CINXE.COM
Search results for: experimental testing
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: experimental testing</title> <meta name="description" content="Search results for: experimental testing"> <meta name="keywords" content="experimental testing"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="experimental testing" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="experimental testing"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9831</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: experimental testing</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9831</span> Open Jet Testing for Buoyant and Hybrid Buoyant Aerial Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20U.%20Haque">A. U. Haque</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Asrar"> W. Asrar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Omar"> A. A. Omar</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Sulaeman"> E. Sulaeman</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20S%20Mohamed%20Ali"> J. S Mohamed Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Open jet testing is a valuable testing technique which provides the desired results with reasonable accuracy. It has been used in past for the airships and now has recently been applied for the hybrid ones, having more non-buoyant force coming from the wings, empennage and the fuselage. In the present review work, an effort has been done to review the challenges involved in open jet testing. In order to shed light on the application of this technique, the experimental results of two different configurations are presented. Although, the aerodynamic results of such vehicles are unique to its own design; however, it will provide a starting point for planning any future testing. Few important testing areas which need more attention are also highlighted. Most of the hybrid buoyant aerial vehicles are unconventional in shape and there experimental data is generated, which is unique to its own design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=open%20jet%20testing" title="open jet testing">open jet testing</a>, <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title=" aerodynamics"> aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20buoyant%20aerial%20vehicles" title=" hybrid buoyant aerial vehicles"> hybrid buoyant aerial vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=airships" title=" airships"> airships</a> </p> <a href="https://publications.waset.org/abstracts/41141/open-jet-testing-for-buoyant-and-hybrid-buoyant-aerial-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41141.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">572</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9830</span> Development of a New Device for Bending Fatigue Testing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Mokhtarnia">B. Mokhtarnia</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Layeghi"> M. Layeghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presented an original bending fatigue-testing setup for fatigue characterization of composite materials. A three-point quasi-static setup was introduced that was capable of applying stress control load in different loading waveforms, frequencies, and stress ratios. This setup was equipped with computerized measuring instruments to evaluate fatigue damage mechanisms. A detailed description of its different parts and working features was given, and dynamic analysis was done to verify the functional accuracy of the device. Feasibility was validated successfully by conducting experimental fatigue tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bending%20fatigue" title="bending fatigue">bending fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=quasi-static%20testing%20setup" title=" quasi-static testing setup"> quasi-static testing setup</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20fatigue%20testing" title=" experimental fatigue testing"> experimental fatigue testing</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a> </p> <a href="https://publications.waset.org/abstracts/165432/development-of-a-new-device-for-bending-fatigue-testing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165432.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9829</span> Automated Java Testing: JUnit versus AspectJ</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manish%20Jain">Manish Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Dinesh%20Gopalani"> Dinesh Gopalani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Growing dependency of mankind on software technology increases the need for thorough testing of the software applications and automated testing techniques that support testing activities. We have outlined our testing strategy for performing various types of automated testing of Java applications using AspectJ which has become the de-facto standard for Aspect Oriented Programming (AOP). Likewise JUnit, a unit testing framework is the most popular Java testing tool. In this paper, we have evaluated our proposed AOP approach for automated testing and JUnit on various parameters. First we have provided the similarity between the two approaches and then we have done a detailed comparison of the two testing techniques on factors like lines of testing code, learning curve, testing of private members etc. We established that our AOP testing approach using AspectJ has got several advantages and is thus particularly more effective than JUnit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aspect%20oriented%20programming" title="aspect oriented programming">aspect oriented programming</a>, <a href="https://publications.waset.org/abstracts/search?q=AspectJ" title=" AspectJ"> AspectJ</a>, <a href="https://publications.waset.org/abstracts/search?q=aspects" title=" aspects"> aspects</a>, <a href="https://publications.waset.org/abstracts/search?q=JU-nit" title=" JU-nit"> JU-nit</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20testing" title=" software testing"> software testing</a> </p> <a href="https://publications.waset.org/abstracts/82341/automated-java-testing-junit-versus-aspectj" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82341.