CINXE.COM
locally constant infinity-stack in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> locally constant infinity-stack in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> locally constant infinity-stack </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussions/?CategoryID=0" title="Discuss this page on the nForum. It does not yet have a dedicated thread; feel free to create one, giving it the same name as the title of this page" style="color:black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="topos_theory"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,1)</annotation></semantics></math>-Topos Theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-topos+theory">(∞,1)-topos theory</a></strong></p> <h2 id="sidebar_background">Background</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/sheaf+and+topos+theory">sheaf and topos theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category">(∞,1)-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-functor">(∞,1)-functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-presheaf">(∞,1)-presheaf</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category+of+%28%E2%88%9E%2C1%29-presheaves">(∞,1)-category of (∞,1)-presheaves</a></p> </li> </ul> <h2 id="sidebar_definitions">Definitions</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/elementary+%28%E2%88%9E%2C1%29-topos">elementary (∞,1)-topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-site">(∞,1)-site</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/reflective+sub-%28%E2%88%9E%2C1%29-category">reflective sub-(∞,1)-category</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/localization+of+an+%28%E2%88%9E%2C1%29-category">localization of an (∞,1)-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+localization">topological localization</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/hypercompletion">hypercompletion</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category+of+%28%E2%88%9E%2C1%29-sheaves">(∞,1)-category of (∞,1)-sheaves</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-sheaf">(∞,1)-sheaf</a>/<a class="existingWikiWord" href="/nlab/show/%E2%88%9E-stack">∞-stack</a>/<a class="existingWikiWord" href="/nlab/show/derived+stack">derived stack</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-topos">(∞,1)-topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28n%2C1%29-topos">(n,1)-topos</a>, <a class="existingWikiWord" href="/nlab/show/n-topos">n-topos</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/truncated">n-truncated object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/connected">n-connected object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topos">(1,1)-topos</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/presheaf">presheaf</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sheaf">sheaf</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%282%2C1%29-topos">(2,1)-topos</a>, <a class="existingWikiWord" href="/nlab/show/2-topos">2-topos</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/%282%2C1%29-presheaf">(2,1)-presheaf</a></li> </ul> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-quasitopos">(∞,1)-quasitopos</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/separated+%28%E2%88%9E%2C1%29-presheaf">separated (∞,1)-presheaf</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quasitopos">quasitopos</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/separated+presheaf">separated presheaf</a></li> </ul> </li> <li> <p><span class="newWikiWord">(2,1)-quasitopos<a href="/nlab/new/%282%2C1%29-quasitopos">?</a></span></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/separated+%282%2C1%29-presheaf">separated (2,1)-presheaf</a></li> </ul> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C2%29-topos">(∞,2)-topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2Cn%29-topos">(∞,n)-topos</a></p> </li> </ul> <h2 id="sidebar_characterization">Characterization</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/universal+colimits">universal colimits</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/object+classifier">object classifier</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/groupoid+object+in+an+%28%E2%88%9E%2C1%29-category">groupoid object in an (∞,1)-topos</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/effective+epimorphism">effective epimorphism</a></li> </ul> </li> </ul> <h2 id="sidebar_morphisms">Morphisms</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-geometric+morphism">(∞,1)-geometric morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29Topos">(∞,1)Topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Lawvere+distribution">Lawvere distribution</a></p> </li> </ul> <h2 id="sidebar_extra">Extra stuff, structure and property</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/hypercomplete+%28%E2%88%9E%2C1%29-topos">hypercomplete (∞,1)-topos</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/hypercomplete+object">hypercomplete object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Whitehead+theorem">Whitehead theorem</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/over-%28%E2%88%9E%2C1%29-topos">over-(∞,1)-topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/n-localic+%28%E2%88%9E%2C1%29-topos">n-localic (∞,1)-topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/locally+n-connected+%28n%2C1%29-topos">locally n-connected (n,1)-topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/structured+%28%E2%88%9E%2C1%29-topos">structured (∞,1)-topos</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/geometry+%28for+structured+%28%E2%88%9E%2C1%29-toposes%29">geometry (for structured (∞,1)-toposes)</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/locally+%E2%88%9E-connected+%28%E2%88%9E%2C1%29-topos">locally ∞-connected (∞,1)-topos</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-connected+%28%E2%88%9E%2C1%29-topos">∞-connected (∞,1)-topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/local+%28%E2%88%9E%2C1%29-topos">local (∞,1)-topos</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/concrete+%28%E2%88%9E%2C1%29-sheaf">concrete (∞,1)-sheaf</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cohesive+%28%E2%88%9E%2C1%29-topos">cohesive (∞,1)-topos</a></p> </li> </ul> <h2 id="sidebar_models">Models</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/models+for+%E2%88%9E-stack+%28%E2%88%9E%2C1%29-toposes">models for ∞-stack (∞,1)-toposes</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/model+category">model category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/model+structure+on+functors">model structure on functors</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/model+site">model site</a>/<a class="existingWikiWord" href="/nlab/show/sSet-site">sSet-site</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/model+structure+on+simplicial+presheaves">model structure on simplicial presheaves</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/descent+for+simplicial+presheaves">descent for simplicial presheaves</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Verity+on+descent+for+strict+omega-groupoid+valued+presheaves">descent for presheaves with values in strict ∞-groupoids</a></p> </li> </ul> </li> </ul> <h2 id="sidebar_constructions">Constructions</h2> <p><strong>structures in a <a class="existingWikiWord" href="/nlab/show/cohesive+%28%E2%88%9E%2C1%29-topos">cohesive (∞,1)-topos</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/shape+of+an+%28%E2%88%9E%2C1%29-topos">shape</a> / <a class="existingWikiWord" href="/nlab/show/coshape+of+an+%28%E2%88%9E%2C1%29-topos">coshape</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cohomology">cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+groups+in+an+%28%E2%88%9E%2C1%29-topos">homotopy</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+%E2%88%9E-groupoid+in+a+locally+%E2%88%9E-connected+%28%E2%88%9E%2C1%29-topos">fundamental ∞-groupoid in a locally ∞-connected (∞,1)-topos</a>/<a class="existingWikiWord" href="/nlab/show/fundamental+%E2%88%9E-groupoid+of+a+locally+%E2%88%9E-connected+%28%E2%88%9E%2C1%29-topos">of a locally ∞-connected (∞,1)-topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/categorical+homotopy+groups+in+an+%28%E2%88%9E%2C1%29-topos">categorical</a>/<a class="existingWikiWord" href="/nlab/show/geometric+homotopy+groups+in+an+%28%E2%88%9E%2C1%29-topos">geometric</a> homotopy groups</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Postnikov+tower+in+an+%28%E2%88%9E%2C1%29-category">Postnikov tower</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Whitehead+tower+in+an+%28%E2%88%9E%2C1%29-topos">Whitehead tower</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/rational+homotopy+theory+in+an+%28%E2%88%9E%2C1%29-topos">rational homotopy</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/dimension">dimension</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+dimension">homotopy dimension</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cohomological+dimension">cohomological dimension</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/covering+dimension">covering dimension</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Heyting+dimension">Heyting dimension</a></p> </li> </ul> </li> </ul> <div> <p> <a href="/nlab/edit/%28infinity%2C1%29-topos+-+contents">Edit this sidebar</a> </p> </div></div></div> <h4 id="cohomology">Cohomology</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/cohomology">cohomology</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/cocycle">cocycle</a>, <a class="existingWikiWord" href="/nlab/show/coboundary">coboundary</a>, <a class="existingWikiWord" href="/nlab/show/coefficient">coefficient</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homology">homology</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/chain">chain</a>, <a class="existingWikiWord" href="/nlab/show/cycle">cycle</a>, <a class="existingWikiWord" href="/nlab/show/boundary">boundary</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/characteristic+class">characteristic class</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/universal+characteristic+class">universal characteristic class</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/secondary+characteristic+class">secondary characteristic class</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+characteristic+class">differential