CINXE.COM

Algoritma Gauss-Newton - Wikipedia bahasa Indonesia, ensiklopedia bebas

<!doctype html> <html class="client-nojs mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0" lang="id" dir="ltr"> <head> <base href="https://id.m.wikipedia.org/wiki/Algoritma_Gauss-Newton"> <meta charset="UTF-8"> <title>Algoritma Gauss-Newton - Wikipedia bahasa Indonesia, ensiklopedia bebas</title> <script>(function(){var className="client-js mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0";var cookie=document.cookie.match(/(?:^|; )idwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t.",".\t,"],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","Januari","Februari","Maret","April","Mei","Juni","Juli","Agustus","September","Oktober","November","Desember"],"wgRequestId":"f76e68a6-9da6-4d82-9fd4-94f0c64c5ca4","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Algoritma_Gauss-Newton","wgTitle":"Algoritma Gauss-Newton","wgCurRevisionId":26264957,"wgRevisionId":26264957,"wgArticleId":252089, "wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgPageViewLanguage":"id","wgPageContentLanguage":"id","wgPageContentModel":"wikitext","wgRelevantPageName":"Algoritma_Gauss-Newton","wgRelevantArticleId":252089,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"accuracy":{"levels":2}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"id","pageLanguageDir":"ltr","pageVariantFallbacks":"id"},"wgMFMode":"stable","wgMFAmc":false,"wgMFAmcOutreachActive":false,"wgMFAmcOutreachUserEligible":false,"wgMFLazyLoadImages":true,"wgMFEditNoticesFeatureConflict":false,"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgMFIsSupportedEditRequest":true,"wgMFScriptPath":"", "wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":5000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":true,"wgEditSubmitButtonLabelPublish":true,"wgSectionTranslationMissingLanguages":[{"lang":"ace","autonym":"Acèh","dir":"ltr"},{"lang":"ady","autonym":"адыгабзэ","dir":"ltr"},{"lang":"alt","autonym":"алтай тил","dir":"ltr"},{"lang":"am","autonym":"አማርኛ","dir":"ltr"},{"lang":"ami","autonym":"Pangcah","dir":"ltr"},{"lang":"an","autonym":"aragonés","dir":"ltr"},{"lang":"ang","autonym":"Ænglisc","dir":"ltr"},{"lang":"ann","autonym":"Obolo","dir":"ltr"},{"lang":"anp","autonym":"अंगिका","dir":"ltr"},{"lang":"ary","autonym":"الدارجة","dir":"rtl"},{"lang":"arz","autonym":"مصرى","dir":"rtl"},{"lang":"as","autonym":"অসমীয়া","dir":"ltr"},{"lang":"ast","autonym":"asturianu","dir":"ltr"},{"lang":"av","autonym":"авар","dir":"ltr"},{"lang":"avk","autonym":"Kotava","dir":"ltr"},{"lang":"awa","autonym": "अवधी","dir":"ltr"},{"lang":"ay","autonym":"Aymar aru","dir":"ltr"},{"lang":"az","autonym":"azərbaycanca","dir":"ltr"},{"lang":"azb","autonym":"تۆرکجه","dir":"rtl"},{"lang":"ba","autonym":"башҡортса","dir":"ltr"},{"lang":"ban","autonym":"Basa Bali","dir":"ltr"},{"lang":"bar","autonym":"Boarisch","dir":"ltr"},{"lang":"bbc","autonym":"Batak Toba","dir":"ltr"},{"lang":"bcl","autonym":"Bikol Central","dir":"ltr"},{"lang":"bdr","autonym":"Bajau Sama","dir":"ltr"},{"lang":"be","autonym":"беларуская","dir":"ltr"},{"lang":"bew","autonym":"Betawi","dir":"ltr"},{"lang":"bho","autonym":"भोजपुरी","dir":"ltr"},{"lang":"bi","autonym":"Bislama","dir":"ltr"},{"lang":"bjn","autonym":"Banjar","dir":"ltr"},{"lang":"blk","autonym":"ပအိုဝ်ႏဘာႏသာႏ","dir":"ltr"},{"lang":"bm","autonym":"bamanankan","dir":"ltr"},{"lang":"bn","autonym":"বাংলা","dir":"ltr"},{"lang":"bo","autonym":"བོད་ཡིག","dir":"ltr"},{"lang":"bpy" ,"autonym":"বিষ্ণুপ্রিয়া মণিপুরী","dir":"ltr"},{"lang":"br","autonym":"brezhoneg","dir":"ltr"},{"lang":"bs","autonym":"bosanski","dir":"ltr"},{"lang":"btm","autonym":"Batak Mandailing","dir":"ltr"},{"lang":"bug","autonym":"Basa Ugi","dir":"ltr"},{"lang":"cdo","autonym":"閩東語 / Mìng-dĕ̤ng-ngṳ̄","dir":"ltr"},{"lang":"ce","autonym":"нохчийн","dir":"ltr"},{"lang":"ceb","autonym":"Cebuano","dir":"ltr"},{"lang":"ch","autonym":"Chamoru","dir":"ltr"},{"lang":"chr","autonym":"ᏣᎳᎩ","dir":"ltr"},{"lang":"ckb","autonym":"کوردی","dir":"rtl"},{"lang":"co","autonym":"corsu","dir":"ltr"},{"lang":"cr","autonym":"Nēhiyawēwin / ᓀᐦᐃᔭᐍᐏᐣ","dir":"ltr"},{"lang":"crh","autonym":"qırımtatarca","dir":"ltr"},{"lang":"cs","autonym":"čeština","dir":"ltr"},{"lang":"cu","autonym":"словѣньскъ / ⰔⰎⰑⰂⰡⰐⰠⰔⰍⰟ","dir":"ltr"},{"lang":"cy","autonym":"Cymraeg","dir":"ltr"},{"lang":"da","autonym":"dansk", "dir":"ltr"},{"lang":"dag","autonym":"dagbanli","dir":"ltr"},{"lang":"dga","autonym":"Dagaare","dir":"ltr"},{"lang":"din","autonym":"Thuɔŋjäŋ","dir":"ltr"},{"lang":"diq","autonym":"Zazaki","dir":"ltr"},{"lang":"dsb","autonym":"dolnoserbski","dir":"ltr"},{"lang":"dtp","autonym":"Kadazandusun","dir":"ltr"},{"lang":"dv","autonym":"ދިވެހިބަސް","dir":"rtl"},{"lang":"dz","autonym":"ཇོང་ཁ","dir":"ltr"},{"lang":"ee","autonym":"eʋegbe","dir":"ltr"},{"lang":"el","autonym":"Ελληνικά","dir":"ltr"},{"lang":"eml","autonym":"emiliàn e rumagnòl","dir":"ltr"},{"lang":"eo","autonym":"Esperanto","dir":"ltr"},{"lang":"et","autonym":"eesti","dir":"ltr"},{"lang":"eu","autonym":"euskara","dir":"ltr"},{"lang":"fa","autonym":"فارسی","dir":"rtl"},{"lang":"fat","autonym":"mfantse","dir":"ltr"},{"lang":"ff","autonym":"Fulfulde","dir":"ltr"},{"lang":"fi","autonym":"suomi","dir":"ltr"},{"lang":"fj","autonym":"Na Vosa Vakaviti","dir":"ltr"},{"lang":"fo","autonym":"føroyskt", "dir":"ltr"},{"lang":"fon","autonym":"fɔ̀ngbè","dir":"ltr"},{"lang":"frp","autonym":"arpetan","dir":"ltr"},{"lang":"frr","autonym":"Nordfriisk","dir":"ltr"},{"lang":"fur","autonym":"furlan","dir":"ltr"},{"lang":"fy","autonym":"Frysk","dir":"ltr"},{"lang":"gag","autonym":"Gagauz","dir":"ltr"},{"lang":"gan","autonym":"贛語","dir":"ltr"},{"lang":"gcr","autonym":"kriyòl gwiyannen","dir":"ltr"},{"lang":"gl","autonym":"galego","dir":"ltr"},{"lang":"glk","autonym":"گیلکی","dir":"rtl"},{"lang":"gn","autonym":"Avañe'ẽ","dir":"ltr"},{"lang":"gom","autonym":"गोंयची कोंकणी / Gõychi Konknni","dir":"ltr"},{"lang":"gor","autonym":"Bahasa Hulontalo","dir":"ltr"},{"lang":"gpe","autonym":"Ghanaian Pidgin","dir":"ltr"},{"lang":"gu","autonym":"ગુજરાતી","dir":"ltr"},{"lang":"guc","autonym":"wayuunaiki","dir":"ltr"},{"lang":"gur","autonym":"farefare","dir":"ltr"},{"lang":"guw","autonym":"gungbe","dir":"ltr"},{"lang":"gv","autonym":"Gaelg","dir":"ltr"},{ "lang":"ha","autonym":"Hausa","dir":"ltr"},{"lang":"hak","autonym":"客家語 / Hak-kâ-ngî","dir":"ltr"},{"lang":"haw","autonym":"Hawaiʻi","dir":"ltr"},{"lang":"hi","autonym":"हिन्दी","dir":"ltr"},{"lang":"hif","autonym":"Fiji Hindi","dir":"ltr"},{"lang":"hr","autonym":"hrvatski","dir":"ltr"},{"lang":"hsb","autonym":"hornjoserbsce","dir":"ltr"},{"lang":"ht","autonym":"Kreyòl ayisyen","dir":"ltr"},{"lang":"hu","autonym":"magyar","dir":"ltr"},{"lang":"hy","autonym":"հայերեն","dir":"ltr"},{"lang":"hyw","autonym":"Արեւմտահայերէն","dir":"ltr"},{"lang":"ia","autonym":"interlingua","dir":"ltr"},{"lang":"iba","autonym":"Jaku Iban","dir":"ltr"},{"lang":"ie","autonym":"Interlingue","dir":"ltr"},{"lang":"ig","autonym":"Igbo","dir":"ltr"},{"lang":"igl","autonym":"Igala","dir":"ltr"},{"lang":"ilo","autonym":"Ilokano","dir":"ltr"},{"lang":"io","autonym":"Ido","dir":"ltr"},{"lang":"is","autonym":"íslenska","dir":"ltr"},{"lang":"iu","autonym": "ᐃᓄᒃᑎᑐᑦ / inuktitut","dir":"ltr"},{"lang":"jam","autonym":"Patois","dir":"ltr"},{"lang":"jv","autonym":"Jawa","dir":"ltr"},{"lang":"ka","autonym":"ქართული","dir":"ltr"},{"lang":"kaa","autonym":"Qaraqalpaqsha","dir":"ltr"},{"lang":"kab","autonym":"Taqbaylit","dir":"ltr"},{"lang":"kbd","autonym":"адыгэбзэ","dir":"ltr"},{"lang":"kbp","autonym":"Kabɩyɛ","dir":"ltr"},{"lang":"kcg","autonym":"Tyap","dir":"ltr"},{"lang":"kg","autonym":"Kongo","dir":"ltr"},{"lang":"kge","autonym":"Kumoring","dir":"ltr"},{"lang":"ki","autonym":"Gĩkũyũ","dir":"ltr"},{"lang":"kk","autonym":"қазақша","dir":"ltr"},{"lang":"kl","autonym":"kalaallisut","dir":"ltr"},{"lang":"km","autonym":"ភាសាខ្មែរ","dir":"ltr"},{"lang":"kn","autonym":"ಕನ್ನಡ","dir":"ltr"},{"lang":"ko","autonym":"한국어","dir":"ltr"},{"lang":"koi","autonym":"перем коми","dir":"ltr"},{"lang":"krc","autonym":"къарачай-малкъар","dir":"ltr"},{"lang":"ks", "autonym":"कॉशुर / کٲشُر","dir":"rtl"},{"lang":"ku","autonym":"kurdî","dir":"ltr"},{"lang":"kus","autonym":"Kʋsaal","dir":"ltr"},{"lang":"kv","autonym":"коми","dir":"ltr"},{"lang":"kw","autonym":"kernowek","dir":"ltr"},{"lang":"ky","autonym":"кыргызча","dir":"ltr"},{"lang":"lad","autonym":"Ladino","dir":"ltr"},{"lang":"lb","autonym":"Lëtzebuergesch","dir":"ltr"},{"lang":"lez","autonym":"лезги","dir":"ltr"},{"lang":"lg","autonym":"Luganda","dir":"ltr"},{"lang":"li","autonym":"Limburgs","dir":"ltr"},{"lang":"lij","autonym":"Ligure","dir":"ltr"},{"lang":"lld","autonym":"Ladin","dir":"ltr"},{"lang":"lmo","autonym":"lombard","dir":"ltr"},{"lang":"ln","autonym":"lingála","dir":"ltr"},{"lang":"lo","autonym":"ລາວ","dir":"ltr"},{"lang":"lt","autonym":"lietuvių","dir":"ltr"},{"lang":"ltg","autonym":"latgaļu","dir":"ltr"},{"lang":"lv","autonym":"latviešu","dir":"ltr"},{"lang":"mad","autonym":"Madhurâ","dir":"ltr"},{"lang":"mai","autonym": "मैथिली","dir":"ltr"},{"lang":"map-bms","autonym":"Basa Banyumasan","dir":"ltr"},{"lang":"mdf","autonym":"мокшень","dir":"ltr"},{"lang":"mg","autonym":"Malagasy","dir":"ltr"},{"lang":"mhr","autonym":"олык марий","dir":"ltr"},{"lang":"mi","autonym":"Māori","dir":"ltr"},{"lang":"min","autonym":"Minangkabau","dir":"ltr"},{"lang":"mk","autonym":"македонски","dir":"ltr"},{"lang":"ml","autonym":"മലയാളം","dir":"ltr"},{"lang":"mn","autonym":"монгол","dir":"ltr"},{"lang":"mni","autonym":"ꯃꯤꯇꯩ ꯂꯣꯟ","dir":"ltr"},{"lang":"mnw","autonym":"ဘာသာမန်","dir":"ltr"},{"lang":"mos","autonym":"moore","dir":"ltr"},{"lang":"mr","autonym":"मराठी","dir":"ltr"},{"lang":"mrj","autonym":"кырык мары","dir":"ltr"},{"lang":"ms","autonym":"Bahasa Melayu","dir":"ltr"},{"lang":"mt","autonym":"Malti","dir":"ltr"},{"lang":"mwl","autonym":"Mirandés","dir":"ltr"},{"lang":"my","autonym":"မြန်မာဘာသာ", "dir":"ltr"},{"lang":"myv","autonym":"эрзянь","dir":"ltr"},{"lang":"mzn","autonym":"مازِرونی","dir":"rtl"},{"lang":"nah","autonym":"Nāhuatl","dir":"ltr"},{"lang":"nan","autonym":"閩南語 / Bân-lâm-gú","dir":"ltr"},{"lang":"nap","autonym":"Napulitano","dir":"ltr"},{"lang":"nb","autonym":"norsk bokmål","dir":"ltr"},{"lang":"nds","autonym":"Plattdüütsch","dir":"ltr"},{"lang":"nds-nl","autonym":"Nedersaksies","dir":"ltr"},{"lang":"ne","autonym":"नेपाली","dir":"ltr"},{"lang":"new","autonym":"नेपाल भाषा","dir":"ltr"},{"lang":"nia","autonym":"Li Niha","dir":"ltr"},{"lang":"nl","autonym":"Nederlands","dir":"ltr"},{"lang":"nqo","autonym":"ߒߞߏ","dir":"rtl"},{"lang":"nr","autonym":"isiNdebele seSewula","dir":"ltr"},{"lang":"nso","autonym":"Sesotho sa Leboa","dir":"ltr"},{"lang":"ny","autonym":"Chi-Chewa","dir":"ltr"},{"lang":"oc","autonym":"occitan","dir":"ltr"},{"lang":"om","autonym":"Oromoo","dir":"ltr"},{"lang":"or","autonym": "ଓଡ଼ିଆ","dir":"ltr"},{"lang":"os","autonym":"ирон","dir":"ltr"},{"lang":"pa","autonym":"ਪੰਜਾਬੀ","dir":"ltr"},{"lang":"pag","autonym":"Pangasinan","dir":"ltr"},{"lang":"pam","autonym":"Kapampangan","dir":"ltr"},{"lang":"pap","autonym":"Papiamentu","dir":"ltr"},{"lang":"pcd","autonym":"Picard","dir":"ltr"},{"lang":"pcm","autonym":"Naijá","dir":"ltr"},{"lang":"pdc","autonym":"Deitsch","dir":"ltr"},{"lang":"pms","autonym":"Piemontèis","dir":"ltr"},{"lang":"pnb","autonym":"پنجابی","dir":"rtl"},{"lang":"ps","autonym":"پښتو","dir":"rtl"},{"lang":"pwn","autonym":"pinayuanan","dir":"ltr"},{"lang":"qu","autonym":"Runa Simi","dir":"ltr"},{"lang":"rm","autonym":"rumantsch","dir":"ltr"},{"lang":"rn","autonym":"ikirundi","dir":"ltr"},{"lang":"ro","autonym":"română","dir":"ltr"},{"lang":"rsk","autonym":"руски","dir":"ltr"},{"lang":"rue","autonym":"русиньскый","dir":"ltr"},{"lang":"rup","autonym":"armãneashti","dir":"ltr"},{"lang":"rw","autonym": "Ikinyarwanda","dir":"ltr"},{"lang":"sa","autonym":"संस्कृतम्","dir":"ltr"},{"lang":"sah","autonym":"саха тыла","dir":"ltr"},{"lang":"sat","autonym":"ᱥᱟᱱᱛᱟᱲᱤ","dir":"ltr"},{"lang":"sc","autonym":"sardu","dir":"ltr"},{"lang":"scn","autonym":"sicilianu","dir":"ltr"},{"lang":"sco","autonym":"Scots","dir":"ltr"},{"lang":"sd","autonym":"سنڌي","dir":"rtl"},{"lang":"se","autonym":"davvisámegiella","dir":"ltr"},{"lang":"sg","autonym":"Sängö","dir":"ltr"},{"lang":"sgs","autonym":"žemaitėška","dir":"ltr"},{"lang":"sh","autonym":"srpskohrvatski / српскохрватски","dir":"ltr"},{"lang":"shi","autonym":"Taclḥit","dir":"ltr"},{"lang":"shn","autonym":"ၽႃႇသႃႇတႆး ","dir":"ltr"},{"lang":"si","autonym":"සිංහල","dir":"ltr"},{"lang":"sk","autonym":"slovenčina","dir":"ltr"},{"lang":"skr","autonym":"سرائیکی","dir":"rtl"},{"lang":"sl","autonym":"slovenščina","dir":"ltr"},{"lang":"sm","autonym":"Gagana Samoa", "dir":"ltr"},{"lang":"smn","autonym":"anarâškielâ","dir":"ltr"},{"lang":"sn","autonym":"chiShona","dir":"ltr"},{"lang":"so","autonym":"Soomaaliga","dir":"ltr"},{"lang":"sq","autonym":"shqip","dir":"ltr"},{"lang":"sr","autonym":"српски / srpski","dir":"ltr"},{"lang":"srn","autonym":"Sranantongo","dir":"ltr"},{"lang":"ss","autonym":"SiSwati","dir":"ltr"},{"lang":"st","autonym":"Sesotho","dir":"ltr"},{"lang":"stq","autonym":"Seeltersk","dir":"ltr"},{"lang":"su","autonym":"Sunda","dir":"ltr"},{"lang":"sw","autonym":"Kiswahili","dir":"ltr"},{"lang":"szl","autonym":"ślůnski","dir":"ltr"},{"lang":"ta","autonym":"தமிழ்","dir":"ltr"},{"lang":"tay","autonym":"Tayal","dir":"ltr"},{"lang":"tcy","autonym":"ತುಳು","dir":"ltr"},{"lang":"tdd","autonym":"ᥖᥭᥰ ᥖᥬᥲ ᥑᥨᥒᥰ","dir":"ltr"},{"lang":"te","autonym":"తెలుగు","dir":"ltr"},{"lang":"tet","autonym":"tetun","dir":"ltr"},{"lang":"tg","autonym":"тоҷикӣ","dir":"ltr"},{"lang":"th","autonym": "ไทย","dir":"ltr"},{"lang":"ti","autonym":"ትግርኛ","dir":"ltr"},{"lang":"tk","autonym":"Türkmençe","dir":"ltr"},{"lang":"tl","autonym":"Tagalog","dir":"ltr"},{"lang":"tly","autonym":"tolışi","dir":"ltr"},{"lang":"tn","autonym":"Setswana","dir":"ltr"},{"lang":"to","autonym":"lea faka-Tonga","dir":"ltr"},{"lang":"tpi","autonym":"Tok Pisin","dir":"ltr"},{"lang":"tr","autonym":"Türkçe","dir":"ltr"},{"lang":"trv","autonym":"Seediq","dir":"ltr"},{"lang":"ts","autonym":"Xitsonga","dir":"ltr"},{"lang":"tt","autonym":"татарча / tatarça","dir":"ltr"},{"lang":"tum","autonym":"chiTumbuka","dir":"ltr"},{"lang":"tw","autonym":"Twi","dir":"ltr"},{"lang":"ty","autonym":"reo tahiti","dir":"ltr"},{"lang":"tyv","autonym":"тыва дыл","dir":"ltr"},{"lang":"udm","autonym":"удмурт","dir":"ltr"},{"lang":"ur","autonym":"اردو","dir":"rtl"},{"lang":"uz","autonym":"oʻzbekcha / ўзбекча","dir":"ltr"},{"lang":"ve","autonym":"Tshivenda","dir":"ltr"},{"lang":"vec", "autonym":"vèneto","dir":"ltr"},{"lang":"vep","autonym":"vepsän kel’","dir":"ltr"},{"lang":"vi","autonym":"Tiếng Việt","dir":"ltr"},{"lang":"vls","autonym":"West-Vlams","dir":"ltr"},{"lang":"vo","autonym":"Volapük","dir":"ltr"},{"lang":"vro","autonym":"võro","dir":"ltr"},{"lang":"wa","autonym":"walon","dir":"ltr"},{"lang":"war","autonym":"Winaray","dir":"ltr"},{"lang":"wo","autonym":"Wolof","dir":"ltr"},{"lang":"wuu","autonym":"吴语","dir":"ltr"},{"lang":"xal","autonym":"хальмг","dir":"ltr"},{"lang":"xh","autonym":"isiXhosa","dir":"ltr"},{"lang":"xmf","autonym":"მარგალური","dir":"ltr"},{"lang":"yi","autonym":"ייִדיש","dir":"rtl"},{"lang":"yo","autonym":"Yorùbá","dir":"ltr"},{"lang":"yue","autonym":"粵語","dir":"ltr"},{"lang":"za","autonym":"Vahcuengh","dir":"ltr"},{"lang":"zgh","autonym":"ⵜⴰⵎⴰⵣⵉⵖⵜ ⵜⴰⵏⴰⵡⴰⵢⵜ","dir":"ltr"},{"lang":"zh","autonym":"中文","dir":"ltr"},{"lang":"zu","autonym":"isiZulu","dir":"ltr"} ],"wgSectionTranslationTargetLanguages":["ace","ady","alt","am","ami","an","ang","ann","anp","ar","ary","arz","as","ast","av","avk","awa","ay","az","azb","ba","ban","bar","bbc","bcl","bdr","be","bew","bg","bho","bi","bjn","blk","bm","bn","bo","bpy","br","bs","btm","bug","ca","cdo","ce","ceb","ch","chr","ckb","co","cr","crh","cs","cu","cy","da","dag","de","dga","din","diq","dsb","dtp","dv","dz","ee","el","eml","eo","es","et","eu","fa","fat","ff","fi","fj","fo","fon","fr","frp","frr","fur","fy","gag","gan","gcr","gl","glk","gn","gom","gor","gpe","gu","guc","gur","guw","gv","ha","hak","haw","he","hi","hif","hr","hsb","ht","hu","hy","hyw","ia","iba","ie","ig","igl","ilo","io","is","it","iu","ja","jam","jv","ka","kaa","kab","kbd","kbp","kcg","kg","kge","ki","kk","kl","km","kn","ko","koi","krc","ks","ku","kus","kv","kw","ky","lad","lb","lez","lg","li","lij","lld","lmo","ln","lo","lt","ltg","lv","mad","mai","map-bms","mdf","mg","mhr","mi","min","mk","ml","mn","mni","mnw","mos","mr","mrj","ms" ,"mt","mwl","my","myv","mzn","nah","nan","nap","nb","nds","nds-nl","ne","new","nia","nl","nn","nqo","nr","nso","ny","oc","om","or","os","pa","pag","pam","pap","pcd","pcm","pdc","pl","pms","pnb","ps","pt","pwn","qu","rm","rn","ro","rsk","rue","rup","rw","sa","sah","sat","sc","scn","sco","sd","se","sg","sgs","sh","shi","shn","si","sk","skr","sl","sm","smn","sn","so","sq","sr","srn","ss","st","stq","su","sv","sw","szl","ta","tay","tcy","tdd","te","tet","tg","th","ti","tk","tl","tly","tn","to","tpi","tr","trv","ts","tt","tum","tw","ty","tyv","udm","ur","uz","ve","vec","vep","vi","vls","vo","vro","wa","war","wo","wuu","xal","xh","xmf","yi","yo","yue","za","zgh","zh","zu"],"isLanguageSearcherCXEntrypointEnabled":true,"mintEntrypointLanguages":["ace","ast","azb","bcl","bjn","bh","crh","ff","fon","ig","is","ki","ks","lmo","min","sat","ss","tn","vec"],"wgWikibaseItemId":"Q1496373","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model", "platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false,"wgMinervaPermissions":{"watchable":true,"watch":false},"wgMinervaFeatures":{"beta":false,"donate":true,"mobileOptionsLink":true,"categories":false,"pageIssues":true,"talkAtTop":false,"historyInPageActions":false,"overflowSubmenu":false,"tabsOnSpecials":true,"personalMenu":false,"mainMenuExpanded":false,"echo":true,"nightMode":false},"wgMinervaDownloadNamespaces":[0]};RLSTATE={"ext.gadget.charinsert-styles":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","skins.minerva.styles":"ready","skins.minerva.content.styles.images":"ready","mediawiki.hlist":"ready","skins.minerva.codex.styles":"ready","skins.minerva.icons":"ready", "ext.wikimediamessages.styles":"ready","mobile.init.styles":"ready","ext.relatedArticles.styles":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["site","mediawiki.page.ready","skins.minerva.scripts","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.watchlist-notice","ext.gadget.charinsert","ext.gadget.refToolbar","ext.gadget.AdvancedSiteNotices","ext.gadget.switcher","ext.gadget.Bagikan","ext.gadget.CurIDLink","ext.urlShortener.toolbar","ext.centralauth.centralautologin","ext.popups","mobile.init","ext.echo.centralauth","ext.relatedArticles.readMore.bootstrap","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.cx.eventlogging.campaigns","ext.cx.entrypoints.mffrequentlanguages","ext.cx.entrypoints.languagesearcher.init","mw.externalguidance.init","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","oojs-ui.styles.icons-media","oojs-ui-core.icons","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=id&amp;modules=ext.math.styles%7Cext.relatedArticles.styles%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cmediawiki.hlist%7Cmobile.init.styles%7Cskins.minerva.codex.styles%7Cskins.minerva.content.styles.images%7Cskins.minerva.icons%2Cstyles%7Cwikibase.client.init&amp;only=styles&amp;skin=minerva"> <script async src="/w/load.php?lang=id&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=minerva"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=id&amp;modules=ext.gadget.charinsert-styles&amp;only=styles&amp;skin=minerva"> <link rel="stylesheet" href="/w/load.php?lang=id&amp;modules=site.styles&amp;only=styles&amp;skin=minerva"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="theme-color" content="#eaecf0"> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes, minimum-scale=0.25, maximum-scale=5.0"> <meta property="og:title" content="Algoritma Gauss-Newton - Wikipedia bahasa Indonesia, ensiklopedia bebas"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="manifest" href="/w/api.php?action=webapp-manifest"> <link rel="alternate" type="application/x-wiki" title="Sunting" href="/w/index.php?title=Algoritma_Gauss-Newton&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (id)"> <link rel="EditURI" type="application/rsd+xml" href="//id.