CINXE.COM
Doletha Szebenyi | Cornell University - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Doletha Szebenyi | Cornell University - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="p6sFzy7bqiwAD2pvE/ywJexeSaA0862m+AMkCZdNuqJYWDG4JP59nP1nNXSFhuK12G1iq5FhFgYWvmx7MilT8g==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-1c712297ae3ac71207193b1bae0ecf1aae125886850f62c9c0139dd867630797.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="doletha szebenyi" /> <meta name="description" content="Doletha Szebenyi, Cornell University: 4 Followers, 3 Following, 42 Research papers. Research interest: Chess." /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '65a690de66ffd0e9f9c3f528feae2fde26a171eb'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15272,"monthly_visitors":"113 million","monthly_visitor_count":113784677,"monthly_visitor_count_in_millions":113,"user_count":277455216,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732721659000); window.Aedu.timeDifference = new Date().getTime() - 1732721659000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-296162c7af6fd81dcdd76f1a94f1fad04fb5f647401337d136fe8b68742170b1.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-abfe14709f87872daacfe98b00812033ac214684652bef9d49abfed8b549f9f6.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-57c07c4415ad4e6a22ced3639e4df9a5401c1e44346ffeb379134e0f2293c589.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://cornell.academia.edu/DolethaSzebenyi" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-b83a2fd9dd2a75882a43a58ee3160b1ab3b6f66ac7d1ef9248d5ee4c09cebaae.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":33002650,"first_name":"Doletha","middle_initials":null,"last_name":"Szebenyi","page_name":"DolethaSzebenyi","domain_name":"cornell","created_at":"2015-07-12T07:19:02.115-07:00","display_name":"Doletha Szebenyi","url":"https://cornell.academia.edu/DolethaSzebenyi","photo":"/images/s65_no_pic.png","has_photo":false,"department":{"id":1574826,"name":"CHESS","url":"https://cornell.academia.edu/Departments/CHESS/Documents","university":{"id":93,"name":"Cornell University","url":"https://cornell.academia.edu/"}},"position":"Adjunct","position_id":9,"is_analytics_public":false,"interests":[{"id":95838,"name":"Chess","url":"https://www.academia.edu/Documents/in/Chess"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://cornell.academia.edu/DolethaSzebenyi","location":"/DolethaSzebenyi","scheme":"https","host":"cornell.academia.edu","port":null,"pathname":"/DolethaSzebenyi","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-21de4e08-fdbd-4e13-a8a4-79219c316d70"></div> <div id="ProfileCheckPaperUpdate-react-component-21de4e08-fdbd-4e13-a8a4-79219c316d70"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Doletha Szebenyi</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://cornell.academia.edu/">Cornell University</a>, <a class="u-tcGrayDarker" href="https://cornell.academia.edu/Departments/CHESS/Documents">CHESS</a>, <span class="u-tcGrayDarker">Adjunct</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Doletha" data-follow-user-id="33002650" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="33002650"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">4</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">3</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">3</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="33002650" href="https://www.academia.edu/Documents/in/Chess"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://cornell.academia.edu/DolethaSzebenyi","location":"/DolethaSzebenyi","scheme":"https","host":"cornell.academia.edu","port":null,"pathname":"/DolethaSzebenyi","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Chess"]}" data-trace="false" data-dom-id="Pill-react-component-1183635a-80f0-47aa-bcaf-22716632f244"></div> <div id="Pill-react-component-1183635a-80f0-47aa-bcaf-22716632f244"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Doletha Szebenyi</h3></div><div class="js-work-strip profile--work_container" data-work-id="71703801"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/71703801/A_high_pressure_macromolecular_crystallography_capability_developed_at_CHESS"><img alt="Research paper thumbnail of A high-pressure macromolecular crystallography capability developed at CHESS" class="work-thumbnail" src="https://attachments.academia-assets.com/80936977/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/71703801/A_high_pressure_macromolecular_crystallography_capability_developed_at_CHESS">A high-pressure macromolecular crystallography capability developed at CHESS</a></div><div class="wp-workCard_item"><span>Acta Crystallographica Section A Foundations and Advances</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="05dc9a93ecf6709038f8579eb014468e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":80936977,"asset_id":71703801,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/80936977/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="71703801"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="71703801"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 71703801; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=71703801]").text(description); $(".js-view-count[data-work-id=71703801]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 71703801; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='71703801']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 71703801, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "05dc9a93ecf6709038f8579eb014468e" } } $('.js-work-strip[data-work-id=71703801]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":71703801,"title":"A high-pressure macromolecular crystallography capability developed at CHESS","translated_title":"","metadata":{"publisher":"International Union of Crystallography (IUCr)","publication_name":"Acta Crystallographica Section A Foundations and Advances"},"translated_abstract":null,"internal_url":"https://www.academia.edu/71703801/A_high_pressure_macromolecular_crystallography_capability_developed_at_CHESS","translated_internal_url":"","created_at":"2022-02-16T12:29:24.733-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33002650,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":80936977,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80936977/thumbnails/1.jpg","file_name":"a59201.pdf","download_url":"https://www.academia.edu/attachments/80936977/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_high_pressure_macromolecular_crystallo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80936977/a59201-libre.pdf?1645045255=\u0026response-content-disposition=attachment%3B+filename%3DA_high_pressure_macromolecular_crystallo.pdf\u0026Expires=1732713809\u0026Signature=JMvWtQA02TSSZpmnxym6~JjD-DU8Ujlkxa1aAYEivoPXNG4dKglqAQsaFpELp24s4Mdom8vx~W-30BHX6TNqzaXbtB3zQgfWXTXapVMgtaTmzJi8JLRA5i2X~hLBORQA0J452Jd7B8HK~UL6oaUs1wxfUE3ljAzldytDe9iEYTBbk7ci31pjt2lPCxe0S68YF9xUDiKD~W4rlIQ2QaPzY-B~IACbIIlsF5AyYlcfEhRhMpGj2rFk-DjwTJatFpTJjx5Z2ZY40R6maLO4H2jI5uSPl3oznXaKxMUbpVkCs1fvvVtrjlOBAgpeW45fKquBc5J23zEx5BqjUqE~ySF2zg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_high_pressure_macromolecular_crystallography_capability_developed_at_CHESS","translated_slug":"","page_count":1,"language":"en","content_type":"Work","owner":{"id":33002650,"first_name":"Doletha","middle_initials":null,"last_name":"Szebenyi","page_name":"DolethaSzebenyi","domain_name":"cornell","created_at":"2015-07-12T07:19:02.115-07:00","display_name":"Doletha Szebenyi","url":"https://cornell.academia.edu/DolethaSzebenyi"},"attachments":[{"id":80936977,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80936977/thumbnails/1.jpg","file_name":"a59201.pdf","download_url":"https://www.academia.edu/attachments/80936977/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_high_pressure_macromolecular_crystallo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80936977/a59201-libre.pdf?1645045255=\u0026response-content-disposition=attachment%3B+filename%3DA_high_pressure_macromolecular_crystallo.pdf\u0026Expires=1732713809\u0026Signature=JMvWtQA02TSSZpmnxym6~JjD-DU8Ujlkxa1aAYEivoPXNG4dKglqAQsaFpELp24s4Mdom8vx~W-30BHX6TNqzaXbtB3zQgfWXTXapVMgtaTmzJi8JLRA5i2X~hLBORQA0J452Jd7B8HK~UL6oaUs1wxfUE3ljAzldytDe9iEYTBbk7ci31pjt2lPCxe0S68YF9xUDiKD~W4rlIQ2QaPzY-B~IACbIIlsF5AyYlcfEhRhMpGj2rFk-DjwTJatFpTJjx5Z2ZY40R6maLO4H2jI5uSPl3oznXaKxMUbpVkCs1fvvVtrjlOBAgpeW45fKquBc5J23zEx5BqjUqE~ySF2zg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"}],"urls":[{"id":17750267,"url":"http://journals.iucr.org/a/issues/2020/a1/00/a59201/a59201.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="58804554"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/58804554/CHESS_U_new_beamlines_new_opportunities_at_the_Cornell_High_Energy_Synchrotron_Source"><img alt="Research paper thumbnail of CHESS-U: new beamlines, new opportunities at the Cornell High Energy Synchrotron Source" class="work-thumbnail" src="https://attachments.academia-assets.com/73038623/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/58804554/CHESS_U_new_beamlines_new_opportunities_at_the_Cornell_High_Energy_Synchrotron_Source">CHESS-U: new beamlines, new opportunities at the Cornell High Energy Synchrotron Source</a></div><div class="wp-workCard_item"><span>Acta Crystallographica Section A Foundations and Advances</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3dc849bdea99a2dbb604b33200c8ef83" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":73038623,"asset_id":58804554,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/73038623/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="58804554"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="58804554"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 58804554; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=58804554]").text(description); $(".js-view-count[data-work-id=58804554]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 58804554; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='58804554']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 58804554, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3dc849bdea99a2dbb604b33200c8ef83" } } $('.js-work-strip[data-work-id=58804554]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":58804554,"title":"CHESS-U: new beamlines, new opportunities at the Cornell High Energy Synchrotron Source","translated_title":"","metadata":{"publisher":"International Union of Crystallography (IUCr)","publication_name":"Acta Crystallographica Section A Foundations and Advances"},"translated_abstract":null,"internal_url":"https://www.academia.edu/58804554/CHESS_U_new_beamlines_new_opportunities_at_the_Cornell_High_Energy_Synchrotron_Source","translated_internal_url":"","created_at":"2021-10-18T05:55:25.268-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33002650,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":73038623,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/73038623/thumbnails/1.jpg","file_name":"a57885.pdf","download_url":"https://www.academia.edu/attachments/73038623/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"CHESS_U_new_beamlines_new_opportunities.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/73038623/a57885-libre.pdf?1634565326=\u0026response-content-disposition=attachment%3B+filename%3DCHESS_U_new_beamlines_new_opportunities.pdf\u0026Expires=1732713809\u0026Signature=di6-58ETWfPH1GUZnZGKcblT7R1CPmpoZWXK9ODgEUfoD8Jvp27wE1V~UJThvC~64gZpzjuncNIp3l3JQL15EObCVF86L87BwsnBFO28G0-Ahm08Ms3zMn~vSU1xhPDx0F6shP0OTciC4jsZM2~G3sY1LSF9rryvpath2AZv0eJ-MkCDQDeT7ygzGjSBhlqCqEN7~xi-5UNF8ZXLURNH1JtsE1hrHckNdX-8Xh3eaT504kC6v2wqHPjTTUp0J~bjHjC6Hm3SVOELBIjplVvv6ulGUzO4WNssMMdu-4x8QR6QqWT7HmSRv0tUEUi2SBrGuQoofFZoXbgMhPS7Fkabwg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"CHESS_U_new_beamlines_new_opportunities_at_the_Cornell_High_Energy_Synchrotron_Source","translated_slug":"","page_count":1,"language":"is","content_type":"Work","owner":{"id":33002650,"first_name":"Doletha","middle_initials":null,"last_name":"Szebenyi","page_name":"DolethaSzebenyi","domain_name":"cornell","created_at":"2015-07-12T07:19:02.115-07:00","display_name":"Doletha Szebenyi","url":"https://cornell.academia.edu/DolethaSzebenyi"},"attachments":[{"id":73038623,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/73038623/thumbnails/1.jpg","file_name":"a57885.pdf","download_url":"https://www.academia.edu/attachments/73038623/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"CHESS_U_new_beamlines_new_opportunities.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/73038623/a57885-libre.pdf?1634565326=\u0026response-content-disposition=attachment%3B+filename%3DCHESS_U_new_beamlines_new_opportunities.pdf\u0026Expires=1732713809\u0026Signature=di6-58ETWfPH1GUZnZGKcblT7R1CPmpoZWXK9ODgEUfoD8Jvp27wE1V~UJThvC~64gZpzjuncNIp3l3JQL15EObCVF86L87BwsnBFO28G0-Ahm08Ms3zMn~vSU1xhPDx0F6shP0OTciC4jsZM2~G3sY1LSF9rryvpath2AZv0eJ-MkCDQDeT7ygzGjSBhlqCqEN7~xi-5UNF8ZXLURNH1JtsE1hrHckNdX-8Xh3eaT504kC6v2wqHPjTTUp0J~bjHjC6Hm3SVOELBIjplVvv6ulGUzO4WNssMMdu-4x8QR6QqWT7HmSRv0tUEUi2SBrGuQoofFZoXbgMhPS7Fkabwg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":13315681,"url":"http://journals.iucr.org/a/issues/2019/a1/00/a57885/a57885.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="58804553"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/58804553/Unexpected_roles_for_ADH1_and_SORD_in_catalyzing_the_final_step_of_erythritol_biosynthesis"><img alt="Research paper thumbnail of Unexpected roles for ADH1 and SORD in catalyzing the final step of erythritol biosynthesis" class="work-thumbnail" src="https://attachments.academia-assets.com/73038788/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/58804553/Unexpected_roles_for_ADH1_and_SORD_in_catalyzing_the_final_step_of_erythritol_biosynthesis">Unexpected roles for ADH1 and SORD in catalyzing the final step of erythritol biosynthesis</a></div><div class="wp-workCard_item"><span>Journal of Biological Chemistry</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9970020203f6912f1df46526f94a2689" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":73038788,"asset_id":58804553,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/73038788/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="58804553"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="58804553"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 58804553; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=58804553]").text(description); $(".js-view-count[data-work-id=58804553]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 58804553; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='58804553']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 58804553, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9970020203f6912f1df46526f94a2689" } } $('.js-work-strip[data-work-id=58804553]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":58804553,"title":"Unexpected roles for ADH1 and SORD in catalyzing the final step of erythritol biosynthesis","translated_title":"","metadata":{"publisher":"American Society for Biochemistry \u0026 Molecular Biology (ASBMB)","publication_name":"Journal of Biological Chemistry"},"translated_abstract":null,"internal_url":"https://www.academia.edu/58804553/Unexpected_roles_for_ADH1_and_SORD_in_catalyzing_the_final_step_of_erythritol_biosynthesis","translated_internal_url":"","created_at":"2021-10-18T05:55:25.097-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33002650,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":73038788,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/73038788/thumbnails/1.jpg","file_name":"jbc.RA119.009049.full.pdf","download_url":"https://www.academia.edu/attachments/73038788/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Unexpected_roles_for_ADH1_and_SORD_in_ca.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/73038788/jbc.RA119.009049.full-libre.pdf?1634565324=\u0026response-content-disposition=attachment%3B+filename%3DUnexpected_roles_for_ADH1_and_SORD_in_ca.pdf\u0026Expires=1732713809\u0026Signature=WlOMgVA5~u-r0f8gBG2lMeMjNSVvfAH4DcjNVUZaWJkqftXR0~DTYg5ZNnGr8YbYf5ffq~Se-LohNMt5qy77bzl0BFxsA1mPEc-JvaZ5BYgd2kysQLZA0osxUGVMPLy91gjt1io0JsFdnjqtVtvKfbJzVFk5JNTzB-gOSA2VEKvweymDmhPO6Tu5fro8EwjFdvVr9BptRuw5LPCrb2h~8i8XfhSJhKdhWofd9Dvs4FSjNiozuXT8GVjDl9Rt5G9KY3t3wDKHBGgCbLe5--wwLfrHVAllE-87KEBFZY0sVvnflF4Yus42QnGJHcm1ORLxZtKldD7WBUiK1f~pErutVA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Unexpected_roles_for_ADH1_and_SORD_in_catalyzing_the_final_step_of_erythritol_biosynthesis","translated_slug":"","page_count":32,"language":"en","content_type":"Work","owner":{"id":33002650,"first_name":"Doletha","middle_initials":null,"last_name":"Szebenyi","page_name":"DolethaSzebenyi","domain_name":"cornell","created_at":"2015-07-12T07:19:02.115-07:00","display_name":"Doletha Szebenyi","url":"https://cornell.academia.edu/DolethaSzebenyi"},"attachments":[{"id":73038788,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/73038788/thumbnails/1.jpg","file_name":"jbc.RA119.009049.full.pdf","download_url":"https://www.academia.edu/attachments/73038788/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Unexpected_roles_for_ADH1_and_SORD_in_ca.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/73038788/jbc.RA119.009049.full-libre.pdf?1634565324=\u0026response-content-disposition=attachment%3B+filename%3DUnexpected_roles_for_ADH1_and_SORD_in_ca.pdf\u0026Expires=1732713809\u0026Signature=WlOMgVA5~u-r0f8gBG2lMeMjNSVvfAH4DcjNVUZaWJkqftXR0~DTYg5ZNnGr8YbYf5ffq~Se-LohNMt5qy77bzl0BFxsA1mPEc-JvaZ5BYgd2kysQLZA0osxUGVMPLy91gjt1io0JsFdnjqtVtvKfbJzVFk5JNTzB-gOSA2VEKvweymDmhPO6Tu5fro8EwjFdvVr9BptRuw5LPCrb2h~8i8XfhSJhKdhWofd9Dvs4FSjNiozuXT8GVjDl9Rt5G9KY3t3wDKHBGgCbLe5--wwLfrHVAllE-87KEBFZY0sVvnflF4Yus42QnGJHcm1ORLxZtKldD7WBUiK1f~pErutVA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":18520,"name":"Biological Chemistry","url":"https://www.academia.edu/Documents/in/Biological_Chemistry"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":3763225,"name":"Medical and Health Sciences","url":"https://www.academia.edu/Documents/in/Medical_and_Health_Sciences"}],"urls":[{"id":13315680,"url":"https://syndication.highwire.org/content/doi/10.1074/jbc.RA119.009049"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="58804552"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/58804552/Endogenous_Synthesis_of_Erythritol_a_Novel_Biomarker_of_Weight_Gain_P15_016_19_"><img alt="Research paper thumbnail of Endogenous Synthesis of Erythritol, a Novel Biomarker of Weight Gain (P15-016-19)" class="work-thumbnail" src="https://attachments.academia-assets.com/73038781/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/58804552/Endogenous_Synthesis_of_Erythritol_a_Novel_Biomarker_of_Weight_Gain_P15_016_19_">Endogenous Synthesis of Erythritol, a Novel Biomarker of Weight Gain (P15-016-19)</a></div><div class="wp-workCard_item"><span>Current Developments in Nutrition</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Objectives Serum erythritol is associated with central adiposity gain in young adults. Erythritol...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Objectives Serum erythritol is associated with central adiposity gain in young adults. Erythritol, a 4-carbon polyol, is synthesized endogenously from erythrose through the pentose phosphate pathway. We have identified two enzymes which catalyze this reaction: alcohol dehydrogenase 1 (ADH1) and sorbitol dehydrogenase (SORD). Interestingly, ADH1 isoforms ADH1B1 and ADH1C2 catalyze NADPH-dependent synthesis of erythritol in vitro, but ADH1B1 does not. In A549 cells, siRNA knockdown of SORD levels to less than 15% of control levels reduced erythritol by 50%. A549 cells also have low levels of ADH1 expression. This indicates that other enzymes may be capable of endogenous erythritol production. Based on its high degree of homology to ADH1, we hypothesize that ADH4 also catalyzes erythritol synthesis. The objective of this study was to further elucidate the mechanism of erythritol synthesis by: determining key differences between the active site of ADH1B2 compared to ADH1B1 and SORD, and...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="480505fdc2b906640e79df9b891cb0f3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":73038781,"asset_id":58804552,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/73038781/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="58804552"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="58804552"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 58804552; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=58804552]").text(description); $(".js-view-count[data-work-id=58804552]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 58804552; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='58804552']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 58804552, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "480505fdc2b906640e79df9b891cb0f3" } } $('.js-work-strip[data-work-id=58804552]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":58804552,"title":"Endogenous Synthesis of Erythritol, a Novel Biomarker of Weight Gain (P15-016-19)","translated_title":"","metadata":{"abstract":"Objectives Serum erythritol is associated with central adiposity gain in young adults. Erythritol, a 4-carbon polyol, is synthesized endogenously from erythrose through the pentose phosphate pathway. We have identified two enzymes which catalyze this reaction: alcohol dehydrogenase 1 (ADH1) and sorbitol dehydrogenase (SORD). Interestingly, ADH1 isoforms ADH1B1 and ADH1C2 catalyze NADPH-dependent synthesis of erythritol in vitro, but ADH1B1 does not. In A549 cells, siRNA knockdown of SORD levels to less than 15% of control levels reduced erythritol by 50%. A549 cells also have low levels of ADH1 expression. This indicates that other enzymes may be capable of endogenous erythritol production. Based on its high degree of homology to ADH1, we hypothesize that ADH4 also catalyzes erythritol synthesis. The objective of this study was to further elucidate the mechanism of erythritol synthesis by: determining key differences between the active site of ADH1B2 compared to ADH1B1 and SORD, and...","publisher":"Oxford University Press (OUP)","publication_name":"Current Developments in Nutrition"},"translated_abstract":"Objectives Serum erythritol is associated with central adiposity gain in young adults. Erythritol, a 4-carbon polyol, is synthesized endogenously from erythrose through the pentose phosphate pathway. We have identified two enzymes which catalyze this reaction: alcohol dehydrogenase 1 (ADH1) and sorbitol dehydrogenase (SORD). Interestingly, ADH1 isoforms ADH1B1 and ADH1C2 catalyze NADPH-dependent synthesis of erythritol in vitro, but ADH1B1 does not. In A549 cells, siRNA knockdown of SORD levels to less than 15% of control levels reduced erythritol by 50%. A549 cells also have low levels of ADH1 expression. This indicates that other enzymes may be capable of endogenous erythritol production. Based on its high degree of homology to ADH1, we hypothesize that ADH4 also catalyzes erythritol synthesis. The objective of this study was to further elucidate the mechanism of erythritol synthesis by: determining key differences between the active site of ADH1B2 compared to ADH1B1 and SORD, and...","internal_url":"https://www.academia.edu/58804552/Endogenous_Synthesis_of_Erythritol_a_Novel_Biomarker_of_Weight_Gain_P15_016_19_","translated_internal_url":"","created_at":"2021-10-18T05:55:24.928-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33002650,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":73038781,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/73038781/thumbnails/1.jpg","file_name":"nzz037.p15-016-19.pdf","download_url":"https://www.academia.edu/attachments/73038781/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Endogenous_Synthesis_of_Erythritol_a_Nov.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/73038781/nzz037.p15-016-19-libre.pdf?1634565317=\u0026response-content-disposition=attachment%3B+filename%3DEndogenous_Synthesis_of_Erythritol_a_Nov.pdf\u0026Expires=1732713810\u0026Signature=XtIAbUv6vris9nxpHoeeGq5kS5LOrVjO9jezVKDRTQjgEYOWfi52IucyzwcbFFFla4~ouveOONmpkWcLPTjpFz3slWqa~gB9bd1Rky0F6xd6fQ-xPFcWfiyFmQb9twPscGO1E8GXfATOQA7gRGjNX8KnnYHX5TLdIsc6uNsfE7EhRN1YVX~HHalAxK7yqo14ecjMcoo1DH5-UDd4iG9Cc~IGHD2md~CgqC9scmLLZnBomToqBXRibRfDQ~2HiJXGBptueFjypSmWrJ~h7XplOYdcD7qYhAH~RpIumX0s1mBchRc3yfFFwtQ0~quHtB~ihvagFEu01yAS2qqfd0EezA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Endogenous_Synthesis_of_Erythritol_a_Novel_Biomarker_of_Weight_Gain_P15_016_19_","translated_slug":"","page_count":1,"language":"en","content_type":"Work","owner":{"id":33002650,"first_name":"Doletha","middle_initials":null,"last_name":"Szebenyi","page_name":"DolethaSzebenyi","domain_name":"cornell","created_at":"2015-07-12T07:19:02.115-07:00","display_name":"Doletha Szebenyi","url":"https://cornell.academia.edu/DolethaSzebenyi"},"attachments":[{"id":73038781,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/73038781/thumbnails/1.jpg","file_name":"nzz037.p15-016-19.pdf","download_url":"https://www.academia.edu/attachments/73038781/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Endogenous_Synthesis_of_Erythritol_a_Nov.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/73038781/nzz037.p15-016-19-libre.pdf?1634565317=\u0026response-content-disposition=attachment%3B+filename%3DEndogenous_Synthesis_of_Erythritol_a_Nov.pdf\u0026Expires=1732713810\u0026Signature=XtIAbUv6vris9nxpHoeeGq5kS5LOrVjO9jezVKDRTQjgEYOWfi52IucyzwcbFFFla4~ouveOONmpkWcLPTjpFz3slWqa~gB9bd1Rky0F6xd6fQ-xPFcWfiyFmQb9twPscGO1E8GXfATOQA7gRGjNX8KnnYHX5TLdIsc6uNsfE7EhRN1YVX~HHalAxK7yqo14ecjMcoo1DH5-UDd4iG9Cc~IGHD2md~CgqC9scmLLZnBomToqBXRibRfDQ~2HiJXGBptueFjypSmWrJ~h7XplOYdcD7qYhAH~RpIumX0s1mBchRc3yfFFwtQ0~quHtB~ihvagFEu01yAS2qqfd0EezA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":13315679,"url":"http://academic.oup.com/cdn/article-pdf/3/Supplement_1/nzz037.P15-016-19/28960073/nzz037.p15-016-19.