CINXE.COM
ガウス・ニュートン法 - Wikipedia
<!doctype html> <html class="client-nojs skin-theme-clientpref-day mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0" lang="ja" dir="ltr"> <head> <base href="https://ja.m.wikipedia.org/wiki/%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95"> <meta charset="UTF-8"> <title>ガウス・ニュートン法 - Wikipedia</title> <script>(function(){var className="client-js skin-theme-clientpref-day mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0";var cookie=document.cookie.match(/(?:^|; )jawikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"ja","wgMonthNames":["","1月","2月","3月","4月","5月","6月","7月","8月","9月","10月","11月","12月"],"wgRequestId":"bfc351f0-ef88-4b5d-85e4-9657a1c008e9","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"ガウス・ニュートン法","wgTitle":"ガウス・ニュートン法","wgCurRevisionId":98414952,"wgRevisionId":98414952,"wgArticleId":2904393 ,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgPageViewLanguage":"ja","wgPageContentLanguage":"ja","wgPageContentModel":"wikitext","wgRelevantPageName":"ガウス・ニュートン法","wgRelevantArticleId":2904393,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"ja","pageLanguageDir":"ltr","pageVariantFallbacks":"ja"},"wgMFMode":"stable","wgMFAmc":false,"wgMFAmcOutreachActive":false,"wgMFAmcOutreachUserEligible":false,"wgMFLazyLoadImages":true,"wgMFEditNoticesFeatureConflict":false,"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgMFIsSupportedEditRequest":true,"wgMFScriptPath":"","wgWMESchemaEditAttemptStepOversample":false, "wgWMEPageLength":20000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":true,"wgEditSubmitButtonLabelPublish":true,"wgSectionTranslationMissingLanguages":[{"lang":"ace","autonym":"Acèh","dir":"ltr"},{"lang":"ady","autonym":"адыгабзэ","dir":"ltr"},{"lang":"alt","autonym":"алтай тил","dir":"ltr"},{"lang":"am","autonym":"አማርኛ","dir":"ltr"},{"lang":"ami","autonym":"Pangcah","dir":"ltr"},{"lang":"an","autonym":"aragonés","dir":"ltr"},{"lang":"ang","autonym":"Ænglisc","dir":"ltr"},{"lang":"ann","autonym":"Obolo","dir":"ltr"},{"lang":"anp","autonym":"अंगिका","dir":"ltr"},{"lang":"ary","autonym":"الدارجة","dir":"rtl"},{"lang":"arz","autonym":"مصرى","dir":"rtl"},{"lang":"as","autonym":"অসমীয়া","dir":"ltr"},{"lang":"ast","autonym":"asturianu","dir":"ltr"},{"lang":"av","autonym":"авар","dir":"ltr"},{"lang":"avk","autonym":"Kotava","dir":"ltr"},{"lang":"awa","autonym":"अवधी","dir":"ltr"},{"lang":"ay","autonym": "Aymar aru","dir":"ltr"},{"lang":"az","autonym":"azərbaycanca","dir":"ltr"},{"lang":"azb","autonym":"تۆرکجه","dir":"rtl"},{"lang":"ba","autonym":"башҡортса","dir":"ltr"},{"lang":"ban","autonym":"Basa Bali","dir":"ltr"},{"lang":"bar","autonym":"Boarisch","dir":"ltr"},{"lang":"bbc","autonym":"Batak Toba","dir":"ltr"},{"lang":"bcl","autonym":"Bikol Central","dir":"ltr"},{"lang":"bdr","autonym":"Bajau Sama","dir":"ltr"},{"lang":"be","autonym":"беларуская","dir":"ltr"},{"lang":"bew","autonym":"Betawi","dir":"ltr"},{"lang":"bho","autonym":"भोजपुरी","dir":"ltr"},{"lang":"bi","autonym":"Bislama","dir":"ltr"},{"lang":"bjn","autonym":"Banjar","dir":"ltr"},{"lang":"blk","autonym":"ပအိုဝ်ႏဘာႏသာႏ","dir":"ltr"},{"lang":"bm","autonym":"bamanankan","dir":"ltr"},{"lang":"bn","autonym":"বাংলা","dir":"ltr"},{"lang":"bo","autonym":"བོད་ཡིག","dir":"ltr"},{"lang":"bpy","autonym": "বিষ্ণুপ্রিয়া মণিপুরী","dir":"ltr"},{"lang":"br","autonym":"brezhoneg","dir":"ltr"},{"lang":"bs","autonym":"bosanski","dir":"ltr"},{"lang":"btm","autonym":"Batak Mandailing","dir":"ltr"},{"lang":"bug","autonym":"Basa Ugi","dir":"ltr"},{"lang":"cdo","autonym":"閩東語 / Mìng-dĕ̤ng-ngṳ̄","dir":"ltr"},{"lang":"ce","autonym":"нохчийн","dir":"ltr"},{"lang":"ceb","autonym":"Cebuano","dir":"ltr"},{"lang":"ch","autonym":"Chamoru","dir":"ltr"},{"lang":"chr","autonym":"ᏣᎳᎩ","dir":"ltr"},{"lang":"ckb","autonym":"کوردی","dir":"rtl"},{"lang":"co","autonym":"corsu","dir":"ltr"},{"lang":"cr","autonym":"Nēhiyawēwin / ᓀᐦᐃᔭᐍᐏᐣ","dir":"ltr"},{"lang":"crh","autonym":"qırımtatarca","dir":"ltr"},{"lang":"cs","autonym":"čeština","dir":"ltr"},{"lang":"cu","autonym":"словѣньскъ / ⰔⰎⰑⰂⰡⰐⰠⰔⰍⰟ","dir":"ltr"},{"lang":"cy","autonym":"Cymraeg","dir":"ltr"},{"lang":"da","autonym":"dansk","dir":"ltr"},{ "lang":"dag","autonym":"dagbanli","dir":"ltr"},{"lang":"dga","autonym":"Dagaare","dir":"ltr"},{"lang":"din","autonym":"Thuɔŋjäŋ","dir":"ltr"},{"lang":"diq","autonym":"Zazaki","dir":"ltr"},{"lang":"dsb","autonym":"dolnoserbski","dir":"ltr"},{"lang":"dtp","autonym":"Kadazandusun","dir":"ltr"},{"lang":"dv","autonym":"ދިވެހިބަސް","dir":"rtl"},{"lang":"dz","autonym":"ཇོང་ཁ","dir":"ltr"},{"lang":"ee","autonym":"eʋegbe","dir":"ltr"},{"lang":"el","autonym":"Ελληνικά","dir":"ltr"},{"lang":"eml","autonym":"emiliàn e rumagnòl","dir":"ltr"},{"lang":"eo","autonym":"Esperanto","dir":"ltr"},{"lang":"et","autonym":"eesti","dir":"ltr"},{"lang":"eu","autonym":"euskara","dir":"ltr"},{"lang":"fa","autonym":"فارسی","dir":"rtl"},{"lang":"fat","autonym":"mfantse","dir":"ltr"},{"lang":"ff","autonym":"Fulfulde","dir":"ltr"},{"lang":"fi","autonym":"suomi","dir":"ltr"},{"lang":"fj","autonym":"Na Vosa Vakaviti","dir":"ltr"},{"lang":"fo","autonym":"føroyskt","dir":"ltr"},{ "lang":"fon","autonym":"fɔ̀ngbè","dir":"ltr"},{"lang":"frp","autonym":"arpetan","dir":"ltr"},{"lang":"frr","autonym":"Nordfriisk","dir":"ltr"},{"lang":"fur","autonym":"furlan","dir":"ltr"},{"lang":"fy","autonym":"Frysk","dir":"ltr"},{"lang":"gag","autonym":"Gagauz","dir":"ltr"},{"lang":"gan","autonym":"贛語","dir":"ltr"},{"lang":"gcr","autonym":"kriyòl gwiyannen","dir":"ltr"},{"lang":"gl","autonym":"galego","dir":"ltr"},{"lang":"glk","autonym":"گیلکی","dir":"rtl"},{"lang":"gn","autonym":"Avañe'ẽ","dir":"ltr"},{"lang":"gom","autonym":"गोंयची कोंकणी / Gõychi Konknni","dir":"ltr"},{"lang":"gor","autonym":"Bahasa Hulontalo","dir":"ltr"},{"lang":"gpe","autonym":"Ghanaian Pidgin","dir":"ltr"},{"lang":"gu","autonym":"ગુજરાતી","dir":"ltr"},{"lang":"guc","autonym":"wayuunaiki","dir":"ltr"},{"lang":"gur","autonym":"farefare","dir":"ltr"},{"lang":"guw","autonym":"gungbe","dir":"ltr"},{"lang":"gv","autonym":"Gaelg","dir":"ltr"},{"lang":"ha", "autonym":"Hausa","dir":"ltr"},{"lang":"hak","autonym":"客家語 / Hak-kâ-ngî","dir":"ltr"},{"lang":"haw","autonym":"Hawaiʻi","dir":"ltr"},{"lang":"hi","autonym":"हिन्दी","dir":"ltr"},{"lang":"hif","autonym":"Fiji Hindi","dir":"ltr"},{"lang":"hr","autonym":"hrvatski","dir":"ltr"},{"lang":"hsb","autonym":"hornjoserbsce","dir":"ltr"},{"lang":"ht","autonym":"Kreyòl ayisyen","dir":"ltr"},{"lang":"hu","autonym":"magyar","dir":"ltr"},{"lang":"hy","autonym":"հայերեն","dir":"ltr"},{"lang":"hyw","autonym":"Արեւմտահայերէն","dir":"ltr"},{"lang":"ia","autonym":"interlingua","dir":"ltr"},{"lang":"iba","autonym":"Jaku Iban","dir":"ltr"},{"lang":"ie","autonym":"Interlingue","dir":"ltr"},{"lang":"ig","autonym":"Igbo","dir":"ltr"},{"lang":"igl","autonym":"Igala","dir":"ltr"},{"lang":"ilo","autonym":"Ilokano","dir":"ltr"},{"lang":"io","autonym":"Ido","dir":"ltr"},{"lang":"is","autonym":"íslenska","dir":"ltr"},{"lang":"iu","autonym":"ᐃᓄᒃᑎᑐᑦ / inuktitut", "dir":"ltr"},{"lang":"jam","autonym":"Patois","dir":"ltr"},{"lang":"jv","autonym":"Jawa","dir":"ltr"},{"lang":"ka","autonym":"ქართული","dir":"ltr"},{"lang":"kaa","autonym":"Qaraqalpaqsha","dir":"ltr"},{"lang":"kab","autonym":"Taqbaylit","dir":"ltr"},{"lang":"kbd","autonym":"адыгэбзэ","dir":"ltr"},{"lang":"kbp","autonym":"Kabɩyɛ","dir":"ltr"},{"lang":"kcg","autonym":"Tyap","dir":"ltr"},{"lang":"kg","autonym":"Kongo","dir":"ltr"},{"lang":"kge","autonym":"Kumoring","dir":"ltr"},{"lang":"ki","autonym":"Gĩkũyũ","dir":"ltr"},{"lang":"kk","autonym":"қазақша","dir":"ltr"},{"lang":"kl","autonym":"kalaallisut","dir":"ltr"},{"lang":"km","autonym":"ភាសាខ្មែរ","dir":"ltr"},{"lang":"kn","autonym":"ಕನ್ನಡ","dir":"ltr"},{"lang":"ko","autonym":"한국어","dir":"ltr"},{"lang":"koi","autonym":"перем коми","dir":"ltr"},{"lang":"krc","autonym":"къарачай-малкъар","dir":"ltr"},{"lang":"ks","autonym": "कॉशुर / کٲشُر","dir":"rtl"},{"lang":"ku","autonym":"kurdî","dir":"ltr"},{"lang":"kus","autonym":"Kʋsaal","dir":"ltr"},{"lang":"kv","autonym":"коми","dir":"ltr"},{"lang":"kw","autonym":"kernowek","dir":"ltr"},{"lang":"ky","autonym":"кыргызча","dir":"ltr"},{"lang":"lad","autonym":"Ladino","dir":"ltr"},{"lang":"lb","autonym":"Lëtzebuergesch","dir":"ltr"},{"lang":"lez","autonym":"лезги","dir":"ltr"},{"lang":"lg","autonym":"Luganda","dir":"ltr"},{"lang":"li","autonym":"Limburgs","dir":"ltr"},{"lang":"lij","autonym":"Ligure","dir":"ltr"},{"lang":"lld","autonym":"Ladin","dir":"ltr"},{"lang":"lmo","autonym":"lombard","dir":"ltr"},{"lang":"ln","autonym":"lingála","dir":"ltr"},{"lang":"lo","autonym":"ລາວ","dir":"ltr"},{"lang":"lt","autonym":"lietuvių","dir":"ltr"},{"lang":"ltg","autonym":"latgaļu","dir":"ltr"},{"lang":"lv","autonym":"latviešu","dir":"ltr"},{"lang":"mad","autonym":"Madhurâ","dir":"ltr"},{"lang":"mai","autonym":"मैथिली", "dir":"ltr"},{"lang":"map-bms","autonym":"Basa Banyumasan","dir":"ltr"},{"lang":"mdf","autonym":"мокшень","dir":"ltr"},{"lang":"mg","autonym":"Malagasy","dir":"ltr"},{"lang":"mhr","autonym":"олык марий","dir":"ltr"},{"lang":"mi","autonym":"Māori","dir":"ltr"},{"lang":"min","autonym":"Minangkabau","dir":"ltr"},{"lang":"mk","autonym":"македонски","dir":"ltr"},{"lang":"ml","autonym":"മലയാളം","dir":"ltr"},{"lang":"mn","autonym":"монгол","dir":"ltr"},{"lang":"mni","autonym":"ꯃꯤꯇꯩ ꯂꯣꯟ","dir":"ltr"},{"lang":"mnw","autonym":"ဘာသာမန်","dir":"ltr"},{"lang":"mos","autonym":"moore","dir":"ltr"},{"lang":"mr","autonym":"मराठी","dir":"ltr"},{"lang":"mrj","autonym":"кырык мары","dir":"ltr"},{"lang":"ms","autonym":"Bahasa Melayu","dir":"ltr"},{"lang":"mt","autonym":"Malti","dir":"ltr"},{"lang":"mwl","autonym":"Mirandés","dir":"ltr"},{"lang":"my","autonym":"မြန်မာဘာသာ","dir":"ltr"},{"lang": "myv","autonym":"эрзянь","dir":"ltr"},{"lang":"mzn","autonym":"مازِرونی","dir":"rtl"},{"lang":"nah","autonym":"Nāhuatl","dir":"ltr"},{"lang":"nan","autonym":"閩南語 / Bân-lâm-gú","dir":"ltr"},{"lang":"nap","autonym":"Napulitano","dir":"ltr"},{"lang":"nb","autonym":"norsk bokmål","dir":"ltr"},{"lang":"nds","autonym":"Plattdüütsch","dir":"ltr"},{"lang":"nds-nl","autonym":"Nedersaksies","dir":"ltr"},{"lang":"ne","autonym":"नेपाली","dir":"ltr"},{"lang":"new","autonym":"नेपाल भाषा","dir":"ltr"},{"lang":"nia","autonym":"Li Niha","dir":"ltr"},{"lang":"nl","autonym":"Nederlands","dir":"ltr"},{"lang":"nqo","autonym":"ߒߞߏ","dir":"rtl"},{"lang":"nr","autonym":"isiNdebele seSewula","dir":"ltr"},{"lang":"nso","autonym":"Sesotho sa Leboa","dir":"ltr"},{"lang":"ny","autonym":"Chi-Chewa","dir":"ltr"},{"lang":"oc","autonym":"occitan","dir":"ltr"},{"lang":"om","autonym":"Oromoo","dir":"ltr"},{"lang":"or","autonym":"ଓଡ଼ିଆ","dir":"ltr"},{ "lang":"os","autonym":"ирон","dir":"ltr"},{"lang":"pa","autonym":"ਪੰਜਾਬੀ","dir":"ltr"},{"lang":"pag","autonym":"Pangasinan","dir":"ltr"},{"lang":"pam","autonym":"Kapampangan","dir":"ltr"},{"lang":"pap","autonym":"Papiamentu","dir":"ltr"},{"lang":"pcd","autonym":"Picard","dir":"ltr"},{"lang":"pcm","autonym":"Naijá","dir":"ltr"},{"lang":"pdc","autonym":"Deitsch","dir":"ltr"},{"lang":"pms","autonym":"Piemontèis","dir":"ltr"},{"lang":"pnb","autonym":"پنجابی","dir":"rtl"},{"lang":"ps","autonym":"پښتو","dir":"rtl"},{"lang":"pwn","autonym":"pinayuanan","dir":"ltr"},{"lang":"qu","autonym":"Runa Simi","dir":"ltr"},{"lang":"rm","autonym":"rumantsch","dir":"ltr"},{"lang":"rn","autonym":"ikirundi","dir":"ltr"},{"lang":"ro","autonym":"română","dir":"ltr"},{"lang":"rsk","autonym":"руски","dir":"ltr"},{"lang":"rue","autonym":"русиньскый","dir":"ltr"},{"lang":"rup","autonym":"armãneashti","dir":"ltr"},{"lang":"rw","autonym":"Ikinyarwanda","dir":"ltr"},{ "lang":"sa","autonym":"संस्कृतम्","dir":"ltr"},{"lang":"sah","autonym":"саха тыла","dir":"ltr"},{"lang":"sat","autonym":"ᱥᱟᱱᱛᱟᱲᱤ","dir":"ltr"},{"lang":"sc","autonym":"sardu","dir":"ltr"},{"lang":"scn","autonym":"sicilianu","dir":"ltr"},{"lang":"sco","autonym":"Scots","dir":"ltr"},{"lang":"sd","autonym":"سنڌي","dir":"rtl"},{"lang":"se","autonym":"davvisámegiella","dir":"ltr"},{"lang":"sg","autonym":"Sängö","dir":"ltr"},{"lang":"sgs","autonym":"žemaitėška","dir":"ltr"},{"lang":"sh","autonym":"srpskohrvatski / српскохрватски","dir":"ltr"},{"lang":"shi","autonym":"Taclḥit","dir":"ltr"},{"lang":"shn","autonym":"ၽႃႇသႃႇတႆး ","dir":"ltr"},{"lang":"si","autonym":"සිංහල","dir":"ltr"},{"lang":"sk","autonym":"slovenčina","dir":"ltr"},{"lang":"skr","autonym":"سرائیکی","dir":"rtl"},{"lang":"sl","autonym":"slovenščina","dir":"ltr"},{"lang":"sm","autonym":"Gagana Samoa","dir":"ltr"},{"lang":"smn", "autonym":"anarâškielâ","dir":"ltr"},{"lang":"sn","autonym":"chiShona","dir":"ltr"},{"lang":"so","autonym":"Soomaaliga","dir":"ltr"},{"lang":"sq","autonym":"shqip","dir":"ltr"},{"lang":"sr","autonym":"српски / srpski","dir":"ltr"},{"lang":"srn","autonym":"Sranantongo","dir":"ltr"},{"lang":"ss","autonym":"SiSwati","dir":"ltr"},{"lang":"st","autonym":"Sesotho","dir":"ltr"},{"lang":"stq","autonym":"Seeltersk","dir":"ltr"},{"lang":"su","autonym":"Sunda","dir":"ltr"},{"lang":"sw","autonym":"Kiswahili","dir":"ltr"},{"lang":"szl","autonym":"ślůnski","dir":"ltr"},{"lang":"ta","autonym":"தமிழ்","dir":"ltr"},{"lang":"tay","autonym":"Tayal","dir":"ltr"},{"lang":"tcy","autonym":"ತುಳು","dir":"ltr"},{"lang":"tdd","autonym":"ᥖᥭᥰ ᥖᥬᥲ ᥑᥨᥒᥰ","dir":"ltr"},{"lang":"te","autonym":"తెలుగు","dir":"ltr"},{"lang":"tet","autonym":"tetun","dir":"ltr"},{"lang":"tg","autonym":"тоҷикӣ","dir":"ltr"},{"lang":"th","autonym":"ไทย","dir":"ltr"},{ "lang":"ti","autonym":"ትግርኛ","dir":"ltr"},{"lang":"tk","autonym":"Türkmençe","dir":"ltr"},{"lang":"tl","autonym":"Tagalog","dir":"ltr"},{"lang":"tly","autonym":"tolışi","dir":"ltr"},{"lang":"tn","autonym":"Setswana","dir":"ltr"},{"lang":"to","autonym":"lea faka-Tonga","dir":"ltr"},{"lang":"tpi","autonym":"Tok Pisin","dir":"ltr"},{"lang":"tr","autonym":"Türkçe","dir":"ltr"},{"lang":"trv","autonym":"Seediq","dir":"ltr"},{"lang":"ts","autonym":"Xitsonga","dir":"ltr"},{"lang":"tt","autonym":"татарча / tatarça","dir":"ltr"},{"lang":"tum","autonym":"chiTumbuka","dir":"ltr"},{"lang":"tw","autonym":"Twi","dir":"ltr"},{"lang":"ty","autonym":"reo tahiti","dir":"ltr"},{"lang":"tyv","autonym":"тыва дыл","dir":"ltr"},{"lang":"udm","autonym":"удмурт","dir":"ltr"},{"lang":"ur","autonym":"اردو","dir":"rtl"},{"lang":"uz","autonym":"oʻzbekcha / ўзбекча","dir":"ltr"},{"lang":"ve","autonym":"Tshivenda","dir":"ltr"},{"lang":"vec","autonym":"vèneto","dir": "ltr"},{"lang":"vep","autonym":"vepsän kel’","dir":"ltr"},{"lang":"vi","autonym":"Tiếng