CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–17 of 17 results for author: <span class="mathjax">Seniutinas, G</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Seniutinas%2C+G">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Seniutinas, G"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Seniutinas%2C+G&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Seniutinas, G"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.14237">arXiv:2403.14237</a> <span> [<a href="https://arxiv.org/pdf/2403.14237">pdf</a>, <a href="https://arxiv.org/format/2403.14237">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Bessel-beam direct-write of the etch-mask in a nano-film of alumina for high-efficiency Si solar cells </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Katkus%2C+T">Tomas Katkus</a>, <a href="/search/physics?searchtype=author&query=Ng%2C+S+H">Soon Hock Ng</a>, <a href="/search/physics?searchtype=author&query=Mu%2C+H">Haoran Mu</a>, <a href="/search/physics?searchtype=author&query=Le%2C+N+H+A">Nguyen Hoai An Le</a>, <a href="/search/physics?searchtype=author&query=Stonyte%2C+D">Dominyka Stonyte</a>, <a href="/search/physics?searchtype=author&query=Khajehsaeidimahabadi%2C+Z">Zahra Khajehsaeidimahabadi</a>, <a href="/search/physics?searchtype=author&query=Seniutinas%2C+G">Gediminas Seniutinas</a>, <a href="/search/physics?searchtype=author&query=Baltrukonis%2C+J">Justas Baltrukonis</a>, <a href="/search/physics?searchtype=author&query=Ulcinas%2C+O">Orestas Ulcinas</a>, <a href="/search/physics?searchtype=author&query=Mikutis%2C+M">Mindaugas Mikutis</a>, <a href="/search/physics?searchtype=author&query=Sabonis%2C+V">Vytautas Sabonis</a>, <a href="/search/physics?searchtype=author&query=Nishijima%2C+Y">Yoshiaki Nishijima</a>, <a href="/search/physics?searchtype=author&query=Rienacker%2C+M">Michael Rienacker</a>, <a href="/search/physics?searchtype=author&query=Krugener%2C+J">Jan Krugener</a>, <a href="/search/physics?searchtype=author&query=Peibst%2C+R">Robby Peibst</a>, <a href="/search/physics?searchtype=author&query=John%2C+S">Sajeev John</a>, <a href="/search/physics?searchtype=author&query=Juodkazis%2C+S">Saulius Juodkazis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.14237v1-abstract-short" style="display: inline;"> Large surface area applications such as high-efficiency > 26% solar cells require surface patterning with 1-10 micrometers periodic patterns at high fidelity over 1-10 cm^2 areas (before up scaling to 1 m^2) to perform at, or exceed, the Lambertian (ray optics) limit of light trapping. Here we show a pathway to high-resolution sub-1 micrometer etch mask patterning by ablation using direct femtosec… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.14237v1-abstract-full').style.display = 'inline'; document.getElementById('2403.14237v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.14237v1-abstract-full" style="display: none;"> Large surface area applications such as high-efficiency > 26% solar cells require surface patterning with 1-10 micrometers periodic patterns at high fidelity over 1-10 cm^2 areas (before up scaling to 1 m^2) to perform at, or exceed, the Lambertian (ray optics) limit of light trapping. Here we show a pathway to high-resolution sub-1 micrometer etch mask patterning by ablation using direct femtosecond laser writing performed at room conditions (without the need for a vacuum-based lithography approach). A Bessel beam was used to alleviate the required high surface tracking tolerance for ablation of 0.3-0.8 micrometer diameter holes in ~40 nm alumina Al2O3-mask at high writing speed, 7.5 cm/s; a patterning rate 1 cm^2 per 20 min. The plasma etching protocol was optimised for a zero-mesa formation of photonic crystal (PhC) trapping structures and smooth surfaces at the nanoscale level. Scaling up in area and throughput of the demonstrated approach is outlined. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.14237v1-abstract-full').style.display = 'none'; document.getElementById('2403.14237v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures and 8 figures in appendix</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.15407">arXiv:2112.15407</a> <span> [<a href="https://arxiv.org/pdf/2112.15407">pdf</a>, <a href="https://arxiv.org/format/2112.15407">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Beyond Lambertian light trapping for large-area silicon solar cells: fabrication methods </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Maksimovic%2C+J">Jovan Maksimovic</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J">Jingwen Hu</a>, <a href="/search/physics?searchtype=author&query=Ng%2C+S+H">Soon Hock Ng</a>, <a href="/search/physics?searchtype=author&query=Katkus%2C+T">Tomas Katkus</a>, <a href="/search/physics?searchtype=author&query=Seniutinas%2C+G">Gediminas Seniutinas</a>, <a href="/search/physics?searchtype=author&query=Rivera%2C+T+P">Tatiana Pinedo Rivera</a>, <a href="/search/physics?searchtype=author&query=Stuiber%2C+M">Michael Stuiber</a>, <a href="/search/physics?searchtype=author&query=Nishijima%2C+Y">Yoshiaki Nishijima</a>, <a href="/search/physics?searchtype=author&query=John%2C+S">Sajeev John</a>, <a href="/search/physics?searchtype=author&query=Juodkazis%2C+S">Saulius Juodkazis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.15407v1-abstract-short" style="display: inline;"> Light trapping photonic crystal (PhC) patterns on the surface of Si solar cells provides a novel opportunity to approach the theoretical efficiency limit of 32.3%, for light-to-electrical power conversion with a single junction cell. This is beyond the efficiency limit implied by the Lambertian limit of ray trapping 29%. The interference and slow light effects are harnessed for collecting light ev… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.15407v1-abstract-full').style.display = 'inline'; document.getElementById('2112.15407v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.15407v1-abstract-full" style="display: none;"> Light trapping photonic crystal (PhC) patterns on the surface of Si solar cells provides a novel opportunity to approach the theoretical efficiency limit of 32.3%, for light-to-electrical power conversion with a single junction cell. This is beyond the efficiency limit implied by the Lambertian limit of ray trapping 29%. The interference and slow light effects are harnessed for collecting light even at the long wavelengths near the Si band-gap. We compare two different methods for surface patterning, that can be extended to large area surface patterning: 1) laser direct write and 2) step-&-repeat 5-times reduction projection lithography. Large area throughput limitations of these methods are compared with the established electron beam lithography (EBL) route, which is conventionally utilised but much slower than the presented methods. Spectral characterisation of the PhC light trapping is compared for samples fabricated by different methods. Reflectance of Si etched via laser patterned mask was 7% at visible wavelengths and was comparable with Si patterned via EBL made mask. The later pattern showed a stronger absorbance than the Lambertian limit (M.