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="58804551"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/58804551/Trigohexagonite_A_Rare_Quaternary_Stoichiometry_Network"><img alt="Research paper thumbnail of Trigohexagonite: A Rare Quaternary Stoichiometry Network" class="work-thumbnail" src="https://attachments.academia-assets.com/73038620/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/58804551/Trigohexagonite_A_Rare_Quaternary_Stoichiometry_Network">Trigohexagonite: A Rare Quaternary Stoichiometry Network</a></div><div class="wp-workCard_item"><span>Nature Precedings</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3d45e1010a9b4b00b94bc8f06922c63a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":73038620,"asset_id":58804551,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/73038620/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="58804551"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="58804551"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 58804551; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=58804551]").text(description); $(".js-view-count[data-work-id=58804551]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 58804551; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='58804551']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 58804551, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3d45e1010a9b4b00b94bc8f06922c63a" } } $('.js-work-strip[data-work-id=58804551]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":58804551,"title":"Trigohexagonite: A Rare Quaternary Stoichiometry Network","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","grobid_abstract":"A novel 3-,4-connected network is reported in this communication that is a rare example of a three-dimensional (3D) network with a quaternary stoichiometry, in which 4 distinct sites of bonding occur in the unit of pattern of the material. The net lies in the hexagonal space group P-6m2 (#187) and there are 10 vertices (or atoms) in the unit cell, including 4 sites of approximately trigonal planar coordination and 6 sites of approximately tetrahedral coordination. All vertices (atoms) in the network sit on special positions in the P-6m2 space group, giving the network high 6-fold symmetry axes parallel to the crystallographic c-axis. The structure has thus been named trigohexagonite in a loose analogy with its hexagonite crystalline homolog, sitting in the hexagonal space group P6/mmm (#191). The Wells point symbol for the trigohexagonite network is given by (7 3)(6 3 8 3) 3 (6.7 2) 3 (3.7 4 .8) 3 where this symbol indicates the quaternary stoichiometry of the network. The Wells point symbol also reveals that the only structural strain present in the network comes from the presence of the 3-gon, cyclopropane-like moieties in it, built on tetrahedral vertices. This structural motif of cyclopropane-like rings has precedent in organic chemistry and it adds character to the overall 6-fold symmetry of the trigohexagonite pattern. Also, the overall network contains rare trimethylenemethane-like clusters of 4 trigonal planar vertices (atoms), bonded together, that constitute the 3connected component of the network. Both C 10 and B 10 realizations are briefly described.","publication_name":"Nature Precedings","grobid_abstract_attachment_id":73038620},"translated_abstract":null,"internal_url":"https://www.academia.edu/58804551/Trigohexagonite_A_Rare_Quaternary_Stoichiometry_Network","translated_internal_url":"","created_at":"2021-10-18T05:55:24.758-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33002650,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":73038620,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/73038620/thumbnails/1.jpg","file_name":"npre.2008.1650.1.pdf","download_url":"https://www.academia.edu/attachments/73038620/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Trigohexagonite_A_Rare_Quaternary_Stoich.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/73038620/npre.2008.1650.1-libre.pdf?1634565328=\u0026response-content-disposition=attachment%3B+filename%3DTrigohexagonite_A_Rare_Quaternary_Stoich.pdf\u0026Expires=1732713810\u0026Signature=Uvj6yeVKbNEhk2RG7lJ0ccI5A8LsIvoQj4ZpbyLSVw5PZ3y8z6rQR9sO2szJa5Oxs1LiYkYlPCtQt0RqleUfUwYToWiA7GpjJQMAi9JxIsJVMauz-dxYOefg4o2lO8xHMnie0vKSbePZJm3PhhDlMksPyIdvy4i5v6a2ayt5Z2fRI~qQqd3Tr5eG07JT-euG1lMvAahTO8Jc07wZJA2hFyL3xI2ydVSFken4Z64JwwFSLVZmPVJUlKzBXp9ZnEVch6qJwfkZr7BckmLVzkT4M~obzLxBZC6WIYS82HnxftpXcToXByfIv~p~t~JwzBg7U88N7PqdYxyjGCmO3VXveA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Trigohexagonite_A_Rare_Quaternary_Stoichiometry_Network","translated_slug":"","page_count":24,"language":"en","content_type":"Work","owner":{"id":33002650,"first_name":"Doletha","middle_initials":null,"last_name":"Szebenyi","page_name":"DolethaSzebenyi","domain_name":"cornell","created_at":"2015-07-12T07:19:02.115-07:00","display_name":"Doletha Szebenyi","url":"https://cornell.academia.edu/DolethaSzebenyi"},"attachments":[{"id":73038620,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/73038620/thumbnails/1.jpg","file_name":"npre.2008.1650.1.pdf","download_url":"https://www.academia.edu/attachments/73038620/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Trigohexagonite_A_Rare_Quaternary_Stoich.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/73038620/npre.2008.1650.1-libre.pdf?1634565328=\u0026response-content-disposition=attachment%3B+filename%3DTrigohexagonite_A_Rare_Quaternary_Stoich.pdf\u0026Expires=1732713810\u0026Signature=Uvj6yeVKbNEhk2RG7lJ0ccI5A8LsIvoQj4ZpbyLSVw5PZ3y8z6rQR9sO2szJa5Oxs1LiYkYlPCtQt0RqleUfUwYToWiA7GpjJQMAi9JxIsJVMauz-dxYOefg4o2lO8xHMnie0vKSbePZJm3PhhDlMksPyIdvy4i5v6a2ayt5Z2fRI~qQqd3Tr5eG07JT-euG1lMvAahTO8Jc07wZJA2hFyL3xI2ydVSFken4Z64JwwFSLVZmPVJUlKzBXp9ZnEVch6qJwfkZr7BckmLVzkT4M~obzLxBZC6WIYS82HnxftpXcToXByfIv~p~t~JwzBg7U88N7PqdYxyjGCmO3VXveA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":73038619,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/73038619/thumbnails/1.jpg","file_name":"npre.2008.1650.1.pdf","download_url":"https://www.academia.edu/attachments/73038619/download_file","bulk_download_file_name":"Trigohexagonite_A_Rare_Quaternary_Stoich.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/73038619/npre.2008.1650.1-libre.pdf?1634565328=\u0026response-content-disposition=attachment%3B+filename%3DTrigohexagonite_A_Rare_Quaternary_Stoich.pdf\u0026Expires=1732713810\u0026Signature=EF8KjfpAIZ-E8g3x-YfBVJObqgPBcPv47BVQsKUwUjzzLcTqez3U~SMdsHs1aPzu1~Yxfb~RRI0N2JomOZS7i-gvpSr0ijsN~M333HFdSpHqeNdO6krL4lfDZT5GdbRB~qAPXSNtRn3upublRH00jRWz28NpfbqiiGdX9bKUsS6Vz56xUr0Mo1jdgSS07-YwDSFvvhMxr-LuNYBLAVWSQ0NYmAZegfFmRw1F0eZdye08NrrGAmeQpYF2o9R0JIWozzLLbHlLL7GYy80IJ-6fqzqZ5To0T3Oy75e5JB5FFC9uxHkBOQFOaMxxDWe40kv-pQD5emoGBAZ8ly3~BpDP0g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"}],"urls":[{"id":13315678,"url":"http://link.springer.com/content/pdf/10.1038/npre.2008.1650.1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="58804549"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/58804549/Fixed_target_serial_oscillation_crystallography_at_room_temperature"><img alt="Research paper thumbnail of Fixed-target serial oscillation crystallography at room temperature" class="work-thumbnail" src="https://attachments.academia-assets.com/73038786/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/58804549/Fixed_target_serial_oscillation_crystallography_at_room_temperature">Fixed-target serial oscillation crystallography at room temperature</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f15fd54eed5a1bbb316550b819d1c6ae" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":73038786,"asset_id":58804549,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/73038786/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="58804549"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="58804549"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 58804549; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=58804549]").text(description); $(".js-view-count[data-work-id=58804549]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 58804549; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='58804549']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 58804549, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f15fd54eed5a1bbb316550b819d1c6ae" } } $('.js-work-strip[data-work-id=58804549]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":58804549,"title":"Fixed-target serial oscillation crystallography at room temperature","translated_title":"","metadata":{"publisher":"International Union of Crystallography (IUCr)","grobid_abstract":"A fixed-target approach to high-throughput room-temperature serial synchrotron crystallography with oscillation is described. Patterned silicon chips with microwells provide high crystal-loading density with an extremely high hit rate. The microfocus, undulator-fed beamline at CHESS, which has compound refractive optics and a fast-framing detector, was built and optimized for this experiment. The high-throughput oscillation method described here collects 1","grobid_abstract_attachment_id":73038786},"translated_abstract":null,"internal_url":"https://www.academia.edu/58804549/Fixed_target_serial_oscillation_crystallography_at_room_temperature","translated_internal_url":"","created_at":"2021-10-18T05:55:24.646-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33002650,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":73038786,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/73038786/thumbnails/1.jpg","file_name":"mf5030.pdf","download_url":"https://www.academia.edu/attachments/73038786/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fixed_target_serial_oscillation_crystall.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/73038786/mf5030-libre.pdf?1634565317=\u0026response-content-disposition=attachment%3B+filename%3DFixed_target_serial_oscillation_crystall.pdf\u0026Expires=1732713810\u0026Signature=PJAn9bu-BeA7l3xt92ZqsHSN5gFUDBFLAwJpk0vNb67KCStMe2lPjpIrfzhB0VEWkWCGnPTtSTeaUAj4c5lNMCd4zyojAtnU4rNmwdKmLA6RPl4WpO5PvfN1yWDG7cnu4sPi4VQLH38r716NJYjOhZinR5lS2hBnsFvAxYUeqLwhsmEJRPl97JBhyR8BXa-yTjOPPWFLhYJXF50TaAmguueQ29mXvvTB04YT2lG6Mlk6S40aoU8nekQhTX~7z5oQ6katveuxWdBe293g9PALvC8hF8vWuB~9ijvnH3reD~v7xpZvRzljCxAohJRlXuaPjx5k~iPL-Kcs8zfZeWe07g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Fixed_target_serial_oscillation_crystallography_at_room_temperature","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":33002650,"first_name":"Doletha","middle_initials":null,"last_name":"Szebenyi","page_name":"DolethaSzebenyi","domain_name":"cornell","created_at":"2015-07-12T07:19:02.115-07:00","display_name":"Doletha Szebenyi","url":"https://cornell.academia.edu/DolethaSzebenyi"},"attachments":[{"id":73038786,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/73038786/thumbnails/1.jpg","file_name":"mf5030.pdf","download_url":"https://www.academia.edu/attachments/73038786/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fixed_target_serial_oscillation_crystall.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/73038786/mf5030-libre.pdf?1634565317=\u0026response-content-disposition=attachment%3B+filename%3DFixed_target_serial_oscillation_crystall.pdf\u0026Expires=1732713810\u0026Signature=PJAn9bu-BeA7l3xt92ZqsHSN5gFUDBFLAwJpk0vNb67KCStMe2lPjpIrfzhB0VEWkWCGnPTtSTeaUAj4c5lNMCd4zyojAtnU4rNmwdKmLA6RPl4WpO5PvfN1yWDG7cnu4sPi4VQLH38r716NJYjOhZinR5lS2hBnsFvAxYUeqLwhsmEJRPl97JBhyR8BXa-yTjOPPWFLhYJXF50TaAmguueQ29mXvvTB04YT2lG6Mlk6S40aoU8nekQhTX~7z5oQ6katveuxWdBe293g9PALvC8hF8vWuB~9ijvnH3reD~v7xpZvRzljCxAohJRlXuaPjx5k~iPL-Kcs8zfZeWe07g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="58804547"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/58804547/A_high_throughput_serial_crystallography_beamline_at_CHESS"><img alt="Research paper thumbnail of A high-throughput serial crystallography beamline at CHESS" class="work-thumbnail" src="https://attachments.academia-assets.com/73038618/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/58804547/A_high_throughput_serial_crystallography_beamline_at_CHESS">A high-throughput serial crystallography beamline at CHESS</a></div><div class="wp-workCard_item"><span>Acta Crystallographica Section A Foundations and Advances</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="995f749472e76cc9b34bd3c972fc7f48" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":73038618,"asset_id":58804547,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/73038618/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="58804547"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="58804547"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 58804547; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=58804547]").text(description); $(".js-view-count[data-work-id=58804547]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 58804547; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='58804547']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 58804547, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "995f749472e76cc9b34bd3c972fc7f48" } } $('.js-work-strip[data-work-id=58804547]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":58804547,"title":"A high-throughput serial crystallography beamline at CHESS","translated_title":"","metadata":{"publisher":"International Union of Crystallography (IUCr)","publication_name":"Acta Crystallographica Section A Foundations and Advances"},"translated_abstract":null,"internal_url":"https://www.academia.edu/58804547/A_high_throughput_serial_crystallography_beamline_at_CHESS","translated_internal_url":"","created_at":"2021-10-18T05:55:24.475-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33002650,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":73038618,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/73038618/thumbnails/1.jpg","file_name":"a56640.pdf","download_url":"https://www.academia.edu/attachments/73038618/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_high_throughput_serial_crystallography.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/73038618/a56640-libre.pdf?1634565326=\u0026response-content-disposition=attachment%3B+filename%3DA_high_throughput_serial_crystallography.pdf\u0026Expires=1732713810\u0026Signature=BEPm9sRcfbXaNwOJZXa3jYu0HxzeX8GuiZBcy5QYOZtfl4ATPbYWTWyQbwmoSf-zaKQFy8ggVQq5JECvAJsPKZfxj~eefzShU3c-THYvXuvSjzfx3T1rbspJpTcvfdG9TdKaHIgsoXsZznQv7ZGXhiDPTuUiJ7dwm27hhy2bAWc2GX8Ejt3Am74n9t5x2XsTdAIj8NjWYa8UUpNn0Q7Famh2PVFUPbj94~kbOiRuj-pREtyEEcLH~rl78isjHhoHlTKOcmBeM2G3uHOmBZ1cfbrCO3K11FRnsYEFF67kkHUTuWUO0DAh~3V-JBVaGY94BnsBSKnfPf0ZacFEO3a--A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_high_throughput_serial_crystallography_beamline_at_CHESS","translated_slug":"","page_count":1,"language":"en","content_type":"Work","owner":{"id":33002650,"first_name":"Doletha","middle_initials":null,"last_name":"Szebenyi","page_name":"DolethaSzebenyi","domain_name":"cornell","created_at":"2015-07-12T07:19:02.115-07:00","display_name":"Doletha Szebenyi","url":"https://cornell.academia.edu/DolethaSzebenyi"},"attachments":[{"id":73038618,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/73038618/thumbnails/1.jpg","file_name":"a56640.pdf","download_url":"https://www.academia.edu/attachments/73038618/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_high_throughput_serial_crystallography.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/73038618/a56640-libre.pdf?1634565326=\u0026response-content-disposition=attachment%3B+filename%3DA_high_throughput_serial_crystallography.pdf\u0026Expires=1732713810\u0026Signature=BEPm9sRcfbXaNwOJZXa3jYu0HxzeX8GuiZBcy5QYOZtfl4ATPbYWTWyQbwmoSf-zaKQFy8ggVQq5JECvAJsPKZfxj~eefzShU3c-THYvXuvSjzfx3T1rbspJpTcvfdG9TdKaHIgsoXsZznQv7ZGXhiDPTuUiJ7dwm27hhy2bAWc2GX8Ejt3Am74n9t5x2XsTdAIj8NjWYa8UUpNn0Q7Famh2PVFUPbj94~kbOiRuj-pREtyEEcLH~rl78isjHhoHlTKOcmBeM2G3uHOmBZ1cfbrCO3K11FRnsYEFF67kkHUTuWUO0DAh~3V-JBVaGY94BnsBSKnfPf0ZacFEO3a--A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":13315676,"url":"http://journals.iucr.org/a/issues/2018/a1/00/a56640/a56640.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="58804545"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/58804545/MacCHESS_Structural_Biology_at_Cornells_High_Energy_Synchrotron_Source"><img alt="Research paper thumbnail of MacCHESS: Structural Biology at Cornell's High-Energy Synchrotron Source" class="work-thumbnail" src="https://attachments.academia-assets.com/73038778/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/58804545/MacCHESS_Structural_Biology_at_Cornells_High_Energy_Synchrotron_Source">MacCHESS: Structural Biology at Cornell's High-Energy Synchrotron Source</a></div><div class="wp-workCard_item"><span>Acta Crystallographica Section A Foundations and Advances</span><span>, 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e1fd20815dd536e9de509390aab48c24" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":73038778,"asset_id":58804545,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/73038778/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="58804545"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="58804545"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 58804545; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=58804545]").text(description); $(".js-view-count[data-work-id=58804545]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 58804545; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='58804545']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 58804545, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e1fd20815dd536e9de509390aab48c24" } } $('.js-work-strip[data-work-id=58804545]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":58804545,"title":"MacCHESS: Structural Biology at Cornell's High-Energy Synchrotron Source","translated_title":"","metadata":{"publisher":"International Union of Crystallography (IUCr)","grobid_abstract":"MacCHESS (\"Macromolecular diffraction at CHESS\") is an NIH funded facility at the Cornell High Energy Synchrotron Source; we provide a user facility with an exceptional level of support, as well as pursuing research to benefit the entire structural biology community. CRYSTALLOGRAPHY: High-flux monochromatic beamlines outfitted with state-of-the-art equipment are available. BSL-2 biohazards can be handled. Research activities include on-line confocal microscopy, working with multiple small crystals, use of graphene to reduce background, etc. BIOSAXS: A dedicated beamline features: a dual SAXS/WAXS setup using 2 Pilatus detectors; an integrated computer-controlled flow system including robotic sample loading from 96-well trays, custom-made disposable, transparent sample cells, and a convenient graphical interface; a well-equipped wet lab for sample monitoring and final preparation; an in-line SEC-MALS/DLS-SAXS option. Microfluidic \"lab-on-a-chip\" units are under development. Periodic workshops are held to educate users in the intricacies of BioSAXS. PRESSURE CRYOCOOLING: Cryocooling crystals under pressure reduces both coolinginduced degradation and the need for penetrating cryoprotectants, and can stabilize mobile ligands and possibly reaction intermediates. We offer pressure-cryocooling as a service to CHESS users, while continuing to develop the method. Several sample mounting techniques are now available, and the technique has promise for use with biological samples other than crystals. FMI: To request beamtime, fill out a simple on-line proposal form at http://www.chess.cornell.edu. Mail-in service is available, and remote data collection is supported for experienced crystallography users. We welcome a chance to collaborate on \"non-standard\" experiments. For more information, contact User Administrator Kathy Dedrick","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Acta Crystallographica Section A Foundations and Advances","grobid_abstract_attachment_id":73038778},"translated_abstract":null,"internal_url":"https://www.academia.edu/58804545/MacCHESS_Structural_Biology_at_Cornells_High_Energy_Synchrotron_Source","translated_internal_url":"","created_at":"2021-10-18T05:55:24.363-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33002650,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":73038778,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/73038778/thumbnails/1.jpg","file_name":"a52087.pdf","download_url":"https://www.academia.edu/attachments/73038778/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"MacCHESS_Structural_Biology_at_Cornells.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/73038778/a52087-libre.pdf?1634565315=\u0026response-content-disposition=attachment%3B+filename%3DMacCHESS_Structural_Biology_at_Cornells.pdf\u0026Expires=1732713810\u0026Signature=UUXNbWAt4LLcsVudtJUPqm3plcbONzVhUAmMYBXi90zlmHf-JQEB4OyCR3LQ7ny8N0Mxx1JX-NcHUryVJ2c0ZHJx5sElKZPLlCrxFQVI1mm5MbYmfljgf2zFg9~ec3FvYS7oj3dKvvauA5VZic6UaEh8rywmoG3AsXxQknHOTIeDZyMVAZHtupBqBdOfQoUMMyz7Nj-1NXpCEKK8YMLGU784CtIOcX03OlHKjgSur94-Tyvc1ELrZkBAOlMw2Qs0CzMEjYTnuZ3lFnjJdld5JuPBVfvEqR-KUmg6dX1wZAiXi~lndIQXVxCAiJeqGdDngooqjVc4DhvSUMLnQRqcQg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"MacCHESS_Structural_Biology_at_Cornells_High_Energy_Synchrotron_Source","translated_slug":"","page_count":1,"language":"en","content_type":"Work","owner":{"id":33002650,"first_name":"Doletha","middle_initials":null,"last_name":"Szebenyi","page_name":"DolethaSzebenyi","domain_name":"cornell","created_at":"2015-07-12T07:19:02.115-07:00","display_name":"Doletha Szebenyi","url":"https://cornell.academia.edu/DolethaSzebenyi"},"attachments":[{"id":73038778,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/73038778/thumbnails/1.jpg","file_name":"a52087.pdf","download_url":"https://www.academia.edu/attachments/73038778/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"MacCHESS_Structural_Biology_at_Cornells.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/73038778/a52087-libre.pdf?1634565315=\u0026response-content-disposition=attachment%3B+filename%3DMacCHESS_Structural_Biology_at_Cornells.pdf\u0026Expires=1732713810\u0026Signature=UUXNbWAt4LLcsVudtJUPqm3plcbONzVhUAmMYBXi90zlmHf-JQEB4OyCR3LQ7ny8N0Mxx1JX-NcHUryVJ2c0ZHJx5sElKZPLlCrxFQVI1mm5MbYmfljgf2zFg9~ec3FvYS7oj3dKvvauA5VZic6UaEh8rywmoG3AsXxQknHOTIeDZyMVAZHtupBqBdOfQoUMMyz7Nj-1NXpCEKK8YMLGU784CtIOcX03OlHKjgSur94-Tyvc1ELrZkBAOlMw2Qs0CzMEjYTnuZ3lFnjJdld5JuPBVfvEqR-KUmg6dX1wZAiXi~lndIQXVxCAiJeqGdDngooqjVc4DhvSUMLnQRqcQg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="58804543"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/58804543/Improving_diffraction_resolution_using_a_new_dehydration_method"><img alt="Research paper thumbnail of Improving diffraction resolution using a new dehydration method" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/58804543/Improving_diffraction_resolution_using_a_new_dehydration_method">Improving diffraction resolution using a new dehydration method</a></div><div class="wp-workCard_item"><span>Acta Crystallographica Section F Structural Biology Communications</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The production of high-quality crystals is one of the major obstacles in determining the three-di...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The production of high-quality crystals is one of the major obstacles in determining the three-dimensional structure of macromolecules by X-ray crystallography. It is fairly common that a visually well formed crystal diffracts poorly to a resolution that is too low to be suitable for structure determination. Dehydration has proven to be an effective post-crystallization treatment for improving crystal diffraction quality. Several dehydration methods have been developed, but no single one of them is suitable for all crystals. Here, a new convenient and effective dehydration method is reported that makes use of a dehydrating solution that will not dry out in air for several hours. Using this dehydration method, the resolution ofArchaeoglobus fulgidusCas5a crystals has been increased from 3.2 to 1.95 Å and the resolution ofEscherichia coliLptA crystals has been increased from…</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="58804543"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="58804543"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 58804543; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=58804543]").text(description); $(".js-view-count[data-work-id=58804543]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 58804543; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='58804543']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 58804543, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=58804543]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":58804543,"title":"Improving diffraction resolution using a new dehydration method","translated_title":"","metadata":{"abstract":"The production of high-quality crystals is one of the major obstacles in determining the three-dimensional structure of macromolecules by X-ray crystallography. It is fairly common that a visually well formed crystal diffracts poorly to a resolution that is too low to be suitable for structure determination. Dehydration has proven to be an effective post-crystallization treatment for improving crystal diffraction quality. Several dehydration methods have been developed, but no single one of them is suitable for all crystals. Here, a new convenient and effective dehydration method is reported that makes use of a dehydrating solution that will not dry out in air for several hours. Using this dehydration method, the resolution ofArchaeoglobus fulgidusCas5a crystals has been increased from 3.2 to 1.95 Å and the resolution ofEscherichia coliLptA crystals has been increased from…","publisher":"International Union of Crystallography (IUCr)","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Acta Crystallographica Section F Structural Biology Communications"},"translated_abstract":"The production of high-quality crystals is one of the major obstacles in determining the three-dimensional structure of macromolecules by X-ray crystallography. It is fairly common that a visually well formed crystal diffracts poorly to a resolution that is too low to be suitable for structure determination. Dehydration has proven to be an effective post-crystallization treatment for improving crystal diffraction quality. Several dehydration methods have been developed, but no single one of them is suitable for all crystals. Here, a new convenient and effective dehydration method is reported that makes use of a dehydrating solution that will not dry out in air for several hours. Using this dehydration method, the resolution ofArchaeoglobus fulgidusCas5a crystals has been increased from 3.2 to 1.95 Å and the resolution ofEscherichia coliLptA crystals has been increased from…","internal_url":"https://www.academia.edu/58804543/Improving_diffraction_resolution_using_a_new_dehydration_method","translated_internal_url":"","created_at":"2021-10-18T05:55:24.252-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33002650,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Improving_diffraction_resolution_using_a_new_dehydration_method","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":33002650,"first_name":"Doletha","middle_initials":null,"last_name":"Szebenyi","page_name":"DolethaSzebenyi","domain_name":"cornell","created_at":"2015-07-12T07:19:02.115-07:00","display_name":"Doletha Szebenyi","url":"https://cornell.academia.edu/DolethaSzebenyi"},"attachments":[],"research_interests":[{"id":12597,"name":"Crystallization","url":"https://www.academia.edu/Documents/in/Crystallization"},{"id":33441,"name":"Macromolecular X-Ray Crystallography","url":"https://www.academia.edu/Documents/in/Macromolecular_X-Ray_Crystallography"},{"id":83128,"name":"Escherichia coli","url":"https://www.academia.edu/Documents/in/Escherichia_coli"},{"id":346274,"name":"Dehydration","url":"https://www.academia.edu/Documents/in/Dehydration"},{"id":653665,"name":"Protein Conformation","url":"https://www.academia.edu/Documents/in/Protein_Conformation"},{"id":3663861,"name":"Archaeoglobus fulgidus","url":"https://www.academia.edu/Documents/in/Archaeoglobus_fulgidus"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="58804540"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/58804540/A_visible_light_excited_fluorescence_method_for_imaging_protein_crystals_without_added_dyes"><img alt="Research paper thumbnail of A visible-light-excited fluorescence method for imaging protein crystals without added dyes" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/58804540/A_visible_light_excited_fluorescence_method_for_imaging_protein_crystals_without_added_dyes">A visible-light-excited fluorescence method for imaging protein crystals without added dyes</a></div><div class="wp-workCard_item"><span>Journal of Applied Crystallography</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Fluorescence microscopy methods have seen an increase in popularity in recent years for detecting...