characteristic class</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fiber+sequence">fiber sequence</a>/<a class="existingWikiWord" href="/nlab/show/long+exact+sequence+in+cohomology">long exact sequence in cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fiber+%E2%88%9E-bundle">fiber ∞-bundle</a>, <a class="existingWikiWord" href="/nlab/show/principal+%E2%88%9E-bundle">principal ∞-bundle</a>, <a class="existingWikiWord" href="/nlab/show/associated+%E2%88%9E-bundle">associated ∞-bundle</a>,</p> <p><a class="existingWikiWord" href="/nlab/show/twisted+%E2%88%9E-bundle">twisted ∞-bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-group+extension">∞-group extension</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/obstruction">obstruction</a></p> </li> </ul> <h3 id="special_and_general_types">Special and general types</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/cochain+cohomology">cochain cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/ordinary+cohomology">ordinary cohomology</a>, <a class="existingWikiWord" href="/nlab/show/singular+cohomology">singular cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/group+cohomology">group cohomology</a>, <a class="existingWikiWord" href="/nlab/show/nonabelian+group+cohomology">nonabelian group cohomology</a>, <a class="existingWikiWord" href="/nlab/show/Lie+group+cohomology">Lie group cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Galois+cohomology">Galois cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/groupoid+cohomology">groupoid cohomology</a>, <a class="existingWikiWord" href="/nlab/show/nonabelian+groupoid+cohomology">nonabelian groupoid cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/generalized+%28Eilenberg-Steenrod%29+cohomology">generalized (Eilenberg-Steenrod) cohomology</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/cobordism+cohomology+theory">cobordism cohomology theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/integral+cohomology">integral cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/K-theory">K-theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/elliptic+cohomology">elliptic cohomology</a>, <a class="existingWikiWord" href="/nlab/show/tmf">tmf</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/taf">taf</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/abelian+sheaf+cohomology">abelian sheaf cohomology</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Deligne+cohomology">Deligne cohomology</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/de+Rham+cohomology">de Rham cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Dolbeault+cohomology">Dolbeault cohomology</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/etale+cohomology">etale cohomology</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/group+of+units">group of units</a>, <a class="existingWikiWord" href="/nlab/show/Picard+group">Picard group</a>, <a class="existingWikiWord" href="/nlab/show/Brauer+group">Brauer group</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/crystalline+cohomology">crystalline cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/syntomic+cohomology">syntomic cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/motivic+cohomology">motivic cohomology</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cohomology+of+operads">cohomology of operads</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hochschild+cohomology">Hochschild cohomology</a>, <a class="existingWikiWord" href="/nlab/show/cyclic+cohomology">cyclic cohomology</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/string+topology">string topology</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/nonabelian+cohomology">nonabelian cohomology</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/principal+%E2%88%9E-bundle">principal ∞-bundle</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/universal+principal+%E2%88%9E-bundle">universal principal ∞-bundle</a>, <a class="existingWikiWord" href="/nlab/show/groupal+model+for+universal+principal+%E2%88%9E-bundles">groupal model for universal principal ∞-bundles</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/principal+bundle">principal bundle</a>, <a class="existingWikiWord" href="/nlab/show/Atiyah+Lie+groupoid">Atiyah Lie groupoid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/principal+2-bundle">principal 2-bundle</a>/<a class="existingWikiWord" href="/nlab/show/gerbe">gerbe</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/locally+constant+%E2%88%9E-stack">covering ∞-bundle</a>/<a class="existingWikiWord" href="/nlab/show/local+system">local system</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-vector+bundle">(∞,1)-vector bundle</a> / <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2Cn%29-vector+bundle">(∞,n)-vector bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quantum+anomaly">quantum anomaly</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/orientation">orientation</a>, <a class="existingWikiWord" href="/nlab/show/Spin+structure">Spin structure</a>, <a class="existingWikiWord" href="/nlab/show/Spin%5Ec+structure">Spin^c structure</a>, <a