CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;23 of 23 results for author: <span class="mathjax">McDonough, W F</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=McDonough%2C+W+F">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="McDonough, W F"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=McDonough%2C+W+F&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="McDonough, W F"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.13746">arXiv:2209.13746</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.13746">pdf</a>, <a href="https://arxiv.org/format/2209.13746">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Neutrino Geoscience: Review, survey, future prospects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=McDonough%2C+W+F">W. F. McDonough</a>, <a href="/search/physics?searchtype=author&amp;query=Watanabe%2C+H">H. Watanabe</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.13746v1-abstract-short" style="display: inline;"> The earth&#39;s surface heat flux is 46$\pm$3 TW (terrawatts, 10$^{12}$ watts). Although many assume we know the earth&#39;s abundance and distribution of radioactive heat producing elements (i.e., U, Th, and K), estimates for the mantle&#39;s heat production varying by an order of magnitude and recent particle physics findings challenge our dominant paradigm. Geologists predict the earth&#39;s budget of radiogen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.13746v1-abstract-full').style.display = 'inline'; document.getElementById('2209.13746v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.13746v1-abstract-full" style="display: none;"> The earth&#39;s surface heat flux is 46$\pm$3 TW (terrawatts, 10$^{12}$ watts). Although many assume we know the earth&#39;s abundance and distribution of radioactive heat producing elements (i.e., U, Th, and K), estimates for the mantle&#39;s heat production varying by an order of magnitude and recent particle physics findings challenge our dominant paradigm. Geologists predict the earth&#39;s budget of radiogenic power at 20$\pm$10 TW, whereas particle physics experiments predict 15.3$^{+4.9}_{-4.9}$ TW (KamLAND, Japan) and 38.2$^{+13.6}_{-12.7}$ TW (Borexino, Italy). We welcome this opportunity to highlight the fundamentally important resource offered by the physics community and call attention to the shortcomings associated with the characterization of the geology of the earth. We review the findings from continent-based, physics experiments, the predictions from geology, and assess the degree of misfit between the physics measurements and predicted models of the continental lithosphere and underlying mantle. Because our knowledge of the continents is somewhat uncertain (7.1$^{+2.1}_{-1.6}$ TW), models for the radiogenic power in the mantle (3.5 to 32 TW) and the bulk silicate earth (crust plus mantle) continue to be uncertain by a factor of $\sim$10 and $\sim$4, respectively. Detection of a geoneutrino signal in the ocean, far from the influence of continents, offers the potential to resolve this tension. Neutrino geoscience is a powerful new tool to interrogate the composition of the continental crust and mantle and its structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.13746v1-abstract-full').style.display = 'none'; document.getElementById('2209.13746v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.11051">arXiv:2006.11051</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.11051">pdf</a>, <a href="https://arxiv.org/format/2006.11051">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.chemer.2021.125746">10.1016/j.chemer.2021.125746 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Earth and Mars -- distinct inner Solar System products </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yoshizaki%2C+T">Takashi Yoshizaki</a>, <a href="/search/physics?searchtype=author&amp;query=McDonough%2C+W+F">William F. McDonough</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.11051v2-abstract-short" style="display: inline;"> Composition of terrestrial planets records planetary accretion, core-mantle and crust-mantle differentiation, and surface processes. Here we compare the compositional models of Earth and Mars to reveal their characteristics and formation processes. Earth and Mars are equally enriched in refractory elements (1.9 $\times$ CI), although Earth is more volatile-depleted and less oxidized than Mars. The&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.11051v2-abstract-full').style.display = 'inline'; document.getElementById('2006.11051v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.11051v2-abstract-full" style="display: none;"> Composition of terrestrial planets records planetary accretion, core-mantle and crust-mantle differentiation, and surface processes. Here we compare the compositional models of Earth and Mars to reveal their characteristics and formation processes. Earth and Mars are equally enriched in refractory elements (1.9 $\times$ CI), although Earth is more volatile-depleted and less oxidized than Mars. Their chemical compositions were established by nebular fractionation, with negligible contributions from post-accretionary losses of moderately volatile elements. The degree of planetary volatile element depletion might correlate with the abundances of chondrules in the accreted materials, planetary size, and their accretion timescale, which provides insights into composition and origin of Mercury, Venus, the Moon-forming giant impactor, and the proto-Earth. During its formation before and after the nebular disk&#39;s lifetime, the Earth likely accreted more chondrules and less matrix-like materials than Mars and chondritic asteroids, establishing its marked volatile depletion. A giant impact of an oxidized, differentiated Mars-like (i.e., composition and mass) body into a volatile-depleted, reduced proto-Earth produced a Moon-forming debris ring with mostly a proto-Earth&#39;s mantle composition. Chalcophile and some siderophile elements in the silicate Earth added by the Mars-like impactor were extracted into the core by a sulfide melt. In contrast, the composition of Mars indicates its rapid accretion of lesser amounts of chondrules under nearly uniform oxidizing conditions. Mars&#39; rapid cooling and early loss of its dynamo likely led to the absence of plate tectonics and surface water, and the present-day low surface heat flux. These similarities and differences between the Earth and Mars made the former habitable and the other inhospitable to uninhabitable. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.11051v2-abstract-full').style.display = 'none'; document.getElementById('2006.11051v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">90 pages, 26 figures, 3 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.04655">arXiv:1912.04655</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.04655">pdf</a>, <a href="https://arxiv.org/format/1912.04655">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1029/2019GC008865">10.1029/2019GC008865 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Radiogenic power and geoneutrino luminosity of the Earth and other terrestrial bodies through time </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=McDonough%2C+W+F">William F. McDonough</a>, <a href="/search/physics?searchtype=author&amp;query=%C5%A0r%C3%A1mek%2C+O">Ond艡ej 艩r谩mek</a>, <a href="/search/physics?searchtype=author&amp;query=Wipperfurth%2C+S+A">Scott A. Wipperfurth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.04655v2-abstract-short" style="display: inline;"> We report the Earth&#39;s rate of radiogenic heat production and (anti)neutrino luminosity from geologically relevant short-lived radionuclides (SLR) and long-lived radionuclides (LLR) using decay constants from the geological community, updated nuclear physics parameters, and calculations of the $尾$ spectra. We track the time evolution of the radiogenic power and luminosity of the Earth over the last&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.04655v2-abstract-full').style.display = 'inline'; document.getElementById('1912.04655v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.04655v2-abstract-full" style="display: none;"> We report the Earth&#39;s rate of radiogenic heat production and (anti)neutrino luminosity from geologically relevant short-lived radionuclides (SLR) and long-lived radionuclides (LLR) using decay constants from the geological community, updated nuclear physics parameters, and calculations of the $尾$ spectra. We track the time evolution of the radiogenic power and luminosity of the Earth over the last 4.57 billion years, assuming an absolute abundance for the refractory elements in the silicate Earth and key volatile/refractory element ratios (e.g., Fe/Al, K/U, and Rb/Sr) to set the abundance levels for the moderately volatile elements. The relevant decays for the present-day heat production in the Earth ($19.9\pm3.0$ TW) are from $^{40}$K, $^{87}$Rb, $^{147}$Sm, $^{232}$Th, $^{235}$U, and $^{238}$U. Given element concentrations in kg-element/kg-rock and density $蟻$ in kg/m$^3$, a simplified equation to calculate the present day heat production in a rock is: $$ h \, [渭\text{W m}^{-3}] = 蟻\left( 3.387 \times 10^{-3}\,\text{K} + 0.01139 \,\text{Rb} + 0.04595\,\text{Sm} + 26.18\,\text{Th} + 98.29\,\text{U} \right) $$ The radiogenic heating rate of Earth-like material at Solar System formation was some 10$^3$ to 10$^4$ times greater than present-day values, largely due to decay of $^{26}$Al in the silicate fraction, which was the dominant radiogenic heat source for the first $\sim10$ Ma. Assuming instantaneous Earth formation, the upper bound on radiogenic energy supplied by the most powerful short-lived radionuclide $^{26}$Al ($t_{1/2}$ = 0.7 Ma) is 5.5$\;\times\;$10$^{31}$ J, which is comparable (within a factor of a few) to the planet&#39;s gravitational binding energy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.04655v2-abstract-full').style.display = 'none'; document.getElementById('1912.04655v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 6 figures, 5 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Geochemistry, Geophysics, Geosystems, vol. 21, e2019GC008865 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.12184">arXiv:1907.12184</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.12184">pdf</a>, <a href="https://arxiv.org/format/1907.12184">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1029/2019JB018433">10.1029/2019JB018433 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reference Models for Lithospheric Geoneutrino Signal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wipperfurth%2C+S+A">Scott A. Wipperfurth</a>, <a href="/search/physics?searchtype=author&amp;query=%C5%A0r%C3%A1mek%2C+O">Ond艡ej 艩r谩mek</a>, <a href="/search/physics?searchtype=author&amp;query=McDonough%2C+W+F">William F. McDonough</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.12184v1-abstract-short" style="display: inline;"> Debate continues on the amount and distribution of radioactive heat producing elements (i.e., U, Th, and K) in the Earth, with estimates for mantle heat production varying by an order of magnitude. Constraints on the bulk-silicate Earth&#39;s (BSE) radiogenic power also places constraints on overall BSE composition. Geoneutrino detection is a direct measure of the Earth&#39;s decay rate of Th and U. The g&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.12184v1-abstract-full').style.display = 'inline'; document.getElementById('1907.12184v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.12184v1-abstract-full" style="display: none;"> Debate continues on the amount and distribution of radioactive heat producing elements (i.e., U, Th, and K) in the Earth, with estimates for mantle heat production varying by an order of magnitude. Constraints on the bulk-silicate Earth&#39;s (BSE) radiogenic power also places constraints on overall BSE composition. Geoneutrino detection is a direct measure of the Earth&#39;s decay rate of Th and U. The geoneutrino signal has contributions from the local ($\sim$40$\%$) and global ($\sim$35$\%$) continental lithosphere and the underlying inaccessible mantle ($\sim$25$\%$). Geophysical models are combined with geochemical datasets to predict the geoneutrino signal at current and future geoneutrino detectors. We propagated uncertainties, both chemical and physical, through Monte Carlo methods. Estimated total signal uncertainties are on the order of $\sim$20$\%$, proportionally with geophysical and geochemical inputs contributing $\sim$30$\%$ and $\sim$70$\%$, respectively. We find that estimated signals, calculated using CRUST2.0, CRUST1.0, and LITHO1.0, are within physical uncertainty of each other, suggesting that the choice of underlying geophysical model will not change results significantly, but will shift the central value by up to $\sim$15$\%$, depending on the crustal model and detector location. Similarly, we see no significant difference between calculated layer abundances and bulk-crustal heat production when using these geophysical models. The bulk crustal heat production is calculated as $7 \pm2$~terrawatts, which includes an increase of 1~TW in uncertainty relative to previous studies. Future improvements, including uncertainty attribution and near-field modeling, are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.12184v1-abstract-full').style.display = 'none'; document.getElementById('1907.12184v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6,000 words, 5 Figures, 4 Tables, 65 references</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.10914">arXiv:1810.10914</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.10914">pdf</a>, <a href="https://arxiv.org/format/1810.10914">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Testing a proposed &#34;second continent&#34; beneath eastern China using geoneutrino measurements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Roskovec%2C+B">Bedrich Roskovec</a>, <a href="/search/physics?searchtype=author&amp;query=Sramek%2C+O">Ondrej Sramek</a>, <a href="/search/physics?searchtype=author&amp;query=McDonough%2C+W+F">William F. McDonough</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.10914v1-abstract-short" style="display: inline;"> Models that envisage successful subduction channel transport of upper crustal materials below 300 km depth, past a critical phase transition in buoyant crustal lithologies, are capable of accumulating and assembling these materials into so-called &#34;second continents&#34; that are gravitationally stabilized at the base of the Transition Zone, at some 600 to 700 km depth. Global scale, Pacific-type subdu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.10914v1-abstract-full').style.display = 'inline'; document.getElementById('1810.10914v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.10914v1-abstract-full" style="display: none;"> Models that envisage successful subduction channel transport of upper crustal materials below 300 km depth, past a critical phase transition in buoyant crustal lithologies, are capable of accumulating and assembling these materials into so-called &#34;second continents&#34; that are gravitationally stabilized at the base of the Transition Zone, at some 600 to 700 km depth. Global scale, Pacific-type subduction (ocean-ocean and ocean-continent convergence), which lead to super continent assembly, were hypothesized to produce second continents that scale to about the size of Australia, with continental upper crustal concentration levels of radiogenic power. Seismological techniques are incapable of imaging these second continents because of their negligible difference in seismic wave velocities with the surrounding mantle. We can image the geoneutrino flux linked to the radioactive decays in these second continents with land and/or ocean-based detectors. We present predictions of the geoneutrino flux of second continents, assuming different scaled models and we discuss the potential of current and future neutrino experiments to discover or constrain second continents. The power emissions from second continents were proposed to be drivers of super continental cycles. Thus, testing models for the existence of second continents will place constraints on mantle and plate dynamics when using land and ocean-based geoneutrino detectors deployed at strategic locations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.10914v1-abstract-full').style.display = 'none'; document.getElementById('1810.10914v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.08314">arXiv:1809.08314</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1809.08314">pdf</a>, <a href="https://arxiv.org/format/1809.08314">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5043308">10.1063/1.5043308 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Studies of MCP-PMTs in the miniTimeCube neutrino detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+V+A">V. A. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Koblanski%2C+J">J. Koblanski</a>, <a href="/search/physics?searchtype=author&amp;query=Dorrill%2C+R">R. Dorrill</a>, <a href="/search/physics?searchtype=author&amp;query=Duvall%2C+M+J">M. J. Duvall</a>, <a href="/search/physics?searchtype=author&amp;query=Engel%2C+K">K. Engel</a>, <a href="/search/physics?searchtype=author&amp;query=Jocher%2C+G+R">G. R. Jocher</a>, <a href="/search/physics?searchtype=author&amp;query=Learned%2C+J+G">J. G. Learned</a>, <a href="/search/physics?searchtype=author&amp;query=Matsuno%2C+S">S. Matsuno</a>, <a href="/search/physics?searchtype=author&amp;query=McDonough%2C+W+F">W. F. McDonough</a>, <a href="/search/physics?searchtype=author&amp;query=Mumm%2C+H+P">H. P. Mumm</a>, <a href="/search/physics?searchtype=author&amp;query=Negrashov%2C+S">S. Negrashov</a>, <a href="/search/physics?searchtype=author&amp;query=Nishimura%2C+K">K. Nishimura</a>, <a href="/search/physics?searchtype=author&amp;query=Rosen%2C+M">M. Rosen</a>, <a href="/search/physics?searchtype=author&amp;query=Sakai%2C+M">M. Sakai</a>, <a href="/search/physics?searchtype=author&amp;query=Usman%2C+S+M">S. M. Usman</a>, <a href="/search/physics?searchtype=author&amp;query=Varner%2C+G+S">G. S. Varner</a>, <a href="/search/physics?searchtype=author&amp;query=Wipperfurth%2C+S+A">S. A. Wipperfurth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.08314v1-abstract-short" style="display: inline;"> This report highlights two different types of cross-talk in the photodetectors of the miniTimeCube neutrino experiment. The miniTimeCube detector has 24 $8 \times 8$-anode Photonis MCP-PMTs Planacon XP85012, totalling 1536 individual pixels viewing the 2-liter cube of plastic scintillator. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.08314v1-abstract-full" style="display: none;"> This report highlights two different types of cross-talk in the photodetectors of the miniTimeCube neutrino experiment. The miniTimeCube detector has 24 $8 \times 8$-anode Photonis MCP-PMTs Planacon XP85012, totalling 1536 individual pixels viewing the 2-liter cube of plastic scintillator. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.08314v1-abstract-full').style.display = 'none'; document.getElementById('1809.08314v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> AIP Advances 8, 095003 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.03199">arXiv:1808.03199</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.03199">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Geoneutrinos from the rock overburden at SNO+ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Strati%2C+V">Virginia Strati</a>, <a href="/search/physics?searchtype=author&amp;query=Wipperfurth%2C+S+A">Scott A. Wipperfurth</a>, <a href="/search/physics?searchtype=author&amp;query=Baldoncini%2C+M">Marica Baldoncini</a>, <a href="/search/physics?searchtype=author&amp;query=McDonough%2C+W+F">William F. McDonough</a>, <a href="/search/physics?searchtype=author&amp;query=Gizzi%2C+S">Sara Gizzi</a>, <a href="/search/physics?searchtype=author&amp;query=Mantovani%2C+F">Fabio Mantovani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.03199v1-abstract-short" style="display: inline;"> SNOLAB is one of the deepest underground laboratories in the world with an overburden of 2092 m. The SNO+ detector is designed to achieve several fundamental physics goals as a low-background experiment, particularly measuring the Earth&#39;s geoneutrino flux. Here we evaluate the effect of the 2 km overburden on the predicted crustal geoneutrino signal at SNO+. A refined 3D model of the 50 x 50 km up&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.03199v1-abstract-full').style.display = 'inline'; document.getElementById('1808.03199v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.03199v1-abstract-full" style="display: none;"> SNOLAB is one of the deepest underground laboratories in the world with an overburden of 2092 m. The SNO+ detector is designed to achieve several fundamental physics goals as a low-background experiment, particularly measuring the Earth&#39;s geoneutrino flux. Here we evaluate the effect of the 2 km overburden on the predicted crustal geoneutrino signal at SNO+. A refined 3D model of the 50 x 50 km upper crust surrounding the detector and a full calculation of survival probability are used to model the U and Th geoneutrino signal. Comparing this signal with that obtained by placing SNO+ at sea level, we highlight a $1.4^{+1.8}_{-0.9}$ TNU signal difference, corresponding to the ~5% of the total crustal contribution. Finally, the impact of the additional crust extending from sea level up to ~300 m was estimated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.03199v1-abstract-full').style.display = 'none'; document.getElementById('1808.03199v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.05473">arXiv:1801.05473</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1801.05473">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.epsl.2018.06.029">10.1016/j.epsl.2018.06.029 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Earth&#39;s chondritic Th/U: negligible fractionation during accretion, core formation, and crust - mantle differentiation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wipperfurth%2C+S+A">Scott A. Wipperfurth</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+M">Meng Guo</a>, <a href="/search/physics?searchtype=author&amp;query=%C5%A0r%C3%A1mek%2C+O">Ond艡ej 艩r谩mek</a>, <a href="/search/physics?searchtype=author&amp;query=McDonough%2C+W+F">William F. McDonough</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.05473v2-abstract-short" style="display: inline;"> Radioactive decay of potassium (K), thorium (Th), and uranium (U) power the Earth&#39;s engine, with variations in 232Th/238U recording planetary differentiation, atmospheric oxidation, and biologically mediated processes. We report several thousand $^{232}$Th/$^{238}$U ($魏$) and time-integrated Pb isotopic ($魏$$_{Pb}$) values and assess their ratios for the Earth, core, and silicate Earth. Complement&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.05473v2-abstract-full').style.display = 'inline'; document.getElementById('1801.05473v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.05473v2-abstract-full" style="display: none;"> Radioactive decay of potassium (K), thorium (Th), and uranium (U) power the Earth&#39;s engine, with variations in 232Th/238U recording planetary differentiation, atmospheric oxidation, and biologically mediated processes. We report several thousand $^{232}$Th/$^{238}$U ($魏$) and time-integrated Pb isotopic ($魏$$_{Pb}$) values and assess their ratios for the Earth, core, and silicate Earth. Complementary bulk silicate Earth domains (i.e., continental crust $魏_{Pb}^{CC}$ = 3.94 $^{+0.20}_{-0.11}$ and modern mantle $魏_{Pb}^{MM}$ = 3.87 $^{+0.15}_{-0.07}$, respectively) tightly bracket the solar system initial $魏_{Pb}^{SS}$ = 3.890 $\pm$ 0.015. These findings reveal the bulk silicate Earth&#39;s $魏$$_{Pb}^{BSE}$ is 3.90 $^{+0.13}_{-0.07}$ (or Th/U = 3.77 for the mass ratio), which resolves a long-standing debate regarding the Earth&#39;s Th/U value. We performed a Monte Carlo simulation to calculate the $魏_{Pb}$ of the BSE and bulk Earth for a range of U concentrations in the core (from 0 to 10 ng/g). Comparison of our results with $魏$$_{Pb}^{SS}$ constrains the available U and Th budget in the core. Negligible Th/U fractionation accompanied accretion, core formation, and crust - mantle differentiation, and trivial amounts of these elements (0.07 ppb by weight, equivalent to 0.014 TW of radiogenic power) were added to the core and do not power the geodynamo. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.05473v2-abstract-full').style.display = 'none'; document.getElementById('1801.05473v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted. 4 figures, 1 table. ~ 3500 words. ~40 references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> EPSL 498 (2018) 196-202 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.04676">arXiv:1712.04676</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.04676">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/2017GC007067">10.1002/2017GC007067 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Perceiving the crust in 3D: a model integrating geological, geochemical, and geophysical data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Strati%2C+V">Virginia Strati</a>, <a href="/search/physics?searchtype=author&amp;query=Wipperfurth%2C+S+A">Scott A. Wipperfurth</a>, <a href="/search/physics?searchtype=author&amp;query=Baldoncini%2C+M">Marica Baldoncini</a>, <a href="/search/physics?searchtype=author&amp;query=McDonough%2C+W+F">William F. McDonough</a>, <a href="/search/physics?searchtype=author&amp;query=Mantovani%2C+F">Fabio Mantovani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.04676v1-abstract-short" style="display: inline;"> Regional characterization of the continental crust has classically been performed through either geologic mapping, geochemical sampling, or geophysical surveys. Rarely are these techniques fully integrated, due to limits of data coverage, quality, and/or incompatible datasets. We combine geologic observations, geochemical sampling, and geophysical surveys to create a coherent 3-D geologic model of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.04676v1-abstract-full').style.display = 'inline'; document.getElementById('1712.04676v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.04676v1-abstract-full" style="display: none;"> Regional characterization of the continental crust has classically been performed through either geologic mapping, geochemical sampling, or geophysical surveys. Rarely are these techniques fully integrated, due to limits of data coverage, quality, and/or incompatible datasets. We combine geologic observations, geochemical sampling, and geophysical surveys to create a coherent 3-D geologic model of a 50 x 50 km upper crustal region surrounding the SNOLAB underground physics laboratory in Canada, which includes the Southern Province, the Superior Province, the Sudbury Structure and the Grenville Front Tectonic Zone. Nine representative aggregate units of exposed lithologies are geologically characterized, geophysically constrained, and probed with 109 rock samples supported by compiled geochemical databases. A detailed study of the lognormal distributions of U and Th abundances and of their correlation permits a bivariate analysis for a robust treatment of the uncertainties. A downloadable 3D numerical model of U and Th distribution defines an average heat production of 1.5$^{+1.4}_{-0.7}$$渭$W/m$^{3}$, and predicts a contribution of 7.7$^{+7.7}_{-3.0}$TNU (a Terrestrial Neutrino Unit is one geoneutrino event per 10$^{32}$ target protons per year) out of a crustal geoneutrino signal of 31.1$^{+8.0}_{-4.5}$TNU. The relatively high local crust geoneutrino signal together with its large variability strongly restrict the SNO+ capability of experimentally discriminating among BSE compositional models of the mantle. Future work to constrain the crustal heat production and the geoneutrino signal at SNO+ will be inefficient without more detailed geophysical characterization of the 3D structure of the heterogeneous Huronian Supergroup, which contributes the largest uncertainty to the calculation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.04676v1-abstract-full').style.display = 'none'; document.getElementById('1712.04676v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 9 figures, 6 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Geochemistry, Geophysics, Geosystems, 2017 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.05959">arXiv:1607.05959</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1607.05959">pdf</a>, <a href="https://arxiv.org/format/1607.05959">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1742-6596/718/6/062003">10.1088/1742-6596/718/6/062003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Geoneutrinos and reactor antineutrinos at SNO+ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Baldoncini%2C+M">M Baldoncini</a>, <a href="/search/physics?searchtype=author&amp;query=Strati%2C+V">V