CINXE.COM
Search results for: HDD replacement
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: HDD replacement</title> <meta name="description" content="Search results for: HDD replacement"> <meta name="keywords" content="HDD replacement"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="HDD replacement" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="HDD replacement"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 812</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: HDD replacement</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">812</span> Stabilization of Clay Soil Using A-3 Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Mustapha%20Alhaji">Mohammed Mustapha Alhaji</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadiku%20Salawu"> Sadiku Salawu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A clay soil which classified under A-7-6 soil according to AASHTO soil classification system and CH according to the unified soil classification system was stabilized using A-3 soil (AASHTO soil classification system). The clay soil was replaced with 0%, 10%, 20% to 100% A-3 soil, compacted at both the BSL and BSH compaction energy level and using unconfined compressive strength as evaluation criteria. The MDD of the compactions at both the BSL and BSH compaction energy levels showed increase in MDD from 0% A-3 soil replacement to 40% A-3 soil replacement after which the values reduced to 100% A-3 soil replacement. The trend of the OMC with varied A-3 soil replacement is similar to that of MDD but in a reversed order. The OMC reduced from 0% A-3 soil replacement to 40% A-3 soil replacement after which the values increased to 100% A-3 soil replacement. This trend was attributed to the observed reduction in the void ratio from 0% A-3 soil replacement to 40% A-3 soil replacement after which the void ratio increased to 100% A-3 soil replacement. The maximum UCS for clay at varied A-3 soil replacement increased from 272 and 770kN/m2 for BSL and BSH compaction energy level at 0% A-3 soil replacement to 295 and 795kN/m2 for BSL and BSH compaction energy level respectively at 10% A-3 soil replacement after which the values reduced to 22 and 60kN/m2 for BSL and BSH compaction energy level respectively at 70% A-3 soil replacement. Beyond 70% A-3 soil replacement, the mixture cannot be moulded for UCS test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=A-3%20soil" title="A-3 soil">A-3 soil</a>, <a href="https://publications.waset.org/abstracts/search?q=clay%20minerals" title=" clay minerals"> clay minerals</a>, <a href="https://publications.waset.org/abstracts/search?q=pozzolanic%20action" title=" pozzolanic action"> pozzolanic action</a>, <a href="https://publications.waset.org/abstracts/search?q=stabilization" title=" stabilization"> stabilization</a> </p> <a href="https://publications.waset.org/abstracts/33993/stabilization-of-clay-soil-using-a-3-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">811</span> Comparisons of Individual and Group Replacement Policies for a Series Connection System with Two Machines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wen%20Liang%20Chang">Wen Liang Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Mei%20Wei%20Wang"> Mei Wei Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruey%20Huei%20Yeh"> Ruey Huei Yeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studies the comparisons of individual and group replacement policies for a series connection system with two machines. Suppose that manufacturer’s production system is a series connection system which is combined by two machines. For two machines, when machines fail within the operating time, minimal repair is performed for machines by the manufacturer. The manufacturer plans to a preventive replacement for machines at a pre-specified time to maintain system normal operation. Under these maintenance policies, the maintenance cost rate models of individual and group replacement for a series connection system with two machines is derived and further, optimal preventive replacement time is obtained such that the expected total maintenance cost rate is minimized. Finally, some numerical examples are given to illustrate the influences of individual and group replacement policies to the maintenance cost rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=individual%20replacement" title="individual replacement">individual replacement</a>, <a href="https://publications.waset.org/abstracts/search?q=group%20replacement" title=" group replacement"> group replacement</a>, <a href="https://publications.waset.org/abstracts/search?q=replacement%20time" title=" replacement time"> replacement time</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20machines" title=" two machines"> two machines</a>, <a href="https://publications.waset.org/abstracts/search?q=series%20connection%20system" title=" series connection system"> series connection system</a> </p> <a href="https://publications.waset.org/abstracts/33308/comparisons-of-individual-and-group-replacement-policies-for-a-series-connection-system-with-two-machines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33308.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">810</span> On Performance of Cache Replacement Schemes in NDN-IoT</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rasool%20Sadeghi">Rasool Sadeghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sayed%20Mahdi%20Faghih%20Imani"> Sayed Mahdi Faghih Imani</a>, <a href="https://publications.waset.org/abstracts/search?q=Negar%20Najafi"> Negar Najafi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The inherent features of Named Data Networking (NDN) provides a robust solution for Internet of Thing (IoT). Therefore, NDN-IoT has emerged as a combined architecture which exploits the benefits of NDN for interconnecting of the heterogeneous objects in IoT. In NDN-IoT, caching schemes are a key role to improve the network performance. In this paper, we consider the effectiveness of cache replacement schemes in NDN-IoT scenarios. We investigate the impact of replacement schemes on average delay, average hop count, and average interest retransmission when replacement schemes are Least Frequently Used (LFU), Least Recently Used (LRU), First-In-First-Out (FIFO) and Random. The simulation results demonstrate that LFU and LRU present a stable performance when the cache size changes. Moreover, the network performance improves when the number of consumers increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NDN-IoT" title="NDN-IoT">NDN-IoT</a>, <a href="https://publications.waset.org/abstracts/search?q=cache%20replacement" title=" cache replacement"> cache replacement</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=ndnSIM" title=" ndnSIM"> ndnSIM</a> </p> <a href="https://publications.waset.org/abstracts/84255/on-performance-of-cache-replacement-schemes-in-ndn-iot" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84255.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">809</span> Cementing Efficiency of Low Calcium Fly Ash in Fly Ash Concretes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20D.%20Gunneswara%20Rao">T. D. Gunneswara Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=Mudimby%20Andal"> Mudimby Andal </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Research on the utilization of fly ash will no longer refer the fly ash as a waste material of thermal power plants. Use of fly ash in concrete making, makes the concrete economical as well as durable. The fly ash is being added to the concrete in three ways namely, as partial replacement to cement, partial replacement to fine aggregates and admixture. Addition of fly ash to the concrete in each one of the form mentioned above, makes the concrete more workable and durable than the conventional concrete. Studies on fly ash as partial replacement to cement gained momentum as such replacement makes the concrete economical. In the present study, an attempt has been made to understand the effects of fly ash on the workability characteristics and strength aspects of fly ash concretes. In India, major number of thermal power plants are producing low calcium fly ash. Hence, in the present investigation, low calcium fly ash has been used. Fly ash in concrete was considered for the partial replacement of cement. The percentage replacement of cement by fly ash varied from 0% to 40% at regular intervals of 10%. Moreover the fine aggregate to coarse aggregate ratio also has been varied as 1:1, 1:2, and 1:3. The workability tests revealed that up to 30% replacement of cement by fly ash in concrete mixes water demand for reduces and beyond 30% replacement of cement by fly ash demanded more water content for constant workability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cementing%20efficiency" title="cementing efficiency">cementing efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20calcium%20fly%20ash" title=" low calcium fly ash"> low calcium fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=workability" title=" workability"> workability</a> </p> <a href="https://publications.waset.org/abstracts/3427/cementing-efficiency-of-low-calcium-fly-ash-in-fly-ash-concretes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3427.