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9828</span> Time Effective Structural Frequency Response Testing with Oblique Impact</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khoo%20Shin%20Yee">Khoo Shin Yee</a>, <a href="https://publications.waset.org/abstracts/search?q=Lian%20Yee%20Cheng"> Lian Yee Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Ong%20Zhi%20Chao"> Ong Zhi Chao</a>, <a href="https://publications.waset.org/abstracts/search?q=Zubaidah%20Ismail"> Zubaidah Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Siamak%20Noroozi"> Siamak Noroozi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structural frequency response testing is accurate in identifying the dynamic characteristic of a machinery structure. In practical perspective, conventional structural frequency response testing such as experimental modal analysis with impulse technique (also known as “impulse testing”) has limitation especially on its long acquisition time. The high acquisition time is mainly due to the redundancy procedure where the engineer has to repeatedly perform the test in 3 directions, namely the axial-, horizontal- and vertical-axis, in order to comprehensively define the dynamic behavior of a 3D structure. This is unfavorable to numerous industries where the downtime cost is high. This study proposes to reduce the testing time by using oblique impact. Theoretically, a single oblique impact can induce significant vibration responses and vibration modes in all the 3 directions. Hence, the acquisition time with the implementation of the oblique impulse technique can be reduced by a factor of three (i.e. for a 3D dynamic system). This study initiates an experimental investigation of impulse testing with oblique excitation. A motor-driven test rig has been used for the testing purpose. Its dynamic characteristic has been identified using the impulse testing with the conventional normal impact and the proposed oblique impact respectively. The results show that the proposed oblique impulse testing is able to obtain all the desired natural frequencies in all 3 directions and thus providing a feasible solution for a fast and time effective way of conducting the impulse testing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frequency%20response%20function" title="frequency response function">frequency response function</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20testing" title=" impact testing"> impact testing</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20analysis" title=" modal analysis"> modal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=oblique%20angle" title=" oblique angle"> oblique angle</a>, <a href="https://publications.waset.org/abstracts/search?q=oblique%20impact" title=" oblique impact"> oblique impact</a> </p> <a href="https://publications.waset.org/abstracts/90683/time-effective-structural-frequency-response-testing-with-oblique-impact" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">501</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9827</span> Cancellation of Transducer Effects from Frequency Response Functions: Experimental Case Study on the Steel Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Zamani">P. Zamani</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Taleshi%20Anbouhi"> A. Taleshi Anbouhi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Ashory"> M. R. Ashory</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mohajerzadeh"> S. Mohajerzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Khatibi"> M. M. Khatibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modal analysis is a developing science in the experimental evaluation of dynamic properties of the structures. Mechanical devices such as accelerometers are one of the sources of lack of quality in measuring modal testing parameters. In this paper, eliminating the accelerometer’s mass effect of the frequency response of the structure is studied. So, a strategy is used for eliminating the mass effect by using sensitivity analysis. In this method, the amount of mass change and the place to measure the structure’s response with least error in frequency correction is chosen. Experimental modal testing is carried out on a steel plate and the effect of accelerometer’s mass is omitted using this strategy. Finally, a good agreement is achieved between numerical and experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accelerometer%20mass" title="accelerometer mass">accelerometer mass</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20response%20function" title=" frequency response function"> frequency response function</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20analysis" title=" modal analysis"> modal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity%20analysis" title=" sensitivity analysis"> sensitivity analysis</a> </p> <a href="https://publications.waset.org/abstracts/29375/cancellation-of-transducer-effects-from-frequency-response-functions-experimental-case-study-on-the-steel-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29375.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9826</span> Experimental Modal Analysis of Reinforced Concrete Square Slabs </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Ahmed">M. S. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20A.%20Mohammad"> F. A. Mohammad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to perform experimental modal analysis (EMA) of reinforced concrete (RC) square slabs. EMA is the process of determining the modal parameters (Natural Frequencies, damping factors, modal vectors) of a structure from a set of frequency response functions FRFs (curve fitting). Although experimental modal analysis (or modal testing) has grown steadily in popularity since the advent of the digital FFT spectrum analyzer in the early 1970’s, studying all members and materials using such method have not yet been well documented. Therefore, in this work, experimental tests were conducted on RC square specimens (0.6m x 0.6m with 40 mm). Experimental analysis is based on freely supported boundary condition. Moreover, impact testing as a fast and economical means of finding the modes of vibration of a structure was used during the experiments. In addition, Pico Scope 6 device and MATLAB software were used to acquire data, analyze and plot Frequency Response Function (FRF). The experimental natural frequencies which were extracted from measurements exhibit good agreement with analytical predictions. It is showed that EMA method can be usefully employed to perform the dynamic behavior of RC slabs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20frequencies" title="natural frequencies">natural frequencies</a>, <a href="https://publications.waset.org/abstracts/search?q=mode%20shapes" title=" mode shapes"> mode shapes</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20analysis" title=" modal analysis"> modal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20slabs" title=" RC slabs"> RC slabs</a> </p> <a href="https://publications.waset.org/abstracts/16946/experimental-modal-analysis-of-reinforced-concrete-square-slabs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9825</span> Analyzing the Effectiveness of Different Testing Techniques in Ensuring Software Quality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20M.%20P.%20C.%20Bandara">R. M. P. C. Bandara</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20L.