Việt","dir":"ltr"},{"lang":"vls","autonym":"West-Vlams","dir":"ltr"},{"lang":"vo","autonym":"Volapük","dir":"ltr"},{"lang":"vro","autonym":"võro","dir":"ltr"},{"lang":"wa","autonym":"walon","dir":"ltr"},{"lang":"war","autonym":"Winaray","dir":"ltr"},{"lang":"wo","autonym":"Wolof","dir":"ltr"},{"lang":"wuu","autonym":"吴语","dir":"ltr"},{"lang":"xal","autonym":"хальмг","dir":"ltr"},{"lang":"xh","autonym":"isiXhosa","dir":"ltr"},{"lang":"xmf","autonym":"მარგალური","dir":"ltr"},{"lang":"yi","autonym":"ייִדיש","dir":"rtl"},{"lang":"yo","autonym":"Yorùbá","dir":"ltr"},{"lang":"yue","autonym":"粵語","dir":"ltr"},{"lang":"za","autonym":"Vahcuengh","dir":"ltr"},{"lang":"zgh","autonym":"ⵜⴰⵎⴰⵣⵉⵖⵜ ⵜⴰⵏⴰⵡⴰⵢⵜ","dir":"ltr"},{"lang":"zh","autonym":"中文","dir":"ltr"},{"lang":"zu","autonym":"isiZulu","dir":"ltr"}], "wgSectionTranslationTargetLanguages":["ace","ady","alt","am","ami","an","ang","ann","anp","ar","ary","arz","as","ast","av","avk","awa","ay","az","azb","ba","ban","bar","bbc","bcl","bdr","be","bew","bg","bho","bi","bjn","blk","bm","bn","bo","bpy","br","bs","btm","bug","ca","cdo","ce","ceb","ch","chr","ckb","co","cr","crh","cs","cu","cy","da","dag","de","dga","din","diq","dsb","dtp","dv","dz","ee","el","eml","eo","es","et","eu","fa","fat","ff","fi","fj","fo","fon","fr","frp","frr","fur","fy","gag","gan","gcr","gl","glk","gn","gom","gor","gpe","gu","guc","gur","guw","gv","ha","hak","haw","he","hi","hif","hr","hsb","ht","hu","hy","hyw","ia","iba","ie","ig","igl","ilo","io","is","it","iu","ja","jam","jv","ka","kaa","kab","kbd","kbp","kcg","kg","kge","ki","kk","kl","km","kn","ko","koi","krc","ks","ku","kus","kv","kw","ky","lad","lb","lez","lg","li","lij","lld","lmo","ln","lo","lt","ltg","lv","mad","mai","map-bms","mdf","mg","mhr","mi","min","mk","ml","mn","mni","mnw","mos","mr","mrj","ms", "mt","mwl","my","myv","mzn","nah","nan","nap","nb","nds","nds-nl","ne","new","nia","nl","nn","nqo","nr","nso","ny","oc","om","or","os","pa","pag","pam","pap","pcd","pcm","pdc","pl","pms","pnb","ps","pt","pwn","qu","rm","rn","ro","rsk","rue","rup","rw","sa","sah","sat","sc","scn","sco","sd","se","sg","sgs","sh","shi","shn","si","sk","skr","sl","sm","smn","sn","so","sq","sr","srn","ss","st","stq","su","sv","sw","szl","ta","tay","tcy","tdd","te","tet","tg","th","ti","tk","tl","tly","tn","to","tpi","tr","trv","ts","tt","tum","tw","ty","tyv","udm","ur","uz","ve","vec","vep","vi","vls","vo","vro","wa","war","wo","wuu","xal","xh","xmf","yi","yo","yue","za","zgh","zh","zu"],"isLanguageSearcherCXEntrypointEnabled":true,"mintEntrypointLanguages":["ace","ast","azb","bcl","bjn","bh","crh","ff","fon","ig","is","ki","ks","lmo","min","sat","ss","tn","vec"],"wgWikibaseItemId":"Q1496373","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model", "platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false,"wgMinervaPermissions":{"watchable":true,"watch":false},"wgMinervaFeatures":{"beta":false,"donate":true,"mobileOptionsLink":true,"categories":false,"pageIssues":true,"talkAtTop":false,"historyInPageActions":false,"overflowSubmenu":false,"tabsOnSpecials":true,"personalMenu":false,"mainMenuExpanded":false,"echo":true,"nightMode":true},"wgMinervaDownloadNamespaces":[0]};RLSTATE={"ext.gadget.PDFLinkIcon":"ready","ext.gadget.RedirectColor":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.minerva.styles":"ready","skins.minerva.content.styles.images":"ready","mediawiki.hlist":"ready","skins.minerva.codex.styles":"ready", "skins.minerva.icons":"ready","ext.wikimediamessages.styles":"ready","mobile.init.styles":"ready","ext.relatedArticles.styles":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","skins.minerva.scripts","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.NormalizeCharWidth","ext.gadget.suppressEnterAtSummaryBox","ext.gadget.checkSignature","ext.gadget.charinsert","ext.gadget.WikiMiniAtlas","ext.gadget.switcher","ext.gadget.protectionIndicator","ext.urlShortener.toolbar","ext.centralauth.centralautologin","ext.popups","mobile.init","ext.echo.centralauth","ext.relatedArticles.readMore.bootstrap","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.cx.eventlogging.campaigns","ext.cx.entrypoints.mffrequentlanguages","ext.cx.entrypoints.languagesearcher.init","mw.externalguidance.init","ext.checkUser.clientHints", "ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=ja&modules=ext.cite.styles%7Cext.math.styles%7Cext.relatedArticles.styles%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cmediawiki.hlist%7Cmobile.init.styles%7Cskins.minerva.codex.styles%7Cskins.minerva.content.styles.images%7Cskins.minerva.icons%2Cstyles%7Cwikibase.client.init&only=styles&skin=minerva"> <script async src="/w/load.php?lang=ja&modules=startup&only=scripts&raw=1&skin=minerva"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=ja&modules=ext.gadget.PDFLinkIcon%2CRedirectColor&only=styles&skin=minerva"> <link rel="stylesheet" href="/w/load.php?lang=ja&modules=site.styles&only=styles&skin=minerva"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="theme-color" content="#eaecf0"> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes, minimum-scale=0.25, maximum-scale=5.0"> <meta property="og:title" content="ガウス・ニュートン法 - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="manifest" href="/w/api.php?action=webapp-manifest"> <link rel="alternate" type="application/x-wiki" title="編集" href="/w/index.php?title=%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (ja)"> <link rel="EditURI" type="application/rsd+xml" href="//ja.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://ja.wikipedia.org/wiki/%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.ja"> <link rel="dns-prefetch" href="//meta.wikimedia.org"> <link rel="dns-prefetch" href="//login.wikimedia.org"> <meta http-equiv="X-Translated-By" content="Google"> <meta http-equiv="X-Translated-To" content="en"> <script type="text/javascript" src="https://www.gstatic.com/_/translate_http/_/js/k=translate_http.tr.en_GB.WgGHrg8C9fE.O/am=DgY/d=1/rs=AN8SPfpNfjzpGCAsUUJ5X-GCaxSfec_Eng/m=corsproxy" data-sourceurl="https://ja.m.wikipedia.org/wiki/%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95"></script> <link href="https://fonts.googleapis.com/css2?family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20..48,100..700,0..1,-50..200" rel="stylesheet"> <script type="text/javascript" src="https://www.gstatic.com/_/translate_http/_/js/k=translate_http.tr.en_GB.WgGHrg8C9fE.O/am=DgY/d=1/exm=corsproxy/ed=1/rs=AN8SPfpNfjzpGCAsUUJ5X-GCaxSfec_Eng/m=phishing_protection" data-phishing-protection-enabled="false" data-forms-warning-enabled="true" data-source-url="https://ja.m.wikipedia.org/wiki/%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95"></script> <meta name="robots" content="none"> </head> <body class="mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-ガウス・ニュートン法 rootpage-ガウス・ニュートン法 stable issues-group-B skin-minerva action-view skin--responsive mw-mf-amc-disabled mw-mf"> <script type="text/javascript" src="https://www.gstatic.com/_/translate_http/_/js/k=translate_http.tr.en_GB.WgGHrg8C9fE.O/am=DgY/d=1/exm=corsproxy,phishing_protection/ed=1/rs=AN8SPfpNfjzpGCAsUUJ5X-GCaxSfec_Eng/m=navigationui" data-environment="prod" data-proxy-url="https://ja-m-wikipedia-org.translate.goog" data-proxy-full-url="https://ja-m-wikipedia-org.translate.goog/wiki/%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-source-url="https://ja.m.wikipedia.org/wiki/%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95" data-source-language="auto" data-target-language="en" data-display-language="en-GB" data-detected-source-language="ja" data-is-source-untranslated="false" data-source-untranslated-url="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ja.m.wikipedia.org/wiki/%25E3%2582%25AC%25E3%2582%25A6%25E3%2582%25B9%25E3%2583%25BB%25E3%2583%258B%25E3%2583%25A5%25E3%2583%25BC%25E3%2583%2588%25E3%2583%25B3%25E6%25B3%2595&anno=2" data-client="tr"></script> <div id="mw-mf-viewport"> <div id="mw-mf-page-center"><a class="mw-mf-page-center__mask" href="https://ja-m-wikipedia-org.translate.goog/wiki/%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#"></a> <header class="header-container header-chrome"> <div class="minerva-header"> <nav class="navigation-drawer toggle-list view-border-box"><input type="checkbox" id="main-menu-input" class="toggle-list__checkbox" role="button" aria-haspopup="true" aria-expanded="false" aria-labelledby="mw-mf-main-menu-button"> <label role="button" for="main-menu-input" id="mw-mf-main-menu-button" aria-hidden="true" data-event-name="ui.mainmenu" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet toggle-list__toggle"> <span class="minerva-icon minerva-icon--menu"></span> <span></span> </label> <div id="mw-mf-page-left" class="menu view-border-box"> <ul id="p-navigation" class="toggle-list__list"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--home" href="https://ja-m-wikipedia-org.translate.goog/wiki/%E3%83%A1%E3%82%A4%E3%83%B3%E3%83%9A%E3%83%BC%E3%82%B8?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-mw="interface"> <span class="minerva-icon minerva-icon--home"></span> <span class="toggle-list-item__label">ホーム</span> </a></li> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--random" href="https://ja-m-wikipedia-org.translate.goog/wiki/%E7%89%B9%E5%88%A5:%E3%81%8A%E3%81%BE%E3%81%8B%E3%81%9B%E8%A1%A8%E7%A4%BA?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-mw="interface"> <span class="minerva-icon minerva-icon--die"></span> <span class="toggle-list-item__label">おまかせ表示</span> </a></li> <li class="toggle-list-item skin-minerva-list-item-jsonly"><a class="toggle-list-item__anchor menu__item--nearby" href="https://ja-m-wikipedia-org.translate.goog/wiki/%E7%89%B9%E5%88%A5:%E4%BB%98%E8%BF%91?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-event-name="menu.nearby" data-mw="interface"> <span class="minerva-icon minerva-icon--mapPin"></span> <span class="toggle-list-item__label">付近</span> </a></li> </ul> <ul id="p-personal" class="toggle-list__list"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--login" href="https://ja-m-wikipedia-org.translate.goog/w/index.php?title=%E7%89%B9%E5%88%A5:%E3%83%AD%E3%82%B0%E3%82%A4%E3%83%B3&returnto=%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-event-name="menu.login" data-mw="interface"> <span class="minerva-icon minerva-icon--logIn"></span> <span class="toggle-list-item__label">ログイン</span> </a></li> </ul> <ul id="pt-preferences" class="toggle-list__list"> <li class="toggle-list-item skin-minerva-list-item-jsonly"><a class="toggle-list-item__anchor menu__item--settings" href="https://ja-m-wikipedia-org.translate.goog/w/index.php?title=%E7%89%B9%E5%88%A5:%E6%90%BA%E5%B8%AF%E6%A9%9F%E5%99%A8%E3%82%AA%E3%83%97%E3%82%B7%E3%83%A7%E3%83%B3&returnto=%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-event-name="menu.settings" data-mw="interface"> <span class="minerva-icon minerva-icon--settings"></span> <span class="toggle-list-item__label">設定</span> </a></li> </ul> <ul id="p-donation" class="toggle-list__list"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--donate" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source%3Ddonate%26utm_medium%3Dsidebar%26utm_campaign%3DC13_ja.wikipedia.org%26uselang%3Dja%26utm_key%3Dminerva" data-event-name="menu.donate" data-mw="interface"> <span class="minerva-icon minerva-icon--heart"></span> <span class="toggle-list-item__label">寄付</span> </a></li> </ul> <ul class="hlist"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--about" href="https://ja-m-wikipedia-org.translate.goog/wiki/Wikipedia:%E3%82%A6%E3%82%A3%E3%82%AD%E3%83%9A%E3%83%87%E3%82%A3%E3%82%A2%E3%81%AB%E3%81%A4%E3%81%84%E3%81%A6?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-mw="interface"> <span class="toggle-list-item__label">ウィキペディアについて</span> </a></li> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--disclaimers" href="https://ja-m-wikipedia-org.translate.goog/wiki/Wikipedia:%E5%85%8D%E8%B2%AC%E4%BA%8B%E9%A0%85?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-mw="interface"> <span class="toggle-list-item__label">免責事項</span> </a></li> </ul> </div><label class="main-menu-mask" for="main-menu-input"></label> </nav> <div class="branding-box"><a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E3%83%A1%E3%82%A4%E3%83%B3%E3%83%9A%E3%83%BC%E3%82%B8?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB"> <span><img src="/static/images/mobile/copyright/wikipedia-wordmark-ja.svg" alt="Wikipedia" width="120" height="20" style="width: 7.5em; height: 1.25em;"> </span> </a> </div> <form action="/w/index.php" method="get" class="minerva-search-form"> <div class="search-box"><input type="hidden" name="title" value="特別:検索"> <input class="search skin-minerva-search-trigger" id="searchInput" type="search" name="search" placeholder="Wikipedia内を検索" aria-label="Wikipedia内を検索" autocapitalize="sentences" title="Wikipedia内を検索 [f]" accesskey="f"> <span class="search-box-icon-overlay"><span class="minerva-icon minerva-icon--search"></span> </span> </div><button id="searchIcon" class="cdx-button cdx-button--size-large cdx-button--icon-only cdx-button--weight-quiet skin-minerva-search-trigger"> <span class="minerva-icon minerva-icon--search"></span> <span>検索</span> </button> </form> <nav class="minerva-user-navigation" aria-label="利用者のナビゲーション"> </nav> </div> </header> <main id="content" class="mw-body"> <div class="banner-container"> <div id="siteNotice"></div> </div> <div class="pre-content heading-holder"> <div class="page-heading"> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">ガウス・ニュートン法</span></h1> <div class="tagline"></div> </div> <nav class="page-actions-menu"> <ul id="p-views" class="page-actions-menu__list"> <li id="language-selector" class="page-actions-menu__list-item"><a role="button" href="https://ja-m-wikipedia-org.translate.goog/wiki/%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#p-lang" data-mw="interface" data-event-name="menu.languages" title="言語" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet language-selector"> <span class="minerva-icon minerva-icon--language"></span> <span>言語</span> </a></li> <li id="page-actions-watch" class="page-actions-menu__list-item"><a role="button" id="ca-watch" href="https://ja-m-wikipedia-org.translate.goog/w/index.php?title=%E7%89%B9%E5%88%A5:%E3%83%AD%E3%82%B0%E3%82%A4%E3%83%B3&returnto=%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-event-name="menu.watch" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet menu__item--page-actions-watch"> <span class="minerva-icon minerva-icon--star"></span> <span>ウォッチリストに追加</span> </a></li> <li id="page-actions-edit" class="page-actions-menu__list-item"><a role="button" id="ca-edit" href="https://ja-m-wikipedia-org.translate.goog/w/index.php?title=%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95&action=edit&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-event-name="menu.edit" data-mw="interface" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet edit-page menu__item--page-actions-edit"> <span class="minerva-icon minerva-icon--edit"></span> <span>編集</span> </a></li> </ul> </nav><!