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://id.wikipedia.org/wiki/Algoritma_Gauss-Newton"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.id"> <link rel="dns-prefetch" href="//meta.wikimedia.org"> <link rel="dns-prefetch" href="//login.wikimedia.org"> <meta http-equiv="X-Translated-By" content="Google"> <meta http-equiv="X-Translated-To" content="en"> <script type="text/javascript" src="https://www.gstatic.com/_/translate_http/_/js/k=translate_http.tr.en_GB.WgGHrg8C9fE.O/am=DgY/d=1/rs=AN8SPfpNfjzpGCAsUUJ5X-GCaxSfec_Eng/m=corsproxy" data-sourceurl="https://id.m.wikipedia.org/wiki/Algoritma_Gauss-Newton"></script> <link href="https://fonts.googleapis.com/css2?family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20..48,100..700,0..1,-50..200" rel="stylesheet"> <script type="text/javascript" src="https://www.gstatic.com/_/translate_http/_/js/k=translate_http.tr.en_GB.WgGHrg8C9fE.O/am=DgY/d=1/exm=corsproxy/ed=1/rs=AN8SPfpNfjzpGCAsUUJ5X-GCaxSfec_Eng/m=phishing_protection" data-phishing-protection-enabled="false" data-forms-warning-enabled="true" data-source-url="https://id.m.wikipedia.org/wiki/Algoritma_Gauss-Newton"></script> <meta name="robots" content="none"> </head> <body class="mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Algoritma_Gauss-Newton rootpage-Algoritma_Gauss-Newton stable issues-group-B skin-minerva action-view skin--responsive mw-mf-amc-disabled mw-mf"> <script type="text/javascript" src="https://www.gstatic.com/_/translate_http/_/js/k=translate_http.tr.en_GB.WgGHrg8C9fE.O/am=DgY/d=1/exm=corsproxy,phishing_protection/ed=1/rs=AN8SPfpNfjzpGCAsUUJ5X-GCaxSfec_Eng/m=navigationui" data-environment="prod" data-proxy-url="https://id-m-wikipedia-org.translate.goog" data-proxy-full-url="https://id-m-wikipedia-org.translate.goog/wiki/Algoritma_Gauss-Newton?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-source-url="https://id.m.wikipedia.org/wiki/Algoritma_Gauss-Newton" data-source-language="auto" data-target-language="en" data-display-language="en-GB" data-detected-source-language="id" data-is-source-untranslated="false" data-source-untranslated-url="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://id.m.wikipedia.org/wiki/Algoritma_Gauss-Newton&amp;anno=2" data-client="tr"></script> <div id="mw-mf-viewport"> <div id="mw-mf-page-center"><a class="mw-mf-page-center__mask" href="https://id-m-wikipedia-org.translate.goog/wiki/Algoritma_Gauss-Newton?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#"></a> <header class="header-container header-chrome"> <div class="minerva-header"> <nav class="navigation-drawer toggle-list view-border-box"><input type="checkbox" id="main-menu-input" class="toggle-list__checkbox" role="button" aria-haspopup="true" aria-expanded="false" aria-labelledby="mw-mf-main-menu-button"> <label role="button" for="main-menu-input" id="mw-mf-main-menu-button" aria-hidden="true" data-event-name="ui.mainmenu" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet toggle-list__toggle"> <span class="minerva-icon minerva-icon--menu"></span> <span></span> </label> <div id="mw-mf-page-left" class="menu view-border-box"> <ul id="p-navigation" class="toggle-list__list"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--home" href="https://id-m-wikipedia-org.translate.goog/wiki/Halaman_Utama?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-mw="interface"> <span class="minerva-icon minerva-icon--home"></span> <span class="toggle-list-item__label">Beranda</span> </a></li> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--random" href="https://id-m-wikipedia-org.translate.goog/wiki/Istimewa:Halaman_sembarang?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-mw="interface"> <span class="minerva-icon minerva-icon--die"></span> <span class="toggle-list-item__label">Sembarang</span> </a></li> <li class="toggle-list-item skin-minerva-list-item-jsonly"><a class="toggle-list-item__anchor menu__item--nearby" href="https://id-m-wikipedia-org.translate.goog/wiki/Istimewa:Nearby?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-event-name="menu.nearby" data-mw="interface"> <span class="minerva-icon minerva-icon--mapPin"></span> <span class="toggle-list-item__label">Sekitaran</span> </a></li> </ul> <ul id="p-personal" class="toggle-list__list"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--login" href="https://id-m-wikipedia-org.translate.goog/w/index.php?title=Istimewa:Masuk_log&amp;returnto=Algoritma+Gauss-Newton&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-event-name="menu.login" data-mw="interface"> <span class="minerva-icon minerva-icon--logIn"></span> <span class="toggle-list-item__label">Masuk log</span> </a></li> </ul> <ul id="pt-preferences" class="toggle-list__list"> <li class="toggle-list-item skin-minerva-list-item-jsonly"><a class="toggle-list-item__anchor menu__item--settings" href="https://id-m-wikipedia-org.translate.goog/w/index.php?title=Istimewa:MobileOptions&amp;returnto=Algoritma+Gauss-Newton&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-event-name="menu.settings" data-mw="interface"> <span class="minerva-icon minerva-icon--settings"></span> <span class="toggle-list-item__label">Pengaturan</span> </a></li> </ul> <ul id="p-donation" class="toggle-list__list"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--donate" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source%3Ddonate%26utm_medium%3Dsidebar%26utm_campaign%3DC13_id.wikipedia.org%26uselang%3Did%26utm_key%3Dminerva" data-event-name="menu.donate" data-mw="interface"> <span class="minerva-icon minerva-icon--heart"></span> <span class="toggle-list-item__label">Menyumbang</span> </a></li> </ul> <ul class="hlist"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--about" href="https://id-m-wikipedia-org.translate.goog/wiki/Wikipedia:Tentang?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-mw="interface"> <span class="toggle-list-item__label">Tentang Wikipedia</span> </a></li> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--disclaimers" href="https://id-m-wikipedia-org.translate.goog/wiki/Wikipedia:Penyangkalan_umum?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-mw="interface"> <span class="toggle-list-item__label">Penyangkalan</span> </a></li> </ul> </div><label class="main-menu-mask" for="main-menu-input"></label> </nav> <div class="branding-box"><a href="https://id-m-wikipedia-org.translate.goog/wiki/Halaman_Utama?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB"> <span><img src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" alt="Wikipedia" width="120" height="18" style="width: 7.5em; height: 1.125em;"> </span> </a> </div> <form action="/w/index.php" method="get" class="minerva-search-form"> <div class="search-box"><input type="hidden" name="title" value="Istimewa:Pencarian"> <input class="search skin-minerva-search-trigger" id="searchInput" type="search" name="search" placeholder="Telusuri Wikipedia" aria-label="Telusuri Wikipedia" autocapitalize="sentences" title="Cari di Wikipedia [f]" accesskey="f"> <span class="search-box-icon-overlay"><span class="minerva-icon minerva-icon--search"></span> </span> </div><button id="searchIcon" class="cdx-button cdx-button--size-large cdx-button--icon-only cdx-button--weight-quiet skin-minerva-search-trigger"> <span class="minerva-icon minerva-icon--search"></span> <span>Cari</span> </button> </form> <nav class="minerva-user-navigation" aria-label="Navigasi pengguna"> </nav> </div> </header> <main id="content" class="mw-body"> <div class="banner-container"> <div id="siteNotice"></div> </div> <div class="pre-content heading-holder"> <div class="page-heading"> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Algoritma Gauss-Newton</span></h1> <div class="tagline"></div> </div> <nav class="page-actions-menu"> <ul id="p-views" class="page-actions-menu__list"> <li id="language-selector" class="page-actions-menu__list-item"><a role="button" href="https://id-m-wikipedia-org.translate.goog/wiki/Algoritma_Gauss-Newton?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#p-lang" data-mw="interface" data-event-name="menu.languages" title="Bahasa" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet language-selector"> <span class="minerva-icon minerva-icon--language"></span> <span>Bahasa</span> </a></li> <li id="page-actions-watch" class="page-actions-menu__list-item"><a role="button" id="ca-watch" href="https://id-m-wikipedia-org.translate.goog/w/index.php?title=Istimewa:Masuk_log&amp;returnto=Algoritma+Gauss-Newton&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-event-name="menu.watch" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet menu__item--page-actions-watch"> <span class="minerva-icon minerva-icon--star"></span> <span>Pantau</span> </a></li> <li id="page-actions-edit" class="page-actions-menu__list-item"><a role="button" id="ca-edit" href="https://id-m-wikipedia-org.translate.goog/w/index.php?title=Algoritma_Gauss-Newton&amp;action=edit&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-event-name="menu.edit" data-mw="interface" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet edit-page menu__item--page-actions-edit"> <span class="minerva-icon minerva-icon--edit"></span> <span>Sunting</span> </a></li> </ul> </nav><!