Strati</a>, <a href="/search/physics?searchtype=author&amp;query=Wipperfurth%2C+S+A">S A Wipperfurth</a>, <a href="/search/physics?searchtype=author&amp;query=Fiorentini%2C+G">G Fiorentini</a>, <a href="/search/physics?searchtype=author&amp;query=Mantovani%2C+F">F Mantovani</a>, <a href="/search/physics?searchtype=author&amp;query=McDonough%2C+W+F">W F McDonough</a>, <a href="/search/physics?searchtype=author&amp;query=Ricci%2C+B">B Ricci</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.05959v1-abstract-short" style="display: inline;"> In the heart of the Creighton Mine near Sudbury (Canada), the SNO+ detector is foreseen to observe almost in equal proportion electron antineutrinos produced by U and Th in the Earth and by nuclear reactors. SNO+ will be the first long baseline experiment to measure a reactor signal dominated by CANDU cores ($\sim$55\% of the total reactor signal), which generally burn natural uranium. Approximate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.05959v1-abstract-full').style.display = 'inline'; document.getElementById('1607.05959v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.05959v1-abstract-full" style="display: none;"> In the heart of the Creighton Mine near Sudbury (Canada), the SNO+ detector is foreseen to observe almost in equal proportion electron antineutrinos produced by U and Th in the Earth and by nuclear reactors. SNO+ will be the first long baseline experiment to measure a reactor signal dominated by CANDU cores ($\sim$55\% of the total reactor signal), which generally burn natural uranium. Approximately 18\% of the total geoneutrino signal is generated by the U and Th present in the rocks of the Huronian Supergroup-Sudbury Basin: the 60\% uncertainty on the signal produced by this lithologic unit plays a crucial role on the discrimination power on the mantle signal as well as on the geoneutrino spectral shape reconstruction, which can in principle provide a direct measurement of the Th/U ratio in the Earth. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.05959v1-abstract-full').style.display = 'none'; document.getElementById('1607.05959v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages including 2 figures and 1 table, in XIV International Conference on Topics in Astroparticle and Underground Physics (TAUP 2015) IOP Publishing , published on Journal of Physics: Conference Series 718 (2016) 062003</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1602.01405">arXiv:1602.01405</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1602.01405">pdf</a>, <a href="https://arxiv.org/format/1602.01405">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4942243">10.1063/1.4942243 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Invited Article: miniTimeCube </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+V+A">V. A. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Dorrill%2C+R">R. Dorrill</a>, <a href="/search/physics?searchtype=author&amp;query=Duvall%2C+M+J">M. J. Duvall</a>, <a href="/search/physics?searchtype=author&amp;query=Koblanski%2C+J">J. Koblanski</a>, <a href="/search/physics?searchtype=author&amp;query=Negrashov%2C+S">S. Negrashov</a>, <a href="/search/physics?searchtype=author&amp;query=Sakai%2C+M">M. Sakai</a>, <a href="/search/physics?searchtype=author&amp;query=Wipperfurth%2C+S+A">S. A. Wipperfurth</a>, <a href="/search/physics?searchtype=author&amp;query=Engel%2C+K">K. Engel</a>, <a href="/search/physics?searchtype=author&amp;query=Jocher%2C+G+R">G. R. Jocher</a>, <a href="/search/physics?searchtype=author&amp;query=Learned%2C+J+G">J. G. Learned</a>, <a href="/search/physics?searchtype=author&amp;query=Macchiarulo%2C+L">L. Macchiarulo</a>, <a href="/search/physics?searchtype=author&amp;query=Matsuno%2C+S">S. Matsuno</a>, <a href="/search/physics?searchtype=author&amp;query=McDonough%2C+W+F">W. F. McDonough</a>, <a href="/search/physics?searchtype=author&amp;query=Mumm%2C+H+P">H. P. Mumm</a>, <a href="/search/physics?searchtype=author&amp;query=Murillo%2C+J">J. Murillo</a>, <a href="/search/physics?searchtype=author&amp;query=Nishimura%2C+K">K. Nishimura</a>, <a href="/search/physics?searchtype=author&amp;query=Rosen%2C+M">M. Rosen</a>, <a href="/search/physics?searchtype=author&amp;query=Usman%2C+S+M">S. M. Usman</a>, <a href="/search/physics?searchtype=author&amp;query=Varner%2C+G+S">G. S. Varner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1602.01405v1-abstract-short" style="display: inline;"> We present the development of the miniTimeCube (mTC), a novel compact neutrino detector. The mTC is a multipurpose detector, aiming to detect not only neutrinos but also fast/thermal neutrons. Potential applications include the counterproliferation of nuclear materials and the investigation of antineutrino short-baseline effects. The mTC is a plastic 0.2% $^{10}$B - doped scintillator (13 cm)$^3$&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.01405v1-abstract-full').style.display = 'inline'; document.getElementById('1602.01405v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1602.01405v1-abstract-full" style="display: none;"> We present the development of the miniTimeCube (mTC), a novel compact neutrino detector. The mTC is a multipurpose detector, aiming to detect not only neutrinos but also fast/thermal neutrons. Potential applications include the counterproliferation of nuclear materials and the investigation of antineutrino short-baseline effects. The mTC is a plastic 0.2% $^{10}$B - doped scintillator (13 cm)$^3$ cube surrounded by 24 Micro-Channel Plate (MCP) photon detectors, each with an $8\times8$ anode totaling 1536 individual channels/pixels viewing the scintillator. It uses custom-made electronics modules which mount on top of the MCPs, making our detector compact and able to both distinguish different types of events and reject noise in real time. The detector is currently deployed and being tested at the National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR) nuclear reactor (20 MW$_\mathrm{th}$) in Gaithersburg, MD. A shield for further tests is being constructed, and calibration and upgrades are ongoing. The mTC&#39;s improved spatiotemporal resolution will allow for determination of incident particle directions beyond previous capabilities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.01405v1-abstract-full').style.display = 'none'; document.getElementById('1602.01405v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 29 figures, AIP Review of Scientific Instruments (2016)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Rev. Sci. Instrum. 87, 021301 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1510.01523">arXiv:1510.01523</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1510.01523">pdf</a>, <a href="https://arxiv.org/ps/1510.01523">ps</a>, <a href="https://arxiv.org/format/1510.01523">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/40/3/033003">10.1088/1674-1137/40/3/033003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Potential of Geo-neutrino Measurements at JUNO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Han%2C+R">Ran Han</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yu-Feng Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhan%2C+L">Liang Zhan</a>, <a href="/search/physics?searchtype=author&amp;query=McDonough%2C+W+F">William F. McDonough</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+J">Jun Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Ludhova%2C+L">Livia Ludhova</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1510.01523v4-abstract-short" style="display: inline;"> The flux of geoneutrinos at any point on the Earth is a function of the abundance and distribution of radioactive elements within our planet. This flux has been successfully detected by the 1-kt KamLAND and 0.3-kt Borexino detectors with these measurements being limited by their low statistics. The planned 20-kt JUNO detector will provide an exciting opportunity to obtain a high statistics measure&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.01523v4-abstract-full').style.display = 'inline'; document.getElementById('1510.01523v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1510.01523v4-abstract-full" style="display: none;"> The flux of geoneutrinos at any point on the Earth is a function of the abundance and distribution of radioactive elements within our planet. This flux has been successfully detected by the 1-kt KamLAND and 0.3-kt Borexino detectors with these measurements being limited by their low statistics. The planned 20-kt JUNO detector will provide an exciting opportunity to obtain a high statistics measurement, which will provide data to address several questions of geological importance. This paper presents the JUNO detector design concept, the expected geo-neutrino signal and corresponding backgrounds. The precision level of geo-neutrino measurements at JUNO is obtained with the standard least-squares method. The potential of the Th/U ratio and mantle measurements is also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.01523v4-abstract-full').style.display = 'none'; document.getElementById('1510.01523v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures, an additional author added, final version to appear in Chin. Phys. C</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chin.Phys. C40 (2016) 033003 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1509.07436">arXiv:1509.07436</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1509.07436">pdf</a>, <a href="https://arxiv.org/format/1509.07436">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.gca.2016.09.040">10.1016/j.gca.2016.09.040 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Subterranean production of neutrons, $^{39}$Ar and $^{21}$Ne: Rates