CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 87 results for author: <span class="mathjax">Lambert, N</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/quant-ph" aria-role="search"> Searching in archive <strong>quant-ph</strong>. <a href="/search/?searchtype=author&query=Lambert%2C+N">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Lambert, N"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Lambert%2C+N&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Lambert, N"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Lambert%2C+N&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Lambert%2C+N&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Lambert%2C+N&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.01717">arXiv:2410.01717</a> <span> [<a href="https://arxiv.org/pdf/2410.01717">pdf</a>, <a href="https://arxiv.org/format/2410.01717">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Revealing non-Markovian Kondo transport with waiting time distributions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Chan%2C+F">Feng-Jui Chan</a>, <a href="/search/quant-ph?searchtype=author&query=Kuo%2C+P">Po-Chen Kuo</a>, <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N">Neill Lambert</a>, <a href="/search/quant-ph?searchtype=author&query=Cirio%2C+M">Mauro Cirio</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yueh-Nan Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.01717v2-abstract-short" style="display: inline;"> We investigate non-Markovian transport dynamics and signatures of the Kondo effect in a single impurity Anderson model. The model consists of a quantum dot (QD) with ultra-strong coupling to a left lead and weak coupling to a right lead acting as a detector. We calculate the waiting time distribution (WTD) of electrons tunneling into the detector using a combination of the hierarchical equations o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01717v2-abstract-full').style.display = 'inline'; document.getElementById('2410.01717v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.01717v2-abstract-full" style="display: none;"> We investigate non-Markovian transport dynamics and signatures of the Kondo effect in a single impurity Anderson model. The model consists of a quantum dot (QD) with ultra-strong coupling to a left lead and weak coupling to a right lead acting as a detector. We calculate the waiting time distribution (WTD) of electrons tunneling into the detector using a combination of the hierarchical equations of motion approach (HEOM) and a dressed master equation. Oscillations emerge in the short-time WTD, becoming more pronounced with stronger left-lead coupling. Fourier analysis reveals a blue shift in the oscillation frequency as coupling increases, indicating enhanced system-bath hybridization. Crucially, comparison with a dressed master equation confirms that these oscillations are a direct consequence of non-Markovian system-bath correlations. We examine the Kondo effect's influence on these oscillations by varying the quantum dot's Coulomb repulsion. Increasing this interaction enhances the WTD oscillations, coinciding with the signatures of a strengthened Kondo resonance in the quantum dot's density of states. Our results demonstrate that WTD oscillations offer a valuable tool for probing non-Markovian system-bath interactions and the emergence of Kondo correlations within quantum dot systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01717v2-abstract-full').style.display = 'none'; document.getElementById('2410.01717v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.12221">arXiv:2408.12221</a> <span> [<a href="https://arxiv.org/pdf/2408.12221">pdf</a>, <a href="https://arxiv.org/ps/2408.12221">ps</a>, <a href="https://arxiv.org/format/2408.12221">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Input-Output Hierarchical Equations Of Motion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Cirio%2C+M">Mauro Cirio</a>, <a href="/search/quant-ph?searchtype=author&query=Liang%2C+P">Pengfei Liang</a>, <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N">Neill Lambert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.12221v1-abstract-short" style="display: inline;"> We derive an extended version of the hierarchical equations of motion (HEOM) to compute output physical properties of a bosonic environment, which is allowed to be initially prepared at an earlier time in a non-Gaussian input state and then non-perturbatively interact with a quantum system. While spectral assumptions analogous to the ones used in the regular HEOM are imposed to compute output bath… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12221v1-abstract-full').style.display = 'inline'; document.getElementById('2408.12221v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.12221v1-abstract-full" style="display: none;"> We derive an extended version of the hierarchical equations of motion (HEOM) to compute output physical properties of a bosonic environment, which is allowed to be initially prepared at an earlier time in a non-Gaussian input state and then non-perturbatively interact with a quantum system. While spectral assumptions analogous to the ones used in the regular HEOM are imposed to compute output bath observables, they are not required to model input states, leading to time-dependent contributions to the equations. For a given desired input state and output observable, the range of the indexes extending the regular HEOM is, by construction, bounded. Overall, the aim of this formalism is to take advantage of the efficiency of the HEOM framework to model non-Gaussian input states and the dynamics of environmental observables in bosonic, non-Markovian open quantum systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12221v1-abstract-full').style.display = 'none'; document.getElementById('2408.12221v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 0 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.18362">arXiv:2406.18362</a> <span> [<a href="https://arxiv.org/pdf/2406.18362">pdf</a>, <a href="https://arxiv.org/format/2406.18362">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Non-Markovian Quantum Exceptional Points </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Lin%2C+J">Jhen-Dong Lin</a>, <a href="/search/quant-ph?searchtype=author&query=Kuo%2C+P">Po-Chen Kuo</a>, <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N">Neill Lambert</a>, <a href="/search/quant-ph?searchtype=author&query=Miranowicz%2C+A">Adam Miranowicz</a>, <a href="/search/quant-ph?searchtype=author&query=Nori%2C+F">Franco Nori</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yueh-Nan Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.18362v1-abstract-short" style="display: inline;"> Exceptional points (EPs) are singularities in the spectra of non-Hermitian operators, where eigenvalues and eigenvectors coalesce. Recently, open quantum systems have been increasingly explored as EP testbeds due to their natural non-Hermitian nature. However, existing works mostly focus on the Markovian limit, leaving a gap in understanding EPs in the non-Markovian regime. In this work, we addres… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18362v1-abstract-full').style.display = 'inline'; document.getElementById('2406.18362v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.18362v1-abstract-full" style="display: none;"> Exceptional points (EPs) are singularities in the spectra of non-Hermitian operators, where eigenvalues and eigenvectors coalesce. Recently, open quantum systems have been increasingly explored as EP testbeds due to their natural non-Hermitian nature. However, existing works mostly focus on the Markovian limit, leaving a gap in understanding EPs in the non-Markovian regime. In this work, we address this gap by proposing a theoretical framework based on two numerically exact descriptions of non-Markovian dynamics: the pseudomode mapping and the hierarchical equations of motion. The proposed framework enables conventional spectral analysis for EP identification, establishing direct links between EPs and dynamic manifestations in open systems, such as non-exponential decays and enhanced sensitivity to external perturbations. We unveil pure non-Markovian EPs that are unobservable in the Markovian limit. Remarkably, the EP aligns with the Markovian-to-non-Markovian transition, and the EP condition is adjustable by modifying environmental spectral properties. Moreover, we show that structured environments can elevate EP order, thereby enhancing the system's sensitivity. These findings lay a theoretical foundation and open new avenues for non-Markovian reservoir engineering and non-Hermitian physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18362v1-abstract-full').style.display = 'none'; document.getElementById('2406.18362v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10+5 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.13276">arXiv:2405.13276</a> <span> [<a href="https://arxiv.org/pdf/2405.13276">pdf</a>, <a href="https://arxiv.org/format/2405.13276">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.6.033181">10.1103/PhysRevResearch.6.033181 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lee-Yang theory of the superradiant phase transition in the open Dicke model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Brange%2C+F">Fredrik Brange</a>, <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N">Neill Lambert</a>, <a href="/search/quant-ph?searchtype=author&query=Nori%2C+F">Franco Nori</a>, <a href="/search/quant-ph?searchtype=author&query=Flindt%2C+C">Christian Flindt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.13276v2-abstract-short" style="display: inline;"> The Dicke model describes an ensemble of two-level atoms that are coupled to a confined light mode of an optical cavity. Above a critical coupling, the cavity becomes macroscopically occupied, and the system enters the superradiant phase. This phase transition can be observed by detecting the photons that are emitted from the cavity; however, it only becomes apparent in the limit of long observati… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.13276v2-abstract-full').style.display = 'inline'; document.getElementById('2405.13276v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.13276v2-abstract-full" style="display: none;"> The Dicke model describes an ensemble of two-level atoms that are coupled to a confined light mode of an optical cavity. Above a critical coupling, the cavity becomes macroscopically occupied, and the system enters the superradiant phase. This phase transition can be observed by detecting the photons that are emitted from the cavity; however, it only becomes apparent in the limit of long observation times, while actual experiments are of a finite duration. To circumvent this problem, we here make use of recent advances in Lee-Yang theories of phase transitions to show that the superradiant phase transition can be inferred from the factorial cumulants of the photon emission statistics obtained during a finite measurement time. Specifically, from the factorial cumulants, we can determine the complex singularities of generating functions that describe the photon emission statistics, and by extrapolating their positions to the long-time limit, one can detect the superradiant phase transition. We also show that the convergence points determine the tails of the large-deviation statistics of the photon current. Our work demonstrates how phase transitions in the Dicke model and in other quantum many-body systems can be detected from measurements of a finite duration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.13276v2-abstract-full').style.display = 'none'; document.getElementById('2405.13276v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 6, 033181 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.14455">arXiv:2403.14455</a> <span> [<a href="https://arxiv.org/pdf/2403.14455">pdf</a>, <a href="https://arxiv.org/format/2403.14455">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Non-Markovian skin effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Kuo%2C+P">Po-Chen Kuo</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+S">Shen-Liang Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N">Neill Lambert</a>, <a href="/search/quant-ph?searchtype=author&query=Lin%2C+J">Jhen-Dong Lin</a>, <a href="/search/quant-ph?searchtype=author&query=Huang%2C+Y">Yi-Te Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Nori%2C+F">Franco Nori</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yueh-Nan Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.14455v2-abstract-short" style="display: inline;"> The Liouvillian skin effect and the non-Hermitian skin effect have both been used to explain the localization of eigenmodes near system boundaries, though the former is arguably more accurate in some regimes due to its incorporation of quantum jumps. However, these frameworks predominantly focus on weak Markovian interactions, neglecting the potentially crucial role of memory effects. To address t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.14455v2-abstract-full').style.display = 'inline'; document.getElementById('2403.14455v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.14455v2-abstract-full" style="display: none;"> The Liouvillian skin effect and the non-Hermitian skin effect have both been used to explain the localization of eigenmodes near system boundaries, though the former is arguably more accurate in some regimes due to its incorporation of quantum jumps. However, these frameworks predominantly focus on weak Markovian interactions, neglecting the potentially crucial role of memory effects. To address this, we investigate, utilizing the powerful hierarchical equations of motion method, how a non-Markovian environment can modify the Liouvillian skin effect. We demonstrate that a non-Markovian environment can induce a ``thick skin effect", where the skin mode broadens and shifts into the bulk. {We further identify that the skin-mode quantum coherence can only be generated when the coupling contains counter-rotating terms}, leading to the coherence-delocalization and oscillatory relaxation with a characteristic linear scaling with system size. Remarkably, both the skin-mode and steady-state coherence exhibit resistance to decoherence from additional environmental noise. These findings highlight the profound impact of system-bath correlations on relaxation and localization, revealing unique phenomena beyond conventional Markovian approximations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.14455v2-abstract-full').style.display = 'none'; document.getElementById('2403.14455v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.11830">arXiv:2401.11830</a> <span> [<a href="https://arxiv.org/pdf/2401.11830">pdf</a>, <a href="https://arxiv.org/format/2401.11830">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.6.033237">10.1103/PhysRevResearch.6.033237 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-Hermitian Pseudomodes for Strongly Coupled Open Quantum Systems: Unravelings, Correlations and Thermodynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Menczel%2C+P">Paul Menczel</a>, <a href="/search/quant-ph?searchtype=author&query=Funo%2C+K">Ken Funo</a>, <a href="/search/quant-ph?searchtype=author&query=Cirio%2C+M">Mauro Cirio</a>, <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N">Neill Lambert</a>, <a href="/search/quant-ph?searchtype=author&query=Nori%2C+F">Franco Nori</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.11830v3-abstract-short" style="display: inline;"> The pseudomode framework provides an exact description of the dynamics of an open quantum system coupled to a non-Markovian environment. Using this framework, the influence of the environment on the system is studied in an equivalent model, where the open system is coupled to a finite number of unphysical pseudomodes that follow a time-local master equation. Building on the insight that this maste… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.11830v3-abstract-full').style.display = 'inline'; document.getElementById('2401.11830v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.11830v3-abstract-full" style="display: none;"> The pseudomode framework provides an exact description of the dynamics of an open quantum system coupled to a non-Markovian environment. Using this framework, the influence of the environment on the system is studied in an equivalent model, where the open system is coupled to a finite number of unphysical pseudomodes that follow a time-local master equation. Building on the insight that this master equation does not need to conserve the hermiticity of the pseudomode state, we here ask for the most general conditions on the master equation that guarantee the correct reproduction of the system's original dynamics. We demonstrate that our generalized approach decreases the number of pseudomodes that are required to model, for example, underdamped environments at finite temperature. We also provide an unraveling of the master equation into quantum jump trajectories of non-Hermitian states, which further facilitates the utilization of the pseudomode technique for numerical calculations by enabling the use of easily parallelizable Monte Carlo simulations. Finally, we show that pseudomodes, despite their unphysical nature, provide a natural picture in which physical processes, such as the creation of system-bath correlations or the exchange of heat, can be studied. Hence, our results pave the way for future investigations of the system-environment interaction leading to a better understanding of open quantum systems far from the Markovian weak-coupling limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.11830v3-abstract-full').style.display = 'none'; document.getElementById('2401.11830v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 6, 033237 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.15240">arXiv:2311.15240</a> <span> [<a href="https://arxiv.org/pdf/2311.15240">pdf</a>, <a href="https://arxiv.org/format/2311.15240">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.6.033083">10.1103/PhysRevResearch.6.033083 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Modeling the unphysical pseudomode model with physical ensembles: simulation, mitigation, and restructuring of non-Markovian quantum noise </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Cirio%2C+M">Mauro Cirio</a>, <a href="/search/quant-ph?searchtype=author&query=Luo%2C+S">Si Luo</a>, <a href="/search/quant-ph?searchtype=author&query=Liang%2C+P">Pengfei