-- version 1.0.2 (change every time you update a partial) --> <div id="mw-content-subtitle"></div> </div> <div id="bodyContent" class="content"> <div id="mw-content-text" class="mw-body-content"> <script>function mfTempOpenSection(id){var block=document.getElementById("mf-section-"+id);block.className+=" open-block";block.previousSibling.className+=" open-block";}</script> <div class="mw-content-ltr mw-parser-output" lang="id" dir="ltr"> <section class="mf-section-0" id="mf-section-0"> <style data-mw-deduplicate="TemplateStyles:r26333525">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style> <table class="box-Cleanup plainlinks metadata ambox ambox-style ambox-Cleanup" role="presentation"> <tbody> <tr> <td class="mbox-text"> <div class="mbox-text-span"> artikel ini <b>perlu <a href="https://id-m-wikipedia-org.translate.goog/wiki/Wikipedia:Merapikan_artikel?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Wikipedia:Merapikan artikel">dirapikan</a></b> agar memenuhi <a href="https://id-m-wikipedia-org.translate.goog/wiki/Wikipedia:Pedoman_gaya?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Wikipedia:Pedoman gaya">standar Wikipedia</a>.<span class="hide-when-compact"> Tidak ada alasan yang diberikan. Silakan <a class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://id.wikipedia.org/w/index.php?title%3DAlgoritma_Gauss-Newton%26action%3Dedit">kembangkan artikel</a> ini semampu Anda. Merapikan artikel dapat dilakukan dengan <a href="https://id-m-wikipedia-org.translate.goog/wiki/Bantuan:Wikifikasi?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Bantuan:Wikifikasi">wikifikasi</a> atau membagi artikel ke paragraf-paragraf. Jika sudah dirapikan, silakan hapus templat ini.</span><span class="hide-when-compact"><i> (<small><a href="https://id-m-wikipedia-org.translate.goog/wiki/Bantuan:Penghapusan_templat_pemeliharaan?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Bantuan:Penghapusan templat pemeliharaan">Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini</a></small>)</i></span> </div></td> </tr> </tbody> </table> <p>Dalam <a href="https://id-m-wikipedia-org.translate.goog/wiki/Matematika?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Matematika">matematika</a>, <b>algoritma Gauss-Newton</b> adalah penyelesaian yang digunakan untuk memecahkan masalah-masalah kuadrat terkecil. Algoritma ini merupakan sebuah perubahan dari metode Newton untuk mengoptimalkan sebuah fungsi. Tidak seperti metode Newton, algoritma Gauss-Newton hanya bisa digunakan untuk mengoptimumkan jumlah dari nilai fungsi kuadrat. Metode ini adalah hasil penemuannya matematikawan yang bernama <a href="https://id-m-wikipedia-org.translate.goog/wiki/Carl_Friedrich_Gauss?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Carl Friedrich Gauss">Carl Friedrich Gauss</a>.</p> <div id="toc" class="toc" role="navigation" aria-labelledby="mw-toc-heading"> <input type="checkbox" role="button" id="toctogglecheckbox" class="toctogglecheckbox" style="display:none"> <div class="toctitle" lang="id" dir="ltr"> <h2 id="mw-toc-heading">Daftar isi</h2><span class="toctogglespan"><label class="toctogglelabel" for="toctogglecheckbox"></label></span> </div> <ul> <li class="toclevel-1 tocsection-1"><a href="https://id-m-wikipedia-org.translate.goog/wiki/Algoritma_Gauss-Newton?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Permasalahan"><span class="tocnumber">1</span> <span class="toctext">Permasalahan</span></a></li> <li class="toclevel-1 tocsection-2"><a href="https://id-m-wikipedia-org.translate.goog/wiki/Algoritma_Gauss-Newton?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Algoritme"><span class="tocnumber">2</span> <span class="toctext">Algoritme</span></a></li> <li class="toclevel-1 tocsection-3"><a href="https://id-m-wikipedia-org.translate.goog/wiki/Algoritma_Gauss-Newton?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Penelusuran_garis"><span class="tocnumber">3</span> <span class="toctext">Penelusuran garis</span></a></li> <li class="toclevel-1 tocsection-4"><a href="https://id-m-wikipedia-org.translate.goog/wiki/Algoritma_Gauss-Newton?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Derivasi_dari_metode_Newton"><span class="tocnumber">4</span> <span class="toctext">Derivasi dari metode Newton</span></a></li> <li class="toclevel-1 tocsection-5"><a href="https://id-m-wikipedia-org.translate.goog/wiki/Algoritma_Gauss-Newton?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Algoritme_lainnya"><span class="tocnumber">5</span> <span class="toctext">Algoritme lainnya</span></a></li> <li class="toclevel-1 tocsection-6"><a href="https://id-m-wikipedia-org.translate.goog/wiki/Algoritma_Gauss-Newton?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Referensi"><span class="tocnumber">6</span> <span class="toctext">Referensi</span></a></li> </ul> </div> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(1)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Permasalahan">Permasalahan</h2><span class="mw-editsection"> <a role="button" href="https://id-m-wikipedia-org.translate.goog/w/index.php?title=Algoritma_Gauss-Newton&amp;action=edit&amp;section=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Sunting bagian: Permasalahan" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>sunting</span> </a> </span> </div> <section class="mf-section-1 collapsible-block" id="mf-section-1"> <p>Diberikan <i>m</i> fungsi <i>f</i><sub>1</sub>, ..., <i>f</i><sub><i>m</i></sub> of <i>n</i> parameters <i>p</i><sub>1</sub>, ..., <i>p</i><sub><i>n</i></sub> with <i>m</i>≥<i>n</i>, kita ingin meminimumkan jumlah</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S(p)=\sum _{i=1}^{m}(f_{i}(p))^{2}.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> S </mi> <mo stretchy="false"> ( </mo> <mi> p </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> m </mi> </mrow> </munderover> <mo stretchy="false"> ( </mo> <msub> <mi> f </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> p </mi> <mo stretchy="false"> ) </mo> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle S(p)=\sum _{i=1}^{m}(f_{i}(p))^{2}.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67eabdabd0ac77a5cfa21726c090d1f0adea8f01" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:19.359ex; height:6.843ex;" alt="{\displaystyle S(p)=\sum _{i=1}^{m}(f_{i}(p))^{2}.}"> </noscript><span class="lazy-image-placeholder" style="width: 19.359ex;height: 6.843ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67eabdabd0ac77a5cfa21726c090d1f0adea8f01" data-alt="{\displaystyle S(p)=\sum _{i=1}^{m}(f_{i}(p))^{2}.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </dd> </dl> <p>Disini, <i>p</i> adalah vektor kolom (<i>p</i><sub>1</sub>, ..., <i>p</i><sub><i>n</i></sub>)<sup>T</sup>.</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(2)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Algoritme">Algoritme</h2><span class="mw-editsection"> <a role="button" href="https://id-m-wikipedia-org.translate.goog/w/index.php?title=Algoritma_Gauss-Newton&amp;action=edit&amp;section=2&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Sunting bagian: Algoritme" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>sunting</span> </a> </span> </div> <section class="mf-section-2 collapsible-block" id="mf-section-2"> <p>Algoritme Gauss-Newton merupakan prosedur <a href="https://id-m-wikipedia-org.translate.goog/wiki/Iterasi?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Iterasi">iterasi</a>. Ini berarti bahwa pengguna harus menetapkan sebuah penduga pertama untuk parameter vektor <i>p</i>, yang mana akan kita sebut <i>p</i><sup>0</sup>.</p> <p>Berikutnya penduga <i>p</i><sup><i>k</i></sup> untuk parameter vektor yang kemudian dihasilkan oleh perulangan hubungan</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p^{k+1}=p^{k}-{\Big (}J_{f}(p^{k})^{\top }J_{f}(p^{k}){\Big )}^{-1}J_{f}(p^{k})^{\top }f(p^{k}),}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi> p </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> = </mo> <msup> <mi> p </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msup> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em"> ( </mo> </mrow> </mrow> <msub> <mi> J </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> f </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <msup> <mi> p </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msup> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <msub> <mi> J </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> f </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <msup> <mi> p </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msup> <mo stretchy="false"> ) </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em"> ) </mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msup> <msub> <mi> J </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> f </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <msup> <mi> p </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msup> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mi> f </mi> <mo stretchy="false"> ( </mo> <msup> <mi> p </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msup> <mo stretchy="false"> ) </mo> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle p^{k+1}=p^{k}-{\Big (}J_{f}(p^{k})^{\top }J_{f}(p^{k}){\Big )}^{-1}J_{f}(p^{k})^{\top }f(p^{k}),} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0bdb15c13764d94fa2d8bee498d0c38900da7298" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; margin-left: -0.089ex; width:46.25ex; height:5.176ex;" alt="{\displaystyle p^{k+1}=p^{k}-{\Big (}J_{f}(p^{k})^{\top }J_{f}(p^{k}){\Big )}^{-1}J_{f}(p^{k})^{\top }f(p^{k}),}"> </noscript><span class="lazy-image-placeholder" style="width: 46.25ex;height: 5.176ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0bdb15c13764d94fa2d8bee498d0c38900da7298" data-alt="{\displaystyle p^{k+1}=p^{k}-{\Big (}J_{f}(p^{k})^{\top }J_{f}(p^{k}){\Big )}^{-1}J_{f}(p^{k})^{\top }f(p^{k}),}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </dd> </dl> <p>di mana <i>f</i>=(<i>f</i><sub>1</sub>, ..., <i>f</i><sub><i>m</i></sub>)<sup>T</sup> dan <i>J</i><sub>f</sub>(<i>p</i>) menunjukkan Jacobian dari <i>f</i> saat <i>p</i>.