%20L.%20Weerasinghe"> M. L. L. Weerasinghe</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20T.%20C.%20R.%20Kumari"> K. T. C. R. Kumari</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20G.%20D.%20R.%20Hansika"> A. G. D. R. Hansika</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20I.%20De%20Silva"> D. I. De Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20M.%20T.%20H.%20Dias"> D. M. T. H. Dias</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Software testing is an essential process in software development that aims to identify defects and ensure that software is functioning as intended. Various testing techniques are employed to achieve this goal, but the effectiveness of these techniques varies. This research paper analyzes the effectiveness of different testing techniques in ensuring software quality. The paper explores different testing techniques, including manual and automated testing, and evaluates their effectiveness in terms of identifying defects, reducing the number of defects in software, and ensuring that software meets its functional and non-functional requirements. Moreover, the paper will also investigate the impact of factors such as testing time, test coverage, and testing environment on the effectiveness of these techniques. This research aims to provide valuable insights into the effectiveness of different testing techniques, enabling software development teams to make informed decisions about the testing approach that is best suited to their needs. By improving testing techniques, the number of defects in software can be reduced, enhancing the quality of software and ultimately providing better software for users. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=software%20testing%20life%20cycle" title="software testing life cycle">software testing life cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20testing%20techniques" title=" software testing techniques"> software testing techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20testing%20strategies" title=" software testing strategies"> software testing strategies</a>, <a href="https://publications.waset.org/abstracts/search?q=effectiveness" title=" effectiveness"> effectiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20quality" title=" software quality"> software quality</a> </p> <a href="https://publications.waset.org/abstracts/166772/analyzing-the-effectiveness-of-different-testing-techniques-in-ensuring-software-quality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9824</span> A Comparative Study of Three Major Performance Testing Tools</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulaziz%20Omar%20Alsadhan">Abdulaziz Omar Alsadhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Mudasir%20Shafi"> Mohd Mudasir Shafi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Performance testing is done to prove the reliability of any software product. There are a number of tools available in the markets that are used to perform performance testing. In this paper we present a comparative study of the three most commonly used performance testing tools. These tools cover the major share of the performance testing market and are widely used. In this paper we compared the tools on five evaluation parameters which are; User friendliness, portability, tool support, compatibility and cost. The conclusion provided at the end of the paper is based on our study and does not support any tool or company. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=software%20development" title="software development">software development</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20testing" title=" software testing"> software testing</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20assurance" title=" quality assurance"> quality assurance</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20testing" title=" performance testing"> performance testing</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20runner" title=" load runner"> load runner</a>, <a href="https://publications.waset.org/abstracts/search?q=rational%20testing" title=" rational testing"> rational testing</a>, <a href="https://publications.waset.org/abstracts/search?q=silk%20performer" title=" silk performer"> silk performer</a> </p> <a href="https://publications.waset.org/abstracts/4106/a-comparative-study-of-three-major-performance-testing-tools" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4106.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">608</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9823</span> Experimental and Numerical Analysis of Mustafa Paşa Mosque in Skopje</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ozden%20Saygili">Ozden Saygili</a>, <a href="https://publications.waset.org/abstracts/search?q=Eser%20Cakti"> Eser Cakti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The masonry building stock in Istanbul and in other cities of Turkey are exposed to significant earthquake hazard. Determination of the safety of masonry structures against earthquakes is a complex challenge. This study deals with experimental tests and non-linear dynamic analysis of masonry structures modeled through discrete element method. The 1:10 scale model of Mustafa Paşa Mosque was constructed and the data were obtained from the sensors on it during its testing on the shake table. The results were used in the calibration/validation of the numerical model created on the basis of the 1:10 scale model built for shake table testing. 3D distinct element model was developed that represents the linear and nonlinear behavior of the shake table model as closely as possible during experimental tests. Results of numerical analyses with those from the experimental program were compared and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20analysis" title="dynamic analysis">dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20modeling" title=" non-linear modeling"> non-linear modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=shake%20table%20tests" title=" shake table tests"> shake table tests</a>, <a href="https://publications.waset.org/abstracts/search?q=masonry" title=" masonry"> masonry</a> </p> <a href="https://publications.waset.org/abstracts/30824/experimental-and-numerical-analysis-of-mustafa-pasa-mosque-in-skopje" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30824.