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">808</span> Battery Replacement Strategy for Electric AGVs in an Automated Container Terminal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiheon%20Park">Jiheon Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Taekwang%20Kim"> Taekwang Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwang%20Ryel%20Ryu"> Kwang Ryel Ryu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electric automated guided vehicles (AGVs) are becoming popular in many automated container terminals nowadays because they are pollution-free and environmentally friendly vehicles for transporting the containers within the terminal. Since efficient operation of AGVs is critical for the productivity of the container terminal, the replacement of batteries of the AGVs must be conducted in a strategic way to minimize undesirable transportation interruptions. While a too frequent replacement may lead to a loss of terminal productivity by delaying container deliveries, missing the right timing of battery replacement can result in a dead AGV that causes a severer productivity loss due to the extra efforts required to finish post treatment. In this paper, we propose a strategy for battery replacement based on a scoring function of multiple criteria taking into account the current battery level, the distances to different battery stations, and the progress of the terminal job operations. The strategy is optimized using a genetic algorithm with the objectives of minimizing the total time spent for battery replacement as well as maximizing the terminal productivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AGV%20operation" title="AGV operation">AGV operation</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20container%20terminal" title=" automated container terminal"> automated container terminal</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20replacement" title=" battery replacement"> battery replacement</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20AGV" title=" electric AGV"> electric AGV</a>, <a href="https://publications.waset.org/abstracts/search?q=strategy%20optimization" title=" strategy optimization"> strategy optimization</a> </p> <a href="https://publications.waset.org/abstracts/43477/battery-replacement-strategy-for-electric-agvs-in-an-automated-container-terminal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43477.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">807</span> Replacement Time and Number of Preventive Maintenance Actions for Second-Hand Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wen%20Liang%20Chang">Wen Liang Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the optimal replacement time and number of preventive maintenance (PM) actions were investigated for a second-hand device. Suppose that a user intends to use a second-hand device for manufacturing products, and that the device is replaced with a new one. Any device failure is rectified through minimal repair, thereby incurring a fixed repair cost to the user. If the new device fails within the FRW period, minimal repair is performed at no cost to the user. After the FRW expires, a failed device is repaired and the cost of repair is incurred by the user. In this study, two profit models were developed, and the optimal replacement time and number of PM actions were determined to maximize profits. Finally, the influence of the optimal replacement time and number of PM actions were elaborated on, using numerical examples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=second-hand%20device" title="second-hand device">second-hand device</a>, <a href="https://publications.waset.org/abstracts/search?q=preventive%20maintenance" title=" preventive maintenance"> preventive maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=replacement%20time" title=" replacement time"> replacement time</a>, <a href="https://publications.waset.org/abstracts/search?q=device%20failure" title=" device failure"> device failure</a> </p> <a href="https://publications.waset.org/abstracts/9223/replacement-time-and-number-of-preventive-maintenance-actions-for-second-hand-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9223.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">806</span> Optimal Continuous Scheduled Time for a Cumulative Damage System with Age-Dependent Imperfect Maintenance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chin-Chih%20Chang">Chin-Chih Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many manufacturing systems suffer failures due to complex degradation processes and various environment conditions such as random shocks. Consider an operating system is subject to random shocks and works at random times for successive jobs. When successive jobs often result in production losses and performance deterioration, it would be better to do maintenance or replacement at a planned time. A preventive replacement (PR) policy is presented to replace the system before a failure occurs at a continuous time T. In such a policy, the failure characteristics of the system are designed as follows. Each job would cause a random amount of additive damage to the system, and the system fails when the cumulative damage has exceeded a failure threshold. Suppose that the deteriorating system suffers one of the two types of shocks with age-dependent probabilities: type-I (minor) shock is rectified by a minimal repair, or type-II (catastrophic) shock causes the system to fail. A corrective replacement (CR) is performed immediately when the system fails. In summary, a generalized maintenance model to scheduling replacement plan for an operating system is presented below. PR is carried out at time T, whereas CR is carried out when any type-II shock occurs and the total damage exceeded a failure level. The main objective is to determine the optimal continuous schedule time of preventive replacement through minimizing the mean cost rate function. The existence and uniqueness of optimal replacement policy are derived analytically. It can be seen that the present model is a generalization of the previous models, and the policy with preventive replacement outperforms the one without preventive replacement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=preventive%20replacement" title="preventive replacement">preventive replacement</a>, <a href="https://publications.waset.org/abstracts/search?q=working%20time" title=" working time"> working time</a>, <a href="https://publications.waset.org/abstracts/search?q=cumulative%20damage%20model" title=" cumulative damage model"> cumulative damage model</a>, <a href="https://publications.waset.org/abstracts/search?q=minimal%20repair" title=" minimal repair"> minimal repair</a>, <a href="https://publications.waset.org/abstracts/search?q=imperfect%20maintenance" title=" imperfect maintenance"> imperfect maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/68581/optimal-continuous-scheduled-time-for-a-cumulative-damage-system-with-age-dependent-imperfect-maintenance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68581.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">805</span> Properties of Triadic Concrete Containing Rice Husk Ash and Wood Waste Ash as Partial Cement Replacement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Rahman%20Mohd.