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Fluorescence microscopy methods have seen an increase in popularity in recent years for detecting protein crystals in screening trays. The fluorescence-based crystal detection methods have thus far relied on intrinsic UV-inducible tryptophan fluorescence, nonlinear optics or fluorescence in the visible light range dependent on crystals soaked with fluorescent dyes. In this paper data are presented on a novel visible-light-inducible autofluorescence arising from protein crystals as a result of general stabilization of conjugated double-bond systems and increased charge delocalization due to crystal packing. The visible-light-inducible autofluorescence serves as a complementary method to bright-field microscopy in beamline applications where accurate crystal centering about the rotation axis is essential. Owing to temperature-dependent chromophore stabilization, protein crystals exhibit tenfold higher fluorescence intensity at cryogenic temperatures, making the method ideal for experi...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="58804540"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="58804540"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 58804540; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=58804540]").text(description); $(".js-view-count[data-work-id=58804540]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 58804540; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='58804540']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 58804540, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=58804540]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":58804540,"title":"A visible-light-excited fluorescence method for imaging protein crystals without added dyes","translated_title":"","metadata":{"abstract":"Fluorescence microscopy methods have seen an increase in popularity in recent years for detecting protein crystals in screening trays. The fluorescence-based crystal detection methods have thus far relied on intrinsic UV-inducible tryptophan fluorescence, nonlinear optics or fluorescence in the visible light range dependent on crystals soaked with fluorescent dyes. In this paper data are presented on a novel visible-light-inducible autofluorescence arising from protein crystals as a result of general stabilization of conjugated double-bond systems and increased charge delocalization due to crystal packing. The visible-light-inducible autofluorescence serves as a complementary method to bright-field microscopy in beamline applications where accurate crystal centering about the rotation axis is essential. Owing to temperature-dependent chromophore stabilization, protein crystals exhibit tenfold higher fluorescence intensity at cryogenic temperatures, making the method ideal for experi...","publisher":"International Union of Crystallography (IUCr)","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Journal of Applied Crystallography"},"translated_abstract":"Fluorescence microscopy methods have seen an increase in popularity in recent years for detecting protein crystals in screening trays. The fluorescence-based crystal detection methods have thus far relied on intrinsic UV-inducible tryptophan fluorescence, nonlinear optics or fluorescence in the visible light range dependent on crystals soaked with fluorescent dyes. In this paper data are presented on a novel visible-light-inducible autofluorescence arising from protein crystals as a result of general stabilization of conjugated double-bond systems and increased charge delocalization due to crystal packing. The visible-light-inducible autofluorescence serves as a complementary method to bright-field microscopy in beamline applications where accurate crystal centering about the rotation axis is essential. Owing to temperature-dependent chromophore stabilization, protein crystals exhibit tenfold higher fluorescence intensity at cryogenic temperatures, making the method ideal for experi...","internal_url":"https://www.academia.edu/58804540/A_visible_light_excited_fluorescence_method_for_imaging_protein_crystals_without_added_dyes","translated_internal_url":"","created_at":"2021-10-18T05:55:24.141-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33002650,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_visible_light_excited_fluorescence_method_for_imaging_protein_crystals_without_added_dyes","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":33002650,"first_name":"Doletha","middle_initials":null,"last_name":"Szebenyi","page_name":"DolethaSzebenyi","domain_name":"cornell","created_at":"2015-07-12T07:19:02.115-07:00","display_name":"Doletha Szebenyi","url":"https://cornell.academia.edu/DolethaSzebenyi"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":734874,"name":"Applied Crystallography","url":"https://www.academia.edu/Documents/in/Applied_Crystallography"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="58804538"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/58804538/Reduction_of_lattice_disorder_in_protein_crystals_by_high_pressure_cryocooling"><img alt="Research paper thumbnail of Reduction of lattice disorder in protein crystals by high-pressure cryocooling" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/58804538/Reduction_of_lattice_disorder_in_protein_crystals_by_high_pressure_cryocooling">Reduction of lattice disorder in protein crystals by high-pressure cryocooling</a></div><div class="wp-workCard_item"><span>Journal of Applied Crystallography</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">High-pressure cryocooling (HPC) has been developed as a technique for reducing the damage that fr...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">High-pressure cryocooling (HPC) has been developed as a technique for reducing the damage that frequently occurs when macromolecular crystals are cryocooled at ambient pressure. Crystals are typically pressurized at around 200 MPa and then cooled to liquid nitrogen temperature under pressure; this process reduces the need for penetrating cryoprotectants, as well as the damage due to cryocooling, but does not improve the diffraction quality of the as-grown crystals. Here it is reported that HPC using a pressure above 300 MPa can reduce lattice disorder, in the form of high mosaicity and/or nonmerohedral twinning, in crystals of three different proteins, namely human glutaminase C, the GTP pyrophosphokinase YjbM and the uncharacterized protein lpg1496. Pressure lower than 250 MPa does not induce this transformation, even with a prolonged pressurization time. These results indicate that HPC at elevated pressures can be a useful tool for improving crystal packing and hence the quality o...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="58804538"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="58804538"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 58804538; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=58804538]").text(description); $(".js-view-count[data-work-id=58804538]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 58804538; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='58804538']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 58804538, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=58804538]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":58804538,"title":"Reduction of lattice disorder in protein crystals by high-pressure cryocooling","translated_title":"","metadata":{"abstract":"High-pressure cryocooling (HPC) has been developed as a technique for reducing the damage that frequently occurs when macromolecular crystals are cryocooled at ambient pressure. Crystals are typically pressurized at around 200 MPa and then cooled to liquid nitrogen temperature under pressure; this process reduces the need for penetrating cryoprotectants, as well as the damage due to cryocooling, but does not improve the diffraction quality of the as-grown crystals. Here it is reported that HPC using a pressure above 300 MPa can reduce lattice disorder, in the form of high mosaicity and/or nonmerohedral twinning, in crystals of three different proteins, namely human glutaminase C, the GTP pyrophosphokinase YjbM and the uncharacterized protein lpg1496. Pressure lower than 250 MPa does not induce this transformation, even with a prolonged pressurization time. These results indicate that HPC at elevated pressures can be a useful tool for improving crystal packing and hence the quality o...","publisher":"International Union of Crystallography (IUCr)","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Journal of Applied Crystallography"},"translated_abstract":"High-pressure cryocooling (HPC) has been developed as a technique for reducing the damage that frequently occurs when macromolecular crystals are cryocooled at ambient pressure. Crystals are typically pressurized at around 200 MPa and then cooled to liquid nitrogen temperature under pressure; this process reduces the need for penetrating cryoprotectants, as well as the damage due to cryocooling, but does not improve the diffraction quality of the as-grown crystals. Here it is reported that HPC using a pressure above 300 MPa can reduce lattice disorder, in the form of high mosaicity and/or nonmerohedral twinning, in crystals of three different proteins, namely human glutaminase C, the GTP pyrophosphokinase YjbM and the uncharacterized protein lpg1496. Pressure lower than 250 MPa does not induce this transformation, even with a prolonged pressurization time. These results indicate that HPC at elevated pressures can be a useful tool for improving crystal packing and hence the quality o...","internal_url":"https://www.academia.edu/58804538/Reduction_of_lattice_disorder_in_protein_crystals_by_high_pressure_cryocooling","translated_internal_url":"","created_at":"2021-10-18T05:55:24.033-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33002650,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Reduction_of_lattice_disorder_in_protein_crystals_by_high_pressure_cryocooling","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":33002650,"first_name":"Doletha","middle_initials":null,"last_name":"Szebenyi","page_name":"DolethaSzebenyi","domain_name":"cornell","created_at":"2015-07-12T07:19:02.115-07:00","display_name":"Doletha Szebenyi","url":"https://cornell.academia.edu/DolethaSzebenyi"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":734874,"name":"Applied Crystallography","url":"https://www.academia.edu/Documents/in/Applied_Crystallography"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="58804536"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/58804536/Quantitative_analysis_of_Laue_diffraction_patterns_recorded_with_a_120_ps_exposure_from_an_X_ray_undulator"><img alt="Research paper thumbnail of Quantitative analysis of Laue diffraction patterns recorded with a 120 ps exposure from an X-ray undulator" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/58804536/Quantitative_analysis_of_Laue_diffraction_patterns_recorded_with_a_120_ps_exposure_from_an_X_ray_undulator">Quantitative analysis of Laue diffraction patterns recorded with a 120 ps exposure from an X-ray undulator</a></div><div class="wp-workCard_item"><span>Journal of Applied Crystallography</span><span>, 1992</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="58804536"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="58804536"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 58804536; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=58804536]").text(description); $(".js-view-count[data-work-id=58804536]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 58804536; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='58804536']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 58804536, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=58804536]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":58804536,"title":"Quantitative analysis of Laue diffraction patterns recorded with a 120 ps exposure from an X-ray undulator","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1992,"errors":{}},"publication_name":"Journal of Applied Crystallography"},"translated_abstract":null,"internal_url":"https://www.academia.edu/58804536/Quantitative_analysis_of_Laue_diffraction_patterns_recorded_with_a_120_ps_exposure_from_an_X_ray_undulator","translated_internal_url":"","created_at":"2021-10-18T05:55:23.876-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33002650,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Quantitative_analysis_of_Laue_diffraction_patterns_recorded_with_a_120_ps_exposure_from_an_X_ray_undulator","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":33002650,"first_name":"Doletha","middle_initials":null,"last_name":"Szebenyi","page_name":"DolethaSzebenyi","domain_name":"cornell","created_at":"2015-07-12T07:19:02.115-07:00","display_name":"Doletha Szebenyi","url":"https://cornell.academia.edu/DolethaSzebenyi"},"attachments":[],"research_interests":[{"id":386527,"name":"X ray diffraction","url":"https://www.academia.edu/Documents/in/X_ray_diffraction"},{"id":619973,"name":"Indole","url":"https://www.academia.edu/Documents/in/Indole"},{"id":734874,"name":"Applied Crystallography","url":"https://www.academia.edu/Documents/in/Applied_Crystallography"},{"id":1144236,"name":"Crystalline Structure","url":"https://www.academia.edu/Documents/in/Crystalline_Structure"},{"id":1724844,"name":"Molecular Structure","url":"https://www.academia.edu/Documents/in/Molecular_Structure"},{"id":2597120,"name":"Laue diffraction","url":"https://www.academia.edu/Documents/in/Laue_diffraction"}],"urls":[{"id":13315674,"url":"http://cat.inist.fr/?aModele=afficheN\u0026cpsidt=5336244"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="58804532"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/58804532/Lack_of_Catalytic_Activity_of_a_Murine_mRNA_Cytoplasmic_Serine_Hydroxymethyltransferase_Splice_Variant_Evidence_against_Alternative_Splicing_as_a_Regulatory_Mechanism_"><img alt="Research paper thumbnail of Lack of Catalytic Activity of a Murine mRNA Cytoplasmic Serine Hydroxymethyltransferase Splice Variant: Evidence against Alternative Splicing as a Regulatory Mechanism †" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/58804532/Lack_of_Catalytic_Activity_of_a_Murine_mRNA_Cytoplasmic_Serine_Hydroxymethyltransferase_Splice_Variant_Evidence_against_Alternative_Splicing_as_a_Regulatory_Mechanism_">Lack of Catalytic Activity of a Murine mRNA Cytoplasmic Serine Hydroxymethyltransferase Splice Variant: Evidence against Alternative Splicing as a Regulatory Mechanism †</a></div><div class="wp-workCard_item"><span>Biochemistry Usa</span><span>, May 1, 2001</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Mammalian serine hydroxymethyltransferase (SHMT) is a tetrameric, pyridoxal phosphate-dependent e...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Mammalian serine hydroxymethyltransferase (SHMT) is a tetrameric, pyridoxal phosphate-dependent enzyme that catalyzes the reversible interconversion of serine and tetrahydrofolate to glycine and methylenetetrahydrofolate. This reaction generates single-carbon units for purine, thymidine, and methionine biosynthesis. Cytoplasmic SHMT (cSHMT) has been postulated to channel one-carbon substituted folates to various folate-dependent enzymes, and alternative splicing of the cSHMT transcript may be a mechanism that enables specific protein-protein interactions. The cytoplasmic isozyme is expressed from species-specific and tissue-specific alternatively spliced transcripts that encode proteins with modified carboxy-terminal domains, while the mitochondrial isozyme is expressed from a single transcript. While the full-length mouse and human cSHMT proteins are 91% identical, their alternatively spliced transcripts differ. The murine cSHMT gene is expressed as two transcripts. One transcript encodes a full-length 55 kDa active enzyme (cSHMT), while the other transcript encodes a 35 kDa protein (McSHMTtr). The McSHMTtr protein present in mouse liver and kidney does not bind 5-formyltetrahydrofolate, nor does it oligomerize with the full-length cSHMT enzyme. While recombinant cSHMT-glutathione S-transferase fusion proteins form tetramers and are catalytically active, McSHMTtr-glutathione S-transferase fusion proteins are catalytically inactive, do not form heterotetramers, and do not bind pyridoxal phosphate. Analysis of the murine cSHMT crystal structure indicates that the active site lysine that normally binds pyridoxal phosphate in the cSHMT protein is exposed to solvent in the McSHMTtr protein, preventing stable formation of a Schiff base with pyridoxal phosphate. Modeling studies suggest that the human cSHMT proteins expressed from alternatively spliced transcripts are inactive as well. Therefore, channeling mechanisms enabling specific protein-protein interactions of active enzymes are not based on cSHMT alternative splicing.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="58804532"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="58804532"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 58804532; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=58804532]").text(description); $(".js-view-count[data-work-id=58804532]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 58804532; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='58804532']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 58804532, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=58804532]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":58804532,"title":"Lack of Catalytic Activity of a Murine mRNA Cytoplasmic Serine Hydroxymethyltransferase Splice Variant: Evidence against Alternative Splicing as a Regulatory Mechanism †","translated_title":"","metadata":{"abstract":"Mammalian serine hydroxymethyltransferase (SHMT) is a tetrameric, pyridoxal phosphate-dependent enzyme that catalyzes the reversible interconversion of serine and tetrahydrofolate to glycine and methylenetetrahydrofolate. This reaction generates single-carbon units for purine, thymidine, and methionine biosynthesis. Cytoplasmic SHMT (cSHMT) has been postulated to channel one-carbon substituted folates to various folate-dependent enzymes, and alternative splicing of the cSHMT transcript may be a mechanism that enables specific protein-protein interactions. The cytoplasmic isozyme is expressed from species-specific and tissue-specific alternatively spliced transcripts that encode proteins with modified carboxy-terminal domains, while the mitochondrial isozyme is expressed from a single transcript. While the full-length mouse and human cSHMT proteins are 91% identical, their alternatively spliced transcripts differ. The murine cSHMT gene is expressed as two transcripts. One transcript encodes a full-length 55 kDa active enzyme (cSHMT), while the other transcript encodes a 35 kDa protein (McSHMTtr). The McSHMTtr protein present in mouse liver and kidney does not bind 5-formyltetrahydrofolate, nor does it oligomerize with the full-length cSHMT enzyme. While recombinant cSHMT-glutathione S-transferase fusion proteins form tetramers and are catalytically active, McSHMTtr-glutathione S-transferase fusion proteins are catalytically inactive, do not form heterotetramers, and do not bind pyridoxal phosphate. Analysis of the murine cSHMT crystal structure indicates that the active site lysine that normally binds pyridoxal phosphate in the cSHMT protein is exposed to solvent in the McSHMTtr protein, preventing stable formation of a Schiff base with pyridoxal phosphate. Modeling studies suggest that the human cSHMT proteins expressed from alternatively spliced transcripts are inactive as well. Therefore, channeling mechanisms enabling specific protein-protein interactions of active enzymes are not based on cSHMT alternative splicing.","publication_date":{"day":1,"month":5,"year":2001,"errors":{}},"publication_name":"Biochemistry Usa"},"translated_abstract":"Mammalian serine hydroxymethyltransferase (SHMT) is a tetrameric, pyridoxal phosphate-dependent enzyme that catalyzes the reversible interconversion of serine and tetrahydrofolate to glycine and methylenetetrahydrofolate. This reaction generates single-carbon units for purine, thymidine, and methionine biosynthesis. Cytoplasmic SHMT (cSHMT) has been postulated to channel one-carbon substituted folates to various folate-dependent enzymes, and alternative splicing of the cSHMT transcript may be a mechanism that enables specific protein-protein interactions. The cytoplasmic isozyme is expressed from species-specific and tissue-specific alternatively spliced transcripts that encode proteins with modified carboxy-terminal domains, while the mitochondrial isozyme is expressed from a single transcript. While the full-length mouse and human cSHMT proteins are 91% identical, their alternatively spliced transcripts differ. The murine cSHMT gene is expressed as two transcripts. One transcript encodes a full-length 55 kDa active enzyme (cSHMT), while the other transcript encodes a 35 kDa protein (McSHMTtr). The McSHMTtr protein present in mouse liver and kidney does not bind 5-formyltetrahydrofolate, nor does it oligomerize with the full-length cSHMT enzyme. While recombinant cSHMT-glutathione S-transferase fusion proteins form tetramers and are catalytically active, McSHMTtr-glutathione S-transferase fusion proteins are catalytically inactive, do not form heterotetramers, and do not bind pyridoxal phosphate. Analysis of the murine cSHMT crystal structure indicates that the active site lysine that normally binds pyridoxal phosphate in the cSHMT protein is exposed to solvent in the McSHMTtr protein, preventing stable formation of a Schiff base with pyridoxal phosphate. Modeling studies suggest that the human cSHMT proteins expressed from alternatively spliced transcripts are inactive as well. Therefore, channeling mechanisms enabling specific protein-protein interactions of active enzymes are not based on cSHMT alternative splicing.","internal_url":"https://www.academia.edu/58804532/Lack_of_Catalytic_Activity_of_a_Murine_mRNA_Cytoplasmic_Serine_Hydroxymethyltransferase_Splice_Variant_Evidence_against_Alternative_Splicing_as_a_Regulatory_Mechanism_","translated_internal_url":"","created_at":"2021-10-18T05:55:23.709-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33002650,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Lack_of_Catalytic_Activity_of_a_Murine_mRNA_Cytoplasmic_Serine_Hydroxymethyltransferase_Splice_Variant_Evidence_against_Alternative_Splicing_as_a_Regulatory_Mechanism_","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":33002650,"first_name":"Doletha","middle_initials":null,"last_name":"Szebenyi","page_name":"DolethaSzebenyi","domain_name":"cornell","created_at":"2015-07-12T07:19:02.115-07:00","display_name":"Doletha Szebenyi","url":"https://cornell.academia.edu/DolethaSzebenyi"},"attachments":[],"research_interests":[{"id":145,"name":"Biochemistry","url":"https://www.academia.edu/Documents/in/Biochemistry"},{"id":4749,"name":"Catalysis","url":"https://www.academia.edu/Documents/in/Catalysis"},{"id":33441,"name":"Macromolecular X-Ray Crystallography","url":"https://www.academia.edu/Documents/in/Macromolecular_X-Ray_Crystallography"},{"id":83128,"name":"Escherichia coli","url":"https://www.academia.edu/Documents/in/Escherichia_coli"},{"id":84760,"name":"Mice","url":"https://www.academia.edu/Documents/in/Mice"},{"id":139002,"name":"Alternative splicing","url":"https://www.academia.edu/Documents/in/Alternative_splicing"},{"id":437728,"name":"Isoenzymes","url":"https://www.academia.edu/Documents/in/Isoenzymes"},{"id":635694,"name":"Alternative Splicing","url":"https://www.academia.edu/Documents/in/Alternative_Splicing-1"},{"id":967839,"name":"Structure activity Relationship","url":"https://www.academia.edu/Documents/in/Structure_activity_Relationship"},{"id":990417,"name":"Recombinant Proteins","url":"https://www.academia.edu/Documents/in/Recombinant_Proteins"},{"id":1166930,"name":"Cytoplasm","url":"https://www.academia.edu/Documents/in/Cytoplasm"},{"id":1277798,"name":"Catalytic Activity","url":"https://www.academia.edu/Documents/in/Catalytic_Activity"},{"id":1681026,"name":"Biochemistry and cell biology","url":"https://www.academia.edu/Documents/in/Biochemistry_and_cell_biology"},{"id":3789880,"name":"Medical biochemistry and metabolomics","url":"https://www.academia.edu/Documents/in/Medical_biochemistry_and_metabolomics"}],"urls":[{"id":13315673,"url":"http://pubs.acs.org/doi/abs/10.1021/bi002598t"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="58804527"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/58804527/In_line_SEC_SAXS_and_MALS_DLS_RI_for_the_Analysis_of_Polydisperse_Macromolecules"><img alt="Research paper thumbnail of In-line SEC-SAXS and MALS/DLS/RI for the Analysis of Polydisperse Macromolecules" class="work-thumbnail" src="https://attachments.academia-assets.com/73038769/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/58804527/In_line_SEC_SAXS_and_MALS_DLS_RI_for_the_Analysis_of_Polydisperse_Macromolecules">In-line SEC-SAXS and MALS/DLS/RI for the Analysis of Polydisperse Macromolecules</a></div><div class="wp-workCard_item"><span>Acta Crystallographica Section A Foundations and Advances</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Small Angle X-ray Scattering (SAXS) is a powerful tool for the structural analysis of biological ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Small Angle X-ray Scattering (SAXS) is a powerful tool for the structural analysis of biological macromolecules in solution and has seen a surge in popularity amongst structural biologists in the past decade. In part, this is because SAXS benefits greatly from the sensitivity and throughput that can be achieved at modern high brightness synchrotron sources. However, the critical need for highly monodisperse samples in SAXS analysis can be a challenge, and as such a number of labs have moved to develop in-line Size Exclusion Chromatography (SEC) at the beamline. Real-time SAXS on elution profiles not only improves monodispersity of samples and provides information on possible oligomeric states, but it also offers new modes of data analysis that can take advantage of the inherent concentration profiles underlying elution peaks and distributions of partially resolved species. Efforts to extend the synergy between SEC and SAXS to other biophysical methods are ongoing. The newly commissi...