-- version 1.0.2 (change every time you update a partial) --> <div id="mw-content-subtitle"></div> </div> <div id="bodyContent" class="content"> <div id="mw-content-text" class="mw-body-content"> <script>function mfTempOpenSection(id){var block=document.getElementById("mf-section-"+id);block.className+=" open-block";block.previousSibling.className+=" open-block";}</script> <div class="mw-content-ltr mw-parser-output" lang="ja" dir="ltr"> <section class="mf-section-0" id="mf-section-0"> <p><b>ガウス・ニュートン法</b>(ガウス・ニュートンほう、<a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E8%8B%B1%E8%AA%9E?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="英語">英</a>: <span lang="en">Gauss–Newton method</span>)は、<a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E9%9D%9E%E7%B7%9A%E5%BD%A2%E6%9C%80%E5%B0%8F%E4%BA%8C%E4%B9%97%E6%B3%95?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="非線形最小二乗法">非線形最小二乗法</a>を解く手法の一つである。これは関数の最大・最小値を見出す<a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="ニュートン法">ニュートン法</a>の修正とみなすことができる。ニュートン法とは違い、ガウス・ニュートン法は二乗和の最小化に<i>しか</i>用いることができないが、計算するのが困難な2階微分が不要という長所がある。</p> <p>非線形最小二乗法は<a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E9%9D%9E%E7%B7%9A%E5%BD%A2%E5%9B%9E%E5%B8%B0?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="非線形回帰">非線形回帰</a>などで、観測データを良く表すようにモデルのパラメータを調整するために必要となる。</p> <p>この手法の名称は<a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E3%82%AB%E3%83%BC%E3%83%AB%E3%83%BB%E3%83%95%E3%83%AA%E3%83%BC%E3%83%89%E3%83%AA%E3%83%92%E3%83%BB%E3%82%AC%E3%82%A6%E3%82%B9?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="カール・フリードリヒ・ガウス">カール・フリードリヒ・ガウス</a>と<a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E3%82%A2%E3%82%A4%E3%82%B6%E3%83%83%E3%82%AF%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="アイザック・ニュートン">アイザック・ニュートン</a>にちなむ。</p> <div id="toc" class="toc" role="navigation" aria-labelledby="mw-toc-heading"> <input type="checkbox" role="button" id="toctogglecheckbox" class="toctogglecheckbox" style="display:none"> <div class="toctitle" lang="ja" dir="ltr"> <h2 id="mw-toc-heading">目次</h2><span class="toctogglespan"><label class="toctogglelabel" for="toctogglecheckbox"></label></span> </div> <ul> <li class="toclevel-1 tocsection-1"><a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#%E6%A6%82%E8%A6%81"><span class="tocnumber">1</span> <span class="toctext">概要</span></a></li> <li class="toclevel-1 tocsection-2"><a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#%E6%B3%A8%E9%87%88"><span class="tocnumber">2</span> <span class="toctext">注釈</span></a></li> <li class="toclevel-1 tocsection-3"><a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#%E4%BE%8B"><span class="tocnumber">3</span> <span class="toctext">例</span></a></li> <li class="toclevel-1 tocsection-4"><a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#%E5%8F%8E%E6%9D%9F%E6%80%A7"><span class="tocnumber">4</span> <span class="toctext">収束性</span></a></li> <li class="toclevel-1 tocsection-5"><a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95%E3%81%8B%E3%82%89%E3%81%AE%E5%B0%8E%E5%87%BA"><span class="tocnumber">5</span> <span class="toctext">ニュートン法からの導出</span></a></li> <li class="toclevel-1 tocsection-6"><a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#%E6%94%B9%E5%96%84%E3%83%90%E3%83%BC%E3%82%B8%E3%83%A7%E3%83%B3"><span class="tocnumber">6</span> <span class="toctext">改善バージョン</span></a></li> <li class="toclevel-1 tocsection-7"><a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#%E9%96%A2%E9%80%A3%E3%81%99%E3%82%8B%E3%82%A2%E3%83%AB%E3%82%B4%E3%83%AA%E3%82%BA%E3%83%A0"><span class="tocnumber">7</span> <span class="toctext">関連するアルゴリズム</span></a></li> <li class="toclevel-1 tocsection-8"><a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#%E8%84%9A%E6%B3%A8"><span class="tocnumber">8</span> <span class="toctext">脚注</span></a></li> <li class="toclevel-1 tocsection-9"><a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#%E5%8F%82%E8%80%83%E6%96%87%E7%8C%AE"><span class="tocnumber">9</span> <span class="toctext">参考文献</span></a></li> </ul> </div> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(1)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="概要"><span id=".E6.A6.82.E8.A6.81"></span>概要</h2><span class="mw-editsection"> <a role="button" href="https://ja-m-wikipedia-org.translate.goog/w/index.php?title=%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95&action=edit&section=1&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="節を編集: 概要" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>編集</span> </a> </span> </div> <section class="mf-section-1 collapsible-block" id="mf-section-1"> <p><a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E6%9B%B2%E7%B7%9A%E3%81%82%E3%81%A6%E3%81%AF%E3%82%81?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="曲線あてはめ">データフィッティング</a>において、与えられたモデル関数 <i>y</i> = <i>f</i> (<i>x</i> , <i><b>β</b></i>) が<i>m</i> 個のデータ点 {(<i>x<sub>i</sub></i> , <i>y<sub>i</sub></i> ); <i>i</i> = 1, ... , <i>m</i> } に最もよくフィットするような<i>n</i> (≤ <i>m</i> )個<sup id="cite_ref-1" class="reference"><a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup>のパラメータ<i><b>β</b></i> = (β<sub>1</sub> , ... , β<sub><i>n</i></sub> )を見つけることが目的である。</p> <p>このとき、<a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E6%AE%8B%E5%B7%AE?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-disambig" title="残差">残差</a>を</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{i}({\boldsymbol {\beta }})=y_{i}-f(x_{i},{\boldsymbol {\beta }})}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> β<!-- β --> </mi> </mrow> <mo stretchy="false"> ) </mo> <mo> = </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> −<!-- − --> </mo> <mi> f </mi> <mo stretchy="false"> ( </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> , </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> β<!-- β --> </mi> </mrow> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r_{i}({\boldsymbol {\beta }})=y_{i}-f(x_{i},{\boldsymbol {\beta }})} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b7435bbefdb472cb4ab07ebacc9a3f8b17f6470" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.855ex; height:2.843ex;" alt="{\displaystyle r_{i}({\boldsymbol {\beta }})=y_{i}-f(x_{i},{\boldsymbol {\beta }})}"> </noscript><span class="lazy-image-placeholder" style="width: 20.855ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b7435bbefdb472cb4ab07ebacc9a3f8b17f6470" data-alt="{\displaystyle r_{i}({\boldsymbol {\beta }})=y_{i}-f(x_{i},{\boldsymbol {\beta }})}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>とする。</p> <p>このとき、ガウス・ニュートン法は残差の平方和</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S({\boldsymbol {\beta }})=\sum _{i=1}^{m}(r_{i}({\boldsymbol {\beta }}))^{2}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> S </mi> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> β<!-- β --> </mi> </mrow> <mo stretchy="false"> ) </mo> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> m </mi> </mrow> </munderover> <mo stretchy="false"> ( </mo> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> β<!-- β --> </mi> </mrow> <mo stretchy="false"> ) </mo> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle S({\boldsymbol {\beta }})=\sum _{i=1}^{m}(r_{i}({\boldsymbol {\beta }}))^{2}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0c5d60a0c525eb34e7dda6ced7f2f38d6040c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:19.351ex; height:6.843ex;" alt="{\displaystyle S({\boldsymbol {\beta }})=\sum _{i=1}^{m}(r_{i}({\boldsymbol {\beta }}))^{2}}"> </noscript><span class="lazy-image-placeholder" style="width: 19.351ex;height: 6.843ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0c5d60a0c525eb34e7dda6ced7f2f38d6040c1b" data-alt="{\displaystyle S({\boldsymbol {\beta }})=\sum _{i=1}^{m}(r_{i}({\boldsymbol {\beta }}))^{2}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>の最小値を<a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E5%8F%8D%E5%BE%A9%E8%A8%88%E7%AE%97?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="反復計算">反復計算</a>で求める<sup id="cite_ref-ab_2-0" class="reference"><a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-ab-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup>。初期推測値<i><b>β</b></i><sup>(0)</sup> から初めて、この方法は以下の計算を繰り返す。</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\beta }}^{(s+1)}={\boldsymbol {\beta }}^{(s)}-({J_{r}}^{\mathrm {T} }{J_{r}})^{-1}{J_{r}}^{\mathrm {T} }{\boldsymbol {r}}({\boldsymbol {\beta }}^{(s)}),\quad (s=0,1,2,\dots ).}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> β<!-- β --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mi> s </mi> <mo> + </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> </mrow> </msup> <mo> = </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> β<!-- β --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mi> s </mi> <mo stretchy="false"> ) </mo> </mrow> </msup> <mo> −<!-- − --> </mo> <mo stretchy="false"> ( </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi> J </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> r </mi> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> T </mi> </mrow> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi> J </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> r </mi> </mrow> </msub> </mrow> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi> J </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> r </mi> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> T </mi> </mrow> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> r </mi> </mrow> <mo stretchy="false"> ( </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> β<!-- β --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mi> s </mi> <mo stretchy="false"> ) </mo> </mrow> </msup> <mo stretchy="false"> ) </mo> <mo> , </mo> <mspace width="1em"></mspace> <mo stretchy="false"> ( </mo> <mi> s </mi> <mo> = </mo> <mn> 0 </mn> <mo> , </mo> <mn> 1 </mn> <mo> , </mo> <mn> 2 </mn> <mo> , </mo> <mo> …<!-- … --> </mo> <mo stretchy="false"> ) </mo> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\boldsymbol {\beta }}^{(s+1)}={\boldsymbol {\beta }}^{(s)}-({J_{r}}^{\mathrm {T} }{J_{r}})^{-1}{J_{r}}^{\mathrm {T} }{\boldsymbol {r}}({\boldsymbol {\beta }}^{(s)}),\quad (s=0,1,2,\dots ).} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b87ffa63b96404d3770cb34741ee4da2c5463120" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:55.614ex; height:3.343ex;" alt="{\displaystyle {\boldsymbol {\beta }}^{(s+1)}={\boldsymbol {\beta }}^{(s)}-({J_{r}}^{\mathrm {T} }{J_{r}})^{-1}{J_{r}}^{\mathrm {T} }{\boldsymbol {r}}({\boldsymbol {\beta }}^{(s)}),\quad (s=0,1,2,\dots ).}"> </noscript><span class="lazy-image-placeholder" style="width: 55.614ex;height: 3.343ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b87ffa63b96404d3770cb34741ee4da2c5463120" data-alt="{\displaystyle {\boldsymbol {\beta }}^{(s+1)}={\boldsymbol {\beta }}^{(s)}-({J_{r}}^{\mathrm {T} }{J_{r}})^{-1}{J_{r}}^{\mathrm {T} }{\boldsymbol {r}}({\boldsymbol {\beta }}^{(s)}),\quad (s=0,1,2,\dots ).}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>ここで</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J_{r}={\frac {\partial r_{i}({\boldsymbol {\beta }}^{(s)})}{\partial \beta _{j}}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> J </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> r </mi> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> β<!-- β --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mi> s </mi> <mo stretchy="false"> ) </mo> </mrow> </msup> <mo stretchy="false"> ) </mo> </mrow> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> β<!-- β --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle J_{r}={\frac {\partial r_{i}({\boldsymbol {\beta }}^{(s)})}{\partial \beta _{j}}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2fb388f20d5783df8469877b78f5d786ce9ce6c9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:14.991ex; height:7.009ex;" alt="{\displaystyle J_{r}={\frac {\partial r_{i}({\boldsymbol {\beta }}^{(s)})}{\partial \beta _{j}}}}"> </noscript><span class="lazy-image-placeholder" style="width: 14.991ex;height: 7.009ex;vertical-align: -2.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2fb388f20d5783df8469877b78f5d786ce9ce6c9" data-alt="{\displaystyle J_{r}={\frac {\partial r_{i}({\boldsymbol {\beta }}^{(s)})}{\partial \beta _{j}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>は<i><b>β</b></i><sup>(<i>s</i> )</sup> における<i><b>r</b></i> の<a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E3%83%A4%E3%82%B3%E3%83%93%E3%82%A2%E3%83%B3?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="ヤコビアン">ヤコビアン</a>、<i>J<sub><b>r</b></sub></i><sup>T</sup> は行列<i>J<sub><b>r</b></sub></i> の<a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E8%BB%A2%E7%BD%AE%E8%A1%8C%E5%88%97?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="転置行列">転置</a>を表す。</p> <p><i>m</i> = <i>n</i> ならば、この反復計算は</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\beta }}^{(s+1)}={\boldsymbol {\beta }}^{(s)}-J_{r}^{-1}{\boldsymbol {r}}({\boldsymbol {\beta }}^{(s)})}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> β<!-- β --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mi> s </mi> <mo> + </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> </mrow> </msup> <mo> = </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> β<!-- β --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mi> s </mi> <mo stretchy="false"> ) </mo> </mrow> </msup> <mo> −<!-- − --> </mo> <msubsup> <mi> J </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> r </mi> </mrow> <mo stretchy="false"> ( </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> β<!-- β --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mi> s </mi> <mo stretchy="false"> ) </mo> </mrow> </msup> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\boldsymbol {\beta }}^{(s+1)}={\boldsymbol {\beta }}^{(s)}-J_{r}^{-1}{\boldsymbol {r}}({\boldsymbol {\beta }}^{(s)})} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f22eab5305565c708b611413ff08f87a0c22237" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.387ex; height:3.343ex;" alt="{\displaystyle {\boldsymbol {\beta }}^{(s+1)}={\boldsymbol {\beta }}^{(s)}-J_{r}^{-1}{\boldsymbol {r}}({\boldsymbol {\beta }}^{(s)})}"> </noscript><span class="lazy-image-placeholder" style="width: 26.387ex;height: 3.343ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f22eab5305565c708b611413ff08f87a0c22237" data-alt="{\displaystyle {\boldsymbol {\beta }}^{(s+1)}={\boldsymbol {\beta }}^{(s)}-J_{r}^{-1}{\boldsymbol {r}}({\boldsymbol {\beta }}^{(s)})}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>のように簡略化される。