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9822</span> Deployed Confidence: The Testing in Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shreya%20Asthana">Shreya Asthana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Testers know that the feature they tested on stage is working perfectly in production only after release went live. Sometimes something breaks in production and testers get to know through the end user’s bug raised. The panic mode starts when your staging test results do not reflect current production behavior. And you started doubting your testing skills when finally the user reported a bug to you. Testers can deploy their confidence on release day by testing on production. Once you start doing testing in production, you will see test result accuracy because it will be running on real time data and execution will be a little faster as compared to staging one due to elimination of bad data. Feature flagging, canary releases, and data cleanup can help to achieve this technique of testing. By this paper it will be easier to understand the steps to achieve production testing before making your feature live, and to modify IT company’s testing procedure, so testers can provide the bug free experience to the end users. This study is beneficial because too many people think that testing should be done in staging but not in production and now this is high time to pull out people from their old mindset of testing into a new testing world. At the end of the day, it all just matters if the features are working in production or not. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bug%20free%20production" title="bug free production">bug free production</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20testing%20mindset" title=" new testing mindset"> new testing mindset</a>, <a href="https://publications.waset.org/abstracts/search?q=testing%20strategy" title=" testing strategy"> testing strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=testing%20approach" title=" testing approach"> testing approach</a> </p> <a href="https://publications.waset.org/abstracts/176445/deployed-confidence-the-testing-in-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176445.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9821</span> Challenges in Experimental Testing of a Stiff, Overconsolidated Clay</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20Konstadinou">Maria Konstadinou</a>, <a href="https://publications.waset.org/abstracts/search?q=Etienne%20Alderlieste"> Etienne Alderlieste</a>, <a href="https://publications.waset.org/abstracts/search?q=Anderson%20Peccin%20da%20Silva"> Anderson Peccin da Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Ben%20Arntz"> Ben Arntz</a>, <a href="https://publications.waset.org/abstracts/search?q=Leonard%20van%20der%20Bijl"> Leonard van der Bijl</a>, <a href="https://publications.waset.org/abstracts/search?q=Wouter%20Verschueren"> Wouter Verschueren</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The shear strength and compression properties of stiff Boom clay from Belgium at the depth of about 30 m has been investigated by means of cone penetration and laboratory testing. The latter consisted of index classification, constant rate of strain, direct, simple shear, and unconfined compression tests. The Boom clay samples exhibited strong swelling tendencies. The suction pressure was measured via different procedures and has been compared to the expected in-situ stress. The undrained shear strength and OCR profile determined from CPTs is not compatible with the experimental measurements, which gave significantly lower values. The observed response can be attributed to the presence of pre-existing discontinuities, as shown in microscale CT scans of the samples. The results of this study demonstrate that the microstructure of the clay prior to testing has an impact on the mechanical behaviour and can cause inconsistencies in the comparison of the laboratory test results with in-situ data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boom%20clay" title="boom clay">boom clay</a>, <a href="https://publications.waset.org/abstracts/search?q=laboratory%20testing" title=" laboratory testing"> laboratory testing</a>, <a href="https://publications.waset.org/abstracts/search?q=overconsolidation%20ratio" title=" overconsolidation ratio"> overconsolidation ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=stress-strain%20response" title=" stress-strain response"> stress-strain response</a>, <a href="https://publications.waset.org/abstracts/search?q=swelling" title=" swelling"> swelling</a>, <a href="https://publications.waset.org/abstracts/search?q=undrained%20shear%20strength" title=" undrained shear strength"> undrained shear strength</a> </p> <a href="https://publications.waset.org/abstracts/144267/challenges-in-experimental-testing-of-a-stiff-overconsolidated-clay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144267.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9820</span> Determining the Most Efficient Test Available in Software Testing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qasim%20Zafar">Qasim Zafar</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthew%20Anderson"> Matthew Anderson</a>, <a href="https://publications.waset.org/abstracts/search?q=Esteban%20Garcia"> Esteban Garcia</a>, <a href="https://publications.waset.org/abstracts/search?q=Steven%20Drager"> Steven Drager</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Software failures can present an enormous detriment to people's lives and cost millions of dollars to repair when they are unexpectedly encountered in the wild. Despite a significant portion of the software development lifecycle and resources are dedicated to testing, software failures are a relatively frequent occurrence. Nevertheless, the evaluation of testing effectiveness remains at the forefront of ensuring high-quality software and software metrics play a critical role in providing valuable insights into quantifiable objectives to assess the level of assurance and confidence in the system. As the selection of appropriate metrics can be an arduous process, the goal of this paper is to shed light on the significance of software metrics by examining a range of testing techniques and metrics as well as identifying key areas for improvement. Additionally, through this investigation, readers will gain a deeper understanding of how metrics can help to drive informed decision-making on delivering high-quality software and facilitate continuous improvement in testing practices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=software%20testing" title="software testing">software testing</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20metrics" title=" software metrics"> software metrics</a>, <a href="https://publications.waset.org/abstracts/search?q=testing%20effectiveness" title=" testing effectiveness"> testing effectiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20box%20testing" title=" black box testing"> black box testing</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20testing" title=" random testing"> random testing</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20random%20testing" title=" adaptive random testing"> adaptive random testing</a>, <a href="https://publications.waset.org/abstracts/search?q=combinatorial%20testing" title=" combinatorial testing"> combinatorial testing</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzz%20testing" title=" fuzz testing"> fuzz testing</a>, <a href="https://publications.waset.org/abstracts/search?q=equivalence%20partition" title=" equivalence partition"> equivalence partition</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20value%20analysis" title=" boundary value analysis"> boundary value analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=white%20box%20testing" title=" white box testing"> white box testing</a> </p> <a href="https://publications.waset.org/abstracts/169666/determining-the-most-efficient-test-available-in-software-testing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169666.