%20Sam">Abdul Rahman Mohd. Sam</a>, <a href="https://publications.waset.org/abstracts/search?q=Olukotun%20Nathaniel"> Olukotun Nathaniel</a>, <a href="https://publications.waset.org/abstracts/search?q=Dunu%20Williams"> Dunu Williams</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concrete is one of the most popular materials used in construction industry. However, one of the setbacks is that concrete can degrade with time upon exposure to an aggressive environment that leads to decrease in strength. Thus, research works and innovative ways are needed to enhance the strength and durability of concrete. This work tries to look into the potential use of rice husk ash (RHA) and wood waste ash (WWA) as cement replacement material. These are waste materials that may not only enhance the properties of concrete but also can serves as a viable method of disposal of waste for sustainability. In addition, a substantial replacement of Ordinary Portland Cement (OPC) with these pozzolans will mean reduction in CO₂ emissions and high energy requirement associated with the production of OPC. This study is aimed at assessing the properties of triadic concrete produced using RHA and WWA as a partial replacement of cement. The effects of partial replacement of OPC with 10% RHA and 5% WWA on compressive and tensile strength of concrete among other properties were investigated. Concrete was produced with nominal mix of 1:2:4 and 0.55 water-cement ratio, prepared, cured and subjected to compressive and tensile strength test at 3, 7, 14, 28 and 90days. The experimental data demonstrate that concrete containing RHA and WWA produced lighter weight in comparison with OPC sample. Results also show that combination of RHA and WWA help to prolong the initial and final setting time by about 10-30% compared to the control sample. Furthermore, compressive strength was increased by 15-30% with 10% RHA and 5% WWA replacement, respectively above the control, RHA and WWA samples. Tensile strength test at the ages of 3, 7, 14, 28 and 90 days reveals that a replacement of 15% RHA and 5% WWA produced samples with the highest tensile capacity compared to the control samples. Thus, it can be concluded that RHA and WWA can be used as partial cement replacement materials in concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20husk%20ash" title=" rice husk ash"> rice husk ash</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20waste%20ash" title=" wood waste ash"> wood waste ash</a>, <a href="https://publications.waset.org/abstracts/search?q=ordinary%20Portland%20cement" title=" ordinary Portland cement"> ordinary Portland cement</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a> </p> <a href="https://publications.waset.org/abstracts/77993/properties-of-triadic-concrete-containing-rice-husk-ash-and-wood-waste-ash-as-partial-cement-replacement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">804</span> Equity Investment Restrictions and Pension Replacement Rates in Nigeria: A Ruin-Risk Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Uche%20A.%20Ibekwe">Uche A. Ibekwe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pension funds are pooled assets which are established to provide income for retirees. The funds are usually regulated to check excessive risk taking by fund managers. In Nigeria, the current defined contribution (DC) pension scheme appears to contain some overly stringent restrictions which might be hampering its successful implementation. Notable among these restrictions is the 25 percent maximum limit on investment in ordinary shares of quoted companies. This paper examines the extent to which these restrictions affect pension replacement rates at retirement. The study made use of both simulated and historical asset return distributions using mean-variance, regression analysis and ruin-risk analyses, the study found that the current equity investment restriction policy in Nigeria reduces replacement rates at retirement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=equity%20investment" title="equity investment">equity investment</a>, <a href="https://publications.waset.org/abstracts/search?q=replacement%20rates" title=" replacement rates"> replacement rates</a>, <a href="https://publications.waset.org/abstracts/search?q=restrictions" title=" restrictions"> restrictions</a>, <a href="https://publications.waset.org/abstracts/search?q=ruin-risk" title=" ruin-risk"> ruin-risk</a> </p> <a href="https://publications.waset.org/abstracts/73961/equity-investment-restrictions-and-pension-replacement-rates-in-nigeria-a-ruin-risk-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73961.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">803</span> Design of Soil Replacement under Axial Centric Load Isolated Footing by Limit State Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emad%20A.%20M.%20Osman">Emad A. M. Osman</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20Abu-Bakr"> Ahmed M. Abu-Bakr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Compacted granular fill under shallow foundation is one of the oldest, cheapest, and easiest techniques to improve the soil characteristics to increase the bearing capacity and decrease settlement under footing. There are three main factors affecting the design of soil replacement to gain these advantages. These factors are the type of replaced soil, characteristics, and thickness. The first two factors can be easily determined by laboratory and field control. This paper emphasizes on how to determine the thickness accurately for footing under centric axial load by limit state design method. The advantages of the method are the way of determining the thickness (independent of experience) and it takes into account the replaced and original or underneath soil characteristics and reaches the goals of replaced soils economically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20of%20soil%20replacement" title="design of soil replacement">design of soil replacement</a>, <a href="https://publications.waset.org/abstracts/search?q=LSD%20method" title=" LSD method"> LSD method</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20replacement" title=" soil replacement"> soil replacement</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20improvement" title=" soil improvement"> soil improvement</a> </p> <a href="https://publications.waset.org/abstracts/37928/design-of-soil-replacement-under-axial-centric-load-isolated-footing-by-limit-state-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37928.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">802</span> Prophylactic Replacement of Voice Prosthesis: A Study to Predict Prosthesis Lifetime</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anne%20Heirman">Anne Heirman</a>, <a href="https://publications.waset.org/abstracts/search?q=Vincent%20van%20der%20Noort"> Vincent van der Noort</a>, <a href="https://publications.waset.org/abstracts/search?q=Rob%20van%20Son"> Rob van Son</a>, <a href="https://publications.waset.org/abstracts/search?q=Marije%20Petersen"> Marije Petersen</a>, <a href="https://publications.waset.org/abstracts/search?q=Lisette%20van%20der%20Molen"> Lisette van der Molen</a>, <a href="https://publications.waset.org/abstracts/search?q=Gyorgy%20Halmos"> Gyorgy Halmos</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Dirven"> Richard Dirven</a>, <a href="https://publications.waset.org/abstracts/search?q=Michiel%20van%20den%20Brekel"> Michiel van den Brekel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: Voice prosthesis leakage significantly impacts laryngectomies patients' quality of life, causing insecurity and frequent unplanned hospital visits and costs. In this study, the concept of prophylactic voice prosthesis replacement was explored to prevent leakages. Study Design: A retrospective cohort study. Setting: Tertiary hospital. Methods: Device lifetimes and voice prosthesis replacements of a retrospective cohort, including all patients with laryngectomies between 2000 and 2012 in the Netherlands Cancer Institute, were used to calculate the number of needed voice prostheses per patient per year when preventing 70% of the leakages by prophylactic replacement. Various strategies for the timing of prophylactic replacement were considered: Adaptive strategies based on the individual patient’s history of replacement and fixed strategies based on the results of patients with similar voice prosthesis or treatment characteristics. Results: Patients used a median of 3.4 voice prostheses per year (range 0.1-48.1). We found a high inter-and intrapatient variability in device lifetime. When applying prophylactic replacement, this would become a median of 9.4 voice prostheses per year, which means replacement every 38 days, implying more than six additional voice prostheses per patient per year. The individual adaptive model showed that preventing 70% of the leakages was impossible for most patients, and only a median of 25% can be prevented. Monte-Carlo simulations showed that prophylactic replacement is not feasible due to the high Coefficient of Variation (Standard Deviation/Mean) in device lifetime. Conclusion: Based on our simulations, prophylactic replacement of voice prostheses is not feasible due to high inter-and intrapatient variation in device lifetime. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=voice%20prosthesis" title="voice prosthesis">voice prosthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=voice%20rehabilitation" title=" voice rehabilitation"> voice rehabilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20laryngectomy" title=" total laryngectomy"> total laryngectomy</a>, <a href="https://publications.waset.org/abstracts/search?q=prosthetic%20leakage" title=" prosthetic leakage"> prosthetic leakage</a>, <a href="https://publications.waset.org/abstracts/search?q=device%20lifetime" title=" device lifetime"> device lifetime</a> </p> <a href="https://publications.waset.org/abstracts/152896/prophylactic-replacement-of-voice-prosthesis-a-study-to-predict-prosthesis-lifetime" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">801</span> Evaluation of Fresh, Strength and Durability Properties of Self-Compacting Concrete Incorporating Bagasse Ash</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Haseeb%20Wani">Abdul Haseeb Wani</a>, <a href="https://publications.waset.org/abstracts/search?q=Shruti%20Sharma"> Shruti Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafat%20Siddique"> Rafat Siddique</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Self-compacting concrete is an engineered concrete that flows and de-airs without additional energy input. Such concrete requires a high slump which can be achieved by the addition of superplasticizers to the concrete mix. In the present work, bagasse ash is utilised as a replacement of cement in self-compacting concrete. This serves the purpose of both land disposal and environmental concerns related to the disposal of bagasse ash. Further, an experimental program was carried out to study the fresh, strength, and durability properties of self-compacting concrete made with bagasse ash. The mixes were prepared with four percentages (0, 5, 10 and 15) of bagasse ash as partial replacement of cement. Properties investigated were; Slump-flow, V-funnel and L-box, Compressive strength, Splitting tensile strength, Chloride-ion penetration resistance and Water absorption. Compressive and splitting tensile strength tests were conducted at the age of 7 and 28 days. Rapid chloride-ion permeability test was carried at the age of 28 days and water absorption test was carried out at the age of 7 days after initial curing of 28 days. Test results showed that there is an increase in the compressive strength and splitting tensile strength of the concrete specimens having up to 10% replacement level, however, there is a slight decrease at 15% level of replacement. Resistance to chloride-ion penetration of the specimens increased as the percentage of replacement was increased. The charge passed in all the specimens containing bagasse ash was lower than that of the specimen without bagasse ash. Water absorption of the specimens decreased up to 10% replacement level and increased at 15% level of replacement. Hence, it can be concluded that optimum level of replacement of cement with bagasse ash in self-compacting concrete comes out to be 10%; at which the self-compacting concrete has satisfactory flow characteristics (as per the European guidelines), improved compressive and splitting tensile strength and better durability properties as compared to the control mix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bagasse%20ash" title="bagasse ash">bagasse ash</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=self-compacting%20concrete" title=" self-compacting concrete"> self-compacting concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=splitting%20tensile%20strength" title=" splitting tensile strength"> splitting tensile strength</a> </p> <a href="https://publications.waset.org/abstracts/80357/evaluation-of-fresh-strength-and-durability-properties-of-self-compacting-concrete-incorporating-bagasse-ash" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80357.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">800</span> Evaluating the Impact of Replacement Policies on the Cache Performance and Energy Consumption in Different Multicore Embedded Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sajjad%20Rostami-Sani">Sajjad Rostami-Sani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Valinataj"> Mojtaba Valinataj</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir-Hossein%20Khojir-Angasi"> Amir-Hossein Khojir-Angasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cache has an important role in the reduction of access delay between a processor and memory in high-performance embedded systems. In these systems, the energy consumption is one of the most important concerns, and it will become more important with smaller processor feature sizes and higher frequencies. Meanwhile, the cache system dissipates a significant portion of energy compared to the other components of a processor. There are some elements that can affect the energy consumption of the cache such as replacement policy and degree of associativity. Due to these points, it can be inferred that selecting an appropriate configuration for the cache is a crucial part of designing a system. In this paper, we investigate the effect of different cache replacement policies on both cache’s performance and energy consumption. Furthermore, the impact of different Instruction Set Architectures (ISAs) on cache’s performance and energy consumption has been investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title="energy consumption">energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=replacement%20policy" title=" replacement policy"> replacement policy</a>, <a href="https://publications.waset.org/abstracts/search?q=instruction%20set%20architecture" title=" instruction set architecture"> instruction set architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=multicore%20processor" title=" multicore processor"> multicore processor</a> </p> <a href="https://publications.waset.org/abstracts/122029/evaluating-the-impact-of-replacement-policies-on-the-cache-performance-and-energy-consumption-in-different-multicore-embedded-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122029.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">799</span> Preventative Maintenance, Impact on the Optimal Replacement Strategy of Secondhand Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pin-Wei%20Chiang">Pin-Wei Chiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wen-Liang%20Chang"> Wen-Liang Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruey-Huei%20Yeh"> Ruey-Huei Yeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates optimal replacement and preventative maintenance policies of secondhand products under a Finite Planning Horizon (FPH). Any consumer wishing to replace their product under FPH would have it undergo minimal repairs. The replacement provided would be required to undergo periodical preventive maintenance done to avoid product failure. Then, a mathematical formula for disbursement cost for products under FPH can be derived. Optimal policies are then obtained to minimize cost. In the first of two segments of the paper, a model for initial product purchase of either new or secondhand products is used. This model is built by analyzing product purchasing price, surplus value of product, as well as the minimal repair cost. The second segment uses a model for replacement products, which are also secondhand products with no limit on usage. This model analyzes the same components as the first as well as expected preventative maintenance cost. Using these two models, a formula for the expected final total cost can be developed. The formula requires four variables (optimal preventive maintenance level, preventive maintenance frequency, replacement timing, age of replacement product) to find minimal cost requirement. Based on analysis of the variables using the expected total final cost model, it was found that the purchasing price and length of ownership were directly related. Also, consumers should choose the secondhand product with the higher usage for replacement. Products with higher initial usage upon acquisition require an earlier replacement schedule. In this case, replacements should be made with a secondhand product with less usage. In addition, preventative maintenance also significantly reduces cost. Consumers that plan to use products for longer periods of time replace their products later. Hence these consumers should choose the secondhand product with lesser initial usage for replacement. Preventative maintenance also creates significant total cost savings in this case. This study provides consumers with a method of calculating both the ideal amount of usage of the products they should purchase as well as the frequency and level of preventative maintenance that should be conducted in order to minimize cost and maintain product function. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20planning%20horizon" title="finite planning horizon">finite planning horizon</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20hand%20product" title=" second hand product"> second hand product</a>, <a href="https://publications.waset.org/abstracts/search?q=replacement" title=" replacement"> replacement</a>, <a href="https://publications.waset.org/abstracts/search?q=preventive%20maintenance" title=" preventive maintenance"> preventive maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=minimal%20repair" title=" minimal repair"> minimal repair</a> </p> <a href="https://publications.waset.org/abstracts/22433/preventative-maintenance-impact-on-the-optimal-replacement-strategy-of-secondhand-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">798</span> The Effect of Partially Replacing Cement with Metakaolin on the Properties of Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gashaw%20Abebaw">Gashaw Abebaw</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concrete usage in Ethiopia is expanding at a faster rate than before. Cement is the most important and costly ingredient in this respect. The construction industry is currently challenged by cement scarcity and stock market inflation. Scholars' trays, on the other hand, will use natural pozzolan material to substitute cement. Apart from that, Metakaolin has pozzolanic characteristics. According to the industrial mineral occurrence map, Ethiopia kaolin may be found in abundance. Some of them include Debretabor, so it is good to utilize Metakaolin as cement replacement material. In this study, the capability of Ethiopian Metakaolin as a partial substitute for cement in C-25 concrete production with 0%, 5%, 10%, 15%, and 20% replacement of PPC by MA with 0.49 percent water to cement ratio is investigated. The study examines; the chemical properties of MA, Physical properties of cement paste, workability, compressive strength, water absorption, density and sulfate attack of concrete was investigated. The chemical composition of Metakaolin was examined and the summation of SiO₂, AlO₃, and FeO₃ is 86.25% and the ash was classified class N pozzolan. The normal consistency percent of water increases as the MA replacement amount increase and both initial and final setting time rang increase as the MA replacement amount increase. On the 28th day, the compressive strength of concrete with MA replacement of 5%, 10%, and 15% exceeds the goal mean strength (33.5Mpa) with compressive strength enhancements of 2.23 %, 4.05 %, and 2.23 %, respectively. Similarly, on the 56th day, 5 %, 10%, and 15% replacement enhance concrete strength by 2.06 %, 3.06 %, and 1.2 %, respectively. The MA mixed concrete has improved significantly in terms of water absorption and sulphate attack, with a 15% replacement level. MA content Metakaolin could possibly replace cement up to 15%, according to the studies. The study's findings will help to offset cement price increases while also boosting house affordability without significantly degrading. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metakaolin" title="metakaolin">metakaolin</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=sulphate%20attack" title=" sulphate attack"> sulphate attack</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20absorption" title=" water absorption"> water absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=N%20pozzolan" title=" N pozzolan"> N pozzolan</a> </p> <a href="https://publications.waset.org/abstracts/148202/the-effect-of-partially-replacing-cement-with-metakaolin-on-the-properties-of-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">797</span> Enhancement of Cement Mortar Mechanical Properties with Replacement of Seashell Powder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdoullah%20Namdar">Abdoullah Namdar</a>, <a href="https://publications.waset.org/abstracts/search?q=Fadzil%20Mat%20Yahaya"> Fadzil Mat Yahaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many synthetic additives have been using for improve cement mortar and concrete characteristics, but natural additive is a friendly environment option. The quantity of (2% and 4%) seashell powder has been replaced in cement mortar, and compared with plain cement mortar in early age of 7 days. The strain gauges have been installed on beams and cube, for monitoring fluctuation of flexural and compressive strength. Main objective of this paper is to study effect of linear static force on flexural and compressive strength of modified cement mortar. The results have been indicated that the replacement of appropriate proportion of seashell powder enhances cement mortar mechanical properties. The replacement of 2% seashell causes improvement of deflection, time to failure and maximum load to failure on concrete beam and cube, the same occurs for compressive modulus elasticity. Increase replacement of seashell to 4% reduces all flexural strength, compressive strength and strain of cement mortar. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength" title=" flexural strength"> flexural strength</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20modulus%20elasticity" title=" compressive modulus elasticity"> compressive modulus elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20to%20failure" title=" time to failure"> time to failure</a>, <a href="https://publications.waset.org/abstracts/search?q=deflection" title=" deflection"> deflection</a> </p> <a href="https://publications.waset.org/abstracts/3726/enhancement-of-cement-mortar-mechanical-properties-with-replacement-of-seashell-powder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3726.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">796</span> Cost Effectiveness of Transcatheter Aortic Valve Replacement vs Surgical Aortic Valve Replacement in a Low-Middle Income Country</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vasuki%20Rayapati">Vasuki Rayapati</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhanu%20Duggal"> Bhanu Duggal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Trans catheter aortic valve replacement (TAVR) is the recommended treatment over surgical aortic valve replacement (SAVR) for high-risk groups, patients >75 years of age with severe symptomatic Aortic stenosis (AS). In high income countries TAVR is more cost effective because of – i) Reduction in total length of stay including less number of days in ICU ii) Non-procedural costs like cost of general anaesthesia are higher for SAVR. In India, there are two kinds of hospitals – Public and Private. Most patients visit public sector hospitals than private sector hospitals. In a LMIC like India, especially in the Public health sector cost of TAVR is prohibitive. In a small study from three (public) hospitals in India, it was envisaged that cost of TAVR should decrease at least by 2/3 to be a cost effective option in Public health sector for severe AS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cost%20effectiveness" title="cost effectiveness">cost effectiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=TAVR%20vs%20SAVR" title=" TAVR vs SAVR"> TAVR vs SAVR</a>, <a href="https://publications.waset.org/abstracts/search?q=LMIC" title=" LMIC"> LMIC</a>, <a href="https://publications.waset.org/abstracts/search?q=HTA" title=" HTA"> HTA</a> </p> <a href="https://publications.waset.org/abstracts/162487/cost-effectiveness-of-transcatheter-aortic-valve-replacement-vs-surgical-aortic-valve-replacement-in-a-low-middle-income-country" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">795</span> Effect of Rice Husk Ash and Metakaolin on the Compressive Strengths of Ternary Cement Mortars</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olubajo%20Olumide%20Olu">Olubajo Olumide Olu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studies the effect of Metakaolin (MK) and Rice husk ash (RHA) on the compressive strength of ternary cement mortar at replacement level up to 30%. The compressive strength test of the blended cement mortars were conducted using Tonic Technic compression and machine. Nineteen ternary cement mortars were prepared comprising of ordinary Portland cement (OPC), Rice husk ash (RHA) and Metakaolin (MK) at different proportion. Ternary mortar prisms in which Portland cement was replaced by up to 30% were tested at various age; 2, 7, 28 and 60 days. Result showed that the compressive strength of the cement mortars increased as the curing days were lengthened for both OPC and the blended cement samples. The ternary cement’s compressive strengths showed significant improvement compared with the control especially beyond 28 days. This can be attributed to the slow pozzolanic reaction resulting from the formation of additional CSH from the interaction of the residual CH content and the silica available in the Metakaolin and Rice husk ash, thus providing significant strength gain at later age. Results indicated that the addition of metakaolin with rice husk ash kept constant was found to lead to an increment in the compressive strength. This can either be attributed to the high silica/alumina contribution to the matrix or the C/S ratio in the cement matrix. Whereas, increment in the rice husk ash content while metakaolin was held constant led to an increment in the compressive strength, which could be attributed to the reactivity of the rice husk ash followed by decrement owing to the presence of unburnt carbon in the RHA matrix. The best compressive strength results were obtained at 10% cement replacement (5% RHA, 5% MK); 15% cement replacement (10% MK and 5% RHA); 20% cement replacement (15% MK and 5% RHA); 25% cement