CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–17 of 17 results for author: <span class="mathjax">Rode, A V</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Rode%2C+A+V">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Rode, A V"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Rode%2C+A+V&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Rode, A V"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.03625">arXiv:2409.03625</a> <span> [<a href="https://arxiv.org/pdf/2409.03625">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Formation of high-aspect-ratio nanocavity in LiF crystal using a femtosecond of x-ray FEL pulse </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Makarov%2C+S+S">Sergey S. Makarov</a>, <a href="/search/physics?searchtype=author&query=Grigoryev%2C+S+A">Sergey A. Grigoryev</a>, <a href="/search/physics?searchtype=author&query=Zhakhovsky%2C+V+V">Vasily V. Zhakhovsky</a>, <a href="/search/physics?searchtype=author&query=Chuprov%2C+P">Petr Chuprov</a>, <a href="/search/physics?searchtype=author&query=Pikuz%2C+T+A">Tatiana A. Pikuz</a>, <a href="/search/physics?searchtype=author&query=Inogamov%2C+N+A">Nail A. Inogamov</a>, <a href="/search/physics?searchtype=author&query=Khokhlov%2C+V+V">Victor V. Khokhlov</a>, <a href="/search/physics?searchtype=author&query=Petrov%2C+Y+V">Yuri V. Petrov</a>, <a href="/search/physics?searchtype=author&query=Perov%2C+E">Eugene Perov</a>, <a href="/search/physics?searchtype=author&query=Shepelev%2C+V">Vadim Shepelev</a>, <a href="/search/physics?searchtype=author&query=Shobu%2C+T">Takehisa Shobu</a>, <a href="/search/physics?searchtype=author&query=Tominaga%2C+A">Aki Tominaga</a>, <a href="/search/physics?searchtype=author&query=Rapp%2C+L">Ludovic Rapp</a>, <a href="/search/physics?searchtype=author&query=Rode%2C+A+V">Andrei V. Rode</a>, <a href="/search/physics?searchtype=author&query=Juodkazis%2C+S">Saulius Juodkazis</a>, <a href="/search/physics?searchtype=author&query=Makita%2C+M">Mikako Makita</a>, <a href="/search/physics?searchtype=author&query=Nakatsutsumi%2C+M">Motoaki Nakatsutsumi</a>, <a href="/search/physics?searchtype=author&query=Preston%2C+T+R">Thomas R. Preston</a>, <a href="/search/physics?searchtype=author&query=Appel%2C+K">Karen Appel</a>, <a href="/search/physics?searchtype=author&query=Konopkova%2C+Z">Zuzana Konopkova</a>, <a href="/search/physics?searchtype=author&query=Cerantola%2C+V">Valerio Cerantola</a>, <a href="/search/physics?searchtype=author&query=Brambrink%2C+E">Erik Brambrink</a>, <a href="/search/physics?searchtype=author&query=Schwinkendorf%2C+J">Jan-Patrick Schwinkendorf</a>, <a href="/search/physics?searchtype=author&query=Mohacsi%2C+I">Istv谩n Mohacsi</a>, <a href="/search/physics?searchtype=author&query=Vozda%2C+V">Vojtech Vozda</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.03625v1-abstract-short" style="display: inline;"> Sub-picosecond optical laser processing of metals is actively utilized for modification of a heated surface layer. But for deeper modification of different materials a laser in the hard x-ray range is required. Here, we demonstrate that a single 9-keV x-ray pulse from a free-electron laser can form a um-diameter cylindrical cavity with length of ~1 mm in LiF surrounded by shock-transformed materia… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03625v1-abstract-full').style.display = 'inline'; document.getElementById('2409.03625v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.03625v1-abstract-full" style="display: none;"> Sub-picosecond optical laser processing of metals is actively utilized for modification of a heated surface layer. But for deeper modification of different materials a laser in the hard x-ray range is required. Here, we demonstrate that a single 9-keV x-ray pulse from a free-electron laser can form a um-diameter cylindrical cavity with length of ~1 mm in LiF surrounded by shock-transformed material. The plasma-generated shock wave with TPa-level pressure results in damage, melting and polymorphic transformations of any material, including transparent and non-transparent to conventional optical lasers. Moreover, cylindrical shocks can be utilized to obtain a considerable amount of exotic high-pressure polymorphs. Pressure wave propagation in LiF, radial material flow, formation of cracks and voids are analyzed via continuum and atomistic simulations revealing a sequence of processes leading to the final structure with the long cavity. Similar results can be produced with semiconductors and ceramics, which opens a new pathway for development of laser material processing with hard x-ray pulses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03625v1-abstract-full').style.display = 'none'; document.getElementById('2409.03625v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.02899">arXiv:2102.02899</a> <span> [<a href="https://arxiv.org/pdf/2102.02899">pdf</a>, <a href="https://arxiv.org/format/2102.02899">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Optical funnel to guide and focus virus particles for X-ray laser imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Awel%2C+S">Salah Awel</a>, <a href="/search/physics?searchtype=author&query=Lavin-Varela%2C+S">Sebastian Lavin-Varela</a>, <a href="/search/physics?searchtype=author&query=Roth%2C+N">Nils Roth</a>, <a href="/search/physics?searchtype=author&query=Horke%2C+D+A">Daniel A. Horke</a>, <a href="/search/physics?searchtype=author&query=Rode%2C+A+V">Andrei V. Rode</a>, <a href="/search/physics?searchtype=author&query=Kirian%2C+R+A">Richard A. Kirian</a>, <a href="/search/physics?searchtype=author&query=K%C3%BCpper%2C+J">Jochen K眉pper</a>, <a href="/search/physics?searchtype=author&query=Chapman%2C+H+N">Henry N. Chapman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.02899v2-abstract-short" style="display: inline;"> The need for precise manipulation of nanoparticles in gaseous or near-vacuum environments is encountered in many studies that include aerosol morphology, nanodroplet physics, nanoscale optomechanics, and biomolecular physics. Photophoretic forces, whereby momentum exchange between a particle and surrounding gas is induced with optical light, were recently shown to be a robust means of trapping and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.02899v2-abstract-full').style.display = 'inline'; document.getElementById('2102.02899v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.02899v2-abstract-full" style="display: none;"> The need for precise manipulation of nanoparticles in gaseous or near-vacuum environments is encountered in many studies that include aerosol morphology, nanodroplet physics, nanoscale