class="existingWikiWord" href="/nlab/show/String+structure">String structure</a>, <a class="existingWikiWord" href="/nlab/show/Fivebrane+structure">Fivebrane structure</a></li> </ul> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cohomology+with+constant+coefficients">cohomology with constant coefficients</a> / <a class="existingWikiWord" href="/nlab/show/cohomology+with+a+local+system+of+coefficients">with a local system of coefficients</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Lie+algebra+cohomology">∞-Lie algebra cohomology</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Lie+algebra+cohomology">Lie algebra cohomology</a>, <a class="existingWikiWord" href="/nlab/show/nonabelian+Lie+algebra+cohomology">nonabelian Lie algebra cohomology</a>, <a class="existingWikiWord" href="/nlab/show/Lie+algebra+extensions">Lie algebra extensions</a>, <a class="existingWikiWord" href="/nlab/show/Gelfand-Fuks+cohomology">Gelfand-Fuks cohomology</a>,</li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Gerstenhaber-Schack+cohomology">bialgebra cohomology</a></p> </li> </ul> <h3 id="special_notions">Special notions</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/%3Fech+cohomology">?ech cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/hypercohomology">hypercohomology</a></p> </li> </ul> <h3 id="variants">Variants</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/equivariant+cohomology">equivariant cohomology</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/equivariant+homotopy+theory">equivariant homotopy theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Bredon+cohomology">Bredon cohomology</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/twisted+cohomology">twisted cohomology</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/twisted+bundle">twisted bundle</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/twisted+K-theory">twisted K-theory</a>, <a class="existingWikiWord" href="/nlab/show/twisted+spin+structure">twisted spin structure</a>, <a class="existingWikiWord" href="/nlab/show/twisted+spin%5Ec+structure">twisted spin^c structure</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/twisted+differential+c-structures">twisted differential c-structures</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/twisted+differential+string+structure">twisted differential string structure</a>, <a class="existingWikiWord" href="/nlab/show/twisted+differential+fivebrane+structure">twisted differential fivebrane structure</a></li> </ul> </li> </ul> </li> <li> <p>differential cohomology</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+cohomology">differential generalized (Eilenberg-Steenrod) cohomology</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+cobordism+cohomology">differential cobordism cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Deligne+cohomology">Deligne cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+K-theory">differential K-theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+elliptic+cohomology">differential elliptic cohomology</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/schreiber/show/differential+cohomology+in+a+cohesive+topos">differential cohomology in a cohesive topos</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Chern-Weil+theory">Chern-Weil theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Chern-Weil+theory">∞-Chern-Weil theory</a></p> </li> </ul> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/relative+cohomology">relative cohomology</a></p> </li> </ul> <h3 id="extra_structure">Extra structure</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Hodge+structure">Hodge structure</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/orientation">orientation</a>, <a class="existingWikiWord" href="/nlab/show/orientation+in+generalized+cohomology">in generalized cohomology</a></p> </li> </ul> <h3 id="operations">Operations</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/cohomology+operations">cohomology operations</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cup+product">cup product</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/connecting+homomorphism">connecting homomorphism</a>, <a class="existingWikiWord" href="/nlab/show/Bockstein+homomorphism">Bockstein homomorphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fiber+integration">fiber integration</a>, <a class="existingWikiWord" href="/nlab/show/transgression">transgression</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cohomology+localization">cohomology localization</a></p> </li> </ul> <h3 id="theorems">Theorems</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/universal+coefficient+theorem">universal coefficient theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/K%C3%BCnneth+theorem">Künneth theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/de+Rham+theorem">de Rham theorem</a>, <a class="existingWikiWord" href="/nlab/show/Poincare+lemma">Poincare lemma</a>, <a class="existingWikiWord" href="/nlab/show/Stokes+theorem">Stokes theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hodge+theory">Hodge theory</a>, <a class="existingWikiWord" href="/nlab/show/Hodge+theorem">Hodge theorem</a></p> <p><a