CINXE.COM
Search results for: automated container terminal
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: automated container terminal</title> <meta name="description" content="Search results for: automated container terminal"> <meta name="keywords" content="automated container terminal"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="automated container terminal" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="automated container terminal"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1409</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: automated container terminal</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1409</span> Battery Replacement Strategy for Electric AGVs in an Automated Container Terminal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiheon%20Park">Jiheon Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Taekwang%20Kim"> Taekwang Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwang%20Ryel%20Ryu"> Kwang Ryel Ryu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electric automated guided vehicles (AGVs) are becoming popular in many automated container terminals nowadays because they are pollution-free and environmentally friendly vehicles for transporting the containers within the terminal. Since efficient operation of AGVs is critical for the productivity of the container terminal, the replacement of batteries of the AGVs must be conducted in a strategic way to minimize undesirable transportation interruptions. While a too frequent replacement may lead to a loss of terminal productivity by delaying container deliveries, missing the right timing of battery replacement can result in a dead AGV that causes a severer productivity loss due to the extra efforts required to finish post treatment. In this paper, we propose a strategy for battery replacement based on a scoring function of multiple criteria taking into account the current battery level, the distances to different battery stations, and the progress of the terminal job operations. The strategy is optimized using a genetic algorithm with the objectives of minimizing the total time spent for battery replacement as well as maximizing the terminal productivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AGV%20operation" title="AGV operation">AGV operation</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20container%20terminal" title=" automated container terminal"> automated container terminal</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20replacement" title=" battery replacement"> battery replacement</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20AGV" title=" electric AGV"> electric AGV</a>, <a href="https://publications.waset.org/abstracts/search?q=strategy%20optimization" title=" strategy optimization"> strategy optimization</a> </p> <a href="https://publications.waset.org/abstracts/43477/battery-replacement-strategy-for-electric-agvs-in-an-automated-container-terminal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43477.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1408</span> A Simulation Modeling Approach for Optimization of Storage Space Allocation in Container Terminal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gamal%20Abd%20El-Nasser%20A.%20Said">Gamal Abd El-Nasser A. Said</a>, <a href="https://publications.waset.org/abstracts/search?q=El-Sayed%20M.%20El-Horbaty"> El-Sayed M. El-Horbaty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Container handling problems at container terminals are NP-hard problems. This paper presents an approach using discrete-event simulation modeling to optimize solution for storage space allocation problem, taking into account all various interrelated container terminal handling activities. The proposed approach is applied on a real case study data of container terminal at Alexandria port. The computational results show the effectiveness of the proposed model for optimization of storage space allocation in container terminal where 54% reduction in containers handling time in port is achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=container%20terminal" title="container terminal">container terminal</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete-event%20simulation" title=" discrete-event simulation"> discrete-event simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=storage%20space%20allocation" title=" storage space allocation "> storage space allocation </a> </p> <a href="https://publications.waset.org/abstracts/19699/a-simulation-modeling-approach-for-optimization-of-storage-space-allocation-in-container-terminal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19699.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1407</span> Forecasting Container Throughput: Using Aggregate or Terminal-Specific Data?</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gu%20Pang">Gu Pang</a>, <a href="https://publications.waset.org/abstracts/search?q=Bartosz%20Gebka"> Bartosz Gebka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We forecast the demand of total container throughput at the Indonesia’s largest seaport, Tanjung Priok Port. We propose four univariate forecasting models, including SARIMA, the additive Seasonal Holt-Winters, the multiplicative Seasonal Holt-Winters and the Vector Error Correction Model. Our aim is to provide insights into whether forecasting the total container throughput obtained by historical aggregated port throughput time series is superior to the forecasts of the total throughput obtained by summing up the best individual terminal forecasts. We test the monthly port/individual terminal container throughput time series between 2003 and 2013. The performance of forecasting models is evaluated based on Mean Absolute Error and Root Mean Squared Error. Our results show that the multiplicative Seasonal Holt-Winters model produces the most accurate forecasts of total container throughput, whereas SARIMA generates the worst in-sample model fit. The Vector Error Correction Model provides the best model fits and forecasts for individual terminals. Our results report that the total container throughput forecasts based on modelling the total throughput time series are consistently better than those obtained by combining those forecasts generated by terminal-specific models. The forecasts of total throughput until the end of 2018 provide an essential insight into the strategic decision-making on the expansion of port's capacity and construction of new container terminals at Tanjung Priok Port. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SARIMA" title="SARIMA">SARIMA</a>, <a href="https://publications.waset.org/abstracts/search?q=Seasonal%20Holt-Winters" title=" Seasonal Holt-Winters"> Seasonal Holt-Winters</a>, <a href="https://publications.waset.org/abstracts/search?q=Vector%20Error%20Correction%20Model" title=" Vector Error Correction Model"> Vector Error Correction Model</a>, <a href="https://publications.waset.org/abstracts/search?q=container%20throughput" title=" container throughput"> container throughput</a> </p> <a href="https://publications.waset.org/abstracts/24832/forecasting-container-throughput-using-aggregate-or-terminal-specific-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">504</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1406</span> Highly Automated Trucks In Intermodal Logistics: Findings From a Field Test in Railport and Container Depot Operations in Germany</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dustin%20Sch%C3%B6der">Dustin Schöder</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The potential benefits of the utilization of highly automated and autonomous trucks in logistics operations are the subject of interest to the entire logistics industry. The benefits of the use of these new technologies were scientifically investigated and implemented in roadmaps. So far, reliable data and experiences from real life use cases are still limited. A German research consortium of both academics and industry developed a highly automated (SAE level 4) vehicle for yard operations at railports and container depots. After development and testing, a several month field test at the DUSS Terminal in Ulm-Dornstadt (Germany) and the nearby DB Intermodal Services Container Depot in Ulm-Dornstadt was conducted. The truck was piloted in a shuttle service between both sites. In a holistic automation approach, the vehicle was integrated into a digital communication platform so that the truck could move autonomously without a driver and his manual interactions with a wide variety of stakeholders. The main goal is to investigate the effects of highly automated trucks in the key processes of container loading, unloading and container relocation on holistic railport yard operation. The field test data were used to investigate changes in process efficiency of key processes of railport and container yard operations. Moreover, effects on the capacity utilization and potentials for smothering peak workloads were analyzed. The results state that process efficiency in the piloted use case was significantly higher. The reason for that could be found in the digitalized data exchange and automated dispatch. However, the field test has shown that the effect is greatly varying depending on the ratio of highly automated and manual trucks in the yard as well as on the