optomechanics, and biomolecular physics. Photophoretic forces, whereby momentum exchange between a particle and surrounding gas is induced with optical light, were recently shown to be a robust means of trapping and manipulating nanoparticles in air. We previously proposed a photophoretic "optical funnel" concept for the delivery of bioparticles to the focus of an x-ray free-electron laser (XFEL) beam for femtosecond x-ray diffractive imaging. Here, we describe the formation of a high-aspect-ratio optical funnel and provide a first experimental demonstration of this concept by transversely compressing and concentrating a high-speed beam of aerosolized viruses by a factor of three in a low-pressure environment. These results pave the way toward improved sample delivery efficiency for XFEL imaging experiments as well as other forms of imaging and spectroscopy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.02899v2-abstract-full').style.display = 'none'; document.getElementById('2102.02899v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.14654">arXiv:2005.14654</a> <span> [<a href="https://arxiv.org/pdf/2005.14654">pdf</a>, <a href="https://arxiv.org/format/2005.14654">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> All femtosecond optical pump and X-ray probe: holey-axicon for free electron laser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Anand%2C+V">V. Anand</a>, <a href="/search/physics?searchtype=author&query=Maksimovic%2C+J">J. Maksimovic</a>, <a href="/search/physics?searchtype=author&query=Katkus%2C+T">T. Katkus</a>, <a href="/search/physics?searchtype=author&query=Ng%2C+S+H">S. H. Ng</a>, <a href="/search/physics?searchtype=author&query=Ulcinas%2C+O">O. Ulcinas</a>, <a href="/search/physics?searchtype=author&query=Mikutis%2C+M">M. Mikutis</a>, <a href="/search/physics?searchtype=author&query=Baltrukonis%2C+J">J. Baltrukonis</a>, <a href="/search/physics?searchtype=author&query=Urbas%2C+A">A. Urbas</a>, <a href="/search/physics?searchtype=author&query=Slekys%2C+G">G. Slekys</a>, <a href="/search/physics?searchtype=author&query=Ogura%2C+H">H. Ogura</a>, <a href="/search/physics?searchtype=author&query=Sagae%2C+D">D. Sagae</a>, <a href="/search/physics?searchtype=author&query=Pikuz%2C+T">T. Pikuz</a>, <a href="/search/physics?searchtype=author&query=Somekawa%2C+T">T. Somekawa</a>, <a href="/search/physics?searchtype=author&query=Ozaki%2C+N">N. Ozaki</a>, <a href="/search/physics?searchtype=author&query=Vailionis%2C+A">A. Vailionis</a>, <a href="/search/physics?searchtype=author&query=Seniutinas%2C+G">G. Seniutinas</a>, <a href="/search/physics?searchtype=author&query=Mizeikis%2C+V">V. Mizeikis</a>, <a href="/search/physics?searchtype=author&query=Glazebrook%2C+K">K. Glazebrook</a>, <a href="/search/physics?searchtype=author&query=Brodie%2C+J+P">J. P. Brodie</a>, <a href="/search/physics?searchtype=author&query=Stoddart%2C+P+R">P. R. Stoddart</a>, <a href="/search/physics?searchtype=author&query=Rapp%2C+L">L. Rapp</a>, <a href="/search/physics?searchtype=author&query=Rode%2C+A+V">A. V. Rode</a>, <a href="/search/physics?searchtype=author&query=Gamaly%2C+E+G">E. G. Gamaly</a>, <a href="/search/physics?searchtype=author&query=Juodkazis%2C+S">S. Juodkazis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.14654v1-abstract-short" style="display: inline;"> We put forward a co-axial pump(optical)-probe(X-rays) experimental concept and show performance of the optical component. A Bessel beam generator with a central 100 micrometers-diameter hole (on the optical axis) was fabricated using femtosecond (fs) laser structuring inside a silica plate. This flat-axicon optical element produces a needle-like axial intensity distribution which can be used for t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.14654v1-abstract-full').style.display = 'inline'; document.getElementById('2005.14654v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.14654v1-abstract-full" style="display: none;"> We put forward a co-axial pump(optical)-probe(X-rays) experimental concept and show performance of the optical component. A Bessel beam generator with a central 100 micrometers-diameter hole (on the optical axis) was fabricated using femtosecond (fs) laser structuring inside a silica plate. This flat-axicon optical element produces a needle-like axial intensity distribution which can be used for the optical pump pulse. The fs-X-ray free electron laser (X-FEL) beam of sub-1 micrometer diameter can be introduced through the central hole along the optical axis onto a target as a probe. Different realisations of optical pump are discussed. Such optical elements facilitate alignment of ultra-short fs-pulses in space and time and can be used in light-matter interaction experiments at extreme energy densities on the surface and in the volume of targets. Full advantage of ultra-short 10 fs X-FEL probe pulses with fs-pump(optical) opens an unexplored temporal dimension of phase transitions and the fastest laser-induced rates of material heating and quenching. A wider field of applications of fs-laser-enabled structuring of materials and design of specific optical elements for astrophotonics is presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.14654v1-abstract-full').style.display = 'none'; document.getElementById('2005.14654v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.10796">arXiv:1912.10796</a> <span> [<a href="https://arxiv.org/pdf/1912.10796">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-020-0362-y">10.1038/s42005-020-0362-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Megahertz single-particle imaging at the European XFEL </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Sobolev%2C+E">Egor Sobolev</a>, <a href="/search/physics?searchtype=author&query=Zolotarev%2C+S">Serguey Zolotarev</a>, <a href="/search/physics?searchtype=author&query=Giewekemeyer%2C+K">Klaus Giewekemeyer</a>, <a href="/search/physics?searchtype=author&query=Bielecki%2C+J">Johan Bielecki</a>, <a href="/search/physics?searchtype=author&query=Okamoto%2C+K">Kenta Okamoto</a>, <a href="/search/physics?searchtype=author&query=Reddy%2C+H+K+N">Hemanth K. N. Reddy</a>, <a href="/search/physics?searchtype=author&query=Andreasson%2C+J">Jakob Andreasson</a>, <a href="/search/physics?searchtype=author&query=Ayyer%2C+K">Kartik Ayyer</a>, <a href="/search/physics?searchtype=author&query=Barak%2C+I">Imrich Barak</a>, <a href="/search/physics?searchtype=author&query=Bari%2C+S">Sadia Bari</a>, <a href="/search/physics?searchtype=author&query=Barty%2C+A">Anton Barty</a>, <a href="/search/physics?searchtype=author&query=Bean%2C+R">Richard Bean</a>, <a