CINXE.COM

Search results for: footings

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: footings</title> <meta name="description" content="Search results for: footings"> <meta name="keywords" content="footings"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="footings" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="footings"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 26</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: footings</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Effect of Adjacent Footings on Elastic Settlement of Shallow Foundations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Aytekin">Mustafa Aytekin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, impact of adjacent footings is considered on the estimation of elastic settlement of shallow foundations. In the estimation of elastic settlement, the Schmertmann’s method that is a very popular method in the elastic settlement estimation of shallow foundations is employed. In order to consider affect of neighboring footings on elastic settlement of main footing in different configurations, a MATLAB script has been generated. Elastic settlements of the various configurations are estimated by the script and several conclusions have been reached. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20%28immediate%29%20settlement" title="elastic (immediate) settlement">elastic (immediate) settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=Schmertman%20Method" title=" Schmertman Method"> Schmertman Method</a>, <a href="https://publications.waset.org/abstracts/search?q=adjacent%20footings" title=" adjacent footings"> adjacent footings</a>, <a href="https://publications.waset.org/abstracts/search?q=shallow%20foundations" title=" shallow foundations"> shallow foundations</a> </p> <a href="https://publications.waset.org/abstracts/3005/effect-of-adjacent-footings-on-elastic-settlement-of-shallow-foundations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Effect of Footing Shape on Bearing Capacity and Settlement of Closely Spaced Footings on Sandy Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Shafaghat">A. Shafaghat</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Khabbaz"> H. Khabbaz</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Moravej"> S. Moravej</a>, <a href="https://publications.waset.org/abstracts/search?q=Ah.%20Shafaghat"> Ah. Shafaghat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The bearing capacity of closely spaced shallow footings alters with their spacing and the shape of footing. In this study, the bearing capacity and settlement of two adjacent footings constructed on a sand layer are investigated. The effect of different footing shapes including square, circular, ring and strip on sandy soil is captured in the calculations. The investigations are carried out numerically using PLAXIS-3D software and analytically employing conventional settlement equations. For this purpose, foundations are modelled in the program with practical dimensions and various spacing ratios ranging from 1 to 5. The spacing ratio is defined as the centre-to-centre distance to the width of foundations (S/B). Overall, 24 models are analyzed; and the results are compared and discussed in detail. It can be concluded that the presence of adjacent foundation leads to the reduction in bearing capacity for round shape footings while it can increase the bearing capacity of rectangular footings in some specific distances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity" title="bearing capacity">bearing capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=loose%20sand" title=" loose sand"> loose sand</a>, <a href="https://publications.waset.org/abstracts/search?q=settlement%20equations" title=" settlement equations"> settlement equations</a>, <a href="https://publications.waset.org/abstracts/search?q=shallow%20foundation" title=" shallow foundation"> shallow foundation</a> </p> <a href="https://publications.waset.org/abstracts/101564/effect-of-footing-shape-on-bearing-capacity-and-settlement-of-closely-spaced-footings-on-sandy-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101564.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Investigation of Building Loads Effect on the Stability of Slope</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hadj%20Brahim%20Mounia">Hadj Brahim Mounia</a>, <a href="https://publications.waset.org/abstracts/search?q=Belhamel%20Farid"> Belhamel Farid</a>, <a href="https://publications.waset.org/abstracts/search?q=Souici%20Messoud"> Souici Messoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In big cities, construction on sloping land (landslide) is becoming increasingly prevalent due to the unavailability of flat lands. This has created a major challenge for structural engineers with regard to structure design, due to the difficulties encountered during the implementation of projects, both for the structure and the soil. This paper analyses the effect of the number of floors of a building, founded on isolated footing on the stability of the slope using the computer code finite element PLAXIS 2D v. 8.2. The isolated footings of a building in this case were anchored in soil so that the levels of successive isolated footing realize a maximum slope of base of three for two heights, which connects the edges of the nearest footings, according to the Algerian building code DTR-BC 2.331: Shallow foundations. The results show that the embedment of the foundation into the soil reduces the value of the safety factor due to the change of the stress state of the soil by these foundations. The number of floors a building has also influences the safety factor. It has been noticed from this case of study that there is no risk of collapse of slopes for an inclination between 5&deg; and 8&deg;. In the case of slope inclination greater than 10&deg; it has been noticed that the urbanization is prohibited. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=isolated%20footings" title="isolated footings">isolated footings</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-storeys%20building" title=" multi-storeys building"> multi-storeys building</a>, <a href="https://publications.waset.org/abstracts/search?q=PLAXIS%202D" title=" PLAXIS 2D"> PLAXIS 2D</a>, <a href="https://publications.waset.org/abstracts/search?q=slope" title=" slope"> slope</a> </p> <a href="https://publications.waset.org/abstracts/55350/investigation-of-building-loads-effect-on-the-stability-of-slope" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55350.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Circular Raft Footings Strengthened by Stone Columns under Static Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Ziaie%20Moayed">R. Ziaie Moayed</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Mohammadi-Haji"> B. Mohammadi-Haji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stone columns have been widely employed to improve the load-settlement characteristics of soft soils. The results of two small scale displacement control loading tests on stone columns were used in order to validate numerical finite element simulations. Additionally, a series of numerical calculations of static loading have been performed on strengthened raft footing to investigate the effects of using stone columns on bearing capacity of footings. The bearing capacity of single and group of stone columns under static loading compares with unimproved ground. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circular%20raft%20footing" title="circular raft footing">circular raft footing</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=validation" title=" validation"> validation</a>, <a href="https://publications.waset.org/abstracts/search?q=vertically%20encased%20stone%20column" title=" vertically encased stone column"> vertically encased stone column</a> </p> <a href="https://publications.waset.org/abstracts/43844/circular-raft-footings-strengthened-by-stone-columns-under-static-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43844.