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9819</span> Investigating the Abolishment of Virginity Testing in South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nqobizwe%20Mvelo%20Ngema">Nqobizwe Mvelo Ngema</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper argues that the custom of virginity testing has been revived in order to combat against social ills such as unwanted pregnancies, immorality, promiscuity and the spread of HIV/AIDS. However, virginity testing is not free from challenges such as the belief that having sexual intercourse with a virgin can cure men from AIDS, virginity testing is not accurate because there is scientific evidence supporting the fact that there many ways of losing virginity other than sexual intercourse, for example, the usage of tampons and participation in physical activities may tear the hymen. South African parliament took some positive steps in combatting against harm associated with virginity testing by regulating it in the Children’s Act. It is argued, in this paper, that the abolition of virginity testing may lead to paper law and it would be premature to abolish virginity testing in South Africa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=equality%20rights" title="equality rights">equality rights</a>, <a href="https://publications.waset.org/abstracts/search?q=virginity%20testing" title=" virginity testing"> virginity testing</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20rights" title=" human rights"> human rights</a>, <a href="https://publications.waset.org/abstracts/search?q=interdisciplinary%20law%20and%20legal%20studies" title=" interdisciplinary law and legal studies "> interdisciplinary law and legal studies </a> </p> <a href="https://publications.waset.org/abstracts/25794/investigating-the-abolishment-of-virginity-testing-in-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">527</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9818</span> The Condition Testing of Damaged Plates Using Acoustic Features and Machine Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyle%20Saltmarsh">Kyle Saltmarsh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acoustic testing possesses many benefits due to its non-destructive nature and practicality. There hence exists many scenarios in which using acoustic testing for condition testing shows powerful feasibility. A wealth of information is contained within the acoustic and vibration characteristics of structures, allowing the development meaningful features for the classification of their respective condition. In this paper, methods, results, and discussions are presented on the use of non-destructive acoustic testing coupled with acoustic feature extraction and machine learning techniques for the condition testing of manufactured circular steel plates subjected to varied levels of damage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plates" title="plates">plates</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation" title=" deformation"> deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20features" title=" acoustic features"> acoustic features</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a> </p> <a href="https://publications.waset.org/abstracts/76911/the-condition-testing-of-damaged-plates-using-acoustic-features-and-machine-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76911.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9817</span> Experimental Characterization of Anisotropic Mechanical Properties of Textile Woven Fabric</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rym%20Zouari">Rym Zouari</a>, <a href="https://publications.waset.org/abstracts/search?q=Sami%20Ben%20Amar"> Sami Ben Amar</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelwaheb%20Dogui"> Abdelwaheb Dogui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an experimental characterization of the anisotropic mechanical behavior of 4 textile woven fabrics with different weaves (Twill 3, Plain, Twill4 and Satin 4) by off-axis tensile testing. These tests are applied according seven directions oriented by 15° increment with respect to the warp direction. Fixed and articulated jaws are used. Analysis of experimental results is done through global (Effort/Elongation curves) and local scales. Global anisotropy was studied from the Effort/Elongation curves: shape, breaking load (Frup), tensile elongation (EMT), tensile energy (WT) and linearity index (LT). Local anisotropy was studied from the measurement of strain tensor components in the central area of the specimen as a function of testing orientation and effort: longitudinal strain ɛL, transverse strain ɛT and shearing ɛLT. The effect of used jaws is also analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anisotropy" title="anisotropy">anisotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=off-axis%20tensile%20test" title=" off-axis tensile test"> off-axis tensile test</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20fields" title=" strain fields"> strain fields</a>, <a href="https://publications.waset.org/abstracts/search?q=textile%20woven%20fabric" title=" textile woven fabric"> textile woven fabric</a> </p> <a href="https://publications.waset.org/abstracts/42667/experimental-characterization-of-anisotropic-mechanical-properties-of-textile-woven-fabric" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42667.