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b75fb6374dafd7e11c83cfbbc3c3f64a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":73038769,"asset_id":58804527,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/73038769/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="58804527"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="58804527"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 58804527; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=58804527]").text(description); $(".js-view-count[data-work-id=58804527]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 58804527; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='58804527']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 58804527, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b75fb6374dafd7e11c83cfbbc3c3f64a" } } $('.js-work-strip[data-work-id=58804527]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":58804527,"title":"In-line SEC-SAXS and MALS/DLS/RI for the Analysis of Polydisperse Macromolecules","translated_title":"","metadata":{"abstract":"Small Angle X-ray Scattering (SAXS) is a powerful tool for the structural analysis of biological macromolecules in solution and has seen a surge in popularity amongst structural biologists in the past decade. In part, this is because SAXS benefits greatly from the sensitivity and throughput that can be achieved at modern high brightness synchrotron sources. However, the critical need for highly monodisperse samples in SAXS analysis can be a challenge, and as such a number of labs have moved to develop in-line Size Exclusion Chromatography (SEC) at the beamline. Real-time SAXS on elution profiles not only improves monodispersity of samples and provides information on possible oligomeric states, but it also offers new modes of data analysis that can take advantage of the inherent concentration profiles underlying elution peaks and distributions of partially resolved species. Efforts to extend the synergy between SEC and SAXS to other biophysical methods are ongoing. The newly commissi...","publisher":"International Union of Crystallography (IUCr)","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Acta Crystallographica Section A Foundations and Advances"},"translated_abstract":"Small Angle X-ray Scattering (SAXS) is a powerful tool for the structural analysis of biological macromolecules in solution and has seen a surge in popularity amongst structural biologists in the past decade. In part, this is because SAXS benefits greatly from the sensitivity and throughput that can be achieved at modern high brightness synchrotron sources. However, the critical need for highly monodisperse samples in SAXS analysis can be a challenge, and as such a number of labs have moved to develop in-line Size Exclusion Chromatography (SEC) at the beamline. Real-time SAXS on elution profiles not only improves monodispersity of samples and provides information on possible oligomeric states, but it also offers new modes of data analysis that can take advantage of the inherent concentration profiles underlying elution peaks and distributions of partially resolved species. Efforts to extend the synergy between SEC and SAXS to other biophysical methods are ongoing. The newly commissi...","internal_url":"https://www.academia.edu/58804527/In_line_SEC_SAXS_and_MALS_DLS_RI_for_the_Analysis_of_Polydisperse_Macromolecules","translated_internal_url":"","created_at":"2021-10-18T05:55:23.400-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33002650,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":73038769,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/73038769/thumbnails/1.jpg","file_name":"a51412.pdf","download_url":"https://www.academia.edu/attachments/73038769/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"In_line_SEC_SAXS_and_MALS_DLS_RI_for_the.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/73038769/a51412-libre.pdf?1634565315=\u0026response-content-disposition=attachment%3B+filename%3DIn_line_SEC_SAXS_and_MALS_DLS_RI_for_the.pdf\u0026Expires=1732713811\u0026Signature=X3ABcwW4eclsAgb62MUDJsqm~hMElXG2uN4d3u92cdofi-OeM5o6ucZlMGgetn4yW0CWjgddc6RFxDjaA8hX2XeU1PzcLAXP1yRNWDF2J~li0z771Fu4cw0wH-pnmq3LLLycr8o1NHthdONF0iLUPEXeoWwijvpepU3IYBxFudTt4sY3sE0JC6cVhSKjC7yidDMoAnbROBXwkgBXe2LZsHx4rz~SJEg4JNUXzxzkjXikVSCrW8CcpGRkhgSTRTR6DIvFL51xHa3OAv8cXXjBA~KbEBfBrB7162WLX9-0uj~aEhzpgng6TUTc-NGKtcXFa9O8JD-yDSXIMTJ2C8OcJg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"In_line_SEC_SAXS_and_MALS_DLS_RI_for_the_Analysis_of_Polydisperse_Macromolecules","translated_slug":"","page_count":1,"language":"en","content_type":"Work","owner":{"id":33002650,"first_name":"Doletha","middle_initials":null,"last_name":"Szebenyi","page_name":"DolethaSzebenyi","domain_name":"cornell","created_at":"2015-07-12T07:19:02.115-07:00","display_name":"Doletha Szebenyi","url":"https://cornell.academia.edu/DolethaSzebenyi"},"attachments":[{"id":73038769,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/73038769/thumbnails/1.jpg","file_name":"a51412.pdf","download_url":"https://www.academia.edu/attachments/73038769/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"In_line_SEC_SAXS_and_MALS_DLS_RI_for_the.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/73038769/a51412-libre.pdf?1634565315=\u0026response-content-disposition=attachment%3B+filename%3DIn_line_SEC_SAXS_and_MALS_DLS_RI_for_the.pdf\u0026Expires=1732713811\u0026Signature=X3ABcwW4eclsAgb62MUDJsqm~hMElXG2uN4d3u92cdofi-OeM5o6ucZlMGgetn4yW0CWjgddc6RFxDjaA8hX2XeU1PzcLAXP1yRNWDF2J~li0z771Fu4cw0wH-pnmq3LLLycr8o1NHthdONF0iLUPEXeoWwijvpepU3IYBxFudTt4sY3sE0JC6cVhSKjC7yidDMoAnbROBXwkgBXe2LZsHx4rz~SJEg4JNUXzxzkjXikVSCrW8CcpGRkhgSTRTR6DIvFL51xHa3OAv8cXXjBA~KbEBfBrB7162WLX9-0uj~aEhzpgng6TUTc-NGKtcXFa9O8JD-yDSXIMTJ2C8OcJg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="58804526"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/58804526/ADP_Ribosyl_Cyclase"><img alt="Research paper thumbnail of ADP-Ribosyl Cyclase" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/58804526/ADP_Ribosyl_Cyclase">ADP-Ribosyl Cyclase</a></div><div class="wp-workCard_item"><span>Structure</span><span>, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ADP-ribosyl cyclase catalyzes the elimination of nicotinamide from NAD and cyclization to cADPR, ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ADP-ribosyl cyclase catalyzes the elimination of nicotinamide from NAD and cyclization to cADPR, a known second messenger in cellular calcium signaling pathways. We have determined to 2.0 Å resolution the structure of Aplysia cyclase with ribose-5-phosphate bound covalently at C3′ and with the base exchange substrate (BES), pyridylcarbinol, bound to the active site. In addition, further refinement at 2.4 Å</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="58804526"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="58804526"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 58804526; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=58804526]").text(description); $(".js-view-count[data-work-id=58804526]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 58804526; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='58804526']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 58804526, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=58804526]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":58804526,"title":"ADP-Ribosyl Cyclase","translated_title":"","metadata":{"abstract":"ADP-ribosyl cyclase catalyzes the elimination of nicotinamide from NAD and cyclization to cADPR, a known second messenger in cellular calcium signaling pathways. We have determined to 2.0 Å resolution the structure of Aplysia cyclase with ribose-5-phosphate bound covalently at C3′ and with the base exchange substrate (BES), pyridylcarbinol, bound to the active site. In addition, further refinement at 2.4 Å","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"Structure"},"translated_abstract":"ADP-ribosyl cyclase catalyzes the elimination of nicotinamide from NAD and cyclization to cADPR, a known second messenger in cellular calcium signaling pathways. We have determined to 2.0 Å resolution the structure of Aplysia cyclase with ribose-5-phosphate bound covalently at C3′ and with the base exchange substrate (BES), pyridylcarbinol, bound to the active site. In addition, further refinement at 2.4 Å","internal_url":"https://www.academia.edu/58804526/ADP_Ribosyl_Cyclase","translated_internal_url":"","created_at":"2021-10-18T05:55:23.218-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33002650,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"ADP_Ribosyl_Cyclase","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":33002650,"first_name":"Doletha","middle_initials":null,"last_name":"Szebenyi","page_name":"DolethaSzebenyi","domain_name":"cornell","created_at":"2015-07-12T07:19:02.115-07:00","display_name":"Doletha Szebenyi","url":"https://cornell.academia.edu/DolethaSzebenyi"},"attachments":[],"research_interests":[{"id":3614,"name":"Structure","url":"https://www.academia.edu/Documents/in/Structure"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":140081,"name":"Calcium Signaling","url":"https://www.academia.edu/Documents/in/Calcium_Signaling"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":354019,"name":"Active site","url":"https://www.academia.edu/Documents/in/Active_site"},{"id":1200088,"name":"Second Messengers","url":"https://www.academia.edu/Documents/in/Second_Messengers"}],"urls":[{"id":13315672,"url":"http://sciencedirect.com/science/article/pii/s0969212604000486"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="58804525"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/58804525/Carbon_Dioxide_Trapped_in_a_%CE%B2_Carbonic_Anhydrase"><img alt="Research paper thumbnail of Carbon Dioxide “Trapped” in a β-Carbonic Anhydrase" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/58804525/Carbon_Dioxide_Trapped_in_a_%CE%B2_Carbonic_Anhydrase">Carbon Dioxide “Trapped” in a β-Carbonic Anhydrase</a></div><div class="wp-workCard_item"><span>Biochemistry</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Carbonic anhydrases (CAs) are enzymes that catalyze the hydration/dehydration of CO2/HCO3(-) with...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Carbonic anhydrases (CAs) are enzymes that catalyze the hydration/dehydration of CO2/HCO3(-) with rates approaching diffusion-controlled limits (kcat/KM ∼ 10(8) M(-1) s(-1)). This family of enzymes has evolved disparate protein folds that all perform the same reaction at near catalytic perfection. Presented here is a structural study of a β-CA (psCA3) expressed in Pseudomonas aeruginosa, in complex with CO2, using pressurized cryo-cooled crystallography. The structure has been refined to 1.6 Å resolution with Rcryst and Rfree values of 17.3 and 19.9%, respectively, and is compared with the α-CA, human CA isoform II (hCA II), the only other CA to have CO2 captured in its active site. Despite the lack of structural similarity between psCA3 and hCA II, the CO2 binding orientation relative to the zinc-bound solvent is identical. In addition, a second CO2 binding site was located at the dimer interface of psCA3. Interestingly, all β-CAs function as dimers or higher-order oligomeric states, and the CO2 bound at the interface may contribute to the allosteric nature of this family of enzymes or may be a convenient alternative binding site as this pocket has been previously shown to be a promiscuous site for a variety of ligands, including bicarbonate, sulfate, and phosphate ions.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="58804525"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="58804525"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 58804525; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=58804525]").text(description); $(".js-view-count[data-work-id=58804525]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 58804525; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='58804525']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 58804525, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=58804525]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":58804525,"title":"Carbon Dioxide “Trapped” in a β-Carbonic Anhydrase","translated_title":"","metadata":{"abstract":"Carbonic anhydrases (CAs) are enzymes that catalyze the hydration/dehydration of CO2/HCO3(-) with rates approaching diffusion-controlled limits (kcat/KM ∼ 10(8) M(-1) s(-1)). This family of enzymes has evolved disparate protein folds that all perform the same reaction at near catalytic perfection. Presented here is a structural study of a β-CA (psCA3) expressed in Pseudomonas aeruginosa, in complex with CO2, using pressurized cryo-cooled crystallography. The structure has been refined to 1.6 Å resolution with Rcryst and Rfree values of 17.3 and 19.9%, respectively, and is compared with the α-CA, human CA isoform II (hCA II), the only other CA to have CO2 captured in its active site. Despite the lack of structural similarity between psCA3 and hCA II, the CO2 binding orientation relative to the zinc-bound solvent is identical. In addition, a second CO2 binding site was located at the dimer interface of psCA3. Interestingly, all β-CAs function as dimers or higher-order oligomeric states, and the CO2 bound at the interface may contribute to the allosteric nature of this family of enzymes or may be a convenient alternative binding site as this pocket has been previously shown to be a promiscuous site for a variety of ligands, including bicarbonate, sulfate, and phosphate ions.","publisher":"American Chemical Society (ACS)","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Biochemistry"},"translated_abstract":"Carbonic anhydrases (CAs) are enzymes that catalyze the hydration/dehydration of CO2/HCO3(-) with rates approaching diffusion-controlled limits (kcat/KM ∼ 10(8) M(-1) s(-1)). This family of enzymes has evolved disparate protein folds that all perform the same reaction at near catalytic perfection. Presented here is a structural study of a β-CA (psCA3) expressed in Pseudomonas aeruginosa, in complex with CO2, using pressurized cryo-cooled crystallography. The structure has been refined to 1.6 Å resolution with Rcryst and Rfree values of 17.3 and 19.9%, respectively, and is compared with the α-CA, human CA isoform II (hCA II), the only other CA to have CO2 captured in its active site. Despite the lack of structural similarity between psCA3 and hCA II, the CO2 binding orientation relative to the zinc-bound solvent is identical. In addition, a second CO2 binding site was located at the dimer interface of psCA3. Interestingly, all β-CAs function as dimers or higher-order oligomeric states, and the CO2 bound at the interface may contribute to the allosteric nature of this family of enzymes or may be a convenient alternative binding site as this pocket has been previously shown to be a promiscuous site for a variety of ligands, including bicarbonate, sulfate, and phosphate ions.","internal_url":"https://www.academia.edu/58804525/Carbon_Dioxide_Trapped_in_a_%CE%B2_Carbonic_Anhydrase","translated_internal_url":"","created_at":"2021-10-18T05:55:23.091-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33002650,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Carbon_Dioxide_Trapped_in_a_β_Carbonic_Anhydrase","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":33002650,"first_name":"Doletha","middle_initials":null,"last_name":"Szebenyi","page_name":"DolethaSzebenyi","domain_name":"cornell","created_at":"2015-07-12T07:19:02.115-07:00","display_name":"Doletha Szebenyi","url":"https://cornell.academia.edu/DolethaSzebenyi"},"attachments":[],"research_interests":[{"id":145,"name":"Biochemistry","url":"https://www.academia.edu/Documents/in/Biochemistry"},{"id":4594,"name":"Carbon Dioxide","url":"https://www.academia.edu/Documents/in/Carbon_Dioxide"},{"id":33441,"name":"Macromolecular X-Ray Crystallography","url":"https://www.academia.edu/Documents/in/Macromolecular_X-Ray_Crystallography"},{"id":225499,"name":"Pseudomonas aeruginosa","url":"https://www.academia.edu/Documents/in/Pseudomonas_aeruginosa"},{"id":636395,"name":"Pseudomonas Aeruginosa","url":"https://www.academia.edu/Documents/in/Pseudomonas_Aeruginosa-1"},{"id":653665,"name":"Protein Conformation","url":"https://www.academia.edu/Documents/in/Protein_Conformation"},{"id":784076,"name":"Species Specificity","url":"https://www.academia.edu/Documents/in/Species_Specificity"},{"id":956752,"name":"Protein Quaternary Structure","url":"https://www.academia.edu/Documents/in/Protein_Quaternary_Structure"},{"id":990417,"name":"Recombinant Proteins","url":"https://www.academia.edu/Documents/in/Recombinant_Proteins"},{"id":1222191,"name":"Ligands","url":"https://www.academia.edu/Documents/in/Ligands"},{"id":1681026,"name":"Biochemistry and cell biology","url":"https://www.academia.edu/Documents/in/Biochemistry_and_cell_biology"},{"id":3789880,"name":"Medical biochemistry and metabolomics","url":"https://www.academia.edu/Documents/in/Medical_biochemistry_and_metabolomics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="58804524"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/58804524/MacCHESS_A_Macromolecular_Diffraction_Resource_at_the_Cornell_High_Energy_Synchrotron_Source"><img alt="Research paper thumbnail of MacCHESS — A Macromolecular Diffraction Resource at the Cornell High Energy Synchrotron Source" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/58804524/MacCHESS_A_Macromolecular_Diffraction_Resource_at_the_Cornell_High_Energy_Synchrotron_Source">MacCHESS — A Macromolecular Diffraction Resource at the Cornell High Energy Synchrotron Source</a></div><div class="wp-workCard_item"><span>Synchrotron Radiation in Structural Biology</span><span>, 1989</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="58804524"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="58804524"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 58804524; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=58804524]").text(description); $(".js-view-count[data-work-id=58804524]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 58804524; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='58804524']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 58804524, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=58804524]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":58804524,"title":"MacCHESS — A Macromolecular Diffraction Resource at the Cornell High Energy Synchrotron Source","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1989,"errors":{}},"publication_name":"Synchrotron Radiation in Structural Biology"},"translated_abstract":null,"internal_url":"https://www.academia.edu/58804524/MacCHESS_A_Macromolecular_Diffraction_Resource_at_the_Cornell_High_Energy_Synchrotron_Source","translated_internal_url":"","created_at":"2021-10-18T05:55:22.967-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33002650,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"MacCHESS_A_Macromolecular_Diffraction_Resource_at_the_Cornell_High_Energy_Synchrotron_Source","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":33002650,"first_name":"Doletha","middle_initials":null,"last_name":"Szebenyi","page_name":"DolethaSzebenyi","domain_name":"cornell","created_at":"2015-07-12T07:19:02.115-07:00","display_name":"Doletha Szebenyi","url":"https://cornell.academia.edu/DolethaSzebenyi"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="58804523"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/58804523/Time_resolved_laue_diffraction_from_protein_crystals_instrumental_considerations"><img alt="Research paper thumbnail of Time-resolved laue diffraction from protein crystals: instrumental considerations" class="work-thumbnail" src="https://attachments.academia-assets.com/73038768/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/58804523/Time_resolved_laue_diffraction_from_protein_crystals_instrumental_considerations">Time-resolved laue diffraction from protein crystals: instrumental considerations</a></div><div class="wp-workCard_item"><span>Nuclear Instruments and Methods in Physics Research</span><span>, 1984</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="912681835ceb8732aed1496f3bcca8d9" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":73038768,"asset_id":58804523,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/73038768/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="58804523"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="58804523"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 58804523; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=58804523]").text(description); $(".js-view-count[data-work-id=58804523]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 58804523; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='58804523']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 58804523, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "912681835ceb8732aed1496f3bcca8d9" } } $('.js-work-strip[data-work-id=58804523]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":58804523,"title":"Time-resolved laue diffraction from protein crystals: instrumental considerations","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"A serious limitation of macromolecular crystallography has been its inability to determine changes in structure on a biochemical time scale of milliseconds or less. Recently, we have shown that X-ray exposures on single crystals of macromolecules may be obtained in the millisecond time range through the use of intense, polychromatic radiation with AX/X-0.2 derived from the Comell High Energy Synchrotron Source, CHESS. Such radiation falling on a stationary crystal yields a Laue diffraction pattern, in which almost all Laue reflections arise from a unique set of Miller indices and where their intensities are automatically integrated ovo\" wavelength. This Laue technique requires wide band pass optics, which may be obtained by a combination of reflection and transmission mirrors, filters or layered synthetic microstructures. Time-resolved macromolecular crystallography may be achieved by several data collection schemes: \"one-shot\" recording coupled to a simple streak camera, repetitive sample perturbation coupled to a detector with temporal resolution and repetitive perturbation which uses the synchrotron pulses for stroboscopic triggering and detection. These schemes are appropriate for different time scales, roughly the miUi-, micro-and nanosecond regimes. It appears that time-resolved crystallography is entirely feasible, with an ultimate time resolution limited only by the length of a synchrotron light pulse, some 150 ps at CHESS.","publication_date":{"day":null,"month":null,"year":1984,"errors":{}},"publication_name":"Nuclear Instruments and Methods in Physics Research","grobid_abstract_attachment_id":73038768},"translated_abstract":null,"internal_url":"https://www.academia.edu/58804523/Time_resolved_laue_diffraction_from_protein_crystals_instrumental_considerations","translated_internal_url":"","created_at":"2021-10-18T05:55:22.820-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33002650,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":73038768,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/73038768/thumbnails/1.jpg","file_name":"0167-5087_2884_2990537-420211018-16309-c46i0w.pdf","download_url":"https://www.academia.edu/attachments/73038768/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Time_resolved_laue_diffraction_from_prot.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/73038768/0167-5087_2884_2990537-420211018-16309-c46i0w-libre.pdf?1634565317=\u0026response-content-disposition=attachment%3B+filename%3DTime_resolved_laue_diffraction_from_prot.pdf\u0026Expires=1732713811\u0026Signature=Zs--WIMxSYfEoJuOr9ksx4ioj9Vvjf4sL2RMSn7L1cc1~d~pHYiJ1SSgZo9tKgnHfC3EZKqxa8PH58FVoyVLKJA05VOO2GW9ldi5Iq7EtbGC60CfulTUErMkIAVd~cLy0QMCe4LIx3K3RlYJJDd2By5oQeovf7hQHVEnv9lYHZfJAbay6AoksXNXHSAOHyY1Up8-gWL7zACIOPlb~qG5YQ9xOW4FVo~h1NPsmFfTxZ7oOFzb1ATzRCS-Fzt~JzozOOTeO1dsDd1RCU8odRnTsYAYgehjRex75iKZnaJ7Sa61qFY~FFw68q4-oI91Y77wkbno2JGaJ0-dQ1PihaRfAA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Time_resolved_laue_diffraction_from_protein_crystals_instrumental_considerations","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":33002650,"first_name":"Doletha","middle_initials":null,"last_name":"Szebenyi","page_name":"DolethaSzebenyi","domain_name":"cornell","created_at":"2015-07-12T07:19:02.115-07:00","display_name":"Doletha Szebenyi","url":"https://cornell.academia.edu/DolethaSzebenyi"},"attachments":[{"id":73038768,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/73038768/thumbnails/1.jpg","file_name":"0167-5087_2884_2990537-420211018-16309-c46i0w.pdf","download_url":"https://www.academia.edu/attachments/73038768/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Time_resolved_laue_diffraction_from_prot.