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Effect of Slope Height and Horizontal Forces on the Bearing Capacity of Strip Footings near Slopes in Cohesionless Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sven%20Krabbenhoft">Sven Krabbenhoft</a>, <a href="https://publications.waset.org/abstracts/search?q=Kristian%20Krabbenhoft"> Kristian Krabbenhoft</a>, <a href="https://publications.waset.org/abstracts/search?q=Lars%20Damkilde"> Lars Damkilde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of determining the bearing capacity of a strip foundation located near a slope of infinite height has been dealt with by several authors. Very often in practical problems the slope is of limited height, and furthermore the resulting load may be inclined at an angle to the horizontal, and in such cases the bearing capacity of the footing cannot be found using the existing methods. The present work comprises finite element based upper- and lower-bound calculations, using the geotechnical software OptumG2 to investigate the effect of the slope height and horizontal forces on the total bearing capacity, both without and with using superposition as presupposed in the traditional bearing capacity equation. The results for friction angles 30, 35 and 40 degrees, slope inclinations 1:2, 1:3 and 1:4, for selfweight and surcharge are given as charts showing the slope inclination factors suitable for design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=footings" title="footings">footings</a>, <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity" title=" bearing capacity"> bearing capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=slopes" title=" slopes"> slopes</a>, <a href="https://publications.waset.org/abstracts/search?q=cohesionnless%20soil" title=" cohesionnless soil"> cohesionnless soil</a> </p> <a href="https://publications.waset.org/abstracts/12708/effect-of-slope-height-and-horizontal-forces-on-the-bearing-capacity-of-strip-footings-near-slopes-in-cohesionless-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12708.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Numerical Modeling of Geogrid Reinforced Soil Bed under Strip Footings Using Finite Element Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20Gamal">Ahmed M. Gamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Adel%20M.%20Belal"> Adel M. Belal</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Elsoud"> S. A. Elsoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article aims to study the effect of reinforcement inclusions (geogrids) on the sand dunes bearing capacity under strip footings. In this research experimental physical model was carried out to study the effect of the first geogrid reinforcement depth (u/B), the spacing between the reinforcement (h/B) and its extension relative to the footing length (L/B) on the mobilized bearing capacity. This paper presents the numerical modeling using the commercial finite element package (PLAXIS version 8.2) to simulate the laboratory physical model, studying the same parameters previously handled in the experimental work (u/B, L/B & h/B) for the purpose of validation. In this study the soil, the geogrid, the interface element and the boundary condition are discussed with a set of finite element results and the validation. Then the validated FEM used for studying real material and dimensions of strip foundation. Based on the experimental and numerical investigation results, a significant increase in the bearing capacity of footings has occurred due to an appropriate location of the inclusions in sand. The optimum embedment depth of the first reinforcement layer (u/B) is equal to 0.25. The optimum spacing between each successive reinforcement layer (h/B) is equal to 0.75 B. The optimum Length of the reinforcement layer (L/B) is equal to 7.5 B. The optimum number of reinforcement is equal to 4 layers. The study showed a directly proportional relation between the number of reinforcement layer and the Bearing Capacity Ratio BCR, and an inversely proportional relation between the footing width and the BCR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reinforced%20soil" title="reinforced soil">reinforced soil</a>, <a href="https://publications.waset.org/abstracts/search?q=geogrid" title=" geogrid"> geogrid</a>, <a href="https://publications.waset.org/abstracts/search?q=sand%20dunes" title=" sand dunes"> sand dunes</a>, <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity" title=" bearing capacity"> bearing capacity</a> </p> <a href="https://publications.waset.org/abstracts/40815/numerical-modeling-of-geogrid-reinforced-soil-bed-under-strip-footings-using-finite-element-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40815.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Circular Raft Footings Strengthened by Stone Columns under Dynamic Harmonic Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Ziaie%20Moayed">R. Ziaie Moayed</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mahigir"> A. Mahigir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stone column technique has been successfully employed to improve the load-settlement characteristics of foundations. A series of finite element numerical analyses of harmonic dynamic loading have been conducted on strengthened raft footing to study the effects of single and group stone columns on settlement of circular footings. The settlement of circular raft footing that improved by single and group of stone columns are studied under harmonic dynamic loading. This loading is caused by heavy machinery foundations. A detailed numerical investigation on behavior of single column and group of stone columns is carried out by varying parameters like weight of machinery, loading frequency and period. The result implies that presence of single and group of stone columns enhanced dynamic behavior of the footing so that the maximum and residual settlement of footing significantly decreased.&nbsp; <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title="finite element analysis">finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=harmonic%20loading" title=" harmonic loading"> harmonic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=settlement" title=" settlement"> settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=stone%20column" title=" stone column"> stone column</a> </p> <a href="https://publications.waset.org/abstracts/78842/circular-raft-footings-strengthened-by-stone-columns-under-dynamic-harmonic-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Application of Particle Image Velocimetry in the Analysis of Scale Effects in Granular Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zuhair%20Kadhim%20Jahanger">Zuhair Kadhim Jahanger</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Joseph%20Antony"> S. Joseph Antony</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The available studies in the literature which dealt with the scale effects of strip footings on different sand packing systematically still remain scarce. In this research, the variation of ultimate bearing capacity and deformation pattern of soil beneath strip footings of different widths under plane-strain condition on the surface of loose, medium-dense and dense sand have been systematically studied using experimental and noninvasive methods for measuring microscopic deformations. The presented analyses are based on model scale compression test analysed using Particle Image Velocimetry (PIV) technique. Upper bound analysis of the current study shows that the maximum vertical displacement of the sand under the ultimate load increases for an increase in the width of footing, but at a decreasing rate with relative density of sand, whereas the relative vertical displacement in the sand decreases for an increase in the width of the footing. A well agreement is observed between experimental results for different footing widths and relative densities. The experimental analyses have shown that there exists pronounced scale effect for strip surface footing. The bearing capacity factors <em>N&gamma;</em> rapidly decrease up to footing widths <em>B</em>=0.25 m, 0.35 m, and 0.65 m for loose, medium-dense and dense sand respectively, after that there is no significant decrease in <em>N&gamma;</em>. The deformation modes of the soil as well as the ultimate bearing capacity values have been affected by the footing widths. The obtained results could be used to improve settlement calculation of the foundation interacting with granular soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DPIV" title="DPIV">DPIV</a>, <a href="https://publications.waset.org/abstracts/search?q=granular%20mechanics" title=" granular mechanics"> granular mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=scale%20effect" title=" scale effect"> scale effect</a>, <a href="https://publications.waset.org/abstracts/search?q=upper%20bound%20analysis" title=" upper bound analysis"> upper bound analysis</a> </p> <a href="https://publications.waset.org/abstracts/72946/application-of-particle-image-velocimetry-in-the-analysis-of-scale-effects-in-granular-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Numerical