and uncertainties </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=%C5%A0r%C3%A1mek%2C+O">Ond艡ej 艩r谩mek</a>, <a href="/search/physics?searchtype=author&amp;query=Stevens%2C+L">Lauren Stevens</a>, <a href="/search/physics?searchtype=author&amp;query=McDonough%2C+W+F">William F. McDonough</a>, <a href="/search/physics?searchtype=author&amp;query=Mukhopadhyay%2C+S">Sujoy Mukhopadhyay</a>, <a href="/search/physics?searchtype=author&amp;query=Peterson%2C+R+J">R. J. Peterson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1509.07436v3-abstract-short" style="display: inline;"> Accurate understanding of the subsurface production rate of the radionuclide $^{39}$Ar is necessary for argon dating techniques and noble gas geochemistry of the shallow and the deep Earth, and is also of interest to the WIMP dark matter experimental particle physics community. Our new calculations of subsurface production of neutrons, $^{21}$Ne, and $^{39}$Ar take advantage of the state-of-the-ar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.07436v3-abstract-full').style.display = 'inline'; document.getElementById('1509.07436v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1509.07436v3-abstract-full" style="display: none;"> Accurate understanding of the subsurface production rate of the radionuclide $^{39}$Ar is necessary for argon dating techniques and noble gas geochemistry of the shallow and the deep Earth, and is also of interest to the WIMP dark matter experimental particle physics community. Our new calculations of subsurface production of neutrons, $^{21}$Ne, and $^{39}$Ar take advantage of the state-of-the-art reliable tools of nuclear physics to obtain reaction cross sections and spectra (TALYS) and to evaluate neutron propagation in rock (MCNP6). We discuss our method and results in relation to previous studies and show the relative importance of various neutron, $^{21}$Ne, and $^{39}$Ar nucleogenic production channels. Uncertainty in nuclear reaction cross sections, which is the major contributor to overall calculation uncertainty, is estimated from variability in existing experimental and library data. Depending on selected rock composition, on the order of $10^7$-$10^{10}$ 伪 particles are produced in one kilogram of rock per year (order of 1-$10^3$ kg$^{-1}$ s$^{-1}$); the number of produced neutrons is lower by $\sim6$ orders of magnitude, $^{21}$Ne production rate drops by an additional factor of 15-20, and another one order of magnitude or more is dropped in production of $^{39}$Ar. Our calculation yields a nucleogenic $^{21}$Ne/$^4$He production ratio of $(4.6\pm0.6) \times 10^{-8}$ in Continental Crust and $(4.2\pm0.5) \times 10^{-8}$ in Oceanic Crust and Depleted Mantle. Calculated $^{39}$Ar production rates span a great range from $29\pm9$ atoms kg-rock$^{-1}$ yr$^{-1}$ in the K-Th-U-enriched Upper Continental Crust to $(2.6\pm0.8) \times 10^{-4}$ atoms kg-rock$^{-1}$ yr$^{-1}$ in Depleted Upper Mantle. Nucleogenic $^{39}$Ar production exceeds the cosmogenic production below $\sim700$ meters depth and thus, affects radiometric ages of groundwater. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.07436v3-abstract-full').style.display = 'none'; document.getElementById('1509.07436v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">revised version; 6 figures, 10 tables, submitted to Geochimica et Cosmochimica Acta</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Geochimica et Cosmochimica Acta, vol. 196, pp. 370-387, 2017 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1509.03898">arXiv:1509.03898</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1509.03898">pdf</a>, <a href="https://arxiv.org/format/1509.03898">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/srep13945">10.1038/srep13945 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> AGM2015: Antineutrino Global Map 2015 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Usman%2C+S+M">Shawn M. Usman</a>, <a href="/search/physics?searchtype=author&amp;query=Jocher%2C+G+R">Glenn R. Jocher</a>, <a href="/search/physics?searchtype=author&amp;query=Dye%2C+S+T">Stephen T. Dye</a>, <a href="/search/physics?searchtype=author&amp;query=McDonough%2C+W+F">William F. McDonough</a>, <a href="/search/physics?searchtype=author&amp;query=Learned%2C+J+G">John G. Learned</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1509.03898v1-abstract-short" style="display: inline;"> Every second greater than $10^{25}$ antineutrinos radiate to space from Earth, shining like a faint antineutrino star. Underground antineutrino detectors have revealed the rapidly decaying fission products inside nuclear reactors, verified the long-lived radioactivity inside our planet, and informed sensitive experiments for probing fundamental physics. Mapping the anisotropic antineutrino flux an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.03898v1-abstract-full').style.display = 'inline'; document.getElementById('1509.03898v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1509.03898v1-abstract-full" style="display: none;"> Every second greater than $10^{25}$ antineutrinos radiate to space from Earth, shining like a faint antineutrino star. Underground antineutrino detectors have revealed the rapidly decaying fission products inside nuclear reactors, verified the long-lived radioactivity inside our planet, and informed sensitive experiments for probing fundamental physics. Mapping the anisotropic antineutrino flux and energy spectrum advance geoscience by defining the amount and distribution of radioactive power within Earth while critically evaluating competing compositional models of the planet. We present the Antineutrino Global Map 2015 (AGM2015), an experimentally informed model of Earth&#39;s surface antineutrino flux over the 0 to 11 MeV energy spectrum, along with an assessment of systematic errors. The open source AGM2015 provides fundamental predictions for experiments, assists in strategic detector placement to determine neutrino mass hierarchy, and aids in identifying undeclared nuclear reactors. We use cosmochemically and seismologically informed models of the radiogenic lithosphere/mantle combined with the estimated antineutrino flux, as measured by KamLAND and Borexino, to determine the Earth&#39;s total antineutrino luminosity at $3.4^{+2.3}_{-2.2} \times 10^{25} \bar谓_e$. We find a dominant flux of geo-neutrinos, predict sub-equal crust and mantle contributions, with $\sim1\%$ of the total flux from man-made nuclear reactors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.03898v1-abstract-full').style.display = 'none'; document.getElementById('1509.03898v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Additional online content available at http://www.ultralytics.com/agm2015</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Scientific Reports 5, 13945 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.05613">arXiv:1507.05613</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.05613">pdf</a>, <a href="https://arxiv.org/ps/1507.05613">ps</a>, <a href="https://arxiv.org/format/1507.05613">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0954-3899/43/3/030401">10.1088/0954-3899/43/3/030401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neutrino Physics with JUNO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+G">Guangpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Beacom%2C+J">John Beacom</a>, <a href="/search/physics?searchtype=author&amp;query=Bezrukov%2C+L">Leonid Bezrukov</a>, <a href="/search/physics?searchtype=author&amp;query=Blyth%2C+S">Simon Blyth</a>, <a href="/search/physics?searchtype=author&amp;query=Brugnera%2C+R">Riccardo Brugnera</a>, <a href="/search/physics?searchtype=author&amp;query=Avanzini%2C+M+B">Margherita Buizza Avanzini</a>, <a href="/search/physics?searchtype=author&amp;query=Busto%2C+J">Jose Busto</a>, <a href="/search/physics?searchtype=author&amp;query=Cabrera%2C+A">Anatael Cabrera</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+H">Hao Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+X">Xiao Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Cammi%2C+A">Antonio Cammi</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G">Guofu Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+J">Jun Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+Y">Yun Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S">Shaomin Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S">Shenjian Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yixue Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chiesa%2C+D">Davide Chiesa</a>, <a href="/search/physics?searchtype=author&amp;query=Clemenza%2C+M">Massimiliano Clemenza</a>, <a href="/search/physics?searchtype=author&amp;query=Clerbaux%2C+B">Barbara Clerbaux</a>, <a href="/search/physics?searchtype=author&amp;query=Conrad%2C+J">Janet Conrad</a> , et al. (203 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.05613v2-abstract-short" style="display: inline;"> The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy as a primary physics goal. It is also capable of observing neutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmosp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.05613v2-abstract-full').style.display = 'inline'; document.getElementById('1507.05613v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.05613v2-abstract-full" style="display: none;"> The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy as a primary physics goal. It is also capable of observing neutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, solar neutrinos, as well as exotic searches such as nucleon decays, dark matter, sterile neutrinos, etc. We present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. By detecting reactor antineutrinos from two power plants at 53-km distance, JUNO will determine the neutrino mass hierarchy at a 3-4 sigma significance with six years of running. The measurement of antineutrino spectrum will also lead to the precise determination of three out of the six oscillation parameters to an accuracy of better than 1\%. Neutrino burst from a typical core-collapse supernova at 10 kpc would lead to ~5000 inverse-beta-decay events and ~2000 all-flavor neutrino-proton elastic scattering events in JUNO. Detection of DSNB would provide valuable information on the cosmic star-formation rate and the average core-collapsed neutrino energy spectrum. Geo-neutrinos can be detected in JUNO with a rate of ~400 events per year, significantly improving the statistics of existing geoneutrino samples. The JUNO detector is sensitive to several exotic searches, e.g. proton decay via the $p\to K^++\bar谓$ decay channel. The JUNO detector will provide a unique facility to address many outstanding crucial questions in particle and astrophysics. It holds the great potential for further advancing our quest to understanding the fundamental properties of neutrinos, one of the building blocks of our Universe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.05613v2-abstract-full').style.display = 'none'; document.getElementById('1507.05613v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Version submitted to Journal of Physics G, with minor typo corrections. 