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/73038768/0167-5087_2884_2990537-420211018-16309-c46i0w-libre.pdf?1634565317=\u0026response-content-disposition=attachment%3B+filename%3DTime_resolved_laue_diffraction_from_prot.pdf\u0026Expires=1732713811\u0026Signature=Zs--WIMxSYfEoJuOr9ksx4ioj9Vvjf4sL2RMSn7L1cc1~d~pHYiJ1SSgZo9tKgnHfC3EZKqxa8PH58FVoyVLKJA05VOO2GW9ldi5Iq7EtbGC60CfulTUErMkIAVd~cLy0QMCe4LIx3K3RlYJJDd2By5oQeovf7hQHVEnv9lYHZfJAbay6AoksXNXHSAOHyY1Up8-gWL7zACIOPlb~qG5YQ9xOW4FVo~h1NPsmFfTxZ7oOFzb1ATzRCS-Fzt~JzozOOTeO1dsDd1RCU8odRnTsYAYgehjRex75iKZnaJ7Sa61qFY~FFw68q4-oI91Y77wkbno2JGaJ0-dQ1PihaRfAA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="58804519"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/58804519/Supplemental_Data_Insights_into_the_Mode_of_Action_of_a_Putative_Zinc_Transporter_CzrB_in_Thermus_thermophilus"><img alt="Research paper thumbnail of Supplemental Data Insights into the Mode of Action of a Putative Zinc Transporter CzrB in Thermus thermophilus" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/58804519/Supplemental_Data_Insights_into_the_Mode_of_Action_of_a_Putative_Zinc_Transporter_CzrB_in_Thermus_thermophilus">Supplemental Data Insights into the Mode of Action of a Putative Zinc Transporter CzrB in Thermus thermophilus</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="58804519"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="58804519"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 58804519; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=58804519]").text(description); $(".js-view-count[data-work-id=58804519]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 58804519; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='58804519']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 58804519, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=58804519]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":58804519,"title":"Supplemental Data Insights into the Mode of Action of a Putative Zinc Transporter CzrB in Thermus thermophilus","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2000,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/58804519/Supplemental_Data_Insights_into_the_Mode_of_Action_of_a_Putative_Zinc_Transporter_CzrB_in_Thermus_thermophilus","translated_internal_url":"","created_at":"2021-10-18T05:55:22.595-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33002650,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Supplemental_Data_Insights_into_the_Mode_of_Action_of_a_Putative_Zinc_Transporter_CzrB_in_Thermus_thermophilus","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":33002650,"first_name":"Doletha","middle_initials":null,"last_name":"Szebenyi","page_name":"DolethaSzebenyi","domain_name":"cornell","created_at":"2015-07-12T07:19:02.115-07:00","display_name":"Doletha Szebenyi","url":"https://cornell.academia.edu/DolethaSzebenyi"},"attachments":[],"research_interests":[{"id":158165,"name":"Zinc","url":"https://www.academia.edu/Documents/in/Zinc"},{"id":331187,"name":"Mode of action","url":"https://www.academia.edu/Documents/in/Mode_of_action"}],"urls":[{"id":13315670,"url":"http://download.cell.com/structure/mmcs/journals/0969-2126/piis096921260800289x.mmc1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="58804517"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/58804517/SUMOylation_of_cytoplasmic_serine_hydroxymethyltransferase_and_evidence_for_nuclear_folate_metabolism"><img alt="Research paper thumbnail of SUMOylation of cytoplasmic serine hydroxymethyltransferase and evidence for nuclear folate metabolism" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/58804517/SUMOylation_of_cytoplasmic_serine_hydroxymethyltransferase_and_evidence_for_nuclear_folate_metabolism">SUMOylation of cytoplasmic serine hydroxymethyltransferase and evidence for nuclear folate metabolism</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="58804517"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="58804517"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 58804517; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=58804517]").text(description); $(".js-view-count[data-work-id=58804517]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 58804517; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='58804517']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 58804517, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=58804517]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":58804517,"title":"SUMOylation of cytoplasmic serine hydroxymethyltransferase and evidence for nuclear folate metabolism","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/58804517/SUMOylation_of_cytoplasmic_serine_hydroxymethyltransferase_and_evidence_for_nuclear_folate_metabolism","translated_internal_url":"","created_at":"2021-10-18T05:55:22.489-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33002650,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"SUMOylation_of_cytoplasmic_serine_hydroxymethyltransferase_and_evidence_for_nuclear_folate_metabolism","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":33002650,"first_name":"Doletha","middle_initials":null,"last_name":"Szebenyi","page_name":"DolethaSzebenyi","domain_name":"cornell","created_at":"2015-07-12T07:19:02.115-07:00","display_name":"Doletha Szebenyi","url":"https://cornell.academia.edu/DolethaSzebenyi"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="3203442" id="papers"><div class="js-work-strip profile--work_container" data-work-id="71703801"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/71703801/A_high_pressure_macromolecular_crystallography_capability_developed_at_CHESS"><img alt="Research paper thumbnail of A high-pressure macromolecular crystallography capability developed at CHESS" class="work-thumbnail" src="https://attachments.academia-assets.com/80936977/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/71703801/A_high_pressure_macromolecular_crystallography_capability_developed_at_CHESS">A high-pressure macromolecular crystallography capability developed at CHESS</a></div><div class="wp-workCard_item"><span>Acta Crystallographica Section A Foundations and Advances</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="05dc9a93ecf6709038f8579eb014468e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":80936977,"asset_id":71703801,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/80936977/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="71703801"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="71703801"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 71703801; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=71703801]").text(description); $(".js-view-count[data-work-id=71703801]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 71703801; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='71703801']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 71703801, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "05dc9a93ecf6709038f8579eb014468e" } } $('.js-work-strip[data-work-id=71703801]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":71703801,"title":"A high-pressure macromolecular crystallography capability developed at CHESS","translated_title":"","metadata":{"publisher":"International Union of Crystallography (IUCr)","publication_name":"Acta Crystallographica Section A Foundations and Advances"},"translated_abstract":null,"internal_url":"https://www.academia.edu/71703801/A_high_pressure_macromolecular_crystallography_capability_developed_at_CHESS","translated_internal_url":"","created_at":"2022-02-16T12:29:24.733-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33002650,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":80936977,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80936977/thumbnails/1.jpg","file_name":"a59201.pdf","download_url":"https://www.academia.edu/attachments/80936977/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_high_pressure_macromolecular_crystallo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80936977/a59201-libre.pdf?1645045255=\u0026response-content-disposition=attachment%3B+filename%3DA_high_pressure_macromolecular_crystallo.pdf\u0026Expires=1732713809\u0026Signature=JMvWtQA02TSSZpmnxym6~JjD-DU8Ujlkxa1aAYEivoPXNG4dKglqAQsaFpELp24s4Mdom8vx~W-30BHX6TNqzaXbtB3zQgfWXTXapVMgtaTmzJi8JLRA5i2X~hLBORQA0J452Jd7B8HK~UL6oaUs1wxfUE3ljAzldytDe9iEYTBbk7ci31pjt2lPCxe0S68YF9xUDiKD~W4rlIQ2QaPzY-B~IACbIIlsF5AyYlcfEhRhMpGj2rFk-DjwTJatFpTJjx5Z2ZY40R6maLO4H2jI5uSPl3oznXaKxMUbpVkCs1fvvVtrjlOBAgpeW45fKquBc5J23zEx5BqjUqE~ySF2zg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_high_pressure_macromolecular_crystallography_capability_developed_at_CHESS","translated_slug":"","page_count":1,"language":"en","content_type":"Work","owner":{"id":33002650,"first_name":"Doletha","middle_initials":null,"last_name":"Szebenyi","page_name":"DolethaSzebenyi","domain_name":"cornell","created_at":"2015-07-12T07:19:02.115-07:00","display_name":"Doletha Szebenyi","url":"https://cornell.academia.edu/DolethaSzebenyi"},"attachments":[{"id":80936977,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80936977/thumbnails/1.jpg","file_name":"a59201.pdf","download_url":"https://www.academia.edu/attachments/80936977/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_high_pressure_macromolecular_crystallo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80936977/a59201-libre.pdf?1645045255=\u0026response-content-disposition=attachment%3B+filename%3DA_high_pressure_macromolecular_crystallo.pdf\u0026Expires=1732713809\u0026Signature=JMvWtQA02TSSZpmnxym6~JjD-DU8Ujlkxa1aAYEivoPXNG4dKglqAQsaFpELp24s4Mdom8vx~W-30BHX6TNqzaXbtB3zQgfWXTXapVMgtaTmzJi8JLRA5i2X~hLBORQA0J452Jd7B8HK~UL6oaUs1wxfUE3ljAzldytDe9iEYTBbk7ci31pjt2lPCxe0S68YF9xUDiKD~W4rlIQ2QaPzY-B~IACbIIlsF5AyYlcfEhRhMpGj2rFk-DjwTJatFpTJjx5Z2ZY40R6maLO4H2jI5uSPl3oznXaKxMUbpVkCs1fvvVtrjlOBAgpeW45fKquBc5J23zEx5BqjUqE~ySF2zg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"}],"urls":[{"id":17750267,"url":"http://journals.iucr.org/a/issues/2020/a1/00/a59201/a59201.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="58804554"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/58804554/CHESS_U_new_beamlines_new_opportunities_at_the_Cornell_High_Energy_Synchrotron_Source"><img alt="Research paper thumbnail of CHESS-U: new beamlines, new opportunities at the Cornell High Energy Synchrotron Source" class="work-thumbnail" src="https://attachments.academia-assets.com/73038623/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/58804554/CHESS_U_new_beamlines_new_opportunities_at_the_Cornell_High_Energy_Synchrotron_Source">CHESS-U: new beamlines, new opportunities at the Cornell High Energy Synchrotron Source</a></div><div class="wp-workCard_item"><span>Acta Crystallographica Section A Foundations and Advances</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3dc849bdea99a2dbb604b33200c8ef83" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":73038623,"asset_id":58804554,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/73038623/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="58804554"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="58804554"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 58804554; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=58804554]").text(description); $(".js-view-count[data-work-id=58804554]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 58804554; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='58804554']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 58804554, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3dc849bdea99a2dbb604b33200c8ef83" } } $('.js-work-strip[data-work-id=58804554]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":58804554,"title":"CHESS-U: new beamlines, new opportunities at the Cornell High Energy Synchrotron Source","translated_title":"","metadata":{"publisher":"International Union of Crystallography (IUCr)","publication_name":"Acta Crystallographica Section A Foundations and Advances"},"translated_abstract":null,"internal_url":"https://www.academia.edu/58804554/CHESS_U_new_beamlines_new_opportunities_at_the_Cornell_High_Energy_Synchrotron_Source","translated_internal_url":"","created_at":"2021-10-18T05:55:25.268-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33002650,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":73038623,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/73038623/thumbnails/1.jpg","file_name":"a57885.pdf","download_url":"https://www.academia.edu/attachments/73038623/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"CHESS_U_new_beamlines_new_opportunities.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/73038623/a57885-libre.pdf?1634565326=\u0026response-content-disposition=attachment%3B+filename%3DCHESS_U_new_beamlines_new_opportunities.pdf\u0026Expires=1732713809\u0026Signature=di6-58ETWfPH1GUZnZGKcblT7R1CPmpoZWXK9ODgEUfoD8Jvp27wE1V~UJThvC~64gZpzjuncNIp3l3JQL15EObCVF86L87BwsnBFO28G0-Ahm08Ms3zMn~vSU1xhPDx0F6shP0OTciC4jsZM2~G3sY1LSF9rryvpath2AZv0eJ-MkCDQDeT7ygzGjSBhlqCqEN7~xi-5UNF8ZXLURNH1JtsE1hrHckNdX-8Xh3eaT504kC6v2wqHPjTTUp0J~bjHjC6Hm3SVOELBIjplVvv6ulGUzO4WNssMMdu-4x8QR6QqWT7HmSRv0tUEUi2SBrGuQoofFZoXbgMhPS7Fkabwg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"CHESS_U_new_beamlines_new_opportunities_at_the_Cornell_High_Energy_Synchrotron_Source","translated_slug":"","page_count":1,"language":"is","content_type":"Work","owner":{"id":33002650,"first_name":"Doletha","middle_initials":null,"last_name":"Szebenyi","page_name":"DolethaSzebenyi","domain_name":"cornell","created_at":"2015-07-12T07:19:02.115-07:00","display_name":"Doletha Szebenyi","url":"https://cornell.academia.edu/DolethaSzebenyi"},"attachments":[{"id":73038623,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/73038623/thumbnails/1.jpg","file_name":"a57885.pdf","download_url":"https://www.academia.edu/attachments/73038623/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"CHESS_U_new_beamlines_new_opportunities.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/73038623/a57885-libre.pdf?1634565326=\u0026response-content-disposition=attachment%3B+filename%3DCHESS_U_new_beamlines_new_opportunities.pdf\u0026Expires=1732713809\u0026Signature=di6-58ETWfPH1GUZnZGKcblT7R1CPmpoZWXK9ODgEUfoD8Jvp27wE1V~UJThvC~64gZpzjuncNIp3l3JQL15EObCVF86L87BwsnBFO28G0-Ahm08Ms3zMn~vSU1xhPDx0F6shP0OTciC4jsZM2~G3sY1LSF9rryvpath2AZv0eJ-MkCDQDeT7ygzGjSBhlqCqEN7~xi-5UNF8ZXLURNH1JtsE1hrHckNdX-8Xh3eaT504kC6v2wqHPjTTUp0J~bjHjC6Hm3SVOELBIjplVvv6ulGUzO4WNssMMdu-4x8QR6QqWT7HmSRv0tUEUi2SBrGuQoofFZoXbgMhPS7Fkabwg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":13315681,"url":"http://journals.iucr.org/a/issues/2019/a1/00/a57885/a57885.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="58804553"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/58804553/Unexpected_roles_for_ADH1_and_SORD_in_catalyzing_the_final_step_of_erythritol_biosynthesis"><img alt="Research paper thumbnail of Unexpected roles for ADH1 and SORD in catalyzing the final step of erythritol biosynthesis" class="work-thumbnail" src="https://attachments.academia-assets.com/73038788/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/58804553/Unexpected_roles_for_ADH1_and_SORD_in_catalyzing_the_final_step_of_erythritol_biosynthesis">Unexpected roles for ADH1 and SORD in catalyzing the final step of erythritol biosynthesis</a></div><div class="wp-workCard_item"><span>Journal of Biological Chemistry</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9970020203f6912f1df46526f94a2689" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":73038788,"asset_id":58804553,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/73038788/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="58804553"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="58804553"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 58804553; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=58804553]").text(description); $(".js-view-count[data-work-id=58804553]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 58804553; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='58804553']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 58804553, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9970020203f6912f1df46526f94a2689" } } $('.js-work-strip[data-work-id=58804553]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":58804553,"title":"Unexpected roles for ADH1 and SORD in catalyzing the final step of erythritol biosynthesis","translated_title":"","metadata":{"publisher":"American Society for Biochemistry \u0026 Molecular Biology (ASBMB)","publication_name":"Journal of Biological Chemistry"},"translated_abstract":null,"internal_url":"https://www.academia.edu/58804553/Unexpected_roles_for_ADH1_and_SORD_in_catalyzing_the_final_step_of_erythritol_biosynthesis","translated_internal_url":"","created_at":"2021-10-18T05:55:25.097-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33002650,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":73038788,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/73038788/thumbnails/1.jpg","file_name":"jbc.RA119.009049.full.pdf","download_url":"https://www.academia.edu/attachments/73038788/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Unexpected_roles_for_ADH1_and_SORD_in_ca.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/73038788/jbc.RA119.009049.full-libre.pdf?1634565324=\u0026response-content-disposition=attachment%3B+filename%3DUnexpected_roles_for_ADH1_and_SORD_in_ca.pdf\u0026Expires=1732713809\u0026Signature=WlOMgVA5~u-r0f8gBG2lMeMjNSVvfAH4DcjNVUZaWJkqftXR0~DTYg5ZNnGr8YbYf5ffq~Se-LohNMt5qy77bzl0BFxsA1mPEc-JvaZ5BYgd2kysQLZA0osxUGVMPLy91gjt1io0JsFdnjqtVtvKfbJzVFk5JNTzB-gOSA2VEKvweymDmhPO6Tu5fro8EwjFdvVr9BptRuw5LPCrb2h~8i8XfhSJhKdhWofd9Dvs4FSjNiozuXT8GVjDl9Rt5G9KY3t3wDKHBGgCbLe5--wwLfrHVAllE-87KEBFZY0sVvnflF4Yus42QnGJHcm1ORLxZtKldD7WBUiK1f~pErutVA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Unexpected_roles_for_ADH1_and_SORD_in_catalyzing_the_final_step_of_erythritol_biosynthesis","translated_slug":"","page_count":32,"language":"en","content_type":"Work","owner":{"id":33002650,"first_name":"Doletha","middle_initials":null,"last_name":"Szebenyi","page_name":"DolethaSzebenyi","domain_name":"cornell","created_at":"2015-07-12T07:19:02.115-07:00","display_name":"Doletha Szebenyi","url":"https://cornell.academia.edu/DolethaSzebenyi"},"attachments":[{"id":73038788,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/73038788/thumbnails/1.jpg","file_name":"jbc.RA119.009049.full.pdf","download_url":"https://www.academia.edu/attachments/73038788/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Unexpected_roles_for_ADH1_and_SORD_in_ca.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/73038788/jbc.RA119.009049.full-libre.pdf?1634565324=\u0026response-content-disposition=attachment%3B+filename%3DUnexpected_roles_for_ADH1_and_SORD_in_ca.pdf\u0026Expires=1732713809\u0026Signature=WlOMgVA5~u-r0f8gBG2lMeMjNSVvfAH4DcjNVUZaWJkqftXR0~DTYg5ZNnGr8YbYf5ffq~Se-LohNMt5qy77bzl0BFxsA1mPEc-JvaZ5BYgd2kysQLZA0osxUGVMPLy91gjt1io0JsFdnjqtVtvKfbJzVFk5JNTzB-gOSA2VEKvweymDmhPO6Tu5fro8EwjFdvVr9BptRuw5LPCrb2h~8i8XfhSJhKdhWofd9Dvs4FSjNiozuXT8GVjDl9Rt5G9KY3t3wDKHBGgCbLe5--wwLfrHVAllE-87KEBFZY0sVvnflF4Yus42QnGJHcm1ORLxZtKldD7WBUiK1f~pErutVA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":18520,"name":"Biological Chemistry","url":"https://www.academia.edu/Documents/in/Biological_Chemistry"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":3763225,"name":"Medical and Health Sciences","url":"https://www.academia.edu/Documents/in/Medical_and_Health_Sciences"}],"urls":[{"id":13315680,"url":"https://syndication.highwire.org/content/doi/10.1074/jbc.RA119.009049"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="58804552"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/58804552/Endogenous_Synthesis_of_Erythritol_a_Novel_Biomarker_of_Weight_Gain_P15_016_19_"><img alt="Research paper thumbnail of Endogenous Synthesis of Erythritol, a Novel Biomarker of Weight Gain (P15-016-19)" class="work-thumbnail" src="https://attachments.academia-assets.com/73038781/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/58804552/Endogenous_Synthesis_of_Erythritol_a_Novel_Biomarker_of_Weight_Gain_P15_016_19_">Endogenous Synthesis of Erythritol, a Novel Biomarker of Weight Gain (P15-016-19)</a></div><div class="wp-workCard_item"><span>Current Developments in Nutrition</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Objectives Serum erythritol is associated with central adiposity gain in young adults. Erythritol...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Objectives Serum erythritol is associated with central adiposity gain in young adults. Erythritol, a 4-carbon polyol, is synthesized endogenously from erythrose through the pentose phosphate pathway. We have identified two enzymes which catalyze this reaction: alcohol dehydrogenase 1 (ADH1) and sorbitol dehydrogenase (SORD). Interestingly, ADH1 isoforms ADH1B1 and ADH1C2 catalyze NADPH-dependent synthesis of erythritol in vitro, but ADH1B1 does not. In A549 cells, siRNA knockdown of SORD levels to less than 15% of control levels reduced erythritol by 50%. A549 cells also have low levels of ADH1 expression. This indicates that other enzymes may be capable of endogenous erythritol production. Based on its high degree of homology to ADH1, we hypothesize that ADH4 also catalyzes erythritol synthesis. The objective of this study was to further elucidate the mechanism of erythritol synthesis by: determining key differences between the active site of ADH1B2 compared to ADH1B1 and SORD, and...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="480505fdc2b906640e79df9b891cb0f3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":73038781,"asset_id":58804552,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/73038781/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="58804552"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="58804552"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 58804552; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=58804552]").text(description); $(".js-view-count[data-work-id=58804552]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 58804552; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='58804552']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 58804552, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "480505fdc2b906640e79df9b891cb0f3" } } $('.js-work-strip[data-work-id=58804552]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":58804552,"title":"Endogenous Synthesis of Erythritol, a Novel Biomarker of Weight Gain (P15-016-19)","translated_title":"","metadata":{"abstract":"Objectives Serum erythritol is associated with central adiposity gain in young adults. Erythritol, a 4-carbon polyol, is synthesized endogenously from erythrose through the pentose phosphate pathway. We have identified two enzymes which catalyze this reaction: alcohol dehydrogenase 1 (ADH1) and sorbitol dehydrogenase (SORD). Interestingly, ADH1 isoforms ADH1B1 and ADH1C2 catalyze NADPH-dependent synthesis of erythritol in vitro, but ADH1B1 does not. In A549 cells, siRNA knockdown of SORD levels to less than 15% of control levels reduced erythritol by 50%. A549 cells also have low levels of ADH1 expression. This indicates that other enzymes may be capable of endogenous erythritol production. Based on its high degree of homology to ADH1, we hypothesize that ADH4 also catalyzes erythritol synthesis. The objective of this study was to further elucidate the mechanism of erythritol synthesis by: determining key differences between the active site of ADH1B2 compared to ADH1B1 and SORD, and...","publisher":"Oxford University Press (OUP)","publication_name":"Current Developments in Nutrition"},"translated_abstract":"Objectives Serum erythritol is associated with central adiposity gain in young adults. Erythritol, a 4-carbon polyol, is synthesized endogenously from erythrose through the pentose phosphate pathway. We have identified two enzymes which catalyze this reaction: alcohol dehydrogenase 1 (ADH1) and sorbitol dehydrogenase (SORD). Interestingly, ADH1 isoforms ADH1B1 and ADH1C2 catalyze NADPH-dependent synthesis of erythritol in vitro, but ADH1B1 does not. In A549 cells, siRNA knockdown of SORD levels to less than 15% of control levels reduced erythritol by 50%. A549 cells also have low levels of ADH1 expression. This indicates that other enzymes may be capable of endogenous erythritol production. Based on its high degree of homology to ADH1, we hypothesize that ADH4 also catalyzes erythritol synthesis. The objective of this study was to further elucidate the mechanism of erythritol synthesis by: determining key differences between the active site of ADH1B2 compared to ADH1B1 and SORD, and...","internal_url":"https://www.academia.edu/58804552/Endogenous_Synthesis_of_Erythritol_a_Novel_Biomarker_of_Weight_Gain_P15_016_19_","translated_internal_url":"","created_at":"2021-10-18T05:55:24.928-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33002650,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":73038781,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/73038781/thumbnails/1.jpg","file_name":"nzz037.p15-016-19.pdf","download_url":"https://www.academia.edu/attachments/73038781/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Endogenous_Synthesis_of_Erythritol_a_Nov.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/73038781/nzz037.p15-016-19-libre.pdf?1634565317=\u0026response-content-disposition=attachment%3B+filename%3DEndogenous_Synthesis_of_Erythritol_a_Nov.pdf\u0026Expires=1732713810\u0026Signature=XtIAbUv6vris9nxpHoeeGq5kS5LOrVjO9jezVKDRTQjgEYOWfi52IucyzwcbFFFla4~ouveOONmpkWcLPTjpFz3slWqa~gB9bd1Rky0F6xd6fQ-xPFcWfiyFmQb9twPscGO1E8GXfATOQA7gRGjNX8KnnYHX5TLdIsc6uNsfE7EhRN1YVX~HHalAxK7yqo14ecjMcoo1DH5-UDd4iG9Cc~IGHD2md~CgqC9scmLLZnBomToqBXRibRfDQ~2HiJXGBptueFjypSmWrJ~h7XplOYdcD7qYhAH~RpIumX0s1mBchRc3yfFFwtQ0~quHtB~ihvagFEu01yAS2qqfd0EezA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Endogenous_Synthesis_of_Erythritol_a_Novel_Biomarker_of_Weight_Gain_P15_016_19_","translated_slug":"","page_count":1,"language":"en","content_type":"Work","owner":{"id":33002650,"first_name":"Doletha","middle_initials":null,"last_name":"Szebenyi","page_name":"DolethaSzebenyi","domain_name":"cornell","created_at":"2015-07-12T07:19:02.115-07:00","display_name":"Doletha Szebenyi","url":"https://cornell.academia.edu/DolethaSzebenyi"},"attachments":[{"id":73038781,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/73038781/thumbnails/1.jpg","file_name":"nzz037.p15-016-19.pdf","download_url":"https://www.academia.edu/attachments/73038781/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Endogenous_Synthesis_of_Erythritol_a_Nov.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/73038781/nzz037.p15-016-19-libre.pdf?1634565317=\u0026response-content-disposition=attachment%3B+filename%3DEndogenous_Synthesis_of_Erythritol_a_Nov.pdf\u0026Expires=1732713810\u0026Signature=XtIAbUv6vris9nxpHoeeGq5kS5LOrVjO9jezVKDRTQjgEYOWfi52IucyzwcbFFFla4~ouveOONmpkWcLPTjpFz3slWqa~gB9bd1Rky0F6xd6fQ-xPFcWfiyFmQb9twPscGO1E8GXfATOQA7gRGjNX8KnnYHX5TLdIsc6uNsfE7EhRN1YVX~HHalAxK7yqo14ecjMcoo1DH5-UDd4iG9Cc~IGHD2md~CgqC9scmLLZnBomToqBXRibRfDQ~2HiJXGBptueFjypSmWrJ~h7XplOYdcD7qYhAH~RpIumX0s1mBchRc3yfFFwtQ0~quHtB~ihvagFEu01yAS2qqfd0EezA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":13315679,"url":"http://academic.oup.com/cdn/article-pdf/3/Supplement_1/nzz037.P15-016-19/28960073/nzz037.p15-016-19.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="58804551"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/58804551/Trigohexagonite_A_Rare_Quaternary_Stoichiometry_Network"><img alt="Research paper thumbnail of Trigohexagonite: A Rare Quaternary Stoichiometry Network" class="work-thumbnail" src="https://attachments.academia-assets.com/73038620/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/58804551/Trigohexagonite_A_Rare_Quaternary_Stoichiometry_Network">Trigohexagonite: A Rare Quaternary Stoichiometry Network</a></div><div class="wp-workCard_item"><span>Nature Precedings</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3d45e1010a9b4b00b94bc8f06922c63a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":73038620,"asset_id":58804551,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/73038620/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="58804551"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="58804551"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 58804551; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=58804551]").text(description); $(".js-view-count[data-work-id=58804551]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 58804551; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='58804551']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 58804551, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3d45e1010a9b4b00b94bc8f06922c63a" } } $('.js-work-strip[data-work-id=58804551]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":58804551,"title":"Trigohexagonite: A Rare Quaternary Stoichiometry Network","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","grobid_abstract":"A novel 3-,4-connected network is reported in this communication that is a rare example of a three-dimensional (3D) network with a quaternary stoichiometry, in which 4 distinct sites of bonding occur in the unit of pattern of the material. The net lies in the hexagonal space group P-6m2 (#187) and there are 10 vertices (or atoms) in the unit cell, including 4 sites of approximately trigonal planar coordination and 6 sites of approximately tetrahedral coordination. All vertices (atoms) in the network sit on special positions in the P-6m2 space group, giving the network high 6-fold symmetry axes parallel to the crystallographic c-axis. The structure has thus been named trigohexagonite in a loose analogy with its hexagonite crystalline homolog, sitting in the hexagonal space group P6/mmm (#191). The Wells point symbol for the trigohexagonite network is given by (7 3)(6 3 8 3) 3 (6.7 2) 3 (3.7 4 .8) 3 where this symbol indicates the quaternary stoichiometry of the network. The Wells point symbol also reveals that the only structural strain present in the network comes from the presence of the 3-gon, cyclopropane-like moieties in it, built on tetrahedral vertices. This structural motif of cyclopropane-like rings has precedent in organic chemistry and it adds character to the overall 6-fold symmetry of the trigohexagonite pattern. Also, the overall network contains rare trimethylenemethane-like clusters of 4 trigonal planar vertices (atoms), bonded together, that constitute the 3connected component of the network. Both C 10 and B 10 realizations are briefly described.","publication_name":"Nature Precedings","grobid_abstract_attachment_id":73038620},"translated_abstract":null,"internal_url":"https://www.academia.edu/58804551/Trigohexagonite_A_Rare_Quaternary_Stoichiometry_Network","translated_internal_url":"","created_at":"2021-10-18T05:55:24.758-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33002650,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":73038620,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/73038620/thumbnails/1.jpg","file_name":"npre.2008.1650.1.pdf","download_url":"https://www.academia.edu/attachments/73038620/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Trigohexagonite_A_Rare_Quaternary_Stoich.