-L. Hsieh et al., Sci. Rep. 10, 11857 (2020)). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.15407v1-abstract-full').style.display = 'none'; document.getElementById('2112.15407v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.01030">arXiv:2104.01030</a> <span> [<a href="https://arxiv.org/pdf/2104.01030">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41566-021-00797-9">10.1038/s41566-021-00797-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hard X-ray Transient Grating Spectroscopy on Bismuth Germanate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Rouxel%2C+J+R">Jeremy R. Rouxel</a>, <a href="/search/physics?searchtype=author&query=Fainozzi%2C+D">Danny Fainozzi</a>, <a href="/search/physics?searchtype=author&query=Mankowsky%2C+R">Roman Mankowsky</a>, <a href="/search/physics?searchtype=author&query=Rosner%2C+B">Benedikt Rosner</a>, <a href="/search/physics?searchtype=author&query=Seniutinas%2C+G">Gediminas Seniutinas</a>, <a href="/search/physics?searchtype=author&query=Mincigrucci%2C+R">Riccardo Mincigrucci</a>, <a href="/search/physics?searchtype=author&query=Catalini%2C+S">Sara Catalini</a>, <a href="/search/physics?searchtype=author&query=Foglia%2C+L">Laura Foglia</a>, <a href="/search/physics?searchtype=author&query=Cucini%2C+R">Riccardo Cucini</a>, <a href="/search/physics?searchtype=author&query=Doring%2C+F">Florian Doring</a>, <a href="/search/physics?searchtype=author&query=Kubec%2C+A">Adam Kubec</a>, <a href="/search/physics?searchtype=author&query=Koch%2C+F">Frieder Koch</a>, <a href="/search/physics?searchtype=author&query=Bencivenga%2C+F">Filippo Bencivenga</a>, <a href="/search/physics?searchtype=author&query=Haddad%2C+A+A">Andre Al Haddad</a>, <a href="/search/physics?searchtype=author&query=Gessini%2C+A">Alessandro Gessini</a>, <a href="/search/physics?searchtype=author&query=Maznev%2C+A+A">Alexei A. Maznev</a>, <a href="/search/physics?searchtype=author&query=Cirelli%2C+C">Claudio Cirelli</a>, <a href="/search/physics?searchtype=author&query=Gerber%2C+S">Simon Gerber</a>, <a href="/search/physics?searchtype=author&query=Pedrini%2C+B">Bill Pedrini</a>, <a href="/search/physics?searchtype=author&query=Mancini%2C+G+F">Giulia F. Mancini</a>, <a href="/search/physics?searchtype=author&query=Razzoli%2C+E">Elia Razzoli</a>, <a href="/search/physics?searchtype=author&query=Burian%2C+M">Max Burian</a>, <a href="/search/physics?searchtype=author&query=Ueda%2C+H">Hiroki Ueda</a>, <a href="/search/physics?searchtype=author&query=Pamfilidis%2C+G">Georgios Pamfilidis</a>, <a href="/search/physics?searchtype=author&query=Ferrari%2C+E">Eugenio Ferrari</a> , et al. (22 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.01030v1-abstract-short" style="display: inline;"> Optical-domain Transient Grating (TG) spectroscopy is a versatile background-free four-wave-mixing technique used to probe vibrational, magnetic and electronic degrees of freedom in the time domain. The newly developed coherent X-ray Free Electron Laser sources allow its extension to the X-ray regime. Xrays offer multiple advantages for TG: their large penetration depth allows probing the bulk pro… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.01030v1-abstract-full').style.display = 'inline'; document.getElementById('2104.01030v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.01030v1-abstract-full" style="display: none;"> Optical-domain Transient Grating (TG) spectroscopy is a versatile background-free four-wave-mixing technique used to probe vibrational, magnetic and electronic degrees of freedom in the time domain. The newly developed coherent X-ray Free Electron Laser sources allow its extension to the X-ray regime. Xrays offer multiple advantages for TG: their large penetration depth allows probing the bulk properties of materials, their element-specificity can address core-excited states, and their short wavelengths create excitation gratings with unprecedented momentum transfer and spatial resolution. We demonstrate for the first time TG excitation in the hard X-ray range at 7.1 keV. In Bismuth Germanate (BGO), the nonresonant TG excitation generates coherent optical phonons detected as a function of time by diffraction of an optical probe pulse. This experiment demonstrates the ability to probe bulk properties of materials and paves the way for ultrafast coherent four-wave-mixing techniques using X-ray probes and involving nanoscale TG spatial periods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.01030v1-abstract-full').style.display = 'none'; document.getElementById('2104.01030v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.14654">arXiv:2005.14654</a> <span> [<a href="https://arxiv.org/pdf/2005.14654">pdf</a>, <a href="https://arxiv.org/format/2005.14654">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> All femtosecond optical pump and X-ray probe: holey-axicon for free electron laser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Anand%2C+V">V. Anand</a>, <a href="/search/physics?searchtype=author&query=Maksimovic%2C+J">J. Maksimovic</a>, <a href="/search/physics?searchtype=author&query=Katkus%2C+T">T. Katkus</a>, <a href="/search/physics?searchtype=author&query=Ng%2C+S+H">S. H. Ng</a>, <a href="/search/physics?searchtype=author&query=Ulcinas%2C+O">O. Ulcinas</a>, <a href="/search/physics?searchtype=author&query=Mikutis%2C+M">M. Mikutis</a>, <a href="/search/physics?searchtype=author&query=Baltrukonis%2C+J">J. Baltrukonis</a>, <a href="/search/physics?searchtype=author&query=Urbas%2C+A">A. Urbas</a>, <a href="/search/physics?searchtype=author&query=Slekys%2C+G">G. Slekys</a>, <a href="/search/physics?searchtype=author&query=Ogura%2C+H">H. Ogura</a>, <a href="/search/physics?searchtype=author&query=Sagae%2C+D">D. Sagae</a>, <a