</p> <p>Matriks invers tidak pernah dihasilakan secara eksplisit dalam praktiknya. Sebagai pengganti, kita gunakan</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p^{k+1}=p^{k}+\delta ^{k},\,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi> p </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> = </mo> <msup> <mi> p </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msup> <mo> + </mo> <msup> <mi> δ<!-- δ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msup> <mo> , </mo> <mspace width="thinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle p^{k+1}=p^{k}+\delta ^{k},\,} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce8c9d3a90b3a2790845197cb4bfa1ccd63f65ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:15.821ex; height:3.009ex;" alt="{\displaystyle p^{k+1}=p^{k}+\delta ^{k},\,}"> </noscript><span class="lazy-image-placeholder" style="width: 15.821ex;height: 3.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce8c9d3a90b3a2790845197cb4bfa1ccd63f65ba" data-alt="{\displaystyle p^{k+1}=p^{k}+\delta ^{k},\,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </dd> </dl> <p>Dan kita hitung perbaikan δ<sup><i>k</i></sup> dengan menyelesaikan sistem linear</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J_{f}(p^{k})^{\top }J_{f}(p^{k})\,\delta ^{k}=-J_{f}(p^{k})^{\top }f(p^{k}),}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> J </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> f </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <msup> <mi> p </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msup> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <msub> <mi> J </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> f </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <msup> <mi> p </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msup> <mo stretchy="false"> ) </mo> <mspace width="thinmathspace"></mspace> <msup> <mi> δ<!-- δ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msup> <mo> = </mo> <mo> −<!-- − --> </mo> <msub> <mi> J </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> f </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <msup> <mi> p </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msup> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mi> f </mi> <mo stretchy="false"> ( </mo> <msup> <mi> p </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msup> <mo stretchy="false"> ) </mo> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle J_{f}(p^{k})^{\top }J_{f}(p^{k})\,\delta ^{k}=-J_{f}(p^{k})^{\top }f(p^{k}),} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c0072a24c6ee7c433b3b5348fc7e2e7eb15ab4d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:35.933ex; height:3.343ex;" alt="{\displaystyle J_{f}(p^{k})^{\top }J_{f}(p^{k})\,\delta ^{k}=-J_{f}(p^{k})^{\top }f(p^{k}),}"> </noscript><span class="lazy-image-placeholder" style="width: 35.933ex;height: 3.343ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c0072a24c6ee7c433b3b5348fc7e2e7eb15ab4d" data-alt="{\displaystyle J_{f}(p^{k})^{\top }J_{f}(p^{k})\,\delta ^{k}=-J_{f}(p^{k})^{\top }f(p^{k}),}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. </dd> </dl> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(3)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Penelusuran_garis">Penelusuran garis</h2><span class="mw-editsection"> <a role="button" href="https://id-m-wikipedia-org.translate.goog/w/index.php?title=Algoritma_Gauss-Newton&amp;action=edit&amp;section=3&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Sunting bagian: Penelusuran garis" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>sunting</span> </a> </span> </div> <section class="mf-section-3 collapsible-block" id="mf-section-3"> <p>Sebuah implementasi yang baik dari algoritme Gauss-Newton juga menggunakan algoritme penelusuran garis: sebagai pengganti dari formula sebelumnya untuk <i>p</i><sup><i>k</i>+1</sup>, kita gunakan</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p^{k+1}=p^{k}+\alpha ^{k}\,\delta ^{k},}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi> p </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> = </mo> <msup> <mi> p </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msup> <mo> + </mo> <msup> <mi> α<!-- α --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msup> <mspace width="thinmathspace"></mspace> <msup> <mi> δ<!-- δ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msup> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle p^{k+1}=p^{k}+\alpha ^{k}\,\delta ^{k},} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67a885fc76f9d70915ba9ab730a4ef91ed885e20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:18.398ex; height:3.009ex;" alt="{\displaystyle p^{k+1}=p^{k}+\alpha ^{k}\,\delta ^{k},}"> </noscript><span class="lazy-image-placeholder" style="width: 18.398ex;height: 3.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67a885fc76f9d70915ba9ab730a4ef91ed885e20" data-alt="{\displaystyle p^{k+1}=p^{k}+\alpha ^{k}\,\delta ^{k},}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </dd> </dl> <p>Dimana kita berusaha memilih sebuah nilai optimal untuk bilangan α<sup><i>k</i></sup>.</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(4)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Derivasi_dari_metode_Newton">Derivasi dari metode Newton</h2><span class="mw-editsection"> <a role="button" href="https://id-m-wikipedia-org.translate.goog/w/index.php?title=Algoritma_Gauss-Newton&amp;action=edit&amp;section=4&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Sunting bagian: Derivasi dari metode Newton" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>sunting</span> </a> </span> </div> <section class="mf-section-4 collapsible-block" id="mf-section-4"> <p>Hubungan perulangan metode Newton untuk meminimumkan sebuah fungsi <i>S</i> adalah</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p^{k+1}=p^{k}-[H_{S}(p^{k})]^{-1}\nabla S(p^{k}),\,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi> p </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> = </mo> <msup> <mi> p </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msup> <mo> −<!-- − --> </mo> <mo stretchy="false"> [ </mo> <msub> <mi> H </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> S </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <msup> <mi> p </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msup> <mo stretchy="false"> ) </mo> <msup> <mo stretchy="false"> ] </mo> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msup> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mi> S </mi> <mo stretchy="false"> ( </mo> <msup> <mi> p </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msup> <mo stretchy="false"> ) </mo> <mo> , </mo> <mspace width="thinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle p^{k+1}=p^{k}-[H_{S}(p^{k})]^{-1}\nabla S(p^{k}),\,} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c983173e8f06d48deb16bdc8d08be97dcf8298cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:32.099ex; height:3.176ex;" alt="{\displaystyle p^{k+1}=p^{k}-[H_{S}(p^{k})]^{-1}\nabla S(p^{k}),\,}"> </noscript><span class="lazy-image-placeholder" style="width: 32.099ex;height: 3.176ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c983173e8f06d48deb16bdc8d08be97dcf8298cd" data-alt="{\displaystyle p^{k+1}=p^{k}-[H_{S}(p^{k})]^{-1}\nabla S(p^{k}),\,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </dd> </dl> <p>di mana <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla S}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mi> S </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \nabla S} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8f146cd25bfe02a0030d9cc1ff07417905a8719" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.435ex; height:2.176ex;" alt="{\displaystyle \nabla S}"> </noscript><span class="lazy-image-placeholder" style="width: 3.435ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8f146cd25bfe02a0030d9cc1ff07417905a8719" data-alt="{\displaystyle \nabla S}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> dan <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{S}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> H </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> S </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle H_{S}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99d62a9b4028878b7d67a1b7006d8db189350a20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.224ex; height:2.509ex;" alt="{\displaystyle H_{S}}"> </noscript><span class="lazy-image-placeholder" style="width: 3.224ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99d62a9b4028878b7d67a1b7006d8db189350a20" data-alt="{\displaystyle H_{S}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> berarti gradien dan Hessian dari <i>S</i> . Sekarang kita misalkan S memiliki bentuk</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S(p)=\sum _{i=1}^{m}(f_{i}(p))^{2}=f(p)^{\top }f(p)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> S </mi> <mo stretchy="false"> ( </mo> <mi> p </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> m </mi> </mrow> </munderover> <mo stretchy="false"> ( </mo> <msub> <mi> f </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> p </mi> <mo stretchy="false"> ) </mo> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> = </mo> <mi> f </mi> <mo stretchy="false"> ( </mo> <mi> p </mi> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mi> f </mi> <mo stretchy="false"> ( </mo> <mi> p </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle S(p)=\sum _{i=1}^{m}(f_{i}(p))^{2}=f(p)^{\top }f(p)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8448dd9465fd6e746a601f9503c8b8133138103c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:31.836ex; height:6.843ex;" alt="{\displaystyle S(p)=\sum _{i=1}^{m}(f_{i}(p))^{2}=f(p)^{\top }f(p)}"> </noscript><span class="lazy-image-placeholder" style="width: 31.836ex;height: 6.843ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8448dd9465fd6e746a601f9503c8b8133138103c" data-alt="{\displaystyle S(p)=\sum _{i=1}^{m}(f_{i}(p))^{2}=f(p)^{\top }f(p)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </dd> </dl> <p>di mana <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> f </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle f} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"> </noscript><span class="lazy-image-placeholder" style="width: 1.279ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" data-alt="{\displaystyle f}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> adalah sebuah nilai fungsi vector yang merupakan komponen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> f </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle f_{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65da883ca3d16b461e46c94777b0d9c4aa010e79" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.939ex; height:2.509ex;" alt="{\displaystyle f_{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 1.939ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65da883ca3d16b461e46c94777b0d9c4aa010e79" data-alt="{\displaystyle f_{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>.