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9816</span> Seismic Assessment of a Pre-Cast Recycled Concrete Block Arch System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amaia%20Martinez%20Martinez">Amaia Martinez Martinez</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Turek"> Martin Turek</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Ventura"> Carlos Ventura</a>, <a href="https://publications.waset.org/abstracts/search?q=Jay%20Drew"> Jay Drew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to assess the seismic performance of arch and dome structural systems made from easy to assemble precast blocks of recycled concrete. These systems have been developed by Lock Block Ltd. Company from Vancouver, Canada, as an extension of their currently used retaining wall system. The characterization of the seismic behavior of these structures is performed by a combination of experimental static and dynamic testing, and analytical modeling. For the experimental testing, several tilt tests, as well as a program of shake table testing were undertaken using small scale arch models. A suite of earthquakes with different characteristics from important past events are chosen and scaled properly for the dynamic testing. Shake table testing applying the ground motions in just one direction (in the weak direction of the arch) and in the three directions were conducted and compared. The models were tested with increasing intensity until collapse occurred; which determines the failure level for each earthquake. Since the failure intensity varied with type of earthquake, a sensitivity analysis of the different parameters was performed, being impulses the dominant factor. For all cases, the arches exhibited the typical four-hinge failure mechanism, which was also shown in the analytical model. Experimental testing was also performed reinforcing the arches using a steel band over the structures anchored at both ends of the arch. The models were tested with different pretension levels. The bands were instrumented with strain gauges to measure the force produced by the shaking. These forces were used to develop engineering guidelines for the design of the reinforcement needed for these systems. In addition, an analytical discrete element model was created using 3DEC software. The blocks were designed as rigid blocks, assigning all the properties to the joints including also the contribution of the interlocking shear key between blocks. The model is calibrated to the experimental static tests and validated with the obtained results from the dynamic tests. Then the model can be used to scale up the results to the full scale structure and expanding it to different configurations and boundary conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arch" title="arch">arch</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20element%20model" title=" discrete element model"> discrete element model</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20assessment" title=" seismic assessment"> seismic assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=shake-table%20testing" title=" shake-table testing"> shake-table testing</a> </p> <a href="https://publications.waset.org/abstracts/42608/seismic-assessment-of-a-pre-cast-recycled-concrete-block-arch-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42608.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9815</span> Mobile Application Testing Matrix and Challenges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bakhtiar%20Amen">Bakhtiar Amen</a>, <a href="https://publications.waset.org/abstracts/search?q=Sardasht%20Mahmood"> Sardasht Mahmood</a>, <a href="https://publications.waset.org/abstracts/search?q=Joan%20Lu"> Joan Lu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The adoption of smartphones and the usages of mobile applications are increasing rapidly. Consequently, within limited time-range, mobile Internet usages have managed to take over the desktop usages particularly since the first smartphone-touched application released by iPhone in 2007. This paper is proposed to provide solution and answer the most demandable questions related to mobile application automated and manual testing limitations. Moreover, Mobile application testing requires agility and physically testing. Agile testing is to detect bugs through automated tools, whereas the compatibility testing is more to ensure that the apps operates on mobile OS (Operation Systems) as well as on the different real devices. Moreover, we have managed to answer automated or manual questions through two mobile application case studies MES (Mobile Exam System) and MLM (Mobile Lab Mate) by creating test scripts for both case studies and our experiment results have been discussed and evaluated on whether to adopt test on real devices or on emulators? In addition to this, we have introduced new mobile application testing matrix for the testers and some enterprises to obtain knowledge from. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mobile%20app%20testing" title="mobile app testing">mobile app testing</a>, <a href="https://publications.waset.org/abstracts/search?q=testing%20matrix" title=" testing matrix"> testing matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=automated" title=" automated"> automated</a>, <a href="https://publications.waset.org/abstracts/search?q=manual%20testing" title=" manual testing "> manual testing </a> </p> <a href="https://publications.waset.org/abstracts/23955/mobile-application-testing-matrix-and-challenges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23955.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9814</span> A New Approach for Assertions Processing during Assertion-Based Software Testing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20M.%20Alakeel">Ali M. Alakeel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Assertion-based software testing has been shown to be a promising tool for generating test cases that reveal program faults. Because the number of assertions may be very large for industry-size programs, one of the main concerns to the applicability of assertion-based testing is the amount of search time required to explore a large number of assertions. This paper presents a new approach for assertions exploration during the process of Assertion-Based software testing. Our initial exterminations with the proposed approach show that the performance of Assertion-Based testing may be improved, therefore, making this approach more efficient when applied on programs with large number of assertions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=software%20testing" title="software testing">software testing</a>, <a href="https://publications.waset.org/abstracts/search?q=assertion-based%20testing" title=" assertion-based testing"> assertion-based testing</a>, <a href="https://publications.waset.org/abstracts/search?q=program%20assertions" title=" program assertions"> program assertions</a>, <a href="https://publications.waset.org/abstracts/search?q=generating%20test" title=" generating test"> generating test</a> </p> <a href="https://publications.waset.org/abstracts/18643/a-new-approach-for-assertions-processing-during-assertion-based-software-testing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18643.