href="/search/physics?searchtype=author&query=Bobkov%2C+S">Sergey Bobkov</a>, <a href="/search/physics?searchtype=author&query=Chapman%2C+H+N">Henry N. Chapman</a>, <a href="/search/physics?searchtype=author&query=Chojnowski%2C+G">Grzegorz Chojnowski</a>, <a href="/search/physics?searchtype=author&query=Daurer%2C+B+J">Benedikt J. Daurer</a>, <a href="/search/physics?searchtype=author&query=D%C3%B6rner%2C+K">Katerina D枚rner</a>, <a href="/search/physics?searchtype=author&query=Ekeberg%2C+T">Tomas Ekeberg</a>, <a href="/search/physics?searchtype=author&query=Fl%C3%BCckiger%2C+L">Leonie Fl眉ckiger</a>, <a href="/search/physics?searchtype=author&query=Galzitskaya%2C+O">Oxana Galzitskaya</a>, <a href="/search/physics?searchtype=author&query=Gelisio%2C+L">Luca Gelisio</a>, <a href="/search/physics?searchtype=author&query=Hauf%2C+S">Steffen Hauf</a>, <a href="/search/physics?searchtype=author&query=Hogue%2C+B+G">Brenda G. Hogue</a>, <a href="/search/physics?searchtype=author&query=Horke%2C+D+A">Daniel A. Horke</a>, <a href="/search/physics?searchtype=author&query=Hosseinizadeh%2C+A">Ahmad Hosseinizadeh</a> , et al. (38 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.10796v1-abstract-short" style="display: inline;"> The emergence of high repetition-rate X-ray free-electron lasers (XFELs) powered by superconducting accelerator technology enables the measurement of significantly more experimental data per day than was previously possible. The European XFEL will soon provide 27,000 pulses per second, more than two orders of magnitude more than any other XFEL. The increased pulse rate is a key enabling factor for… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.10796v1-abstract-full').style.display = 'inline'; document.getElementById('1912.10796v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.10796v1-abstract-full" style="display: none;"> The emergence of high repetition-rate X-ray free-electron lasers (XFELs) powered by superconducting accelerator technology enables the measurement of significantly more experimental data per day than was previously possible. The European XFEL will soon provide 27,000 pulses per second, more than two orders of magnitude more than any other XFEL. The increased pulse rate is a key enabling factor for single-particle X-ray diffractive imaging, which relies on averaging the weak diffraction signal from single biological particles. Taking full advantage of this new capability requires that all experimental steps, from sample preparation and delivery to the acquisition of diffraction patterns, are compatible with the increased pulse repetition rate. Here, we show that single-particle imaging can be performed using X-ray pulses at megahertz repetition rates. The obtained results pave the way towards exploiting high repetition-rate X-ray free-electron lasers for single-particle imaging at their full repetition rate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.10796v1-abstract-full').style.display = 'none'; document.getElementById('1912.10796v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Commun. Phys. 3, 97 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.10345">arXiv:1802.10345</a> <span> [<a href="https://arxiv.org/pdf/1802.10345">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Extreme energy density confined inside a transparent crystal: Solid - plasma - solid transformations, status and perspectives </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Gamaly%2C+E+G">E. G. Gamaly</a>, <a href="/search/physics?searchtype=author&query=Juodkazis%2C+S">S. Juodkazis</a>, <a href="/search/physics?searchtype=author&query=Rode%2C+A+V">A. V. Rode</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.10345v2-abstract-short" style="display: inline;"> It was demonstrated during the past decade that ultrashort intense laser pulse tightly focused deep inside a transparent dielectric generates the energy density in excess of several MJ/cm3. Such energy concentration with extremely high heating and quenching rates leads to unusual solid-plasma-solid transformation paths overcoming kinetic barriers to formation of previously unknown high-pressure ma… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.10345v2-abstract-full').style.display = 'inline'; document.getElementById('1802.10345v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.10345v2-abstract-full" style="display: none;"> It was demonstrated during the past decade that ultrashort intense laser pulse tightly focused deep inside a transparent dielectric generates the energy density in excess of several MJ/cm3. Such energy concentration with extremely high heating and quenching rates leads to unusual solid-plasma-solid transformation paths overcoming kinetic barriers to formation of previously unknown high-pressure material phases, which are preserved in the surrounding pristine crystal. These results were obtained with the pulse of Gaussian shape in space and in time. Recently it was shown that the Bessel-shaped pulse could transform much larger amount of a material and allegedly create even higher energy density than that was achieved with the Gaussian (GB) pulses. Here we present a succinct review of previous results and discuss the possible routes for achieving higher energy density employing the Bessel beams (BB) and take advantage of its unique properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.10345v2-abstract-full').style.display = 'none'; document.getElementById('1802.10345v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.08163">arXiv:1708.08163</a> <span> [<a href="https://arxiv.org/pdf/1708.08163">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Interaction of the ultra-short Bessel beam with transparent dielectrics: Evidence of high-energy concentration and multi-TPa pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Gamaly%2C+E+G">Eugene G. Gamaly</a>, <a href="/search/physics?searchtype=author&query=Rode%2C+A+V">Andrei V. Rode</a>, <a href="/search/physics?searchtype=author&query=Rapp%2C+L">Ludovic Rapp</a>, <a href="/search/physics?searchtype=author&query=Giust%2C+R">Remo Giust</a>, <a href="/search/physics?searchtype=author&query=Furfaro%2C+L">Luca Furfaro</a>, <a href="/search/physics?searchtype=author&query=Lacourt%2C+P+A">Pierre Ambroise Lacourt</a>, <a href="/search/physics?searchtype=author&query=Dudley%2C+J+M">John M. Dudley</a>, <a href="/search/physics?searchtype=author&query=Courvoisier%2C+F">Francois Courvoisier</a>, <a href="/search/physics?searchtype=author&query=Juodkazis%2C+S">Saulius Juodkazis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.08163v2-abstract-short" style="display: inline;"> It has been proven that the intense tightly