href="/search/physics?searchtype=author&query=Pikuz%2C+T">T. Pikuz</a>, <a href="/search/physics?searchtype=author&query=Somekawa%2C+T">T. Somekawa</a>, <a href="/search/physics?searchtype=author&query=Ozaki%2C+N">N. Ozaki</a>, <a href="/search/physics?searchtype=author&query=Vailionis%2C+A">A. Vailionis</a>, <a href="/search/physics?searchtype=author&query=Seniutinas%2C+G">G. Seniutinas</a>, <a href="/search/physics?searchtype=author&query=Mizeikis%2C+V">V. Mizeikis</a>, <a href="/search/physics?searchtype=author&query=Glazebrook%2C+K">K. Glazebrook</a>, <a href="/search/physics?searchtype=author&query=Brodie%2C+J+P">J. P. Brodie</a>, <a href="/search/physics?searchtype=author&query=Stoddart%2C+P+R">P. R. Stoddart</a>, <a href="/search/physics?searchtype=author&query=Rapp%2C+L">L. Rapp</a>, <a href="/search/physics?searchtype=author&query=Rode%2C+A+V">A. V. Rode</a>, <a href="/search/physics?searchtype=author&query=Gamaly%2C+E+G">E. G. Gamaly</a>, <a href="/search/physics?searchtype=author&query=Juodkazis%2C+S">S. Juodkazis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.14654v1-abstract-short" style="display: inline;"> We put forward a co-axial pump(optical)-probe(X-rays) experimental concept and show performance of the optical component. A Bessel beam generator with a central 100 micrometers-diameter hole (on the optical axis) was fabricated using femtosecond (fs) laser structuring inside a silica plate. This flat-axicon optical element produces a needle-like axial intensity distribution which can be used for t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.14654v1-abstract-full').style.display = 'inline'; document.getElementById('2005.14654v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.14654v1-abstract-full" style="display: none;"> We put forward a co-axial pump(optical)-probe(X-rays) experimental concept and show performance of the optical component. A Bessel beam generator with a central 100 micrometers-diameter hole (on the optical axis) was fabricated using femtosecond (fs) laser structuring inside a silica plate. This flat-axicon optical element produces a needle-like axial intensity distribution which can be used for the optical pump pulse. The fs-X-ray free electron laser (X-FEL) beam of sub-1 micrometer diameter can be introduced through the central hole along the optical axis onto a target as a probe. Different realisations of optical pump are discussed. Such optical elements facilitate alignment of ultra-short fs-pulses in space and time and can be used in light-matter interaction experiments at extreme energy densities on the surface and in the volume of targets. Full advantage of ultra-short 10 fs X-FEL probe pulses with fs-pump(optical) opens an unexplored temporal dimension of phase transitions and the fastest laser-induced rates of material heating and quenching. A wider field of applications of fs-laser-enabled structuring of materials and design of specific optical elements for astrophotonics is presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.14654v1-abstract-full').style.display = 'none'; document.getElementById('2005.14654v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.10080">arXiv:2003.10080</a> <span> [<a href="https://arxiv.org/pdf/2003.10080">pdf</a>, <a href="https://arxiv.org/format/2003.10080">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Lithography-free Kirchhoff's Metasurfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Kumagai%2C+T">Takuhiro Kumagai</a>, <a href="/search/physics?searchtype=author&query=To%2C+N">Naoki To</a>, <a href="/search/physics?searchtype=author&query=Balcytis%2C+A">Armandas Balcytis</a>, <a href="/search/physics?searchtype=author&query=Seniutinas%2C+G">Gediminas Seniutinas</a>, <a href="/search/physics?searchtype=author&query=Juodkazis%2C+S">Saulius Juodkazis</a>, <a href="/search/physics?searchtype=author&query=Nishijima%2C+Y">Yoshiaki Nishijima</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.10080v1-abstract-short" style="display: inline;"> Lithography-free metasurfaces composed of a nano-layered stack of materials are attractive not only due to their optical properties but also by virtue of fabrication simplicity and cost reduction of devices based on such structures. We demonstrate a multi-layer metasurface with engineered electromagnetic absorption in the mid-infrared (MIR) wavelength range. Characterisation of thin SiO$_2$ and Si… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.10080v1-abstract-full').style.display = 'inline'; document.getElementById('2003.10080v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.10080v1-abstract-full" style="display: none;"> Lithography-free metasurfaces composed of a nano-layered stack of materials are attractive not only due to their optical properties but also by virtue of fabrication simplicity and cost reduction of devices based on such structures. We demonstrate a multi-layer metasurface with engineered electromagnetic absorption in the mid-infrared (MIR) wavelength range. Characterisation of thin SiO$_2$ and Si films sandwiched between two Au layers by way of experimental absorption and thermal radiation measurements as well as finite difference time domain (FDTD) numerical simulations is presented. Comparison of experimental and simulation data of optical properties of multilayer metasurfaces show guidelines for the absorber/emitter applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.10080v1-abstract-full').style.display = 'none'; document.getElementById('2003.10080v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.09629">arXiv:2001.09629</a> <span> [<a href="https://arxiv.org/pdf/2001.09629">pdf</a>, <a href="https://arxiv.org/format/2001.09629">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Optimal architecture for diamond-based wide-field thermal imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tanos%2C+R">R. Tanos</a>, <a href="/search/physics?searchtype=author&query=Akhtar%2C+W">W. Akhtar</a>, <a href="/search/physics?searchtype=author&query=Monneret%2C+S">S. Monneret</a>, <a href="/search/physics?searchtype=author&query=de+Oliveira%2C+F+F">F. Favaro de Oliveira</a>, <a href="/search/physics?searchtype=author&query=Seniutinas%2C+G">G. Seniutinas</a>, <a href="/search/physics?searchtype=author&query=Munsch%2C+M">M. Munsch</a>, <a href="/search/physics?searchtype=author&query=Maletinsky%2C+P">P. Maletinsky</a>, <a href="/search/physics?searchtype=author&query=Gratiet%2C+L+l">L. le Gratiet</a>, <a