rsa-cryptography-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9093.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">529</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2050</span> A Fast, Portable Computational Framework for Aerodynamic Simulations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Ghommem">Mehdi Ghommem</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Garcia"> Daniel Garcia</a>, <a href="https://publications.waset.org/abstracts/search?q=Nathan%20Collier"> Nathan Collier</a>, <a href="https://publications.waset.org/abstracts/search?q=Victor%20Calo"> Victor Calo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We develop a fast, user-friendly implementation of a potential flow solver based on the unsteady vortex lattice method (UVLM). The computational framework uses the Python programming language which has easy integration with the scripts requiring computationally-expensive operations written in Fortran. The mixed-language approach enables high performance in terms of solution time and high flexibility in terms of easiness of code adaptation to different system configurations and applications. This computational tool is intended to predict the unsteady aerodynamic behavior of multiple moving bodies (e.g., flapping wings, rotating blades, suspension bridges...) subject to an incoming air. We simulate different aerodynamic problems to validate and illustrate the usefulness and effectiveness of the developed computational tool. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unsteady%20aerodynamics" title="unsteady aerodynamics">unsteady aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulations" title=" numerical simulations"> numerical simulations</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed-language%20approach" title=" mixed-language approach"> mixed-language approach</a>, <a href="https://publications.waset.org/abstracts/search?q=potential%20flow" title=" potential flow"> potential flow</a> </p> <a href="https://publications.waset.org/abstracts/76465/a-fast-portable-computational-framework-for-aerodynamic-simulations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76465.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2049</span> Robot Spatial Reasoning via 3D Models </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20Allard">John Allard</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20Rich"> Alex Rich</a>, <a href="https://publications.waset.org/abstracts/search?q=Iris%20Aguilar"> Iris Aguilar</a>, <a href="https://publications.waset.org/abstracts/search?q=Zachary%20Dodds"> Zachary Dodds</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With this paper we present several experiences deploying novel, low-cost resources for computing with 3D spatial models. Certainly, computing with 3D models undergirds some of our field’s most important contributions to the human experience. Most often, those are contrived artifacts. This work extends that tradition by focusing on novel resources that deliver uncontrived models of a system’s current surroundings. Atop this new capability, we present several projects investigating the student-accessibility of the computational tools for reasoning about the 3D space around us. We conclude that, with current scaffolding, real-world 3D models are now an accessible and viable foundation for creative computational work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20vision" title="3D vision">3D vision</a>, <a href="https://publications.waset.org/abstracts/search?q=matterport%20model" title=" matterport model"> matterport model</a>, <a href="https://publications.waset.org/abstracts/search?q=real-world%203D%20models" title=" real-world 3D models"> real-world 3D models</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20and%20computational%20methods" title=" mathematical and computational methods"> mathematical and computational methods</a> </p> <a href="https://publications.waset.org/abstracts/24243/robot-spatial-reasoning-via-3d-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24243.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">542</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2048</span> Big Data Analytics and Data Security in the Cloud via Fully Homomorphic Encryption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Waziri%20Victor%20Onomza">Waziri Victor Onomza</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20K.%20Alhassan"> John K. Alhassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Idris%20Ismaila"> Idris Ismaila</a>, <a href="https://publications.waset.org/abstracts/search?q=Noel%20Dogonyaro%20Moses"> Noel Dogonyaro Moses</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes the problem of building secure computational services for encrypted information in the Cloud Computing without decrypting the encrypted data; therefore, it meets the yearning of computational encryption algorithmic aspiration model that could enhance the security of big data for privacy, confidentiality, availability of the users. The cryptographic model applied for the computational process of the encrypted data is the Fully Homomorphic Encryption Scheme. We contribute theoretical presentations in high-level computational processes that are based on number theory and algebra that can easily be integrated and leveraged in the Cloud computing with detail theoretic mathematical concepts to the fully homomorphic encryption models. This contribution enhances the full implementation of big data analytics based cryptographic security algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=big%20data%20analytics" title="big data analytics">big data analytics</a>, <a href="https://publications.waset.org/abstracts/search?q=security" title=" security"> security</a>, <a href="https://publications.waset.org/abstracts/search?q=privacy" title=" privacy"> privacy</a>, <a href="https://publications.waset.org/abstracts/search?q=bootstrapping" title=" bootstrapping"> bootstrapping</a>, <a href="https://publications.waset.org/abstracts/search?q=homomorphic" title=" homomorphic"> homomorphic</a>, <a href="https://publications.waset.org/abstracts/search?q=homomorphic%20encryption%20scheme" title=" homomorphic encryption scheme"> homomorphic encryption scheme</a> </p> <a href="https://publications.waset.org/abstracts/23431/big-data-analytics-and-data-security-in-the-cloud-via-fully-homomorphic-encryption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23431.