focused Gauss beam (GB) generates pressures in excess of a few TPa creating the novel super-dense phases of Aluminium and silicon [1-5]. Recently it was demonstrated that the Bessel beam (BB) focused inside sapphire produced the cylindrical void being two orders of magnitude larger than that generated by the GB [6-8]. Analysis of the experimental data pr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.08163v2-abstract-full').style.display = 'inline'; document.getElementById('1708.08163v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.08163v2-abstract-full" style="display: none;"> It has been proven that the intense tightly focused Gauss beam (GB) generates pressures in excess of a few TPa creating the novel super-dense phases of Aluminium and silicon [1-5]. Recently it was demonstrated that the Bessel beam (BB) focused inside sapphire produced the cylindrical void being two orders of magnitude larger than that generated by the GB [6-8]. Analysis of the experimental data presented below allows making the remarkable conclusions based solely on the void size measurements without any ad hoc assumptions about the interaction process. First, the void size is direct evidence of strong (>40%) absorption of the pulse energy. Second, it is a direct experimental evidence of the high-energy concentration in the central spike of the focus. The unique features of the intense Bessel beam interaction then allow understanding the experimental observation. This interaction generates early in the pulse time the spatial distribution of excited permittivity changing from positive to negative values. Then the light interacts with zero-real-permittivity surface, separating plasma and dielectric areas, which leads to high energy concentration near the axis of cylindrical focus up to several MJ/cm3 (pressure range of 4-8 TPa). The effect depends on the angle between the permittivity gradient and the field polarisation. High pressure generates intense cylindrical shock/ rarefaction waves, which led to formation of void and compressed shell. We demonstrate that the Bessel beam proves to be an effective tool for producing extreme pressure/temperature conditions on the laboratory tabletop. It appears that adjusting polarisation and permittivity gradient might be a novel way for increasing the maximum pressure. This tool allows for search of novel high-pressure material phases, for the 3D laser machining and for creating Warm Dense Matter as those in star cores. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.08163v2-abstract-full').style.display = 'none'; document.getElementById('1708.08163v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Draft-01, 18 pages, 4 figures, presented at International Conference on Laser Ablation COLA-2017 in Marseille, 4-8 September 2017. The latest version has updated text and figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.07630">arXiv:1708.07630</a> <span> [<a href="https://arxiv.org/pdf/1708.07630">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s00339-018-1693-3">10.1007/s00339-018-1693-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultra-fast re-structuring the electronic landscape of transparent dielectrics: new material states (Die-Met) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Gamaly%2C+E+G">E. G. Gamaly</a>, <a href="/search/physics?searchtype=author&query=Rode%2C+A+V">A. V. Rode</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.07630v2-abstract-short" style="display: inline;"> The swift excitation of the transparent dielectrics by intense short laser pulse produces ultra-fast re-structuring of the electronic landscape generating a wealth of material states continuously changing in space and in time in accord with the variations of the intensity. These unconventional transient material states combine simultaneously dielectric and metal properties (Die-Met). The laser exc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.07630v2-abstract-full').style.display = 'inline'; document.getElementById('1708.07630v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.07630v2-abstract-full" style="display: none;"> The swift excitation of the transparent dielectrics by intense short laser pulse produces ultra-fast re-structuring of the electronic landscape generating a wealth of material states continuously changing in space and in time in accord with the variations of the intensity. These unconventional transient material states combine simultaneously dielectric and metal properties (Die-Met). The laser excitation transforms a transparent dielectric into electrically inhomogeneous state early in the pulse time [1]. The permittivity of excited material varies in time and in space changing from positive to negative values that strongly affects the interaction process. The interplay between the transient permittivity gradient and polarisation of the incident laser becomes the major process of the new interaction mode. In a particular relation between the polarization and the permittivity gradient the incident field amplitude grows up while the wave is approaching to the surface where the real part of permittivity turns to zero. That results in the local increase in the absorbed energy density. The complex 3D structure of the permittivity makes a transparent part of excited dielectric (at $蔚0 > 蔚re > 0$) optically active. The electro-magnetic wave passing through such a medium gets a twisted trajectory and accrues the geometric phase [2]. The plane of polarisation rotation and phase depends on the 3D permittivity structure [3]. Measuring the polarisation and phase of the probe beam allows quantitatively identify this new transient state. We discuss the revelations of this effect in different experimental situations and possible applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.07630v2-abstract-full').style.display = 'none'; document.getElementById('1708.07630v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Draft-02; 11 pages, 6 figures; to be presented at International Conference on Laser Ablation, Marseille, 4-8 September 2017</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.04014">arXiv:1702.04014</a> <span> [<a href="https://arxiv.org/pdf/1702.04014">pdf</a>, <a href="https://arxiv.org/format/1702.04014">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1107/S1600576717018131">10.1107/S1600576717018131 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Femtosecond x-ray diffraction from an aerosolized beam of protein nanocrystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Awel%2C+S">Salah Awel</a>, <a href="/search/physics?searchtype=author&query=Kirian%2C+R+A">Richard A. Kirian</a>, <a