href="/search/physics?searchtype=author&query=Sagnes%2C+I">I. Sagnes</a>, <a href="/search/physics?searchtype=author&query=Dr%C3%A9au%2C+A">A. Dr茅au</a>, <a href="/search/physics?searchtype=author&query=Gergely%2C+C">C. Gergely</a>, <a href="/search/physics?searchtype=author&query=Jacques%2C+V">V. Jacques</a>, <a href="/search/physics?searchtype=author&query=Baffou%2C+G">G. Baffou</a>, <a href="/search/physics?searchtype=author&query=Robert-Philip%2C+I">I. Robert-Philip</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.09629v1-abstract-short" style="display: inline;"> Nitrogen-Vacancy centers in diamond possess an electronic spin resonance that strongly depends on temperature, which makes them efficient temperature sensor with a sensitivity down to a few mK/$\sqrt{\rm Hz}$. However, the high thermal conductivity of the host diamond may strongly damp any temperature variations, leading to invasive measurements when probing local temperature distributions. In vie… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.09629v1-abstract-full').style.display = 'inline'; document.getElementById('2001.09629v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.09629v1-abstract-full" style="display: none;"> Nitrogen-Vacancy centers in diamond possess an electronic spin resonance that strongly depends on temperature, which makes them efficient temperature sensor with a sensitivity down to a few mK/$\sqrt{\rm Hz}$. However, the high thermal conductivity of the host diamond may strongly damp any temperature variations, leading to invasive measurements when probing local temperature distributions. In view of determining possible and optimal configurations for diamond-based wide-field thermal imaging, we here investigate, both experimentally and numerically, the effect of the presence of diamond on microscale temperature distributions. Three geometrical configurations are studied: a bulk diamond substrate, a thin diamond layer bonded on quartz and diamond nanoparticles dispersed on quartz. We show that the use of bulk diamond substrates for thermal imaging is highly invasive, in the sense that it prevents any substantial temperature increase. Conversely, thin diamond layers partly solve this issue and could provide a possible alternative for microscale thermal imaging. Dispersions of diamond nanoparticles throughout the sample appear as the most relevant approach as they do not affect the temperature distribution, although NV centers in nanodiamonds yield lower temperature sensitivities compared to bulk diamond. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.09629v1-abstract-full').style.display = 'none'; document.getElementById('2001.09629v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.08462">arXiv:1807.08462</a> <span> [<a href="https://arxiv.org/pdf/1807.08462">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Beyond 100 nm Resolution in 3D Laser Lithography: Post Processing Solutions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Seniutinas%2C+G">G. Seniutinas</a>, <a href="/search/physics?searchtype=author&query=Weber%2C+A">A. Weber</a>, <a href="/search/physics?searchtype=author&query=Padeste%2C+C">C. Padeste</a>, <a href="/search/physics?searchtype=author&query=Sakellari%2C+I">I. Sakellari</a>, <a href="/search/physics?searchtype=author&query=Farsari%2C+M">M. Farsari</a>, <a href="/search/physics?searchtype=author&query=David%2C+C">C. David</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.08462v1-abstract-short" style="display: inline;"> Laser polymerization has emerged as a direct writing technique allowing the fabrication of complex 3D structures with microscale resolution. The technique provides rapid prototyping capabilities for a broad range of applications, but to meet the growing interest in 3D nanoscale structures the resolution limits need to be pushed beyond the 100 nm benchmark, which is challenging in practical impleme… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.08462v1-abstract-full').style.display = 'inline'; document.getElementById('1807.08462v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.08462v1-abstract-full" style="display: none;"> Laser polymerization has emerged as a direct writing technique allowing the fabrication of complex 3D structures with microscale resolution. The technique provides rapid prototyping capabilities for a broad range of applications, but to meet the growing interest in 3D nanoscale structures the resolution limits need to be pushed beyond the 100 nm benchmark, which is challenging in practical implementations. As a possible path towards this goal, a post processing of laser polymerized structures is presented. Precise control of the cross-sectional dimensions of structural elements as well as tuning of an overall size of the entire 3D structure was achieved by combining isotropic plasma etching and pyrolysis. The smallest obtainable feature sizes are mostly limited by the mechanical properties of the polymerized resist and the geometry of 3D structure. Thus the demonstrated post processing steps open new avenues to explore free form 3D structures at the nanoscale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.08462v1-abstract-full').style.display = 'none'; document.getElementById('1807.08462v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.04726">arXiv:1805.04726</a> <span> [<a href="https://arxiv.org/pdf/1805.04726">pdf</a>, <a href="https://arxiv.org/format/1805.04726">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Kirchhoff's metasurfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Nishijima%2C+Y">Yoshiaki Nishijima</a>, <a href="/search/physics?searchtype=author&query=Balcytis%2C+A">Armandas Balcytis</a>, <a href="/search/physics?searchtype=author&query=Naganuma%2C+S">Shin Naganuma</a>, <a href="/search/physics?searchtype=author&query=Seniutinas%2C+G">Gediminas Seniutinas</a>, <a href="/search/physics?searchtype=author&query=Juodkazis%2C+S">Saulius Juodkazis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.04726v1-abstract-short" style="display: inline;"> Thermo-optical properties of the nanodisc and metal hole array plasmonic perfect absorber (PPA) metasurfaces were designed and characterised at midinfrared wavelengths. Both, light emitter and detector systems are highly thought after for the future sensor networks in the internet-of-things for various spectral domains. Reciprocity of the absorbance and emittance is shown experimentally, i.e., the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.04726v1-abstract-full').style.display = 'inline'; document.getElementById('1805.04726v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.04726v1-abstract-full" style="display: none;"> Thermo-optical properties of the nanodisc and metal hole array plasmonic perfect absorber (PPA) metasurfaces were designed and characterised at midinfrared wavelengths. Both, light emitter and detector systems are highly thought after for the future sensor networks in the internet-of-things for various spectral domains. Reciprocity of the absorbance and emittance is shown experimentally, i.e., the PPAs are following Kirchhoff's law where the patterns exhibiting a strong optical absorption were found enhanced thermal radiation. Design principles and scaling for photo-thermal conversion are discussed. The highest efficiency of light-to-heat and heat-to-radiation were obtained for the Au-Si-Au structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.04726v1-abstract-full').style.display = 'none'; document.getElementById('1805.04726v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.02130">arXiv:1804.02130</a> <span> [<a href="https://arxiv.org/pdf/1804.02130">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Single crystal diamond membranes containing germanium vacancy color centers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Bray%2C+K">Kerem Bray</a>, <a href="/search/physics?searchtype=author&query=Regan%2C+B">Blake Regan</a>, <a href="/search/physics?searchtype=author&query=Trycz%2C+A">Aleksandra Trycz</a>, <a href="/search/physics?searchtype=author&query=Previdi%2C+R">Rodolfo Previdi</a>, <a href="/search/physics?searchtype=author&query=Seniutinas%2C+G">Gediminas Seniutinas</a>, <a href="/search/physics?searchtype=author&query=Ganesan%2C+K">Kumaravelu Ganesan</a>, <a href="/search/physics?searchtype=author&query=Kianinia%2C+M">Mehran Kianinia</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+S">Sejeong Kim</a>, <a href="/search/physics?searchtype=author&query=Aharonovich%2C+I">Igor Aharonovich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.02130v1-abstract-short" style="display: inline;"> Single crystal diamond membranes that host optically active emitters are highly attractive components for integrated quantum nanophotonics. In this work we demonstrate bottom-up synthesis of single crystal diamond membranes containing the germanium vacancy (GeV) color centers. We employ a lift-off technique to generate the membranes and perform chemical vapour deposition in a presence of germanium… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.02130v1-abstract-full').style.display = 'inline'; document.getElementById('1804.02130v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.02130v1-abstract-full" style="display: none;"> Single crystal diamond membranes that host optically active emitters are highly attractive components for integrated quantum nanophotonics. In this work we demonstrate bottom-up synthesis of single crystal diamond membranes containing the germanium vacancy (GeV) color centers. We employ a lift-off technique to generate the membranes and perform chemical vapour deposition in a presence of germanium oxide to realize the insitu doping. Finally, we show that these membranes are suitable for engineering of photonic resonators such as microring cavities with quality factors of 1500. The robust and scalable approach to engineer single crystal diamond membranes containing emerging color centers is a promising pathway for realization of diamond integrated quantum nanophotonic circuits on a chip. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.02130v1-abstract-full').style.display = 'none'; document.getElementById('1804.02130v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.11083">arXiv:1711.11083</a> <span> [<a href="https://arxiv.org/pdf/1711.11083">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OL.42.004327">10.1364/OL.42.004327 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tunable kinoform x-ray beam splitter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lebugle%2C+M">Maxime Lebugle</a>, <a href="/search/physics?searchtype=author&query=Seniutinas%2C+G">Gediminas Seniutinas</a>, <a href="/search/physics?searchtype=author&query=Marschall%2C+F">Felix Marschall</a>, <a href="/search/physics?searchtype=author&query=Guzenko%2C+V+A">Vitaliy A. Guzenko</a>, <a href="/search/physics?searchtype=author&query=Grolimund%2C+D">Daniel Grolimund</a>, <a href="/search/physics?searchtype=author&query=David%2C+C">Christian David</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.11083v1-abstract-short" style="display: inline;"> We demonstrate an x-ray beam splitter with high performances for multi-kilo-electron-volt photons. The device is based on diffraction on kinoform structures, which overcome the limitations of binary diffraction gratings. This beam splitter achieves a dynamical splitting ratio in the range 0-99.1% by tilting the optics and is tunable, here shown in a photon energy range of 7.2-19 keV. High diffract… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.11083v1-abstract-full').style.display = 'inline'; document.getElementById('1711.11083v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.11083v1-abstract-full" style="display: none;"> We demonstrate an x-ray beam splitter with high performances for multi-kilo-electron-volt photons. The device is based on diffraction on kinoform structures, which overcome the limitations of binary diffraction gratings. This beam splitter achieves a dynamical splitting ratio in the range 0-99.1% by tilting the optics and is tunable, here shown in a photon energy range of 7.2-19 keV. High diffraction efficiency of 62.6% together with an extinction ratio of 0.6% is demonstrated at 12.4 keV, with angular separation for the split beam of 0.5 mrad. This device can find applications in beam monitoring at synchrotrons, at x-ray free electron lasers for online diagnostics and beamline multiplexing and, possibly, as key elements for delay lines or ultrashort x-ray pulses manipulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.11083v1-abstract-full').style.display = 'none'; document.getElementById('1711.11083v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optics Letters, 42(21), 4327-4330 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1706.05517">arXiv:1706.05517</a> <span> [<a href="https://arxiv.org/pdf/1706.05517">pdf</a>, <a