class="existingWikiWord" href="/nlab/show/nonabelian+Hodge+theory">nonabelian Hodge theory</a>, <a class="existingWikiWord" href="/nlab/show/noncommutative+Hodge+theory">noncommutative Hodge theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Brown+representability+theorem">Brown representability theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/abelian+sheaf+cohomology">hypercovering theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Eckmann-Hilton+duality">Eckmann-Hilton-Fuks duality</a></p> </li> </ul> <div> <p> <a href="/nlab/edit/cohomology+-+contents">Edit this sidebar</a> </p> </div></div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#definition'>Definition</a></li> <li><a href='#References'>Examples</a></li> <ul> <li><a href='#locally_constant_1stacks_and_2stacks_on_topological_spaces'>Locally constant 1-stacks and 2-stacks on topological spaces</a></li> <li><a href='#ooStackOnTopSpace'>Locally constant <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-stacks on topological spaces</a></li> </ul> <li><a href='#pattern'>Pattern</a></li> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="idea">Idea</h2> <p>Recall that a <a class="existingWikiWord" href="/nlab/show/locally+constant+sheaf">locally constant sheaf</a> (of sets) is a section of the <a class="existingWikiWord" href="/nlab/show/constant+stack">constant stack</a> with fiber the <a class="existingWikiWord" href="/nlab/show/groupoid">groupoid</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Core</mi><mo stretchy="false">(</mo><mi>FinSet</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Core(FinSet)</annotation></semantics></math>, the <a class="existingWikiWord" href="/nlab/show/core">core</a> of the <a class="existingWikiWord" href="/nlab/show/category">category</a> <a class="existingWikiWord" href="/nlab/show/FinSet">FinSet</a>.</p> <p>This extends to a general pattern:</p> <p>a <strong>locally constant <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-stack</strong> is a section of the <a class="existingWikiWord" href="/nlab/show/constant+%E2%88%9E-stack">constant ∞-stack</a> that is constant on the <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-groupoid">∞-groupoid</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Core</mi><mo stretchy="false">(</mo><mn>∞</mn><mi>FinGrpd</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Core(\infty FinGrpd)</annotation></semantics></math>.</p> <h2 id="definition">Definition</h2> <p>For <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>H</mi></mstyle></mrow><annotation encoding="application/x-tex">\mathbf{H}</annotation></semantics></math> an <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-sheaf+%28%E2%88%9E%2C1%29-topos">(∞,1)-sheaf (∞,1)-topos</a> there is the <a class="existingWikiWord" href="/nlab/show/terminal+object">terminal</a> <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-geometric+morphism">(∞,1)-geometric morphism</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>LConst</mi><mo>⊣</mo><mi>Γ</mi><mo stretchy="false">)</mo><mo>:</mo><mstyle mathvariant="bold"><mi>H</mi></mstyle><mo>→</mo><mn>∞</mn><mi>Grpd</mi></mrow><annotation encoding="application/x-tex"> (LConst \dashv \Gamma) : \mathbf{H} \to \infty Grpd </annotation></semantics></math></div> <p>consisting of the <a class="existingWikiWord" href="/nlab/show/global+section">global section</a> and the <a class="existingWikiWord" href="/nlab/show/constant+%E2%88%9E-stack">constant ∞-stack</a> <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-functor">(∞,1)-functor</a>.</p> <p>Write <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒮</mi><mo>:</mo><mo>=</mo><mi>core</mi><mo stretchy="false">(</mo><mi>Fin</mi><mn>∞</mn><mi>Grpd</mi><mo stretchy="false">)</mo><mo>∈</mo><mn>∞</mn><mi>Grpd</mi></mrow><annotation encoding="application/x-tex">\mathcal{S} := core(Fin \infty Grpd) \in \infty Grpd</annotation></semantics></math> for the <a class="existingWikiWord" href="/nlab/show/core">core</a> <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-groupoid">∞-groupoid</a> of the <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category">(∞,1)-category</a> of finite <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-groupoids. (We can drop the finiteness condition by making use of a larger <a class="existingWikiWord" href="/nlab/show/universe">universe</a>.) This is canonically a <a class="existingWikiWord" href="/nlab/show/pointed+object">pointed object</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>*</mo><mo>→</mo><mi>𝒮</mi></mrow><annotation encoding="application/x-tex">* \to \mathcal{S}</annotation></semantics></math>.</p> <p>Notice the for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo>∈</mo><mstyle mathvariant="bold"><mi>H</mi></mstyle></mrow><annotation encoding="application/x-tex">X \in \mathbf{H}</annotation></semantics></math> any <a class="existingWikiWord" href="/nlab/show/object">object</a>, the <a class="existingWikiWord" href="/nlab/show/over-%28%E2%88%9E%2C1%29-topos">over-(∞,1)-topos</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>H</mi></mstyle><mo stretchy="false">/</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">\mathbf{H}/X</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/little+topos">little</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,1)</annotation></semantics></math>-topos of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math>. Objects in here we may regard as <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-stacks on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math>.