</p> <p>Dalam kasus ini, gradien diberikan oleh</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla S(p)=2J_{f}(p)^{\top }f(p)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mi> S </mi> <mo stretchy="false"> ( </mo> <mi> p </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mn> 2 </mn> <msub> <mi> J </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> f </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> p </mi> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mi> f </mi> <mo stretchy="false"> ( </mo> <mi> p </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \nabla S(p)=2J_{f}(p)^{\top }f(p)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ea6c5d2094dec58a65a42a96c122286243c699a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:21.848ex; height:3.343ex;" alt="{\displaystyle \nabla S(p)=2J_{f}(p)^{\top }f(p)}"> </noscript><span class="lazy-image-placeholder" style="width: 21.848ex;height: 3.343ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ea6c5d2094dec58a65a42a96c122286243c699a" data-alt="{\displaystyle \nabla S(p)=2J_{f}(p)^{\top }f(p)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </dd> </dl> <p>di mana <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J_{f}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> J </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> f </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle J_{f}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/63d25ef7b611edb6008ece6655389f3a95082d5b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.427ex; height:2.843ex;" alt="{\displaystyle J_{f}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.427ex;height: 2.843ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/63d25ef7b611edb6008ece6655389f3a95082d5b" data-alt="{\displaystyle J_{f}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> adalah Jacobian dari <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> f </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle f} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"> </noscript><span class="lazy-image-placeholder" style="width: 1.279ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" data-alt="{\displaystyle f}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, dan Hessian diberikan oleh</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{S}(p)=2J_{f}(p)^{\top }J_{f}(p)+2\sum _{i=1}^{m}f_{i}(p)\,H_{f_{i}}(p)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> H </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> S </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> p </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mn> 2 </mn> <msub> <mi> J </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> f </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> p </mi> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <msub> <mi> J </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> f </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> p </mi> <mo stretchy="false"> ) </mo> <mo> + </mo> <mn> 2 </mn> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> m </mi> </mrow> </munderover> <msub> <mi> f </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> p </mi> <mo stretchy="false"> ) </mo> <mspace width="thinmathspace"></mspace> <msub> <mi> H </mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi> f </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> p </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle H_{S}(p)=2J_{f}(p)^{\top }J_{f}(p)+2\sum _{i=1}^{m}f_{i}(p)\,H_{f_{i}}(p)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e8a9ba08469cca669ad0ee78b80e9501ee6b2782" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:42.794ex; height:6.843ex;" alt="{\displaystyle H_{S}(p)=2J_{f}(p)^{\top }J_{f}(p)+2\sum _{i=1}^{m}f_{i}(p)\,H_{f_{i}}(p)}"> </noscript><span class="lazy-image-placeholder" style="width: 42.794ex;height: 6.843ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e8a9ba08469cca669ad0ee78b80e9501ee6b2782" data-alt="{\displaystyle H_{S}(p)=2J_{f}(p)^{\top }J_{f}(p)+2\sum _{i=1}^{m}f_{i}(p)\,H_{f_{i}}(p)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </dd> </dl> <p>di mana <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{f_{i}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> H </mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi> f </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle H_{f_{i}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee08a2d7682e8f6b165caa54b61922705e743175" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.594ex; height:2.843ex;" alt="{\displaystyle H_{f_{i}}}"> </noscript><span class="lazy-image-placeholder" style="width: 3.594ex;height: 2.843ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee08a2d7682e8f6b165caa54b61922705e743175" data-alt="{\displaystyle H_{f_{i}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> adalah Hessian dari <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> f </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle f_{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65da883ca3d16b461e46c94777b0d9c4aa010e79" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.939ex; height:2.509ex;" alt="{\displaystyle f_{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 1.939ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65da883ca3d16b461e46c94777b0d9c4aa010e79" data-alt="{\displaystyle f_{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>.</p> <p>Catatan bahwa syarat kedua dalam ekspresi ini untuk v <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{S}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> H </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> S </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle H_{S}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99d62a9b4028878b7d67a1b7006d8db189350a20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.224ex; height:2.509ex;" alt="{\displaystyle H_{S}}"> </noscript><span class="lazy-image-placeholder" style="width: 3.224ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99d62a9b4028878b7d67a1b7006d8db189350a20" data-alt="{\displaystyle H_{S}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> menuju nol sama <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S(p)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> S </mi> <mo stretchy="false"> ( </mo> <mi> p </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle S(p)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/433ae27e87adabe259edf4777bd53d84243c6192" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.478ex; height:2.843ex;" alt="{\displaystyle S(p)}"> </noscript><span class="lazy-image-placeholder" style="width: 4.478ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/433ae27e87adabe259edf4777bd53d84243c6192" data-alt="{\displaystyle S(p)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> menuju nol. Jadi jika nilai minimum dari S(p) tertutup untuk nol, dan nilai percobaan dari p adalah tertutup untuk minimum, kemudian kita bisa mengira Hessian dengan:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{S}(p)=2J_{f}(p)^{\top }J_{f}(p)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> H </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> S </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> p </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mn> 2 </mn> <msub> <mi> J </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> f </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> p </mi> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <msub> <mi> J </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> f </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> p </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle H_{S}(p)=2J_{f}(p)^{\top }J_{f}(p)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f36a94ace98491b8269fd489c4f3a32bbd6fbef4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:22.785ex; height:3.343ex;" alt="{\displaystyle H_{S}(p)=2J_{f}(p)^{\top }J_{f}(p)}"> </noscript><span class="lazy-image-placeholder" style="width: 22.785ex;height: 3.343ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f36a94ace98491b8269fd489c4f3a32bbd6fbef4" data-alt="{\displaystyle H_{S}(p)=2J_{f}(p)^{\top }J_{f}(p)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </dd> </dl> <p>Dengan memasukkan ekspresi ini untuk gradeien dan Hessian kedalam hubungan perulangan sebelumnya kita memiliki</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p^{k+1}=p^{k}-\left(J_{f}(p^{k})^{\top }J_{f}(p^{k})\right)^{-1}J_{f}(p^{k})^{\top }f(p^{k}).}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi> p </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> = </mo> <msup> <mi> p </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msup> <mo> −<!