href="https://arxiv.org/format/1706.05517">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.25.024081">10.1364/OE.25.024081 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optical readout of hydrogen storage in films of Au and Pd </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Nishijima%2C+Y">Yoshiaki Nishijima</a>, <a href="/search/physics?searchtype=author&query=Shimizu%2C+S">Shogo Shimizu</a>, <a href="/search/physics?searchtype=author&query=Kurihara%2C+K">Keisuke Kurihara</a>, <a href="/search/physics?searchtype=author&query=Hashimoto%2C+Y">Yoshikazu Hashimoto</a>, <a href="/search/physics?searchtype=author&query=Takahashi%2C+H">Hajime Takahashi</a>, <a href="/search/physics?searchtype=author&query=Balcytis%2C+A">Armandas Balcytis</a>, <a href="/search/physics?searchtype=author&query=Seniutinas%2C+G">Gediminas Seniutinas</a>, <a href="/search/physics?searchtype=author&query=Okazaki%2C+S">Shinji Okazaki</a>, <a href="/search/physics?searchtype=author&query=Juodkazyte%2C+J">Jurga Juodkazyte</a>, <a href="/search/physics?searchtype=author&query=Iwasa%2C+T">Takeshi Iwasa</a>, <a href="/search/physics?searchtype=author&query=Taketsugu%2C+T">Tetsuya Taketsugu</a>, <a href="/search/physics?searchtype=author&query=Tominaga%2C+Y">Yoriko Tominaga</a>, <a href="/search/physics?searchtype=author&query=Juodkazis%2C+S">Saulius Juodkazis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1706.05517v1-abstract-short" style="display: inline;"> For hydrogen sensor and storage applications, films of Au and Pd were (i) co-sputtered at different rates or (ii) deposited in a sequential layer-by-layer fashion on a cover glass. Peculiarities of hydrogen uptake and release were optically monitored using 1.3 micrometers wavelength light. Increase of optical transmission was observed for hydrogenated Pd-rich films of 10-30 nm thickness. Up to a t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.05517v1-abstract-full').style.display = 'inline'; document.getElementById('1706.05517v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1706.05517v1-abstract-full" style="display: none;"> For hydrogen sensor and storage applications, films of Au and Pd were (i) co-sputtered at different rates or (ii) deposited in a sequential layer-by-layer fashion on a cover glass. Peculiarities of hydrogen uptake and release were optically monitored using 1.3 micrometers wavelength light. Increase of optical transmission was observed for hydrogenated Pd-rich films of 10-30 nm thickness. Up to a three times slower hydrogen release took place as compared with the hydrogen uptake. Composition ratio of Au:Pd and thermal treatment of films provided control over the optical extinction changes and hydrogen uptake/release time constants. Higher uptake and release rates were observed in the annealed Au:Pd films as compared to those deposited at room temperature and were faster for the Au-richer films. Three main parameters relevant for sensors: sensitivity, selectivity, stability (reproducibility) are discussed together with the hydrogenation mechanism in Au:Pd alloys. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.05517v1-abstract-full').style.display = 'none'; document.getElementById('1706.05517v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.04108">arXiv:1608.04108</a> <span> [<a href="https://arxiv.org/pdf/1608.04108">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Engineering and localization of quantum emitters in large hexagonal boron nitride layers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Choi%2C+S">Sumin Choi</a>, <a href="/search/physics?searchtype=author&query=Tran%2C+T+T">Toan Trong Tran</a>, <a href="/search/physics?searchtype=author&query=ElBadawi%2C+C">Christopher ElBadawi</a>, <a href="/search/physics?searchtype=author&query=Lobo%2C+C">Charlene Lobo</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xuewen Wang</a>, <a href="/search/physics?searchtype=author&query=Juodkazis%2C+S">Saulius Juodkazis</a>, <a href="/search/physics?searchtype=author&query=Seniutinas%2C+G">Gediminas Seniutinas</a>, <a href="/search/physics?searchtype=author&query=Toth%2C+M">Milos Toth</a>, <a href="/search/physics?searchtype=author&query=Aharonovich%2C+I">Igor Aharonovich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.04108v1-abstract-short" style="display: inline;"> Hexagonal boron nitride (hBN) is a wide bandgap van der Waals material that has recently emerged as promising platform for quantum photonics experiments. In this work we study the formation and localization of narrowband quantum emitters in large flakes (up to tens of microns wide) of hBN. The emitters can be activated in as-grown hBN by electron irradiation or high temperature annealing, and the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.04108v1-abstract-full').style.display = 'inline'; document.getElementById('1608.04108v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.04108v1-abstract-full" style="display: none;"> Hexagonal boron nitride (hBN) is a wide bandgap van der Waals material that has recently emerged as promising platform for quantum photonics experiments. In this work we study the formation and localization of narrowband quantum emitters in large flakes (up to tens of microns wide) of hBN. The emitters can be activated in as-grown hBN by electron irradiation or high temperature annealing, and the emitter formation probability can be increased by ion implantation or focused laser irradiation of the as-grown material. Interestingly, we show that the emitters are always localized at edges of the flakes, unlike most luminescent point defects in 3D materials. Our results constitute an important step on the road map of deploying hBN in nanophotonics applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.04108v1-abstract-full').style.display = 'none'; document.getElementById('1608.04108v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1605.04493">arXiv:1605.04493</a> <span> [<a href="https://arxiv.org/pdf/1605.04493">pdf</a>, <a href="https://arxiv.org/format/1605.04493">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Laser structuring for control of coupling between THz light and phonon modes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+X+W">X. W. Wang</a>, <a href="/search/physics?searchtype=author&query=Seniutinas%2C+G">G. Seniutinas</a>, <a href="/search/physics?searchtype=author&query=Balcytis%2C+A">A. Balcytis</a>, <a href="/search/physics?searchtype=author&query=Kasalynas%2C+I">I. Kasalynas</a>, <a