Liang</a>, <a href="/search/quant-ph?searchtype=author&query=Nori%2C+F">Franco Nori</a>, <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N">Neill Lambert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.15240v1-abstract-short" style="display: inline;"> The influence of a Gaussian environment on a quantum system can be described by effectively replacing the continuum with a discrete set of ancillary quantum and classical degrees of freedom. This defines a pseudomode model which can be used to classically simulate the reduced system dynamics. Here, we consider an alternative point of view and analyze the potential benefits of an analog or digital… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.15240v1-abstract-full').style.display = 'inline'; document.getElementById('2311.15240v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.15240v1-abstract-full" style="display: none;"> The influence of a Gaussian environment on a quantum system can be described by effectively replacing the continuum with a discrete set of ancillary quantum and classical degrees of freedom. This defines a pseudomode model which can be used to classically simulate the reduced system dynamics. Here, we consider an alternative point of view and analyze the potential benefits of an analog or digital quantum simulation of the pseudomode model itself. Superficially, such a direct experimental implementation is, in general, impossible due to the unphysical properties of the effective degrees of freedom involved. However, we show that the effects of the unphysical pseudomode model can still be reproduced using measurement results over an ensemble of physical systems involving ancillary harmonic modes and an optional stochastic driving field. This is done by introducing an extrapolation technique whose efficiency is limited by stability against imprecision in the measurement data. We examine how such a simulation would allow us to (i) perform accurate quantum simulation of the effects of complex non-perturbative and non-Markovian environments in regimes that are challenging for classical simulation, (ii) conversely, mitigate potential unwanted non-Markovian noise present in quantum devices, and (iii) restructure some of some of the properties of a given physical bath, such as its temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.15240v1-abstract-full').style.display = 'none'; document.getElementById('2311.15240v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 6, 033083 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.12539">arXiv:2310.12539</a> <span> [<a href="https://arxiv.org/pdf/2310.12539">pdf</a>, <a href="https://arxiv.org/ps/2310.12539">ps</a>, <a href="https://arxiv.org/format/2310.12539">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Fixing detailed balance in ancilla-based dissipative state engineering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N">Neill Lambert</a>, <a href="/search/quant-ph?searchtype=author&query=Cirio%2C+M">Mauro Cirio</a>, <a href="/search/quant-ph?searchtype=author&query=Lin%2C+J">Jhen-dong Lin</a>, <a href="/search/quant-ph?searchtype=author&query=Menczel%2C+P">Paul Menczel</a>, <a href="/search/quant-ph?searchtype=author&query=Liang%2C+P">Pengfei Liang</a>, <a href="/search/quant-ph?searchtype=author&query=Nori%2C+F">Franco Nori</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.12539v1-abstract-short" style="display: inline;"> Dissipative state engineering is a general term for a protocol which prepares the ground state of a complex many-body Hamiltonian using engineered dissipation or engineered environments. Recently, it was shown that a version of this protocol, where the engineered environment consists of one or more dissipative qubit ancillas tuned to be resonant with the low-energy transitions of a many-body syste… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.12539v1-abstract-full').style.display = 'inline'; document.getElementById('2310.12539v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.12539v1-abstract-full" style="display: none;"> Dissipative state engineering is a general term for a protocol which prepares the ground state of a complex many-body Hamiltonian using engineered dissipation or engineered environments. Recently, it was shown that a version of this protocol, where the engineered environment consists of one or more dissipative qubit ancillas tuned to be resonant with the low-energy transitions of a many-body system, resulted in the combined system evolving to reasonable approximation to the ground state. This potentially broadens the applicability of the method beyond non-frustrated systems, to which it was previously restricted. Here we argue that this approach has an intrinsic limitation because the ancillas, seen as an effective bath by the system in the weak-coupling limit, do not give the detailed balance expected for a true zero-temperature environment. Our argument is based on the study of a similar approach employing linear coupling to bosonic ancillas. We explore overcoming this limitation using a recently developed technique from open-quantum-systems called pseudomodes. With a simple example model of a 1D quantum Ising chain, we show that detailed balance can be fixed, and a more accurate estimation of the ground state obtained, at the cost of two additional unphysical dissipative modes and the extrapolation error of implementing those modes in physical systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.12539v1-abstract-full').style.display = 'none'; document.getElementById('2310.12539v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.07522">arXiv:2306.07522</a> <span> [<a href="https://arxiv.org/pdf/2306.07522">pdf</a>, <a href="https://arxiv.org/format/2306.07522">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-023-01427-2">10.1038/s42005-023-01427-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> HierarchicalEOM.jl: An efficient Julia framework for hierarchical equations of motion in open quantum systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Huang%2C+Y">Yi-Te Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Kuo%2C+P">Po-Chen Kuo</a>, <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N">Neill Lambert</a>, <a href="/search/quant-ph?searchtype=author&query=Cirio%2C+M">Mauro Cirio</a>, <a href="/search/quant-ph?searchtype=author&query=Cross%2C+S">Simon Cross</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+S">Shen-Liang Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Nori%2C+F">Franco Nori</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yueh-Nan Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.07522v4-abstract-short" style="display: inline;"> The hierarchical equations of motion (HEOM) approach can describe the reduced dynamics of a system simultaneously coupled to multiple bosonic and fermionic environments. The complexity of exactly describing the system-environment interaction with the HEOM method usually results in time-consuming calculations and a large memory cost. Here, we introduce an open-source software package called Hierarc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.07522v4-abstract-full').style.display = 'inline'; document.getElementById('2306.07522v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.07522v4-abstract-full" style="display: none;"> The hierarchical equations of motion (HEOM) approach can describe the reduced dynamics of a system simultaneously coupled to multiple bosonic and fermionic environments. The complexity of exactly describing the system-environment interaction with the HEOM method usually results in time-consuming calculations and a large memory cost. Here, we introduce an open-source software package called HierarchicalEOM.jl: a Julia framework integrating the HEOM approach. HierarchicalEOM.jl features a collection of methods to compute bosonic and fermionic spectra, stationary states, and the full dynamics in the extended space of all auxiliary density operators (ADOs). The required handling of the ADOs multi-indexes is achieved through a user-friendly interface. We exemplify the functionalities of the package by analyzing a single impurity Anderson model, and an ultra-strongly coupled charge-cavity system interacting with bosonic and fermionic reservoirs. HierarchicalEOM.jl achieves a significant speedup with respect to the corresponding method in the Quantum Toolbox in Python (QuTiP), upon which this package is founded. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.07522v4-abstract-full').style.display = 'none'; document.getElementById('2306.07522v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 7 figures, 4 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Commun. Phys. 6, 313 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.11758">arXiv:2303.11758</a> <span> [<a href="https://arxiv.org/pdf/2303.11758">pdf</a>, <a href="https://arxiv.org/format/2303.11758">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> The Closed and Open Unbalanced Dicke Trimer Model: Critical Properties and Nonlinear Semiclassical Dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+C">Cheng Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Liang%2C+P">Pengfei Liang</a>, <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N">Neill Lambert</a>, <a href="/search/quant-ph?searchtype=author&query=Cirio%2C+M">Mauro Cirio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.11758v2-abstract-short" style="display: inline;"> We study a generalization of a recently introduced Dicke trimer model [Phys. Rev. Lett. 128, 163601, Phys. Rev. Research 5, L042016], which allows for cavity losses and unbalanced light-matter interactions (in which rotating and counter-rotating terms can be tuned independently). We find that in the extreme unbalanced limit, the $U(1)$ symmetry of the Tavis-Cummings model is restored, qualitativel… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.11758v2-abstract-full').style.display = 'inline'; document.getElementById('2303.11758v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.11758v2-abstract-full" style="display: none;"> We study a generalization of a recently introduced Dicke trimer model [Phys. Rev. Lett. 128, 163601, Phys. Rev. Research 5, L042016], which allows for cavity losses and unbalanced light-matter interactions (in which rotating and counter-rotating terms can be tuned independently). We find that in the extreme unbalanced limit, the $U(1)$ symmetry of the Tavis-Cummings model is restored, qualitatively altering the critical phenomena in the superradiant phase due to the presence of a zero-energy mode. To analyze this general regime, we develop a semiclassical theory based on a re-quantization technique. This theory also provides further physical insight on a recently reported anomalous finite critical fluctuations in the time-reversal broken regime. Moving to the open-Dicke case, by introducing local dissipation to the cavities, we observe the emergence of a rich range of nonequilibrium phases characterized by trivial and non-trivial dynamical signatures. In the former case, we identify, when time-reversal symmetry is present, a new stationary phase that features superradiant states in two of the three cavities and a normal state in the other cavity. In the latter case, we observe the emergence of dynamical phases in which the system exhibits superradiant oscillations, characterized by periodic or chaotic phase space patterns. The landscape of transitions associated with these dynamical phases features a wide range of qualitatively different behaviours such as Hopf bifurcations, anomalous Hopf bifurcations, collisions between basins of attraction, and exterior crises. We highlight how the two-critical-scalings feature of the closed model is robust under dissipation while the phenomenon of anomalous finite critical fluctuations becomes a mean-field scaling in the open model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.11758v2-abstract-full').style.display = 'none'; document.getElementById('2303.11758v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.01044">arXiv:2302.01044</a> <span> [<a href="https://arxiv.org/pdf/2302.01044">pdf</a>, <a href="https://arxiv.org/format/2302.01044">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.5.043177">10.1103/PhysRevResearch.5.043177 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Kondo QED: The Kondo effect and photon trapping in a two-impurity Anderson model ultra-strongly coupled to light </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Kuo%2C+P">Po-Chen Kuo</a>, <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N">Neill Lambert</a>, <a href="/search/quant-ph?searchtype=author&query=Cirio%2C+M">Mauro Cirio</a>, <a href="/search/quant-ph?searchtype=author&query=Huang%2C+Y">Yi-Te Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Nori%2C+F">Franco Nori</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yueh-Nan Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.01044v2-abstract-short" style="display: inline;"> The Kondo effect is one of the most studied examples of strongly correlated quantum many-body physics. Another type of strongly correlated physics that has only recently been explored in detail (and become experimentally accessible) is that of ultrastrong coupling between light and matter. Here, we study a system which we denote as "Kondo QED") that combines both phenomena, consisting of a two-imp… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.01044v2-abstract-full').style.display = 'inline'; document.getElementById('2302.01044v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.01044v2-abstract-full" style="display: none;"> The Kondo effect is one of the most studied examples of strongly correlated quantum many-body physics. Another type of strongly correlated physics that has only recently been explored in detail (and become experimentally accessible) is that of ultrastrong coupling between light and matter. Here, we study a system which we denote as "Kondo QED") that combines both phenomena, consisting of a two-impurity Anderson model ultra-strongly coupled to a single-mode cavity. While presented as an abstract model, it is relevant for a range of future hybrid cavity-QED systems. Using the hierarchical equations of motion approach we show that the ultrastrong coupling of cavity photons to the electronic states (impurity) noticeably suppresses the electronic Kondo resonance due to the destruction of many-body correlations of the Kondo cloud. We observe this transfer of correlations from the Kondo cloud to the cavity by computing the entropy and mutual information of the impurity-cavity subsystems. In addition, in the weak lead-coupling limit and at zero-bias, the model exhibits a ground-state photon accumulation effect originating entirely from counter-rotating terms in the impurity-cavity interaction. Interestingly, in the strong lead-coupling limit, this accumulation is ``Kondo-enhanced'' by new transition paths opening when increasing the hybridization to the leads. This suggests a new mechanism for the generation of real photons from virtual states. We further show that the suppression of the Kondo effect is stable under broadening of the cavity resonance as a consequence of the interaction to an external bosonic continuum. Our findings pave the way for the simultaneous control of both the Kondo QED effect and a photon accumulation effect using the ultrastrong coupling of light and matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.01044v2-abstract-full').style.display = 'none'; document.getElementById('2302.01044v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 11 figures, 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 5, 043177 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.07554">arXiv:2301.07554</a> <span> [<a href="https://arxiv.org/pdf/2301.07554">pdf</a>, <a href="https://arxiv.org/format/2301.07554">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PRXQuantum.4.030316">10.1103/PRXQuantum.4.030316 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A quantum-classical decomposition of Gaussian quantum environments: a stochastic pseudomode model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Luo%2C+S">Si Luo</a>, <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N">Neill Lambert</a>, <a href="/search/quant-ph?searchtype=author&query=Liang%2C+P">Pengfei Liang</a>, <a href="/search/quant-ph?searchtype=author&query=Cirio%2C+M">Mauro Cirio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.07554v2-abstract-short" style="display: inline;"> We show that the effect of a Gaussian Bosonic environment linearly coupled to a quantum system can be simulated by a stochastic Lindblad master equation characterized by a set of ancillary Bosonic modes initially at zero temperature and classical stochastic fields. We test the method for Ohmic environments with exponential and polynomial cut-offs against, respectively, the Hierarchical Equations o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.07554v2-abstract-full').style.display = 'inline'; document.getElementById('2301.07554v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.07554v2-abstract-full" style="display: none;"> We show that the effect of a Gaussian Bosonic environment linearly coupled to a quantum system can be simulated by a stochastic Lindblad master equation characterized by a set of ancillary Bosonic modes initially at zero temperature and classical stochastic fields. We test the method for Ohmic environments with exponential and polynomial cut-offs against, respectively, the Hierarchical Equations of Motion and the deterministic pseudomode model with respect to which the number of ancillary quantum degrees of freedom is reduced. For a subset of rational spectral densities, all parameters are explicitly specified without the need of any fitting procedure, thereby simplifying the modeling strategy. Interestingly, the classical fields in this decomposition must sometimes be imaginary-valued, which can have counter-intuitive effects on the system properties which we demonstrate by showing that they can decrease the entropy of the system, in contrast to real-valued fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.07554v2-abstract-full').style.display = 'none'; document.getElementById('2301.07554v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">41 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PRX Quantum 4, 030316 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.02472">arXiv:2208.02472</a> <span> [<a href="https://arxiv.org/pdf/2208.02472">pdf</a>, <a