これは1次元ニュートン法の直接的な一般化である。</p> <p>ガウス・ニュートン法は関数<i>f</i> の<a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E3%83%A4%E3%82%B3%E3%83%93%E3%82%A2%E3%83%B3?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="ヤコビアン">ヤコビアン</a><i>J<sub>f</sub></i> を用いて次のように表すこともできる:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\beta }}^{(s+1)}={\boldsymbol {\beta }}^{(s)}+({J_{f}}^{\mathrm {T} }{J_{f}})^{-1}{J_{f}}^{\mathrm {T} }{\boldsymbol {r}}({\boldsymbol {\beta }}^{(s)}).}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> β<!-- β --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mi> s </mi> <mo> + </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> </mrow> </msup> <mo> = </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> β<!-- β --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mi> s </mi> <mo stretchy="false"> ) </mo> </mrow> </msup> <mo> + </mo> <mo stretchy="false"> ( </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi> J </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> f </mi> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> T </mi> </mrow> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi> J </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> f </mi> </mrow> </msub> </mrow> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi> J </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> f </mi> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> T </mi> </mrow> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> r </mi> </mrow> <mo stretchy="false"> ( </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> β<!-- β --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mi> s </mi> <mo stretchy="false"> ) </mo> </mrow> </msup> <mo stretchy="false"> ) </mo> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\boldsymbol {\beta }}^{(s+1)}={\boldsymbol {\beta }}^{(s)}+({J_{f}}^{\mathrm {T} }{J_{f}})^{-1}{J_{f}}^{\mathrm {T} }{\boldsymbol {r}}({\boldsymbol {\beta }}^{(s)}).} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78ee6b276d1df34718a558ed02bb9fda347ee6f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:37.435ex; height:3.509ex;" alt="{\displaystyle {\boldsymbol {\beta }}^{(s+1)}={\boldsymbol {\beta }}^{(s)}+({J_{f}}^{\mathrm {T} }{J_{f}})^{-1}{J_{f}}^{\mathrm {T} }{\boldsymbol {r}}({\boldsymbol {\beta }}^{(s)}).}"> </noscript><span class="lazy-image-placeholder" style="width: 37.435ex;height: 3.509ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78ee6b276d1df34718a558ed02bb9fda347ee6f0" data-alt="{\displaystyle {\boldsymbol {\beta }}^{(s+1)}={\boldsymbol {\beta }}^{(s)}+({J_{f}}^{\mathrm {T} }{J_{f}})^{-1}{J_{f}}^{\mathrm {T} }{\boldsymbol {r}}({\boldsymbol {\beta }}^{(s)}).}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(2)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="注釈"><span id=".E6.B3.A8.E9.87.88"></span>注釈</h2><span class="mw-editsection"> <a role="button" href="https://ja-m-wikipedia-org.translate.goog/w/index.php?title=%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95&action=edit&section=2&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="節を編集: 注釈" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>編集</span> </a> </span> </div> <section class="mf-section-2 collapsible-block" id="mf-section-2"> <p>ガウス・ニュートン法は関数<i>r<sub>i</sub></i> を並べたベクトルの<a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E7%B7%9A%E5%BD%A2%E8%BF%91%E4%BC%BC?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="線形近似">線形近似</a>で与えられる。<a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E3%83%86%E3%82%A4%E3%83%A9%E3%83%BC%E3%81%AE%E5%AE%9A%E7%90%86?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="テイラーの定理">テイラーの定理</a>を用いれば、各反復において次式が成り立つ:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {r}}({\boldsymbol {\beta }})\approx {\boldsymbol {r}}({\boldsymbol {\beta }}^{s})+J_{r}({\boldsymbol {\beta }}^{s}){\boldsymbol {\Delta }}.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> r </mi> </mrow> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> β<!-- β --> </mi> </mrow> <mo stretchy="false"> ) </mo> <mo> ≈<!-- ≈ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> r </mi> </mrow> <mo stretchy="false"> ( </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> β<!-- β --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> s </mi> </mrow> </msup> <mo stretchy="false"> ) </mo> <mo> + </mo> <msub> <mi> J </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> r </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> β<!-- β --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> s </mi> </mrow> </msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\boldsymbol {r}}({\boldsymbol {\beta }})\approx {\boldsymbol {r}}({\boldsymbol {\beta }}^{s})+J_{r}({\boldsymbol {\beta }}^{s}){\boldsymbol {\Delta }}.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4518f9b0dbb5cf9399fbdef140bece418c818035" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.572ex; height:2.843ex;" alt="{\displaystyle {\boldsymbol {r}}({\boldsymbol {\beta }})\approx {\boldsymbol {r}}({\boldsymbol {\beta }}^{s})+J_{r}({\boldsymbol {\beta }}^{s}){\boldsymbol {\Delta }}.}"> </noscript><span class="lazy-image-placeholder" style="width: 25.572ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4518f9b0dbb5cf9399fbdef140bece418c818035" data-alt="{\displaystyle {\boldsymbol {r}}({\boldsymbol {\beta }})\approx {\boldsymbol {r}}({\boldsymbol {\beta }}^{s})+J_{r}({\boldsymbol {\beta }}^{s}){\boldsymbol {\Delta }}.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>ここで <b>Δ</b> = <b>β</b> - <b>β</b><sup><i>s</i></sup> である。右辺の残差平方和を最小化する<b>Δ</b>を見つけること、すなわち</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {min} \left[{\|{\boldsymbol {r}}({\boldsymbol {\beta }}^{s})+J_{r}({\boldsymbol {\beta }}^{s}){\boldsymbol {\Delta }}\|_{2}}^{2}\right]}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> min </mi> <mo> <!-- --> </mo> <mrow> <mo> [ </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> r </mi> </mrow> <mo stretchy="false"> ( </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> β<!-- β --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> s </mi> </mrow> </msup> <mo stretchy="false"> ) </mo> <mo> + </mo> <msub> <mi> J </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> r </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> β<!-- β --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> s </mi> </mrow> </msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> ] </mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \operatorname {min} \left[{\|{\boldsymbol {r}}({\boldsymbol {\beta }}^{s})+J_{r}({\boldsymbol {\beta }}^{s}){\boldsymbol {\Delta }}\|_{2}}^{2}\right]} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b0cb09d02c2fbe4efc774bfcadfb1b1799e7352" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:27.757ex; height:4.843ex;" alt="{\displaystyle \operatorname {min} \left[{\|{\boldsymbol {r}}({\boldsymbol {\beta }}^{s})+J_{r}({\boldsymbol {\beta }}^{s}){\boldsymbol {\Delta }}\|_{2}}^{2}\right]}"> </noscript><span class="lazy-image-placeholder" style="width: 27.757ex;height: 4.843ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b0cb09d02c2fbe4efc774bfcadfb1b1799e7352" data-alt="{\displaystyle \operatorname {min} \left[{\|{\boldsymbol {r}}({\boldsymbol {\beta }}^{s})+J_{r}({\boldsymbol {\beta }}^{s}){\boldsymbol {\Delta }}\|_{2}}^{2}\right]}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>は線形<a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E6%9C%80%E5%B0%8F%E4%BA%8C%E4%B9%97%E6%B3%95?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="最小二乗法">最小二乗法</a>の問題であるため、<a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E9%99%BD%E9%96%A2%E6%95%B0?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="陽関数">陽的</a>に解くことができ、正規方程式を与える。ここで ||*||<sub>2</sub> は 2-ノルム(<a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E3%83%A6%E3%83%BC%E3%82%AF%E3%83%AA%E3%83%83%E3%83%89%E3%83%8E%E3%83%AB%E3%83%A0?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="ユークリッドノルム">ユークリッドノルム</a>)である。</p> <p>正規方程式は未知の増分<b>Δ</b>についての<i>m</i> 本の線形同次方程式である。これは<a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E3%82%B3%E3%83%AC%E3%82%B9%E3%82%AD%E3%83%BC%E5%88%86%E8%A7%A3?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="コレスキー分解">コレスキー分解</a>を用いることで、またはより良い方法としては<i>J<sub><b>r</b></sub></i> の<a href="https://ja-m-wikipedia-org.translate.goog/wiki/QR%E5%88%86%E8%A7%A3?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="QR分解">QR分解</a>を用いることで、1ステップで解ける。大きな系に対しては、<a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E5%85%B1%E5%BD%B9%E5%8B%BE%E9%85%8D%E6%B3%95?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="共役勾配法">共役勾配法</a>のような<a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E5%8F%8D%E5%BE%A9%E8%A7%A3%E6%B3%95?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="反復解法">反復解法</a>が有効である。<i>J<sub><b>r</b></sub></i> の列ベクトルが<a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E7%B7%9A%E5%BD%A2%E5%BE%93%E5%B1%9E?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="線形従属">線形従属</a>である場合、<i>J<sub><b>r</b></sub></i><sup>T</sup><i>J<sub><b>r</b></sub></i> が非正則になるため反復解法は失敗する。</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(3)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="例"><span id=".E4.BE.8B"></span>例</h2><span class="mw-editsection"> <a role="button" href="https://ja-m-wikipedia-org.translate.goog/w/index.php?title=%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95&action=edit&section=3&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="節を編集: 例" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>編集</span> </a> </span> </div> <section class="mf-section-3 collapsible-block" id="mf-section-3"> <figure class="mw-halign-right" typeof="mw:File/Thumb"> <a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB:Gauss_Newton_illustration.png?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-file-description"> <noscript> <img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5e/Gauss_Newton_illustration.png/280px-Gauss_Newton_illustration.png" decoding="async" width="280" height="226" class="mw-file-element" data-file-width="1532" data-file-height="1236"> </noscript><span class="lazy-image-placeholder" style="width: 280px;height: 226px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5e/Gauss_Newton_illustration.png/280px-Gauss_Newton_illustration.png" data-width="280" data-height="226" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5e/Gauss_Newton_illustration.png/420px-Gauss_Newton_illustration.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5e/Gauss_Newton_illustration.png/560px-Gauss_Newton_illustration.png 2x" data-class="mw-file-element"> </span></a> <figcaption> この例で得られているデータ(赤点)と、<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\beta }}_{1}=0.362,{\hat {\beta }}_{2}=0.556}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> β<!-- β --> </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> = </mo> <mn> 0.362 </mn> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> β<!-- β --> </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo> = </mo> <mn> 0.556 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\hat {\beta }}_{1}=0.362,{\hat {\beta }}_{2}=0.556} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88216c483a5eebc23ff67f61c6a98a2c62aea147" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.835ex; height:3.343ex;" alt="{\displaystyle {\hat {\beta }}_{1}=0.362,{\hat {\beta }}_{2}=0.556}"> </noscript><span class="lazy-image-placeholder" style="width: 22.835ex;height: 3.343ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88216c483a5eebc23ff67f61c6a98a2c62aea147" data-alt="{\displaystyle {\hat {\beta }}_{1}=0.362,{\hat {\beta }}_{2}=0.556}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>から計算されたモデル曲線(青線) </figcaption> </figure> <p>ここでは例として、ガウス・ニュートン法を使ってデータとモデルによる予測値の間の残差平方和を最小化し、データにモデルをフィットさせる。</p> <p>生物実験において、<a href="https://ja-m-wikipedia-org.translate.goog/w/index.php?title=%E9%85%B5%E7%B4%A0%E5%AA%92%E4%BB%8B%E5%8F%8D%E5%BF%9C&action=edit&redlink=1&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="new" title="「酵素媒介反応」 (存在しないページ)">酵素媒介反応</a>における<a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E5%9F%BA%E8%B3%AA?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-disambig" title="基質">基質</a>濃度[S] と<a href="https://ja-m-wikipedia-org.translate.goog/w/index.php?title=%E5%8F%8D%E5%BF%9C%E7%8E%87&action=edit&redlink=1&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="new" title="「反応率」 (存在しないページ)">反応率</a><i>v</i> の関係として次表のようなデータが得られたとする(右図の赤点)。</p> <dl> <dd> <table class="wikitable" style="text-align: center;"> <tbody> <tr> <td><i>i</i></td> <td>1</td> <td>2</td> <td>3</td> <td>4</td> <td>5</td> <td>6</td> <td>7</td> </tr> <tr> <td>[S]</td> <td>0.038</td> <td>0.194</td> <td>0.425</td> <td>0.626</td> <td>1.253</td> <td>2.500</td> <td>3.740</td> </tr> <tr> <td><i>v</i></td> <td>0.050</td> <td>0.127</td> <td>0.094</td> <td>0.2122</td> <td>0.2729</td> <td>0.2665</td> <td>0.3317</td> </tr> </tbody> </table> </dd> </dl> <p>これらのデータに対し、次の形のモデル曲線(<a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E3%83%9F%E3%82%AB%E3%82%A8%E3%83%AA%E3%82%B9%E3%83%BB%E3%83%A1%E3%83%B3%E3%83%86%E3%83%B3%E5%BC%8F?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="ミカエリス・メンテン式">ミカエリス・メンテン式</a>)のパラメータ<i>V</i><sub>max</sub> と<i>K</i><sub>M</sub> を、最小二乗の意味で最もよくフィットするように決定したい<sup id="cite_ref-3" class="reference"><a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup>:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v={\frac {V_{\mathrm {max} }[\mathrm {S} ]}{K_{\mathrm {M} }+[\mathrm {S} ]}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> v </mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi> V </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> m </mi> <mi mathvariant="normal"> a </mi> <mi mathvariant="normal"> x </mi> </mrow> </mrow> </msub> <mo stretchy="false"> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> S </mi> </mrow> <mo stretchy="false"> ] </mo> </mrow> <mrow> <msub> <mi> K </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> M </mi> </mrow> </mrow> </msub> <mo> + </mo> <mo stretchy="false"> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> S </mi> </mrow> <mo stretchy="false"> ] </mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle v={\frac {V_{\mathrm {max} }[\mathrm {S} ]}{K_{\mathrm {M} }+[\mathrm {S} ]}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5661add5762d0cb155367651e130d3bf5f3a9bf0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:14.201ex; height:6.509ex;" alt="{\displaystyle v={\frac {V_{\mathrm {max} }[\mathrm {S} ]}{K_{\mathrm {M} }+[\mathrm {S} ]}}}"> </noscript><span class="lazy-image-placeholder" style="width: 14.201ex;height: 6.509ex;vertical-align: -2.