Modelling of Prestressed Geogrid Reinforced Soil System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soukat%20Kumar%20Das">Soukat Kumar Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rapid industrialization and increase in population has resulted in the scarcity of suitable ground conditions. It has driven the need of ground improvement by means of reinforcement with geosynthetics with the minimum possible settlement and with maximum possible safety. Prestressing the geosynthetics offers an economical yet safe method of gaining the goal. Commercially available software PLAXIS 3D has made the analysis of prestressed geosynthetics simpler with much practical simulations of the ground. Attempts have been made so far to analyse the effect of prestressing geosynthetics and the effect of interference of footing on Unreinforced (UR), Geogrid Reinforced (GR) and Prestressed Geogrid Reinforced (PGR) soil on the load bearing capacity and the settlement characteristics of prestressed geogrid reinforced soil using the numerical analysis by using the software PLAXIS 3D. The results of the numerical analysis have been validated and compared with those given in the referred paper. The results have been found to be in very good agreement with those of the actual field values with very small variation. The GR soil has been found to be improve the bearing pressure 240 % whereas the PGR soil improves it by almost 500 % for 1mm settlement. In fact, the PGR soil has enhanced the bearing pressure of the GR soil by almost 200 %. The settlement reduction has also been found to be very significant as for 100 kPa bearing pressure the settlement reduction of the PGR soil has been found to be about 88 % with respect to UR soil and it reduced to up to 67 % with respect to GR soil. The prestressing force has resulted in enhanced reinforcement mechanism, resulting in the increased bearing pressure. The deformation at the geogrid layer has been found to be 13.62 mm for GR soil whereas it decreased down to mere 3.5 mm for PGR soil which certainly ensures the effect of prestressing on the geogrid layer. The parameter Improvement factor or conventionally known as Bearing Capacity Ratio for different settlements and which depicts the improvement of the PGR with respect to UR and GR soil and the improvement of GR soil with respect to UR soil has been found to vary in the range of 1.66-2.40 in the present analysis for GR soil and was found to be vary between 3.58 and 5.12 for PGR soil with respect to UR soil. The effect of prestressing was also observed in case of two interfering square footings. The centre to centre distance between the two footings (SFD) was taken to be B, 1.5B, 2B, 2.5B and 3B where B is the width of the footing. It was found that for UR soil the improvement of the bearing pressure was up to 1.5B after which it remained almost same. But for GR soil the zone of influence rose up to 2B and for PGR it further went up to 2.5B. So the zone of interference for PGR soil has increased by 67% than Unreinforced (UR) soil and almost 25 % with respect to GR soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bearing" title="bearing">bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=geogrid" title=" geogrid"> geogrid</a>, <a href="https://publications.waset.org/abstracts/search?q=prestressed" title=" prestressed"> prestressed</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced" title=" reinforced"> reinforced</a> </p> <a href="https://publications.waset.org/abstracts/35804/numerical-modelling-of-prestressed-geogrid-reinforced-soil-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35804.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Evaluation of Stone Column Behavior Strengthened Circular Raft Footing under Static Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Ziaie%20Moayed">R. Ziaie Moayed</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Mohammadi-Haji"> B. Mohammadi-Haji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stone columns have been widely employing to improve the load-settlement characteristics of soft soils. The results of two small scale displacement control loading tests on stone columns were used in order to validate numerical finite element simulations. Additionally, a series of numerical calculations of static loading have been performed on strengthened raft footing to investigate the effects of using stone columns on bearing capacity of footings. The bearing capacity of single and group of stone columns under static loading compares with unimproved ground. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circular%20raft%20footing" title="circular raft footing">circular raft footing</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=validation" title=" validation"> validation</a>, <a href="https://publications.waset.org/abstracts/search?q=vertically%20encased%20stone%20column" title=" vertically encased stone column"> vertically encased stone column</a> </p> <a href="https://publications.waset.org/abstracts/48311/evaluation-of-stone-column-behavior-strengthened-circular-raft-footing-under-static-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48311.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Undrained Bearing Capacity of Circular Foundations on two Layered Clays</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Benmebarek">S. Benmebarek</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Benmoussa"> S. Benmoussa</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Benmebarek"> N. Benmebarek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural soils are often deposited in layers. The estimation of the bearing capacity of the soil using conventional bearing capacity theory based on the properties of the upper layer introduces significant inaccuracies if the thickness of the top layer is comparable to the width of the foundation placed on the soil surface. In this paper, numerical computations using the FLAC code are reported to evaluate the two clay layers effect on the bearing capacity beneath rigid circular rough footing subject to axial static load. The computation results of the parametric study are used to illustrate the sensibility of the bearing capacity, the shape factor and the failure mechanisms to the layered strength and layered thickness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20modeling" title="numerical modeling">numerical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20footings" title=" circular footings"> circular footings</a>, <a href="https://publications.waset.org/abstracts/search?q=layered%20clays" title=" layered clays"> layered clays</a>, <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity" title=" bearing capacity"> bearing capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=failure" title=" failure"> failure</a> </p> <a href="https://publications.waset.org/abstracts/18326/undrained-bearing-capacity-of-circular-foundations-on-two-layered-clays" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Punching Shear Behavior of RC Column Footing on Stabilized Ground</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sukanta%20K.%20Shill">Sukanta K. Shill</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20M.%20Hoque"> Md. M. Hoque</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Shaifullah"> Md. Shaifullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experiment on the punching of RC column footing, comparison of test result to established different codes for punching shear calculation of column footings is presented in the paper. The principal aim of this study is to investigate the punching shear behavior of an isolated column footing using brick aggregate as coarse aggregate. Consequence, a RC model footing was constructed on a stabilized soil and tested the footing under field condition. The test result yields that the experimental punching shear capacity is greater than all the theoretical punching shear capacities obtained by using different codes of practices. It can be stated that BNBC 1993, as well as ACI 318, 2002 code formulae are very conservative in predicting the punching shear resistance of RC footing, whereas the CEB-FIP MC, 1990 formula and Eurocode2 formula are less conservative in predicting the punching shear resistance of footing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=footing" title="footing">footing</a>, <a href="https://publications.waset.org/abstracts/search?q=punching%20shear" title=" punching shear"> punching shear</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20condition" title=" field condition"> field condition</a>, <a href="https://publications.waset.org/abstracts/search?q=stabilized%20soil" title=" stabilized soil"> stabilized soil</a>, <a href="https://publications.waset.org/abstracts/search?q=brick%20aggregate" title=" brick aggregate"> brick aggregate</a> </p> <a href="https://publications.waset.org/abstracts/17204/punching-shear-behavior-of-rc-column-footing-on-stabilized-ground" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17204.