-- − --> </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msub> <mi> J </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> f </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <msup> <mi> p </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msup> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <msub> <mi> J </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> f </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <msup> <mi> p </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msup> <mo stretchy="false"> ) </mo> </mrow> <mo> ) </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msup> <msub> <mi> J </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> f </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <msup> <mi> p </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msup> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mi> f </mi> <mo stretchy="false"> ( </mo> <msup> <mi> p </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msup> <mo stretchy="false"> ) </mo> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle p^{k+1}=p^{k}-\left(J_{f}(p^{k})^{\top }J_{f}(p^{k})\right)^{-1}J_{f}(p^{k})^{\top }f(p^{k}).} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b469e882f6cea1b5e7e815eb4c3b8f347cbeedb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; margin-left: -0.089ex; width:45.604ex; height:3.843ex;" alt="{\displaystyle p^{k+1}=p^{k}-\left(J_{f}(p^{k})^{\top }J_{f}(p^{k})\right)^{-1}J_{f}(p^{k})^{\top }f(p^{k}).}"> </noscript><span class="lazy-image-placeholder" style="width: 45.604ex;height: 3.843ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b469e882f6cea1b5e7e815eb4c3b8f347cbeedb" data-alt="{\displaystyle p^{k+1}=p^{k}-\left(J_{f}(p^{k})^{\top }J_{f}(p^{k})\right)^{-1}J_{f}(p^{k})^{\top }f(p^{k}).}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </dd> </dl> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(5)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Algoritme_lainnya">Algoritme lainnya</h2><span class="mw-editsection"> <a role="button" href="https://id-m-wikipedia-org.translate.goog/w/index.php?title=Algoritma_Gauss-Newton&amp;action=edit&amp;section=5&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Sunting bagian: Algoritme lainnya" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>sunting</span> </a> </span> </div> <section class="mf-section-5 collapsible-block" id="mf-section-5"> <p>Metode lain untuk menyelesaikan masalah kuadrat terkecil hanya menggunakan derivatif pertama adalah <a href="https://id-m-wikipedia-org.translate.goog/wiki/Penurunan_gradien?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Penurunan gradien">penurunan gradien</a>. Bagaimanapun, metode ini tidak memasukkan nilai maupun perhitungan derivatif kedua dengan perkiraan yang sama. Karenanya, metode ini tidak efisien untuk fungsi-fungsi tertentu, seperti fungsi Rosenbrock.</p> <p>Pada kasus di mana minimum lebih besar dari nol, pengabaian syarat/ketentuan pada Hessian bisa jadi signifikan. Pada kasus ini, salah satunya bisa menggunakan algoritme Levenberg-Marquardt, yang merupakan kombinasi dari Gauss-Newton dan <a href="https://id-m-wikipedia-org.translate.goog/wiki/Penurunan_gradien?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Penurunan gradien">penurunan gradien</a>.</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(6)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Referensi">Referensi</h2><span class="mw-editsection"> <a role="button" href="https://id-m-wikipedia-org.translate.goog/w/index.php?title=Algoritma_Gauss-Newton&amp;action=edit&amp;section=6&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Sunting bagian: Referensi" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>sunting</span> </a> </span> </div> <section class="mf-section-6 collapsible-block" id="mf-section-6"> <ul> <li><cite class="citation book">Nocedal, Jorge (1999). <i>Numerical optimization</i>. New York: Springer. <a href="https://id-m-wikipedia-org.translate.goog/wiki/International_Standard_Book_Number?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="International Standard Book Number">ISBN</a>&nbsp;<a href="https://id-m-wikipedia-org.translate.goog/wiki/Istimewa:Sumber_buku/0387987932?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Istimewa:Sumber buku/0387987932">0387987932</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Numerical+optimization&amp;rft.pub=New+York%3A+Springer&amp;rft.date=1999&amp;rft.isbn=0387987932&amp;rft.aulast=Nocedal&amp;rft.aufirst=Jorge&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AAlgoritma+Gauss-Newton" class="Z3988"><span style="display:none;">&nbsp;</span></span> <span style="display:none;font-size:100%" class="error citation-comment">Parameter <code style="color:inherit; border:inherit; padding:inherit;">|coauthors=</code> yang tidak diketahui mengabaikan (<code style="color:inherit; border:inherit; padding:inherit;">|author=</code> yang disarankan) (<a href="https://id-m-wikipedia-org.translate.goog/wiki/Bantuan:Galat_CS1?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#parameter_ignored_suggest" title="Bantuan:Galat CS1">bantuan</a>)</span></li> </ul> <ul> <li><cite class="citation book">Deuflhard, P. (2003). <i>Numerical analysis in modern scientific computing: an introduction</i> (edisi ke-2nd ed). New York: Springer. <a href="https://id-m-wikipedia-org.translate.goog/wiki/International_Standard_Book_Number?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="International Standard Book Number">ISBN</a>&nbsp;<a href="https://id-m-wikipedia-org.translate.goog/wiki/Istimewa:Sumber_buku/0387954104?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Istimewa:Sumber buku/0387954104">0387954104</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Numerical+analysis+in+modern+scientific+computing%3A+an+introduction&amp;rft.edition=2nd+ed&amp;rft.pub=New+York%3A+Springer&amp;rft.date=2003&amp;rft.isbn=0387954104&amp;rft.aulast=Deuflhard&amp;rft.aufirst=P.&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AAlgoritma+Gauss-Newton" class="Z3988"><span style="display:none;">&nbsp;</span></span> <span style="display:none;font-size:100%" class="error citation-comment">Parameter <code style="color:inherit; border:inherit; padding:inherit;">|coauthors=</code> yang tidak diketahui mengabaikan (<code style="color:inherit; border:inherit; padding:inherit;">|author=</code> yang disarankan) (<a href="https://id-m-wikipedia-org.translate.goog/wiki/Bantuan:Galat_CS1?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#parameter_ignored_suggest" title="Bantuan:Galat CS1">bantuan</a>)</span><span class="citation-comment" style="display:none; color:#33aa33; margin-left:0.3em">Pemeliharaan CS1: Teks tambahan (<a href="https://id-m-wikipedia-org.translate.goog/wiki/Kategori:Pemeliharaan_CS1:_Teks_tambahan?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Kategori:Pemeliharaan CS1: Teks tambahan">link</a>) </span></li> </ul><!-- NewPP limit report Parsed by mw‐web.codfw.main‐568dbbbfd9‐7d2t7 Cached time: 20241109234421 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 0.108 seconds Real time usage: 0.220 seconds Preprocessor visited node count: 261/1000000 Post‐expand include size: 8088/2097152 bytes Template argument size: 0/2097152 bytes Highest expansion depth: 7/100 Expensive parser function count: 0/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 2479/5000000 bytes Lua time usage: 0.053/10.000 seconds Lua memory usage: 1920710/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 104.328 1 -total 65.02% 67.829 1 Templat:Rapikan 62.09% 64.777 1 Templat:Ambox 34.24% 35.717 2 Templat:Cite_book 1.54% 1.602 1 Templat:SUBJECTSPACE_formatted --> <!-- Saved in parser cache with key idwiki:pcache:idhash:252089-0!canonical and timestamp 20241109234421 and revision id 26264957. Rendering was triggered because: page-view --> </section> </div><!-- MobileFormatter took 0.016 seconds --><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --> <noscript> <img src="https://login.m.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&amp;mobile=1" alt="" width="1" height="1" style="border: none; position: absolute;"> </noscript> <div class="printfooter" data-nosnippet=""> Diperoleh dari "<a dir="ltr" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://id.wikipedia.org/w/index.php?title%3DAlgoritma_Gauss-Newton%26oldid%3D26264957">https://id.wikipedia.org/w/index.php?title=Algoritma_Gauss-Newton&amp;oldid=26264957</a>" </div> </div> </div> <div class="post-content" id="page-secondary-actions"> </div> </main> <footer class="mw-footer minerva-footer" role="contentinfo"><a class="last-modified-bar" href="https://id-m-wikipedia-org.translate.goog/w/index.php?title=Algoritma_Gauss-Newton&amp;action=history&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB"> <div class="post-content last-modified-bar__content"><span class="minerva-icon minerva-icon-size-medium minerva-icon--modified-history"></span> <span class="last-modified-bar__text modified-enhancement" data-user-name="Riswija" data-user-gender="unknown" data-timestamp="1725695136"> <span>Terakhir diubah pada 7 September 2024, pukul 07.45</span> </span> <span class="minerva-icon minerva-icon-size-small minerva-icon--expand"></span> </div></a> <div class="post-content footer-content"> <div id="mw-data-after-content"> <div class="read-more-container"></div> </div> <div id="p-lang"> <h4>Bahasa</h4> <section> <ul id="p-variants" class="minerva-languages"></ul> <ul class="minerva-languages"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ar.wikipedia.org/wiki/%25D8%25AE%25D9%2588%25D8%25A7%25D8%25B1%25D8%25B2%25D9%2585%25D9%258A%25D8%25A9_%25D8%25AC%25D8%25A7%25D9%2588%25D8%25B3_%25D9%2588%25D9%2586%25D9%258A%25D9%2588%25D8%25AA%25D9%2586" title="خوارزمية جاوس ونيوتن – Arab" lang="ar" hreflang="ar" data-title="خوارزمية جاوس ونيوتن" data-language-autonym="العربية" data-language-local-name="Arab" class="interlanguage-link-target"><span>العربية</span></a></li> <li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://bg.wikipedia.org/wiki/%25D0%2590%25D0%25BB%25D0%25B3%25D0%25BE%25D1%2580%25D0%25B8%25D1%2582%25D1%258A%25D0%25BC_%25D0%25BD%25D0%25B0_%25D0%2593%25D0%25B0%25D1%2583%25D1%2581-%25D0%259D%25D1%258E%25D1%2582%25D0%25BE%25D0%25BD" title="Алгоритъм