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5661add5762d0cb155367651e130d3bf5f3a9bf0" data-alt="{\displaystyle v={\frac {V_{\mathrm {max} }[\mathrm {S} ]}{K_{\mathrm {M} }+[\mathrm {S} ]}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p><i>x<sub>i</sub></i> と<i>y<sub>i</sub></i> (<i>i</i> = 1, ... , 7) で [S] と<i>v</i> のデータを表す。また、<i>β</i><sub>1</sub> = <i>V</i><sub>max</sub> 、<i>β</i><sub>2</sub> = <i>K<sub>M</sub></i> とする。残差</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{i}=y_{i}-{\frac {\beta _{1}x_{i}}{\beta _{2}+x_{i}}}\quad (i=1,\dots ,7)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> = </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi> β<!-- β --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mrow> <msub> <mi> β<!-- β --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo> + </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mspace width="1em"></mspace> <mo stretchy="false"> ( </mo> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> <mo> , </mo> <mo> …<!-- … --> </mo> <mo> , </mo> <mn> 7 </mn> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r_{i}=y_{i}-{\frac {\beta _{1}x_{i}}{\beta _{2}+x_{i}}}\quad (i=1,\dots ,7)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89cf232fa310eca8835e7c35953d900f6b81282a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:33.438ex; height:5.843ex;" alt="{\displaystyle r_{i}=y_{i}-{\frac {\beta _{1}x_{i}}{\beta _{2}+x_{i}}}\quad (i=1,\dots ,7)}"> </noscript><span class="lazy-image-placeholder" style="width: 33.438ex;height: 5.843ex;vertical-align: -2.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89cf232fa310eca8835e7c35953d900f6b81282a" data-alt="{\displaystyle r_{i}=y_{i}-{\frac {\beta _{1}x_{i}}{\beta _{2}+x_{i}}}\quad (i=1,\dots ,7)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>の平方和を最小化する<i>β</i><sub>1</sub> と<i>β</i><sub>2</sub> を見つけることが目的となる。</p> <p>未知パラメータ<i><b>β</b></i>に関する残差ベクトル<i><b>r</b></i> のヤコビアン<i>J<sub>r</sub></i> は7×2の行列で、<i>i</i> 番目の行は次の要素を持つ:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{pmatrix}{\dfrac {\partial r_{i}}{\partial \beta _{1}}},&{\dfrac {\partial r_{i}}{\partial \beta _{2}}}\end{pmatrix}}={\begin{pmatrix}-{\dfrac {x_{i}}{\beta _{2}+x_{i}}},&{\dfrac {\beta _{1}x_{i}}{\left(\beta _{2}+x_{i}\right)^{2}}}\end{pmatrix}}.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> ( </mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> β<!-- β --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> </mrow> </mfrac> </mstyle> </mrow> <mo> , </mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> β<!-- β --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> </mrow> </mfrac> </mstyle> </mrow> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> ( </mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mrow> <msub> <mi> β<!-- β --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo> + </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> </mfrac> </mstyle> </mrow> <mo> , </mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mrow> <msub> <mi> β<!-- β --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <msub> <mi> β<!-- β --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo> + </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mfrac> </mstyle> </mrow> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> </mrow> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{pmatrix}{\dfrac {\partial r_{i}}{\partial \beta _{1}}},&{\dfrac {\partial r_{i}}{\partial \beta _{2}}}\end{pmatrix}}={\begin{pmatrix}-{\dfrac {x_{i}}{\beta _{2}+x_{i}}},&{\dfrac {\beta _{1}x_{i}}{\left(\beta _{2}+x_{i}\right)^{2}}}\end{pmatrix}}.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66fe1fc7ec3955555c0b508411294ad289a48c53" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:48.101ex; height:6.509ex;" alt="{\displaystyle {\begin{pmatrix}{\dfrac {\partial r_{i}}{\partial \beta _{1}}},&{\dfrac {\partial r_{i}}{\partial \beta _{2}}}\end{pmatrix}}={\begin{pmatrix}-{\dfrac {x_{i}}{\beta _{2}+x_{i}}},&{\dfrac {\beta _{1}x_{i}}{\left(\beta _{2}+x_{i}\right)^{2}}}\end{pmatrix}}.}"> </noscript><span class="lazy-image-placeholder" style="width: 48.101ex;height: 6.509ex;vertical-align: -2.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66fe1fc7ec3955555c0b508411294ad289a48c53" data-alt="{\displaystyle {\begin{pmatrix}{\dfrac {\partial r_{i}}{\partial \beta _{1}}},&{\dfrac {\partial r_{i}}{\partial \beta _{2}}}\end{pmatrix}}={\begin{pmatrix}-{\dfrac {x_{i}}{\beta _{2}+x_{i}}},&{\dfrac {\beta _{1}x_{i}}{\left(\beta _{2}+x_{i}\right)^{2}}}\end{pmatrix}}.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>初期推定値としてβ<sub>1</sub> = 0.9、β<sub>2</sub> = 0.2から始め、ガウス・ニュートン法による5回の反復計算を行うと、最適値 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\beta }}_{1}=0.362,{\hat {\beta }}_{2}=0.556}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> β<!-- β --> </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> = </mo> <mn> 0.362 </mn> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> β<!-- β --> </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo> = </mo> <mn> 0.556 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\hat {\beta }}_{1}=0.362,{\hat {\beta }}_{2}=0.556} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88216c483a5eebc23ff67f61c6a98a2c62aea147" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.835ex; height:3.343ex;" alt="{\displaystyle {\hat {\beta }}_{1}=0.362,{\hat {\beta }}_{2}=0.556}"> </noscript><span class="lazy-image-placeholder" style="width: 22.835ex;height: 3.343ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88216c483a5eebc23ff67f61c6a98a2c62aea147" data-alt="{\displaystyle {\hat {\beta }}_{1}=0.362,{\hat {\beta }}_{2}=0.556}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> が得られる。残差平方和は5回の反復計算で初期の1.445から0.00784まで減少する。右図はこれらの最適パラメータを用いたモデルで決まる曲線と、実験データとの比較を示す。</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(4)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="収束性"><span id=".E5.8F.8E.E6.9D.9F.E6.80.A7"></span>収束性</h2><span class="mw-editsection"> <a role="button" href="https://ja-m-wikipedia-org.translate.goog/w/index.php?title=%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95&action=edit&section=4&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="節を編集: 収束性" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>編集</span> </a> </span> </div> <section class="mf-section-4 collapsible-block" id="mf-section-4"> <p>増分<b>Δ</b>が<i>S</i> の減少方向を向いていることは証明されている<sup id="cite_ref-4" class="reference"><a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup>。もしこのアルゴリズムが収束すれば、その極限は<i>S</i> の<a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E6%A5%B5%E5%80%A4?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="極値">停留点</a>である。しかし収束については、ニュートン法では保証されている局所収束さえも保証されていない。</p> <p>ガウス・ニュートン法の<span title="リンク先の項目はまだありません。新規の執筆や他言語版からの翻訳が望まれます。"><a href="https://ja-m-wikipedia-org.translate.goog/w/index.php?title=%E5%8F%8E%E6%9D%9F%E3%81%AE%E9%80%9F%E3%81%95&action=edit&redlink=1&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="new" title="「収束の速さ」 (存在しないページ)">収束の速さ</a><span style="font-size: 0.77em; font-weight: normal;" class="noprint">(<a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://en.wikipedia.org/wiki/rate_of_convergence" class="extiw" title="en:rate of convergence">英語版</a>)</span></span>は2次である<sup id="cite_ref-5" class="reference"><a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup>。もし初期推測値が最小値から遠いか、または行列<i>J<sub>r</sub></i><sup>T</sup> <i>J<sub>r</sub></i> が<a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E6%9D%A1%E4%BB%B6%E6%95%B0?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="条件数">悪条件</a>であれば収束は遅いか、全くしなくなる。例えば、<i>m</i> = 2本の方程式と<i>n</i> = 1個の変数のある次の問題を考える:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}r_{1}(\beta )&=\beta +1\\r_{2}(\beta )&=\lambda \beta ^{2}+\beta -1.\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> β<!-- β --> </mi> <mo stretchy="false"> ) </mo> </mtd> <mtd> <mi></mi> <mo> = </mo> <mi> β<!-- β --> </mi> <mo> + </mo> <mn> 1 </mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> β<!-- β --> </mi> <mo stretchy="false"> ) </mo> </mtd> <mtd> <mi></mi> <mo> = </mo> <mi> λ<!-- λ --> </mi> <msup> <mi> β<!-- β --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <mi> β<!-- β --> </mi> <mo> −<!-- − --> </mo> <mn> 1. </mn> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}r_{1}(\beta )&=\beta +1\\r_{2}(\beta )&=\lambda \beta ^{2}+\beta -1.\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1fbe5781945b7a51e65f651380ad7cdee75e5a86" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:21.663ex; height:6.176ex;" alt="{\displaystyle {\begin{aligned}r_{1}(\beta )&=\beta +1\\r_{2}(\beta )&=\lambda \beta ^{2}+\beta -1.\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 21.663ex;height: 6.176ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1fbe5781945b7a51e65f651380ad7cdee75e5a86" data-alt="{\displaystyle {\begin{aligned}r_{1}(\beta )&=\beta +1\\r_{2}(\beta )&=\lambda \beta ^{2}+\beta -1.\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>この問題の最適値はβ = 0 である。もしλ = 0 なら実質的に線形問題であり、最適値は一回の計算で見つかる。もし|λ| < 1 なら、この手法は線形に収束し残差は係数|λ|で反復ごとに漸近的に減少する。しかし|λ| > 1 なら、この方法はもはや局所的にも収束しない<sup id="cite_ref-6" class="reference"><a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup>。</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(5)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="ニュートン法からの導出"><span id=".E3.83.8B.E3.83.A5.E3.83.BC.E3.83.88.E3.83.B3.E6.B3.95.E3.81.8B.E3.82.89.E3.81.AE.E5.B0.8E.E5.87.BA"></span>ニュートン法からの導出</h2><span class="mw-editsection"> <a role="button" href="https://ja-m-wikipedia-org.translate.goog/w/index.php?title=%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95&action=edit&section=5&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="節を編集: ニュートン法からの導出" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>編集</span> </a> </span> </div> <section class="mf-section-5 collapsible-block" id="mf-section-5"> <p>後に示すように、ガウス・ニュートン法は近似関数の最適化に用いられるニュートン法から与えられる。その結果、ガウス・ニュートン法の収束の速さはほとんど2次である。</p> <p>パラメータ<i><b>β</b></i>を持つ関数<i>S</i> の最小化をするとき、ニュートン法による<a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E6%BC%B8%E5%8C%96%E5%BC%8F?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="漸化式">漸化式</a>は</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\beta }}^{(s+1)}={\boldsymbol {\beta }}^{(s)}-H^{-1}{\boldsymbol {g}}\,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> β<!-- β --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mi> s </mi> <mo> + </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> </mrow> </msup> <mo> = </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> β<!-- β --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mi> s </mi> <mo stretchy="false"> ) </mo> </mrow> </msup> <mo> −<!-- − --> </mo> <msup> <mi> H </mi> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> g </mi> </mrow> <mspace width="thinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\boldsymbol {\beta }}^{(s+1)}={\boldsymbol {\beta }}^{(s)}-H^{-1}{\boldsymbol {g}}\,} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/abb4456b76482ec02a79c94ec349b067132ac63e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:21.763ex; height:3.176ex;" alt="{\displaystyle {\boldsymbol {\beta }}^{(s+1)}={\boldsymbol {\beta }}^{(s)}-H^{-1}{\boldsymbol {g}}\,}"> </noscript><span class="lazy-image-placeholder" style="width: 21.763ex;height: 3.176ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/abb4456b76482ec02a79c94ec349b067132ac63e" data-alt="{\displaystyle {\boldsymbol {\beta }}^{(s+1)}={\boldsymbol {\beta }}^{(s)}-H^{-1}{\boldsymbol {g}}\,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>である。ここで<i><b>g</b></i> は<i>S</i> の<a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E5%8B%BE%E9%85%8D%E3%83%99%E3%82%AF%E3%83%88%E3%83%AB?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="勾配ベクトル">勾配ベクトル</a>、<i>H</i> は<i>S</i> の<a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E3%83%98%E3%83%83%E3%82%B7%E3%82%A2%E3%83%B3?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="ヘッシアン">ヘッシアン</a>である。<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S=\sum _{i=1}^{m}r_{i}^{2}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> S </mi> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> m </mi> </mrow> </munderover> <msubsup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle S=\sum _{i=1}^{m}r_{i}^{2}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1664fb2547dc103fd93a01c4a8b3da9b61a52e5d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:10.443ex; height:6.843ex;" alt="{\displaystyle S=\sum _{i=1}^{m}r_{i}^{2}}"> </noscript><span class="lazy-image-placeholder" style="width: 10.443ex;height: 6.843ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1664fb2547dc103fd93a01c4a8b3da9b61a52e5d" data-alt="{\displaystyle S=\sum _{i=1}^{m}r_{i}^{2}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>であるから、勾配<i><b>g</b></i> は次で与えられる:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {g}}=2{J_{r}}^{\mathrm {T} }{\boldsymbol {r}},\quad {\text{or,}}\quad g_{j}=2\sum _{i=1}^{m}r_{i}{\frac {\partial r_{i}}{\partial \beta _{j}}}.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> g </mi> </mrow> <mo> = </mo> <mn> 2 </mn> <msup> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi> J </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> r </mi> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> T </mi> </mrow> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> r </mi> </mrow> <mo> , </mo> <mspace width="1em"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mtext> or, </mtext> </mrow> <mspace width="1em"></mspace> <msub> <mi> g </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> </msub> <mo> = </mo> <mn> 2 </mn> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> m </mi> </mrow> </munderover> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> β<!-- β --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\boldsymbol {g}}=2{J_{r}}^{\mathrm {T} }{\boldsymbol {r}},\quad {\text{or,}}\quad g_{j}=2\sum _{i=1}^{m}r_{i}{\frac {\partial r_{i}}{\partial \beta _{j}}}.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/302c55fb56757d6dbfbf9813f14826f6f710ac98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:36.124ex; height:6.843ex;" alt="{\displaystyle {\boldsymbol {g}}=2{J_{r}}^{\mathrm {T} }{\boldsymbol {r}},\quad {\text{or,}}\quad g_{j}=2\sum _{i=1}^{m}r_{i}{\frac {\partial r_{i}}{\partial \beta _{j}}}.