href="/search/physics?searchtype=author&query=Jakstas%2C+V">V. Jakstas</a>, <a href="/search/physics?searchtype=author&query=Janonis%2C+V">V. Janonis</a>, <a href="/search/physics?searchtype=author&query=Venckevicius%2C+R">R. Venckevicius</a>, <a href="/search/physics?searchtype=author&query=Buividas%2C+R">R. Buividas</a>, <a href="/search/physics?searchtype=author&query=Appadoo%2C+D">D. Appadoo</a>, <a href="/search/physics?searchtype=author&query=Valusis%2C+G">G. Valusis</a>, <a href="/search/physics?searchtype=author&query=Juodkazis%2C+S">S. Juodkazis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1605.04493v1-abstract-short" style="display: inline;"> Modification of surface and volume of sapphire is shown to affect reflected and transmitted light at THz spectral range. Structural modifications were made using ultra-short 230 fs laser pulses at 1030 nm and 257.5 nm wavelengths forming surface ripples of ~250 nm and 60 nm period, respectively. Softening of the transverse optical phonon TO1 mode due to disorder was the most pronounced in reflecti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.04493v1-abstract-full').style.display = 'inline'; document.getElementById('1605.04493v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1605.04493v1-abstract-full" style="display: none;"> Modification of surface and volume of sapphire is shown to affect reflected and transmitted light at THz spectral range. Structural modifications were made using ultra-short 230 fs laser pulses at 1030 nm and 257.5 nm wavelengths forming surface ripples of ~250 nm and 60 nm period, respectively. Softening of the transverse optical phonon TO1 mode due to disorder was the most pronounced in reflection from laser ablated surface. It is shown that sub-surface periodic patterns of laser damage sites have also modified reflection spectrum due to coupling of THz radiation with phonons. Application potential of laser structuring and disordering for phononic engineering is discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.04493v1-abstract-full').style.display = 'none'; document.getElementById('1605.04493v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2016. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1604.01426">arXiv:1604.01426</a> <span> [<a href="https://arxiv.org/pdf/1604.01426">pdf</a>, <a href="https://arxiv.org/ps/1604.01426">ps</a>, <a href="https://arxiv.org/format/1604.01426">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> UV-photoelectric effect for augmented contrast and resolution in electron microscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Seniutinas%2C+G">Gediminas Seniutinas</a>, <a href="/search/physics?searchtype=author&query=Balcytis%2C+A">Armandas Balcytis</a>, <a href="/search/physics?searchtype=author&query=Juodkazis%2C+S">Saulius Juodkazis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1604.01426v1-abstract-short" style="display: inline;"> A new tool providing material contrast control in scanning electron microscopy (SEM) is demonstrated. The approach is based on deep-UV illumination during SEM imaging and delivers a novel material based contrast as well as higher resolution due to the photoelectric effect. Electrons liberated from illuminated sample surface contribute to the imaging which can be carried out at a faster acquisition… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.01426v1-abstract-full').style.display = 'inline'; document.getElementById('1604.01426v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1604.01426v1-abstract-full" style="display: none;"> A new tool providing material contrast control in scanning electron microscopy (SEM) is demonstrated. The approach is based on deep-UV illumination during SEM imaging and delivers a novel material based contrast as well as higher resolution due to the photoelectric effect. Electrons liberated from illuminated sample surface contribute to the imaging which can be carried out at a faster acquisition rate, provide material selective contrast, reduce distortions caused by surface charging, and can substitute metal coating in SEM. These features provide high fidelity SEM imaging and are expected to significantly improve the performance of electron beam instruments as well as to open new opportunities for imaging and characterization of materials at the nanoscale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.01426v1-abstract-full').style.display = 'none'; document.getElementById('1604.01426v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2016. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1604.01094">arXiv:1604.01094</a> <span> [<a href="https://arxiv.org/pdf/1604.01094">pdf</a>, <a href="https://arxiv.org/format/1604.01094">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Solar water splitting: efficiency discussion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Juodkazyte%2C+J">Jurga Juodkazyte</a>, <a href="/search/physics?searchtype=author&query=Seniutinas%2C+G">Gediminas Seniutinas</a>, <a href="/search/physics?searchtype=author&query=Sebeka%2C+B">Benjaminas Sebeka</a>, <a href="/search/physics?searchtype=author&query=Savickaja%2C+I">Irena Savickaja</a>, <a href="/search/physics?searchtype=author&query=Malinauskas%2C+T">Tadas Malinauskas</a>, <a href="/search/physics?searchtype=author&query=Badokas%2C+K">Kazimieras Badokas</a>, <a href="/search/physics?searchtype=author&query=Juodkazis%2C+K">Kestutis Juodkazis</a>, <a href="/search/physics?searchtype=author&query=Juodkazis%2C+S">Saulius Juodkazis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1604.01094v1-abstract-short" style="display: inline;"> The current state of the art in direct water splitting in photo-electrochemical cells (PECs) is presented together with: (i) a case study of water splitting using a simple solar cell with the most efficient water splitting electrodes and (ii) a detailed mechanism analysis. Detailed analysis of the energy balance and efficiency of solar hydrogen production are presented. The role of hydrogen peroxi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.01094v1-abstract-full').style.display = 'inline'; document.getElementById('1604.01094v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1604.01094v1-abstract-full" style="display: none;"> The current state of the art in direct water splitting in photo-electrochemical cells (PECs) is presented together with: (i) a case study of water splitting using a simple solar cell with the most efficient water splitting electrodes and (ii) a detailed mechanism analysis. Detailed analysis of the energy balance and efficiency of solar hydrogen production are presented. The role of hydrogen peroxide formation as an intermediate in oxygen evolution reaction is newly revealed and explains why an oxygen evolution is not taking place at the thermodynamically expected 1.23 V potential. Solar hydrogen production with electrical-to-hydrogen conversion efficiency of 52% is demonstrated using a simple ~0.7%-efficient n-Si/Ni Schottky solar cell connected to a water electrolysis cell. This case study shows that separation of the processes of solar harvesting and electrolysis avoids photo-electrode corrosion and utilizes optimal electrodes for hydrogen and oxygen evolution reactions and achieves ~10% efficiency in light-to-hydrogen conversion with a standard 18% efficient household roof Si-solar cells. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.01094v1-abstract-full').style.display = 'none'; document.getElementById('1604.01094v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2016. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.08197">arXiv:1603.08197</a> <span> [<a href="https://arxiv.org/pdf/1603.08197">pdf</a>, <a href="https://arxiv.org/ps/1603.08197">ps</a>, <a href="https://arxiv.org/format/1603.08197">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Percolation threshold gold films on columnar coatings: characterisation for SERS applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Balcytis%2C+A">Armandas Balcytis</a>, <a href="/search/physics?searchtype=author&query=Tolenis%2C+T">Tomas Tolenis</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xuewen Wang</a>, <a href="/search/physics?searchtype=author&query=Seniutinas%2C+G">Gediminas Seniutinas</a>, <a href="/search/physics?searchtype=author&query=Drazdys%2C+R">Ramutis Drazdys</a>, <a href="/search/physics?searchtype=author&query=Stoddart%2C+P+R">Paul R. Stoddart</a>, <a href="/search/physics?searchtype=author&query=Juodkazis%2C+S">Saulius Juodkazis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.08197v1-abstract-short" style="display: inline;"> Percolation of gold films of ~15 nm thickness was controlled to achieve the largest openings during Au deposition. Gold was evaporated on 300-nm-thick films of nanostructured porous and columnar SiO2, TiO2 and MgF2 which were deposited by controlling the angle, rotation speed during film formation and ambient pressure. The gold films were tested for SERS performance using thiophenol reporter molec… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.08197v1-abstract-full').style.display = 'inline'; document.getElementById('1603.08197v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.08197v1-abstract-full" style="display: none;"> Percolation of gold films of ~15 nm thickness was controlled to achieve the largest openings during Au deposition. Gold was evaporated on 300-nm-thick films of nanostructured porous and columnar SiO2, TiO2 and MgF2 which were deposited by controlling the angle, rotation speed during film formation and ambient pressure. The gold films were tested for SERS performance using thiophenol reporter molecules which form a stable self-assembled monolayer on gold. The phase retardation of these SERS substrates was up to 5% for wavelengths in the visible spectral range, as measured by Stokes polarimetry. The SERS intensity on gold percolation films can reach 10^3 counts/(mW.s) for tight focusing in air, while back-side excitation through the substrate has shown the presence of an additional SERS enhancement via the Fresnel near-field mechanism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.08197v1-abstract-full').style.display = 'none'; document.getElementById('1603.08197v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1510.01887">arXiv:1510.01887</a> <span> [<a href="https://arxiv.org/pdf/1510.01887">pdf</a>, <a href="https://arxiv.org/ps/1510.01887">ps</a>, <a href="https://arxiv.org/format/1510.01887">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OL.40.005711">10.1364/OL.40.005711 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Photoluminescence from voids created by femtosecond laser pulses inside cubic-BN </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Buividas%2C+R">R. Buividas</a>, <a href="/search/physics?searchtype=author&query=Aharonovich%2C+I">I. Aharonovich</a>, <a href="/search/physics?searchtype=author&query=Seniutinas%2C+G">G. Seniutinas</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X+W">X. W. Wang</a>, <a href="/search/physics?searchtype=author&query=Rapp%2C+L">L. Rapp</a>, <a href="/search/physics?searchtype=author&query=Rode%2C+A+V">A. V. Rode</a>, <a href="/search/physics?searchtype=author&query=Taniguchi%2C+T">T. Taniguchi</a>, <a href="/search/physics?searchtype=author&query=Juodkazis%2C+S">S. Juodkazis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1510.01887v1-abstract-short" style="display: inline;"> Photoluminescence (PL) from femtosecond laser modified regions inside cubic-boron nitride (c-BN) was measured under UV and visible light excitation. Bright PL at the red spectral range was observed, with a typical excited state lifetime of $\sim 4$~ns. Sharp emission lines are consistent with PL of intrinsic vibronic defects linked to the nitrogen vacancy formation (via Frenkel pair) observed earl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.01887v1-abstract-full').style.display = 'inline'; document.getElementById('1510.01887v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1510.01887v1-abstract-full" style="display: none;"> Photoluminescence (PL) from femtosecond laser modified regions inside cubic-boron nitride (c-BN) was measured under UV and visible light excitation. Bright PL at the red spectral range was observed, with a typical excited state lifetime of $\sim 4$~ns. Sharp emission lines are consistent with PL of intrinsic vibronic defects linked to the nitrogen vacancy formation (via Frenkel pair) observed earlier in high energy electron irradiated and ion-implanted c-BN. These, formerly known as the radiation centers, RC1, RC2, and RC3 have been identified at the locus of the voids formed by single fs-laser pulse. The method is promising to engineer color centers in c-BN for photonic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.01887v1-abstract-full').style.display = 'none'; document.getElementById('1510.01887v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>