replacement (20% MK and 5% RHA); 30% cement replacement (10%/20% MK and 20%/10% RHA). With the optimal combination of either 15% and 20% MK with 5% RHA giving the best compressive strength of 40.5MPa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metakaolin" title="metakaolin">metakaolin</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20husk%20ash" title=" rice husk ash"> rice husk ash</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=ternary%20mortar" title=" ternary mortar"> ternary mortar</a>, <a href="https://publications.waset.org/abstracts/search?q=curing%20days" title=" curing days"> curing days</a> </p> <a href="https://publications.waset.org/abstracts/28975/effect-of-rice-husk-ash-and-metakaolin-on-the-compressive-strengths-of-ternary-cement-mortars" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">794</span> Influence of Recycled Glass Content on the Properties of Concrete and Mortar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bourmatte%20Nadjoua">Bourmatte Nadjoua</a>, <a href="https://publications.waset.org/abstracts/search?q=Houari%20Hac%C3%A8ne"> Houari Hacène</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of replacement of fine aggregates with recycled glass on the fresh and hardened properties of concrete and mortar is studied. Percentages of replacement are 0–25% and 50% of aggregates with fine waste glass to produce concrete and percentage of replacement of 100% to produce mortar. As a result of the conducted study, the slump flow increased with the increase of recycled glass content. On the other hand, the compressive strength and tensile strength of recycled glass mixtures were decreased with the increase in the recycled glass content. The results showed that recycled glass aggregate can successfully be used with limited level for producing concrete. Mortar based on glass shows a compressive strength with 50% lower than that of control mortar. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=mortar" title=" mortar"> mortar</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20glass" title=" recycled glass"> recycled glass</a> </p> <a href="https://publications.waset.org/abstracts/44915/influence-of-recycled-glass-content-on-the-properties-of-concrete-and-mortar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44915.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">793</span> The Relationship between Top Management Replacement and Risk, Sale and Cash Volatilities with Respect to Unqualified Audit Opinion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Dasineh">Mehdi Dasineh</a>, <a href="https://publications.waset.org/abstracts/search?q=Yadollah%20Tariverdi"> Yadollah Tariverdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Marzieh%20H.%20Takhti"> Marzieh H. Takhti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigated the relationship between top management turnover with risk volatility, sale volatility and fluctuations in the company's cash depending on the unqualified audit report in Tehran Stock Exchange (TSE). In this study, we examined 104 firms over the period 2009-2014 which were selected from (TSE). There was 624 observed year-company data in this research. Hypotheses of this research have been evaluated by using regression tests for example F-statistical and Durbin-Watson. Based on our sample we found significant relationship between top management replacement and risk volatility, sale Volatility and cash volatility with tendency unqualified audit opinion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=top%20management%20replacement" title="top management replacement">top management replacement</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20volatility" title=" risk volatility"> risk volatility</a>, <a href="https://publications.waset.org/abstracts/search?q=sale%20volatility" title=" sale volatility"> sale volatility</a>, <a href="https://publications.waset.org/abstracts/search?q=cash%20volatility" title=" cash volatility"> cash volatility</a>, <a href="https://publications.waset.org/abstracts/search?q=unqualified%20audit%20opinion" title=" unqualified audit opinion"> unqualified audit opinion</a> </p> <a href="https://publications.waset.org/abstracts/45022/the-relationship-between-top-management-replacement-and-risk-sale-and-cash-volatilities-with-respect-to-unqualified-audit-opinion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">792</span> Production of Natural Gas Hydrate by Using Air and Carbon Dioxide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yun-Ho%20Ahn">Yun-Ho Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyery%20Kang"> Hyery Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Yeun%20Koh"> Dong-Yeun Koh</a>, <a href="https://publications.waset.org/abstracts/search?q=Huen%20Lee"> Huen Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we demonstrate the production of natural gas hydrates from permeable marine sediments with simultaneous mechanisms for methane recovery and methane-air or methane-air/carbon dioxide replacement. The simultaneous melting happens until the chemical potentials become equal in both phases as natural gas hydrate depletion continues and self-regulated methane-air replacement occurs over an arbitrary point. We observed certain point between dissociation and replacement mechanisms in the natural gas hydrate reservoir, and we call this boundary as critical methane concentration. By the way, when carbon dioxide was added, the process of chemical exchange of methane by air/carbon dioxide was observed in the natural gas hydrate. The suggested process will operate well for most global natural gas hydrate reservoirs, regardless of the operating conditions or geometrical constraints. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20injection" title="air injection">air injection</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide%20sequestration" title=" carbon dioxide sequestration"> carbon dioxide sequestration</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrate%20production" title=" hydrate production"> hydrate production</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20gas%20hydrate" title=" natural gas hydrate"> natural gas hydrate</a> </p> <a href="https://publications.waset.org/abstracts/24818/production-of-natural-gas-hydrate-by-using-air-and-carbon-dioxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24818.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">791</span> Characteristics of Different Volumes of Waste Cellular Concrete Powder-Cement Paste for Sustainable Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Abed">Mohammed Abed</a>, <a href="https://publications.waset.org/abstracts/search?q=Rita%20Nemes"> Rita Nemes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cellular concrete powder (CCP) is not used widely as supplementary cementitious material, but in the literature, its efficiency is proved when it used as a replacement of cement in concrete mixtures. In this study, different amounts of raw CCP (CCP as a waste material without any industrial modification) will be used to investigate the characteristics of cement pastes and the effects of CCP on the properties of the cement pastes. It is an attempt to produce green binder paste, which is useful for sustainable construction applications. The fresh and hardened properties of a number of CCP blended cement paste will be tested in different life periods, and the optimized CCP volume will be reported with more significant investigations on durability properties. Different replacing of mass percentage (low and high) of the cement mass will be conducted (0%, 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90%). The consistency, flexural strength, and compressive strength will be the base indicator for the further properties' investigations. The CCP replacement until 50% have been tested until 7 days, and the initial results showed a linear relationship between strength and the percentage of the replacement; that is an optimistic indicator for further replacement percentages of waste CCP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellular%20concrete%20powder" title="cellular concrete powder">cellular concrete powder</a>, <a href="https://publications.waset.org/abstracts/search?q=supplementary%20cementitious%20material" title=" supplementary cementitious material"> supplementary cementitious material</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20construction" title=" sustainable construction"> sustainable construction</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20concrete" title=" green concrete"> green concrete</a> </p> <a href="https://publications.waset.org/abstracts/85329/characteristics-of-different-volumes-of-waste-cellular-concrete-powder-cement-paste-for-sustainable-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85329.