}"> </noscript><span class="lazy-image-placeholder" style="width: 36.124ex;height: 6.843ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/302c55fb56757d6dbfbf9813f14826f6f710ac98" data-alt="{\displaystyle {\boldsymbol {g}}=2{J_{r}}^{\mathrm {T} }{\boldsymbol {r}},\quad {\text{or,}}\quad g_{j}=2\sum _{i=1}^{m}r_{i}{\frac {\partial r_{i}}{\partial \beta _{j}}}.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>ヘッシアン<i>H</i> は勾配<i><b>g</b></i> を<i><b>β</b></i> で微分することで計算される:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{jk}=2\sum _{i=1}^{m}\left({\frac {\partial r_{i}}{\partial \beta _{j}}}{\frac {\partial r_{i}}{\partial \beta _{k}}}+r_{i}{\frac {\partial ^{2}r_{i}}{\partial \beta _{j}\partial \beta _{k}}}\right).}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> H </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> <mi> k </mi> </mrow> </msub> <mo> = </mo> <mn> 2 </mn> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> m </mi> </mrow> </munderover> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> β<!-- β --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> β<!-- β --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo> + </mo> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> β<!-- β --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> </msub> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> β<!-- β --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle H_{jk}=2\sum _{i=1}^{m}\left({\frac {\partial r_{i}}{\partial \beta _{j}}}{\frac {\partial r_{i}}{\partial \beta _{k}}}+r_{i}{\frac {\partial ^{2}r_{i}}{\partial \beta _{j}\partial \beta _{k}}}\right).} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/087b42a7146541cefd8c502b7474efe12a1c74f6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:38.272ex; height:6.843ex;" alt="{\displaystyle H_{jk}=2\sum _{i=1}^{m}\left({\frac {\partial r_{i}}{\partial \beta _{j}}}{\frac {\partial r_{i}}{\partial \beta _{k}}}+r_{i}{\frac {\partial ^{2}r_{i}}{\partial \beta _{j}\partial \beta _{k}}}\right).}"> </noscript><span class="lazy-image-placeholder" style="width: 38.272ex;height: 6.843ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/087b42a7146541cefd8c502b7474efe12a1c74f6" data-alt="{\displaystyle H_{jk}=2\sum _{i=1}^{m}\left({\frac {\partial r_{i}}{\partial \beta _{j}}}{\frac {\partial r_{i}}{\partial \beta _{k}}}+r_{i}{\frac {\partial ^{2}r_{i}}{\partial \beta _{j}\partial \beta _{k}}}\right).}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>2階微分項(右辺第2項)を無視することでガウス・ニュートン法を得る。つまり、ヘッシアンは</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H\approx 2{J_{r}}^{\mathrm {T} }J_{r},\quad {\text{or,}}\quad H_{jk}\approx 2\sum _{i=1}^{m}{\frac {\partial r_{i}}{\partial \beta _{j}}}{\frac {\partial r_{i}}{\partial \beta _{k}}}=2\sum _{i=1}^{m}J_{ij}J_{ik}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> H </mi> <mo> ≈<!-- ≈ --> </mo> <mn> 2 </mn> <msup> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi> J </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> r </mi> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> T </mi> </mrow> </mrow> </msup> <msub> <mi> J </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> r </mi> </mrow> </msub> <mo> , </mo> <mspace width="1em"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mtext> or, </mtext> </mrow> <mspace width="1em"></mspace> <msub> <mi> H </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> <mi> k </mi> </mrow> </msub> <mo> ≈<!-- ≈ --> </mo> <mn> 2 </mn> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> m </mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> β<!-- β --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> β<!-- β --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo> = </mo> <mn> 2 </mn> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> m </mi> </mrow> </munderover> <msub> <mi> J </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mi> j </mi> </mrow> </msub> <msub> <mi> J </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mi> k </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle H\approx 2{J_{r}}^{\mathrm {T} }J_{r},\quad {\text{or,}}\quad H_{jk}\approx 2\sum _{i=1}^{m}{\frac {\partial r_{i}}{\partial \beta _{j}}}{\frac {\partial r_{i}}{\partial \beta _{k}}}=2\sum _{i=1}^{m}J_{ij}J_{ik}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ca720f4e6552647a5da5f6f37cd9f5239346367" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:55.801ex; height:6.843ex;" alt="{\displaystyle H\approx 2{J_{r}}^{\mathrm {T} }J_{r},\quad {\text{or,}}\quad H_{jk}\approx 2\sum _{i=1}^{m}{\frac {\partial r_{i}}{\partial \beta _{j}}}{\frac {\partial r_{i}}{\partial \beta _{k}}}=2\sum _{i=1}^{m}J_{ij}J_{ik}}"> </noscript><span class="lazy-image-placeholder" style="width: 55.801ex;height: 6.843ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ca720f4e6552647a5da5f6f37cd9f5239346367" data-alt="{\displaystyle H\approx 2{J_{r}}^{\mathrm {T} }J_{r},\quad {\text{or,}}\quad H_{jk}\approx 2\sum _{i=1}^{m}{\frac {\partial r_{i}}{\partial \beta _{j}}}{\frac {\partial r_{i}}{\partial \beta _{k}}}=2\sum _{i=1}^{m}J_{ij}J_{ik}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>と近似される。ここで</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J_{ij}={\frac {\partial r_{i}}{\partial \beta _{j}}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> J </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mi> j </mi> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> β<!-- β --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle J_{ij}={\frac {\partial r_{i}}{\partial \beta _{j}}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42f1bc5dda788a276fc23986b9f6d2f2caf2f3ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:10.245ex; height:6.176ex;" alt="{\displaystyle J_{ij}={\frac {\partial r_{i}}{\partial \beta _{j}}}}"> </noscript><span class="lazy-image-placeholder" style="width: 10.245ex;height: 6.176ex;vertical-align: -2.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42f1bc5dda788a276fc23986b9f6d2f2caf2f3ba" data-alt="{\displaystyle J_{ij}={\frac {\partial r_{i}}{\partial \beta _{j}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>はヤコビアン<i>J<sub>r</sub></i> の成分である。</p> <p>これらの表現を上述の漸化式に代入して、次式を得る:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\beta }}^{(s+1)}={\boldsymbol {\beta }}^{(s)}+{\boldsymbol {\Delta }};\quad {\boldsymbol {\Delta }}=-({J_{r}}^{\mathrm {T} }J_{r})^{-1}{J_{r}}^{\mathrm {T} }{\boldsymbol {r}}.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> β<!-- β --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mi> s </mi> <mo> + </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> </mrow> </msup> <mo> = </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> β<!-- β --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mi> s </mi> <mo stretchy="false"> ) </mo> </mrow> </msup> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <mo> ; </mo> <mspace width="1em"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <mo> = </mo> <mo> −<!-- − --> </mo> <mo stretchy="false"> ( </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi> J </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> r </mi> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> T </mi> </mrow> </mrow> </msup> <msub> <mi> J </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> r </mi> </mrow> </msub> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi> J </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> r </mi> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> T </mi> </mrow> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> r </mi> </mrow> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\boldsymbol {\beta }}^{(s+1)}={\boldsymbol {\beta }}^{(s)}+{\boldsymbol {\Delta }};\quad {\boldsymbol {\Delta }}=-({J_{r}}^{\mathrm {T} }J_{r})^{-1}{J_{r}}^{\mathrm {T} }{\boldsymbol {r}}.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8ed7cd693d2daab25d4c8ffe5cc2c569d071138" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:44.037ex; height:3.343ex;" alt="{\displaystyle {\boldsymbol {\beta }}^{(s+1)}={\boldsymbol {\beta }}^{(s)}+{\boldsymbol {\Delta }};\quad {\boldsymbol {\Delta }}=-({J_{r}}^{\mathrm {T} }J_{r})^{-1}{J_{r}}^{\mathrm {T} }{\boldsymbol {r}}.}"> </noscript><span class="lazy-image-placeholder" style="width: 44.037ex;height: 3.343ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8ed7cd693d2daab25d4c8ffe5cc2c569d071138" data-alt="{\displaystyle {\boldsymbol {\beta }}^{(s+1)}={\boldsymbol {\beta }}^{(s)}+{\boldsymbol {\Delta }};\quad {\boldsymbol {\Delta }}=-({J_{r}}^{\mathrm {T} }J_{r})^{-1}{J_{r}}^{\mathrm {T} }{\boldsymbol {r}}.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>ガウス・ニュートン法の収束は常に保証されているわけではない。2階微分項を無視するという近似、すなわち</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left|r_{i}{\frac {\partial ^{2}r_{i}}{\partial \beta _{j}\partial \beta _{k}}}\right|\ll \left|{\frac {\partial r_{i}}{\partial \beta _{j}}}{\frac {\partial r_{i}}{\partial \beta _{k}}}\right|}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo> | </mo> <mrow> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> β<!-- β --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> </msub> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> β<!-- β --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mrow> <mo> | </mo> </mrow> <mo> ≪<!-- ≪ --> </mo> <mrow> <mo> | </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> β<!-- β --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> β<!-- β --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mrow> <mo> | </mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \left|r_{i}{\frac {\partial ^{2}r_{i}}{\partial \beta _{j}\partial \beta _{k}}}\right|\ll \left|{\frac {\partial r_{i}}{\partial \beta _{j}}}{\frac {\partial r_{i}}{\partial \beta _{k}}}\right|} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d087e3a5587fe8a4d5d5f80a5201e2325cc34859" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:25.09ex; height:6.509ex;" alt="{\displaystyle \left|r_{i}{\frac {\partial ^{2}r_{i}}{\partial \beta _{j}\partial \beta _{k}}}\right|\ll \left|{\frac {\partial r_{i}}{\partial \beta _{j}}}{\frac {\partial r_{i}}{\partial \beta _{k}}}\right|}"> </noscript><span class="lazy-image-placeholder" style="width: 25.09ex;height: 6.509ex;vertical-align: -2.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d087e3a5587fe8a4d5d5f80a5201e2325cc34859" data-alt="{\displaystyle \left|r_{i}{\frac {\partial ^{2}r_{i}}{\partial \beta _{j}\partial \beta _{k}}}\right|\ll \left|{\frac {\partial r_{i}}{\partial \beta _{j}}}{\frac {\partial r_{i}}{\partial \beta _{k}}}\right|}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>に正当性があるのは次の2つの条件の下であり、これらが成り立つ場合には収束が期待される<sup id="cite_ref-7" class="reference"><a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup>:</p> <ol> <li><i>r<sub>i</sub></i> は十分小さい。少なくとも最小値付近。</li> <li>関数の非線形性は穏やかであり、<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\partial ^{2}r_{i}}/{\partial \beta _{j}\partial \beta _{k}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> / </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> β<!-- β --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> </msub> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> β<!-- β --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\partial ^{2}r_{i}}/{\partial \beta _{j}\partial \beta _{k}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0451dd4517e80536a0a0d2f13b716e4205226f28" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:12.674ex; height:3.343ex;" alt="{\displaystyle {\partial ^{2}r_{i}}/{\partial \beta _{j}\partial \beta _{k}}}"> </noscript><span class="lazy-image-placeholder" style="width: 12.674ex;height: 3.343ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0451dd4517e80536a0a0d2f13b716e4205226f28" data-alt="{\displaystyle {\partial ^{2}r_{i}}/{\partial \beta _{j}\partial \beta _{k}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> が比較的小さくなる。</li> </ol> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(6)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="改善バージョン"><span id=".E6.94.B9.E5.96.84.E3.83.90.E3.83.BC.E3.82.B8.E3.83.A7.E3.83.B3"></span>改善バージョン</h2><span class="mw-editsection"> <a role="button" href="https://ja-m-wikipedia-org.translate.goog/w/index.php?title=%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95&action=edit&section=6&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="節を編集: 改善バージョン" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>編集</span> </a> </span> </div> <section class="mf-section-6 collapsible-block" id="mf-section-6"> <p>ガウス・ニュートン法は、初期推定値が真の解から大きく離れていたり、モデル関数の非線形性が大きい場合には安定性が悪い。また、残差平方和<i>S</i> は反復ごとに必ずしも減少するわけではない。そのため、実用上は安定化が必要である<sup id="cite_ref-#1_8-0" class="reference"><a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-#1-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup>。</p> <p><i>S</i> は反復ごとに必ずしも減少するわけではないが、増分ベクトル<b>Δ</b>は<i>S</i> が減少する方向を向いているから、<i>S</i> (<i><b>β</b></i><sup>s</sup>) が停留点にない限り、任意の十分に小さな<i>α</i>> 0 に対して <i>S</i> (<i><b>β</b></i><sup>s</sup> + <i>α</i><b>Δ</b>) < <i>S</i> (<i><b>β</b></i><sup>s</sup>) が成り立つ。したがって、発散したときに、更新方程式に<b>縮小因子</b><sup id="cite_ref-#1_8-1" class="reference"><a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-#1-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup><i>α</i>を導入して</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\beta }}^{s+1}={\boldsymbol {\beta }}^{s}+\alpha {\boldsymbol {\Delta }}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> β<!-- β --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> s </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> = </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> β<!-- β --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> s </mi> </mrow> </msup> <mo> + </mo> <mi> α<!-- α --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\boldsymbol {\beta }}^{s+1}={\boldsymbol {\beta }}^{s}+\alpha {\boldsymbol {\Delta }}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb6068d625a9a3b63bef34bbd00953a940fc9268" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.828ex; height:3.009ex;" alt="{\displaystyle {\boldsymbol {\beta }}^{s+1}={\boldsymbol {\beta }}^{s}+\alpha {\boldsymbol {\Delta }}}"> </noscript><span class="lazy-image-placeholder" style="width: 16.828ex;height: 3.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb6068d625a9a3b63bef34bbd00953a940fc9268" data-alt="{\displaystyle {\boldsymbol {\beta }}^{s+1}={\boldsymbol {\beta }}^{s}+\alpha {\boldsymbol {\Delta }}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>とすることが解決法の一つとなる。