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/73038620/npre.2008.1650.1-libre.pdf?1634565328=\u0026response-content-disposition=attachment%3B+filename%3DTrigohexagonite_A_Rare_Quaternary_Stoich.pdf\u0026Expires=1732713810\u0026Signature=Uvj6yeVKbNEhk2RG7lJ0ccI5A8LsIvoQj4ZpbyLSVw5PZ3y8z6rQR9sO2szJa5Oxs1LiYkYlPCtQt0RqleUfUwYToWiA7GpjJQMAi9JxIsJVMauz-dxYOefg4o2lO8xHMnie0vKSbePZJm3PhhDlMksPyIdvy4i5v6a2ayt5Z2fRI~qQqd3Tr5eG07JT-euG1lMvAahTO8Jc07wZJA2hFyL3xI2ydVSFken4Z64JwwFSLVZmPVJUlKzBXp9ZnEVch6qJwfkZr7BckmLVzkT4M~obzLxBZC6WIYS82HnxftpXcToXByfIv~p~t~JwzBg7U88N7PqdYxyjGCmO3VXveA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Trigohexagonite_A_Rare_Quaternary_Stoichiometry_Network","translated_slug":"","page_count":24,"language":"en","content_type":"Work","owner":{"id":33002650,"first_name":"Doletha","middle_initials":null,"last_name":"Szebenyi","page_name":"DolethaSzebenyi","domain_name":"cornell","created_at":"2015-07-12T07:19:02.115-07:00","display_name":"Doletha Szebenyi","url":"https://cornell.academia.edu/DolethaSzebenyi"},"attachments":[{"id":73038620,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/73038620/thumbnails/1.jpg","file_name":"npre.2008.1650.1.pdf","download_url":"https://www.academia.edu/attachments/73038620/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Trigohexagonite_A_Rare_Quaternary_Stoich.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/73038620/npre.2008.1650.1-libre.pdf?1634565328=\u0026response-content-disposition=attachment%3B+filename%3DTrigohexagonite_A_Rare_Quaternary_Stoich.pdf\u0026Expires=1732713810\u0026Signature=Uvj6yeVKbNEhk2RG7lJ0ccI5A8LsIvoQj4ZpbyLSVw5PZ3y8z6rQR9sO2szJa5Oxs1LiYkYlPCtQt0RqleUfUwYToWiA7GpjJQMAi9JxIsJVMauz-dxYOefg4o2lO8xHMnie0vKSbePZJm3PhhDlMksPyIdvy4i5v6a2ayt5Z2fRI~qQqd3Tr5eG07JT-euG1lMvAahTO8Jc07wZJA2hFyL3xI2ydVSFken4Z64JwwFSLVZmPVJUlKzBXp9ZnEVch6qJwfkZr7BckmLVzkT4M~obzLxBZC6WIYS82HnxftpXcToXByfIv~p~t~JwzBg7U88N7PqdYxyjGCmO3VXveA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":73038619,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/73038619/thumbnails/1.jpg","file_name":"npre.2008.1650.1.pdf","download_url":"https://www.academia.edu/attachments/73038619/download_file","bulk_download_file_name":"Trigohexagonite_A_Rare_Quaternary_Stoich.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/73038619/npre.2008.1650.1-libre.pdf?1634565328=\u0026response-content-disposition=attachment%3B+filename%3DTrigohexagonite_A_Rare_Quaternary_Stoich.pdf\u0026Expires=1732713810\u0026Signature=EF8KjfpAIZ-E8g3x-YfBVJObqgPBcPv47BVQsKUwUjzzLcTqez3U~SMdsHs1aPzu1~Yxfb~RRI0N2JomOZS7i-gvpSr0ijsN~M333HFdSpHqeNdO6krL4lfDZT5GdbRB~qAPXSNtRn3upublRH00jRWz28NpfbqiiGdX9bKUsS6Vz56xUr0Mo1jdgSS07-YwDSFvvhMxr-LuNYBLAVWSQ0NYmAZegfFmRw1F0eZdye08NrrGAmeQpYF2o9R0JIWozzLLbHlLL7GYy80IJ-6fqzqZ5To0T3Oy75e5JB5FFC9uxHkBOQFOaMxxDWe40kv-pQD5emoGBAZ8ly3~BpDP0g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"}],"urls":[{"id":13315678,"url":"http://link.springer.com/content/pdf/10.1038/npre.2008.1650.1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="58804549"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/58804549/Fixed_target_serial_oscillation_crystallography_at_room_temperature"><img alt="Research paper thumbnail of Fixed-target serial oscillation crystallography at room temperature" class="work-thumbnail" src="https://attachments.academia-assets.com/73038786/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/58804549/Fixed_target_serial_oscillation_crystallography_at_room_temperature">Fixed-target serial oscillation crystallography at room temperature</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f15fd54eed5a1bbb316550b819d1c6ae" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":73038786,"asset_id":58804549,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/73038786/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="58804549"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="58804549"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 58804549; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=58804549]").text(description); $(".js-view-count[data-work-id=58804549]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 58804549; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='58804549']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 58804549, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f15fd54eed5a1bbb316550b819d1c6ae" } } $('.js-work-strip[data-work-id=58804549]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":58804549,"title":"Fixed-target serial oscillation crystallography at room temperature","translated_title":"","metadata":{"publisher":"International Union of Crystallography (IUCr)","grobid_abstract":"A fixed-target approach to high-throughput room-temperature serial synchrotron crystallography with oscillation is described. Patterned silicon chips with microwells provide high crystal-loading density with an extremely high hit rate. The microfocus, undulator-fed beamline at CHESS, which has compound refractive optics and a fast-framing detector, was built and optimized for this experiment. The high-throughput oscillation method described here collects 1","grobid_abstract_attachment_id":73038786},"translated_abstract":null,"internal_url":"https://www.academia.edu/58804549/Fixed_target_serial_oscillation_crystallography_at_room_temperature","translated_internal_url":"","created_at":"2021-10-18T05:55:24.646-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33002650,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":73038786,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/73038786/thumbnails/1.jpg","file_name":"mf5030.pdf","download_url":"https://www.academia.edu/attachments/73038786/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fixed_target_serial_oscillation_crystall.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/73038786/mf5030-libre.pdf?1634565317=\u0026response-content-disposition=attachment%3B+filename%3DFixed_target_serial_oscillation_crystall.pdf\u0026Expires=1732713810\u0026Signature=PJAn9bu-BeA7l3xt92ZqsHSN5gFUDBFLAwJpk0vNb67KCStMe2lPjpIrfzhB0VEWkWCGnPTtSTeaUAj4c5lNMCd4zyojAtnU4rNmwdKmLA6RPl4WpO5PvfN1yWDG7cnu4sPi4VQLH38r716NJYjOhZinR5lS2hBnsFvAxYUeqLwhsmEJRPl97JBhyR8BXa-yTjOPPWFLhYJXF50TaAmguueQ29mXvvTB04YT2lG6Mlk6S40aoU8nekQhTX~7z5oQ6katveuxWdBe293g9PALvC8hF8vWuB~9ijvnH3reD~v7xpZvRzljCxAohJRlXuaPjx5k~iPL-Kcs8zfZeWe07g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Fixed_target_serial_oscillation_crystallography_at_room_temperature","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":33002650,"first_name":"Doletha","middle_initials":null,"last_name":"Szebenyi","page_name":"DolethaSzebenyi","domain_name":"cornell","created_at":"2015-07-12T07:19:02.115-07:00","display_name":"Doletha Szebenyi","url":"https://cornell.academia.edu/DolethaSzebenyi"},"attachments":[{"id":73038786,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/73038786/thumbnails/1.jpg","file_name":"mf5030.pdf","download_url":"https://www.academia.edu/attachments/73038786/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fixed_target_serial_oscillation_crystall.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/73038786/mf5030-libre.pdf?1634565317=\u0026response-content-disposition=attachment%3B+filename%3DFixed_target_serial_oscillation_crystall.pdf\u0026Expires=1732713810\u0026Signature=PJAn9bu-BeA7l3xt92ZqsHSN5gFUDBFLAwJpk0vNb67KCStMe2lPjpIrfzhB0VEWkWCGnPTtSTeaUAj4c5lNMCd4zyojAtnU4rNmwdKmLA6RPl4WpO5PvfN1yWDG7cnu4sPi4VQLH38r716NJYjOhZinR5lS2hBnsFvAxYUeqLwhsmEJRPl97JBhyR8BXa-yTjOPPWFLhYJXF50TaAmguueQ29mXvvTB04YT2lG6Mlk6S40aoU8nekQhTX~7z5oQ6katveuxWdBe293g9PALvC8hF8vWuB~9ijvnH3reD~v7xpZvRzljCxAohJRlXuaPjx5k~iPL-Kcs8zfZeWe07g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="58804547"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/58804547/A_high_throughput_serial_crystallography_beamline_at_CHESS"><img alt="Research paper thumbnail of A high-throughput serial crystallography beamline at CHESS" class="work-thumbnail" src="https://attachments.academia-assets.com/73038618/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/58804547/A_high_throughput_serial_crystallography_beamline_at_CHESS">A high-throughput serial crystallography beamline at CHESS</a></div><div class="wp-workCard_item"><span>Acta Crystallographica Section A Foundations and Advances</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="995f749472e76cc9b34bd3c972fc7f48" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":73038618,"asset_id":58804547,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/73038618/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="58804547"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="58804547"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 58804547; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=58804547]").text(description); $(".js-view-count[data-work-id=58804547]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 58804547; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='58804547']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 58804547, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "995f749472e76cc9b34bd3c972fc7f48" } } $('.js-work-strip[data-work-id=58804547]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":58804547,"title":"A high-throughput serial crystallography beamline at CHESS","translated_title":"","metadata":{"publisher":"International Union of Crystallography (IUCr)","publication_name":"Acta Crystallographica Section A Foundations and Advances"},"translated_abstract":null,"internal_url":"https://www.academia.edu/58804547/A_high_throughput_serial_crystallography_beamline_at_CHESS","translated_internal_url":"","created_at":"2021-10-18T05:55:24.475-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33002650,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":73038618,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/73038618/thumbnails/1.jpg","file_name":"a56640.pdf","download_url":"https://www.academia.edu/attachments/73038618/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_high_throughput_serial_crystallography.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/73038618/a56640-libre.pdf?1634565326=\u0026response-content-disposition=attachment%3B+filename%3DA_high_throughput_serial_crystallography.pdf\u0026Expires=1732713810\u0026Signature=BEPm9sRcfbXaNwOJZXa3jYu0HxzeX8GuiZBcy5QYOZtfl4ATPbYWTWyQbwmoSf-zaKQFy8ggVQq5JECvAJsPKZfxj~eefzShU3c-THYvXuvSjzfx3T1rbspJpTcvfdG9TdKaHIgsoXsZznQv7ZGXhiDPTuUiJ7dwm27hhy2bAWc2GX8Ejt3Am74n9t5x2XsTdAIj8NjWYa8UUpNn0Q7Famh2PVFUPbj94~kbOiRuj-pREtyEEcLH~rl78isjHhoHlTKOcmBeM2G3uHOmBZ1cfbrCO3K11FRnsYEFF67kkHUTuWUO0DAh~3V-JBVaGY94BnsBSKnfPf0ZacFEO3a--A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_high_throughput_serial_crystallography_beamline_at_CHESS","translated_slug":"","page_count":1,"language":"en","content_type":"Work","owner":{"id":33002650,"first_name":"Doletha","middle_initials":null,"last_name":"Szebenyi","page_name":"DolethaSzebenyi","domain_name":"cornell","created_at":"2015-07-12T07:19:02.115-07:00","display_name":"Doletha Szebenyi","url":"https://cornell.academia.edu/DolethaSzebenyi"},"attachments":[{"id":73038618,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/73038618/thumbnails/1.jpg","file_name":"a56640.pdf","download_url":"https://www.academia.edu/attachments/73038618/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_high_throughput_serial_crystallography.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/73038618/a56640-libre.pdf?1634565326=\u0026response-content-disposition=attachment%3B+filename%3DA_high_throughput_serial_crystallography.pdf\u0026Expires=1732713810\u0026Signature=BEPm9sRcfbXaNwOJZXa3jYu0HxzeX8GuiZBcy5QYOZtfl4ATPbYWTWyQbwmoSf-zaKQFy8ggVQq5JECvAJsPKZfxj~eefzShU3c-THYvXuvSjzfx3T1rbspJpTcvfdG9TdKaHIgsoXsZznQv7ZGXhiDPTuUiJ7dwm27hhy2bAWc2GX8Ejt3Am74n9t5x2XsTdAIj8NjWYa8UUpNn0Q7Famh2PVFUPbj94~kbOiRuj-pREtyEEcLH~rl78isjHhoHlTKOcmBeM2G3uHOmBZ1cfbrCO3K11FRnsYEFF67kkHUTuWUO0DAh~3V-JBVaGY94BnsBSKnfPf0ZacFEO3a--A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":13315676,"url":"http://journals.iucr.org/a/issues/2018/a1/00/a56640/a56640.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="58804545"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/58804545/MacCHESS_Structural_Biology_at_Cornells_High_Energy_Synchrotron_Source"><img alt="Research paper thumbnail of MacCHESS: Structural Biology at Cornell's High-Energy Synchrotron Source" class="work-thumbnail" src="https://attachments.academia-assets.com/73038778/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/58804545/MacCHESS_Structural_Biology_at_Cornells_High_Energy_Synchrotron_Source">MacCHESS: Structural Biology at Cornell's High-Energy Synchrotron Source</a></div><div class="wp-workCard_item"><span>Acta Crystallographica Section A Foundations and Advances</span><span>, 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e1fd20815dd536e9de509390aab48c24" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":73038778,"asset_id":58804545,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/73038778/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="58804545"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="58804545"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 58804545; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=58804545]").text(description); $(".js-view-count[data-work-id=58804545]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 58804545; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='58804545']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 58804545, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e1fd20815dd536e9de509390aab48c24" } } $('.js-work-strip[data-work-id=58804545]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":58804545,"title":"MacCHESS: Structural Biology at Cornell's High-Energy Synchrotron Source","translated_title":"","metadata":{"publisher":"International Union of Crystallography (IUCr)","grobid_abstract":"MacCHESS (\"Macromolecular diffraction at CHESS\") is an NIH funded facility at the Cornell High Energy Synchrotron Source; we provide a user facility with an exceptional level of support, as well as pursuing research to benefit the entire structural biology community. CRYSTALLOGRAPHY: High-flux monochromatic beamlines outfitted with state-of-the-art equipment are available. BSL-2 biohazards can be handled. Research activities include on-line confocal microscopy, working with multiple small crystals, use of graphene to reduce background, etc. BIOSAXS: A dedicated beamline features: a dual SAXS/WAXS setup using 2 Pilatus detectors; an integrated computer-controlled flow system including robotic sample loading from 96-well trays, custom-made disposable, transparent sample cells, and a convenient graphical interface; a well-equipped wet lab for sample monitoring and final preparation; an in-line SEC-MALS/DLS-SAXS option. Microfluidic \"lab-on-a-chip\" units are under development. Periodic workshops are held to educate users in the intricacies of BioSAXS. PRESSURE CRYOCOOLING: Cryocooling crystals under pressure reduces both coolinginduced degradation and the need for penetrating cryoprotectants, and can stabilize mobile ligands and possibly reaction intermediates. We offer pressure-cryocooling as a service to CHESS users, while continuing to develop the method. Several sample mounting techniques are now available, and the technique has promise for use with biological samples other than crystals. FMI: To request beamtime, fill out a simple on-line proposal form at http://www.chess.cornell.edu. Mail-in service is available, and remote data collection is supported for experienced crystallography users. We welcome a chance to collaborate on \"non-standard\" experiments. For more information, contact User Administrator Kathy Dedrick","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Acta Crystallographica Section A Foundations and Advances","grobid_abstract_attachment_id":73038778},"translated_abstract":null,"internal_url":"https://www.academia.edu/58804545/MacCHESS_Structural_Biology_at_Cornells_High_Energy_Synchrotron_Source","translated_internal_url":"","created_at":"2021-10-18T05:55:24.363-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33002650,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":73038778,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/73038778/thumbnails/1.jpg","file_name":"a52087.pdf","download_url":"https://www.academia.edu/attachments/73038778/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"MacCHESS_Structural_Biology_at_Cornells.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/73038778/a52087-libre.pdf?1634565315=\u0026response-content-disposition=attachment%3B+filename%3DMacCHESS_Structural_Biology_at_Cornells.pdf\u0026Expires=1732713810\u0026Signature=UUXNbWAt4LLcsVudtJUPqm3plcbONzVhUAmMYBXi90zlmHf-JQEB4OyCR3LQ7ny8N0Mxx1JX-NcHUryVJ2c0ZHJx5sElKZPLlCrxFQVI1mm5MbYmfljgf2zFg9~ec3FvYS7oj3dKvvauA5VZic6UaEh8rywmoG3AsXxQknHOTIeDZyMVAZHtupBqBdOfQoUMMyz7Nj-1NXpCEKK8YMLGU784CtIOcX03OlHKjgSur94-Tyvc1ELrZkBAOlMw2Qs0CzMEjYTnuZ3lFnjJdld5JuPBVfvEqR-KUmg6dX1wZAiXi~lndIQXVxCAiJeqGdDngooqjVc4DhvSUMLnQRqcQg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"MacCHESS_Structural_Biology_at_Cornells_High_Energy_Synchrotron_Source","translated_slug":"","page_count":1,"language":"en","content_type":"Work","owner":{"id":33002650,"first_name":"Doletha","middle_initials":null,"last_name":"Szebenyi","page_name":"DolethaSzebenyi","domain_name":"cornell","created_at":"2015-07-12T07:19:02.115-07:00","display_name":"Doletha Szebenyi","url":"https://cornell.academia.edu/DolethaSzebenyi"},"attachments":[{"id":73038778,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/73038778/thumbnails/1.jpg","file_name":"a52087.pdf","download_url":"https://www.academia.edu/attachments/73038778/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"MacCHESS_Structural_Biology_at_Cornells.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/73038778/a52087-libre.pdf?1634565315=\u0026response-content-disposition=attachment%3B+filename%3DMacCHESS_Structural_Biology_at_Cornells.pdf\u0026Expires=1732713810\u0026Signature=UUXNbWAt4LLcsVudtJUPqm3plcbONzVhUAmMYBXi90zlmHf-JQEB4OyCR3LQ7ny8N0Mxx1JX-NcHUryVJ2c0ZHJx5sElKZPLlCrxFQVI1mm5MbYmfljgf2zFg9~ec3FvYS7oj3dKvvauA5VZic6UaEh8rywmoG3AsXxQknHOTIeDZyMVAZHtupBqBdOfQoUMMyz7Nj-1NXpCEKK8YMLGU784CtIOcX03OlHKjgSur94-Tyvc1ELrZkBAOlMw2Qs0CzMEjYTnuZ3lFnjJdld5JuPBVfvEqR-KUmg6dX1wZAiXi~lndIQXVxCAiJeqGdDngooqjVc4DhvSUMLnQRqcQg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="58804543"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/58804543/Improving_diffraction_resolution_using_a_new_dehydration_method"><img alt="Research paper thumbnail of Improving diffraction resolution using a new dehydration method" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/58804543/Improving_diffraction_resolution_using_a_new_dehydration_method">Improving diffraction resolution using a new dehydration method</a></div><div class="wp-workCard_item"><span>Acta Crystallographica Section F Structural Biology Communications</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The production of high-quality crystals is one of the major obstacles in determining the three-di...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The production of high-quality crystals is one of the major obstacles in determining the three-dimensional structure of macromolecules by X-ray crystallography. It is fairly common that a visually well formed crystal diffracts poorly to a resolution that is too low to be suitable for structure determination. Dehydration has proven to be an effective post-crystallization treatment for improving crystal diffraction quality. Several dehydration methods have been developed, but no single one of them is suitable for all crystals. Here, a new convenient and effective dehydration method is reported that makes use of a dehydrating solution that will not dry out in air for several hours. Using this dehydration method, the resolution ofArchaeoglobus fulgidusCas5a crystals has been increased from 3.2 to 1.95 Å and the resolution ofEscherichia coliLptA crystals has been increased from…</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="58804543"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="58804543"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 58804543; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=58804543]").text(description); $(".js-view-count[data-work-id=58804543]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 58804543; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='58804543']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 58804543, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=58804543]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":58804543,"title":"Improving diffraction resolution using a new dehydration method","translated_title":"","metadata":{"abstract":"The production of high-quality crystals is one of the major obstacles in determining the three-dimensional structure of macromolecules by X-ray crystallography. It is fairly common that a visually well formed crystal diffracts poorly to a resolution that is too low to be suitable for structure determination. Dehydration has proven to be an effective post-crystallization treatment for improving crystal diffraction quality. Several dehydration methods have been developed, but no single one of them is suitable for all crystals. Here, a new convenient and effective dehydration method is reported that makes use of a dehydrating solution that will not dry out in air for several hours. Using this dehydration method, the resolution ofArchaeoglobus fulgidusCas5a crystals has been increased from 3.2 to 1.95 Å and the resolution ofEscherichia coliLptA crystals has been increased from…","publisher":"International Union of Crystallography (IUCr)","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Acta Crystallographica Section F Structural Biology Communications"},"translated_abstract":"The production of high-quality crystals is one of the major obstacles in determining the three-dimensional structure of macromolecules by X-ray crystallography. It is fairly common that a visually well formed crystal diffracts poorly to a resolution that is too low to be suitable for structure determination. Dehydration has proven to be an effective post-crystallization treatment for improving crystal diffraction quality. Several dehydration methods have been developed, but no single one of them is suitable for all crystals. Here, a new convenient and effective dehydration method is reported that makes use of a dehydrating solution that will not dry out in air for several hours. Using this dehydration method, the resolution ofArchaeoglobus fulgidusCas5a crystals has been increased from 3.2 to 1.95 Å and the resolution ofEscherichia coliLptA crystals has been increased from…","internal_url":"https://www.academia.edu/58804543/Improving_diffraction_resolution_using_a_new_dehydration_method","translated_internal_url":"","created_at":"2021-10-18T05:55:24.252-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33002650,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Improving_diffraction_resolution_using_a_new_dehydration_method","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":33002650,"first_name":"Doletha","middle_initials":null,"last_name":"Szebenyi","page_name":"DolethaSzebenyi","domain_name":"cornell","created_at":"2015-07-12T07:19:02.115-07:00","display_name":"Doletha Szebenyi","url":"https://cornell.academia.edu/DolethaSzebenyi"},"attachments":[],"research_interests":[{"id":12597,"name":"Crystallization","url":"https://www.academia.edu/Documents/in/Crystallization"},{"id":33441,"name":"Macromolecular X-Ray Crystallography","url":"https://www.academia.edu/Documents/in/Macromolecular_X-Ray_Crystallography"},{"id":83128,"name":"Escherichia coli","url":"https://www.academia.edu/Documents/in/Escherichia_coli"},{"id":346274,"name":"Dehydration","url":"https://www.academia.edu/Documents/in/Dehydration"},{"id":653665,"name":"Protein Conformation","url":"https://www.academia.edu/Documents/in/Protein_Conformation"},{"id":3663861,"name":"Archaeoglobus fulgidus","url":"https://www.academia.edu/Documents/in/Archaeoglobus_fulgidus"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="58804540"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/58804540/A_visible_light_excited_fluorescence_method_for_imaging_protein_crystals_without_added_dyes"><img alt="Research paper thumbnail of A visible-light-excited fluorescence method for imaging protein crystals without added dyes" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/58804540/A_visible_light_excited_fluorescence_method_for_imaging_protein_crystals_without_added_dyes">A visible-light-excited fluorescence method for imaging protein crystals without added dyes</a></div><div class="wp-workCard_item"><span>Journal of Applied Crystallography</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Fluorescence microscopy methods have seen an increase in popularity in recent years for detecting...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Fluorescence microscopy methods have seen an increase in popularity in recent years for detecting protein crystals in screening trays. The fluorescence-based crystal detection methods have thus far relied on intrinsic UV-inducible tryptophan fluorescence, nonlinear optics or fluorescence in the visible light range dependent on crystals soaked with fluorescent dyes. In this paper data are presented on a novel visible-light-inducible autofluorescence arising from protein crystals as a result of general stabilization of conjugated double-bond systems and increased charge delocalization due to crystal packing. The visible-light-inducible autofluorescence serves as a complementary method to bright-field microscopy in beamline applications where accurate crystal centering about the rotation axis is essential. Owing to temperature-dependent chromophore stabilization, protein crystals exhibit tenfold higher fluorescence intensity at cryogenic temperatures, making the method ideal for experi...