</p> <div class="un_defn"> <h6 id="definition_2">Definition</h6> <p>For <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo>∈</mo><mstyle mathvariant="bold"><mi>H</mi></mstyle></mrow><annotation encoding="application/x-tex">X \in \mathbf{H}</annotation></semantics></math> an <a class="existingWikiWord" href="/nlab/show/object">object</a> a <strong>locally constant <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-stack</strong> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> is an morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo>→</mo><mi>LConst</mi><mi>𝒮</mi></mrow><annotation encoding="application/x-tex">X \to LConst \mathcal{S}</annotation></semantics></math>.</p> <p>The <strong><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-groupoid">∞-groupoid</a> of locally constant <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-stacks</strong> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> is</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>LConst</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>:</mo><mo>=</mo><mstyle mathvariant="bold"><mi>H</mi></mstyle><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>LConst</mi><mi>𝒮</mi><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> LConst(X) := \mathbf{H}(X, LConst \mathcal{S}) \,. </annotation></semantics></math></div></div> <div class="un_remark"> <h6 id="remark">Remark</h6> <p>An an object of the <a class="existingWikiWord" href="/nlab/show/little+topos">little</a> <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-topos">(∞,1)-topos</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math>, the <a class="existingWikiWord" href="/nlab/show/over-%28%E2%88%9E%2C1%29-topos">over-(∞,1)-topos</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>H</mi></mstyle><mo stretchy="false">/</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">\mathbf{H}/X</annotation></semantics></math> the locally constant <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-stack given by <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mover><mo>∇</mo><mo stretchy="false">˜</mo></mover></mrow><annotation encoding="application/x-tex">\tilde \nabla</annotation></semantics></math> is its <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-Grothendieck+construction">(∞,1)-Grothendieck construction</a> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>H</mi></mstyle></mrow><annotation encoding="application/x-tex">\mathbf{H}</annotation></semantics></math></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>P</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mo>*</mo></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd><mo>⇙</mo></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><mi>X</mi></mtd> <mtd><mover><mo>→</mo><mover><mo>∇</mo><mo stretchy="false">˜</mo></mover></mover></mtd> <mtd><mi>LConst</mi><mi>𝒮</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ P &\to& * \\ \downarrow &\swArrow& \downarrow \\ X &\stackrel{\tilde \nabla}{\to}& LConst \mathcal{S} } </annotation></semantics></math></div> <p>the pullback of the <a class="existingWikiWord" href="/nlab/show/universal+fibration+of+%28%E2%88%9E%2C1%29-categories">universal fibration of finite ∞-groupoids</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>P</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>LConst</mi><mi>𝒵</mi></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><mi>X</mi></mtd> <mtd><mover><mo>→</mo><mover><mo>∇</mo><mo stretchy="false">˜</mo></mover></mover></mtd> <mtd><mi>LConst</mi><mi>𝒮</mi></mtd></mtr></mtable></mrow><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \array{ P &\to& LConst \mathcal{Z} \\ \downarrow && \downarrow \\ X &\stackrel{\tilde \nabla}{\to}& LConst \mathcal{S} } \,. </annotation></semantics></math></div></div> <div class="un_remark"> <h6 id="remark_2">Remark</h6> <p>A locally constant <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-stack is also called a <a class="existingWikiWord" href="/nlab/show/local+system">local system</a>. See there for more details.</p> </div> <h2 id="References">Examples</h2> <p>Here are commented references that establish aspects of the above general abstract situation.</p> <h3 id="locally_constant_1stacks_and_2stacks_on_topological_spaces">Locally constant 1-stacks and 2-stacks on topological spaces</h3> <p>A discussion of locally constant 2-stacks over topological spaces is in</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Pietro+Polesello">Pietro Polesello</a> and <a class="existingWikiWord" href="/nlab/show/Ingo+Waschkies">Ingo Waschkies</a>, <em>Higher monodromy</em> , Homology, Homotopy and Applications, Vol. 7(2005), No. 1, pp. 109-150 (<a href="http://www.intlpress.com/HHA/v7/n1/a7/pdf">pdf</a>).