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9813</span> Validating the Contract between Microservices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parveen%20Banu%20Ansari">Parveen Banu Ansari</a>, <a href="https://publications.waset.org/abstracts/search?q=Venkatraman%20Chinnappan"> Venkatraman Chinnappan</a>, <a href="https://publications.waset.org/abstracts/search?q=Paramasivam%20Shankar"> Paramasivam Shankar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Contract testing plays a pivotal role in the current landscape of microservices architecture. Testing microservices at the initial stages of development helps to identify and rectify issues before they escalate to higher levels, such as UI testing. By validating microservices through contract testing, you ensure the integration quality of APIs, enhancing the overall reliability and performance of the application. Contract testing, being a collaborative effort between testers and developers, ensures that the microservices adhere to the specified contracts or agreements. This proactive approach significantly reduces defects, streamlines the development process, and contributes to the overall efficiency and robustness of the application. In the dynamic and fast-paced world of digital applications, where microservices are the building blocks, embracing contract testing is indeed a strategic move for ensuring the quality and reliability of the entire system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=validation" title="validation">validation</a>, <a href="https://publications.waset.org/abstracts/search?q=testing" title=" testing"> testing</a>, <a href="https://publications.waset.org/abstracts/search?q=contract" title=" contract"> contract</a>, <a href="https://publications.waset.org/abstracts/search?q=agreement" title=" agreement"> agreement</a>, <a href="https://publications.waset.org/abstracts/search?q=microservices" title=" microservices"> microservices</a> </p> <a href="https://publications.waset.org/abstracts/180208/validating-the-contract-between-microservices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/180208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">57</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9812</span> Methodology for Various Sand Cone Testing </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abel%20S.%20Huaynacho">Abel S. Huaynacho</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoni%20D.%20Huaynacho"> Yoni D. Huaynacho </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The improvement of procedure test ASTM D1556, plays an important role in the developing of testing in field to obtain a higher quality of data QA/QC. The traditional process takes a considerable amount of time for only one test. Even making various testing are tasks repeating and it takes a long time to obtain better results. Moreover, if the adequate tools the help these testing are not properly managed, the improvement in the development for various testing could be stooped. This paper presents an optimized process for various testing ASTM D1556 which uses an initial standard process to another one the uses a simpler and improved management tools. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cone%20sand%20test" title="cone sand test">cone sand test</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20bulk" title=" density bulk"> density bulk</a>, <a href="https://publications.waset.org/abstracts/search?q=ASTM%20D1556" title=" ASTM D1556"> ASTM D1556</a>, <a href="https://publications.waset.org/abstracts/search?q=QA%2FQC" title=" QA/QC "> QA/QC </a> </p> <a href="https://publications.waset.org/abstracts/129392/methodology-for-various-sand-cone-testing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129392.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9811</span> Development of a Remote Testing System for Performance of Gas Leakage Detectors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gyoutae%20Park">Gyoutae Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Woosuk%20Kim"> Woosuk Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sangguk%20Ahn"> Sangguk Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Seungmo%20Kim"> Seungmo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Minjun%20Kim"> Minjun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinhan%20Lee"> Jinhan Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Youngdo%20Jo"> Youngdo Jo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jongsam%20Moon"> Jongsam Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiesik%20Kim"> Hiesik Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, we designed a remote system to test parameters of gas detectors such as gas concentration and initial response time. This testing system is available to measure two gas instruments simultaneously. First of all, we assembled an experimental jig with a square structure. Those parts are included with a glass flask, two high-quality cameras, and two Ethernet modems for transmitting data. This remote gas detector testing system extracts numerals from videos with continually various gas concentrations while LCDs show photographs from cameras. Extracted numeral data are received to a laptop computer through Ethernet modem. And then, the numerical data with gas concentrations and the measured initial response speeds are recorded and graphed. Our remote testing system will be diversely applied on gas detector’s test and will be certificated in domestic and international countries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20leak%20detector" title="gas leak detector">gas leak detector</a>, <a href="https://publications.waset.org/abstracts/search?q=inspection%20instrument" title=" inspection instrument"> inspection instrument</a>, <a href="https://publications.waset.org/abstracts/search?q=extracting%20numerals" title=" extracting numerals"> extracting numerals</a>, <a href="https://publications.waset.org/abstracts/search?q=concentration" title=" concentration"> concentration</a> </p> <a href="https://publications.waset.org/abstracts/65616/development-of-a-remote-testing-system-for-performance-of-gas-leakage-detectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65616.