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Directional Dependence of the Stress-Strain Behavior of Reinforced Sand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alaa%20H.%20J.%20Al-Rkaby">Alaa H. J. Al-Rkaby</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Chegenizadeh"> A. Chegenizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20R.%20Nikraz"> H. R. Nikraz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The technique of reinforcing soil is an efficient, reliable and cost-effective alternative way for improving the performance of soil in civil engineering applications. Despite the anisotropic states of stresses induced within soil elements by many geotechnical structures such as footings, highways and offshore, most of the previous studies have been carried out under isotropic conditions. The anisotropic stress state in term of the inclined principal stress and the inequality of the intermediate and minor principal stresses cannot be investigated using conventional devices. Therefore, the advanced hollow cylinder apparatus, used in this work, provides a great opportunity to simulate such anisotropic stress states. To date, very little consideration has been given to how the direction of principal stress α and intermediate principal stress ratio b can affect the performance of the reinforced sand. This study presented that the anisotropic conditions of α and b resulted in significant variations in the deviator stress and volumetric strain of sand reinforced with geosynthetics. Anisotropic effect has been decreased by adding clay content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anisotropy" title="anisotropy">anisotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20sand" title=" reinforced sand"> reinforced sand</a>, <a href="https://publications.waset.org/abstracts/search?q=direction%20of%20principal%20stress" title=" direction of principal stress"> direction of principal stress</a>, <a href="https://publications.waset.org/abstracts/search?q=intermediate%20principal%20stress%20ratio" title=" intermediate principal stress ratio"> intermediate principal stress ratio</a> </p> <a href="https://publications.waset.org/abstracts/83368/directional-dependence-of-the-stress-strain-behavior-of-reinforced-sand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Experimental Study on Improving the Engineering Properties of Sand Dunes Using Random Fibers-Geogrid Reinforcement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adel%20M.%20Belal">Adel M. Belal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sameh%20Abu%20El-Soud"> Sameh Abu El-Soud</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariam%20Farid"> Mariam Farid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents the effect of reinforcement inclusions (fibers-geogrids) on fine sand bearing capacity under strip footings. Experimental model tests were carried out using a rectangular plates [(10cm x 38 cm), (7.5 cm x 38 cm), and (12.5 cm x 38 cm)] with a geogrids and randomly reinforced fibers. The width and depth of the geogrid were varied to determine their effects on the engineering properties of treated poorly graded fine sand. Laboratory model test results for the ultimate stresses and the settlement of a rigid strip foundation supported by single and multi-layered fiber-geogrid-reinforced sand are presented. The number of layers of geogrid was varied between 1 to 4. The effect of the first geogrid reinforcement depth, the spacing between the reinforcement and its length on the bearing capacity is investigated by experimental program. Results show that the use of flexible random fibers with a content of 0.125% by weight of the treated sand dunes, with 3 geogrid reinforcement layers, u/B= 0.25 and L/B=7.5, has a significant increase in the bearing capacity of the proposed system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earth%20reinforcement" title="earth reinforcement">earth reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=geogrid" title=" geogrid"> geogrid</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20fiber" title=" random fiber"> random fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20soil" title=" reinforced soil"> reinforced soil</a> </p> <a href="https://publications.waset.org/abstracts/65076/experimental-study-on-improving-the-engineering-properties-of-sand-dunes-using-random-fibers-geogrid-reinforcement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65076.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Improvement of Soft Clay Using Floating Cement Dust-Lime Columns </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adel%20Belal">Adel Belal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sameh%20Aboelsoud"> Sameh Aboelsoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohy%20Elmashad"> Mohy Elmashad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Abdelmonem"> Mohammed Abdelmonem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The two main criteria that control the design and performance of footings are bearing capacity and settlement of soil. In soft soils, the construction of buildings, storage tanks, warehouse, etc. on weak soils usually involves excessive settlement problems. To solve bearing capacity or reduce settlement problems, soil improvement may be considered by using different techniques, including encased cement dust&ndash;lime columns. The proposed research studies the effect of adding floating encased cement dust and lime mix columns to soft clay on the clay-bearing capacity. Four experimental tests were carried out. Columns diameters of 3.0 cm, 4.0 cm, and 5.0 cm and columns length of 60% of the clay layer thickness were used. Numerical model was constructed and verified using commercial finite element package (PLAXIS 2D, V8.5). The verified model was used to study the effect of distributing columns around the footing at different distances. The study showed that the floating cement dust lime columns enhanced the clay-bearing capacity with 262%. The numerical model showed that the columns around the footing have a limit effect on the clay improvement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity" title="bearing capacity">bearing capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=cement%20dust%20%E2%80%93%20lime%20columns" title=" cement dust – lime columns"> cement dust – lime columns</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20improvement" title=" ground improvement"> ground improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20clay" title=" soft clay"> soft clay</a> </p> <a href="https://publications.waset.org/abstracts/100854/improvement-of-soft-clay-using-floating-cement-dust-lime-columns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100854.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Effect of Confinement on the Bearing Capacity and Settlement of Spread Foundations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tahsin%20Toma%20Sabbagh">Tahsin Toma Sabbagh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ihsan%20Al-Abboodi"> Ihsan Al-Abboodi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Al-Jazaairry"> Ali Al-Jazaairry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Allowable-bearing capacity is the competency of soil to safely carries the pressure from the superstructure without experiencing a shear failure with accompanying excessive settlements. Ensuring a safe bearing pressure with respect to failure does not tolerate settlement of the foundation will be within acceptable limits. Therefore, settlement analysis should always be performed since most structures are settlement sensitive. When visualising the movement of a soil wedge in the bearing capacity criterion, both vertically and horizontally, it becomes clear that by confining the soil surrounding the foundation, both the bearing capacity and settlement values improve. In this study, two sizes of spread foundation were considered; (2&times;4) m and (3&times;5) m. These represent two real problem case studies of an existing building. The foundations were analysed in terms of dimension as well as position with respect to a confining wall (i.e., sheet piles on both sides). Assuming B is the least foundation dimension, the study comprised the analyses of three distances; (0.1 B), (0.5 B), and (0.75 B) between the sheet piles and foundations alongside three depths of confinement (0.5 B), (1 B), and (1.5 B). Nonlinear three-dimensional finite element analysis (ANSYS) was adopted to perform an analytical investigation on the behaviour of the two foundations contained by the case study. Results showed that confinement of foundations reduced the overall stresses near the foundation by 65% and reduced the vertical displacement by 90%. Moreover, the most effective distance between the confinement wall and the foundation was found to be 0.5 B. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity" title="bearing capacity">bearing capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=cohesionless%20soils" title=" cohesionless soils"> cohesionless soils</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20confinement" title=" soil confinement"> soil confinement</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20modelling" title=" soil modelling"> soil modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=spread%20footings" title=" spread footings"> spread footings</a> </p> <a href="https://publications.waset.org/abstracts/98937/effect-of-confinement-on-the-bearing-capacity-and-settlement-of-spread-foundations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98937.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Effect of Cavities on the Behaviour of Strip Footing Subjected to Inclined Load </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20A.%20Al-Jazaairry">Ali A. Al-Jazaairry</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahsin%20T.%20Sabbagh"> Tahsin T. Sabbagh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the important concerns within the field of geotechnical engineering is the presence of cavities in soils. This present work is an attempt to understand the behaviour of strip footing subjected to inclined load and constructed on cavitied soil. The failure mechanism of strip footing located above such soils was studied analytically. The capability of analytical model to correctly expect the system behaviour is assessed by carrying out verification analysis on available studies. The study was prepared by finite element software (PLAXIS) in which an elastic-perfectly plastic soil model was used. It was indicated, from the results of the study, that the load carrying capacity of foundation constructed on cavity can be analysed well using such analysis. The research covered many foundation cases, and in each foundation case, there occurs a critical depth under which the presence of cavities has shown minimum impact on the foundation performance. When cavities are found above this critical depth, the load carrying capacity of the foundation differs with many influences, such as the location and size of the cavity and footing depth. Figures involving the load carrying capacity with the affecting factors studied are presented. These figures offer information beneficial for the design of strip footings rested on underground cavities. Moreover, the results might be used to design a shallow foundation constructed on cavitied soil, whereas the obtained failure mechanisms may be employed to improve numerical solutions for this kind of problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axial%20load" title="axial load">axial load</a>, <a href="https://publications.waset.org/abstracts/search?q=cavity" title=" cavity"> cavity</a>, <a href="https://publications.waset.org/abstracts/search?q=inclined%20load" title=" inclined load"> inclined load</a>, <a href="https://publications.waset.org/abstracts/search?q=strip%20footing" title=" strip footing"> strip footing</a> </p> <a href="https://publications.waset.org/abstracts/58427/effect-of-cavities-on-the-behaviour-of-strip-footing-subjected-to-inclined-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58427.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Consolidation Behavior of Lebanese Soil and Its Correlation with the Soil Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Robert%20G.%20Nini">Robert G. Nini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil consolidation is one of the biggest problem facing engineers. The consolidation process has an important role in settlement analysis for the embankments and footings resting on clayey soils. The settlement amount is related to the compression and the swelling indexes of the soil. Because the predominant upper soil layer in Lebanon is consisting mainly of clay, this layer is a real challenge for structural and highway engineering. To determine the effect of load and drainage on the engineering consolidation characteristics of Lebanese soil, a full experimental and synthesis study was conducted on different soil samples collected from many locations. This study consists of two parts. During the first part which is an experimental one, the Proctor test and the consolidation test were performed on the collected soil samples. After it, the identifications soil tests as hydrometer, specific gravity and Atterberg limits are done. The consolidation test which is the main test in this research is done by loading the soil for some days then an unloading cycle was applied. It takes two weeks to complete a typical consolidation test. Because of these reasons, during the second part of our research which is based on the analysis of the experiments results, some correlations were found between the main consolidation parameters as compression and swelling indexes with the other soil parameters easy to calculate. The results show that the compression and swelling indexes of Lebanese clays may be roughly estimated using a model involving one or two variables in the form of the natural void ratio and the Atterberg limits. These correlations have increasing importance for site engineers, and the proposed model also seems to be applicable to a wide range of clays worldwide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atterberg%20limits" title="atterberg limits">atterberg limits</a>, <a href="https://publications.waset.org/abstracts/search?q=clay" title=" clay"> clay</a>, <a href="https://publications.waset.org/abstracts/search?q=compression%20and%20swelling%20indexes" title=" compression and swelling indexes"> compression and swelling indexes</a>, <a href="https://publications.waset.org/abstracts/search?q=settlement" title=" settlement"> settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20consolidation" title=" soil consolidation"> soil consolidation</a> </p> <a href="https://publications.waset.org/abstracts/108799/consolidation-behavior-of-lebanese-soil-and-its-correlation-with-the-soil-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108799.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Numerical Simulation of Footing on Reinforced Loose Sand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20L.%20Burnwal">M. L. Burnwal</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Raychowdhury"> P. Raychowdhury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earthquake leads to adverse effects on buildings resting on soft soils. Mitigating the response of shallow foundations on soft soil with different methods reduces settlement and provides foundation stability. Few methods such as the rocking foundation (used in Performance-based design), deep foundation, prefabricated drain, grouting, and Vibro-compaction are used to control the pore pressure and enhance the strength of the loose soils. One of the problems with these methods is that the settlement is uncontrollable, leading to differential settlement of the footings, further leading to the collapse of buildings. The present study investigates the utility of geosynthetics as a potential improvement of the subsoil to reduce the earthquake-induced settlement of structures. A steel moment-resisting frame building resting on loose liquefiable dry soil, subjected to Uttarkashi 1991 and Chamba 1995 earthquakes, is used for the soil-structure interaction (SSI) analysis. The continuum model can simultaneously simulate structure, soil, interfaces, and geogrids in the OpenSees framework. Soil is modeled with PressureDependentMultiYield (PDMY) material models with Quad element that provides stress-strain at gauss points and is calibrated to predict the behavior of Ganga sand. The model analyzed with a tied degree of freedom contact reveals that the system responses align with the shake table experimental results. An attempt is made to study the responses of footing structure and geosynthetics with unreinforced and reinforced bases with varying parameters. The result shows that geogrid reinforces shallow foundation effectively reduces the settlement by 60%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=settlement" title="settlement">settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=shallow%20foundation" title=" shallow foundation"> shallow foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=SSI" title=" SSI"> SSI</a>, <a href="https://publications.waset.org/abstracts/search?q=continuum%20FEM" title=" continuum FEM"> continuum FEM</a> </p> <a href="https://publications.waset.org/abstracts/146249/numerical-simulation-of-footing-on-reinforced-loose-sand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146249.