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2047</span> Study the Effect of Leading-Edge Serration at Owl Wing Feathers on Flow-Induced Noise Generation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suprabha%20Islam">Suprabha Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Sifat%20Ullah%20Tanzil"> Sifat Ullah Tanzil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During past few decades, being amazed by the excellent silent flight of owl, scientists have been trying to demystify the unique features of its wing feathers. Our present study is dedicated to taking our understanding further on this phenomenon. In this present study, a numerical investigation was performed to analyze how the shape of the leading-edge serration at owl wing feathers effects the flow-induced noise generation. For the analysis, an owl inspired single feather wing model was prepared for both with and without serrations at the leading edge. The serration profiles were taken at different positions of the vane length for a single feather. The broadband noise was studied to quantify the local contribution to the total acoustic power generated by the flow, where the results clearly showed the effect of serrations in reducing the noise generation. It was also clearly visible that the shape of the serration has a very strong influence on noise generation. The frequency spectrum of noise was also analyzed and a strong relation was found between the shape of the serration and the noise generation. It showed that the noise suppression is strongly influenced by the height to length ratio of the serration. With the increase in height to length ratio, the noise suppression is enhanced further. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aeroacoustics" title="aeroacoustics">aeroacoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=aerodynamic" title=" aerodynamic"> aerodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=biomimetics" title=" biomimetics"> biomimetics</a>, <a href="https://publications.waset.org/abstracts/search?q=serrations" title=" serrations"> serrations</a> </p> <a href="https://publications.waset.org/abstracts/90649/study-the-effect-of-leading-edge-serration-at-owl-wing-feathers-on-flow-induced-noise-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2046</span> Computational Fluid Dynamics Analysis for Radon Dispersion Study and Mitigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20Visnuprasad">A. K. Visnuprasad</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20J.%20Jojo"> P. J. Jojo</a>, <a href="https://publications.waset.org/abstracts/search?q=Reshma%20Bhaskaran"> Reshma Bhaskaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Computational fluid dynamics (CFD) is used to simulate the distribution of indoor radon concentration in a living room with elevated levels of radon concentration which varies from 22 Bqm-3 to 1533 Bqm-3 in 24 hours. Finite volume method (FVM) was used for the simulation. The simulation results were experimentally validated at 16 points in two horizontal planes (y=1.4m & y=2.0m) using pin-hole dosimeters and at 3 points using scintillation radon monitor (SRM). Passive measurement using pin-hole dosimeters were performed in all seasons. Another simulation was done to find a suitable position for a passive ventilation system for the effective mitigation of radon. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indoor%20radon" title="indoor radon">indoor radon</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=radon%20flux" title=" radon flux"> radon flux</a>, <a href="https://publications.waset.org/abstracts/search?q=ventilation%20rate" title=" ventilation rate"> ventilation rate</a>, <a href="https://publications.waset.org/abstracts/search?q=pin-hole%20dosimeter" title=" pin-hole dosimeter"> pin-hole dosimeter</a> </p> <a href="https://publications.waset.org/abstracts/66443/computational-fluid-dynamics-analysis-for-radon-dispersion-study-and-mitigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66443.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2045</span> Investigation of the Physical Computing in Computational Thinking Practices, Computer Programming Concepts and Self-Efficacy for Crosscutting Ideas in STEM Content Environments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarantos%20Psycharis">Sarantos Psycharis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Physical Computing, as an instructional model, is applied in the framework of the Engineering Pedagogy to teach &ldquo;transversal/cross-cutting ideas&rdquo; in a STEM content approach. Labview and Arduino were used in order to connect the physical world with real data in the framework of the so called Computational Experiment. Tertiary prospective engineering educators were engaged during their course and Computational Thinking (CT) concepts were registered before and after the intervention across didactic activities using validated questionnaires for the relationship between self-efficacy, computer programming, and CT concepts when STEM content epistemology is implemented in alignment with the Computational Pedagogy model. Results show