на Гаус-Нютон – Bulgaria" lang="bg" hreflang="bg" data-title="Алгоритъм на Гаус-Нютон" data-language-autonym="Български" data-language-local-name="Bulgaria" class="interlanguage-link-target"><span>Български</span></a></li> <li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ca.wikipedia.org/wiki/Algorisme_de_Gauss-Newton" title="Algorisme de Gauss-Newton – Katalan" lang="ca" hreflang="ca" data-title="Algorisme de Gauss-Newton" data-language-autonym="Català" data-language-local-name="Katalan" class="interlanguage-link-target"><span>Català</span></a></li> <li class="interlanguage-link interwiki-de mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://de.wikipedia.org/wiki/Gau%25C3%259F-Newton-Verfahren" title="Gauß-Newton-Verfahren – Jerman" lang="de" hreflang="de" data-title="Gauß-Newton-Verfahren" data-language-autonym="Deutsch" data-language-local-name="Jerman" class="interlanguage-link-target"><span>Deutsch</span></a></li> <li class="interlanguage-link interwiki-en mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://en.wikipedia.org/wiki/Gauss%25E2%2580%2593Newton_algorithm" title="Gauss–Newton algorithm – Inggris" lang="en" hreflang="en" data-title="Gauss–Newton algorithm" data-language-autonym="English" data-language-local-name="Inggris" class="interlanguage-link-target"><span>English</span></a></li> <li class="interlanguage-link interwiki-es mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://es.wikipedia.org/wiki/Algoritmo_de_Gauss-Newton" title="Algoritmo de Gauss-Newton – Spanyol" lang="es" hreflang="es" data-title="Algoritmo de Gauss-Newton" data-language-autonym="Español" data-language-local-name="Spanyol" class="interlanguage-link-target"><span>Español</span></a></li> <li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://fr.wikipedia.org/wiki/Algorithme_de_Gauss-Newton" title="Algorithme de Gauss-Newton – Prancis" lang="fr" hreflang="fr" data-title="Algorithme de Gauss-Newton" data-language-autonym="Français" data-language-local-name="Prancis" class="interlanguage-link-target"><span>Français</span></a></li> <li class="interlanguage-link interwiki-he mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://he.wikipedia.org/wiki/%25D7%2590%25D7%259C%25D7%2592%25D7%2595%25D7%25A8%25D7%2599%25D7%25AA%25D7%259D_%25D7%2592%25D7%2590%25D7%2595%25D7%25A1-%25D7%25A0%25D7%2599%25D7%2595%25D7%2598%25D7%2595%25D7%259F" title="אלגוריתם גאוס-ניוטון – Ibrani" lang="he" hreflang="he" data-title="אלגוריתם גאוס-ניוטון" data-language-autonym="עברית" data-language-local-name="Ibrani" class="interlanguage-link-target"><span>עברית</span></a></li> <li class="interlanguage-link interwiki-it mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://it.wikipedia.org/wiki/Algoritmo_di_Gauss-Newton" title="Algoritmo di Gauss-Newton – Italia" lang="it" hreflang="it" data-title="Algoritmo di Gauss-Newton" data-language-autonym="Italiano" data-language-local-name="Italia" class="interlanguage-link-target"><span>Italiano</span></a></li> <li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ja.wikipedia.org/wiki/%25E3%2582%25AC%25E3%2582%25A6%25E3%2582%25B9%25E3%2583%25BB%25E3%2583%258B%25E3%2583%25A5%25E3%2583%25BC%25E3%2583%2588%25E3%2583%25B3%25E6%25B3%2595" title="ガウス・ニュートン法 – Jepang" lang="ja" hreflang="ja" data-title="ガウス・ニュートン法" data-language-autonym="日本語" data-language-local-name="Jepang" class="interlanguage-link-target"><span>日本語</span></a></li> <li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://nn.wikipedia.org/wiki/Gauss%25E2%2580%2593Newton_algoritmen" title="Gauss–Newton algoritmen – Nynorsk Norwegia" lang="nn" hreflang="nn" data-title="Gauss–Newton algoritmen" data-language-autonym="Norsk nynorsk" data-language-local-name="Nynorsk Norwegia" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li> <li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://pl.wikipedia.org/wiki/Algorytm_Gaussa-Newtona" title="Algorytm Gaussa-Newtona – Polski" lang="pl" hreflang="pl" data-title="Algorytm Gaussa-Newtona" data-language-autonym="Polski" data-language-local-name="Polski" class="interlanguage-link-target"><span>Polski</span></a></li> <li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://pt.wikipedia.org/wiki/Algoritmo_de_Gauss-Newton" title="Algoritmo de Gauss-Newton – Portugis" lang="pt" hreflang="pt" data-title="Algoritmo de Gauss-Newton" data-language-autonym="Português" data-language-local-name="Portugis" class="interlanguage-link-target"><span>Português</span></a></li> <li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ru.wikipedia.org/wiki/%25D0%2590%25D0%25BB%25D0%25B3%25D0%25BE%25D1%2580%25D0%25B8%25D1%2582%25D0%25BC_%25D0%2593%25D0%25B0%25D1%2583%25D1%2581%25D1%2581%25D0%25B0_%25E2%2580%2594_%25D0%259D%25D1%258C%25D1%258E%25D1%2582%25D0%25BE%25D0%25BD%25D0%25B0" title="Алгоритм Гаусса — Ньютона – Rusia" lang="ru" hreflang="ru" data-title="Алгоритм Гаусса — Ньютона" data-language-autonym="Русский" data-language-local-name="Rusia" class="interlanguage-link-target"><span>Русский</span></a></li> <li class="interlanguage-link interwiki-sv badge-Q17559452 badge-recommendedarticle mw-list-item" title="recommended article"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://sv.wikipedia.org/wiki/Gauss%25E2%2580%2593Newtons_metod" title="Gauss–Newtons metod – Swedia" lang="sv" hreflang="sv" data-title="Gauss–Newtons metod" data-language-autonym="Svenska" data-language-local-name="Swedia" class="interlanguage-link-target"><span>Svenska</span></a></li> </ul> </section> </div> <div class="minerva-footer-logo"> <img src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" alt="Wikipedia" width="120" height="18" style="width: 7.5em; height: 1.125em;"> </div> <ul id="footer-info" class="footer-info hlist hlist-separated"> <li id="footer-info-lastmod">Halaman ini terakhir diubah pada 7 September 2024, pukul 07.45.</li> <li id="footer-info-copyright">Konten tersedia di bawah <a class="external" rel="nofollow" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://creativecommons.org/licenses/by-sa/4.0/deed.id">CC BY-SA 4.0</a> kecuali dinyatakan lain.</li> </ul> <ul id="footer-places" class="footer-places hlist hlist-separated"> <li id="footer-places-privacy"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Kebijakan privasi</a></li> <li id="footer-places-about"><a href="https://id-m-wikipedia-org.translate.goog/wiki/Wikipedia:Tentang?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB">Tentang Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="https://id-m-wikipedia-org.translate.goog/wiki/Wikipedia:Penyangkalan_umum?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB">Penyangkalan</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Kode Etik</a></li> <li id="footer-places-developers"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://developer.wikimedia.org">Pengembang</a></li> <li id="footer-places-statslink"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://stats.wikimedia.org/%23/id.wikipedia.org">Statistik</a></li> <li id="footer-places-cookiestatement"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Pernyataan kuki</a></li> <li id="footer-places-terms-use"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://foundation.m.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">Ketentuan Penggunaan</a></li> <li id="footer-places-desktop-toggle"><a id="mw-mf-display-toggle" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://id.wikipedia.org/w/index.php?title%3DAlgoritma_Gauss-Newton%26mobileaction%3Dtoggle_view_desktop" data-event-name="switch_to_desktop">Tampilan komputer (PC)</a></li> </ul> </div> </footer> </div> </div> <div class="mw-notification-area" data-mw="interface"></div><!-- v:8.3.1 --> <script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-694cf4987f-rpb9p","wgBackendResponseTime":189,"wgPageParseReport":{"limitreport":{"cputime":"0.108","walltime":"0.220","ppvisitednodes":{"value":261,"limit":1000000},"postexpandincludesize":{"value":8088,"limit":2097152},"templateargumentsize":{"value":0,"limit":2097152},"expansiondepth":{"value":7,"limit":100},"expensivefunctioncount":{"value":0,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":2479,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 104.328 1 -total"," 65.02% 67.829 1 Templat:Rapikan"," 62.09% 64.777 1 Templat:Ambox"," 34.24% 35.717 2 Templat:Cite_book"," 1.54% 1.602 1 Templat:SUBJECTSPACE_formatted"]},"scribunto":{"limitreport-timeusage":{"value":"0.053","limit":"10.000"},"limitreport-memusage":{"value":1920710,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-568dbbbfd9-7d2t7","timestamp":"20241109234421","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Algoritma Gauss-Newton","url":"https:\/\/id.wikipedia.org\/wiki\/Algoritma_Gauss-Newton","sameAs":"http:\/\/www.wikidata.org\/entity\/Q1496373","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q1496373","author":{"@type":"Organization","name":"Kontributor dari proyek Wikimedia."},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2008-01-21T04:57:10Z","dateModified":"2024-09-07T07:45:36Z"}</script> <script>(window.NORLQ=window.NORLQ||[]).push(function(){var ns,i,p,img;ns=document.getElementsByTagName('noscript');for(i=0;i<ns.length;i++){p=ns[i].nextSibling;if(p&&p.className&&p.className.indexOf('lazy-image-placeholder')>-1){img=document.createElement('img');img.setAttribute('src',p.getAttribute('data-src'));img.setAttribute('width',p.getAttribute('data-width'));img.setAttribute('height',p.getAttribute('data-height'));img.setAttribute('alt',p.getAttribute('data-alt'));p.parentNode.replaceChild(img,p);}}});</script> <script>function gtElInit() {var lib = new google.translate.TranslateService();lib.translatePage('id', 'en', function () {});}</script> <script src="https://translate.google.com/translate_a/element.js?cb=gtElInit&amp;hl=en-GB&amp;client=wt" type="text/javascript"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10