</li> </ul> <p>We indicate briefly how the results stated in this article fit into the general abstract picture as indicated above:</p> <p>The authors consider locally constant 1-stacks and 2-stacks on sites of open subsets of <a class="existingWikiWord" href="/nlab/show/topological+space">topological space</a>s.</p> <p>Prop. 1.1.9 gives the <a class="existingWikiWord" href="/nlab/show/adjunction">adjunction</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>LConst</mi><mo>⊣</mo><mi>Γ</mi><mo stretchy="false">)</mo><mo>:</mo><msub><mi>Sh</mi> <mrow><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mover><munder><mo>→</mo><mi>Γ</mi></munder><mover><mo>←</mo><mi>LConst</mi></mover></mover><mi>Grpd</mi></mrow><annotation encoding="application/x-tex"> (LConst \dashv \Gamma) : Sh_{(2,1)}(X) \stackrel{\overset{LConst}{\leftarrow}}{\underset{\Gamma}{\to}} Grpd </annotation></semantics></math></div> <p>between forming constant stacks and taking global sections.</p> <p>Then prop 1.2.5, 1.2.6, culminating in <a href="http://www.intlpress.com/HHA/v7/n1/a7/v7n1a7.pdf#page=13">theorem 1.2.9, p. 121</a> gives (somewhat implicitly) the other adjunction</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>Π</mi> <mn>1</mn></msub><mo>⊣</mo><mi>LConst</mi><mo stretchy="false">)</mo><mo>:</mo><mi>Op</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>↪</mo><msub><mi>Sh</mi> <mrow><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mover><munder><mo>→</mo><mrow><msub><mi>Π</mi> <mn>1</mn></msub></mrow></munder><mover><mo>←</mo><mi>LConst</mi></mover></mover><mi>Grpd</mi></mrow><annotation encoding="application/x-tex"> (\Pi_1\dashv LConst) : Op(X) \hookrightarrow Sh_{(2,1)}(X) \stackrel{\overset{LConst}{\leftarrow}}{\underset{\Pi_1}{\to}} Grpd </annotation></semantics></math></div> <p>with the <a class="existingWikiWord" href="/nlab/show/right+adjoint">right adjoint</a> to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>LConst</mi></mrow><annotation encoding="application/x-tex">LConst</annotation></semantics></math> being the <a class="existingWikiWord" href="/nlab/show/fundamental+groupoid">fundamental groupoid</a> functor on representables. (Where we change a bit the perspective on the results as presented there, to amplify the pattern indicated above. For instance where the authors write <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Γ</mi><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><msub><mi>C</mi> <mi>X</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\Gamma(X,C_X)</annotation></semantics></math> we think of this here equivalently as <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Sh</mi> <mrow><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>LConst</mi><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Sh_{(2,1)}(X)(X,LConst(C))</annotation></semantics></math>, so that the theorem then gives the adjunction equivalence <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>⋯</mi><mo>≃</mo><mi>Grpd</mi><mo stretchy="false">(</mo><msub><mi>Π</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>,</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\cdots \simeq Grpd(\Pi_1(X),C)</annotation></semantics></math>).</p> <p>Then in essentially verbatim analogy, these results are lifted from stacks to 2-stacks in section 2, where now prop 2.2.2, 2.2.3, culminating in <a href="http://www.intlpress.com/HHA/v7/n1/a7/v7n1a7.pdf#page=24">theorem 2.2.5, p. 132</a> gives (somewhat implicitly) the adjunction</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>Π</mi> <mn>2</mn></msub><mo>⊣</mo><mi>LConst</mi><mo stretchy="false">)</mo><mo>:</mo><mi>Op</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>↪</mo><msub><mi>Sh</mi> <mrow><mo stretchy="false">(</mo><mn>3</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mover><munder><mo>→</mo><mrow><msub><mi>Π</mi> <mn>2</mn></msub></mrow></munder><mover><mo>←</mo><mi>LConst</mi></mover></mover><mi>Grpd</mi></mrow><annotation encoding="application/x-tex"> (\Pi_2\dashv LConst) : Op(X) \hookrightarrow Sh_{(3,1)}(X) \stackrel{\overset{LConst}{\leftarrow}}{\underset{\Pi_2}{\to}} Grpd </annotation></semantics></math></div> <p>now with the <a class="existingWikiWord" href="/nlab/show/path+n-groupoid">path 2-groupoid</a> operation (locally) left adjoint to forming constant 2-stacks. (Subject verbatim to a remark as above.)</p> <h3 id="ooStackOnTopSpace">Locally constant <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-stacks on topological spaces</h3> <p>A discussion of locally constant <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-stacks over <a class="existingWikiWord" href="/nlab/show/topological+space">topological space</a>s is in</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Bertrand+Toen">Bertrand Toen</a>, <em>Toward a Galoisian interpretation of homotopy theory</em> (<a href="http://arxiv.org/abs/math/0007157">arXiv:0007157</a>)</li> </ul> <p>In <a href="http://arxiv.org/PS_cache/math/pdf/0007/0007157v4.pdf#page=25">theorem 2.13, p. 25</a> the author proves an equivalence of <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-categories">(∞,1)-categories</a> (modeled there as <a class="existingWikiWord" href="/nlab/show/Segal+category">Segal