congestion level in the loading area. Furthermore, the data confirmed that under the right conditions, the capacity utilization of highly automated trucks could be increased. In regard to the potential for smothering peak workloads, no significant findings could be made based on the limited requirements and regulations of railway operation in Germany. In addition, an empirical survey among railport managers, operational supervisors, innovation managers and strategists (n=15) within the logistics industry in Germany was conducted. The goal was to identify key characteristics of future railports and terminals as well as requirements that railports will have to meet in the future. Furthermore, the railport processes where automation and autonomization make the greatest impact, as well as hurdles and challenges in the introduction of new technologies, have been surveyed. Hence, further potential use cases of highly automated and autonomous applications could be identified, and expectations have been mapped. As a result, a highly detailed and practice-based roadmap towards a ‘terminal 4.0’ was developed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=highly%20automated%20driving" title="highly automated driving">highly automated driving</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20driving" title=" autonomous driving"> autonomous driving</a>, <a href="https://publications.waset.org/abstracts/search?q=SAE%20level%204" title=" SAE level 4"> SAE level 4</a>, <a href="https://publications.waset.org/abstracts/search?q=railport%20operations" title=" railport operations"> railport operations</a>, <a href="https://publications.waset.org/abstracts/search?q=container%20depot" title=" container depot"> container depot</a>, <a href="https://publications.waset.org/abstracts/search?q=intermodal%20logistics" title=" intermodal logistics"> intermodal logistics</a>, <a href="https://publications.waset.org/abstracts/search?q=potentials%20of%20autonomization" title=" potentials of autonomization"> potentials of autonomization</a> </p> <a href="https://publications.waset.org/abstracts/165311/highly-automated-trucks-in-intermodal-logistics-findings-from-a-field-test-in-railport-and-container-depot-operations-in-germany" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165311.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1405</span> Econometric Analysis of West African Countries’ Container Terminal Throughput and Gross Domestic Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kehinde%20Peter%20Oyeduntan">Kehinde Peter Oyeduntan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kayode%20Oshinubi"> Kayode Oshinubi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The west African ports have been experiencing large inflow and outflow of containerized cargo in the last decades, and this has created a quest amongst the countries to attain the status of hub port for the sub-region. This study analyzed the relationship between the container throughput and Gross Domestic Products (GDP) of nine west African countries, using Simple Linear Regression (SLR), Polynomial Regression Model (PRM) and Support Vector Machines (SVM) with a time series of 20 years. The results showed that there exists a high correlation between the GDP and container throughput. The model also predicted the container throughput in west Africa for the next 20 years. The findings and recommendations presented in this research will guide policy makers and help improve the management of container ports and terminals in west Africa, thereby boosting the economy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=container" title="container">container</a>, <a href="https://publications.waset.org/abstracts/search?q=ports" title=" ports"> ports</a>, <a href="https://publications.waset.org/abstracts/search?q=terminals" title=" terminals"> terminals</a>, <a href="https://publications.waset.org/abstracts/search?q=throughput" title=" throughput"> throughput</a> </p> <a href="https://publications.waset.org/abstracts/157245/econometric-analysis-of-west-african-countries-container-terminal-throughput-and-gross-domestic-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157245.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1404</span> Mathematical Model and Algorithm for the Berth and Yard Resource Allocation at Seaports</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ming%20Liu">Ming Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhihui%20Sun"> Zhihui Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoning%20Zhang"> Xiaoning Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studies a deterministic container transportation problem, jointly optimizing the berth allocation, quay crane assignment and yard storage allocation at container ports. The problem is formulated as an integer program to coordinate the decisions. Because of the large scale, it is then transformed into a set partitioning formulation, and a framework of branchand- price algorithm is provided to solve it. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=branch-and-price" title="branch-and-price">branch-and-price</a>, <a href="https://publications.waset.org/abstracts/search?q=container%20terminal" title=" container terminal"> container terminal</a>, <a href="https://publications.waset.org/abstracts/search?q=joint%20scheduling" title=" joint scheduling"> joint scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=maritime%20logistics" title=" maritime logistics"> maritime logistics</a> </p> <a href="https://publications.waset.org/abstracts/69918/mathematical-model-and-algorithm-for-the-berth-and-yard-resource-allocation-at-seaports" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69918.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1403</span> General Framework for Price Regulation of Container Terminals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Murat%20Yildiz">Murat Yildiz</a>, <a href="https://publications.waset.org/abstracts/search?q=Burcu%20Yildiz"> Burcu Yildiz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Price Cap Regulation is a form of economic regulation designed in the 1980s in the United Kingdom. Price cap regulation sets a cap on the price that the utility provider can charge. The cap is set according to several economic factors, such as the price cap index, expected efficiency savings and inflation. It has been used by several countries as a regulatory regime in several sectors. Container port privatization is still in early stages in some countries. Lack of a general framework can be an impediment to privatization. This paper aims a general framework to comprising decisions to be made for variables which are able to accommodate the variety of container terminals. Several approaches that may be needed as well as a passage between approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Price%20Cap%20Regulation" title="Price Cap Regulation">Price Cap Regulation</a>, <a href="https://publications.waset.org/abstracts/search?q=ports%20privatization" title=" ports privatization"> ports privatization</a>, <a href="https://publications.waset.org/abstracts/search?q=container%20terminal%20price%20regime" title=" container terminal price regime"> container terminal price regime</a>, <a href="https://publications.waset.org/abstracts/search?q=earning%20sharing" title=" earning sharing"> earning sharing</a> </p> <a href="https://publications.waset.org/abstracts/46297/general-framework-for-price-regulation-of-container-terminals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1402</span> A Novel Integration of Berth Allocation, Quay Cranes and Trucks Scheduling Problems in Container Terminals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Moharami%20Gargari">M. Moharami Gargari</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Javdani%20Zamani"> S. Javdani Zamani</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mohammadnejad"> A. Mohammadnejad</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Abuali"> S. Abuali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As maritime container transport is developing fast, the need arises for efficient operations at container terminals. One of the most important determinants of container handling efficiency is the productivity of quay cranes and internal transportation vehicles, which are responsible transporting of containers for unloading and loading operations for container vessels. For this reason, this paper presents an integrated mathematical model formulation for discrete berths with quay cranes and internal transportations vehicles. The problems have received increasing attention in the literature and the present paper deals with the integration of these interrelated problems. A new mixed integer linear formulation is developed for the Berth Allocation Problem (BAP), Quay Crane Assignment and Scheduling Problem (QCASP) and Internal Transportation Scheduling (ITS), which accounts for cranes and trucks positioning conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20berths" title="discrete berths">discrete berths</a>, <a href="https://publications.waset.org/abstracts/search?q=container%20terminal" title=" container terminal"> container terminal</a>, <a href="https://publications.waset.org/abstracts/search?q=truck%20scheduling" title=" truck scheduling"> truck scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20vessel%20arrival" title=" dynamic vessel arrival "> dynamic vessel arrival </a> </p> <a href="https://publications.waset.org/abstracts/30174/a-novel-integration-of-berth-allocation-quay-cranes-and-trucks-scheduling-problems-in-container-terminals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1401</span> Calculating Collision Risk Exposures and Risk Probabilities at Container Terminals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Ali%20Hasanzadeh">Mohammad Ali Hasanzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Thierry%20Vanelslander"> Thierry Vanelslander</a>, <a href="https://publications.waset.org/abstracts/search?q=Eddy%20Van%20De%20Voorde"> Eddy Van De Voorde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays maritime transport is a key element in international trade and global supply chain. Economies of scale in transporting goods are one of the most attractive elements of using ships. Without maritime transport, almost no globalization of economics can be imagined. Within maritime transport, ports are the interface between lands and see. Even though using ships help cargo owners to have a competitive margin but an accident in port during loading or unloading or even moving cargoes within the terminal can diminish such margin. Statistics shows that due to the high-speed notion of activities within ports, collision accidents are the most common type of accidents. To mitigate such accidents, the appropriate risk exposures have to be defined and calculate, later on risk probabilities can be determined for each type of accident, i.e. fatal, severe, moderate and minor ones. Having such risk probabilities help managers to define the effectiveness of each collision risk control option. This research defined travelled distance as main collision risk exposure in container terminals, taking all the related items into consideration, it was calculated for Shahid Rajae container terminals. Following this finding, collision risk probabilities were computed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collision%20accident" title="collision accident">collision accident</a>, <a href="https://publications.waset.org/abstracts/search?q=container%20terminal" title=" container terminal"> container terminal</a>, <a href="https://publications.waset.org/abstracts/search?q=maritime%20transport" title=" maritime transport"> maritime transport</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20exposure" title=" risk exposure"> risk exposure</a> </p> <a href="https://publications.waset.org/abstracts/33484/calculating-collision-risk-exposures-and-risk-probabilities-at-container-terminals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33484.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1400</span> Analytic Hierarchy Process for the Container Terminal Choice from Multiple Terminals within the Port of Colombo</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20M.%20B.%20P.%20Abeysekara">G. M. B. P. Abeysekara</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20A.%20D.%20C.%20Wijerathna"> W. A. D. C. Wijerathna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Terminal choice from the multiple terminals region is not a simple decision and it is very complex, because shipping lines should consider on influential factors for the terminal choice at once according to their requirement. Therefore, terminal choice is a multiple criterion decision making (MCDM) situation under a specially designed decision hierarchy. Identification of perspective of shipping lines regarding terminal choice is vital important for the decision makers regarding container terminals. Thus this study is evaluated perception on main and feeder shipping lines’ regarding port of Colombo container terminals, and ranked terminals according to shipping lines preference. Analytic Hierarchy Process (AHP) model is adapted to this study, since it has features similar to the MCDM, it is weighted every influential factor by using pair wise comparisons, and consistency of the decision makers’ judgments are checked to evaluate trustworthiness of gathered data. And rating method is used to rank the terminals within Port of Colombo by assigning particular preference values with respect to the criteria and sub criteria. According to the findings of this study, main lines’ mainly concern on water depth of approach channel, depth of berth, handling charges and handling equipment facilities. And feeder lines’ main concerns were handling equipment facilities, loading and discharging efficiency, depth of berth and handling charges. Findings of the study suggested concentrating regarding the emphasized areas in order to enhance the competitiveness of terminals, and to increase number of vessel callings at the Port of Colombo. Application of above finding of the terminals within Port of Colombo lead to a far better competition among terminals and would uplift the overall level of services. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AHP" title="AHP">AHP</a>, <a href="https://publications.waset.org/abstracts/search?q=Main%20and%20feeder%20shipping%20lines" title=" Main and feeder shipping lines"> Main and feeder shipping lines</a>, <a href="https://publications.waset.org/abstracts/search?q=criteria" title=" criteria"> criteria</a>, <a href="https://publications.waset.org/abstracts/search?q=sub%20criteria" title=" sub criteria"> sub criteria</a> </p> <a href="https://publications.waset.org/abstracts/23048/analytic-hierarchy-process-for-the-container-terminal-choice-from-multiple-terminals-within-the-port-of-colombo" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23048.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1399</span> Automated Buffer Box Assembly Cell Concept for the Canadian Used Fuel Packing Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dimitrie%20Marinceu">Dimitrie Marinceu</a>, <a href="https://publications.waset.org/abstracts/search?q=Alan%20Murchison"> Alan Murchison</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Canadian Used Fuel Container (UFC) is a mid-size hemispherical headed copper coated steel container measuring 2.5 meters in length and 0.5 meters in diameter containing 48 used fuel bundles. The contained used fuel produces significant gamma radiation requiring automated assembly processes to complete the assembly. The design throughput of 2,500 UFCs per year places constraints on equipment and hot cell design for repeatability, speed of processing, robustness and recovery from upset conditions. After UFC assembly, the UFC is inserted into a Buffer Box (BB). The BB is made from adequately pre-shaped blocks (lower and upper block) and Highly Compacted Bentonite (HCB) material. The blocks are practically ‘sandwiching’ the UFC between them after assembly. This paper identifies one possible approach for the BB automatic assembly cell and processes. Automation of the BB assembly will have a significant positive impact on nuclear safety, quality, productivity, and reliability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=used%20fuel%20packing%20plant" title="used fuel packing plant">used fuel packing plant</a>, <a href="https://publications.waset.org/abstracts/search?q=automatic%20assembly%20cell" title=" automatic assembly cell"> automatic assembly cell</a>, <a href="https://publications.waset.org/abstracts/search?q=used%20fuel%20container" title=" used fuel container"> used fuel container</a>, <a href="https://publications.waset.org/abstracts/search?q=buffer%20box" title=" buffer box"> buffer box</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20geological%20repository" title=" deep geological repository"> deep geological repository</a> </p> <a href="https://publications.waset.org/abstracts/75488/automated-buffer-box-assembly-cell-concept-for-the-canadian-used-fuel-packing-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1398</span> The Exploitation of the MOSES Project Outcomes on Supply Chain Optimisation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Karimpour">Reza Karimpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ports play a decisive role in the EU's external and internal trade, as about 74% of imports and exports and 37% of exchanges go through ports. Although ports, especially Deep Sea Shipping (DSS) ports, are integral nodes within multimodal logistic flows, Short Sea Shipping (SSS) and inland waterways are not so well integrated. The automated vessels and supply chain optimisations for sustainable shortsea shipping (MOSES) project aims to enhance the short sea shipping component of the European supply chain by addressing the vulnerabilities and strains related to the operation of large containerships. The MOSES concept can be shortly described as a large containership (mother-vessel) approaching a DSS port (or a large container terminal). Upon her arrival, a combined intelligent mega-system consisting of the MOSES Autonomous tugboat swarm for manoeuvring and the MOSES adapted AutoMoor system. Then, container handling processes are ready to start moving containers to their destination via hinterland connections (trucks and/or rail) or to be shipped to destinations near small ports (on the mainland or island). For the first case, containers are stored in a dedicated port area (Storage area), waiting to be moved via trucks and/or rail. For the second case, containers are stacked by existing port equipment near-dedicated berths of the DSS port. They then are loaded on the MOSES Innovative Feeder Vessel, equipped with the MOSES Robotic Container-Handling System that provides (semi-) autonomous (un) feeding of the feeder. The Robotic Container-Handling System is remotely monitored through a Shore Control Centre. When the MOSES innovative Feeder vessel approaches the small port, where her docking is achieved without tugboats, she automatically unloads the containers using the Robotic Container-Handling System on the quay or directly on trucks. As a result, ports with minimal or no available infrastructure may be effectively integrated with the container supply chain. Then, the MOSES innovative feeder vessel continues her voyage to the next small port, or she returns to the DSS port. MOSES exploitation activity mainly aims to exploit research outcomes beyond the project, facilitate utilisation of the pilot results by others, and continue the pilot service after the project ends. By the mid-lifetime of the project, the exploitation plan introduces the reader to the MOSES project and its key exploitable results. It provides a plan for delivering the MOSES innovations to the market as part of the overall exploitation plan. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automated%20vessels" title="automated vessels">automated vessels</a>, <a href="https://publications.waset.org/abstracts/search?q=exploitation" title=" exploitation"> exploitation</a>, <a href="https://publications.waset.org/abstracts/search?q=shortsea%20shipping" title=" shortsea shipping"> shortsea shipping</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain" title=" supply chain"> supply chain</a> </p> <a href="https://publications.waset.org/abstracts/151033/the-exploitation-of-the-moses-project-outcomes-on-supply-chain-optimisation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1397</span> Automated Marker Filling System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pinisetti%20Swami%20Sairam">Pinisetti Swami Sairam</a>, <a href="https://publications.waset.org/abstracts/search?q=Meera%20C.%20S."> Meera C. S.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Marker pens are widely used all over the world, mainly in educational institutions due to their neat, accurate and easily erasable nature. But refilling the ink in these pens is a tedious and time consuming job. Besides, it requires careful handling of the pens and ink bottle. A fully automated marker filling system is a solution developed to overcome this problem. The system comprises of pneumatics and electronics modules as well as PLC control. The system design is done in such a way that the empty markers are dumped in a marker container which then sent through different modules of the system in order to refill it automatically. The filled markers are then collected in a marker container. Refilling of ink takes place in different stages inside the system. An ink detecting system detects the colour of the marker which is to be filled and then refilling is done. The processes like capping and uncapping of the cap as well as screwing and unscrewing of the tip are done with the help of robotic arm and gripper. We make use of pneumatics in this system in order to get the precision while performing the capping, screwing, and refilling operations. Thus with the help of this system we can achieve cleanliness, accuracy, effective and time saving in the process of filling a marker. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automated%20system" title="automated system">automated system</a>, <a href="https://publications.waset.org/abstracts/search?q=market%20filling" title=" market filling"> market filling</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20technology" title=" information technology"> information technology</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20and%20automation" title=" control and automation"> control and automation</a> </p> <a href="https://publications.waset.org/abstracts/12067/automated-marker-filling-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12067.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">498</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1396</span> Mitigating the Cost of Empty Container Repositioning through the Virtual Container Yard: An Appraisal of Carriers’ Perceptions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Edirisinghe">L. Edirisinghe</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Jin"> Z. Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20W.%20Wijeratne"> A. W. Wijeratne</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Mudunkotuwa"> R. Mudunkotuwa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Empty container repositioning is a fundamental problem faced by the shipping industry. The virtual container yard is a novel strategy underpinning the container interchange between carriers that could substantially reduce this ever-increasing shipping cost. This paper evaluates the shipping industry perception of the virtual container yard using chi-square tests. It examines if the carriers perceive that the selected independent variables, namely culture, organization, decision, marketing, attitudes, legal, independent, complexity, and stakeholders of carriers, impact the efficiency and benefits of the virtual container yard. There are two major findings of the research. Firstly, carriers view that complexity, attitudes, and stakeholders may impact the effectiveness of container interchange and may influence the perceived benefits of the virtual container yard. Secondly, the three factors of legal, organization, and decision influence only the perceived benefits of the virtual container yard. Accordingly, the implementation of the virtual container yard will be influenced by six key factors, namely complexity, attitudes, stakeholders, legal, organization and decision. Since the virtual container yard could reduce overall shipping costs, it is vital to examine the carriers’ perception of this concept. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=virtual%20container%20yard" title="virtual container yard">virtual container yard</a>, <a href="https://publications.waset.org/abstracts/search?q=imbalance" title=" imbalance"> imbalance</a>, <a href="https://publications.waset.org/abstracts/search?q=management" title=" management"> management</a>, <a href="https://publications.waset.org/abstracts/search?q=inventory" title=" inventory"> inventory</a> </p> <a href="https://publications.waset.org/abstracts/95757/mitigating-the-cost-of-empty-container-repositioning-through-the-virtual-container-yard-an-appraisal-of-carriers-perceptions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95757.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1395</span> Virtual Container Yard: A Paradigm Shift in Container Inventory Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lalith%20Edirisinghe">Lalith Edirisinghe</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhihong%20Jin"> Zhihong Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=A.W.%20Wijeratne"> A.W. Wijeratne</a>, <a href="https://publications.waset.org/abstracts/search?q=Hansa%20Edirisinghe"> Hansa Edirisinghe</a>, <a href="https://publications.waset.org/abstracts/search?q=Lakshmi%20Ranwala%20Rashika%20Mudunkotuwa"> Lakshmi Ranwala Rashika Mudunkotuwa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A paradigm shift in container inventory management (CIM) is a long-awaited industry need. Virtual container yard (VCY) is a concept developed in 2013 and its primary objective is to minimize shipping transport cost through implementing container exchange between carriers. Shipping lines always try to maintain lower container idle time and provide higher customer satisfaction. However, it is disappointing to note that carriers turn a blind eye to the escalating cost resulted from the present inefficient CIM mechanism. The cost of empty container management is simply transferred to the importers and exporters as freight adjustments. It also creates an environmental hazard. Therefore, it has now become a problem for the society. Therefore, a paradigm shift may be required as the present CIM system is not working for common interests of human beings as it should be. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collaboation" title="collaboation">collaboation</a>, <a href="https://publications.waset.org/abstracts/search?q=inventory" title=" inventory"> inventory</a>, <a href="https://publications.waset.org/abstracts/search?q=shipping" title=" shipping"> shipping</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20container%20yard" title=" virtual container yard"> virtual container yard</a> </p> <a href="https://publications.waset.org/abstracts/126828/virtual-container-yard-a-paradigm-shift-in-container-inventory-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126828.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1394</span> Experimental Simulation of Soil Boundary Condition for Dynamic Studies </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omar%20S.%20Qaftan">Omar S. Qaftan</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20T.