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">790</span> Nondestructive Natural Gas Hydrate Production by Using Air and Carbon Dioxide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahn%20Yun-Ho">Ahn Yun-Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyery%20Kang"> Hyery Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Koh%20Dong-Yeun"> Koh Dong-Yeun</a>, <a href="https://publications.waset.org/abstracts/search?q=Huen%20Lee"> Huen Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we demonstrate the production of natural gas hydrates from permeable marine sediments with simultaneous mechanisms for methane recovery and methane-air or methane-air/carbon dioxide replacement. The simultaneous melting happens until the chemical potentials become equal in both phases as natural gas hydrate depletion continues and self-regulated methane-air replacement occurs over an arbitrary point. We observed certain point between dissociation and replacement mechanisms in the natural gas hydrate reservoir, and we call this boundary as critical methane concentration. By the way, when carbon dioxide was added, the process of chemical exchange of methane by air/carbon dioxide was observed in the natural gas hydrate. The suggested process will operate well for most global natural gas hydrate reservoirs, regardless of the operating conditions or geometrical constraints. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20injection" title="air injection">air injection</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide%20sequestration" title=" carbon dioxide sequestration"> carbon dioxide sequestration</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrate%20production" title=" hydrate production"> hydrate production</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20gas%20hydrate" title=" natural gas hydrate"> natural gas hydrate</a> </p> <a href="https://publications.waset.org/abstracts/25132/nondestructive-natural-gas-hydrate-production-by-using-air-and-carbon-dioxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">573</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">789</span> Ultrasonography of Low Extremities Veins Before and After Replacement of Knee Joint by Endoprosthesis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20V.%20Alabut">A. V. Alabut</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20D.%20Sikilinda"> V. D. Sikilinda</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20J.%20Nelasov"> N. J. Nelasov</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20L.%20Eroshenko"> O. L. Eroshenko</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Morgunov"> M. N. Morgunov</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20V.%20Koroleva"> I. V. Koroleva </a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have analyzed the results of treatment of 204 patients with knee prosthetic arthroplasty. For the purpose of active delineation of vascular pathology triplex sonography of arterial and venous vessels of low extremities was performed in all cases in the preoperative period. When it was necessary, reconstructive vascular surgery was implemented to improve peripheral circulation and reduce the hazard of thrombosis after knee replacement. The combination of specific and nonspecific methods of thromboprophylaxis was used in perioperative period. On 7-10 day and 2.5-3 month after prosthetic arthroplasty, all patients iteratively underwent triple sonography. In case of detection of floating thrombus, urgent venous ligation was performed. Active diagnostics of venous thrombosis gave the opportunity to avoid fatal pulmonary embolism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=knee%20replacement" title="knee replacement">knee replacement</a>, <a href="https://publications.waset.org/abstracts/search?q=venous%20thrombosis" title=" venous thrombosis"> venous thrombosis</a>, <a href="https://publications.waset.org/abstracts/search?q=pulmonary%20embolism" title=" pulmonary embolism"> pulmonary embolism</a>, <a href="https://publications.waset.org/abstracts/search?q=vascular%20surgery" title=" vascular surgery "> vascular surgery </a> </p> <a href="https://publications.waset.org/abstracts/5218/ultrasonography-of-low-extremities-veins-before-and-after-replacement-of-knee-joint-by-endoprosthesis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">788</span> Strength of Soft Clay Reinforced with Polypropylene Column </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muzamir%20Hasan">Muzamir Hasan</a>, <a href="https://publications.waset.org/abstracts/search?q=Anas%20Bazirgan"> Anas Bazirgan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Granular columns is a technique that has the properties of improving bearing capacity, accelerating the dissipation of excess pore water pressure and reducing settlement in a weak soft soil. This research aims to investigate the role of Polypropylene column in improving the shear strength and compressibility of soft reconstituted kaolin clay by determining the effects of area replacement ratio, height penetrating ratio and volume replacement ratio of a singular Polypropylene column on the strength characteristics. Reinforced kaolin samples were subjected to Unconfined Compression (UCT) and Unconsolidated Undrained (UU) triaxial tests. The kaolin samples were 50 mm in diameter and 100 mm in height. Using the PP column reinforcement, with an area replacement ratio of 0.8, 0.5 and 0.3, shear strength increased approximately 5.27%, 26.22% and 64.28%, and 37.14%, 42.33% and 51.17%, for area replacement ratios of 25% and 10.24%. Meanwhile, UU testing showed an increase in shear strength of 24.01%, 23.17% and 23.49% and 28.79%, 27.29 and 30.81% for the same ratios. Based on the UCT results, the undrained shear strength generally increased with the decrease in height penetration ratio. However, based on the UU test results Mohr-Coulomb failure criteria, the installation of Polypropylene columns did not show any significant difference in effective friction angle. However, there was an increase in the apparent cohesion and undrained shear strength of the kaolin clay. In conclusion, Polypropylene column greatly improved the shear strength; and could therefore be implemented in reducing the cost of soil improvement as a replacement for non-renewable materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polypropylene" title="polypropylene">polypropylene</a>, <a href="https://publications.waset.org/abstracts/search?q=UCT" title=" UCT"> UCT</a>, <a href="https://publications.waset.org/abstracts/search?q=UU%20test" title=" UU test"> UU test</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaolin%20S300" title=" Kaolin S300"> Kaolin S300</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20improvement" title=" ground improvement"> ground improvement</a> </p> <a href="https://publications.waset.org/abstracts/54069/strength-of-soft-clay-reinforced-with-polypropylene-column" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">787</span> Early-Age Mechanical and Thermal Performance of GGBS Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kangkang%20Tang">Kangkang Tang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A large amount of blast furnace slag is generated in China. Most ground granulated blast furnace slag (GGBS) however ends up in low-grade applications. Blast furnace slag, ground to an appropriate fineness, can be used as a partial replacement of cementitious material in concrete. The potential for using GGBS in structural concrete, e.g. concrete beams and columns, is investigated at Xi’an Jiaotong-Liverpool University (XJTLU). With 50% of CEM I replaced with GGBS, peak hydration temperatures determined in a suspended concrete slab reduced by 20%. This beneficiary effect has not been further improved with 70% of CEM I replaced with GGBS. Partial replacement of CEM I with GGBS also has a retardation effect on the early-age strength of concrete. More GGBS concrete mixes will be conducted to identify an ‘optimum’ replacement level which will lead to a reduced thermal loading, without significantly compromising the early-age strength of concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20effect" title="thermal effect">thermal effect</a>, <a href="https://publications.waset.org/abstracts/search?q=GGBS" title=" GGBS"> GGBS</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20strength%20and%20testing" title=" concrete strength and testing"> concrete strength and testing</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/26590/early-age-mechanical-and-thermal-performance-of-ggbs-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">786</span> Using Different Methods of Nanofabrication as a New Way to Activate Cement Replacement Materials in Concrete Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azadeh%20Askarinejad">Azadeh Askarinejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Parham%20Hayati"> Parham