href="/search/physics?searchtype=author&query=Wiedorn%2C+M+O">Max O. Wiedorn</a>, <a href="/search/physics?searchtype=author&query=Beyerlein%2C+K+R">Kenneth R. Beyerlein</a>, <a href="/search/physics?searchtype=author&query=Roth%2C+N">Nils Roth</a>, <a href="/search/physics?searchtype=author&query=Horke%2C+D+A">Daniel A. Horke</a>, <a href="/search/physics?searchtype=author&query=Oberth%C3%BCr%2C+D">Dominik Oberth眉r</a>, <a href="/search/physics?searchtype=author&query=Knoska%2C+J">Juraj Knoska</a>, <a href="/search/physics?searchtype=author&query=Mariani%2C+V">Valerio Mariani</a>, <a href="/search/physics?searchtype=author&query=Morgan%2C+A">Andrew Morgan</a>, <a href="/search/physics?searchtype=author&query=Adriano%2C+L">Luigi Adriano</a>, <a href="/search/physics?searchtype=author&query=Tolstikova%2C+A">Alexandra Tolstikova</a>, <a href="/search/physics?searchtype=author&query=Xavier%2C+P+L">P. Lourdu Xavier</a>, <a href="/search/physics?searchtype=author&query=Yefanov%2C+O">Oleksandr Yefanov</a>, <a href="/search/physics?searchtype=author&query=Aquila%2C+A">Andrew Aquila</a>, <a href="/search/physics?searchtype=author&query=Barty%2C+A">Anton Barty</a>, <a href="/search/physics?searchtype=author&query=Roy-Chowdhury%2C+S">Shatabdi Roy-Chowdhury</a>, <a href="/search/physics?searchtype=author&query=Hunter%2C+M+S">Mark S. Hunter</a>, <a href="/search/physics?searchtype=author&query=James%2C+D">Daniel James</a>, <a href="/search/physics?searchtype=author&query=Robinson%2C+J+S">Joseph S. Robinson</a>, <a href="/search/physics?searchtype=author&query=Weierstall%2C+U">Uwe Weierstall</a>, <a href="/search/physics?searchtype=author&query=Rode%2C+A+V">Andrei V. Rode</a>, <a href="/search/physics?searchtype=author&query=Bajt%2C+S">Sa拧a Bajt</a>, <a href="/search/physics?searchtype=author&query=K%C3%BCpper%2C+J">Jochen K眉pper</a>, <a href="/search/physics?searchtype=author&query=Chapman%2C+H+N">Henry N. Chapman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.04014v3-abstract-short" style="display: inline;"> We demonstrate near-atomic-resolution Bragg diffraction from aerosolized single granulovirus crystals using an x-ray free-electron laser. The form of the aerosol injector is nearly identical to conventional liquid-microjet nozzles, but the x-ray-scattering background is reduced by several orders of magnitude by the use of helium carrier gas rather than liquid. This approach provides a route to stu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.04014v3-abstract-full').style.display = 'inline'; document.getElementById('1702.04014v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.04014v3-abstract-full" style="display: none;"> We demonstrate near-atomic-resolution Bragg diffraction from aerosolized single granulovirus crystals using an x-ray free-electron laser. The form of the aerosol injector is nearly identical to conventional liquid-microjet nozzles, but the x-ray-scattering background is reduced by several orders of magnitude by the use of helium carrier gas rather than liquid. This approach provides a route to study the weak diffuse or lattice-transform signal arising from small crystals. The high speed of the particles is particularly well suited to upcoming MHz-repetition-rate x-ray free-electron lasers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.04014v3-abstract-full').style.display = 'none'; document.getElementById('1702.04014v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1512.06231">arXiv:1512.06231</a> <span> [<a href="https://arxiv.org/pdf/1512.06231">pdf</a>, <a href="https://arxiv.org/format/1512.06231">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.24.006507">10.1364/OE.24.006507 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Visualizing aerosol-particle injection for diffractive-imaging experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Awel%2C+S">Salah Awel</a>, <a href="/search/physics?searchtype=author&query=Kirian%2C+R+A">Richard A. Kirian</a>, <a href="/search/physics?searchtype=author&query=Eckerskorn%2C+N">Niko Eckerskorn</a>, <a href="/search/physics?searchtype=author&query=Wiedorn%2C+M">Max Wiedorn</a>, <a href="/search/physics?searchtype=author&query=Horke%2C+D+A">Daniel A. Horke</a>, <a href="/search/physics?searchtype=author&query=Rode%2C+A+V">Andrei V. Rode</a>, <a href="/search/physics?searchtype=author&query=K%C3%BCpper%2C+J">Jochen K眉pper</a>, <a href="/search/physics?searchtype=author&query=Chapman%2C+H+N">Henry N. Chapman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1512.06231v1-abstract-short" style="display: inline;"> Delivering sub-micrometer particles to an intense x-ray focus is a crucial aspect of single-particle diffractive-imaging experiments at x-ray free-electron lasers. Enabling direct visualization of sub-micrometer aerosol particle streams without interfering with the operation of the particle injector can greatly improve the overall efficiency of single-particle imaging experiments by reducing the a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.06231v1-abstract-full').style.display = 'inline'; document.getElementById('1512.06231v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1512.06231v1-abstract-full" style="display: none;"> Delivering sub-micrometer particles to an intense x-ray focus is a crucial aspect of single-particle diffractive-imaging experiments at x-ray free-electron lasers. Enabling direct visualization of sub-micrometer aerosol particle streams without interfering with the operation of the particle injector can greatly improve the overall efficiency of single-particle imaging experiments by reducing the amount of time and sample consumed during measurements. We have developed in-situ non-destructive imaging diagnostics to aid real-time particle injector optimization and x-ray/particle-beam alignment, based on laser illumination schemes and fast imaging detectors. Our diagnostics are constructed to provide a non-invasive rapid feedback on injector performance during measurements, and have been demonstrated during diffraction measurements at the FLASH free-electron laser. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.06231v1-abstract-full').style.display = 'none'; document.getElementById('1512.06231v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optics express 24.6 (2016): 6507-6521 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1510.01887">arXiv:1510.01887</a> <span> [<a href="https://arxiv.org/pdf/1510.01887">pdf</a>, <a href="https://arxiv.org/ps/1510.01887">ps</a>, <a href="https://arxiv.org/format/1510.01887">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OL.40.005711">10.1364/OL.40.005711 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Photoluminescence from voids created by femtosecond laser pulses inside cubic-BN </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Buividas%2C+R">R. Buividas</a>, <a href="/search/physics?searchtype=author&query=Aharonovich%2C+I">I. Aharonovich</a>, <a href="/search/physics?searchtype=author&query=Seniutinas%2C+G">G. Seniutinas</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X+W">X. W. Wang</a>, <a href="/search/physics?searchtype=author&query=Rapp%2C+L">L. Rapp</a>, <a href="/search/physics?searchtype=author&query=Rode%2C+A+V">A. V. Rode</a>, <a href="/search/physics?searchtype=author&query=Taniguchi%2C+T">T. Taniguchi</a>, <a href="/search/physics?searchtype=author&query=Juodkazis%2C+S">S. Juodkazis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1510.01887v1-abstract-short" style="display: inline;"> Photoluminescence (PL) from femtosecond laser modified regions inside cubic-boron nitride (c-BN) was measured under UV and visible light excitation. Bright PL at the red spectral range was observed, with a typical excited state lifetime of $\sim 4$~ns. Sharp emission lines are consistent with PL of intrinsic vibronic defects linked to the nitrogen vacancy formation (via Frenkel pair) observed earl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.01887v1-abstract-full').style.display = 'inline'; document.getElementById('1510.01887v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1510.01887v1-abstract-full" style="display: none;"> Photoluminescence (PL) from femtosecond laser modified regions inside cubic-boron nitride (c-BN) was measured under UV and visible light excitation. Bright PL at the red spectral range was observed, with a typical excited state lifetime of $\sim 4$~ns. Sharp emission lines are consistent with PL of intrinsic vibronic defects linked to the nitrogen vacancy formation (via Frenkel pair) observed earlier in high energy electron irradiated and ion-implanted c-BN. These, formerly known as the radiation centers, RC1, RC2, and RC3 have been identified at the locus of the voids formed by single fs-laser pulse. The method is promising to engineer color centers in c-BN for photonic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.01887v1-abstract-full').style.display = 'none'; document.getElementById('1510.01887v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1006.0292">arXiv:1006.0292</a> <span> [<a href="https://arxiv.org/pdf/1006.0292">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OL.35.003417">10.1364/OL.35.003417 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Materials processing with tightly focused femtosecond vortex laser beams </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hnatovsky%2C+C">Cyril Hnatovsky</a>, <a href="/search/physics?searchtype=author&query=Shvedov%2C+V+G">Vladlen G. Shvedov</a>, <a href="/search/physics?searchtype=author&query=Krolikowski%2C+W">Wieslaw Krolikowski</a>, <a href="/search/physics?searchtype=author&query=Rode%2C+A+V">Andrei V. Rode</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1006.0292v1-abstract-short" style="display: inline;"> This letter is the first demonstration of material modification using tightly focused femtosecond laser vortex beams. Double-charge femtosecond vortices were synthesized with the polarization-singularity beam converter described in Ref [1] and then focused using moderate and high numerical aperture optics (viz., NA = 0.45 and 0.9) to ablate fused silica and soda-lime glasses. By controlling the pu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1006.0292v1-abstract-full').style.display = 'inline'; document.getElementById('1006.0292v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1006.0292v1-abstract-full" style="display: none;"> This letter is the first demonstration of material modification using tightly focused femtosecond laser vortex beams. Double-charge femtosecond vortices were synthesized with the polarization-singularity beam converter described in Ref [1] and then focused using moderate and high numerical aperture optics (viz., NA = 0.45 and 0.9) to ablate fused silica and soda-lime glasses. By controlling the pulse energy we consistently machine high-quality micron-size ring-shaped structures with less than 100 nm uniform groove thickness. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1006.0292v1-abstract-full').style.display = 'none'; document.getElementById('1006.0292v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 June, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures, 10 references; submitted to Appl. Phys. Lett. on May 31, 2010</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1006.0100">arXiv:1006.0100</a> <span> [<a href="https://arxiv.org/pdf/1006.0100">pdf</a>, <a href="https://arxiv.org/format/1006.0100">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Materials processing with a tightly focused femtosecond vortex laser pulse </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hnatovsky%2C+C">Cyril Hnatovsky</a>, <a href="/search/physics?searchtype=author&query=Shvedov%2C+V+G">Vladlen G. Shvedov</a>, <a href="/search/physics?searchtype=author&query=Krolikowski%2C+W">Wieslaw Krolikowski</a>, <a href="/search/physics?searchtype=author&query=Rode%2C+A+V">Andrei V. Rode</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1006.0100v1-abstract-short" style="display: inline;"> This letter is the first demonstration of material modification using tightly focused femtosecond laser vortex beams. Double-charge femtosecond vortices were synthesized with the polarization-singularity beam converter described in Ref [1] and then focused using moderate and high numerical aperture optics (viz., NA = 0.45 and 0.9) to ablate fused silica and soda-lime glasses. By controlling the pu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1006.0100v1-abstract-full').style.display = 'inline'; document.getElementById('1006.0100v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1006.0100v1-abstract-full" style="display: none;"> This letter is the first demonstration of material modification using tightly focused femtosecond laser vortex beams. Double-charge femtosecond vortices were synthesized with the polarization-singularity beam converter described in Ref [1] and then focused using moderate and high numerical aperture optics (viz., NA = 0.45 and 0.9) to ablate fused silica and soda-lime glasses. By controlling the pulse energy we consistently machine high-quality micron-size ring-shaped structures with less than 100 nm uniform groove thickness. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1006.0100v1-abstract-full').style.display = 'none'; document.getElementById('1006.0100v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures, 10 references; submitted to Apl. Phys. Lett. 31 May 2010</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1005.1470">arXiv:1005.1470</a> <span> [<a href="https://arxiv.org/pdf/1005.1470">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OL.35.002660">10.1364/OL.35.002660 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Efficient Beam Converter for the Generation of Femtosecond Vortices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shvedov%2C+V+G">Vladlen G. Shvedov</a>, <a href="/search/physics?searchtype=author&query=Hnatovsky%2C+C">Cyril Hnatovsky</a>, <a href="/search/physics?searchtype=author&query=Krolikowski%2C+W">Wieslaw Krolikowski</a>, <a href="/search/physics?searchtype=author&query=Rode%2C+A+V">Andrei V. Rode</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1005.1470v1-abstract-short" style="display: inline;"> We describe an optical beam converter for an efficient transformation of Gaussian femtosecond laser beams to single- or double-charge vortex beams showing no spatial or topological charge dispersion. The device achieves a conversion efficiency of 75% for single- and 50% for double-charge vortex beams and can operate with high energy broad bandwidth pulses. We also show that the topological charge… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1005.1470v1-abstract-full').style.display = 'inline'; document.getElementById('1005.1470v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1005.1470v1-abstract-full" style="display: none;"> We describe an optical beam converter for an efficient transformation of Gaussian femtosecond laser beams to single- or double-charge vortex beams showing no spatial or topological charge dispersion. The device achieves a conversion efficiency of 75% for single- and 50% for double-charge vortex beams and can operate with high energy broad bandwidth pulses. We also show that the topological charge of a femtosecond vortex beam can be determined by analyzing its intensity distribution in the focal area of a cylindrical lens. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1005.1470v1-abstract-full').style.display = 'none'; document.getElementById('1005.1470v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures, submitted to Optics Letters 10 March 2010</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0910.2150">arXiv:0910.2150</a> <span> [<a href="https://arxiv.org/pdf/0910.2150">pdf</a>, <a href="https://arxiv.org/format/0910.2150">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Is the ultra-fast transformation of bismuth non-thermal? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Gamaly%2C+E+G">E. G. Gamaly</a>, <a href="/search/physics?searchtype=author&query=Rode%2C+A+V">A. V. Rode</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0910.2150v1-abstract-short" style="display: inline;"> Transient state of femtosecond laser excited bismuth has been studied by various groups with time-resolved optical, x-ray, and electron probes at the deposited energy density from below through up to several times the equilibrium enthalpy of melting. However, the interpretations of the experimental results are controversial: the optical probes reveal the absence of transition to the melting phas… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0910.2150v1-abstract-full').style.display = 'inline'; document.getElementById('0910.2150v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0910.2150v1-abstract-full" style="display: none;"> Transient state of femtosecond laser excited bismuth has been studied by various groups with time-resolved optical, x-ray, and electron probes at the deposited energy density from below through up to several times the equilibrium enthalpy of melting. However, the interpretations of the experimental results are controversial: the optical probes reveal the absence of transition to the melting phase while the authors of x-ray and electron diffraction experiments claim the observation of ultrafast non-thermal melting. The presented analysis, based on temperature dependence of bismuth optical properties, unequivocally shows a purely thermal nature of all the observed fs-laser induced transformations in bismuth. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0910.2150v1-abstract-full').style.display = 'none'; document.getElementById('0910.2150v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 6 figures, to be presented at the Conference on Laser Ablation COLA'2009, Singapore, 21-26 November 2009</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0902.1205">arXiv:0902.1205</a> <span> [<a href="https://arxiv.org/pdf/0902.1205">pdf</a>, <a href="https://arxiv.org/ps/0902.1205">ps</a>, <a href="https://arxiv.org/format/0902.1205">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.17.005743">10.1364/OE.17.005743 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optical guiding of absorbing nanoclusters in air </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shvedov%2C+V+G">Vladlen G. Shvedov</a>, <a href="/search/physics?searchtype=author&query=Desyatnikov%2C+A+S">Anton S. Desyatnikov</a>, <a href="/search/physics?searchtype=author&query=Rode%2C+A+V">Andrei V. Rode</a>, <a href="/search/physics?searchtype=author&query=Krolikowski%2C+W+Z">Wieslaw Z. Krolikowski</a>, <a href="/search/physics?searchtype=author&query=Kivshar%2C+Y+S">Yuri S. Kivshar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0902.1205v1-abstract-short" style="display: inline;"> We introduce a novel approach for all-optical trapping and manipulation of absorbing aerosol particles based on a photophoretic force. We demonstrate experimentally, in open air, the robust three-dimensional guiding of agglomerates of carbon nanoparticles with the size spanned for two orders of magnitude, from 100 nanometers to 10 microns, over the distances of a few millimeters, as well as thei… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0902.1205v1-abstract-full').style.display = 'inline'; document.getElementById('0902.1205v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0902.1205v1-abstract-full" style="display: none;"> We introduce a novel approach for all-optical trapping and manipulation of absorbing aerosol particles based on a photophoretic force. We demonstrate experimentally, in open air, the robust three-dimensional guiding of agglomerates of carbon nanoparticles with the size spanned for two orders of magnitude, from 100 nanometers to 10 microns, over the distances of a few millimeters, as well as their acceleration up to velocities of 1 cm/s and simultaneous trapping of a large number of