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Dynamic Analysis of Mono-Pile: Spectral Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rishab%20Das">Rishab Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnab%20Banerjee"> Arnab Banerjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Bappaditya%20Manna"> Bappaditya Manna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mono-pile foundations are often used in soft soils in order to support heavy mega-structures, whereby often these deep footings may undergo dynamic excitation due to many causes like earthquake, wind or wave loads acting on the superstructure, blasting, and unbalanced machines, etc. A comprehensive analytical study is performed to study the dynamics of the mono-pile system embedded in cohesion-less soil. The soil is considered homogeneous and visco-elastic in nature and is analytically modeled using complex springs. Considering the N number of the elements of the pile, the final global stiffness matrix is obtained by using the theories of the spectral element matrix method. Further, statically condensing the intermediate internal nodes of the global stiffness matrix results to a smaller sub matrix containing the nodes experiencing the external translation and rotation, and the stiffness and damping functions (impedance functions) of the embedded piles are determined. Proper plots showing the variation of the real and imaginary parts of these impedance functions with the dimensionless frequency parameter are obtained. The plots obtained from this study are validated by that provided by Novak,1974. Further, the dynamic analysis of the resonator impregnated pile is proposed within this study. Moreover, with the aid of Wood's 1g laboratory scaling law, a proper scaled-down resonator-pile model is 3D printed using PLA material. Dynamic analysis of the scaled model is carried out in the time domain, whereby the lateral loads are imposed on the pile head. The response obtained from the sensors through the LabView software is compared with the proposed theoretical data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mono-pile" title="mono-pile">mono-pile</a>, <a href="https://publications.waset.org/abstracts/search?q=visco-elastic" title=" visco-elastic"> visco-elastic</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance" title=" impedance"> impedance</a>, <a href="https://publications.waset.org/abstracts/search?q=LabView" title=" LabView"> LabView</a> </p> <a href="https://publications.waset.org/abstracts/157662/dynamic-analysis-of-mono-pile-spectral-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Corruption, a Prelude to Problems of Governance in Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Umbreen%20Javaid">Umbreen Javaid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pakistan’s experience with nascent, yet to be evolved democratic institutions inherited from the British Empire, has not been a pleasant one when evaluated in terms of good governance, development, and success of anti-corruption mechanisms. The country has remained entangled in a vicious circle of accumulating large budget deficits, dwindling economy, low foreign direct investment, political instability, and rising terrorism. It is thus not surprising that no account of the state aimed at analyzing the six-decade journey since her inception is replete with negative connotations like dysfunctional, failed, fragile or weak state. The limited pool of experience of handling democratic institutions and lack of political will be on the part of country’s political elite to transform the society on democratic footings have left Pakistan as a “limited access order” state. The widespread illiteracy becomes a double edge sword when a largely illiterate electorate elects representatives who mostly come from a semi-educated background with the limited understanding of democratic minutiae and little or no proclivity to resist monetary allures. The prevalence of culture of patronage with widespread poverty coupled with absence of a comprehensive system of investigating, prosecuting and adjudicating cases of corruption encourage the practice that has been eroding the state’s foundations since her inception owing to the unwillingness of the traditional elites who have been strongly resistant towards any attempts aimed at disseminating powers. An analytical study of the historical, political, cultural, economic and administrative hurdles that have been at work in impeding Pakistan’s transition to a democratic, accountable society would be instrumental in understanding the issue of widespread plague of corruption and state’s inefficiency to cope with it effectively. The issue of corruption in Pakistan becomes more important when seen in the context of her vulnerability to terrorism and religious extremism. In this regard, Pakistan needs to learn a lot from developed countries in order to evolve a comprehensive strategy for combating and preventing this pressing issue. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pakistan" title="Pakistan">Pakistan</a>, <a href="https://publications.waset.org/abstracts/search?q=corruption" title=" corruption"> corruption</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-corruption" title=" anti-corruption"> anti-corruption</a>, <a href="https://publications.waset.org/abstracts/search?q=limited%20access%20order" title=" limited access order"> limited access order</a> </p> <a href="https://publications.waset.org/abstracts/38550/corruption-a-prelude-to-problems-of-governance-in-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38550.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Use of Coconut Shell as a Replacement of Normal Aggregates in Rigid Pavements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prakash%20Parasivamurthy">Prakash Parasivamurthy</a>, <a href="https://publications.waset.org/abstracts/search?q=Vivek%20Rama%20Das"> Vivek Rama Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravikant%20Talluri"> Ravikant Talluri</a>, <a href="https://publications.waset.org/abstracts/search?q=Veena%20Jawali"> Veena Jawali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> India ranks among third in the production of coconut besides Philippines and Indonesia. About 92% of the total production in the country is contributed from four southern states especially, Kerala (45.22%), Tamil Nadu (26.56%), Karnataka (10.85%), and Andhra Pradesh (8.93%). Other states, such as Goa, Maharashtra, Odisha, West Bengal, and those in the northeast (Tripura and Assam) account for the remaining 8.44%. The use of coconut shell as coarse aggregate in concrete has never been a usual practice in the industry, particularly in areas where light weight concrete is required for non-load bearing walls, non-structural floors, and strip footings. The high cost of conventional building materials is a major factor affecting construction delivery in India. In India, where abundant agricultural and industrial wastes are discharged, these wastes can be used as potential material or replacement material in the construction industry. This will have double the advantages viz., reduction in the cost of construction material and also as a means of disposal of wastes. Therefore, an attempt has been made in this study to utilize the coconut shell (CS) as coarse aggregate in rigid pavement. The present study was initiated with the characterization of materials by the basic material testing. The casted moulds are cured and tests are conducted for hardened concrete. The procedure is continued with determination of fck (Characteristic strength), E (Modulus of Elasticity) and µ (Poisson Value) by the test results obtained. For the analytical studies, rigid pavement was modeled by the KEN PAVE software, finite element software developed specially for road pavements and simultaneously design of rigid pavement was carried out with Indian standards. Results show that physical properties of CSAC (Coconut Shell Aggregate Concrete) with 10% replacement gives better results. The flexural strength of CSAC is found to increase by 4.25% as compared to control concrete. About 13 % reduction in pavement thickness is observed using optimum coconut shell. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coconut%20shell" title="coconut shell">coconut shell</a>, <a href="https://publications.waset.org/abstracts/search?q=rigid%20pavement" title=" rigid pavement"> rigid pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus%20of%20elasticity" title=" modulus of elasticity"> modulus of elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=poison%20ratio" title=" poison ratio"> poison ratio</a> </p> <a href="https://publications.waset.org/abstracts/57419/use-of-coconut-shell-as-a-replacement-of-normal-aggregates-in-rigid-pavements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Influence Zone of Strip Footing on Untreated and Cement Treated Sand Mat Underlain by Soft Clay (2nd reviewed)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sharifullah%20Ahmed">Sharifullah Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shallow foundation on soft soils without ground improvement can represent a high level of settlement. In such a case, an alternative to pile foundations may be shallow strip footings placed on a soil system in which the upper layer is untreated or cement-treated compacted sand to limit the settlement within a permissible level. This research work deals with a rigid plane-strain strip footing of 2.5m width placed on a soil consisting of untreated or cement treated sand layer underlain by homogeneous soft clay. Both the thin and thick compared the footing width was considered. The soft inorganic cohesive NC clay layer is considered undrained for plastic loading stages and drained in consolidation stages, and the sand layer is drained in all loading stages. FEM analysis was done using PLAXIS 2D Version 8.0 with a model consisting of clay deposits of 15m thickness and 18m width. The soft clay layer was modeled using the Hardening Soil Model, Soft Soil Model, Soft Soil Creep model, and the upper improvement layer was modeled using only the Hardening Soil Model. The system is considered fully saturated. The value of natural void ratio 1.2 is used. Total displacement fields of strip footing and subsoil layers in the case of Untreated and Cement treated Sand as Upper layer are presented. For Hi/B =0.6 or above, the distribution of major deformation within an upper layer and the influence zone of footing is limited in an upper layer which indicates the complete effectiveness of the upper layer in bearing the foundation effectively in case of the untreated upper layer. For Hi/B =0.3 or above, the distribution of major deformation occurred within an upper layer, and the function of footing is limited in the upper layer. This indicates the complete effectiveness of the cement-treated upper layer. Brittle behavior of cemented sand and fracture or cracks is not considered in this analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=displacement" title="displacement">displacement</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20improvement" title=" ground improvement"> ground improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=influence%20depth" title=" influence depth"> influence depth</a>, <a href="https://publications.waset.org/abstracts/search?q=PLAXIS%202D" title=" PLAXIS 2D"> PLAXIS 2D</a>, <a href="https://publications.waset.org/abstracts/search?q=primary%20and%20secondary%20settlement" title=" primary and secondary settlement"> primary and secondary settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=sand%20mat" title=" sand mat"> sand mat</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20clay" title=" soft clay"> soft clay</a> </p> <a href="https://publications.waset.org/abstracts/149870/influence-zone-of-strip-footing-on-untreated-and-cement-treated-sand-mat-underlain-by-soft-clay-2nd-reviewed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149870.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Design Charts for Strip Footing on Untreated and Cement Treated Sand Mat over Underlying Natural Soft Clay</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sharifullah%20Ahmed">Sharifullah Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarwar%20Jahan%20Md.%20Yasin"> Sarwar Jahan Md. Yasin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shallow foundations on unimproved soft natural soils can undergo a high consolidation and secondary settlement. For low and medium rise building projects on such soil condition, pile foundation may not be cost effective. In such cases an alternative to pile foundations may be shallow strip footings placed on a double layered improved soil system soil. The upper layer of this system is untreated or cement treated compacted sand and underlying layer is natural soft clay. This system will reduce the settlement to an allowable limit. The current research has been conducted with the settlement of a rigid plane-strain strip footing of 2.5 m width placed on the surface of a soil consisting of an untreated or cement treated sand layer overlying a bed of homogeneous soft clay. The settlement of the mentioned shallow foundation has been studied considering both cases with the thicknesses of the sand layer are 0.3 to 0.9 times the width of footing. The response of the clay layer is assumed as undrained for plastic loading stages and drained during consolidation stages. The response of the sand layer is drained during all loading stages. FEM analysis was done using PLAXIS 2D Version 8.0. A natural clay deposit of 15 m thickness and 18 m width has been modeled using Hardening Soil Model, Soft Soil Model, Soft Soil Creep Model, and upper improvement layer has been modeled using only Hardening Soil Model. The groundwater level is at the top level of the clay deposit that made the system fully saturated. Parametric study has been conducted to determine the effect of thickness, density, cementation of the sand mat and density, shear strength of the soft clay layer on the settlement of strip foundation under the uniformly distributed vertical load of varying value. A set of the chart has been established for designing shallow strip footing on the sand mat over thick, soft clay deposit through obtaining the particular thickness of sand mat for particular subsoil parameter to ensure no punching shear failure and no settlement beyond allowable level. Design guideline in the form of non-dimensional charts has been developed for footing pressure equivalent to medium-rise residential or commercial building foundation with strip footing on soft inorganic Normally Consolidated (NC) soil of Bangladesh having void ratio from 1.0 to 1.45. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20charts" title="design charts">design charts</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20improvement" title=" ground improvement"> ground improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=PLAXIS%202D" title=" PLAXIS 2D"> PLAXIS 2D</a>, <a href="https://publications.waset.org/abstracts/search?q=primary%20and%20secondary%20settlement" title=" primary and secondary settlement"> primary and secondary settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=sand%20mat" title=" sand mat"> sand mat</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20clay" title=" soft clay"> soft clay</a> </p> <a href="https://publications.waset.org/abstracts/130462/design-charts-for-strip-footing-on-untreated-and-cement-treated-sand-mat-over-underlying-natural-soft-clay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Modeling of Foundation-Soil Interaction Problem by Using Reduced Soil Shear Modulus </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yesim%20Tumsek">Yesim Tumsek</a>, <a href="https://publications.waset.org/abstracts/search?q=Erkan%20Celebi"> Erkan Celebi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to simulate the infinite soil medium for soil-foundation interaction problem, the essential geotechnical parameter on which the foundation stiffness depends, is the value of soil shear modulus. This parameter directly affects the site and structural response of the considered model under earthquake ground motions. Strain-dependent shear modulus under cycling loads makes difficult to estimate