href="https://arxiv.org/format/2208.02472">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.4.033143">10.1103/PhysRevResearch.4.033143 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Space-time dual quantum Zeno effect: Interferometric engineering of open quantum system dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Lin%2C+J">Jhen-Dong Lin</a>, <a href="/search/quant-ph?searchtype=author&query=Huang%2C+C">Ching-Yu Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N">Neill Lambert</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+G">Guang-Yin Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Nori%2C+F">Franco Nori</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yueh-Nan Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.02472v1-abstract-short" style="display: inline;"> Superposition of trajectories, which modify quantum evolutions by superposing paths through interferometry, has been utilized to enhance various quantum communication tasks. However, little is known about its impact from the viewpoint of open quantum systems. Thus, we examine this subject from the perspective of system-environment interactions. We show that the superposition of multiple trajectori… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.02472v1-abstract-full').style.display = 'inline'; document.getElementById('2208.02472v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.02472v1-abstract-full" style="display: none;"> Superposition of trajectories, which modify quantum evolutions by superposing paths through interferometry, has been utilized to enhance various quantum communication tasks. However, little is known about its impact from the viewpoint of open quantum systems. Thus, we examine this subject from the perspective of system-environment interactions. We show that the superposition of multiple trajectories can result in quantum state freezing, suggesting a space-time dual to the quantum Zeno effect. Moreover, non-trivial Dicke-like super(sub)radiance can be triggered without utilizing multi-atom correlations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.02472v1-abstract-full').style.display = 'none'; document.getElementById('2208.02472v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages and 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PhysRevResearch.4.033143 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.12156">arXiv:2207.12156</a> <span> [<a href="https://arxiv.org/pdf/2207.12156">pdf</a>, <a href="https://arxiv.org/format/2207.12156">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-023-01457-w">10.1038/s42005-023-01457-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sudden change of the photon output field marks phase transitions in the quantum Rabi model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Ye-Hong Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Qiu%2C+Y">Yuan Qiu</a>, <a href="/search/quant-ph?searchtype=author&query=Miranowicz%2C+A">Adam Miranowicz</a>, <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N">Neill Lambert</a>, <a href="/search/quant-ph?searchtype=author&query=Qin%2C+W">Wei Qin</a>, <a href="/search/quant-ph?searchtype=author&query=Stassi%2C+R">Roberto Stassi</a>, <a href="/search/quant-ph?searchtype=author&query=Xia%2C+Y">Yan Xia</a>, <a href="/search/quant-ph?searchtype=author&query=Zheng%2C+S">Shi-Biao Zheng</a>, <a href="/search/quant-ph?searchtype=author&query=Nori%2C+F">Franco Nori</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.12156v2-abstract-short" style="display: inline;"> The experimental observation of quantum phase transitions predicted by the quantum Rabi model in quantum critical systems is usually challenging due to the lack of signature experimental observables associated with them. Here, we describe a method to identify the dynamical critical phenomenon in the quantum Rabi model consisting of a three-level atom and a cavity at the quantum phase transition. S… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.12156v2-abstract-full').style.display = 'inline'; document.getElementById('2207.12156v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.12156v2-abstract-full" style="display: none;"> The experimental observation of quantum phase transitions predicted by the quantum Rabi model in quantum critical systems is usually challenging due to the lack of signature experimental observables associated with them. Here, we describe a method to identify the dynamical critical phenomenon in the quantum Rabi model consisting of a three-level atom and a cavity at the quantum phase transition. Such a critical phenomenon manifests itself as a sudden change of steady-state output photons in the system driven by two classical fields, when both the atom and the cavity are initially unexcited. The process occurs as the high-frequency pump field is converted into the low-frequency Stokes field and multiple cavity photons in the normal phase, while this conversion cannot occur in the superradiant phase. The sudden change of steady-state output photons is an experimentally accessible measure to probe quantum phase transitions, as it does not require preparing the equilibrium state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.12156v2-abstract-full').style.display = 'none'; document.getElementById('2207.12156v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">has been published in Communcations Physics as a regular article</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Communications Physics, 7, 5 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.05780">arXiv:2207.05780</a> <span> [<a href="https://arxiv.org/pdf/2207.05780">pdf</a>, <a href="https://arxiv.org/format/2207.05780">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.5.033011">10.1103/PhysRevResearch.5.033011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A pseudo-fermion method for the exact description of fermionic environments: from single-molecule electronics to Kondo resonance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Cirio%2C+M">Mauro Cirio</a>, <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N">Neill Lambert</a>, <a href="/search/quant-ph?searchtype=author&query=Liang%2C+P">Pengfei Liang</a>, <a href="/search/quant-ph?searchtype=author&query=Kuo%2C+P">Po-Chen Kuo</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yueh-Nan Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Menczel%2C+P">Paul Menczel</a>, <a href="/search/quant-ph?searchtype=author&query=Funo%2C+K">Ken Funo</a>, <a href="/search/quant-ph?searchtype=author&query=Nori%2C+F">Franco Nori</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.05780v2-abstract-short" style="display: inline;"> We develop a discrete fermion approach for modelling the strong interaction of an arbitrary system interacting with continuum electronic reservoirs. The approach is based on a pseudo-fermion decomposition of the continuum bath correlation functions, and is only limited by the accuracy of this decomposition. We show that to obtain this decomposition one can allow for imaginary pseudo-fermion parame… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.05780v2-abstract-full').style.display = 'inline'; document.getElementById('2207.05780v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.05780v2-abstract-full" style="display: none;"> We develop a discrete fermion approach for modelling the strong interaction of an arbitrary system interacting with continuum electronic reservoirs. The approach is based on a pseudo-fermion decomposition of the continuum bath correlation functions, and is only limited by the accuracy of this decomposition. We show that to obtain this decomposition one can allow for imaginary pseudo-fermion parameters, and strong damping in individual pseudo-fermions, without introducing unwanted approximations. For a non-interacting single-resonant level, we benchmark our approach against an analytical solution and an exact hierachical-equations-of-motion approach. We also show that, for the interacting case, this simple method can capture the strongly correlated low-temperature physics of Kondo resonance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.05780v2-abstract-full').style.display = 'none'; document.getElementById('2207.05780v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 5, 033011 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.05512">arXiv:2207.05512</a> <span> [<a href="https://arxiv.org/pdf/2207.05512">pdf</a>, <a href="https://arxiv.org/format/2207.05512">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.131.113601">10.1103/PhysRevLett.131.113601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of a superradiant phase transition with emergent cat states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Zheng%2C+R">Ri-Hua Zheng</a>, <a href="/search/quant-ph?searchtype=author&query=Ning%2C+W">Wen Ning</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Ye-Hong Chen</a>, <a href="/search/quant-ph?searchtype=author&query=L%C3%BC%2C+J">Jia-Hao L眉</a>, <a href="/search/quant-ph?searchtype=author&query=Shen%2C+L">Li-Tuo Shen</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+K">Kai Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+Y">Yu-Ran Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+D">Da Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+H">Hekang Li</a>, <a href="/search/quant-ph?searchtype=author&query=Xia%2C+Y">Yan Xia</a>, <a href="/search/quant-ph?searchtype=author&query=Wu%2C+F">Fan Wu</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+Z">Zhen-Biao Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Miranowicz%2C+A">Adam Miranowicz</a>, <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N">Neill Lambert</a>, <a href="/search/quant-ph?searchtype=author&query=Zheng%2C+D">Dongning Zheng</a>, <a href="/search/quant-ph?searchtype=author&query=Fan%2C+H">Heng Fan</a>, <a href="/search/quant-ph?searchtype=author&query=Nori%2C+F">Franco Nori</a>, <a href="/search/quant-ph?searchtype=author&query=Zheng%2C+S">Shi-Biao Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.05512v3-abstract-short" style="display: inline;"> Superradiant phase transitions (SPTs) are important for understanding light-matter interactions at the quantum level, and play a central role in criticality-enhanced quantum sensing. So far, SPTs have been observed in driven-dissipative systems, but the emergent light fields did not show any nonclassical characteristic due to the presence of strong dissipation. Here we report an experimental demon… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.05512v3-abstract-full').style.display = 'inline'; document.getElementById('2207.05512v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.05512v3-abstract-full" style="display: none;"> Superradiant phase transitions (SPTs) are important for understanding light-matter interactions at the quantum level, and play a central role in criticality-enhanced quantum sensing. So far, SPTs have been observed in driven-dissipative systems, but the emergent light fields did not show any nonclassical characteristic due to the presence of strong dissipation. Here we report an experimental demonstration of the SPT featuring the emergence of a highly nonclassical photonic field, realized with a resonator coupled to a superconducting qubit, implementing the quantum Rabi model. We fully characterize the light-matter state by Wigner matrix tomography. The measured matrix elements exhibit quantum interference intrinsic of a photonic mesoscopic superposition, and reveal light-matter entanglement <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.05512v3-abstract-full').style.display = 'none'; document.getElementById('2207.05512v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 19 figures, 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 131, 113601 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.02674">arXiv:2110.02674</a> <span> [<a href="https://arxiv.org/pdf/2110.02674">pdf</a>, <a href="https://arxiv.org/format/2110.02674">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Unveiling and veiling a Schr枚dinger cat state from the vacuum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Stassi%2C+R">Roberto Stassi</a>, <a href="/search/quant-ph?searchtype=author&query=Cirio%2C+M">Mauro Cirio</a>, <a href="/search/quant-ph?searchtype=author&query=Funo%2C+K">Ken Funo</a>, <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N">Neill Lambert</a>, <a href="/search/quant-ph?searchtype=author&query=Puebla%2C+J">Jorge Puebla</a>, <a href="/search/quant-ph?searchtype=author&query=Nori%2C+F">Franco Nori</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.02674v1-abstract-short" style="display: inline;"> Deep in the ultrastrong light-matter coupling regime, it has been predicted that the ground state of a two-level atom interacting with a cavity mode takes the form of a "virtual" Schr枚dinger cat entangled state between light and matter. We propose a method to convert this Schr枚dinger cat state from virtual to real, and back again, by driving the atom with optimally chosen pulses. Our system consis… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.02674v1-abstract-full').style.display = 'inline'; document.getElementById('2110.02674v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.02674v1-abstract-full" style="display: none;"> Deep in the ultrastrong light-matter coupling regime, it has been predicted that the ground state of a two-level atom interacting with a cavity mode takes the form of a "virtual" Schr枚dinger cat entangled state between light and matter. We propose a method to convert this Schr枚dinger cat state from virtual to real, and back again, by driving the atom with optimally chosen pulses. Our system consists of a four-level atom, with two of these levels ultrastrongly coupled to a cavity mode. We show that the Schr枚dinger cat state can be converted between virtual and real by making use of either an ideal ultrafast pulse or a multi-tone 蟺-pulse. In addition to allowing us to observe these unusual virtual states this method could also be used to generate entangled cat states on demand for quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.02674v1-abstract-full').style.display = 'none'; document.getElementById('2110.02674v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.09094">arXiv:2108.09094</a> <span> [<a href="https://arxiv.org/pdf/2108.09094">pdf</a>, <a href="https://arxiv.org/format/2108.09094">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.035121">10.1103/PhysRevB.105.035121 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Fermionic influence superoperator: a canonical derivation for the development of methods to simulate the influence of a Fermionic environment on a quantum system with arbitrary parity symmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Cirio%2C+M">Mauro Cirio</a>, <a href="/search/quant-ph?searchtype=author&query=Kuo%2C+P">Po-Chen Kuo</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yueh-Nan Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Nori%2C+F">Franco Nori</a>, <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N">Neill Lambert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.09094v2-abstract-short" style="display: inline;"> We present a canonical derivation of an influence superoperator which generates the reduced dynamics of a Fermionic quantum system linearly coupled to a Fermionic environment initially at thermal equilibrium. We use this formalism to derive a generalized-Lindblad master equation (in the Markovian limit) and a generalized version of the hierarchical equations of motion valid in arbitrary parity-sym… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.09094v2-abstract-full').style.display = 'inline'; document.getElementById('2108.09094v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.09094v2-abstract-full" style="display: none;"> We present a canonical derivation of an influence superoperator which generates the reduced dynamics of a Fermionic quantum system linearly coupled to a Fermionic environment initially at thermal equilibrium. We use this formalism to derive a generalized-Lindblad master equation (in the Markovian limit) and a generalized version of the hierarchical equations of motion valid in arbitrary parity-symmetry conditions, important for the correct evaluation of system correlation functions and spectra. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.09094v2-abstract-full').style.display = 'none'; document.getElementById('2108.09094v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 105, 035121 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.12700">arXiv:2107.12700</a> <span> [<a href="https://arxiv.org/pdf/2107.12700">pdf</a>, <a href="https://arxiv.org/format/2107.12700">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PRXQuantum.3.020305">10.1103/PRXQuantum.3.020305 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonequilibrium heat transport and work with a single artificial atom coupled to a waveguide: emission without external driving </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Lu%2C+Y">Yong Lu</a>, <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N">Neill Lambert</a>, <a href="/search/quant-ph?searchtype=author&query=Kockum%2C+A+F">Anton Frisk Kockum</a>, <a href="/search/quant-ph?searchtype=author&query=Funo%2C+K">Ken Funo</a>, <a href="/search/quant-ph?searchtype=author&query=Bengtsson%2C+A">Andreas Bengtsson</a>, <a href="/search/quant-ph?searchtype=author&query=Gasparinetti%2C+S">Simone Gasparinetti</a>, <a href="/search/quant-ph?searchtype=author&query=Nori%2C+F">Franco Nori</a>, <a href="/search/quant-ph?searchtype=author&query=Delsing%2C+P">Per Delsing</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.12700v1-abstract-short" style="display: inline;"> We observe the continuous emission of photons into a waveguide from a superconducting qubit without the application of an external drive. To explain this observation, we build a two-bath model where the qubit couples simultaneously to a cold bath (the waveguide) and a hot bath (a secondary environment). Our results show that the thermal-photon occupation of the hot bath is up to 0.14 photons, 35 t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.12700v1-abstract-full').style.display = 'inline'; document.getElementById('2107.12700v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.12700v1-abstract-full" style="display: none;"> We observe the continuous emission of photons into a waveguide from a superconducting qubit without the application of an external drive. To explain this observation, we build a two-bath model where the qubit couples simultaneously to a cold bath (the waveguide) and a hot bath (a secondary environment). Our results show that the thermal-photon occupation of the hot bath is up to 0.14 photons, 35 times larger than the cold waveguide, leading to nonequilibrium heat transport with a power of up to 132 zW, as estimated from the qubit emission spectrum. By adding more isolation between the sample output and the first cold amplifier in the output line, the heat transport is strongly suppressed. Our interpretation is that the hot bath may arise from active two-level systems being excited by noise from the output line. We also apply a coherent drive, and use the waveguide to measure thermodynamic work and heat, suggesting waveguide spectroscopy is a useful means to study quantum heat engines and refrigerators. Finally, based on the theoretical model, we propose how a similar setup can be used as a noise spectrometer which provides a new solution for calibrating the background noise of hybrid quantum systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.12700v1-abstract-full').style.display = 'none'; document.getElementById('2107.12700v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PRX Quantum 3, 020305 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.15784">arXiv:2106.15784</a> <span> [<a href="https://arxiv.org/pdf/2106.15784">pdf</a>, <a href="https://arxiv.org/format/2106.15784">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PRXQuantum.3.020338">10.1103/PRXQuantum.3.020338 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantifying Quantumness of Channels Without Entanglement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Ku%2C+H">Huan-Yu Ku</a>, <a href="/search/quant-ph?searchtype=author&query=Kadlec%2C+J">Josef Kadlec</a>, <a href="/search/quant-ph?searchtype=author&query=%C4%8Cernoch%2C+A">Anton铆n 膶ernoch</a>, <a href="/search/quant-ph?searchtype=author&query=Quintino%2C+M+T">Marco T煤lio Quintino</a>, <a href="/search/quant-ph?searchtype=author&query=Zhou%2C+W">Wenbin Zhou</a>, <a href="/search/quant-ph?searchtype=author&query=Lemr%2C+K">Karel Lemr</a>, <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N">Neill Lambert</a>, <a href="/search/quant-ph?searchtype=author&query=Miranowicz%2C+A">Adam Miranowicz</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+S">Shin-Liang Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Nori%2C+F">Franco Nori</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yueh-Nan Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.15784v5-abstract-short" style="display: inline;"> Quantum channels breaking entanglement, incompatibility, or nonlocality are defined as such because they are not useful for entanglement-based, one-sided device-independent, or device-independent quantum information processing, respectively. Here, we show that such breaking channels are related to complementary tests of macrorealism i.e., temporal separability, channel unsteerability, temporal uns… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.15784v5-abstract-full').style.display = 'inline'; document.getElementById('2106.15784v5-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.15784v5-abstract-full" style="display: none;"> Quantum channels breaking entanglement, incompatibility, or nonlocality are defined as such because they are not useful for entanglement-based, one-sided device-independent, or device-independent quantum information processing, respectively. Here, we show that such breaking channels are related to complementary tests of macrorealism i.e., temporal separability, channel unsteerability, temporal unsteerability, and the temporal Bell inequality. To demonstrate this we first define a steerability-breaking channel, which is conceptually similar to entanglement and nonlocality-breaking channels and prove that it is identical to an incompatibility-breaking channel. A hierarchy of quantum non-breaking channels is derived, akin to the existing hierarchy relations for temporal and spatial quantum correlations. We then introduce the concept of channels that break temporal correlations, explain how they are related to the standard breaking channels, and prove the following results: (1) A robustness-based measure for non-entanglement-breaking channels can be probed by temporal nonseparability. (2) A non-steerability-breaking channel can be quantified by channel steering. (3) Temporal steerability and non-macrorealism can be used for, respectively, distinguishing unital steerability-breaking channels and nonlocality-breaking channels for a maximally entangled state. Finally, a two-dimensional depolarizing channel is experimentally implemented as a proof-of-principle example to demonstrate the hierarchy relation of non-breaking channels using temporal quantum correlations <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.15784v5-abstract-full').style.display = 'none'; document.getElementById('2106.15784v5-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Comments welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PRX Quantum 3, 020338 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.09902">arXiv:2105.09902</a> <span> [<a href="https://arxiv.org/pdf/2105.09902">pdf</a>, <a href="https://arxiv.org/format/2105.09902">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22331/q-2022-01-24-630">10.22331/q-2022-01-24-630 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pulse-level noisy quantum circuits with QuTiP </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Li%2C+B">Boxi Li</a>, <a href="/search/quant-ph?searchtype=author&query=Ahmed%2C+S">Shahnawaz Ahmed</a>, <a href="/search/quant-ph?searchtype=author&query=Saraogi%2C+S">Sidhant Saraogi</a>, <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N">Neill Lambert</a>, <a href="/search/quant-ph?searchtype=author&query=Nori%2C+F">Franco Nori</a>, <a href="/search/quant-ph?searchtype=author&query=Pitchford%2C+A">Alexander Pitchford</a>, <a href="/search/quant-ph?searchtype=author&query=Shammah%2C+N">Nathan Shammah</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.09902v2-abstract-short" style="display: inline;"> The study of the impact of noise on quantum circuits is especially relevant to guide the progress of Noisy Intermediate-Scale Quantum (NISQ) computing. In this paper, we address the pulse-level simulation of noisy quantum circuits with the Quantum Toolbox in Python (QuTiP). We introduce new tools in qutip-qip, QuTiP's quantum information processing package. These tools simulate quantum circuits at… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.09902v2-abstract-full').style.display = 'inline'; document.getElementById('2105.09902v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.09902v2-abstract-full" style="display: none;"> The study of the impact of noise on quantum circuits is especially relevant to guide the progress of Noisy Intermediate-Scale Quantum (NISQ) computing. In this paper, we address the pulse-level simulation of noisy quantum circuits with the Quantum Toolbox in Python (QuTiP). We introduce new tools in qutip-qip, QuTiP's quantum information processing package. These tools simulate quantum circuits at the pulse level, leveraging QuTiP's quantum dynamics solvers and control optimization features. We show how quantum circuits can be compiled on simulated processors, with control pulses acting on a target Hamiltonian that describes the unitary evolution of the physical qubits. Various types of noise can be introduced based on the physical model, e.g., by simulating the Lindblad density-matrix dynamics or Monte Carlo quantum trajectories. In particular, the user can define environment-induced decoherence at the processor level and include noise simulation at the level of control pulses. We illustrate how the Deutsch-Jozsa algorithm is compiled and executed on a superconducting-qubit-based processor, on a spin-chain-based processor and using control optimization algorithms. We also show how to easily reproduce experimental results on cross-talk noise in an ion-based processor, and how a Ramsey experiment can be modeled with Lindblad dynamics. Finally, we illustrate how to integrate these features with other software frameworks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.09902v2-abstract-full').style.display = 'none'; document.getElementById('2105.09902v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 8 figures, revised manuscript, with section 4 restructured and a QFT example added, code is available at https://github.com/qutip/qutip-qip</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Quantum 6, 630 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.08273">arXiv:2105.08273</a> <span> [<a href="https://arxiv.org/pdf/2105.08273">pdf</a>, <a href="https://arxiv.org/ps/2105.08273">ps</a>, <a href="https://arxiv.org/format/2105.08273">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.3.043083">10.1103/PhysRevResearch.3.043083 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hidden nonmacrorealism: reviving the Leggett-Garg inequality with stochastic operations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Ku%2C+H">Huan-Yu Ku</a>, <a href="/search/quant-ph?searchtype=author&query=Weng%2C+H">Hao-Cheng Weng</a>, <a href="/search/quant-ph?searchtype=author&query=Shih%2C+Y">Yen-An Shih</a>, <a href="/search/quant-ph?searchtype=author&query=Kuo%2C+P">Po-Chen Kuo</a>, <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N">Neill Lambert</a>, <a href="/search/quant-ph?searchtype=author&query=Nori%2C+F">Franco Nori</a>, <a href="/search/quant-ph?searchtype=author&query=Chuu%2C+C">Chih-Sung Chuu</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yueh-Nan Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.08273v3-abstract-short" style="display: inline;"> The Leggett-Garg inequality (LGI) distinguishes nonmacrorealistic channels from macrorealistic ones by constraining the experimental outcomes of the underlying system. In this work, we propose a class of channels which, initially, cannot violate the LGI (in the form of the temporal Bell inequality) but can violate it after the application of stochastic pre- and post- operations (SPPOs). As a proof… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.08273v3-abstract-full').style.display = 'inline'; document.getElementById('2105.08273v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.08273v3-abstract-full" style="display: none;"> The Leggett-Garg inequality (LGI) distinguishes nonmacrorealistic channels from macrorealistic ones by constraining the experimental outcomes of the underlying system. In this work, we propose a class of channels which, initially, cannot violate the LGI (in the form of the temporal Bell inequality) but can violate it after the application of stochastic pre- and post- operations (SPPOs). As a proof-of-principle experiment, we demonstrate the stochastic pre- and post- operations in an amplitude-damping channel with photonic qubits. We denote the above phenomenon as hidden nonmacrorealistic channels. We also discuss the relationship between this hidden nonmacrorealistic channels (in terms of the temporal Clauser-Horne-Shimony-Holt (CHSH) inequality) and the strongly nonlocality-breaking channel, which breaks the hidden spatial CHSH nonlocality for arbitrary states. In general, if the channel satisfies hidden nonmacrorealism, it is not a strongly CHSH nonlocality-breaking channel. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.08273v3-abstract-full').style.display = 'none'; document.getElementById('2105.08273v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Comments welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 3, 043083 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.02377">arXiv:2104.02377</a> <span> [<a href="https://arxiv.org/pdf/2104.02377">pdf</a>, <a href="https://arxiv.org/format/2104.02377">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.127.150401">10.1103/PhysRevLett.127.150401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> General bound on the performance of counter-diabatic driving acting on dissipative spin systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Funo%2C+K">Ken Funo</a>, <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N">Neill Lambert</a>, <a href="/search/quant-ph?searchtype=author&query=Nori%2C+F">Franco Nori</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.02377v2-abstract-short" style="display: inline;"> Counter-diabatic driving (CD) is a technique in quantum control theory designed to counteract nonadiabatic excitations and guide the system to follow its instantaneous energy eigenstates, and hence has applications in state preparation, quantum annealing, and quantum thermodynamics. However, in many practical situations, the effect of the environment cannot be neglected, and the performance of the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.02377v2-abstract-full').style.display = 'inline'; document.getElementById('2104.02377v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.02377v2-abstract-full" style="display: none;"> Counter-diabatic driving (CD) is a technique in quantum control theory designed to counteract nonadiabatic excitations and guide the system to follow its instantaneous energy eigenstates, and hence has applications in state preparation, quantum annealing, and quantum thermodynamics. However, in many practical situations, the effect of the environment cannot be neglected, and the performance of the CD is expected to degrade. To arrive at general bounds on the resulting error of CD in this situation we consider a driven spin-boson model as a prototypical setup. The inequalities we obtain, in terms of either the Bures angle or the fidelity, allow us to estimate the maximum error solely characterized by the parameters of the system and the bath. By utilizing the analytical form of the upper bound, we demonstrate that the error can be systematically reduced through optimization of the external driving protocol of the system. We also show that if we allow a time-dependent system-bath coupling angle, the obtained bound can be saturated and realizes unit fidelity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.02377v2-abstract-full').style.display = 'none'; document.getElementById('2104.02377v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 127, 150401 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.10806">arXiv:2010.10806</a> <span> [<a href="https://arxiv.org/pdf/2010.10806">pdf</a>, <a href="https://arxiv.org/format/2010.10806">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.5.013181">10.1103/PhysRevResearch.5.013181 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> QuTiP-BoFiN: A bosonic and fermionic numerical hierarchical-equations-of-motion library with applications in light-harvesting, quantum control, and single-molecule electronics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N">Neill Lambert</a>, <a href="/search/quant-ph?searchtype=author&query=Raheja%2C+T">Tarun Raheja</a>, <a href="/search/quant-ph?searchtype=author&query=Cross%2C+S">Simon Cross</a>, <a href="/search/quant-ph?searchtype=author&query=Menczel%2C+P">Paul Menczel</a>, <a href="/search/quant-ph?searchtype=author&query=Ahmed%2C+S">Shahnawaz Ahmed</a>, <a href="/search/quant-ph?searchtype=author&query=Pitchford%2C+A">Alexander Pitchford</a>, <a href="/search/quant-ph?searchtype=author&query=Burgarth%2C+D">Daniel Burgarth</a>, <a href="/search/quant-ph?searchtype=author&query=Nori%2C+F">Franco Nori</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.10806v3-abstract-short" style="display: inline;"> The "hierarchical equations of motion" (HEOM) method is a powerful exact numerical approach to solve the dynamics and find the steady-state of a quantum system coupled to a non-Markovian and non-perturbative environment. Originally developed in the context of physical chemistry, it has also been extended and applied to problems in solid-state physics, optics, single-molecule electronics, and biolo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.10806v3-abstract-full').style.display = 'inline'; document.getElementById('2010.10806v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.10806v3-abstract-full" style="display: none;"> The "hierarchical equations of motion" (HEOM) method is a powerful exact numerical approach to solve the dynamics and find the steady-state of a quantum system coupled to a non-Markovian and non-perturbative environment. Originally developed in the context of physical chemistry, it has also been extended and applied to problems in solid-state physics, optics, single-molecule electronics, and biological physics. Here we present a numerical library in Python, integrated with the powerful QuTiP platform, which implements the HEOM for both bosonic and fermionic environments. We demonstrate its utility with a series of examples. For the bosonic case, we include demonstrations of fitting arbitrary spectral densities, and an example of the dynamics of energy transfer in the Fenna-Matthews-Olson photosynthetic complex, showing how a suitable non-Markovian environment can protect against pure dephasing. We also demonstrate how the HEOM can be used to benchmark different strategies for dynamical decoupling of a spin from its environment, and show that the Uhrig pulse-spacing scheme is less optimal than equally spaced pulses when the environment's spectral density is very broad. For the fermionic case, we present an integrable single-impurity example, used as a benchmark of the code, and a more complex example of an impurity strongly coupled to a single vibronic mode, with applications to single-molecule electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.10806v3-abstract-full').style.display = 'none'; document.getElementById('2010.10806v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 15 figures. Updated to describe package inclusion in QuTiP v4.7 (www.qutip.org), new examples (optimal pulse spacing in dynamical decoupling, quantum heat transport), and inclusion of additional contributors in author list. Further updates to expand examples, clarify content and summarize existing packages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 5, 013181, (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.08764">arXiv:2008.08764</a> <span> [<a href="https://arxiv.org/pdf/2008.08764">pdf</a>, <a href="https://arxiv.org/format/2008.08764">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2058-9565/ac0f36">10.1088/2058-9565/ac0f36 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermal Noise in Electro-Optic Devices at Cryogenic Temperatures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Mobassem%2C+S">Sonia Mobassem</a>, <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N+J">Nicholas J. Lambert</a>, <a href="/search/quant-ph?searchtype=author&query=Rueda%2C+A">Alfredo Rueda</a>, <a href="/search/quant-ph?searchtype=author&query=Fink%2C+J+M">Johannes M. Fink</a>, <a href="/search/quant-ph?searchtype=author&query=Leuchs%2C+G">Gerd Leuchs</a>, <a href="/search/quant-ph?searchtype=author&query=Schwefel%2C+H+G+L">Harald G. L. Schwefel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.08764v1-abstract-short" style="display: inline;"> The quantum bits (qubits) on which superconducting quantum computers are based have energy scales corresponding to photons with GHz frequencies. The energy of photons in the gigahertz domain is too low to allow transmission through the noisy room-temperature environment, where the signal would be lost in thermal noise. Optical photons, on the other hand, have much higher energies, and signals can… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.08764v1-abstract-full').style.display = 'inline'; document.getElementById('2008.08764v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.08764v1-abstract-full" style="display: none;"> The quantum bits (qubits) on which superconducting quantum computers are based have energy scales corresponding to photons with GHz frequencies. The energy of photons in the gigahertz domain is too low to allow transmission through the noisy room-temperature environment, where the signal would be lost in thermal noise. Optical photons, on the other hand, have much higher energies, and signals can be detected using highly efficient single-photon detectors. Transduction from microwave to optical frequencies is therefore a potential enabling technology for quantum devices. However, in such a device the optical pump can be a source of thermal noise and thus degrade the fidelity; the similarity of input microwave state to the output optical state. In order to investigate the magnitude of this effect we model the sub-Kelvin thermal behavior of an electro-optic transducer based on a lithium niobate whispering gallery mode resonator. We find that there is an optimum power level for a continuous pump, whilst pulsed operation of the pump increases the fidelity of the conversion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.08764v1-abstract-full').style.display = 'none'; document.getElementById('2008.08764v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Quantum Sci. Technol. 