%20Sabbagh"> T. T. Sabbagh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studies the free-field response by adopting a flexible membrane container as soil boundary for experimental shaking table tests. The influence of the soil container boundary on the soil behaviour and the dynamic soil properties under seismic effect were examined. A flexible container with 1/50 scale factor was adopted in the experimental tests, including construction, instrumentation, and determination of the results of dynamic tests on a shaking table. Horizontal face displacements and accelerations were analysed to determine the influence of the container boundary on the performance of the soil. The outputs results show that the flexible boundary container allows more displacement and larger accelerations. The soil in a rigid wall container cannot deform as similar as the soil in the real field does. Therefore, the response of flexible container tested is believed to be more reliable for soil boundary than that in the rigid container. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil" title="soil">soil</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic" title=" seismic"> seismic</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction" title=" interaction"> interaction</a> </p> <a href="https://publications.waset.org/abstracts/74384/experimental-simulation-of-soil-boundary-condition-for-dynamic-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1393</span> 12x12 MIMO Terminal Antennas Covering the Whole LTE and WiFi Spectrum </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Sanad">Mohamed Sanad</a>, <a href="https://publications.waset.org/abstracts/search?q=Noha%20Hassan"> Noha Hassan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A broadband resonant terminal antenna has been developed. It can be used in different MIMO arrangements such as 2x2, 4x4, 8x8, or even 12x12 MIMO configurations. The antenna covers the whole LTE and WiFi bands besides the existing 2G/3G bands (700-5800 MHz), without using any matching/tuning circuits. Matching circuits significantly reduce the efficiency of any antenna and reduce the battery life. They also reduce the bandwidth because they are frequency dependent. The antenna can be implemented in smartphone handsets, tablets, laptops, notebooks or any other terminal. It is also suitable for different IoT and vehicle applications. The antenna is manufactured from a flexible material and can be bent or folded and shaped in any form to fit any available space in any terminal. It is self-contained and does not need to use the ground plane, the chassis or any other component of the terminal. Hence, it can be mounted on any terminal at different positions and configurations. Its performance does not get affected by the terminal, regardless of its type, shape or size. Moreover, its performance does not get affected by the human body of the terminal’s users. Because of all these unique features of the antenna, multiples of them can be simultaneously used for MIMO diversity coverage in any terminal device with a high isolation and a low correlation factor between them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IOT" title="IOT">IOT</a>, <a href="https://publications.waset.org/abstracts/search?q=LTE" title=" LTE"> LTE</a>, <a href="https://publications.waset.org/abstracts/search?q=MIMO" title=" MIMO"> MIMO</a>, <a href="https://publications.waset.org/abstracts/search?q=terminal%20antenna" title=" terminal antenna"> terminal antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=WiFi" title=" WiFi"> WiFi</a> </p> <a href="https://publications.waset.org/abstracts/86217/12x12-mimo-terminal-antennas-covering-the-whole-lte-and-wifi-spectrum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86217.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1392</span> Virtual Container Yard: Assessing the Perceived Impact of Legal Implications to Container Carriers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Edirisinghe">L. Edirisinghe</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Mukherjee"> P. Mukherjee</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Edirisinghe"> H. Edirisinghe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Virtual Container Yard (VCY) is a modern concept that helps to reduce the empty container repositioning cost of carriers. The concept of VCY is based on container interchange between shipping lines. Although this mechanism has been theoretically accepted by the shipping community as a feasible solution, it has not yet achieved the necessary momentum among container shipping lines (CSL). This paper investigates whether there is any legal influence on this industry myopia about the VCY. It is believed that this is the first publication that focuses on the legal aspects of container exchange between carriers. Not much literature on this subject is available. This study establishes with statistical evidence that there is a phobia prevailing in the shipping industry that exchanging containers with other carriers may lead to various legal implications. The complexity of exchange is two faceted. CSLs assume that offering a container to another carrier (obviously, a competitor in terms of commercial context) or using a container offered by another carrier may lead to undue legal implications. This research reveals that this fear is reflected through four types of perceived components, namely: shipping associate; warehouse associate; network associate; and trading associate. These components carry eighteen subcomponents that comprehensively cover the entire process of a container shipment. The statistical explanation has been supported through regression analysis; INCO terms were used to illustrate the shipping process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=virtual%20container%20yard" title="virtual container yard">virtual container yard</a>, <a href="https://publications.waset.org/abstracts/search?q=legal" title=" legal"> legal</a>, <a href="https://publications.waset.org/abstracts/search?q=maritime%20law" title=" maritime law"> maritime law</a>, <a href="https://publications.waset.org/abstracts/search?q=inventory" title=" inventory"> inventory</a> </p> <a href="https://publications.waset.org/abstracts/111772/virtual-container-yard-assessing-the-perceived-impact-of-legal-implications-to-container-carriers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1391</span> The Virtual Container Yard: Identifying the Persuasive Factors in Container Interchange</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Edirisinghe">L. Edirisinghe</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhihong%20Jin"> Zhihong Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20W.%20Wijeratne"> A. W. Wijeratne</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Mudunkotuwa"> R. Mudunkotuwa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The virtual container yard is an effective solution to the container inventory imbalance problem which is a global issue. It causes substantial cost to carriers, which inadvertently adds to the prices of consumer goods. The virtual container yard is rooted in the fundamentals of container interchange between carriers. If carriers opt to interchange their excess containers with those who are deficit, a substantial part of the empty reposition cost could be eliminated. Unlike in other types of ships, cargo cannot be directly loaded to a container ship. Slots and containers are supplementary components; thus, without containers, a carrier cannot ship cargo if the containers are not available and vice versa. Few decades ago, carriers recognized slot (the unit of space in a container ship) interchange as a viable solution for the imbalance of shipping space. Carriers interchange slots among them and it also increases the advantage of scale of economies in container shipping. Some of these service agreements between mega carriers have provisions to interchange containers too. However, the interchange mechanism is still not popular among carriers for containers. This is the paradox that prevails in the liner shipping industry. At present, carriers reposition their excess empty containers to areas where they are in demand. This research applied factor analysis statistical method. The paper reveals that five major components may influence the virtual container yard namely organisation, practice and culture, legal and environment, international nature, and marketing. There are 12 variables that may impact the virtual container yard, and these are explained in the paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=virtual%20container%20yard" title="virtual container yard">virtual container yard</a>, <a href="https://publications.waset.org/abstracts/search?q=shipping" title=" shipping"> shipping</a>, <a href="https://publications.waset.org/abstracts/search?q=imbalance" title=" imbalance"> imbalance</a>, <a href="https://publications.waset.org/abstracts/search?q=management" title=" management"> management</a>, <a href="https://publications.waset.org/abstracts/search?q=inventory" title=" inventory"> inventory</a> </p> <a href="https://publications.waset.org/abstracts/97126/the-virtual-container-yard-identifying-the-persuasive-factors-in-container-interchange" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97126.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1390</span> Sloshing Response of Liquid in Prismatic Container under Oscillation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20R.