the accurate value in computation of foundation stiffness for the successful dynamic soil-structure interaction analysis. The aim of this study is to discuss in detail how to use the appropriate value of soil shear modulus in the computational analyses and to evaluate the effect of the variation in shear modulus with strain on the impedance functions used in the sub-structure method for idealizing the soil-foundation interaction problem. Herein, the impedance functions compose of springs and dashpots to represent the frequency-dependent stiffness and damping characteristics at the soil-foundation interface. Earthquake-induced vibration energy is dissipated into soil by both radiation and hysteretic damping. Therefore, flexible-base system damping, as well as the variability in shear strengths, should be considered in the calculation of impedance functions for achievement a more realistic dynamic soil-foundation interaction model. In this study, it has been written a Matlab code for addressing these purposes. The case-study example chosen for the analysis is considered as a 4-story reinforced concrete building structure located in Istanbul consisting of shear walls and moment resisting frames with a total height of 12m from the basement level. The foundation system composes of two different sized strip footings on clayey soil with different plasticity (Herein, PI=13 and 16). In the first stage of this study, the shear modulus reduction factor was not considered in the MATLAB algorithm. The static stiffness, dynamic stiffness modifiers and embedment correction factors of two rigid rectangular foundations measuring 2m wide by 17m long below the moment frames and 7m wide by 17m long below the shear walls are obtained for translation and rocking vibrational modes. Afterwards, the dynamic impedance functions of those have been calculated for reduced shear modulus through the developed Matlab code. The embedment effect of the foundation is also considered in these analyses. It can easy to see from the analysis results that the strain induced in soil will depend on the extent of the earthquake demand. It is clearly observed that when the strain range increases, the dynamic stiffness of the foundation medium decreases dramatically. The overall response of the structure can be affected considerably because of the degradation in soil stiffness even for a moderate earthquake. Therefore, it is very important to arrive at the corrected dynamic shear modulus for earthquake analysis including soil-structure interaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clay%20soil" title="clay soil">clay soil</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance%20functions" title=" impedance functions"> impedance functions</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-foundation%20interaction" title=" soil-foundation interaction"> soil-foundation interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=sub-structure%20approach" title=" sub-structure approach"> sub-structure approach</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20shear%20modulus" title=" reduced shear modulus"> reduced shear modulus</a> </p> <a href="https://publications.waset.org/abstracts/76102/modeling-of-foundation-soil-interaction-problem-by-using-reduced-soil-shear-modulus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76102.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Settlement Prediction in Cape Flats Sands Using Shear Wave Velocity – Penetration Resistance Correlations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nanine%20Fouche">Nanine Fouche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Cape Flats is a low-lying sand-covered expanse of approximately 460 square kilometres, situated to the southeast of the central business district of Cape Town in the Western Cape of South Africa. The aeolian sands masking this area are often loose and compressible in the upper 1m to 1.5m of the surface, and there is a general exceedance of the maximum allowable settlement in these sands. The settlement of shallow foundations on Cape Flats sands is commonly predicted using the results of in-situ tests such as the SPT or DPSH due to the difficulty of retrieving undisturbed samples for laboratory testing. Varying degrees of accuracy and reliability are associated with these methods. More recently, shear wave velocity (Vs) profiles obtained from seismic testing, such as continuous surface wave tests (CSW), are being used for settlement prediction. Such predictions have the advantage of considering non-linear stress-strain behaviour of soil and the degradation of stiffness with increasing strain. CSW tests are rarely executed in the Cape Flats, whereas SPT’s are commonly performed. For this reason, and to facilitate better settlement predictions in Cape Flats sand, equations representing shear wave velocity (Vs) as a function of SPT blow count (N60) and vertical effective stress (v’) were generated by statistical regression of site investigation data. To reveal the most appropriate method of overburden correction, analyses were performed with a separate overburden term (Pa/σ’v) as well as using stress corrected shear wave velocity and SPT blow counts (correcting Vs. and N60 to Vs1and (N1)60respectively). Shear wave velocity profiles and SPT blow count data from three sites masked by Cape Flats sands were utilised to generate 80 Vs-SPT N data pairs for analysis. Investigated terrains included sites in the suburbs of Athlone, Muizenburg, and Atlantis, all underlain by windblown deposits comprising fine and medium sand with varying fines contents. Elastic settlement analysis was also undertaken for the Cape Flats sands, using a non-linear stepwise method based on small-strain stiffness estimates, which was obtained from the best Vs-N60 model and compared to settlement estimates using the general elastic solution with stiffness profiles determined using Stroud’s (1989) and Webb’s (1969) SPT N60-E transformation models. Stroud’s method considers strain level indirectly whereasWebb’smethod does not take account of the variation in elastic modulus with strain. The expression of Vs. in terms of N60 and Pa/σv’ derived from the Atlantis data set revealed the best fit with R2 = 0.83 and a standard error of 83.5m/s. Less accurate Vs-SPT N relations associated with the combined data set is presumably the result of inversion routines used in the analysis of the CSW results showcasing significant variation in relative density and stiffness with depth. The regression analyses revealed that the inclusion of a separate overburden term in the regression of Vs and N60, produces improved fits, as opposed to the stress corrected equations in which the R2 of the regression is notably lower. It is the correction of Vs and N60 to Vs1 and (N1)60 with empirical constants ‘n’ and ‘m’ prior to regression, that introduces bias with respect to overburden pressure. When comparing settlement prediction methods, both Stroud’s method (considering strain level indirectly) and the small strain stiffness method predict higher stiffnesses for medium dense and dense profiles than Webb’s method, which takes no account of strain level in the determination of soil stiffness. Webb’s method appears to be suitable for loose sands only. The Versak software appears to underestimate differences in settlement between square and strip footings of similar width. In conclusion, settlement analysis using small-strain stiffness data from the proposed Vs-N60 model for Cape Flats sands provides a way to take account of the non-linear stress-strain behaviour of the sands when calculating settlement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sands" title="sands">sands</a>, <a href="https://publications.waset.org/abstracts/search?q=settlement%20prediction" title=" settlement prediction"> settlement prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous%20surface%20wave%20test" title=" continuous surface wave test"> continuous surface wave test</a>, <a href="https://publications.waset.org/abstracts/search?q=small-strain%20stiffness" title=" small-strain stiffness"> small-strain stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wave%20velocity" title=" shear wave velocity"> shear wave velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=penetration%20resistance" title=" penetration resistance"> penetration resistance</a> </p> <a href="https://publications.waset.org/abstracts/142082/settlement-prediction-in-cape-flats-sands-using-shear-wave-velocity-penetration-resistance-correlations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10