6, 045005 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.06238">arXiv:2008.06238</a> <span> [<a href="https://arxiv.org/pdf/2008.06238">pdf</a>, <a href="https://arxiv.org/format/2008.06238">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Nonclassical Preparation of Quantum Remote States </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Chen%2C+S">Shih-Hsuan Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Kao%2C+Y">Yu-Chien Kao</a>, <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N">Neill Lambert</a>, <a href="/search/quant-ph?searchtype=author&query=Nori%2C+F">Franco Nori</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+C">Che-Ming Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.06238v1-abstract-short" style="display: inline;"> Remote state preparation (RSP) enables a sender to remotely prepare the quantum state of a receiver without sending the state itself. Recently, it has been recognized that quantum discord is a necessary resource for RSP. Here, we theoretically and experimentally investigate whether RSP can outperform dynamic classical remote state preparation processes. We show that such classical processes can de… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.06238v1-abstract-full').style.display = 'inline'; document.getElementById('2008.06238v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.06238v1-abstract-full" style="display: none;"> Remote state preparation (RSP) enables a sender to remotely prepare the quantum state of a receiver without sending the state itself. Recently, it has been recognized that quantum discord is a necessary resource for RSP. Here, we theoretically and experimentally investigate whether RSP can outperform dynamic classical remote state preparation processes. We show that such classical processes can describe certain RSPs powered by quantum discord. Rather, we argue that a new kind of Einstein-Podolsky-Rosen steering for dynamical processes, called quantum process steering, is the resource required for performing nonclassical RSP. We show how to measure quantum process steering by experimentally realizing nonclassical RSP of photonic quantum systems. Moreover, we demonstrate the transition from classical to quantum RSP. Our results also have applications in realizing genuine quantum RSP for quantum-enabled engineering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.06238v1-abstract-full').style.display = 'none'; document.getElementById('2008.06238v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6+7 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.02303">arXiv:2007.02303</a> <span> [<a href="https://arxiv.org/pdf/2007.02303">pdf</a>, <a href="https://arxiv.org/format/2007.02303">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11467-021-1064-y">10.1007/s11467-021-1064-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exact and efficient quantum simulation of open quantum dynamics for various of Hamiltonians and spectral densities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+N">Na-Na Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Tao%2C+M">Ming-Jie Tao</a>, <a href="/search/quant-ph?searchtype=author&query=He%2C+W">Wan-Ting He</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+X">Xin-Yu Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Kong%2C+X">Xiang-Yu Kong</a>, <a href="/search/quant-ph?searchtype=author&query=Deng%2C+F">Fu-Guo Deng</a>, <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N">Neill Lambert</a>, <a href="/search/quant-ph?searchtype=author&query=Ai%2C+Q">Qing Ai</a>, <a href="/search/quant-ph?searchtype=author&query=Cheng%2C+Y">Yuan-Chung Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.02303v1-abstract-short" style="display: inline;"> Recently, we have theoretically proposed and experimentally demonstrated an exact and efficient quantum simulation of photosynthetic light harvesting in nuclear magnetic resonance (NMR), cf. B. X. Wang, \textit{et al.} npj Quantum Inf.~\textbf{4}, 52 (2018). In this paper, we apply this approach to simulate the open quantum dynamics in various photosynthetic systems with different Hamiltonians. By… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.02303v1-abstract-full').style.display = 'inline'; document.getElementById('2007.02303v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.02303v1-abstract-full" style="display: none;"> Recently, we have theoretically proposed and experimentally demonstrated an exact and efficient quantum simulation of photosynthetic light harvesting in nuclear magnetic resonance (NMR), cf. B. X. Wang, \textit{et al.} npj Quantum Inf.~\textbf{4}, 52 (2018). In this paper, we apply this approach to simulate the open quantum dynamics in various photosynthetic systems with different Hamiltonians. By numerical simulations, we show that for Drude-Lorentz spectral density the dimerized geometries with strong couplings within the donor and acceptor clusters respectively exhibit significantly-improved efficiency. Based on the optimal geometry, we also demonstrate that the overall energy transfer can be further optimized when the energy gap between the donor and acceptor clusters matches the peak of the spectral density. Moreover, by exploring the quantum dynamics for different types of spectral densities, e.g. Ohmic, sub-Ohmic, and super-Ohmic spectral densities, we show that our approach can be generalized to effectively simulate open quantum dynamics for various Hamiltonians and spectral densities. Because $\log_{2}N$ qubits are required for quantum simulation of an $N$-dimensional quantum system, this quantum simulation approach can greatly reduce the computational complexity compared with popular numerically-exact methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.02303v1-abstract-full').style.display = 'none'; document.getElementById('2007.02303v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Front. Phys. 16(5), 51501 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.07043">arXiv:2003.07043</a> <span> [<a href="https://arxiv.org/pdf/2003.07043">pdf</a>, <a href="https://arxiv.org/ps/2003.07043">ps</a>, <a href="https://arxiv.org/format/2003.07043">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.104.022614">10.1103/PhysRevA.104.022614 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum steering as a witness of quantum scrambling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Lin%2C+J">Jhen-Dong Lin</a>, <a href="/search/quant-ph?searchtype=author&query=Lin%2C+W">Wei-Yu Lin</a>, <a href="/search/quant-ph?searchtype=author&query=Ku%2C+H">Huan-Yu Ku</a>, <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N">Neill Lambert</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yueh-Nan Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Nori%2C+F">Franco Nori</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.07043v3-abstract-short" style="display: inline;"> Quantum information scrambling describes the delocalization of local information to global information in the form of entanglement throughout all possible degrees of freedom. A natural measure of scrambling is the tripartite mutual information (TMI), which quantifies the amount of delocalized information for a given quantum channel with its state representation, i.e., the Choi state. In this work,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.07043v3-abstract-full').style.display = 'inline'; document.getElementById('2003.07043v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.07043v3-abstract-full" style="display: none;"> Quantum information scrambling describes the delocalization of local information to global information in the form of entanglement throughout all possible degrees of freedom. A natural measure of scrambling is the tripartite mutual information (TMI), which quantifies the amount of delocalized information for a given quantum channel with its state representation, i.e., the Choi state. In this work, we show that quantum information scrambling can also be witnessed by temporal quantum steering for qubit systems. We can do so because there is a fundamental equivalence between the Choi state and the pseudo-density matrix formalism used in temporal quantum correlations. In particular, we propose a quantity as a scrambling witness, based on a measure of temporal steering called temporal steerable weight. We justify the scrambling witness for unitary qubit channels by proving that the quantity vanishes whenever the channel is non-scrambling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.07043v3-abstract-full').style.display = 'none'; document.getElementById('2003.07043v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 104, 022614 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.11311">arXiv:1911.11311</a> <span> [<a href="https://arxiv.org/pdf/1911.11311">pdf</a>, <a href="https://arxiv.org/format/1911.11311">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.214414">10.1103/PhysRevB.101.214414 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultrastrong coupling between a microwave resonator and antiferromagnetic resonances of rare earth ion spins </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Everts%2C+J">Jonathan Everts</a>, <a href="/search/quant-ph?searchtype=author&query=King%2C+G+G+G">Gavin G. G. King</a>, <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N">Nicholas Lambert</a>, <a href="/search/quant-ph?searchtype=author&query=Kocsis%2C+S">Sacha Kocsis</a>, <a href="/search/quant-ph?searchtype=author&query=Rogge%2C+S">Sven Rogge</a>, <a href="/search/quant-ph?searchtype=author&query=Longdell%2C+J+J">Jevon J. Longdell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.11311v1-abstract-short" style="display: inline;"> Quantum magnonics is a new and active research field, leveraging the strong collective coupling between microwaves and magnetically ordered spin systems. To date work in quantum magnonics has focused on transition metals and almost entirely on ferromagnetic resonances in yttrium iron garnet (YIG). Antiferromagnetic systems have gained interest as they produce no stray field, and are therefore robu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.11311v1-abstract-full').style.display = 'inline'; document.getElementById('1911.11311v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.11311v1-abstract-full" style="display: none;"> Quantum magnonics is a new and active research field, leveraging the strong collective coupling between microwaves and magnetically ordered spin systems. To date work in quantum magnonics has focused on transition metals and almost entirely on ferromagnetic resonances in yttrium iron garnet (YIG). Antiferromagnetic systems have gained interest as they produce no stray field, and are therefore robust to magnetic perturbations and have narrow, shape independent resonant linewidths. Here we show the first experimental evidence of ultrastrong-coupling between a microwave cavity and collective antiferromagnetic resonances (magnons) in a rare earth crystal. The combination of the unique optical and spin properties of the rare earths and collective antiferromagnetic order paves the way for novel quantum magnonic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.11311v1-abstract-full').style.display = 'none'; document.getElementById('1911.11311v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 214414 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.10255">arXiv:1906.10255</a> <span> [<a href="https://arxiv.org/pdf/1906.10255">pdf</a>, <a href="https://arxiv.org/ps/1906.10255">ps</a>, <a href="https://arxiv.org/format/1906.10255">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/qute.201900077">10.1002/qute.201900077 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coherent conversion between microwave and optical photons -- an overview of physical implementations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N+J">Nicholas J. Lambert</a>, <a href="/search/quant-ph?searchtype=author&query=Rueda%2C+A">Alfredo Rueda</a>, <a href="/search/quant-ph?searchtype=author&query=Sedlmeir%2C+F">Florian Sedlmeir</a>, <a href="/search/quant-ph?searchtype=author&query=Schwefel%2C+H+G+L">Harald G. L. Schwefel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.10255v1-abstract-short" style="display: inline;"> Quantum information technology based on solid state qubits has created much interest in converting quantum states from the microwave to the optical domain. Optical photons, unlike microwave photons, can be transmitted by fiber, making them suitable for long distance quantum communication. Moreover, the optical domain offers access to a large set of very well developed quantum optical tools, such a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.10255v1-abstract-full').style.display = 'inline'; document.getElementById('1906.10255v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.10255v1-abstract-full" style="display: none;"> Quantum information technology based on solid state qubits has created much interest in converting quantum states from the microwave to the optical domain. Optical photons, unlike microwave photons, can be transmitted by fiber, making them suitable for long distance quantum communication. Moreover, the optical domain offers access to a large set of very well developed quantum optical tools, such as highly efficient single-photon detectors and long-lived quantum memories. For a high fidelity microwave to optical transducer, efficient conversion at single photon level and low added noise is needed. Currently, the most promising approaches to build such systems are based on second order nonlinear phenomena such as optomechanical and electro-optic interactions. Alternative approaches, although not yet as efficient, include magneto-optical coupling and schemes based on isolated quantum systems like atoms, ions or quantum dots. In this Progress Report, we provide the necessary theoretical foundations for the most important microwave-to-optical conversion experiments, describe their implementations and discuss current limitations and future prospects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.10255v1-abstract-full').style.display = 'none'; document.getElementById('1906.10255v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 Pages, 8 Figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Adv. Quantum Technol. 2020, 3, 1900077 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.13454">arXiv:1905.13454</a> <span> [<a href="https://arxiv.org/pdf/1905.13454">pdf</a>, <a href="https://arxiv.org/ps/1905.13454">ps</a>, <a href="https://arxiv.org/format/1905.13454">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41534-020-00321-x">10.1038/s41534-020-00321-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental test of non-macrorealistic cat-states in the cloud </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Ku%2C+H">Huan-Yu Ku</a>, <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N">Neill Lambert</a>, <a href="/search/quant-ph?searchtype=author&query=Jhan%2C+F">Fong-Ruei Jhan</a>, <a href="/search/quant-ph?searchtype=author&query=Emary%2C+C">Clive Emary</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yueh-Nan Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Nori%2C+F">Franco Nori</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.13454v2-abstract-short" style="display: inline;"> The Leggett-Garg inequality attempts to classify experimental outcomes as arising from one of two possible classes of physical theories: those described by macrorealism (which obey our intuition about how the macroscopic classical world behaves), and those that are not (e.g., quantum theory). The development of cloud-based quantum computing devices enables us to explore the limits of macrorealism… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.13454v2-abstract-full').style.display = 'inline'; document.getElementById('1905.13454v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.13454v2-abstract-full" style="display: none;"> The Leggett-Garg inequality attempts to classify experimental outcomes as arising from one of two possible classes of physical theories: those described by macrorealism (which obey our intuition about how the macroscopic classical world behaves), and those that are not (e.g., quantum theory). The development of cloud-based quantum computing devices enables us to explore the limits of macrorealism in new regimes. In particular, here we take advantage of the properties of the programmable nature of the IBM quantum experience to observe the violation of the Leggett-Garg inequality (in the form of a ``quantum witness") as a function of the number of constituent systems (qubits), while simultaneously maximizing the `disconnectivity', a potential measure of macroscopicity, between constituents. Our results show that two-qubit and four-qubit ``cat states" (which have large disconnectivity) are seen to violate the inequality, and hence can be classified as nonmacrorealistic. In contrast, a six-qubit cat state does not violate the ``quantum-witness" beyond a so-called clumsy invasive-measurement bound, and thus is compatible with ``clumsy macrorealism". As a comparison, we also consider un-entangled product states with n = 2, 3, 4, and 6 qubits, in which the disconnectivity is low. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.13454v2-abstract-full').style.display = 'none'; document.getElementById('1905.13454v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum information 6, 98 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.03480">arXiv:1905.03480</a> <span> [<a href="https://arxiv.org/pdf/1905.03480">pdf</a>, <a href="https://arxiv.org/format/1905.03480">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.035407">10.1103/PhysRevB.100.035407 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Speeding-up a quantum refrigerator via counter-diabatic driving </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Funo%2C+K">Ken Funo</a>, <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N">Neill Lambert</a>, <a href="/search/quant-ph?searchtype=author&query=Karimi%2C+B">Bayan Karimi</a>, <a href="/search/quant-ph?searchtype=author&query=Pekola%2C+J+P">Jukka P. Pekola</a>, <a href="/search/quant-ph?searchtype=author&query=Masuyama%2C+Y">Yuta Masuyama</a>, <a href="/search/quant-ph?searchtype=author&query=Nori%2C+F">Franco Nori</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.03480v4-abstract-short" style="display: inline;"> We study the application of a counter-diabatic driving (CD) technique to enhance the thermodynamic efficiency and power of a quantum Otto refrigerator based on a superconducting qubit coupled to two resonant circuits. Although the CD technique is originally designed to counteract non-adiabatic coherent excitations in isolated systems, we find that it also works effectively in the open system dynam… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.03480v4-abstract-full').style.display = 'inline'; document.getElementById('1905.03480v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.03480v4-abstract-full" style="display: none;"> We study the application of a counter-diabatic driving (CD) technique to enhance the thermodynamic efficiency and power of a quantum Otto refrigerator based on a superconducting qubit coupled to two resonant circuits. Although the CD technique is originally designed to counteract non-adiabatic coherent excitations in isolated systems, we find that it also works effectively in the open system dynamics, improving the coherence-induced losses of efficiency and power. We compare the CD dynamics with its classical counterpart, and find a deviation that arises because the CD is designed to follow the energy eigenbasis of the original Hamiltonian, but the heat baths thermalize the system in a different basis. We also discuss possible experimental realizations of our model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.03480v4-abstract-full').style.display = 'none'; document.getElementById('1905.03480v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 035407 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.08133">arXiv:1904.08133</a> <span> [<a href="https://arxiv.org/pdf/1904.08133">pdf</a>, <a href="https://arxiv.org/format/1904.08133">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.101.013814">10.1103/PhysRevA.101.013814 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Collectively induced exceptional points of quantum emitters coupled to nanoparticle surface plasmons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Kuo%2C+P">Po-Chen Kuo</a>, <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N">Neill Lambert</a>, <a href="/search/quant-ph?searchtype=author&query=Miranowicz%2C+A">Adam Miranowicz</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+H">Hong-Bin Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+G">Guang-Yin Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yueh-Nan Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Nori%2C+F">Franco Nori</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.08133v2-abstract-short" style="display: inline;"> Exceptional points, resulting from non-Hermitian degeneracies, have the potential to enhance the capabilities of quantum sensing. Thus, finding exceptional points in different quantum systems is vital for developing such future sensing devices. Taking advantage of the enhanced light-matter interactions in a confined volume on a metal nanoparticle surface, here we theoretically demonstrate the exis… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.08133v2-abstract-full').style.display = 'inline'; document.getElementById('1904.08133v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.08133v2-abstract-full" style="display: none;"> Exceptional points, resulting from non-Hermitian degeneracies, have the potential to enhance the capabilities of quantum sensing. Thus, finding exceptional points in different quantum systems is vital for developing such future sensing devices. Taking advantage of the enhanced light-matter interactions in a confined volume on a metal nanoparticle surface, here we theoretically demonstrate the existence of exceptional points in a system consisting of quantum emitters coupled to a metal nanoparticle of subwavelength scale. By using an analytical quantum electrodynamics approach, exceptional points are manifested as a result of a strong coupling effect and observable in a drastic splitting of originally coalescent eigenenergies. Furthermore, we show that exceptional points can also occur when a number of quantum emitters is collectively coupled to the dipole mode of localized surface plasmons. Such a quantum collective effect not only relaxes the strong-coupling requirement for an individual emitter, but also results in a more stable generation of the exceptional points. Furthermore, we point out that the exceptional points can be explicitly revealed in the power spectra. A generalized signal-to-noise ratio, accounting for both the frequency splitting in the power spectrum and the system's dissipation, shows clearly that a collection of quantum emitters coupled to a nanoparticle provides a better performance of detecting exceptional points, compared to that of a single quantum emitter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.08133v2-abstract-full').style.display = 'none'; document.getElementById('1904.08133v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 101, 013814 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.05892">arXiv:1903.05892</a> <span> [<a href="https://arxiv.org/pdf/1903.05892">pdf</a>, <a href="https://arxiv.org/format/1903.05892">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-019-11656-1">10.1038/s41467-019-11656-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Virtual excitations in the ultra-strongly-coupled spin-boson model: physical results from unphysical modes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N">Neill Lambert</a>, <a href="/search/quant-ph?searchtype=author&query=Ahmed%2C+S">Shahnawaz Ahmed</a>, <a href="/search/quant-ph?searchtype=author&query=Cirio%2C+M">Mauro Cirio</a>, <a href="/search/quant-ph?searchtype=author&query=Nori%2C+F">Franco Nori</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.05892v1-abstract-short" style="display: inline;"> Here we show how, in the ultra-strongly-coupled spin-boson model, apparently unphysical "Matsubara modes" are required not only to regulate detailed balance, but also to arrive at a correct and physical description of the non-perturbative dynamics and steady-state. In particular, in the zero-temperature limit, we show that neglecting the Matsubara modes results in an erroneous emission of virtual… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.05892v1-abstract-full').style.display = 'inline'; document.getElementById('1903.05892v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.05892v1-abstract-full" style="display: none;"> Here we show how, in the ultra-strongly-coupled spin-boson model, apparently unphysical "Matsubara modes" are required not only to regulate detailed balance, but also to arrive at a correct and physical description of the non-perturbative dynamics and steady-state. In particular, in the zero-temperature limit, we show that neglecting the Matsubara modes results in an erroneous emission of virtual photons from the collective ground state. To explore this difficult-to-model regime we start by using a non-perturbative hierarchical equations of motion (HEOM) approach, based on a partial fitting of the bath correlation-function which takes into account the infinite sum of Matsubara frequencies using only a biexponential function. We compare the HEOM method to both a pseudo-mode model, and the reaction coordinate (RC) mapping, which help explain the nature of the aberrations observed when Matsubara frequencies are neglected. For the pseudo-mode method we present a general proof of validity, which allows for negative Matsubara-contributions to the decomposition of the bath correlation functions to be described by zero-frequency Matsubara-modes with non-Hermitian coupling to the system. The latter obey a non-Hermitian pseudo-Schr枚dinger equation, ultimately justifying why superficially unphysical modes can give rise to physical system behavior. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.05892v1-abstract-full').style.display = 'none'; document.getElementById('1903.05892v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 10, 3721 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.03251">arXiv:1812.03251</a> <span> [<a href="https://arxiv.org/pdf/1812.03251">pdf</a>, <a href="https://arxiv.org/format/1812.03251">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.99.012302">10.1103/PhysRevA.99.012302 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Securing quantum networking tasks with multipartite Einstein-Podolsky-Rosen steering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Huang%2C+C">Chien-Ying Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N">Neill Lambert</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+C">Che-Ming Li</a>, <a href="/search/quant-ph?searchtype=author&query=Lu%2C+Y">Yen-Te Lu</a>, <a href="/search/quant-ph?searchtype=author&query=Nori%2C+F">Franco Nori</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.03251v1-abstract-short" style="display: inline;"> Einstein-Podolsky-Rosen (EPR) steering is the explicit demonstration of the fact that the measurements of one party can in influence the quantum state held by another, distant, party, and do so even if the measurements themselves are untrusted. This has been shown to allow one-sided device-independent quantum-information tasks between two remote parties. However, in general, advanced multiparty pr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.03251v1-abstract-full').style.display = 'inline'; document.getElementById('1812.03251v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.03251v1-abstract-full" style="display: none;"> Einstein-Podolsky-Rosen (EPR) steering is the explicit demonstration of the fact that the measurements of one party can in influence the quantum state held by another, distant, party, and do so even if the measurements themselves are untrusted. This has been shown to allow one-sided device-independent quantum-information tasks between two remote parties. However, in general, advanced multiparty protocols for generic quantum technologies, such as quantum secret sharing and blind quantum computing for quantum networks, demand multipartite quantum correlations of graph states shared between more than two parties. Here, we show that, when one part of a quantum multidimensional system composed of a two-colorable graph state (e.g., cluster and Greenberger-Horne-Zeilinger states) is attacked by an eavesdropper using a universal cloning machine, only one of the copy subsystems can exhibit multipartite EPR steering but not both. Such a no-sharing restriction secures both state sources and channels against cloning-based attacks for generic quantum networking tasks, such as distributed quantum-information processing, in the presence of uncharacterized measurement apparatuses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.03251v1-abstract-full').style.display = 'none'; document.getElementById('1812.03251v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Physical Review A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 99, 012302 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.08682">arXiv:1811.08682</a> <span> [<a href="https://arxiv.org/pdf/1811.08682">pdf</a>, <a href="https://arxiv.org/format/1811.08682">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.122.190403">10.1103/PhysRevLett.122.190403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multielectron Ground State Electroluminescence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Cirio%2C+M">Mauro Cirio</a>, <a href="/search/quant-ph?searchtype=author&query=Shammah%2C+N">Nathan Shammah</a>, <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N">Neill Lambert</a>, <a href="/search/quant-ph?searchtype=author&query=De+Liberato%2C+S">Simone De Liberato</a>, <a href="/search/quant-ph?searchtype=author&query=Nori%2C+F">Franco Nori</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.08682v2-abstract-short" style="display: inline;"> The ground state of a cavity-electron system in the ultrastrong coupling regime is characterized by the presence of virtual photons. If an electric current flows through this system, the modulation of the light-matter coupling induced by this non-equilibrium effect can induce an extra-cavity photon emission signal, even when electrons entering the cavity do not have enough energy to populate the e… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.08682v2-abstract-full').style.display = 'inline'; document.getElementById('1811.08682v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.08682v2-abstract-full" style="display: none;"> The ground state of a cavity-electron system in the ultrastrong coupling regime is characterized by the presence of virtual photons. If an electric current flows through this system, the modulation of the light-matter coupling induced by this non-equilibrium effect can induce an extra-cavity photon emission signal, even when electrons entering the cavity do not have enough energy to populate the excited states. We show that this ground-state electroluminescence, previously identified in a single-qubit system [Phys. Rev. Lett. 116, 113601 (2016)] can arise in a many-electron system. The collective enhancement of the light-matter coupling makes this effect, described beyond the rotating wave approximation, robust in the thermodynamic limit, allowing its observation in a broad range of physical systems, from a semiconductor heterostructure with flat-band dispersion to various implementations of the Dicke model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.08682v2-abstract-full').style.display = 'none'; document.getElementById('1811.08682v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages (9+23), 9 figures (3+6)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 122, 190403 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.05799">arXiv:1805.05799</a> <span> [<a href="https://arxiv.org/pdf/1805.05799">pdf</a>, <a href="https://arxiv.org/ps/1805.05799">ps</a>, <a href="https://arxiv.org/format/1805.05799">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5040898">10.1063/1.5040898 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optimizing co-operative multi-environment dynamics in a dark-state-enhanced photosynthetic heat engine </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Wertnik%2C+M">Melina Wertnik</a>, <a href="/search/quant-ph?searchtype=author&query=Chin%2C+A">Alex Chin</a>, <a href="/search/quant-ph?searchtype=author&query=Nori%2C+F">Franco Nori</a>, <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N">Neill Lambert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.05799v1-abstract-short" style="display: inline;"> We analyze the role of coherent, non-perturbative system-bath interactions in a photosynthetic heat engine. Using the reaction-coordinate formalism to describe the vibrational phonon-environment in the engine, we analyze the efficiency around an optimal parameter regime predicted in earlier works. We show that, in the limit of high-temperature photon irradiation, the phonon-assisted population tra… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.05799v1-abstract-full').style.display = 'inline'; document.getElementById('1805.05799v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.05799v1-abstract-full" style="display: none;"> We analyze the role of coherent, non-perturbative system-bath interactions in a photosynthetic heat engine. Using the reaction-coordinate formalism to describe the vibrational phonon-environment in the engine, we analyze the efficiency around an optimal parameter regime predicted in earlier works. We show that, in the limit of high-temperature photon irradiation, the phonon-assisted population transfer between bright and dark states is suppressed due to dephasing from the photon environment, even in the Markov limit where we expect the influence of each bath to have an independent and additive affect on the dynamics. Manipulating the phonon bath properties via its spectral density enables us to identify both optimal low- and high-frequency regimes where the suppression can be removed. This suppression of transfer and its removal suggests that it is important to consider carefully the non-perturbative and cooperative effects of system-bath environments in designing artificial photosynthetic systems, and also that manipulating inter-environmental interactions could provide a new multidimensional "lever" by which to optimize photocells and other types of quantum device. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.05799v1-abstract-full').style.display = 'none'; document.getElementById('1805.05799v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Journal of Chemical Physics 149, 084112 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.05129">arXiv:1805.05129</a> <span> [<a href="https://arxiv.org/pdf/1805.05129">pdf</a>, <a href="https://arxiv.org/format/1805.05129">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.98.063815">10.1103/PhysRevA.98.063815 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Open quantum systems with local and collective incoherent processes: Efficient numerical simulation using permutational invariance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Shammah%2C+N">Nathan Shammah</a>, <a href="/search/quant-ph?searchtype=author&query=Ahmed%2C+S">Shahnawaz Ahmed</a>, <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N">Neill Lambert</a>, <a href="/search/quant-ph?searchtype=author&query=De+Liberato%2C+S">Simone De Liberato</a>, <a href="/search/quant-ph?searchtype=author&query=Nori%2C+F">Franco Nori</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.05129v5-abstract-short" style="display: inline;"> The permutational invariance of identical two-level systems allows for an exponential reduction in the computational resources required to study the Lindblad dynamics of coupled spin-boson ensembles evolving under the effect of both local and collective noise. Here we take advantage of this speedup to study several important physical phenomena in the presence of local incoherent processes, in whic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.05129v5-abstract-full').style.display = 'inline'; document.getElementById('1805.05129v5-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.05129v5-abstract-full" style="display: none;"> The permutational invariance of identical two-level systems allows for an exponential reduction in the computational resources required to study the Lindblad dynamics of coupled spin-boson ensembles evolving under the effect of both local and collective noise. Here we take advantage of this speedup to study several important physical phenomena in the presence of local incoherent processes, in which each degree of freedom couples to its own reservoir. Assessing the robustness of collective effects against local dissipation is paramount to predict their presence in different physical implementations. We have developed an open-source library in Python, the Permutational-Invariant Quantum Solver (PIQS), which we use to study a variety of phenomena in driven-dissipative open quantum systems. We consider both local and collective incoherent processes in the weak, strong, and ultrastrong-coupling regimes. Using PIQS, we reproduced a series of known physical results concerning collective quantum effects and extended their study to the local driven-dissipative scenario. Our work addresses the robustness of various collective phenomena, e.g., spin squeezing, superradiance, quantum phase transitions, against local dissipation processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.05129v5-abstract-full').style.display = 'none'; document.getElementById('1805.05129v5-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 13 figures, the PIQS open-source library is available at https://github.com/nathanshammah/piqs/ and is integrated in QuTiP from version 4.3.1. Fixed typos in Table I and updated bibliography for published references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 98, 063815 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.09475">arXiv:1801.09475</a> <span> [<a href="https://arxiv.org/pdf/1801.09475">pdf</a>, <a href="https://arxiv.org/ps/1801.09475">ps</a>, <a href="https://arxiv.org/format/1801.09475">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41534-018-0102-2">10.1038/s41534-018-0102-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum simulation of photosynthetic energy transfer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Wang%2C+B">Bi-Xue Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Tao%2C+M">Ming-Jie Tao</a>, <a href="/search/quant-ph?searchtype=author&query=Ai%2C+Q">Qing Ai</a>, <a href="/search/quant-ph?searchtype=author&query=Xin%2C+T">Tao Xin</a>, <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N">Neill Lambert</a>, <a href="/search/quant-ph?searchtype=author&query=Ruan%2C+D">Dong Ruan</a>, <a href="/search/quant-ph?searchtype=author&query=Cheng%2C+Y">Yuan-Chung Cheng</a>, <a href="/search/quant-ph?searchtype=author&query=Nori%2C+F">Franco Nori</a>, <a href="/search/quant-ph?searchtype=author&query=Deng%2C+F">Fu-Guo Deng</a>, <a href="/search/quant-ph?searchtype=author&query=Long%2C+G">Gui-Lu Long</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.09475v2-abstract-short" style="display: inline;"> Near-unity energy transfer efficiency has been widely observed in natural photosynthetic complexes. This phenomenon has attracted broad interest from different fields, such as physics, biology, chemistry and material science, as it may offer valuable insights into efficient solar-energy harvesting. Recently, quantum coherent effects have been discovered in photosynthetic light harvesting, and thei… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.09475v2-abstract-full').style.display = 'inline'; document.getElementById('1801.09475v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.09475v2-abstract-full" style="display: none;"> Near-unity energy transfer efficiency has been widely observed in natural photosynthetic complexes. This phenomenon has attracted broad interest from different fields, such as physics, biology, chemistry and material science, as it may offer valuable insights into efficient solar-energy harvesting. Recently, quantum coherent effects have been discovered in photosynthetic light harvesting, and their potential role on energy transfer has seen heated debate. Here, we perform an experimental quantum simulation of photosynthetic energy transfer using nuclear magnetic resonance (NMR). We show that an N- chromophore photosynthetic complex, with arbitrary structure and bath spectral density, can be effectively simulated by a system with log2 N qubits. The computational cost of simulating such a system with a theoretical tool, like the hierarchical equation of motion, which is exponential in N, can be potentially reduced to requiring a just polynomial number of qubits N using NMR quantum simulation. The benefits of performing such quantum simulation in NMR are even greater when the spectral density is complex, as in natural photosynthetic complexes. These findings may shed light on quantum coherence in energy transfer and help to provide design principles for efficient artificial light harvesting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.09475v2-abstract-full').style.display = 'none'; document.getElementById('1801.09475v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 9 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Inf. 4, 52 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.02077">arXiv:1712.02077</a> <span> [<a href="https://arxiv.org/pdf/1712.02077">pdf</a>, <a href="https://arxiv.org/format/1712.02077">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.97.125429">10.1103/PhysRevB.97.125429 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Amplified and tunable transverse and longitudinal spin-photon coupling in hybrid circuit-QED </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N">Neill Lambert</a>, <a href="/search/quant-ph?searchtype=author&query=Cirio%2C+M">Mauro Cirio</a>, <a href="/search/quant-ph?searchtype=author&query=Delbecq%2C+M">Matthieu Delbecq</a>, <a href="/search/quant-ph?searchtype=author&query=Allison%2C+G">Giles Allison</a>, <a href="/search/quant-ph?searchtype=author&query=Marx%2C+M">Marian Marx</a>, <a href="/search/quant-ph?searchtype=author&query=Tarucha%2C+S">Seigo Tarucha</a>, <a href="/search/quant-ph?searchtype=author&query=Nori%2C+F">Franco Nori</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.02077v1-abstract-short" style="display: inline;"> We describe a method to tune, in-situ, between transverse and longitudinal light-matter coupling in a hybrid circuit-QED device composed of an electron spin degree of freedom coupled to a microwave transmission line cavity. Our approach relies on periodic modulation of the coupling itself, such that in a certain frame the interaction is both amplified and either transverse, or, by modulating at tw… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.02077v1-abstract-full').style.display = 'inline'; document.getElementById('1712.02077v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.02077v1-abstract-full" style="display: none;"> We describe a method to tune, in-situ, between transverse and longitudinal light-matter coupling in a hybrid circuit-QED device composed of an electron spin degree of freedom coupled to a microwave transmission line cavity. Our approach relies on periodic modulation of the coupling itself, such that in a certain frame the interaction is both amplified and either transverse, or, by modulating at two frequencies, longitudinal. The former realizes an effective simulation of certain aspects of the ultra-strong coupling regime, while the latter allows one to implement a longitudinal readout scheme even when the intrinsic Hamiltonian is transverse, and the individual spin or cavity frequencies cannot be changed. We analyze the fidelity of using such a scheme to measure the state of the electron spin degree of freedom, and argue that the longitudinal readout scheme can operate in regimes where the traditional dispersive approach fails. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.02077v1-abstract-full').style.display = 'none'; document.getElementById('1712.02077v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 97, 125429 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.11387">arXiv:1710.11387</a> <span> [<a href="https://arxiv.org/pdf/1710.11387">pdf</a>, <a href="https://arxiv.org/ps/1710.11387">ps</a>, <a href="https://arxiv.org/format/1710.11387">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.98.022104">10.1103/PhysRevA.98.022104 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hierarchy in temporal quantum correlations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Ku%2C+H">Huan-Yu Ku</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+S">Shin-Liang Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N">Neill Lambert</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yueh-Nan Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Nori%2C+F">Franco Nori</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.11387v3-abstract-short" style="display: inline;"> Einstein-Podolsky-Rosen (EPR) steering is an intermediate quantum correlation that lies in between entanglement and Bell non-locality. Its temporal analogue, temporal steering, has recently been shown to have applications in quantum information and open quantum systems. Here, we show that there exists a hierarchy among the three temporal quantum correlations: temporal inseparability, temporal stee… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.11387v3-abstract-full').style.display = 'inline'; document.getElementById('1710.11387v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.11387v3-abstract-full" style="display: none;"> Einstein-Podolsky-Rosen (EPR) steering is an intermediate quantum correlation that lies in between entanglement and Bell non-locality. Its temporal analogue, temporal steering, has recently been shown to have applications in quantum information and open quantum systems. Here, we show that there exists a hierarchy among the three temporal quantum correlations: temporal inseparability, temporal steering, and macrorealism. Given that the temporal inseparability can be used to define a measure of quantum causality, similarly the quantification of temporal steering can be viewed as a weaker measure of direct cause and can be used to distinguish between direct cause and common cause in a quantum network. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.11387v3-abstract-full').style.display = 'none'; document.getElementById('1710.11387v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 98, 022104 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.08688">arXiv:1705.08688</a> <span> [<a href="https://arxiv.org/pdf/1705.08688">pdf</a>, <a href="https://arxiv.org/ps/1705.08688">ps</a>, <a href="https://arxiv.org/format/1705.08688">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41598-019-56866-1">10.1038/s41598-019-56866-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamics of an ultra-strongly-coupled system interacting with a driven nonlinear resonator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Endo%2C+S">Suguru Endo</a>, <a href="/search/quant-ph?searchtype=author&query=Matsuzaki%2C+Y">Yuichiro Matsuzaki</a>, <a href="/search/quant-ph?searchtype=author&query=Kakuyanagi%2C+K">Kosuke Kakuyanagi</a>, <a href="/search/quant-ph?searchtype=author&query=Saito%2C+S">Shiro Saito</a>, <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N">Neill Lambert</a>, <a href="/search/quant-ph?searchtype=author&query=Nori%2C+F">Franco Nori</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.08688v2-abstract-short" style="display: inline;"> In the ultra-strong coupling regime of a light-matter system, the ground state exhibits non-trivial entanglement between the atom and photons. For the purposes of exploring the measurement and control of this ground state, here we analyze the dynamics of such an ultra-strongly-coupled system interacting with a driven nonlinear resonator acting as a measurement apparatus. Interestingly, although th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.08688v2-abstract-full').style.display = 'inline'; document.getElementById('1705.08688v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.08688v2-abstract-full" style="display: none;"> In the ultra-strong coupling regime of a light-matter system, the ground state exhibits non-trivial entanglement between the atom and photons. For the purposes of exploring the measurement and control of this ground state, here we analyze the dynamics of such an ultra-strongly-coupled system interacting with a driven nonlinear resonator acting as a measurement apparatus. Interestingly, although the coupling between the atom and the nonlinear resonator is much smaller than the typical energy scales of the ultra-strongly-coupled system, we show that we can generate a strong correlation between the nonlinear resonator and the light-matter system. A subsequent coarse- grained measurement on the nonlinear resonator significantly affects the light-matter system, and the phase of the light changes depending on the measurement results. Also, we investigate the conditions for when the nonlinear resonator can be entangled with the ultra-strongly coupled system, which is the mechanism that allows us to project the ground state of the ultra-strongly coupled system into a non-energy eigenstate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.08688v2-abstract-full').style.display = 'none'; document.getElementById('1705.08688v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Scientific Reports volume 10, Article number: 1751 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1704.07066">arXiv:1704.07066</a> <span> [<a href="https://arxiv.org/pdf/1704.07066">pdf</a>, <a href="https://arxiv.org/format/1704.07066">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.96.023863">10.1103/PhysRevA.96.023863 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superradiance with local phase-breaking effects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Shammah%2C+N">Nathan Shammah</a>, <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N">Neill Lambert</a>, <a href="/search/quant-ph?searchtype=author&query=Nori%2C+F">Franco Nori</a>, <a href="/search/quant-ph?searchtype=author&query=De+Liberato%2C+S">Simone De Liberato</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1704.07066v3-abstract-short" style="display: inline;"> We study the superradiant evolution of a set of $N$ two-level systems spontaneously radiating under the effect of phase-breaking mechanisms. We investigate the dynamics generated by non-radiative losses and pure dephasing, and their interplay with spontaneous emission. Our results show that in the parameter region relevant to many solid-state cavity quantum electrodynamics experiments, even with a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.07066v3-abstract-full').style.display = 'inline'; document.getElementById('1704.07066v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1704.07066v3-abstract-full" style="display: none;"> We study the superradiant evolution of a set of $N$ two-level systems spontaneously radiating under the effect of phase-breaking mechanisms. We investigate the dynamics generated by non-radiative losses and pure dephasing, and their interplay with spontaneous emission. Our results show that in the parameter region relevant to many solid-state cavity quantum electrodynamics experiments, even with a dephasing rate much faster than the radiative lifetime of a single two-level system, a sub-optimal collective superfluorescent burst is still observable. We also apply our theory to the dilute excitation regime, often used to describe optical excitations in solid-state systems. In this regime, excitations can be described in terms of bright and dark bosonic quasiparticles. We show how the effect of dephasing and losses in this regime translates into inter-mode scattering rates and quasiparticle lifetimes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.07066v3-abstract-full').style.display = 'none'; document.getElementById('1704.07066v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 1 table, 4 figures; included a permutational invariant method to explore the exact dynamics of up to N=50 two-level systems and included additional references; as published in Phys. Rev. A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 96, 023863 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1701.05405">arXiv:1701.05405</a> <span> [<a href="https://arxiv.org/pdf/1701.05405">pdf</a>, <a href="https://arxiv.org/ps/1701.05405">ps</a>, <a href="https://arxiv.org/format/1701.05405">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/srep39720">10.1038/srep39720 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Plasmonic bio-sensing for the Fenna-Matthews-Olson complex </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Chen%2C+G">Guang-Yin Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N">Neill Lambert</a>, <a href="/search/quant-ph?searchtype=author&query=Shih%2C+Y">Yen-An Shih</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+M">Meng-Han Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yueh-Nan Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Nori%2C+F">Franco Nori</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1701.05405v1-abstract-short" style="display: inline;"> We study theoretically the bio-sensing capabilities of metal nanowire surface plasmons. As a specific example, we couple the nanowire to specific sites (bacteriochlorophyll) of the Fenna-Matthews-Olson (FMO) photosynthetic pigment protein complex. In this hybrid system, we find that when certain sites of the FMO complex are subject to either the suppression of inter-site transitions or are entirel… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.05405v1-abstract-full').style.display = 'inline'; document.getElementById('1701.05405v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1701.05405v1-abstract-full" style="display: none;"> We study theoretically the bio-sensing capabilities of metal nanowire surface plasmons. As a specific example, we couple the nanowire to specific sites (bacteriochlorophyll) of the Fenna-Matthews-Olson (FMO) photosynthetic pigment protein complex. In this hybrid system, we find that when certain sites of the FMO complex are subject to either the suppression of inter-site transitions or are entirely disconnected from the complex, the resulting variations in the excitation transfer rates through the complex can be monitored through the corresponding changes in the scattering spectra of the incident nanowire surface plasmons. We also find that these changes can be further enhanced by changing the ratio of plasmon-site couplings. The change of the Fano lineshape in the scattering spectra further reveals that "site 5" in the FMO complex plays a distinct role from other sites. Our results provide a feasible way, using single photons, to detect mutation-induced, or bleaching-induced, local defects or modifications of the FMO complex, and allows access to both the local and global properties of the excitation transfer in such systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.05405v1-abstract-full').style.display = 'none'; document.getElementById('1701.05405v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Scientific Reports 7, 39720 (2017). URL:http://rdcu.be/ogmz </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1612.02953">arXiv:1612.02953</a> <span> [<a href="https://arxiv.org/pdf/1612.02953">pdf</a>, <a href="https://arxiv.org/ps/1612.02953">ps</a>, <a href="https://arxiv.org/format/1612.02953">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.119.053601">10.1103/PhysRevLett.119.053601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Amplified opto-mechanical transduction of virtual radiation pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Cirio%2C+M">Mauro Cirio</a>, <a href="/search/quant-ph?searchtype=author&query=Debnath%2C+K">Kamanasish Debnath</a>, <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N">Neill Lambert</a>, <a href="/search/quant-ph?searchtype=author&query=Nori%2C+F">Franco Nori</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1612.02953v3-abstract-short" style="display: inline;"> Here we describe how, utilizing a time-dependent opto-mechanical interaction, a mechanical probe can provide an amplified measurement of the virtual photons dressing the quantum ground state of an ultra strongly-coupled light-matter system. We calculate the thermal noise tolerated by this measurement scheme, and discuss a range of experimental setups in which it could be realized. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1612.02953v3-abstract-full" style="display: none;"> Here we describe how, utilizing a time-dependent opto-mechanical interaction, a mechanical probe can provide an amplified measurement of the virtual photons dressing the quantum ground state of an ultra strongly-coupled light-matter system. We calculate the thermal noise tolerated by this measurement scheme, and discuss a range of experimental setups in which it could be realized. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.02953v3-abstract-full').style.display = 'none'; document.getElementById('1612.02953v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 + 12 pages, 1 figure</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 119, 053601 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.07104">arXiv:1611.07104</a> <span> [<a href="https://arxiv.org/pdf/1611.07104">pdf</a>, <a href="https://arxiv.org/format/1611.07104">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.94.224510">10.1103/PhysRevB.94.224510 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superradiance with an ensemble of superconducting flux qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N">Neill Lambert</a>, <a href="/search/quant-ph?searchtype=author&query=Matsuzaki%2C+Y">Yuichiro Matsuzaki</a>, <a href="/search/quant-ph?searchtype=author&query=Kakuyanagi%2C+K">Kosuke Kakuyanagi</a>, <a href="/search/quant-ph?searchtype=author&query=Ishida%2C+N">Natsuko Ishida</a>, <a href="/search/quant-ph?searchtype=author&query=Saito%2C+S">Shiro Saito</a>, <a href="/search/quant-ph?searchtype=author&query=Nori%2C+F">Franco Nori</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.07104v1-abstract-short" style="display: inline;"> Superconducting flux qubits are a promising candidate for realizing quantum information processing and quantum simulations. Such devices behave like artificial atoms, with the advantage that one can easily tune the "atoms" internal properties. Here, by harnessing this flexibility, we propose a technique to minimize the inhomogeneous broadening of a large ensemble of flux qubits by tuning only the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.07104v1-abstract-full').style.display = 'inline'; document.getElementById('1611.07104v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.07104v1-abstract-full" style="display: none;"> Superconducting flux qubits are a promising candidate for realizing quantum information processing and quantum simulations. Such devices behave like artificial atoms, with the advantage that one can easily tune the "atoms" internal properties. Here, by harnessing this flexibility, we propose a technique to minimize the inhomogeneous broadening of a large ensemble of flux qubits by tuning only the external flux. In addition, as an example of many-body physics in such an ensemble, we show how to observe superradiance, and its quadratic scaling with ensemble size, using a tailored microwave control pulse that takes advantage of the inhomogeneous broadening itself to excite only a sub-ensemble of the qubits. Our scheme opens up an approach to using superconducting circuits to explore the properties of quantum many-body systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.07104v1-abstract-full').style.display = 'none'; document.getElementById('1611.07104v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.05490">arXiv:1610.05490</a> <span> [<a href="https://arxiv.org/pdf/1610.05490">pdf</a>, <a href="https://arxiv.org/ps/1610.05490">ps</a>, <a href="https://arxiv.org/format/1610.05490">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.94.062126">10.1103/PhysRevA.94.062126 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Temporal Steering in Four Dimensions with applications to coupled qubits and magnetoreception </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Ku%2C+H">Huan-Yu Ku</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+S">Shin-Liang Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+H">Hong-Bin Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N">Neill Lambert</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yueh-Nan Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Nori%2C+F">Franco Nori</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.05490v2-abstract-short" style="display: inline;"> Einstein-Podolsky-Rosen (EPR) steering allows Alice to remotely prepare a state in some specific bases for Bob through her choice of measurements. The temporal analogue of EPR steering, temporal steering, also reveals the steerability of a single system between different times. Focusing on a four-dimensional system, here we investigate the dynamics of the temporal steering measures, the temporal s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.05490v2-abstract-full').style.display = 'inline'; document.getElementById('1610.05490v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.05490v2-abstract-full" style="display: none;"> Einstein-Podolsky-Rosen (EPR) steering allows Alice to remotely prepare a state in some specific bases for Bob through her choice of measurements. The temporal analogue of EPR steering, temporal steering, also reveals the steerability of a single system between different times. Focusing on a four-dimensional system, here we investigate the dynamics of the temporal steering measures, the temporal steering robustness, using 5 mutually unbiased bases. As an example of an application, we use these measures to examine the temporal correlations in a radical pair model of magnetoreception. We find that, due to interactions with a static nuclear spin, the radical pair model exhibits strong non-Markovianity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.05490v2-abstract-full').style.display = 'none'; document.getElementById('1610.05490v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 94, 062126 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.03150">arXiv:1608.03150</a> <span> [<a href="https://arxiv.org/pdf/1608.03150">pdf</a>, <a href="https://arxiv.org/format/1608.03150">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41598-017-03789-4">10.1038/s41598-017-03789-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spatio-Temporal Steering for Testing Nonclassical Correlations in Quantum Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Chen%2C+S">Shin-Liang Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N">Neill Lambert</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+C">Che-Ming Li</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+G">Guang-Yin Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yueh-Nan Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Miranowicz%2C+A">Adam Miranowicz</a>, <a href="/search/quant-ph?searchtype=author&query=Nori%2C+F">Franco Nori</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.03150v1-abstract-short" style="display: inline;"> We introduce the concept of spatio-temporal steering (STS), which reduces, in special cases, to Einstein-Podolsky-Rosen steering and the recently-introduced temporal steering. We describe two measures of this effect referred to as the STS weight and robustness. We suggest that these STS measures enable a new way to assess nonclassical correlations in an open quantum network, such as quantum transp… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.03150v1-abstract-full').style.display = 'inline'; document.getElementById('1608.03150v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.03150v1-abstract-full" style="display: none;"> We introduce the concept of spatio-temporal steering (STS), which reduces, in special cases, to Einstein-Podolsky-Rosen steering and the recently-introduced temporal steering. We describe two measures of this effect referred to as the STS weight and robustness. We suggest that these STS measures enable a new way to assess nonclassical correlations in an open quantum network, such as quantum transport through nano-structures or excitation transfer in a complex biological system. As one of our examples, we apply STS to check nonclassical correlations among sites in a photosynthetic pigment-protein complex in the Fenna-Matthews-Olson model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.03150v1-abstract-full').style.display = 'none'; document.getElementById('1608.03150v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. Rep. 7, 3728 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1604.04059">arXiv:1604.04059</a> <span> [<a href="https://arxiv.org/pdf/1604.04059">pdf</a>, <a href="https://arxiv.org/format/1604.04059">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.94.012105">10.1103/PhysRevA.94.012105 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Leggett--Garg inequality violations with a large ensemble of qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N">Neill Lambert</a>, <a href="/search/quant-ph?searchtype=author&query=Debnath%2C+K">Kamanasish Debnath</a>, <a href="/search/quant-ph?searchtype=author&query=Kockum%2C+A+F">Anton Frisk Kockum</a>, <a href="/search/quant-ph?searchtype=author&query=Knee%2C+G+C">George C. Knee</a>, <a href="/search/quant-ph?searchtype=author&query=Munro%2C+W+J">William J. Munro</a>, <a href="/search/quant-ph?searchtype=author&query=Nori%2C+F">Franco Nori</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1604.04059v1-abstract-short" style="display: inline;"> We investigate how discrete internal degrees of freedom in a quasi-macroscopic system affect the violation of the Leggett--Garg inequality, a test of macroscopic-realism based on temporal correlation functions. As a specific example, we focus on an ensemble of qubits subject to collective and individual noise. This generic model can describe a range of physical systems, including atoms in cavities… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.04059v1-abstract-full').style.display = 'inline'; document.getElementById('1604.04059v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1604.04059v1-abstract-full" style="display: none;"> We investigate how discrete internal degrees of freedom in a quasi-macroscopic system affect the violation of the Leggett--Garg inequality, a test of macroscopic-realism based on temporal correlation functions. As a specific example, we focus on an ensemble of qubits subject to collective and individual noise. This generic model can describe a range of physical systems, including atoms in cavities, electron or nuclear spins in NV centers in diamond, erbium in Y$_2$SiO$_5$, bismuth impurities in silicon, or arrays of superconducting circuits, to indicate but a few. Such large ensembles are potentially more macroscopic than other systems that have been used so far for testing the Leggett--Garg inequality, and open a route toward probing the boundaries of quantum mechanics at macroscopic scales. We find that, because of the non-trivial internal structure of such an ensemble, the behavior of different measurement schemes, under the influence of noise, can be surprising. We discuss which measurement schemes are optimal for flux qubits and NV centers, and some of the technological constraints and difficulties for observing such violations with present-day experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.04059v1-abstract-full').style.display = 'none'; document.getElementById('1604.04059v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 94, 012105 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1602.01340">arXiv:1602.01340</a> <span> [<a href="https://arxiv.org/pdf/1602.01340">pdf</a>, <a href="https://arxiv.org/ps/1602.01340">ps</a>, <a href="https://arxiv.org/format/1602.01340">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/18/7/073007">10.1088/1367-2630/18/7/073007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonequilibrium thermodynamics in the strong coupling and non-Markovian regime based on a reaction coordinate mapping </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Strasberg%2C+P">Philipp Strasberg</a>, <a href="/search/quant-ph?searchtype=author&query=Schaller%2C+G">Gernot Schaller</a>, <a href="/search/quant-ph?searchtype=author&query=Lambert%2C+N">Neill Lambert</a>, <a href="/search/quant-ph?searchtype=author&query=Brandes%2C+T">Tobias Brandes</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1602.01340v3-abstract-short" style="display: inline;"> We propose a method to study the thermodynamic behaviour of small systems beyond the weak coupling and Markovian approximation, which is different in spirit from conventional approaches. The idea is to redefine the system and environment such that the effective, redefined system is again coupled weakly to Markovian residual baths and thus, allows to derive a consistent thermodynamic framework for… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.01340v3-abstract-full').style.display = 'inline'; document.getElementById('1602.01340v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1602.01340v3-abstract-full" style="display: none;"> We propose a method to study the thermodynamic behaviour of small systems beyond the weak coupling and Markovian approximation, which is different in spirit from conventional approaches. The idea is to redefine the system and environment such that the effective, redefined system is again coupled weakly to Markovian residual baths and thus, allows to derive a consistent thermodynamic framework for this new system-environment partition. To achieve this goal we make use of the reaction coordinate mapping, which is a general method in the sense that it can be applied to an arbitrary (quantum or classical and even time-dependent) system coupled linearly to an arbitrary number of harmonic oscillator reservoirs. The core of the method relies on an appropriate identification of a part of the environment (the reaction coordinate), which is subsequently included as a part of the system. We demonstrate the power of this concept by showing that non-Markovian effects can significantly enhance the steady state efficiency of a three-level-maser heat engine, even in the regime of weak system-bath coupling. Furthermore, we show for a single electron transistor coupled to vibrations that our method allows one to justify master equations derived in a polaron transformed reference frame. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.01340v3-abstract-full').style.display = 'none'; document.getElementById('1602.01340v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">updated and improved version; 19 pages incl. 10 figures and 5 pages appendix</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New. J. Phys, 18, 073007 (2016) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Lambert%2C+N&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Lambert%2C+N&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Lambert%2C+N&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>