</p> <p>言い換えれば、増分ベクトル<b>Δ</b>は目的関数<i>S</i> の下り方向を指してはいるが長すぎるので、その道のほんの一部を行くことで、<i>S</i> を減少させようというアイディアである。縮小因子<i>α</i>の最適値は<a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E7%9B%B4%E7%B7%9A%E6%8E%A2%E7%B4%A2?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="直線探索">直線探索</a>で見つけることができる。つまり、直接探索法を(通常 0 < α ≤ 1 の区間で)用いて、<i>S</i> を最小化する値を探すことで<i>α</i>の大きさは決められる。</p> <p>最適な縮小因子<i>α</i>が 0 に近いような場合、発散を回避する別の方法は<a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E3%83%AC%E3%83%BC%E3%83%99%E3%83%B3%E3%83%90%E3%83%BC%E3%82%B0%E3%83%BB%E3%83%9E%E3%83%AB%E3%82%AB%E3%83%BC%E3%83%88%E6%B3%95?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="レーベンバーグ・マルカート法">レーベンバーグ・マルカート法</a>(<a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E4%BF%A1%E9%A0%BC%E9%A0%98%E5%9F%9F?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="信頼領域">信頼領域</a>法)を使うことである<sup id="cite_ref-ab_2-1" class="reference"><a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-ab-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup>。増分ベクトルが<a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E6%9C%80%E6%80%A5%E9%99%8D%E4%B8%8B%E6%B3%95?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="最急降下法">最急降下</a>方向に向くように正規方程式は修正される。</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (J^{\mathrm {T} }J+\lambda D)\Delta =J^{\mathrm {T} }{\boldsymbol {r}},}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <msup> <mi> J </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> T </mi> </mrow> </mrow> </msup> <mi> J </mi> <mo> + </mo> <mi> λ<!-- λ --> </mi> <mi> D </mi> <mo stretchy="false"> ) </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <mo> = </mo> <msup> <mi> J </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> T </mi> </mrow> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> r </mi> </mrow> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle (J^{\mathrm {T} }J+\lambda D)\Delta =J^{\mathrm {T} }{\boldsymbol {r}},} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/644add873cbfb977a47a8f5b8b925f46aae4b656" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.201ex; height:3.176ex;" alt="{\displaystyle (J^{\mathrm {T} }J+\lambda D)\Delta =J^{\mathrm {T} }{\boldsymbol {r}},}"> </noscript><span class="lazy-image-placeholder" style="width: 22.201ex;height: 3.176ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/644add873cbfb977a47a8f5b8b925f46aae4b656" data-alt="{\displaystyle (J^{\mathrm {T} }J+\lambda D)\Delta =J^{\mathrm {T} }{\boldsymbol {r}},}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>ここで<i>D</i> は<a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E6%AD%A3%E5%AE%9A%E5%80%A4?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-disambig" title="正定値">正定値</a>対角行列である。λが 0 から増大するにつれて増分ベクトル<b>Δ</b>は長さが単調に減少し、かつ方向は最急降下方向に近づくため、λを十分大きくすれば必ずより小さい<i>S</i> の値を見出せることが保証されている<sup id="cite_ref-9" class="reference"><a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup>。</p> <p>いわゆるマルカートパラメータλは直線探索により最適化されるが、λが変わるたびに毎回シフトベクトルの再計算をしなければならないため非効率的である。より効率的な方法は、発散が起きた時にλを<i>S</i> が減少するまで増加させる。そしてその値を1回の反復から次まで維持する、しかしλを 0 に設定することができるときにもしカットオフ値に届くまで可能なら減少させる。このとき<i>S</i> の最小値は標準のガウス・ニュートン法の最小化になる。</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(7)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="関連するアルゴリズム"><span id=".E9.96.A2.E9.80.A3.E3.81.99.E3.82.8B.E3.82.A2.E3.83.AB.E3.82.B4.E3.83.AA.E3.82.BA.E3.83.A0"></span>関連するアルゴリズム</h2><span class="mw-editsection"> <a role="button" href="https://ja-m-wikipedia-org.translate.goog/w/index.php?title=%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95&action=edit&section=7&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="節を編集: 関連するアルゴリズム" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>編集</span> </a> </span> </div> <section class="mf-section-7 collapsible-block" id="mf-section-7"> <p><a href="https://ja-m-wikipedia-org.translate.goog/wiki/DFP%E6%B3%95?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="DFP法">DFP法</a>や<a href="https://ja-m-wikipedia-org.translate.goog/wiki/BFGS%E6%B3%95?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="BFGS法">BFGS法</a>のような<a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E6%BA%96%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="準ニュートン法">準ニュートン法</a>では、ヘッシアン<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\partial ^{2}S}/{\partial \beta _{j}\partial \beta _{k}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mi> S </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> / </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> β<!-- β --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> </msub> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> β<!-- β --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\partial ^{2}S}/{\partial \beta _{j}\partial \beta _{k}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c8ab50aa5328619709363359b19fac567ac38ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:12.325ex; height:3.343ex;" alt="{\displaystyle {\partial ^{2}S}/{\partial \beta _{j}\partial \beta _{k}}}"> </noscript><span class="lazy-image-placeholder" style="width: 12.325ex;height: 3.343ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c8ab50aa5328619709363359b19fac567ac38ed" data-alt="{\displaystyle {\partial ^{2}S}/{\partial \beta _{j}\partial \beta _{k}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>の推定は1階微分<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\partial r_{i}}/{\partial \beta _{j}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> / </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> β<!-- β --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\partial r_{i}}/{\partial \beta _{j}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88fce34caedbe1fdeb45e5afaadb7e65deaf10e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.872ex; height:3.009ex;" alt="{\displaystyle {\partial r_{i}}/{\partial \beta _{j}}}"> </noscript><span class="lazy-image-placeholder" style="width: 7.872ex;height: 3.009ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88fce34caedbe1fdeb45e5afaadb7e65deaf10e4" data-alt="{\displaystyle {\partial r_{i}}/{\partial \beta _{j}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>のみを用いて数値的になされる。したがって<i>n</i> 回の反復計算による修正の後、この方法はパフォーマンスにおいてニュートン法を近似する。ガウス・ニュートン法やレーベンバーグ・マルカート法などは非線形最小二乗問題にのみ適用できるのに対して、準ニュートン法は一般的な実数値関数を最小化できることに注意する。</p> <p>1階微分のみを使って最小化問題を解く他の方法は、<a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E6%9C%80%E6%80%A5%E9%99%8D%E4%B8%8B%E6%B3%95?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="最急降下法">最急降下法</a>である。しかし、その方法は近似に2階微分を考慮していないので、多くの関数に対して、特にパラメータが強い相互作用を持っている場合には、計算効率が非常に悪い。</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(8)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="脚注"><span id=".E8.84.9A.E6.B3.A8"></span>脚注</h2><span class="mw-editsection"> <a role="button" href="https://ja-m-wikipedia-org.translate.goog/w/index.php?title=%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95&action=edit&section=8&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="節を編集: 脚注" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>編集</span> </a> </span> </div> <section class="mf-section-8 collapsible-block" id="mf-section-8"> <ol class="references"> <li id="cite_note-1"><b><a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-1">^</a></b> <span class="reference-text">アルゴリズム内の<i>m</i> ≥ <i>n</i> という仮定は必要である。そうでなければ、行列<i>J<sub>r</sub></i><sup>T</sup><i>J<sub>r</sub></i> の逆行列を計算できず、正規方程式の解(少なくとも唯一解)を求めることができない。</span></li> <li id="cite_note-ab-2">^ <a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-ab_2-0"><sup><i><b>a</b></i></sup></a> <a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-ab_2-1"><sup><i><b>b</b></i></sup></a> <span class="reference-text">Björck (1996)</span></li> <li id="cite_note-3"><b><a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-3">^</a></b> <span class="reference-text"><a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E3%83%9F%E3%82%AB%E3%82%A8%E3%83%AA%E3%82%B9%E3%83%BB%E3%83%A1%E3%83%B3%E3%83%86%E3%83%B3%E5%BC%8F?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#%E5%AE%9A%E6%95%B0%E3%81%AE%E6%B1%BA%E5%AE%9A" title="ミカエリス・メンテン式">ミカエリス・メンテン式#定数の決定</a>で説明するように、実際は変数に[S]<sup>-1</sup>と<i>v</i><sup>-1</sup> を選ぶことで、この問題は線形最小二乗法として解ける。</span></li> <li id="cite_note-4"><b><a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-4">^</a></b> <span class="reference-text">Björck (1996) p260</span></li> <li id="cite_note-5"><b><a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-5">^</a></b> <span class="reference-text">Björck (1996) p341, 342</span></li> <li id="cite_note-6"><b><a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-6">^</a></b> <span class="reference-text">Fletcher (1987) p.113</span></li> <li id="cite_note-7"><b><a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-7">^</a></b> <span class="reference-text">Nocedal (1997) <sup class="noprint Inline-Template nowrap">[<i><a href="https://ja-m-wikipedia-org.translate.goog/wiki/Wikipedia:%E5%87%BA%E5%85%B8%E3%82%92%E6%98%8E%E8%A8%98%E3%81%99%E3%82%8B?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#%E5%87%BA%E5%85%B8%E3%81%AE%E7%A4%BA%E3%81%97%E6%96%B9" title="Wikipedia:出典を明記する"><span title="この文献のどこを出典としているのか、該当するページ番号の特定が求められています。(December 2010)">要ページ番号</span></a></i>]</sup></span></li> <li id="cite_note-#1-8">^ <a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-#1_8-0"><sup><i><b>a</b></i></sup></a> <a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-#1_8-1"><sup><i><b>b</b></i></sup></a> <span class="reference-text">中川、小柳 (1982) p.98</span></li> <li id="cite_note-9"><b><a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-9">^</a></b> <span class="reference-text">中川、小柳 (1982) p.102</span></li> </ol> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(9)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="参考文献"><span id=".E5.8F.82.E8.80.83.E6.96.87.E7.8C.AE"></span>参考文献</h2><span class="mw-editsection"> <a role="button" href="https://ja-m-wikipedia-org.translate.goog/w/index.php?title=%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95&action=edit&section=9&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="節を編集: 参考文献" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>編集</span> </a> </span> </div> <section class="mf-section-9 collapsible-block" id="mf-section-9"> <ul> <li><cite style="font-style:normal" class="citation book">Björck, A. (1996). <i>Numerical methods for least squares problems</i>. SIAM, Philadelphia. <style data-mw-deduplicate="TemplateStyles:r101121245">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation.cs-ja1 q,.mw-parser-output .citation.cs-ja2 q{quotes:"「""」""『""』"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free a,.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited a,.mw-parser-output .id-lock-registration a,.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription a,.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:var(--color-success,#3a3);margin-left:0.3em}.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}</style><a href="https://ja-m-wikipedia-org.translate.goog/wiki/ISBN?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="ISBN">ISBN</a> <a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E7%89%B9%E5%88%A5:%E6%96%87%E7%8C%AE%E8%B3%87%E6%96%99/0-89871-360-9?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="特別:文献資料/0-89871-360-9">0-89871-360-9</a></cite><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Numerical+methods+for+least+squares+problems&rft.aulast=Bj%C3%B6rck&rft.aufirst=A.&rft.au=Bj%C3%B6rck%2C%26%2332%3BA.&rft.date=1996&rft.pub=SIAM%2C+Philadelphia&rft.isbn=0-89871-360-9&rfr_id=info:sid/ja.wikipedia.org:%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95"><span style="display: none;"> </span></span></li> <li><cite style="font-style:normal" class="citation book">Fletcher, Roger (1987). <i>Practical methods of optimization</i> (2nd ed.). New York: John Wiley & Sons. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r101121245"><a href="https://ja-m-wikipedia-org.translate.goog/wiki/ISBN?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="ISBN">ISBN</a> <a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E7%89%B9%E5%88%A5:%E6%96%87%E7%8C%AE%E8%B3%87%E6%96%99/978-0-471-91547-8?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="特別:文献資料/978-0-471-91547-8">978-0-471-91547-8</a></cite><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Practical+methods+of+optimization&rft.aulast=Fletcher&rft.aufirst=Roger&rft.au=Fletcher%2C%26%2332%3BRoger&rft.date=1987&rft.edition=2nd&rft.place=New+York&rft.pub=John+Wiley+%26+Sons&rft.isbn=978-0-471-91547-8&rfr_id=info:sid/ja.wikipedia.org:%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95"><span style="display: none;"> </span></span>.</li> <li><cite style="font-style:normal" class="citation book">Nocedal, Jorge; Wright, Stephen (1999). <i>Numerical optimization</i>. New York: Springer. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r101121245"><a href="https://ja-m-wikipedia-org.translate.goog/wiki/ISBN?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="ISBN">ISBN</a> <a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E7%89%B9%E5%88%A5:%E6%96%87%E7%8C%AE%E8%B3%87%E6%96%99/0-387-98793-2?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="特別:文献資料/0-387-98793-2">0-387-98793-2</a></cite><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Numerical+optimization&rft.aulast=Nocedal&rft.aufirst=Jorge&rft.au=Nocedal%2C%26%2332%3BJorge&rft.date=1999&rft.pub=New+York%3A+Springer&rft.isbn=0-387-98793-2&rfr_id=info:sid/ja.wikipedia.org:%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95"><span style="display: none;"> </span></span></li> <li><cite style="font-style:normal" class="citation" id="CITEREF中川徹小柳義夫1982">中川徹; <a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E5%B0%8F%E6%9F%B3%E7%BE%A9%E5%A4%AB?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="小柳義夫">小柳義夫</a>『最小二乗法による実験データ解析』東京大学出版会、1982年。 <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r101121245"><a href="https://ja-m-wikipedia-org.translate.goog/wiki/ISBN?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="ISBN">ISBN</a> <a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E7%89%B9%E5%88%A5:%E6%96%87%E7%8C%AE%E8%B3%87%E6%96%99/4-13-064067-4?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="特別:文献資料/4-13-064067-4">4-13-064067-4</a>。