222 Pages, 147 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. G 43 (2016) 030401 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.3324">arXiv:1412.3324</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1412.3324">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Expected geoneutrino signal at JUNO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Strati%2C+V">Virginia Strati</a>, <a href="/search/physics?searchtype=author&amp;query=Baldoncini%2C+M">Marica Baldoncini</a>, <a href="/search/physics?searchtype=author&amp;query=Callegari%2C+I">Ivan Callegari</a>, <a href="/search/physics?searchtype=author&amp;query=Mantovani%2C+F">Fabio Mantovani</a>, <a href="/search/physics?searchtype=author&amp;query=McDonough%2C+W+F">William F. McDonough</a>, <a href="/search/physics?searchtype=author&amp;query=Ricci%2C+B">Barbara Ricci</a>, <a href="/search/physics?searchtype=author&amp;query=Xhixha%2C+G">Gerti Xhixha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.3324v2-abstract-short" style="display: inline;"> Constraints on the Earth&#39;s composition and on its radiogenic energy budget come from the detection of geoneutrinos. The KamLAND and Borexino experiments recently reported the geoneutrino flux, which reflects the amount and distribution of U and Th inside the Earth. The KamLAND and Borexino experiments recently reported the geoneutrino flux, which reflects the amount and distribution of U and Th in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.3324v2-abstract-full').style.display = 'inline'; document.getElementById('1412.3324v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.3324v2-abstract-full" style="display: none;"> Constraints on the Earth&#39;s composition and on its radiogenic energy budget come from the detection of geoneutrinos. The KamLAND and Borexino experiments recently reported the geoneutrino flux, which reflects the amount and distribution of U and Th inside the Earth. The KamLAND and Borexino experiments recently reported the geoneutrino flux, which reflects the amount and distribution of U and Th inside the Earth. The JUNO neutrino experiment, designed as a 20 kton liquid scintillator detector, will be built in an underground laboratory in South China about 53 km from the Yangjiang and Taishan nuclear power plants. Given the large detector mass and the intense reactor antineutrino flux, JUNO aims to collect high statistics antineutrino signals from reactors but also to address the challenge of discriminating the geoneutrino signal from the reactor background.The predicted geoneutrino signal at JUNO is 39.7 $^{+6.5}_{-5.2}$ TNU, based on the existing reference Earth model, with the dominant source of uncertainty coming from the modeling of the compositional variability in the local upper crust that surrounds (out to $\sim$ 500 km) the detector. A special focus is dedicated to the 6掳 x 4掳 Local Crust surrounding the detector which is estimated to contribute for the 44% of the signal. On the base of a worldwide reference model for reactor antineutrinos, the ratio between reactor antineutrino and geoneutrino signals in the geoneutrino energy window is estimated to be 0.7 considering reactors operating in year 2013 and reaches a value of 8.9 by adding the contribution of the future nuclear power plants. In order to extract useful information about the mantle&#39;s composition, a refinement of the abundance and distribution of U and Th in the Local Crust is required, with particular attention to the geochemical characterization of the accessible upper crust. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.3324v2-abstract-full').style.display = 'none'; document.getElementById('1412.3324v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Slight changes and improvements in the text,22 pages, 4 Figures, 3 Tables. Prog. in Earth and Planet. Sci. (2015)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1409.5864">arXiv:1409.5864</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1409.5864">pdf</a>, <a href="https://arxiv.org/format/1409.5864">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Advanced Scintillator Detector Concept (ASDC): A Concept Paper on the Physics Potential of Water-Based Liquid Scintillator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Alonso%2C+J+R">J. R. Alonso</a>, <a href="/search/physics?searchtype=author&amp;query=Barros%2C+N">N. Barros</a>, <a href="/search/physics?searchtype=author&amp;query=Bergevin%2C+M">M. Bergevin</a>, <a href="/search/physics?searchtype=author&amp;query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/physics?searchtype=author&amp;query=Bignell%2C+L">L. Bignell</a>, <a href="/search/physics?searchtype=author&amp;query=Blucher%2C+E">E. Blucher</a>, <a href="/search/physics?searchtype=author&amp;query=Calaprice%2C+F">F. Calaprice</a>, <a href="/search/physics?searchtype=author&amp;query=Conrad%2C+J+M">J. M. Conrad</a>, <a href="/search/physics?searchtype=author&amp;query=Descamps%2C+F+B">F. B. Descamps</a>, <a href="/search/physics?searchtype=author&amp;query=Diwan%2C+M+V">M. V. Diwan</a>, <a href="/search/physics?searchtype=author&amp;query=Dwyer%2C+D+A">D. A. Dwyer</a>, <a href="/search/physics?searchtype=author&amp;query=Dye%2C+S+T">S. T. Dye</a>, <a href="/search/physics?searchtype=author&amp;query=Elagin%2C+A">A. Elagin</a>, <a href="/search/physics?searchtype=author&amp;query=Feng%2C+P">P. Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Grant%2C+C">C. Grant</a>, <a href="/search/physics?searchtype=author&amp;query=Grullon%2C+S">S. Grullon</a>, <a href="/search/physics?searchtype=author&amp;query=Hans%2C+S">S. Hans</a>, <a href="/search/physics?searchtype=author&amp;query=Jaffe%2C+D+E">D. E. Jaffe</a>, <a href="/search/physics?searchtype=author&amp;query=Kettell%2C+S+H">S. H. Kettell</a>, <a href="/search/physics?searchtype=author&amp;query=Klein%2C+J+R">J. R. Klein</a>, <a href="/search/physics?searchtype=author&amp;query=Lande%2C+K">K. Lande</a>, <a href="/search/physics?searchtype=author&amp;query=Learned%2C+J+G">J. G. Learned</a>, <a href="/search/physics?searchtype=author&amp;query=Luk%2C+K+B">K. B. Luk</a>, <a href="/search/physics?searchtype=author&amp;query=Maricic%2C+J">J. Maricic</a>, <a href="/search/physics?searchtype=author&amp;query=Marleau%2C+P">P. Marleau</a> , et al. (25 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1409.5864v3-abstract-short" style="display: inline;"> The recent development of Water-based Liquid Scintillator (WbLS), and the concurrent development of high-efficiency and high-precision-timing light sensors, has opened up the possibility for a new kind of large-scale detector capable of a very broad program of physics. The program would include determination of the neutrino mass hierarchy and observation of CP violation with long-baseline neutrino&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.5864v3-abstract-full').style.display = 'inline'; document.getElementById('1409.5864v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1409.5864v3-abstract-full" style="display: none;"> The recent development of Water-based Liquid Scintillator (WbLS), and the concurrent development of high-efficiency and high-precision-timing light sensors, has opened up the possibility for a new kind of large-scale detector capable of a very broad program of physics. The program would include determination of the neutrino mass hierarchy and observation of CP violation with long-baseline neutrinos, searches for proton decay, ultra-precise solar neutrino measurements, geo- and supernova neutrinos including diffuse supernova antineutrinos, and neutrinoless double beta decay. We outline here the basic requirements of the Advanced Scintillation Detector Concept (ASDC), which combines the use of WbLS, doping with a number of potential isotopes for a range of physics goals, high efficiency and ultra-fast timing photosensors, and a deep underground location. We are considering such a detector at the Long Baseline Neutrino Facility (LBNF) far site, where the ASDC could operate in conjunction with the liquid argon tracking detector proposed by the LBNE collaboration. The goal is the deployment of a 30-100 kiloton-scale detector, the basic elements of which are being developed now in experiments such as WATCHMAN, ANNIE, SNO+, and EGADS. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.5864v3-abstract-full').style.display = 'none'; document.getElementById('1409.5864v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 September, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> BNL-106082-2014-JA </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1405.0192">arXiv:1405.0192</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1405.0192">pdf</a>, <a href="https://arxiv.org/format/1405.0192">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Geo-neutrinos and Earth Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Dye%2C+S+T">S. T. Dye</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Y. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Lekic%2C+V">V. Lekic</a>, <a href="/search/physics?searchtype=author&amp;query=McDonough%2C+W+F">W. F. McDonough</a>, <a href="/search/physics?searchtype=author&amp;query=Sramek%2C+O">O. Sramek</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1405.0192v1-abstract-short" style="display: inline;"> We present the current status of geo-neutrino measurements and their implications for radiogenic heating in the mantle. Earth models predict different levels of radiogenic heating and, therefore, different geo-neutrino fluxes from the mantle. Seismic tomography reveals features in the deep mantle possibly correlated with radiogenic heating and causing spatial variations in the mantle geo-neutrino&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.0192v1-abstract-full').style.display = 'inline'; document.getElementById('1405.0192v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1405.0192v1-abstract-full" style="display: none;"> We present the current status of geo-neutrino measurements and their implications for radiogenic heating in the mantle. Earth models predict different levels of radiogenic heating and, therefore, different geo-neutrino fluxes from the mantle. Seismic tomography reveals features in the deep mantle possibly correlated with radiogenic heating and causing spatial variations in the mantle geo-neutrino flux at the Earth surface. An ocean-based observatory offers the greatest sensitivity to the mantle flux and potential for resolving Earth models and mantle features. Refinements to estimates of the geo-neutrino flux from continental crust reduce uncertainty in measurements of the mantle flux, especially measurements from land-based observatories. These refinements enable the resolution of Earth models using the combined measurements from multiple continental observatories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.0192v1-abstract-full').style.display = 'none'; document.getElementById('1405.0192v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 May, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures; Contributed paper TAUP 2013</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1404.6692">arXiv:1404.6692</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1404.6692">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/2014GC005397">10.1002/2014GC005397 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Regional study of the Archean to Proterozoic crust at the Sudbury Neutrino Observatory (SNO+), Ontario: Predicting the geoneutrino flux </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yu Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Strati%2C+V">Virginia Strati</a>, <a href="/search/physics?searchtype=author&amp;query=Mantovani%2C+F">Fabio Mantovani</a>, <a href="/search/physics?searchtype=author&amp;query=Shirey%2C+S+B">Steven B. Shirey</a>, <a href="/search/physics?searchtype=author&amp;query=Rudnick%2C+R+L">Roberta L. Rudnick</a>, <a href="/search/physics?searchtype=author&amp;query=McDonough%2C+W+F">William F. McDonough</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1404.6692v1-abstract-short" style="display: inline;"> The SNO+ detector, a new kiloton scale liquid scintillator detector capable of recording geoneutrino events, will define the strength of the Earth radiogenic heat. A detailed 3-D model of the regional crust, centered at SNO+ and based on compiled geological, geophysical and geochemical information, was used to characterize the physical and chemical attributes of crust and assign uncertainties to i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1404.6692v1-abstract-full').style.display = 'inline'; document.getElementById('1404.6692v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1404.6692v1-abstract-full" style="display: none;"> The SNO+ detector, a new kiloton scale liquid scintillator detector capable of recording geoneutrino events, will define the strength of the Earth radiogenic heat. A detailed 3-D model of the regional crust, centered at SNO+ and based on compiled geological, geophysical and geochemical information, was used to characterize the physical and chemical attributes of crust and assign uncertainties to its structure. Monte Carlo simulations were used to predict the U and Th abundances and uncertainties in crustal lithologies and to model the regional crustal geoneutrino signal originating from the at SNO+. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1404.6692v1-abstract-full').style.display = 'none'; document.getElementById('1404.6692v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2014. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1310.3732">arXiv:1310.3732</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1310.3732">pdf</a>, <a href="https://arxiv.org/format/1310.3732">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.ppnp.2013.07.001">10.1016/j.ppnp.2013.07.001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Geo-neutrinos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+G">G. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Ianni%2C+A">A. Ianni</a>, <a href="/search/physics?searchtype=author&amp;query=Ludhova%2C+L">L. Ludhova</a>, <a href="/search/physics?searchtype=author&amp;query=Mantovani%2C+F">F. Mantovani</a>, <a href="/search/physics?searchtype=author&amp;query=McDonough%2C+W+F">W. F. McDonough</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1310.3732v1-abstract-short" style="display: inline;"> We review a new interdisciplinary field between Geology and Physics: the study of the Earth&#39;s geo-neutrino flux. We describe competing models for the composition of the Earth, present geological insights into the make up of the continental and oceanic crust, those parts of the Earth that concentrate Th and U, the heat producing elements, and provide details of the regional settings in the continen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1310.3732v1-abstract-full').style.display = 'inline'; document.getElementById('1310.3732v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1310.3732v1-abstract-full" style="display: none;"> We review a new interdisciplinary field between Geology and Physics: the study of the Earth&#39;s geo-neutrino flux. We describe competing models for the composition of the Earth, present geological insights into the make up of the continental and oceanic crust, those parts of the Earth that concentrate Th and U, the heat producing elements, and provide details of the regional settings in the continents and oceans where operating and planned detectors are sited. Details are presented for the only two operating detectors that are capable of measuring the Earth&#39;s geo-neutrinos flux: Borexino and KamLAND; results achieved to date are presented, along with their impacts on geophysical and geochemical models of the Earth. Finally, future planned experiments are highlighted. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1310.3732v1-abstract-full').style.display = 'none'; document.getElementById('1310.3732v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2013. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1301.0365">arXiv:1301.0365</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1301.0365">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> A reference Earth model for the heat producing elements and associated geoneutrino flux </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yu Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Chubakov%2C+V">Viacheslav Chubakov</a>, <a href="/search/physics?searchtype=author&amp;query=Mantovani%2C+F">Fabio Mantovani</a>, <a href="/search/physics?searchtype=author&amp;query=Rudnick%2C+R+L">Roberta L. Rudnick</a>, <a href="/search/physics?searchtype=author&amp;query=McDonough%2C+W+F">William F. McDonough</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1301.0365v2-abstract-short" style="display: inline;"> The recent geoneutrino experimental results from KamLAND and Borexino detectors reveal the usefulness of analyzing the Earth geoneutrino flux, as it provides a constraint on the strength of the radiogenic heat power and this, in turn, provides a test of compositional models of the bulk silicate Earth (BSE). This flux is dependent on the amount and distribution of heat producing elements (HPEs: U,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.0365v2-abstract-full').style.display = 'inline'; document.getElementById('1301.0365v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1301.0365v2-abstract-full" style="display: none;"> The recent geoneutrino experimental results from KamLAND and Borexino detectors reveal the usefulness of analyzing the Earth geoneutrino flux, as it provides a constraint on the strength of the radiogenic heat power and this, in turn, provides a test of compositional models of the bulk silicate Earth (BSE). This flux is dependent on the amount and distribution of heat producing elements (HPEs: U, Th and K) in the Earth interior. We have developed a geophysically-based, three-dimensional global reference model for the abundances and