%20Maiti">P. R. Maiti</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Bhattacharyya"> S. K. Bhattacharyya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sloshing is a physical phenomenon characterized by the oscillation of unrestrained free surface of liquid in a partially liquid filled container subjected to external excitation. Determination of sloshing frequency in container is important to avoid resonance condition of the system. The complex behavior of the free surface movement and its combined mode of vibration make difficulty for exact analysis of sloshing. In the present study, numerical analysis is carried out for a partially liquid filled tank under external forces. Boundary element approach is used to formulate the sloshing problem in two -dimensional prismatic container with potential flow. Effort has been made to find slosh response for two dimensional problems in partially liquid filled prismatic container. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sloshing" title="sloshing">sloshing</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20element%20method" title=" boundary element method"> boundary element method</a>, <a href="https://publications.waset.org/abstracts/search?q=prismatic%20container" title=" prismatic container"> prismatic container</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillation" title=" oscillation"> oscillation</a> </p> <a href="https://publications.waset.org/abstracts/28051/sloshing-response-of-liquid-in-prismatic-container-under-oscillation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1389</span> Active Treatment of Water Chemistry for Swimming Pools Using Novel Automated System (NAS)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Asiri">Saeed Asiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Novel Automated System (NAS) has the control system of the level of chlorine and acid (i.e. pH level) through a feedback in three forms of synchronous alerts. The feedback is in the form of an alert voice, a visible color, and a message on a digital screen. In addition, NAS contains a slide-in container in which chemicals are used to treat the problems of chlorine and acid levels independently. Moreover, NAS has a net in front of it to clean the pool on the surface of the water from leaves and wastes and so on which is controlled through a remote control. The material used is a lightweight aluminum with mechanical and electric parts integrated with each other. In fact, NAS is qualified to serve as an assistant security guard for swimming pools because it has the characteristics that make it unique and smart. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=novel%20automated%20system" title="novel automated system">novel automated system</a>, <a href="https://publications.waset.org/abstracts/search?q=pool%20safety" title=" pool safety"> pool safety</a>, <a href="https://publications.waset.org/abstracts/search?q=maintenance" title=" maintenance"> maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=pH%20level" title=" pH level"> pH level</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20screen" title=" digital screen"> digital screen</a> </p> <a href="https://publications.waset.org/abstracts/171081/active-treatment-of-water-chemistry-for-swimming-pools-using-novel-automated-system-nas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171081.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1388</span> Selecting the Best Risk Exposure to Assess Collision Risks in Container Terminals </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Ali%20Hasanzadeh">Mohammad Ali Hasanzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Thierry%20Van%20Elslander"> Thierry Van Elslander</a>, <a href="https://publications.waset.org/abstracts/search?q=Eddy%20Van%20De%20Voorde"> Eddy Van De Voorde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> About 90 percent of world merchandise trade by volume being carried by sea. Maritime transport remains as back bone behind the international trade and globalization meanwhile all seaborne goods need using at least two ports as origin and destination. Amid seaborne traded cargos, container traffic is a prosperous market with about 16% in terms of volume. Albeit containerized cargos are less in terms of tonnage but, containers carry the highest value cargos amongst all. That is why efficient handling of containers in ports is very important. Accidents are the foremost causes that lead to port inefficiency and a surge in total transport cost. Having different port safety management systems (PSMS) in place, statistics on port accidents show that numerous accidents occur in ports. Some of them claim peoples’ life; others damage goods, vessels, port equipment and/or the environment. Several accident investigation illustrate that the most common accidents take place throughout transport operation, it sometimes accounts for 68.6% of all events, therefore providing a safer workplace depends on reducing collision risk. In order to quantify risks at the port area different variables can be used as exposure measurement. One of the main motives for defining and using exposure in studies related to infrastructure is to account for the differences in intensity of use, so as to make comparisons meaningful. In various researches related to handling containers in ports and intermodal terminals, different risk exposures and also the likelihood of each event have been selected. Vehicle collision within the port area (10-7 per kilometer of vehicle distance travelled) and dropping containers from cranes, forklift trucks, or rail mounted gantries (1 x 10-5 per lift) are some examples. According to the objective of the current research, three categories of accidents selected for collision risk assessment; fall of container during ship to shore operation, dropping container during transfer operation and collision between vehicles and objects within terminal area. Later on various consequences, exposure and probability identified for each accident. Hence, reducing collision risks profoundly rely on picking the right risk exposures and probability of selected accidents, to prevent collision accidents in container terminals and in the framework of risk calculations, such risk exposures and probabilities can be useful in assessing the effectiveness of safety programs in ports. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=container%20terminal" title="container terminal">container terminal</a>, <a href="https://publications.waset.org/abstracts/search?q=collision" title=" collision"> collision</a>, <a href="https://publications.waset.org/abstracts/search?q=seaborne%20trade" title=" seaborne trade"> seaborne trade</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20exposure" title=" risk exposure"> risk exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20probability" title=" risk probability"> risk probability</a> </p> <a href="https://publications.waset.org/abstracts/31012/selecting-the-best-risk-exposure-to-assess-collision-risks-in-container-terminals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31012.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1387</span> An Empirical Analysis of the Freight Forwarders’ Buying Behaviour: Implications for the Ocean Container Carriers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peter%20Dzakah%20Fanam">Peter Dzakah Fanam</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20O.%20Nguyen"> Hong O. Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20Cahoon"> Stephen Cahoon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to explore the buying behavior of the freight forwarders and to evaluate how their buying decision affects the ocean container carriers’ market share. This study analysed the buying decisions of the freight forwarders and validated the process of stages that the freight forwarders’ pass through before choosing an ocean container carrier. Factor analysis was applied to data collected from 105 freight forwarding companies to unveil the influential factors the freight forwarders’ consider important when selecting an ocean container carrier. This study did not only analysed the buying behaviour of the freight forwarders but also unveiled the influential factors affecting the competitiveness of the ocean container carriers in their market share maximisation. Furthermore, the study have made a methodological contribution that helps in better understanding of the critical factors influencing the selection of the ocean container carriers from the freight forwarders’ perspective. The implications of the freight forwarders’ buying behaviour is important to the ocean container carriers because it have severe effect on the market share of the ocean container carriers and the percentage of customers they control within the liner shipping sector. The findings of this study will help the ocean container carriers to formulate relevant marketing strategies in attracting the freight forwarders in purchasing the liner shipping service. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ocean%20carrier" title="ocean carrier">ocean carrier</a>, <a href="https://publications.waset.org/abstracts/search?q=freight%20forwarder" title=" freight forwarder"> freight forwarder</a>, <a href="https://publications.waset.org/abstracts/search?q=buying%20behaviour" title=" buying behaviour"> buying behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=influential%20factors" title=" influential factors"> influential factors</a> </p> <a href="https://publications.waset.org/abstracts/53684/an-empirical-analysis-of-the-freight-forwarders-buying-behaviour-implications-for-the-ocean-container-carriers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53684.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1386</span> Experimental and Numerical Studies on Hydrogen Behavior in a Small-Scale Container with Passive Autocatalytic Recombiner</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kazuyuki%20Takase">Kazuyuki Takase</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoshihisa%20Hiraki"> Yoshihisa Hiraki</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaku%20Takase"> Gaku Takase</a>, <a href="https://publications.waset.org/abstracts/search?q=Isamu%20Kudo"> Isamu Kudo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most important issue is to ensure the safety of long-term waste storage containers in which fuel debris and radioactive materials are accumulated. In this case, hydrogen generated by water decomposition by radiation is accumulated in the container for a long period of time, so it is necessary to reduce the concentration of hydrogen in the container. In addition, a condition that any power supplies from the outside of the container are unnecessary is requested. Then, radioactive waste storage containers with the passive autocatalytic recombiner (PAR) would be effective. The radioactive waste storage container with PAR was used for moving the fuel debris of the Three Mile Island Unit 2 to the storage location. However, the effect of PAR is not described in detail. Moreover, the reduction of hydrogen concentration during the long-term storage period was performed by the venting system, which was installed on the top of the container. Therefore, development of a long-term storage container with PAR was started with the aim of safely storing fuel debris picked up at the Fukushima Daiichi Nuclear Power Plant for a long period of time. A fundamental experiment for reducing the concentration of hydrogen which generates in a nuclear waste long-term storage container was carried out using a small-scale container with PAR. Moreover, the circulation flow behavior of hydrogen in the small-scale container resulting from the natural convection by the decay heat was clarified. In addition, preliminary numerical analyses were performed to predict the experimental results regarding the circulation flow behavior and the reduction of hydrogen concentration in the small-scale container. From the results of the present study, the validity of the container with PAR was experimentally confirmed on the reduction of hydrogen concentration. In addition, it was predicted numerically that the circulation flow behavior of hydrogen in the small-scale container is blocked by steam which generates by chemical reaction of hydrogen and oxygen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20behavior" title="hydrogen behavior">hydrogen behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=reduction%20of%20concentration" title=" reduction of concentration"> reduction of concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=long-term%20storage%20container" title=" long-term storage container"> long-term storage container</a>, <a href="https://publications.waset.org/abstracts/search?q=small-scale" title=" small-scale"> small-scale</a>, <a href="https://publications.waset.org/abstracts/search?q=PAR" title=" PAR"> PAR</a>, <a href="https://publications.waset.org/abstracts/search?q=experiment" title=" experiment"> experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=analysis" title=" analysis"> analysis</a> </p> <a href="https://publications.waset.org/abstracts/89008/experimental-and-numerical-studies-on-hydrogen-behavior-in-a-small-scale-container-with-passive-autocatalytic-recombiner" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1385</span> Application of Container Technique to High-Risk Children: Its Effect on Their Levels of Stress, Anxiety and Depression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Thi%20Loan">Nguyen Thi Loan</a>, <a href="https://publications.waset.org/abstracts/search?q=Phan%20Ngoc%20Thanh%20Tra"> Phan Ngoc Thanh Tra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Container is one of the techniques used in Eye Movement Desensitization and Reprocessing (EDMR) Therapy. This paper presents the positive results of applying Container technique to “high risk children”. The sample for this research is composed of 60 “high risk children” whose ages range from 11 to 18 years old, housed in Ho Chi Minh City Youth Center. They have been under the program of the Worldwide Orphans Foundation since August 2015 for various reasons such as, loss of parents, anti-social behaviors, homelessness, child labor among others. These “high risk children” are under high levels of stress, anxiety and depression. The subjects were divided into two groups: the control and the experimental with 30 members each. The experimental group was applied Container Technique and the instruments used to measure their levels of stress, anxiety, and depression are DASS-42 and ASEBA. Results show that after applying the Container Technique to the experimental group, there are significant differences between the two groups’ levels of stress, anxiety and depression. The experimental group’s levels of stress, anxiety and depression decreased significantly. The results serve as a basis for the researchers to make an appeal to psychologists to apply Container Technique in doing psychological treatment in a suitable context. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anxiety" title="anxiety">anxiety</a>, <a href="https://publications.waset.org/abstracts/search?q=depression" title=" depression"> depression</a>, <a href="https://publications.waset.org/abstracts/search?q=container%20technique" title=" container technique"> container technique</a>, <a href="https://publications.waset.org/abstracts/search?q=EMDR" title=" EMDR"> EMDR</a> </p> <a href="https://publications.waset.org/abstracts/68824/application-of-container-technique-to-high-risk-children-its-effect-on-their-levels-of-stress-anxiety-and-depression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68824.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1384</span> Layouting Phase II of New Priok Using Adaptive Port Planning Frameworks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustarakh%20Gelfi">Mustarakh Gelfi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tiedo%20Vellinga"> Tiedo Vellinga</a>, <a href="https://publications.waset.org/abstracts/search?q=Poonam%20Taneja"> Poonam Taneja</a>, <a href="https://publications.waset.org/abstracts/search?q=Delon%20Hamonangan"> Delon Hamonangan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of New Priok/Kalibaru as an expansion terminal of the old port has been being done by IPC (Indonesia Port Cooperation) together with the subsidiary company, Port Developer (PT Pengembangan Pelabuhan Indonesia). As stated in the master plan, from 2 phases that had been proposed, phase I has shown its form and even Container Terminal I has been operated in 2016. It was planned principally, the development will be divided into Phase I (2013-2018) consist of 3 container terminals and 2 product terminals and Phase II (2018-2023) consist of 4 container terminals. In fact, the master plan has to be changed due to some major uncertainties which were escaped in prediction. This study is focused on the design scenario of phase II (2035- onwards) to deal with future uncertainty. The outcome is the robust design of phase II of the Kalibaru Terminal taking into account the future changes. Flexibility has to be a major goal in such a large infrastructure project like New Priok in order to deal and manage future uncertainty. The phasing of project needs to be adapted and re-look frequently before being irrelevant to future challenges. One of the frameworks that have been developed by an expert in port planning is Adaptive Port Planning (APP) with scenario-based planning. The idea behind APP framework is the adaptation that might be needed at any moment as an answer to a challenge. It is a continuous procedure that basically aims to increase the lifespan of waterborne transport infrastructure by increasing flexibility in the planning, contracting and design phases. Other methods used in this study are brainstorming with the port authority, desk study, interview and site visit to the real project. The result of the study is expected to be the insight for the port authority of Tanjung Priok over the future look and how it will impact the design of the port. There will be guidelines to do the design in an uncertain environment as well. Solutions of flexibility can be divided into: 1 - Physical solutions, all the items related hard infrastructure in the projects. The common things in this type of solution are using modularity, standardization, multi-functional, shorter and longer design lifetime, reusability, etc. 2 - Non-physical solutions, usually related to the planning processes, decision making and management of the projects. To conclude, APP framework seems quite robust to deal with the problem of designing phase II of New Priok Project for such a long period. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Indonesia%20port" title="Indonesia port">Indonesia port</a>, <a href="https://publications.waset.org/abstracts/search?q=port%27s%20design" title=" port's design"> port's design</a>, <a href="https://publications.waset.org/abstracts/search?q=port%20planning" title=" port planning"> port planning</a>, <a href="https://publications.waset.org/abstracts/search?q=scenario-based%20planning" title=" scenario-based planning"> scenario-based planning</a> </p> <a href="https://publications.waset.org/abstracts/74578/layouting-phase-ii-of-new-priok-using-adaptive-port-planning-frameworks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74578.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1383</span> Numerical Simulation of Sloshing Control Using Input Shaping</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dongjoo%20Kim">Dongjoo Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effective control of sloshing in a liquid container is an important issue to be resolved in many applications. In this study, numerical simulations are performed to design the velocity profile of rectangular container and investigate the effectiveness of input shaping for sloshing control. Trapezoidal profiles of container velocity are chosen to be reference commands and they are convolved with a series of impulses to generate shaped ones that induce minimal residual oscillations. The performances of several input shapers are compared from the viewpoint of transient peak and residual oscillations of sloshing. Results show that sloshing can be effectively controlled by input shaping (Supported by the NRF programs, NRF-2015R1D1A1A01059675, of Korean government). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=input%20shaping" title="input shaping">input shaping</a>, <a href="https://publications.waset.org/abstracts/search?q=rectangular%20container" title=" rectangular container"> rectangular container</a>, <a href="https://publications.waset.org/abstracts/search?q=sloshing" title=" sloshing"> sloshing</a>, <a href="https://publications.waset.org/abstracts/search?q=trapezoidal%20profile" title=" trapezoidal profile"> trapezoidal profile</a> </p> <a href="https://publications.waset.org/abstracts/58020/numerical-simulation-of-sloshing-control-using-input-shaping" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58020.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1382</span> Fast Terminal Synergetic Converter Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Bouchama">Z. Bouchama</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Essounbouli"> N. Essounbouli</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Hamzaoui"> A. Hamzaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Harmas"> M. N. Harmas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new robust finite time synergetic controller is presented based on recently developed synergetic control methodology and a terminal attractor technique. A Fast Terminal Synergetic Control (FTSC) is proposed for controlling DC-DC buck converter. Unlike Synergetic Control (SC) and sliding mode control, the proposed control scheme has the characteristics of finite time convergence and chattering free phenomena. Simulation of stabilization and reference tracking for buck converter systems illustrates the approach effectiveness while stability is assured in the Lyapunov sense and converse Lyapunov results involving scalar differential inequalities are given for finite-time stability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dc-dc%20buck%20converter" title="dc-dc buck converter">dc-dc buck converter</a>, <a href="https://publications.waset.org/abstracts/search?q=synergetic%20control" title=" synergetic control"> synergetic control</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20time%20convergence" title=" finite time convergence"> finite time convergence</a>, <a href="https://publications.waset.org/abstracts/search?q=terminal%20synergetic%20control" title=" terminal synergetic control"> terminal synergetic control</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20terminal%20synergetic%20control" title=" fast terminal synergetic control"> fast terminal synergetic control</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov" title=" Lyapunov"> Lyapunov</a> </p> <a href="https://publications.waset.org/abstracts/7054/fast-terminal-synergetic-converter-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1381</span> Fast Terminal Sliding Mode Controller For Quadrotor UAV</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vahid%20Tabrizi">Vahid Tabrizi</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20GHasemi">Reza GHasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmadreza%20Vali">Ahmadreza Vali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents robust nonlinear control law for a quadrotor UAV using fast terminal sliding mode control. Fast terminal sliding mode idea is used for introducing a nonlinear sliding variable that guarantees the finite time convergence in sliding phase. Then, in reaching phase for removing chattering and producing smooth control signal, continuous approximation idea is used. Simulation results show that the proposed algorithm is robust against parameter uncertainty and has better performance than conventional sliding mode for controlling a quadrotor UAV. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quadrotor%20UAV" title="quadrotor UAV">quadrotor UAV</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20terminal%20sliding%20mode" title=" fast terminal sliding mode"> fast terminal sliding mode</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20order%20sliding%20mode%20t" title=" second order sliding mode t"> second order sliding mode t</a> </p> <a href="https://publications.waset.org/abstracts/16258/fast-terminal-sliding-mode-controller-for-quadrotor-uav" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16258.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">547</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1380</span> A System Framework for Dynamic Service Deployment in Container-Based Computing Platform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shuen-Tai%20Wang">Shuen-Tai Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Ching%20Lin"> Yu-Ching Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsi-Ya%20Chang"> Hsi-Ya Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cloud computing and virtualization technology have brought an innovative way for people to develop and use software nowadays. However, conventional virtualization comes at the expense of performance loss for applications. Container-based virtualization could be an option as it potentially reduces overhead and minimizes performance decline of the service platform. In this paper, we introduce a system framework and present an implementation of resource broker for dynamic cloud service deployment on the container-based platform to facilitate the efficient execution and improve the utilization. We target the load-aware service deployment approach for task ranking scenario. This proposed effort can collaborate with resource management system to adaptively deploy services according to the different requests. In particular, our approach relies on composing service immediately onto appropriate container according to user’s requirement in order to conserve the waiting time. Our evaluation shows how efficient of the service deployment is and how to expand its applicability to support the variety of cloud service. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title="cloud computing">cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=container-based%20virtualization" title=" container-based virtualization"> container-based virtualization</a>, <a href="https://publications.waset.org/abstracts/search?q=resource%20broker" title=" resource broker"> resource broker</a>, <a href="https://publications.waset.org/abstracts/search?q=service%20deployment" title=" service deployment"> service deployment</a> </p> <a href="https://publications.waset.org/abstracts/92510/a-system-framework-for-dynamic-service-deployment-in-container-based-computing-platform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automated%20container%20terminal&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automated%20container%20terminal&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automated%20container%20terminal&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automated%20container%20terminal&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automated%20container%20terminal&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automated%20container%20terminal&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automated%20container%20terminal&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automated%20container%20terminal&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automated%20container%20terminal&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automated%20container%20terminal&page=46">46</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automated%20container%20terminal&page=47">47</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automated%20container%20terminal&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>