</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=%E6%9C%80%E5%B0%8F%E4%BA%8C%E4%B9%97%E6%B3%95%E3%81%AB%E3%82%88%E3%82%8B%E5%AE%9F%E9%A8%93%E3%83%87%E3%83%BC%E3%82%BF%E8%A7%A3%E6%9E%90&rft.aulast=%E4%B8%AD%E5%B7%9D%E5%BE%B9&rft.au=%E4%B8%AD%E5%B7%9D%E5%BE%B9&rft.au=%5B%5B%E5%B0%8F%E6%9F%B3%E7%BE%A9%E5%A4%AB%5D%5D&rft.date=1982&rft.pub=%E6%9D%B1%E4%BA%AC%E5%A4%A7%E5%AD%A6%E5%87%BA%E7%89%88%E4%BC%9A&rft.isbn=4-13-064067-4&rfr_id=info:sid/ja.wikipedia.org:%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95"><span style="display: none;"> </span></span></li> </ul><!-- NewPP limit report Parsed by mw‐web.eqiad.canary‐687bc74f68‐sjs5v Cached time: 20241123100758 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 0.249 seconds Real time usage: 0.398 seconds Preprocessor visited node count: 5242/1000000 Post‐expand include size: 114196/2097152 bytes Template argument size: 5768/2097152 bytes Highest expansion depth: 20/100 Expensive parser function count: 17/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 11657/5000000 bytes Lua time usage: 0.034/10.000 seconds Lua memory usage: 2171404/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 236.485 1 -total 39.15% 92.595 3 Template:Cite_book 37.21% 87.985 3 Template:Citation/core 35.85% 84.791 8 Template:Navbox 28.28% 66.883 4 Template:Citation/identifier 27.28% 64.513 4 Template:ISBN2 18.94% 44.791 1 Template:最適化アルゴリズム 17.04% 40.288 4 Template:Catalog_lookup_link 14.35% 33.938 17 Template:仮リンク 12.44% 29.426 1 Template:Cite --> <!-- Saved in parser cache with key jawiki:pcache:idhash:2904393-0!canonical and timestamp 20241123100758 and revision id 98414952. Rendering was triggered because: page-view --> </section> </div><!-- MobileFormatter took 0.024 seconds --><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --> <noscript> <img src="https://login.m.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&mobile=1" alt="" width="1" height="1" style="border: none; position: absolute;"> </noscript> <div class="printfooter" data-nosnippet=""> 「<a dir="ltr" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ja.wikipedia.org/w/index.php?title%3D%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95%26oldid%3D98414952">https://ja.wikipedia.org/w/index.php?title=ガウス・ニュートン法&oldid=98414952</a>」から取得 </div> </div> </div> <div class="post-content" id="page-secondary-actions"> </div> </main> <footer class="mw-footer minerva-footer" role="contentinfo"><a class="last-modified-bar" href="https://ja-m-wikipedia-org.translate.goog/w/index.php?title=%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95&action=history&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB"> <div class="post-content last-modified-bar__content"><span class="minerva-icon minerva-icon-size-medium minerva-icon--modified-history"></span> <span class="last-modified-bar__text modified-enhancement" data-user-name="ぐしー" data-user-gender="unknown" data-timestamp="1702201047"> <span>最終更新: 2023年12月10日 (日) 09:37</span> </span> <span class="minerva-icon minerva-icon-size-small minerva-icon--expand"></span> </div></a> <div class="post-content footer-content"> <div id="mw-data-after-content"> <div class="read-more-container"></div> </div> <div id="p-lang"> <h4>言語</h4> <section> <ul id="p-variants" class="minerva-languages"></ul> <ul class="minerva-languages"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ar.wikipedia.org/wiki/%25D8%25AE%25D9%2588%25D8%25A7%25D8%25B1%25D8%25B2%25D9%2585%25D9%258A%25D8%25A9_%25D8%25AC%25D8%25A7%25D9%2588%25D8%25B3_%25D9%2588%25D9%2586%25D9%258A%25D9%2588%25D8%25AA%25D9%2586" title="アラビア語: خوارزمية جاوس ونيوتن" lang="ar" hreflang="ar" data-title="خوارزمية جاوس ونيوتن" data-language-autonym="العربية" data-language-local-name="アラビア語" class="interlanguage-link-target"><span>العربية</span></a></li> <li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://bg.wikipedia.org/wiki/%25D0%2590%25D0%25BB%25D0%25B3%25D0%25BE%25D1%2580%25D0%25B8%25D1%2582%25D1%258A%25D0%25BC_%25D0%25BD%25D0%25B0_%25D0%2593%25D0%25B0%25D1%2583%25D1%2581-%25D0%259D%25D1%258E%25D1%2582%25D0%25BE%25D0%25BD" title="ブルガリア語: Алгоритъм на Гаус-Нютон" lang="bg" hreflang="bg" data-title="Алгоритъм на Гаус-Нютон" data-language-autonym="Български" data-language-local-name="ブルガリア語" class="interlanguage-link-target"><span>Български</span></a></li> <li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ca.wikipedia.org/wiki/Algorisme_de_Gauss-Newton" title="カタロニア語: Algorisme de Gauss-Newton" lang="ca" hreflang="ca" data-title="Algorisme de Gauss-Newton" data-language-autonym="Català" data-language-local-name="カタロニア語" class="interlanguage-link-target"><span>Català</span></a></li> <li class="interlanguage-link interwiki-de mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://de.wikipedia.org/wiki/Gau%25C3%259F-Newton-Verfahren" title="ドイツ語: Gauß-Newton-Verfahren" lang="de" hreflang="de" data-title="Gauß-Newton-Verfahren" data-language-autonym="Deutsch" data-language-local-name="ドイツ語" class="interlanguage-link-target"><span>Deutsch</span></a></li> <li class="interlanguage-link interwiki-en mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://en.wikipedia.org/wiki/Gauss%25E2%2580%2593Newton_algorithm" title="英語: Gauss–Newton algorithm" lang="en" hreflang="en" data-title="Gauss–Newton algorithm" data-language-autonym="English" data-language-local-name="英語" class="interlanguage-link-target"><span>English</span></a></li> <li class="interlanguage-link interwiki-es mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://es.wikipedia.org/wiki/Algoritmo_de_Gauss-Newton" title="スペイン語: Algoritmo de Gauss-Newton" lang="es" hreflang="es" data-title="Algoritmo de Gauss-Newton" data-language-autonym="Español" data-language-local-name="スペイン語" class="interlanguage-link-target"><span>Español</span></a></li> <li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://fr.wikipedia.org/wiki/Algorithme_de_Gauss-Newton" title="フランス語: Algorithme de Gauss-Newton" lang="fr" hreflang="fr" data-title="Algorithme de Gauss-Newton" data-language-autonym="Français" data-language-local-name="フランス語" class="interlanguage-link-target"><span>Français</span></a></li> <li class="interlanguage-link interwiki-he mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://he.wikipedia.org/wiki/%25D7%2590%25D7%259C%25D7%2592%25D7%2595%25D7%25A8%25D7%2599%25D7%25AA%25D7%259D_%25D7%2592%25D7%2590%25D7%2595%25D7%25A1-%25D7%25A0%25D7%2599%25D7%2595%25D7%2598%25D7%2595%25D7%259F" title="ヘブライ語: אלגוריתם גאוס-ניוטון" lang="he" hreflang="he" data-title="אלגוריתם גאוס-ניוטון" data-language-autonym="עברית" data-language-local-name="ヘブライ語" class="interlanguage-link-target"><span>עברית</span></a></li> <li class="interlanguage-link interwiki-id mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://id.wikipedia.org/wiki/Algoritma_Gauss-Newton" title="インドネシア語: Algoritma Gauss-Newton" lang="id" hreflang="id" data-title="Algoritma Gauss-Newton" data-language-autonym="Bahasa Indonesia" data-language-local-name="インドネシア語" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li> <li class="interlanguage-link interwiki-it mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://it.wikipedia.org/wiki/Algoritmo_di_Gauss-Newton" title="イタリア語: Algoritmo di Gauss-Newton" lang="it" hreflang="it" data-title="Algoritmo di Gauss-Newton" data-language-autonym="Italiano" data-language-local-name="イタリア語" class="interlanguage-link-target"><span>Italiano</span></a></li> <li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://nn.wikipedia.org/wiki/Gauss%25E2%2580%2593Newton_algoritmen" title="ノルウェー語(ニーノシュク): Gauss–Newton algoritmen" lang="nn" hreflang="nn" data-title="Gauss–Newton algoritmen" data-language-autonym="Norsk nynorsk" data-language-local-name="ノルウェー語(ニーノシュク)" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li> <li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://pl.wikipedia.org/wiki/Algorytm_Gaussa-Newtona" title="ポーランド語: Algorytm Gaussa-Newtona" lang="pl" hreflang="pl" data-title="Algorytm Gaussa-Newtona" data-language-autonym="Polski" data-language-local-name="ポーランド語" class="interlanguage-link-target"><span>Polski</span></a></li> <li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://pt.wikipedia.org/wiki/Algoritmo_de_Gauss-Newton" title="ポルトガル語: Algoritmo de Gauss-Newton" lang="pt" hreflang="pt" data-title="Algoritmo de Gauss-Newton" data-language-autonym="Português" data-language-local-name="ポルトガル語" class="interlanguage-link-target"><span>Português</span></a></li> <li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ru.wikipedia.org/wiki/%25D0%2590%25D0%25BB%25D0%25B3%25D0%25BE%25D1%2580%25D0%25B8%25D1%2582%25D0%25BC_%25D0%2593%25D0%25B0%25D1%2583%25D1%2581%25D1%2581%25D0%25B0_%25E2%2580%2594_%25D0%259D%25D1%258C%25D1%258E%25D1%2582%25D0%25BE%25D0%25BD%25D0%25B0" title="ロシア語: Алгоритм Гаусса — Ньютона" lang="ru" hreflang="ru" data-title="Алгоритм Гаусса — Ньютона" data-language-autonym="Русский" data-language-local-name="ロシア語" class="interlanguage-link-target"><span>Русский</span></a></li> <li class="interlanguage-link interwiki-sv badge-Q17559452 badge-recommendedarticle mw-list-item" title="おすすめ記事"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://sv.wikipedia.org/wiki/Gauss%25E2%2580%2593Newtons_metod" title="スウェーデン語: Gauss–Newtons metod" lang="sv" hreflang="sv" data-title="Gauss–Newtons metod" data-language-autonym="Svenska" data-language-local-name="スウェーデン語" class="interlanguage-link-target"><span>Svenska</span></a></li> </ul> </section> </div> <div class="minerva-footer-logo"> <img src="/static/images/mobile/copyright/wikipedia-wordmark-ja.svg" alt="Wikipedia" width="120" height="20" style="width: 7.5em; height: 1.25em;"> </div> <ul id="footer-info" class="footer-info hlist hlist-separated"> <li id="footer-info-lastmod">最終更新 2023年12月10日 (日) 09:37 (日時は<a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E7%89%B9%E5%88%A5:%E5%80%8B%E4%BA%BA%E8%A8%AD%E5%AE%9A?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#mw-prefsection-rendering" title="特別:個人設定">個人設定</a>で未設定ならば<a href="https://ja-m-wikipedia-org.translate.goog/wiki/%E5%8D%94%E5%AE%9A%E4%B8%96%E7%95%8C%E6%99%82?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="協定世界時">UTC</a>)。</li> <li id="footer-info-copyright">コンテンツは、特に記載されていない限り、<a class="external" rel="nofollow" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://creativecommons.org/licenses/by-sa/4.0/deed.ja">CC BY-SA 4.0</a>のもとで利用可能です。</li> </ul> <ul id="footer-places" class="footer-places hlist hlist-separated"> <li id="footer-places-privacy"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy/ja">プライバシー・ポリシー</a></li> <li id="footer-places-about"><a href="https://ja-m-wikipedia-org.translate.goog/wiki/Wikipedia:%E3%82%A6%E3%82%A3%E3%82%AD%E3%83%9A%E3%83%87%E3%82%A3%E3%82%A2%E3%81%AB%E3%81%A4%E3%81%84%E3%81%A6?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB">ウィキペディアについて</a></li> <li id="footer-places-disclaimers"><a href="https://ja-m-wikipedia-org.translate.goog/wiki/Wikipedia:%E5%85%8D%E8%B2%AC%E4%BA%8B%E9%A0%85?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB">免責事項</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">行動規範</a></li> <li id="footer-places-developers"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://developer.wikimedia.org">開発者</a></li> <li id="footer-places-statslink"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://stats.wikimedia.org/%23/ja.wikipedia.org">統計</a></li> <li id="footer-places-cookiestatement"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookieに関する声明</a></li> <li id="footer-places-terms-use"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://foundation.m.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use/ja">利用規約</a></li> <li id="footer-places-desktop-toggle"><a id="mw-mf-display-toggle" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ja.wikipedia.org/w/index.php?title%3D%25E3%2582%25AC%25E3%2582%25A6%25E3%2582%25B9%25E3%2583%25BB%25E3%2583%258B%25E3%2583%25A5%25E3%2583%25BC%25E3%2583%2588%25E3%2583%25B3%25E6%25B3%2595%26mobileaction%3Dtoggle_view_desktop" data-event-name="switch_to_desktop">デスクトップ</a></li> </ul> </div> </footer> </div> </div> <div class="mw-notification-area" data-mw="interface"></div><!-- v:8.3.1 --> <script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-694cf4987f-dj8n5","wgBackendResponseTime":182,"wgPageParseReport":{"limitreport":{"cputime":"0.249","walltime":"0.398","ppvisitednodes":{"value":5242,"limit":1000000},"postexpandincludesize":{"value":114196,"limit":2097152},"templateargumentsize":{"value":5768,"limit":2097152},"expansiondepth":{"value":20,"limit":100},"expensivefunctioncount":{"value":17,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":11657,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 236.485 1 -total"," 39.15% 92.595 3 Template:Cite_book"," 37.21% 87.985 3 Template:Citation/core"," 35.85% 84.791 8 Template:Navbox"," 28.28% 66.883 4 Template:Citation/identifier"," 27.28% 64.513 4 Template:ISBN2"," 18.94% 44.791 1 Template:最適化アルゴリズム"," 17.04% 40.288 4 Template:Catalog_lookup_link"," 14.35% 33.938 17 Template:仮リンク"," 12.44% 29.426 1 Template:Cite"]},"scribunto":{"limitreport-timeusage":{"value":"0.034","limit":"10.000"},"limitreport-memusage":{"value":2171404,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.canary-687bc74f68-sjs5v","timestamp":"20241123100758","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"\u30ac\u30a6\u30b9\u30fb\u30cb\u30e5\u30fc\u30c8\u30f3\u6cd5","url":"https:\/\/ja.wikipedia.org\/wiki\/%E3%82%AC%E3%82%A6%E3%82%B9%E3%83%BB%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E6%B3%95","sameAs":"http:\/\/www.wikidata.org\/entity\/Q1496373","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q1496373","author":{"@type":"Organization","name":"\u30a6\u30a3\u30ad\u30e1\u30c7\u30a3\u30a2\u30d7\u30ed\u30b8\u30a7\u30af\u30c8\u3078\u306e\u8ca2\u732e\u8005"},"publisher":{"@type":"Organization","name":"\u30a6\u30a3\u30ad\u30e1\u30c7\u30a3\u30a2\u8ca1\u56e3","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2013-12-30T04:23:25Z","dateModified":"2023-12-10T09:37:27Z"}</script> <script>(window.NORLQ=window.NORLQ||[]).push(function(){var ns,i,p,img;ns=document.getElementsByTagName('noscript');for(i=0;i<ns.length;i++){p=ns[i].nextSibling;if(p&&p.className&&p.className.indexOf('lazy-image-placeholder')>-1){img=document.createElement('img');img.setAttribute('src',p.getAttribute('data-src'));img.setAttribute('width',p.getAttribute('data-width'));img.setAttribute('height',p.getAttribute('data-height'));img.setAttribute('alt',p.getAttribute('data-alt'));p.parentNode.replaceChild(img,p);}}});</script> <script>function gtElInit() {var lib = new google.translate.TranslateService();lib.translatePage('ja', 'en', function () {});}</script> <script src="https://translate.google.com/translate_a/element.js?cb=gtElInit&hl=en-GB&client=wt" type="text/javascript"></script> </body> </html>