distributions of HPEs in the BSE. The structure and composition of the outermost portion of the Earth, the crust and underlying lithospheric mantle, is detailed in the reference model, this portion of the Earth has the greatest influence on the geoneutrino fluxes. The reference model combines three existing geophysical models of the global crust and yields an average crustal thickness of 34.4+-4.1 km in the continents and 8.0+-2.7 km in the oceans. In situ seismic velocity provided by CRUST 2.0 allows us to estimate the average composition of the deep continental crust by using new and updated compositional databases for amphibolite and granulite facies rocks in combination with laboratory ultrasonic velocities measurements. An updated xenolithic peridotite database is used to represent the average composition of continental lithospheric mantle. Monte Carlo simulation is used to predict the geoneutrino flux at 16 selected locations and to track the asymmetrical uncertainties of radiogenic heat power due to the log-normal distributions of HPE concentrations in crustal rocks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.0365v2-abstract-full').style.display = 'none'; document.getElementById('1301.0365v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 March, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 January, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">58 pages, 8 tables, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1207.0853">arXiv:1207.0853</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1207.0853">pdf</a>, <a href="https://arxiv.org/format/1207.0853">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.epsl.2012.11.001">10.1016/j.epsl.2012.11.001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Geophysical and geochemical constraints on geoneutrino fluxes from Earth&#39;s mantle </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=%C5%A0r%C3%A1mek%2C+O">Ond艡ej 艩r谩mek</a>, <a href="/search/physics?searchtype=author&amp;query=McDonough%2C+W+F">William F. McDonough</a>, <a href="/search/physics?searchtype=author&amp;query=Kite%2C+E+S">Edwin S. Kite</a>, <a href="/search/physics?searchtype=author&amp;query=Leki%C4%87%2C+V">Vedran Leki膰</a>, <a href="/search/physics?searchtype=author&amp;query=Dye%2C+S">Steve Dye</a>, <a href="/search/physics?searchtype=author&amp;query=Zhong%2C+S">Shijie Zhong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1207.0853v2-abstract-short" style="display: inline;"> Knowledge of the amount and distribution of radiogenic heating in the mantle is crucial for understanding the dynamics of the Earth, including its thermal evolution, the style and planform of mantle convection, and the energetics of the core. Although the flux of heat from the surface of the planet is robustly estimated, the contributions of radiogenic heating and secular cooling remain poorly def&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1207.0853v2-abstract-full').style.display = 'inline'; document.getElementById('1207.0853v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1207.0853v2-abstract-full" style="display: none;"> Knowledge of the amount and distribution of radiogenic heating in the mantle is crucial for understanding the dynamics of the Earth, including its thermal evolution, the style and planform of mantle convection, and the energetics of the core. Although the flux of heat from the surface of the planet is robustly estimated, the contributions of radiogenic heating and secular cooling remain poorly defined. Constraining the amount of heat-producing elements in the Earth will provide clues to understanding nebula condensation and planetary formation processes in early Solar System. Mantle radioactivity supplies power for mantle convection and plate tectonics, but estimates of mantle radiogenic heat production vary by a factor of more than 20. Recent experimental results demonstrate the potential for direct assessment of mantle radioactivity through observations of geoneutrinos, which are emitted by naturally occurring radionuclides. Predictions of the geoneutrino signal from the mantle exist for several established estimates of mantle composition. Here we present novel analyses, illustrating surface variations of the mantle geoneutrino signal for models of the deep mantle structure, including those based on seismic tomography. These variations have measurable differences for some models, allowing new and meaningful constraints on the dynamics of the planet. An ocean based geoneutrino detector deployed at several strategic locations will be able to discriminate between competing compositional models of the bulk silicate Earth. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1207.0853v2-abstract-full').style.display = 'none'; document.getElementById('1207.0853v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 July, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 6 tables, 5 figures, 2 supplementary figures; revised version submitted to Earth Planet. Sci. Lett</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Earth Planet. Sci. Lett., vol. 361, pp. 356-366, 2013 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1104.5620">arXiv:1104.5620</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1104.5620">pdf</a>, <a href="https://arxiv.org/format/1104.5620">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.astropartphys.2012.02.011">10.1016/j.astropartphys.2012.02.011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The next-generation liquid-scintillator neutrino observatory LENA </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wurm%2C+M">Michael Wurm</a>, <a href="/search/physics?searchtype=author&amp;query=Beacom%2C+J+F">John F. Beacom</a>, <a href="/search/physics?searchtype=author&amp;query=Bezrukov%2C+L+B">Leonid B. Bezrukov</a>, <a href="/search/physics?searchtype=author&amp;query=Bick%2C+D">Daniel Bick</a>, <a href="/search/physics?searchtype=author&amp;query=Bl%C3%BCmer%2C+J">Johannes Bl眉mer</a>, <a href="/search/physics?searchtype=author&amp;query=Choubey%2C+S">Sandhya Choubey</a>, <a href="/search/physics?searchtype=author&amp;query=Ciemniak%2C+C">Christian Ciemniak</a>, <a href="/search/physics?searchtype=author&amp;query=D%27Angelo%2C+D">Davide D&#39;Angelo</a>, <a href="/search/physics?searchtype=author&amp;query=Dasgupta%2C+B">Basudeb Dasgupta</a>, <a href="/search/physics?searchtype=author&amp;query=Dighe%2C+A">Amol Dighe</a>, <a href="/search/physics?searchtype=author&amp;query=Domogatsky%2C+G">Grigorij Domogatsky</a>, <a href="/search/physics?searchtype=author&amp;query=Dye%2C+S">Steve Dye</a>, <a href="/search/physics?searchtype=author&amp;query=Eliseev%2C+S">Sergey Eliseev</a>, <a href="/search/physics?searchtype=author&amp;query=Enqvist%2C+T">Timo Enqvist</a>, <a href="/search/physics?searchtype=author&amp;query=Erykalov%2C+A">Alexey Erykalov</a>, <a href="/search/physics?searchtype=author&amp;query=von+Feilitzsch%2C+F">Franz von Feilitzsch</a>, <a href="/search/physics?searchtype=author&amp;query=Fiorentini%2C+G">Gianni Fiorentini</a>, <a href="/search/physics?searchtype=author&amp;query=Fischer%2C+T">Tobias Fischer</a>, <a href="/search/physics?searchtype=author&amp;query=G%C3%B6ger-Neff%2C+M">Marianne G枚ger-Neff</a>, <a href="/search/physics?searchtype=author&amp;query=Grabmayr%2C+P">Peter Grabmayr</a>, <a href="/search/physics?searchtype=author&amp;query=Hagner%2C+C">Caren Hagner</a>, <a href="/search/physics?searchtype=author&amp;query=Hellgartner%2C+D">Dominikus Hellgartner</a>, <a href="/search/physics?searchtype=author&amp;query=Hissa%2C+J">Johannes Hissa</a>, <a href="/search/physics?searchtype=author&amp;query=Horiuchi%2C+S">Shunsaku Horiuchi</a>, <a href="/search/physics?searchtype=author&amp;query=Janka%2C+H">Hans-Thomas Janka</a> , et al. (52 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1104.5620v3-abstract-short" style="display: inline;"> We propose the liquid-scintillator detector LENA (Low Energy Neutrino Astronomy) as a next-generation neutrino observatory on the scale of 50 kt. The outstanding successes of the Borexino and KamLAND experiments demonstrate the large potential of liquid-scintillator detectors in low-energy neutrino physics. LENA&#39;s physics objectives comprise the observation of astrophysical and terrestrial neutrin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1104.5620v3-abstract-full').style.display = 'inline'; document.getElementById('1104.5620v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1104.5620v3-abstract-full" style="display: none;"> We propose the liquid-scintillator detector LENA (Low Energy Neutrino Astronomy) as a next-generation neutrino observatory on the scale of 50 kt. The outstanding successes of the Borexino and KamLAND experiments demonstrate the large potential of liquid-scintillator detectors in low-energy neutrino physics. LENA&#39;s physics objectives comprise the observation of astrophysical and terrestrial neutrino sources as well as the investigation of neutrino oscillations. In the GeV energy range, the search for proton decay and long-baseline neutrino oscillation experiments complement the low-energy program. Based on the considerable expertise present in European and international research groups, the technical design is sufficiently mature to allow for an early start of detector realization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1104.5620v3-abstract-full').style.display = 'none'; document.getElementById('1104.5620v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 March, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 April, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Whitepaper for the LENA low-energy neutrino detector, 67 pages, 32 figures</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10