Hayati</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Parchami"> Reza Parchami</a>, <a href="https://publications.waset.org/abstracts/search?q=Parisa%20Hayati"> Parisa Hayati </a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most important industries and building operations causing carbon dioxide emission is the cement and concrete related industries so that cement production (including direct fuel for mining and transporting raw material) consumes approximately 6 million Btus per metric-ton, and releases about 1 metric-ton of CO2. Reducing the consumption of cement with simultaneous utilizing waste materials as cement replacement is preferred for reasons of environmental protection. Blended cements consist of different supplementary cementitious materials (SCM), such as fly ash, silica fume, Ground Granulated Blast Furnace Slag (GGBFS), limestone, natural pozzolans, etc. these materials should be chemically activated to show effective cementitious properties. The present review article reports three different methods of nanofabrication that were used for activation of two types of SCMs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanofabrication" title="nanofabrication">nanofabrication</a>, <a href="https://publications.waset.org/abstracts/search?q=cement%20replacement%20materials" title=" cement replacement materials"> cement replacement materials</a>, <a href="https://publications.waset.org/abstracts/search?q=activation" title=" activation"> activation</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a> </p> <a href="https://publications.waset.org/abstracts/19991/using-different-methods-of-nanofabrication-as-a-new-way-to-activate-cement-replacement-materials-in-concrete-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19991.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">613</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">785</span> Effect of Nano-CaCO₃ Addition on the Nano-Mechanical Properties of Cement Paste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muzeyyen%20Balcikanli">Muzeyyen Balcikanli</a>, <a href="https://publications.waset.org/abstracts/search?q=Selma%20Ozaslan"> Selma Ozaslan</a>, <a href="https://publications.waset.org/abstracts/search?q=Osman%20Sahin"> Osman Sahin</a>, <a href="https://publications.waset.org/abstracts/search?q=Burak%20Uzal"> Burak Uzal</a>, <a href="https://publications.waset.org/abstracts/search?q=Erdogan%20Ozbay"> Erdogan Ozbay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the effect of nano-CaCO3 replacement with cement on the nano-mechanical properties of cement paste was investigated. Hydrophobic and hydrophilic characteristics Two types of nano CaCO3 were replaced with Portland cement at 0, 0.5 and 1%. Water to (cement+nano-CaCO3) ratio was kept constant at 0.5 for all mixtures. 36 indentations were applied on each cement paste, and the values of nano-hardness and elastic modulus of cement pastes were determined from the indentation depth-load graphs. Then, by getting the average of them, nano-hardness and elastic modulus were identified for each mixture. Test results illustrate that replacement of hydrophilic n-CaCO3 with cement lead to a significant increase in nano-mechanical properties, however, replacement of hydrophobic n-CaCO3 with cement worsened the nano-mechanical properties considerably. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoindenter" title="nanoindenter">nanoindenter</a>, <a href="https://publications.waset.org/abstracts/search?q=CaCO3" title=" CaCO3"> CaCO3</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-hardness" title=" nano-hardness"> nano-hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-mechanical%20properties" title=" nano-mechanical properties"> nano-mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/54618/effect-of-nano-caco3-addition-on-the-nano-mechanical-properties-of-cement-paste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">784</span> Optimal Replacement Period for a One-Unit System with Double Repair Cost Limits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Min-Tsai%20Lai">Min-Tsai Lai</a>, <a href="https://publications.waset.org/abstracts/search?q=Taqwa%20Hariguna"> Taqwa Hariguna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a periodical replacement model for a system, considering the concept of single and cumulative repair cost limits simultaneously. The failures are divided into two types. Minor failure can be corrected by minimal repair and serious failure makes the system breakdown completely. When a minor failure occurs, if the repair cost is less than a single repair cost limit L1 and the accumulated repair cost is less than a cumulative repair cost limit L2, then minimal repair is executed, otherwise, the system is preventively replaced. The system is also replaced at time T or at serious failure. The optimal period T minimizing the long-run expected cost per unit time is verified to be finite and unique under some specific conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=repair-cost%20limit" title="repair-cost limit">repair-cost limit</a>, <a href="https://publications.waset.org/abstracts/search?q=cumulative%20repair-cost%20limit" title=" cumulative repair-cost limit"> cumulative repair-cost limit</a>, <a href="https://publications.waset.org/abstracts/search?q=minimal%20repair" title=" minimal repair"> minimal repair</a>, <a href="https://publications.waset.org/abstracts/search?q=periodical%20replacement%20policy" title=" periodical replacement policy"> periodical replacement policy</a> </p> <a href="https://publications.waset.org/abstracts/28802/optimal-replacement-period-for-a-one-unit-system-with-double-repair-cost-limits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28802.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">783</span> Characteristics of Cement Pastes Incorporating Different Amounts of Waste Cellular Concrete Powder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Abed">Mohammed Abed</a>, <a href="https://publications.waset.org/abstracts/search?q=Rita%20Nemes"> Rita Nemes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study different amounts of waste cellular concrete powder (WCCP) as replacement of cement have been investigated as an attempt to produce green binder, which is useful for sustainable construction applications. From zero to up to 60% of WCCP by mass replacement amounts of cement has been conducted. Consistency, compressive strength, bending strength and the activity index of WCCP through seven to ninety days old specimens have been examined, where the optimum WCCP replacement was up to 30%, depending on which the activity index still increased to the end of test period (90 days) and this could be an evidence for its continuity to increase for longer age. Also up to 30% of WCCP increased the bending strength to be higher than the control one. The main point in the present study that there is a possibility of replacing cement by 30% of WCCP, however, it is preferable to be less than this amount. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellular%20concrete%20powder" title="cellular concrete powder">cellular concrete powder</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20cellular%20concrete%20powder%20%28WCCP%29" title=" waste cellular concrete powder (WCCP)"> waste cellular concrete powder (WCCP)</a>, <a href="https://publications.waset.org/abstracts/search?q=supplementary%20cementatious%20material" title=" supplementary cementatious material"> supplementary cementatious material</a>, <a href="https://publications.waset.org/abstracts/search?q=SCM" title=" SCM"> SCM</a>, <a href="https://publications.waset.org/abstracts/search?q=activity%20index" title=" activity index"> activity index</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/94806/characteristics-of-cement-pastes-incorporating-different-amounts-of-waste-cellular-concrete-powder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94806.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=HDD%20replacement&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=HDD%20replacement&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=HDD%20replacement&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=HDD%20replacement&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=HDD%20replacement&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=HDD%20replacement&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=HDD%20replacement&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=HDD%20replacement&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=HDD%20replacement&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=HDD%20replacement&page=27">27</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=HDD%20replacement&page=28">28</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=HDD%20replacement&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>