categories</a>)</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>LConst</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>≃</mo><mi>Fib</mi><mo stretchy="false">(</mo><mi>Π</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> LConst(X) \simeq Fib(\Pi(X)) </annotation></semantics></math></div> <p>of <a class="existingWikiWord" href="/nlab/show/locally+constant+%E2%88%9E-stack">locally constant ∞-stack</a>s on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> and <a class="existingWikiWord" href="/nlab/show/Kan+fibration">Kan fibration</a>s over the <a class="existingWikiWord" href="/nlab/show/fundamental+%E2%88%9E-groupoid">fundamental ∞-groupoid</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Π</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>=</mo><mi>Sing</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\Pi(X) = Sing(X)</annotation></semantics></math>.</p> <p>But by the right Quillen functor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Id</mi><mo>:</mo><msub><mi>sSet</mi> <mi>Quillen</mi></msub><mo>→</mo><msub><mi>sSet</mi> <mi>Joyal</mi></msub></mrow><annotation encoding="application/x-tex">Id : sSet_{Quillen} \to sSet_{Joyal}</annotation></semantics></math> from the Quillen <a class="existingWikiWord" href="/nlab/show/model+structure+on+simplicial+sets">model structure on simplicial sets</a> to the <a class="existingWikiWord" href="/nlab/show/Joyal+model+structure+on+simplicial+sets">Joyal model structure on simplicial sets</a> every Kan fibration is a categorical fibration and every categorical fibration over a <a class="existingWikiWord" href="/nlab/show/Kan+complex">Kan complex</a> is a <a class="existingWikiWord" href="/nlab/show/Cartesian+fibration">Cartesian fibration</a> (as discussed there) and a coCartesian fibration. Finally, by the <a class="existingWikiWord" href="/nlab/show/Grothendieck+construction">(∞,1)-Grothendieck construction</a>, these are equivalent to <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-functor">(∞,1)-functor</a>s <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Π</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>→</mo><mn>∞</mn><mi>Grpd</mi></mrow><annotation encoding="application/x-tex">\Pi(X) \to \infty Grpd</annotation></semantics></math>.</p> <p>In total this means that via the <a class="existingWikiWord" href="/nlab/show/Grothendieck+construction">Grothendieck construction</a> Toën’s result does actually produce an equivalence</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>LConst</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>≃</mo><mi>Func</mi><mo stretchy="false">(</mo><mi>Π</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>,</mo><mn>∞</mn><mi>Grpd</mi><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> LConst(X) \simeq Func(\Pi(X), \infty Grpd) \,. </annotation></semantics></math></div> <h2 id="pattern">Pattern</h2> <ul> <li> <p>A <a class="existingWikiWord" href="/nlab/show/locally+constant+function">locally constant function</a> is a section of a <a class="existingWikiWord" href="/nlab/show/constant+sheaf">constant sheaf</a>;</p> </li> <li> <p>a <a class="existingWikiWord" href="/nlab/show/locally+constant+sheaf">locally constant sheaf</a> is a section of a <a class="existingWikiWord" href="/nlab/show/constant+stack">constant stack</a>;</p> </li> <li> <p>a <a class="existingWikiWord" href="/nlab/show/locally+constant+stack">locally constant stack</a> is a section of (… and so on…)</p> </li> <li> <p>a <strong>locally constant <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-stack</strong> is a section of a <a class="existingWikiWord" href="/nlab/show/constant+%E2%88%9E-stack">constant ∞-stack</a>.</p> </li> </ul> <p>A locally constant sheaf / <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-stack is also called a <a class="existingWikiWord" href="/nlab/show/local+system">local system</a>.</p> <h2 id="references">References</h2> <p>Section A.1 of</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Jacob+Lurie">Jacob Lurie</a>, <em><a class="existingWikiWord" href="/nlab/show/Higher+Algebra">Higher Algebra</a></em> .</li> </ul> <p>See also the references at <a class="existingWikiWord" href="/nlab/show/geometric+homotopy+groups+in+an+%28%E2%88%9E%2C1%29-topos">geometric homotopy groups in an (∞,1)-topos</a>.</p> </body></html> </div> <div class="revisedby"> <p> Last revised on August 6, 2017 at 06:33:05. See the <a href="/nlab/history/locally+constant+infinity-stack" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/locally+constant+infinity-stack" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussions/?CategoryID=0">Discuss</a><span class="backintime"><a href="/nlab/revision/locally+constant+infinity-stack/17" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/locally+constant+infinity-stack" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/locally+constant+infinity-stack" accesskey="S" class="navlink" id="history" rel="nofollow">History (17 revisions)</a> <a href="/nlab/show/locally+constant+infinity-stack/cite" style="color: black">Cite</a> <a href="/nlab/print/locally+constant+infinity-stack" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/locally+constant+infinity-stack" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>