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="58804540"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="58804540"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 58804540; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=58804540]").text(description); $(".js-view-count[data-work-id=58804540]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 58804540; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='58804540']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 58804540, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=58804540]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":58804540,"title":"A visible-light-excited fluorescence method for imaging protein crystals without added dyes","translated_title":"","metadata":{"abstract":"Fluorescence microscopy methods have seen an increase in popularity in recent years for detecting protein crystals in screening trays. The fluorescence-based crystal detection methods have thus far relied on intrinsic UV-inducible tryptophan fluorescence, nonlinear optics or fluorescence in the visible light range dependent on crystals soaked with fluorescent dyes. In this paper data are presented on a novel visible-light-inducible autofluorescence arising from protein crystals as a result of general stabilization of conjugated double-bond systems and increased charge delocalization due to crystal packing. The visible-light-inducible autofluorescence serves as a complementary method to bright-field microscopy in beamline applications where accurate crystal centering about the rotation axis is essential. Owing to temperature-dependent chromophore stabilization, protein crystals exhibit tenfold higher fluorescence intensity at cryogenic temperatures, making the method ideal for experi...","publisher":"International Union of Crystallography (IUCr)","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Journal of Applied Crystallography"},"translated_abstract":"Fluorescence microscopy methods have seen an increase in popularity in recent years for detecting protein crystals in screening trays. The fluorescence-based crystal detection methods have thus far relied on intrinsic UV-inducible tryptophan fluorescence, nonlinear optics or fluorescence in the visible light range dependent on crystals soaked with fluorescent dyes. In this paper data are presented on a novel visible-light-inducible autofluorescence arising from protein crystals as a result of general stabilization of conjugated double-bond systems and increased charge delocalization due to crystal packing. The visible-light-inducible autofluorescence serves as a complementary method to bright-field microscopy in beamline applications where accurate crystal centering about the rotation axis is essential. Owing to temperature-dependent chromophore stabilization, protein crystals exhibit tenfold higher fluorescence intensity at cryogenic temperatures, making the method ideal for experi...","internal_url":"https://www.academia.edu/58804540/A_visible_light_excited_fluorescence_method_for_imaging_protein_crystals_without_added_dyes","translated_internal_url":"","created_at":"2021-10-18T05:55:24.141-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33002650,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_visible_light_excited_fluorescence_method_for_imaging_protein_crystals_without_added_dyes","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":33002650,"first_name":"Doletha","middle_initials":null,"last_name":"Szebenyi","page_name":"DolethaSzebenyi","domain_name":"cornell","created_at":"2015-07-12T07:19:02.115-07:00","display_name":"Doletha Szebenyi","url":"https://cornell.academia.edu/DolethaSzebenyi"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":734874,"name":"Applied Crystallography","url":"https://www.academia.edu/Documents/in/Applied_Crystallography"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="58804538"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/58804538/Reduction_of_lattice_disorder_in_protein_crystals_by_high_pressure_cryocooling"><img alt="Research paper thumbnail of Reduction of lattice disorder in protein crystals by high-pressure cryocooling" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/58804538/Reduction_of_lattice_disorder_in_protein_crystals_by_high_pressure_cryocooling">Reduction of lattice disorder in protein crystals by high-pressure cryocooling</a></div><div class="wp-workCard_item"><span>Journal of Applied Crystallography</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">High-pressure cryocooling (HPC) has been developed as a technique for reducing the damage that fr...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">High-pressure cryocooling (HPC) has been developed as a technique for reducing the damage that frequently occurs when macromolecular crystals are cryocooled at ambient pressure. Crystals are typically pressurized at around 200 MPa and then cooled to liquid nitrogen temperature under pressure; this process reduces the need for penetrating cryoprotectants, as well as the damage due to cryocooling, but does not improve the diffraction quality of the as-grown crystals. Here it is reported that HPC using a pressure above 300 MPa can reduce lattice disorder, in the form of high mosaicity and/or nonmerohedral twinning, in crystals of three different proteins, namely human glutaminase C, the GTP pyrophosphokinase YjbM and the uncharacterized protein lpg1496. Pressure lower than 250 MPa does not induce this transformation, even with a prolonged pressurization time. These results indicate that HPC at elevated pressures can be a useful tool for improving crystal packing and hence the quality o...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="58804538"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="58804538"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 58804538; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=58804538]").text(description); $(".js-view-count[data-work-id=58804538]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 58804538; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='58804538']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 58804538, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=58804538]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":58804538,"title":"Reduction of lattice disorder in protein crystals by high-pressure cryocooling","translated_title":"","metadata":{"abstract":"High-pressure cryocooling (HPC) has been developed as a technique for reducing the damage that frequently occurs when macromolecular crystals are cryocooled at ambient pressure. Crystals are typically pressurized at around 200 MPa and then cooled to liquid nitrogen temperature under pressure; this process reduces the need for penetrating cryoprotectants, as well as the damage due to cryocooling, but does not improve the diffraction quality of the as-grown crystals. Here it is reported that HPC using a pressure above 300 MPa can reduce lattice disorder, in the form of high mosaicity and/or nonmerohedral twinning, in crystals of three different proteins, namely human glutaminase C, the GTP pyrophosphokinase YjbM and the uncharacterized protein lpg1496. Pressure lower than 250 MPa does not induce this transformation, even with a prolonged pressurization time. These results indicate that HPC at elevated pressures can be a useful tool for improving crystal packing and hence the quality o...","publisher":"International Union of Crystallography (IUCr)","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Journal of Applied Crystallography"},"translated_abstract":"High-pressure cryocooling (HPC) has been developed as a technique for reducing the damage that frequently occurs when macromolecular crystals are cryocooled at ambient pressure. Crystals are typically pressurized at around 200 MPa and then cooled to liquid nitrogen temperature under pressure; this process reduces the need for penetrating cryoprotectants, as well as the damage due to cryocooling, but does not improve the diffraction quality of the as-grown crystals. Here it is reported that HPC using a pressure above 300 MPa can reduce lattice disorder, in the form of high mosaicity and/or nonmerohedral twinning, in crystals of three different proteins, namely human glutaminase C, the GTP pyrophosphokinase YjbM and the uncharacterized protein lpg1496. Pressure lower than 250 MPa does not induce this transformation, even with a prolonged pressurization time. These results indicate that HPC at elevated pressures can be a useful tool for improving crystal packing and hence the quality o...","internal_url":"https://www.academia.edu/58804538/Reduction_of_lattice_disorder_in_protein_crystals_by_high_pressure_cryocooling","translated_internal_url":"","created_at":"2021-10-18T05:55:24.033-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33002650,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Reduction_of_lattice_disorder_in_protein_crystals_by_high_pressure_cryocooling","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":33002650,"first_name":"Doletha","middle_initials":null,"last_name":"Szebenyi","page_name":"DolethaSzebenyi","domain_name":"cornell","created_at":"2015-07-12T07:19:02.115-07:00","display_name":"Doletha Szebenyi","url":"https://cornell.academia.edu/DolethaSzebenyi"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":734874,"name":"Applied Crystallography","url":"https://www.academia.edu/Documents/in/Applied_Crystallography"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="58804536"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/58804536/Quantitative_analysis_of_Laue_diffraction_patterns_recorded_with_a_120_ps_exposure_from_an_X_ray_undulator"><img alt="Research paper thumbnail of Quantitative analysis of Laue diffraction patterns recorded with a 120 ps exposure from an X-ray undulator" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/58804536/Quantitative_analysis_of_Laue_diffraction_patterns_recorded_with_a_120_ps_exposure_from_an_X_ray_undulator">Quantitative analysis of Laue diffraction patterns recorded with a 120 ps exposure from an X-ray undulator</a></div><div class="wp-workCard_item"><span>Journal of Applied Crystallography</span><span>, 1992</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="58804536"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="58804536"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 58804536; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=58804536]").text(description); $(".js-view-count[data-work-id=58804536]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 58804536; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='58804536']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 58804536, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=58804536]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":58804536,"title":"Quantitative analysis of Laue diffraction patterns recorded with a 120 ps exposure from an X-ray undulator","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1992,"errors":{}},"publication_name":"Journal of Applied Crystallography"},"translated_abstract":null,"internal_url":"https://www.academia.edu/58804536/Quantitative_analysis_of_Laue_diffraction_patterns_recorded_with_a_120_ps_exposure_from_an_X_ray_undulator","translated_internal_url":"","created_at":"2021-10-18T05:55:23.876-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33002650,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Quantitative_analysis_of_Laue_diffraction_patterns_recorded_with_a_120_ps_exposure_from_an_X_ray_undulator","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":33002650,"first_name":"Doletha","middle_initials":null,"last_name":"Szebenyi","page_name":"DolethaSzebenyi","domain_name":"cornell","created_at":"2015-07-12T07:19:02.115-07:00","display_name":"Doletha Szebenyi","url":"https://cornell.academia.edu/DolethaSzebenyi"},"attachments":[],"research_interests":[{"id":386527,"name":"X ray diffraction","url":"https://www.academia.edu/Documents/in/X_ray_diffraction"},{"id":619973,"name":"Indole","url":"https://www.academia.edu/Documents/in/Indole"},{"id":734874,"name":"Applied Crystallography","url":"https://www.academia.edu/Documents/in/Applied_Crystallography"},{"id":1144236,"name":"Crystalline Structure","url":"https://www.academia.edu/Documents/in/Crystalline_Structure"},{"id":1724844,"name":"Molecular Structure","url":"https://www.academia.edu/Documents/in/Molecular_Structure"},{"id":2597120,"name":"Laue diffraction","url":"https://www.academia.edu/Documents/in/Laue_diffraction"}],"urls":[{"id":13315674,"url":"http://cat.inist.fr/?aModele=afficheN\u0026cpsidt=5336244"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="58804532"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/58804532/Lack_of_Catalytic_Activity_of_a_Murine_mRNA_Cytoplasmic_Serine_Hydroxymethyltransferase_Splice_Variant_Evidence_against_Alternative_Splicing_as_a_Regulatory_Mechanism_"><img alt="Research paper thumbnail of Lack of Catalytic Activity of a Murine mRNA Cytoplasmic Serine Hydroxymethyltransferase Splice Variant: Evidence against Alternative Splicing as a Regulatory Mechanism †" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/58804532/Lack_of_Catalytic_Activity_of_a_Murine_mRNA_Cytoplasmic_Serine_Hydroxymethyltransferase_Splice_Variant_Evidence_against_Alternative_Splicing_as_a_Regulatory_Mechanism_">Lack of Catalytic Activity of a Murine mRNA Cytoplasmic Serine Hydroxymethyltransferase Splice Variant: Evidence against Alternative Splicing as a Regulatory Mechanism †</a></div><div class="wp-workCard_item"><span>Biochemistry Usa</span><span>, May 1, 2001</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Mammalian serine hydroxymethyltransferase (SHMT) is a tetrameric, pyridoxal phosphate-dependent e...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Mammalian serine hydroxymethyltransferase (SHMT) is a tetrameric, pyridoxal phosphate-dependent enzyme that catalyzes the reversible interconversion of serine and tetrahydrofolate to glycine and methylenetetrahydrofolate. This reaction generates single-carbon units for purine, thymidine, and methionine biosynthesis. Cytoplasmic SHMT (cSHMT) has been postulated to channel one-carbon substituted folates to various folate-dependent enzymes, and alternative splicing of the cSHMT transcript may be a mechanism that enables specific protein-protein interactions. The cytoplasmic isozyme is expressed from species-specific and tissue-specific alternatively spliced transcripts that encode proteins with modified carboxy-terminal domains, while the mitochondrial isozyme is expressed from a single transcript. While the full-length mouse and human cSHMT proteins are 91% identical, their alternatively spliced transcripts differ. The murine cSHMT gene is expressed as two transcripts. One transcript encodes a full-length 55 kDa active enzyme (cSHMT), while the other transcript encodes a 35 kDa protein (McSHMTtr). The McSHMTtr protein present in mouse liver and kidney does not bind 5-formyltetrahydrofolate, nor does it oligomerize with the full-length cSHMT enzyme. While recombinant cSHMT-glutathione S-transferase fusion proteins form tetramers and are catalytically active, McSHMTtr-glutathione S-transferase fusion proteins are catalytically inactive, do not form heterotetramers, and do not bind pyridoxal phosphate. Analysis of the murine cSHMT crystal structure indicates that the active site lysine that normally binds pyridoxal phosphate in the cSHMT protein is exposed to solvent in the McSHMTtr protein, preventing stable formation of a Schiff base with pyridoxal phosphate. Modeling studies suggest that the human cSHMT proteins expressed from alternatively spliced transcripts are inactive as well. Therefore, channeling mechanisms enabling specific protein-protein interactions of active enzymes are not based on cSHMT alternative splicing.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="58804532"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="58804532"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 58804532; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=58804532]").text(description); $(".js-view-count[data-work-id=58804532]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 58804532; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='58804532']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 58804532, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=58804532]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":58804532,"title":"Lack of Catalytic Activity of a Murine mRNA Cytoplasmic Serine Hydroxymethyltransferase Splice Variant: Evidence against Alternative Splicing as a Regulatory Mechanism †","translated_title":"","metadata":{"abstract":"Mammalian serine hydroxymethyltransferase (SHMT) is a tetrameric, pyridoxal phosphate-dependent enzyme that catalyzes the reversible interconversion of serine and tetrahydrofolate to glycine and methylenetetrahydrofolate. This reaction generates single-carbon units for purine, thymidine, and methionine biosynthesis. Cytoplasmic SHMT (cSHMT) has been postulated to channel one-carbon substituted folates to various folate-dependent enzymes, and alternative splicing of the cSHMT transcript may be a mechanism that enables specific protein-protein interactions. The cytoplasmic isozyme is expressed from species-specific and tissue-specific alternatively spliced transcripts that encode proteins with modified carboxy-terminal domains, while the mitochondrial isozyme is expressed from a single transcript. While the full-length mouse and human cSHMT proteins are 91% identical, their alternatively spliced transcripts differ. The murine cSHMT gene is expressed as two transcripts. One transcript encodes a full-length 55 kDa active enzyme (cSHMT), while the other transcript encodes a 35 kDa protein (McSHMTtr). The McSHMTtr protein present in mouse liver and kidney does not bind 5-formyltetrahydrofolate, nor does it oligomerize with the full-length cSHMT enzyme. While recombinant cSHMT-glutathione S-transferase fusion proteins form tetramers and are catalytically active, McSHMTtr-glutathione S-transferase fusion proteins are catalytically inactive, do not form heterotetramers, and do not bind pyridoxal phosphate. Analysis of the murine cSHMT crystal structure indicates that the active site lysine that normally binds pyridoxal phosphate in the cSHMT protein is exposed to solvent in the McSHMTtr protein, preventing stable formation of a Schiff base with pyridoxal phosphate. Modeling studies suggest that the human cSHMT proteins expressed from alternatively spliced transcripts are inactive as well. Therefore, channeling mechanisms enabling specific protein-protein interactions of active enzymes are not based on cSHMT alternative splicing.","publication_date":{"day":1,"month":5,"year":2001,"errors":{}},"publication_name":"Biochemistry Usa"},"translated_abstract":"Mammalian serine hydroxymethyltransferase (SHMT) is a tetrameric, pyridoxal phosphate-dependent enzyme that catalyzes the reversible interconversion of serine and tetrahydrofolate to glycine and methylenetetrahydrofolate. This reaction generates single-carbon units for purine, thymidine, and methionine biosynthesis. Cytoplasmic SHMT (cSHMT) has been postulated to channel one-carbon substituted folates to various folate-dependent enzymes, and alternative splicing of the cSHMT transcript may be a mechanism that enables specific protein-protein interactions. The cytoplasmic isozyme is expressed from species-specific and tissue-specific alternatively spliced transcripts that encode proteins with modified carboxy-terminal domains, while the mitochondrial isozyme is expressed from a single transcript. While the full-length mouse and human cSHMT proteins are 91% identical, their alternatively spliced transcripts differ. The murine cSHMT gene is expressed as two transcripts. One transcript encodes a full-length 55 kDa active enzyme (cSHMT), while the other transcript encodes a 35 kDa protein (McSHMTtr). The McSHMTtr protein present in mouse liver and kidney does not bind 5-formyltetrahydrofolate, nor does it oligomerize with the full-length cSHMT enzyme. While recombinant cSHMT-glutathione S-transferase fusion proteins form tetramers and are catalytically active, McSHMTtr-glutathione S-transferase fusion proteins are catalytically inactive, do not form heterotetramers, and do not bind pyridoxal phosphate. Analysis of the murine cSHMT crystal structure indicates that the active site lysine that normally binds pyridoxal phosphate in the cSHMT protein is exposed to solvent in the McSHMTtr protein, preventing stable formation of a Schiff base with pyridoxal phosphate. Modeling studies suggest that the human cSHMT proteins expressed from alternatively spliced transcripts are inactive as well. Therefore, channeling mechanisms enabling specific protein-protein interactions of active enzymes are not based on cSHMT alternative splicing.","internal_url":"https://www.academia.edu/58804532/Lack_of_Catalytic_Activity_of_a_Murine_mRNA_Cytoplasmic_Serine_Hydroxymethyltransferase_Splice_Variant_Evidence_against_Alternative_Splicing_as_a_Regulatory_Mechanism_","translated_internal_url":"","created_at":"2021-10-18T05:55:23.709-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33002650,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Lack_of_Catalytic_Activity_of_a_Murine_mRNA_Cytoplasmic_Serine_Hydroxymethyltransferase_Splice_Variant_Evidence_against_Alternative_Splicing_as_a_Regulatory_Mechanism_","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":33002650,"first_name":"Doletha","middle_initials":null,"last_name":"Szebenyi","page_name":"DolethaSzebenyi","domain_name":"cornell","created_at":"2015-07-12T07:19:02.115-07:00","display_name":"Doletha Szebenyi","url":"https://cornell.academia.edu/DolethaSzebenyi"},"attachments":[],"research_interests":[{"id":145,"name":"Biochemistry","url":"https://www.academia.edu/Documents/in/Biochemistry"},{"id":4749,"name":"Catalysis","url":"https://www.academia.edu/Documents/in/Catalysis"},{"id":33441,"name":"Macromolecular X-Ray Crystallography","url":"https://www.academia.edu/Documents/in/Macromolecular_X-Ray_Crystallography"},{"id":83128,"name":"Escherichia coli","url":"https://www.academia.edu/Documents/in/Escherichia_coli"},{"id":84760,"name":"Mice","url":"https://www.academia.edu/Documents/in/Mice"},{"id":139002,"name":"Alternative splicing","url":"https://www.academia.edu/Documents/in/Alternative_splicing"},{"id":437728,"name":"Isoenzymes","url":"https://www.academia.edu/Documents/in/Isoenzymes"},{"id":635694,"name":"Alternative Splicing","url":"https://www.academia.edu/Documents/in/Alternative_Splicing-1"},{"id":967839,"name":"Structure activity Relationship","url":"https://www.academia.edu/Documents/in/Structure_activity_Relationship"},{"id":990417,"name":"Recombinant Proteins","url":"https://www.academia.edu/Documents/in/Recombinant_Proteins"},{"id":1166930,"name":"Cytoplasm","url":"https://www.academia.edu/Documents/in/Cytoplasm"},{"id":1277798,"name":"Catalytic Activity","url":"https://www.academia.edu/Documents/in/Catalytic_Activity"},{"id":1681026,"name":"Biochemistry and cell biology","url":"https://www.academia.edu/Documents/in/Biochemistry_and_cell_biology"},{"id":3789880,"name":"Medical biochemistry and metabolomics","url":"https://www.academia.edu/Documents/in/Medical_biochemistry_and_metabolomics"}],"urls":[{"id":13315673,"url":"http://pubs.acs.org/doi/abs/10.1021/bi002598t"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="58804527"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/58804527/In_line_SEC_SAXS_and_MALS_DLS_RI_for_the_Analysis_of_Polydisperse_Macromolecules"><img alt="Research paper thumbnail of In-line SEC-SAXS and MALS/DLS/RI for the Analysis of Polydisperse Macromolecules" class="work-thumbnail" src="https://attachments.academia-assets.com/73038769/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/58804527/In_line_SEC_SAXS_and_MALS_DLS_RI_for_the_Analysis_of_Polydisperse_Macromolecules">In-line SEC-SAXS and MALS/DLS/RI for the Analysis of Polydisperse Macromolecules</a></div><div class="wp-workCard_item"><span>Acta Crystallographica Section A Foundations and Advances</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Small Angle X-ray Scattering (SAXS) is a powerful tool for the structural analysis of biological ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Small Angle X-ray Scattering (SAXS) is a powerful tool for the structural analysis of biological macromolecules in solution and has seen a surge in popularity amongst structural biologists in the past decade. In part, this is because SAXS benefits greatly from the sensitivity and throughput that can be achieved at modern high brightness synchrotron sources. However, the critical need for highly monodisperse samples in SAXS analysis can be a challenge, and as such a number of labs have moved to develop in-line Size Exclusion Chromatography (SEC) at the beamline. Real-time SAXS on elution profiles not only improves monodispersity of samples and provides information on possible oligomeric states, but it also offers new modes of data analysis that can take advantage of the inherent concentration profiles underlying elution peaks and distributions of partially resolved species. Efforts to extend the synergy between SEC and SAXS to other biophysical methods are ongoing. The newly commissi...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b75fb6374dafd7e11c83cfbbc3c3f64a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":73038769,"asset_id":58804527,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/73038769/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="58804527"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="58804527"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 58804527; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=58804527]").text(description); $(".js-view-count[data-work-id=58804527]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 58804527; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='58804527']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 58804527, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b75fb6374dafd7e11c83cfbbc3c3f64a" } } $('.js-work-strip[data-work-id=58804527]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":58804527,"title":"In-line SEC-SAXS and MALS/DLS/RI for the Analysis of Polydisperse Macromolecules","translated_title":"","metadata":{"abstract":"Small Angle X-ray Scattering (SAXS) is a powerful tool for the structural analysis of biological macromolecules in solution and has seen a surge in popularity amongst structural biologists in the past decade. In part, this is because SAXS benefits greatly from the sensitivity and throughput that can be achieved at modern high brightness synchrotron sources. However, the critical need for highly monodisperse samples in SAXS analysis can be a challenge, and as such a number of labs have moved to develop in-line Size Exclusion Chromatography (SEC) at the beamline. Real-time SAXS on elution profiles not only improves monodispersity of samples and provides information on possible oligomeric states, but it also offers new modes of data analysis that can take advantage of the inherent concentration profiles underlying elution peaks and distributions of partially resolved species. Efforts to extend the synergy between SEC and SAXS to other biophysical methods are ongoing. The newly commissi...","publisher":"International Union of Crystallography (IUCr)","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Acta Crystallographica Section A Foundations and Advances"},"translated_abstract":"Small Angle X-ray Scattering (SAXS) is a powerful tool for the structural analysis of biological macromolecules in solution and has seen a surge in popularity amongst structural biologists in the past decade. In part, this is because SAXS benefits greatly from the sensitivity and throughput that can be achieved at modern high brightness synchrotron sources. However, the critical need for highly monodisperse samples in SAXS analysis can be a challenge, and as such a number of labs have moved to develop in-line Size Exclusion Chromatography (SEC) at the beamline. Real-time SAXS on elution profiles not only improves monodispersity of samples and provides information on possible oligomeric states, but it also offers new modes of data analysis that can take advantage of the inherent concentration profiles underlying elution peaks and distributions of partially resolved species. Efforts to extend the synergy between SEC and SAXS to other biophysical methods are ongoing. The newly commissi...","internal_url":"https://www.academia.edu/58804527/In_line_SEC_SAXS_and_MALS_DLS_RI_for_the_Analysis_of_Polydisperse_Macromolecules","translated_internal_url":"","created_at":"2021-10-18T05:55:23.400-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33002650,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":73038769,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/73038769/thumbnails/1.jpg","file_name":"a51412.pdf","download_url":"https://www.academia.edu/attachments/73038769/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"In_line_SEC_SAXS_and_MALS_DLS_RI_for_the.