particles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0902.1205v1-abstract-full').style.display = 'none'; document.getElementById('0902.1205v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages including 8 figures. First presented at SPIE Conference 7038 on Optical Trapping and Optical Micromanipulation V, San Diego, USA, 13 August 2008, paper 7038-69</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/0311010">arXiv:physics/0311010</a> <span> [<a href="https://arxiv.org/pdf/physics/0311010">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.70.054108">10.1103/PhysRevB.70.054108 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gallium transformation under femtosecond laser excitation: Phase coexistence and incomplete melting </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Uteza%2C+O+P">O. P. Uteza</a>, <a href="/search/physics?searchtype=author&query=Gamaly%2C+E+G">E. G. Gamaly</a>, <a href="/search/physics?searchtype=author&query=Rode%2C+A+V">A. V. Rode</a>, <a href="/search/physics?searchtype=author&query=Samoc%2C+M">M. Samoc</a>, <a href="/search/physics?searchtype=author&query=Luther-Davies%2C+B">B. Luther-Davies</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/0311010v1-abstract-short" style="display: inline;"> The reversible phase transition induced by femtosecond laser excitation of Gallium has been studied by measuring the dielectric function at 775 nm with ~ 200 fs temporal resolution. The real and imaginary parts of the transient dielectric function were calculated from absolute reflectivity of Gallium layer measured at two different angles of incidence, using Fresnel formulas. The time-dependent… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0311010v1-abstract-full').style.display = 'inline'; document.getElementById('physics/0311010v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/0311010v1-abstract-full" style="display: none;"> The reversible phase transition induced by femtosecond laser excitation of Gallium has been studied by measuring the dielectric function at 775 nm with ~ 200 fs temporal resolution. The real and imaginary parts of the transient dielectric function were calculated from absolute reflectivity of Gallium layer measured at two different angles of incidence, using Fresnel formulas. The time-dependent electron-phonon effective collision frequency, the heat conduction coefficient and the volume fraction of a new phase were restored directly from the experimental data, and the time and space dependent electron and lattice temperatures in the layer undergoing phase transition were reconstructed without ad hoc assumptions. We converted the temporal dependence of the electron-phonon collision rate into the temperature dependence, and demonstrated, for the first time, that the electron-phonon collision rate has a non-linear character. This temperature dependence converges into the known equilibrium function during the cooling stage. The maximum fraction of a new phase in the laser-excited Gallium layer reached only 60% even when the deposited energy was two times the equilibrium enthalpy of melting. We have also demonstrated that the phase transition pace and a fraction of the transformed material depended strongly on the thickness of the laser-excited Gallium layer, which was of the order of several tens of nanometers for the whole range of the pump laser fluencies up to the damage threshold. The kinetics of the phase transformation after the laser excitation can be understood on the basis of the classical theory of the first-order phase transition while the duration of non-thermal stage appears to be comparable to the sub-picosecond pulse length. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0311010v1-abstract-full').style.display = 'none'; document.getElementById('physics/0311010v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2003; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2003. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, including 9 figs. Submitted to Phys. Rev. B 14 March 2003</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/0102046">arXiv:physics/0102046</a> <span> [<a href="https://arxiv.org/pdf/physics/0102046">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.1447555">10.1063/1.1447555 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Gamaly%2C+E+G">E. G. Gamaly</a>, <a href="/search/physics?searchtype=author&query=Rode%2C+A+V">A. V. Rode</a>, <a href="/search/physics?searchtype=author&query=Tikhonchuk%2C+V+T">V. T. Tikhonchuk</a>, <a href="/search/physics?searchtype=author&query=Luther-Davies%2C+B">B. Luther-Davies</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/0102046v1-abstract-short" style="display: inline;"> The mechanism of ablation of solids by intense femtosecond laser pulses is described in an explicit analytical form. It is shown that at high intensities when the ionization of the target material is complete before the end of the pulse, the ablation mechanism is the same for both metals and dielectrics. The physics of this new ablation regime involves ion acceleration in the electrostatic field… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0102046v1-abstract-full').style.display = 'inline'; document.getElementById('physics/0102046v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/0102046v1-abstract-full" style="display: none;"> The mechanism of ablation of solids by intense femtosecond laser pulses is described in an explicit analytical form. It is shown that at high intensities when the ionization of the target material is complete before the end of the pulse, the ablation mechanism is the same for both metals and dielectrics. The physics of this new ablation regime involves ion acceleration in the electrostatic field caused by charge separation created by energetic electrons escaping from the target. The formulae for ablation thresholds and ablation rates for metals and dielectrics, combining the laser and target parameters, are derived and compared to experimental data. The calculated dependence of the ablation thresholds on the pulse duration is in agreement with the experimental data in a femtosecond range, and it is linked to the dependence for nanosecond pulses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0102046v1-abstract-full').style.display = 'none'; document.getElementById('physics/0102046v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2001; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2001. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages incl.3 figs; presented at CLEO-Europe'2000 11-15 Sept.2000; papers QMD6 and CTuK114</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>