a significant change in students&rsquo; responses for self-efficacy for CT before and after the instruction. Results also indicate a significant relation between the responses in the different CT concepts/practices. According to the findings, STEM content epistemology combined with Physical Computing should be a good candidate as a learning and teaching approach in university settings that enhances students&rsquo; engagement in CT concepts/practices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arduino" title="arduino">arduino</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20thinking" title=" computational thinking"> computational thinking</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20programming" title=" computer programming"> computer programming</a>, <a href="https://publications.waset.org/abstracts/search?q=Labview" title=" Labview"> Labview</a>, <a href="https://publications.waset.org/abstracts/search?q=self-efficacy" title=" self-efficacy"> self-efficacy</a>, <a href="https://publications.waset.org/abstracts/search?q=STEM" title=" STEM"> STEM</a> </p> <a href="https://publications.waset.org/abstracts/115828/investigation-of-the-physical-computing-in-computational-thinking-practices-computer-programming-concepts-and-self-efficacy-for-crosscutting-ideas-in-stem-content-environments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115828.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2044</span> Unconventional Calculus Spreadsheet Functions </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chahid%20K.%20Ghaddar">Chahid K. Ghaddar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The spreadsheet engine is exploited via a non-conventional mechanism to enable novel worksheet solver functions for computational calculus. The solver functions bypass inherent restrictions on built-in math and user defined functions by taking variable formulas as a new type of argument while retaining purity and recursion properties. The enabling mechanism permits integration of numerical algorithms into worksheet functions for solving virtually any computational problem that can be modelled by formulas and variables. Several examples are presented for computing integrals, derivatives, and systems of deferential-algebraic equations. Incorporation of the worksheet solver functions with the ubiquitous spreadsheet extend the utility of the latter as a powerful tool for computational mathematics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calculus" title="calculus">calculus</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20algebraic%20equations" title=" differential algebraic equations"> differential algebraic equations</a>, <a href="https://publications.waset.org/abstracts/search?q=solvers" title=" solvers"> solvers</a>, <a href="https://publications.waset.org/abstracts/search?q=spreadsheet" title=" spreadsheet"> spreadsheet</a> </p> <a href="https://publications.waset.org/abstracts/46198/unconventional-calculus-spreadsheet-functions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46198.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2043</span> Simulations of NACA 65-415 and NACA 64-206 Airfoils Using Computational Fluid Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20Nagy">David Nagy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper exemplifies the influence of the purpose of an aircraft on the aerodynamic properties of its airfoil. In particular, the research takes into consideration two types of aircraft, namely cargo aircraft and military high-speed aircraft and compares their airfoil characteristics using their NACA airfoils as well as computational fluid dynamics. The results show that airfoils of aircraft designed for cargo have a heavier focus on maintaining a large lift force whereas speed-oriented airplanes focus on minimizing the drag force. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20simulation" title="aerodynamic simulation">aerodynamic simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=aircraft" title=" aircraft"> aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=airfoil" title=" airfoil"> airfoil</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=lift%20to%20drag%20ratio" title=" lift to drag ratio"> lift to drag ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=NACA%2064-206" title=" NACA 64-206"> NACA 64-206</a>, <a href="https://publications.waset.org/abstracts/search?q=NACA%2065-415" title=" NACA 65-415"> NACA 65-415</a> </p> <a href="https://publications.waset.org/abstracts/137836/simulations-of-naca-65-415-and-naca-64-206-airfoils-using-computational-fluid-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137836.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computational%20aeroacoustics&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computational%20aeroacoustics&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computational%20aeroacoustics&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computational%20aeroacoustics&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computational%20aeroacoustics&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computational%20aeroacoustics&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computational%20aeroacoustics&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computational%20aeroacoustics&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computational%20aeroacoustics&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computational%20aeroacoustics&amp;page=69">69</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computational%20aeroacoustics&amp;page=70">70</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computational%20aeroacoustics&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2025 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10