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/73038769/a51412-libre.pdf?1634565315=\u0026response-content-disposition=attachment%3B+filename%3DIn_line_SEC_SAXS_and_MALS_DLS_RI_for_the.pdf\u0026Expires=1732713811\u0026Signature=X3ABcwW4eclsAgb62MUDJsqm~hMElXG2uN4d3u92cdofi-OeM5o6ucZlMGgetn4yW0CWjgddc6RFxDjaA8hX2XeU1PzcLAXP1yRNWDF2J~li0z771Fu4cw0wH-pnmq3LLLycr8o1NHthdONF0iLUPEXeoWwijvpepU3IYBxFudTt4sY3sE0JC6cVhSKjC7yidDMoAnbROBXwkgBXe2LZsHx4rz~SJEg4JNUXzxzkjXikVSCrW8CcpGRkhgSTRTR6DIvFL51xHa3OAv8cXXjBA~KbEBfBrB7162WLX9-0uj~aEhzpgng6TUTc-NGKtcXFa9O8JD-yDSXIMTJ2C8OcJg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"In_line_SEC_SAXS_and_MALS_DLS_RI_for_the_Analysis_of_Polydisperse_Macromolecules","translated_slug":"","page_count":1,"language":"en","content_type":"Work","owner":{"id":33002650,"first_name":"Doletha","middle_initials":null,"last_name":"Szebenyi","page_name":"DolethaSzebenyi","domain_name":"cornell","created_at":"2015-07-12T07:19:02.115-07:00","display_name":"Doletha Szebenyi","url":"https://cornell.academia.edu/DolethaSzebenyi"},"attachments":[{"id":73038769,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/73038769/thumbnails/1.jpg","file_name":"a51412.pdf","download_url":"https://www.academia.edu/attachments/73038769/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"In_line_SEC_SAXS_and_MALS_DLS_RI_for_the.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/73038769/a51412-libre.pdf?1634565315=\u0026response-content-disposition=attachment%3B+filename%3DIn_line_SEC_SAXS_and_MALS_DLS_RI_for_the.pdf\u0026Expires=1732713811\u0026Signature=X3ABcwW4eclsAgb62MUDJsqm~hMElXG2uN4d3u92cdofi-OeM5o6ucZlMGgetn4yW0CWjgddc6RFxDjaA8hX2XeU1PzcLAXP1yRNWDF2J~li0z771Fu4cw0wH-pnmq3LLLycr8o1NHthdONF0iLUPEXeoWwijvpepU3IYBxFudTt4sY3sE0JC6cVhSKjC7yidDMoAnbROBXwkgBXe2LZsHx4rz~SJEg4JNUXzxzkjXikVSCrW8CcpGRkhgSTRTR6DIvFL51xHa3OAv8cXXjBA~KbEBfBrB7162WLX9-0uj~aEhzpgng6TUTc-NGKtcXFa9O8JD-yDSXIMTJ2C8OcJg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="58804526"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/58804526/ADP_Ribosyl_Cyclase"><img alt="Research paper thumbnail of ADP-Ribosyl Cyclase" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/58804526/ADP_Ribosyl_Cyclase">ADP-Ribosyl Cyclase</a></div><div class="wp-workCard_item"><span>Structure</span><span>, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ADP-ribosyl cyclase catalyzes the elimination of nicotinamide from NAD and cyclization to cADPR, ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ADP-ribosyl cyclase catalyzes the elimination of nicotinamide from NAD and cyclization to cADPR, a known second messenger in cellular calcium signaling pathways. We have determined to 2.0 Å resolution the structure of Aplysia cyclase with ribose-5-phosphate bound covalently at C3′ and with the base exchange substrate (BES), pyridylcarbinol, bound to the active site. In addition, further refinement at 2.4 Å</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="58804526"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="58804526"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 58804526; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=58804526]").text(description); $(".js-view-count[data-work-id=58804526]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 58804526; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='58804526']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 58804526, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=58804526]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":58804526,"title":"ADP-Ribosyl Cyclase","translated_title":"","metadata":{"abstract":"ADP-ribosyl cyclase catalyzes the elimination of nicotinamide from NAD and cyclization to cADPR, a known second messenger in cellular calcium signaling pathways. We have determined to 2.0 Å resolution the structure of Aplysia cyclase with ribose-5-phosphate bound covalently at C3′ and with the base exchange substrate (BES), pyridylcarbinol, bound to the active site. In addition, further refinement at 2.4 Å","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"Structure"},"translated_abstract":"ADP-ribosyl cyclase catalyzes the elimination of nicotinamide from NAD and cyclization to cADPR, a known second messenger in cellular calcium signaling pathways. We have determined to 2.0 Å resolution the structure of Aplysia cyclase with ribose-5-phosphate bound covalently at C3′ and with the base exchange substrate (BES), pyridylcarbinol, bound to the active site. In addition, further refinement at 2.4 Å","internal_url":"https://www.academia.edu/58804526/ADP_Ribosyl_Cyclase","translated_internal_url":"","created_at":"2021-10-18T05:55:23.218-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33002650,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"ADP_Ribosyl_Cyclase","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":33002650,"first_name":"Doletha","middle_initials":null,"last_name":"Szebenyi","page_name":"DolethaSzebenyi","domain_name":"cornell","created_at":"2015-07-12T07:19:02.115-07:00","display_name":"Doletha Szebenyi","url":"https://cornell.academia.edu/DolethaSzebenyi"},"attachments":[],"research_interests":[{"id":3614,"name":"Structure","url":"https://www.academia.edu/Documents/in/Structure"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":140081,"name":"Calcium Signaling","url":"https://www.academia.edu/Documents/in/Calcium_Signaling"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":354019,"name":"Active site","url":"https://www.academia.edu/Documents/in/Active_site"},{"id":1200088,"name":"Second Messengers","url":"https://www.academia.edu/Documents/in/Second_Messengers"}],"urls":[{"id":13315672,"url":"http://sciencedirect.com/science/article/pii/s0969212604000486"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="58804525"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/58804525/Carbon_Dioxide_Trapped_in_a_%CE%B2_Carbonic_Anhydrase"><img alt="Research paper thumbnail of Carbon Dioxide “Trapped” in a β-Carbonic Anhydrase" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/58804525/Carbon_Dioxide_Trapped_in_a_%CE%B2_Carbonic_Anhydrase">Carbon Dioxide “Trapped” in a β-Carbonic Anhydrase</a></div><div class="wp-workCard_item"><span>Biochemistry</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Carbonic anhydrases (CAs) are enzymes that catalyze the hydration/dehydration of CO2/HCO3(-) with...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Carbonic anhydrases (CAs) are enzymes that catalyze the hydration/dehydration of CO2/HCO3(-) with rates approaching diffusion-controlled limits (kcat/KM ∼ 10(8) M(-1) s(-1)). This family of enzymes has evolved disparate protein folds that all perform the same reaction at near catalytic perfection. Presented here is a structural study of a β-CA (psCA3) expressed in Pseudomonas aeruginosa, in complex with CO2, using pressurized cryo-cooled crystallography. The structure has been refined to 1.6 Å resolution with Rcryst and Rfree values of 17.3 and 19.9%, respectively, and is compared with the α-CA, human CA isoform II (hCA II), the only other CA to have CO2 captured in its active site. Despite the lack of structural similarity between psCA3 and hCA II, the CO2 binding orientation relative to the zinc-bound solvent is identical. In addition, a second CO2 binding site was located at the dimer interface of psCA3. Interestingly, all β-CAs function as dimers or higher-order oligomeric states, and the CO2 bound at the interface may contribute to the allosteric nature of this family of enzymes or may be a convenient alternative binding site as this pocket has been previously shown to be a promiscuous site for a variety of ligands, including bicarbonate, sulfate, and phosphate ions.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="58804525"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="58804525"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 58804525; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=58804525]").text(description); $(".js-view-count[data-work-id=58804525]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 58804525; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='58804525']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 58804525, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=58804525]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":58804525,"title":"Carbon Dioxide “Trapped” in a β-Carbonic Anhydrase","translated_title":"","metadata":{"abstract":"Carbonic anhydrases (CAs) are enzymes that catalyze the hydration/dehydration of CO2/HCO3(-) with rates approaching diffusion-controlled limits (kcat/KM ∼ 10(8) M(-1) s(-1)). This family of enzymes has evolved disparate protein folds that all perform the same reaction at near catalytic perfection. Presented here is a structural study of a β-CA (psCA3) expressed in Pseudomonas aeruginosa, in complex with CO2, using pressurized cryo-cooled crystallography. The structure has been refined to 1.6 Å resolution with Rcryst and Rfree values of 17.3 and 19.9%, respectively, and is compared with the α-CA, human CA isoform II (hCA II), the only other CA to have CO2 captured in its active site. Despite the lack of structural similarity between psCA3 and hCA II, the CO2 binding orientation relative to the zinc-bound solvent is identical. In addition, a second CO2 binding site was located at the dimer interface of psCA3. Interestingly, all β-CAs function as dimers or higher-order oligomeric states, and the CO2 bound at the interface may contribute to the allosteric nature of this family of enzymes or may be a convenient alternative binding site as this pocket has been previously shown to be a promiscuous site for a variety of ligands, including bicarbonate, sulfate, and phosphate ions.","publisher":"American Chemical Society (ACS)","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Biochemistry"},"translated_abstract":"Carbonic anhydrases (CAs) are enzymes that catalyze the hydration/dehydration of CO2/HCO3(-) with rates approaching diffusion-controlled limits (kcat/KM ∼ 10(8) M(-1) s(-1)). This family of enzymes has evolved disparate protein folds that all perform the same reaction at near catalytic perfection. Presented here is a structural study of a β-CA (psCA3) expressed in Pseudomonas aeruginosa, in complex with CO2, using pressurized cryo-cooled crystallography. The structure has been refined to 1.6 Å resolution with Rcryst and Rfree values of 17.3 and 19.9%, respectively, and is compared with the α-CA, human CA isoform II (hCA II), the only other CA to have CO2 captured in its active site. Despite the lack of structural similarity between psCA3 and hCA II, the CO2 binding orientation relative to the zinc-bound solvent is identical. In addition, a second CO2 binding site was located at the dimer interface of psCA3. Interestingly, all β-CAs function as dimers or higher-order oligomeric states, and the CO2 bound at the interface may contribute to the allosteric nature of this family of enzymes or may be a convenient alternative binding site as this pocket has been previously shown to be a promiscuous site for a variety of ligands, including bicarbonate, sulfate, and phosphate ions.","internal_url":"https://www.academia.edu/58804525/Carbon_Dioxide_Trapped_in_a_%CE%B2_Carbonic_Anhydrase","translated_internal_url":"","created_at":"2021-10-18T05:55:23.091-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33002650,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Carbon_Dioxide_Trapped_in_a_β_Carbonic_Anhydrase","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":33002650,"first_name":"Doletha","middle_initials":null,"last_name":"Szebenyi","page_name":"DolethaSzebenyi","domain_name":"cornell","created_at":"2015-07-12T07:19:02.115-07:00","display_name":"Doletha Szebenyi","url":"https://cornell.academia.edu/DolethaSzebenyi"},"attachments":[],"research_interests":[{"id":145,"name":"Biochemistry","url":"https://www.academia.edu/Documents/in/Biochemistry"},{"id":4594,"name":"Carbon Dioxide","url":"https://www.academia.edu/Documents/in/Carbon_Dioxide"},{"id":33441,"name":"Macromolecular X-Ray Crystallography","url":"https://www.academia.edu/Documents/in/Macromolecular_X-Ray_Crystallography"},{"id":225499,"name":"Pseudomonas aeruginosa","url":"https://www.academia.edu/Documents/in/Pseudomonas_aeruginosa"},{"id":636395,"name":"Pseudomonas Aeruginosa","url":"https://www.academia.edu/Documents/in/Pseudomonas_Aeruginosa-1"},{"id":653665,"name":"Protein Conformation","url":"https://www.academia.edu/Documents/in/Protein_Conformation"},{"id":784076,"name":"Species Specificity","url":"https://www.academia.edu/Documents/in/Species_Specificity"},{"id":956752,"name":"Protein Quaternary Structure","url":"https://www.academia.edu/Documents/in/Protein_Quaternary_Structure"},{"id":990417,"name":"Recombinant Proteins","url":"https://www.academia.edu/Documents/in/Recombinant_Proteins"},{"id":1222191,"name":"Ligands","url":"https://www.academia.edu/Documents/in/Ligands"},{"id":1681026,"name":"Biochemistry and cell biology","url":"https://www.academia.edu/Documents/in/Biochemistry_and_cell_biology"},{"id":3789880,"name":"Medical biochemistry and metabolomics","url":"https://www.academia.edu/Documents/in/Medical_biochemistry_and_metabolomics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="58804524"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/58804524/MacCHESS_A_Macromolecular_Diffraction_Resource_at_the_Cornell_High_Energy_Synchrotron_Source"><img alt="Research paper thumbnail of MacCHESS — A Macromolecular Diffraction Resource at the Cornell High Energy Synchrotron Source" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/58804524/MacCHESS_A_Macromolecular_Diffraction_Resource_at_the_Cornell_High_Energy_Synchrotron_Source">MacCHESS — A Macromolecular Diffraction Resource at the Cornell High Energy Synchrotron Source</a></div><div class="wp-workCard_item"><span>Synchrotron Radiation in Structural Biology</span><span>, 1989</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="58804524"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="58804524"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 58804524; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=58804524]").text(description); $(".js-view-count[data-work-id=58804524]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 58804524; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='58804524']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 58804524, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=58804524]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":58804524,"title":"MacCHESS — A Macromolecular Diffraction Resource at the Cornell High Energy Synchrotron Source","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1989,"errors":{}},"publication_name":"Synchrotron Radiation in Structural Biology"},"translated_abstract":null,"internal_url":"https://www.academia.edu/58804524/MacCHESS_A_Macromolecular_Diffraction_Resource_at_the_Cornell_High_Energy_Synchrotron_Source","translated_internal_url":"","created_at":"2021-10-18T05:55:22.967-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33002650,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"MacCHESS_A_Macromolecular_Diffraction_Resource_at_the_Cornell_High_Energy_Synchrotron_Source","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":33002650,"first_name":"Doletha","middle_initials":null,"last_name":"Szebenyi","page_name":"DolethaSzebenyi","domain_name":"cornell","created_at":"2015-07-12T07:19:02.115-07:00","display_name":"Doletha Szebenyi","url":"https://cornell.academia.edu/DolethaSzebenyi"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="58804523"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/58804523/Time_resolved_laue_diffraction_from_protein_crystals_instrumental_considerations"><img alt="Research paper thumbnail of Time-resolved laue diffraction from protein crystals: instrumental considerations" class="work-thumbnail" src="https://attachments.academia-assets.com/73038768/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/58804523/Time_resolved_laue_diffraction_from_protein_crystals_instrumental_considerations">Time-resolved laue diffraction from protein crystals: instrumental considerations</a></div><div class="wp-workCard_item"><span>Nuclear Instruments and Methods in Physics Research</span><span>, 1984</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="912681835ceb8732aed1496f3bcca8d9" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":73038768,"asset_id":58804523,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/73038768/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="58804523"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="58804523"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 58804523; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=58804523]").text(description); $(".js-view-count[data-work-id=58804523]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 58804523; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='58804523']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 58804523, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "912681835ceb8732aed1496f3bcca8d9" } } $('.js-work-strip[data-work-id=58804523]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":58804523,"title":"Time-resolved laue diffraction from protein crystals: instrumental considerations","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"A serious limitation of macromolecular crystallography has been its inability to determine changes in structure on a biochemical time scale of milliseconds or less. Recently, we have shown that X-ray exposures on single crystals of macromolecules may be obtained in the millisecond time range through the use of intense, polychromatic radiation with AX/X-0.2 derived from the Comell High Energy Synchrotron Source, CHESS. Such radiation falling on a stationary crystal yields a Laue diffraction pattern, in which almost all Laue reflections arise from a unique set of Miller indices and where their intensities are automatically integrated ovo\" wavelength. This Laue technique requires wide band pass optics, which may be obtained by a combination of reflection and transmission mirrors, filters or layered synthetic microstructures. Time-resolved macromolecular crystallography may be achieved by several data collection schemes: \"one-shot\" recording coupled to a simple streak camera, repetitive sample perturbation coupled to a detector with temporal resolution and repetitive perturbation which uses the synchrotron pulses for stroboscopic triggering and detection. These schemes are appropriate for different time scales, roughly the miUi-, micro-and nanosecond regimes. It appears that time-resolved crystallography is entirely feasible, with an ultimate time resolution limited only by the length of a synchrotron light pulse, some 150 ps at CHESS.","publication_date":{"day":null,"month":null,"year":1984,"errors":{}},"publication_name":"Nuclear Instruments and Methods in Physics Research","grobid_abstract_attachment_id":73038768},"translated_abstract":null,"internal_url":"https://www.academia.edu/58804523/Time_resolved_laue_diffraction_from_protein_crystals_instrumental_considerations","translated_internal_url":"","created_at":"2021-10-18T05:55:22.820-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33002650,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":73038768,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/73038768/thumbnails/1.jpg","file_name":"0167-5087_2884_2990537-420211018-16309-c46i0w.pdf","download_url":"https://www.academia.edu/attachments/73038768/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Time_resolved_laue_diffraction_from_prot.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/73038768/0167-5087_2884_2990537-420211018-16309-c46i0w-libre.pdf?1634565317=\u0026response-content-disposition=attachment%3B+filename%3DTime_resolved_laue_diffraction_from_prot.pdf\u0026Expires=1732713811\u0026Signature=Zs--WIMxSYfEoJuOr9ksx4ioj9Vvjf4sL2RMSn7L1cc1~d~pHYiJ1SSgZo9tKgnHfC3EZKqxa8PH58FVoyVLKJA05VOO2GW9ldi5Iq7EtbGC60CfulTUErMkIAVd~cLy0QMCe4LIx3K3RlYJJDd2By5oQeovf7hQHVEnv9lYHZfJAbay6AoksXNXHSAOHyY1Up8-gWL7zACIOPlb~qG5YQ9xOW4FVo~h1NPsmFfTxZ7oOFzb1ATzRCS-Fzt~JzozOOTeO1dsDd1RCU8odRnTsYAYgehjRex75iKZnaJ7Sa61qFY~FFw68q4-oI91Y77wkbno2JGaJ0-dQ1PihaRfAA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Time_resolved_laue_diffraction_from_protein_crystals_instrumental_considerations","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":33002650,"first_name":"Doletha","middle_initials":null,"last_name":"Szebenyi","page_name":"DolethaSzebenyi","domain_name":"cornell","created_at":"2015-07-12T07:19:02.115-07:00","display_name":"Doletha Szebenyi","url":"https://cornell.academia.edu/DolethaSzebenyi"},"attachments":[{"id":73038768,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/73038768/thumbnails/1.jpg","file_name":"0167-5087_2884_2990537-420211018-16309-c46i0w.pdf","download_url":"https://www.academia.edu/attachments/73038768/download_file?st=MTczMjcyMTY1OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Time_resolved_laue_diffraction_from_prot.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/73038768/0167-5087_2884_2990537-420211018-16309-c46i0w-libre.pdf?1634565317=\u0026response-content-disposition=attachment%3B+filename%3DTime_resolved_laue_diffraction_from_prot.pdf\u0026Expires=1732713811\u0026Signature=Zs--WIMxSYfEoJuOr9ksx4ioj9Vvjf4sL2RMSn7L1cc1~d~pHYiJ1SSgZo9tKgnHfC3EZKqxa8PH58FVoyVLKJA05VOO2GW9ldi5Iq7EtbGC60CfulTUErMkIAVd~cLy0QMCe4LIx3K3RlYJJDd2By5oQeovf7hQHVEnv9lYHZfJAbay6AoksXNXHSAOHyY1Up8-gWL7zACIOPlb~qG5YQ9xOW4FVo~h1NPsmFfTxZ7oOFzb1ATzRCS-Fzt~JzozOOTeO1dsDd1RCU8odRnTsYAYgehjRex75iKZnaJ7Sa61qFY~FFw68q4-oI91Y77wkbno2JGaJ0-dQ1PihaRfAA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="58804519"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/58804519/Supplemental_Data_Insights_into_the_Mode_of_Action_of_a_Putative_Zinc_Transporter_CzrB_in_Thermus_thermophilus"><img alt="Research paper thumbnail of Supplemental Data Insights into the Mode of Action of a Putative Zinc Transporter CzrB in Thermus thermophilus" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/58804519/Supplemental_Data_Insights_into_the_Mode_of_Action_of_a_Putative_Zinc_Transporter_CzrB_in_Thermus_thermophilus">Supplemental Data Insights into the Mode of Action of a Putative Zinc Transporter CzrB in Thermus thermophilus</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="58804519"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="58804519"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 58804519; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=58804519]").text(description); $(".js-view-count[data-work-id=58804519]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 58804519; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='58804519']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 58804519, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=58804519]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":58804519,"title":"Supplemental Data Insights into the Mode of Action of a Putative Zinc Transporter CzrB in Thermus thermophilus","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2000,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/58804519/Supplemental_Data_Insights_into_the_Mode_of_Action_of_a_Putative_Zinc_Transporter_CzrB_in_Thermus_thermophilus","translated_internal_url":"","created_at":"2021-10-18T05:55:22.595-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33002650,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Supplemental_Data_Insights_into_the_Mode_of_Action_of_a_Putative_Zinc_Transporter_CzrB_in_Thermus_thermophilus","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":33002650,"first_name":"Doletha","middle_initials":null,"last_name":"Szebenyi","page_name":"DolethaSzebenyi","domain_name":"cornell","created_at":"2015-07-12T07:19:02.115-07:00","display_name":"Doletha Szebenyi","url":"https://cornell.academia.edu/DolethaSzebenyi"},"attachments":[],"research_interests":[{"id":158165,"name":"Zinc","url":"https://www.academia.edu/Documents/in/Zinc"},{"id":331187,"name":"Mode of action","url":"https://www.academia.edu/Documents/in/Mode_of_action"}],"urls":[{"id":13315670,"url":"http://download.cell.com/structure/mmcs/journals/0969-2126/piis096921260800289x.mmc1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="58804517"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/58804517/SUMOylation_of_cytoplasmic_serine_hydroxymethyltransferase_and_evidence_for_nuclear_folate_metabolism"><img alt="Research paper thumbnail of SUMOylation of cytoplasmic serine hydroxymethyltransferase and evidence for nuclear folate metabolism" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/58804517/SUMOylation_of_cytoplasmic_serine_hydroxymethyltransferase_and_evidence_for_nuclear_folate_metabolism">SUMOylation of cytoplasmic serine hydroxymethyltransferase and evidence for nuclear folate metabolism</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="58804517"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="58804517"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 58804517; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=58804517]").text(description); $(".js-view-count[data-work-id=58804517]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 58804517; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='58804517']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 58804517, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=58804517]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":58804517,"title":"SUMOylation of cytoplasmic serine hydroxymethyltransferase and evidence for nuclear folate metabolism","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/58804517/SUMOylation_of_cytoplasmic_serine_hydroxymethyltransferase_and_evidence_for_nuclear_folate_metabolism","translated_internal_url":"","created_at":"2021-10-18T05:55:22.489-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33002650,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"SUMOylation_of_cytoplasmic_serine_hydroxymethyltransferase_and_evidence_for_nuclear_folate_metabolism","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":33002650,"first_name":"Doletha","middle_initials":null,"last_name":"Szebenyi","page_name":"DolethaSzebenyi","domain_name":"cornell","created_at":"2015-07-12T07:19:02.115-07:00","display_name":"Doletha Szebenyi","url":"https://cornell.academia.edu/DolethaSzebenyi"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "c0f3429b616363a5a74c043f2e4b679731b40de5cf6d89c52b9eed2825f20db7", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="UJIR8zKRqN9Q++qjDTn8V7ejFgeP7DOArQtDFR+oZvOvYSWEOLR/b62TtbibQ67Hg5A9DCp+iCBDtgtnusyPow==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://cornell.academia.edu/DolethaSzebenyi" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="9rRLMOc/3i9/qKdFjFiLqlupGO9F6WMzHCaAjEPNWPoJR39H7RoJn4LA+F4aItk6b5oz5OB72JPym8j+5qmxqg==" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>