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9810</span> Quality and Coverage Assessment in Software Integration Based On Mutation Testing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iyad%20Alazzam">Iyad Alazzam</a>, <a href="https://publications.waset.org/abstracts/search?q=Kenneth%20Magel"> Kenneth Magel</a>, <a href="https://publications.waset.org/abstracts/search?q=Izzat%20Alsmadi"> Izzat Alsmadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The different activities and approaches in software testing try to find the most possible number of errors or failures with the least amount of possible effort. Mutation is a testing approach that is used to discover possible errors in tested applications. This is accomplished through changing one aspect of the software from its original and writes test cases to detect such change or mutation. In this paper, we present a mutation approach for testing software components integration aspects. Several mutation operations related to components integration are described and evaluated. A test case study of several open source code projects is collected. Proposed mutation operators are applied and evaluated. Results showed some insights and information that can help testing activities in detecting errors and improving coverage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=software%20testing" title="software testing">software testing</a>, <a href="https://publications.waset.org/abstracts/search?q=integration%20testing" title=" integration testing"> integration testing</a>, <a href="https://publications.waset.org/abstracts/search?q=mutation" title=" mutation"> mutation</a>, <a href="https://publications.waset.org/abstracts/search?q=coverage" title=" coverage"> coverage</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20design" title=" software design"> software design</a> </p> <a href="https://publications.waset.org/abstracts/5230/quality-and-coverage-assessment-in-software-integration-based-on-mutation-testing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5230.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9809</span> Experience Report about the Inclusion of People with Disabilities in the Process of Testing an Accessible System for Learning Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcos%20Devaner">Marcos Devaner</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcela%20Alves"> Marcela Alves</a>, <a href="https://publications.waset.org/abstracts/search?q=Cledson%20Braga"> Cledson Braga</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabiano%20Alves"> Fabiano Alves</a>, <a href="https://publications.waset.org/abstracts/search?q=Wilton%20Bezerra"> Wilton Bezerra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article discusses the inclusion of people with disabilities in the process of testing an accessible system solution for distance education. The accessible system, team profile, methodologies and techniques covered in the testing process are presented. The testing process shown in this paper was designed from the experience with user. The testing process emerged from lessons learned from past experiences and the end user is present at all stages of the tests. Also, lessons learned are reported and how it was possible the maturing of the team and the methods resulting in a simple, productive and effective process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=experience%20report" title="experience report">experience report</a>, <a href="https://publications.waset.org/abstracts/search?q=accessible%20systems" title=" accessible systems"> accessible systems</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20testing" title=" software testing"> software testing</a>, <a href="https://publications.waset.org/abstracts/search?q=testing%20process" title=" testing process"> testing process</a>, <a href="https://publications.waset.org/abstracts/search?q=systems" title=" systems"> systems</a>, <a href="https://publications.waset.org/abstracts/search?q=e-learning" title=" e-learning"> e-learning</a> </p> <a href="https://publications.waset.org/abstracts/47036/experience-report-about-the-inclusion-of-people-with-disabilities-in-the-process-of-testing-an-accessible-system-for-learning-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47036.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9808</span> Evaluation of tribological performance of aged and unaged biodiesel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuan-Ching%20Lin">Yuan-Ching Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Tian-Yi%20Huang"> Tian-Yi Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Jhe%20Hsieh"> Ming-Jhe Hsieh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, soybean biodiesel was blended with petroleum diesel as testing oils (B2). The tribiological performance of the B2 biodiesel before and after aging was evaluated using a reciprocating cylinder-on-flat wear test rig (Cameron-Plint TE-77) at various temperatures. The worn surface of each tested specimen was observed using a field-emission scanning electron microscope (FESEM). The compositions of the chemical films on each worn surface were determined using an energy dispersive spectrometer (EDS). The experimental results demonstrate that the tribiological behavior of the B2 was superior to that of other testing oils. Furthermore, the aging of biodiesel caused acidification, which resulted in poorer wear performance in the same experimental condition compared with others. The worn morphology of the specimen that was tested in the aged soybean biodiesel exhibited corrosion wear, reflecting low wear resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=soybean" title=" soybean"> soybean</a>, <a href="https://publications.waset.org/abstracts/search?q=tribological%20performance" title=" tribological performance "> tribological performance </a> </p> <a href="https://publications.waset.org/abstracts/25441/evaluation-of-tribological-performance-of-aged-and-unaged-biodiesel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25441.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">494</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9807</span> A Systematic Review Examining the Experimental methodology behind in vivo testing of hiatus hernia and Diaphragmatic Hernia Mesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Whitehead-Clarke%20T.">Whitehead-Clarke T.</a>, <a href="https://publications.waset.org/abstracts/search?q=Beynon%20V."> Beynon V.</a>, <a href="https://publications.waset.org/abstracts/search?q=Banks%20J."> Banks J.</a>, <a href="https://publications.waset.org/abstracts/search?q=Karanjia%20R."> Karanjia R.</a>, <a href="https://publications.waset.org/abstracts/search?q=Mudera%20V."> Mudera V.</a>, <a href="https://publications.waset.org/abstracts/search?q=Windsor%20A."> Windsor A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Kureshi%20A."> Kureshi A.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Mesh implants are regularly used to help repair both hiatus hernias (HH) and diaphragmatic hernias (DH). In vivo studies are used to test not only mesh safety but increasingly comparative efficacy. Our work examines the field of in vivo mesh testing for HH and DH models to establish current practices and standards. Method: This systematic review was registered with PROSPERO. Medline and Embase databases were searched for relevant in vivo studies. 44 articles were identified and underwent abstract review, where 22 were excluded. 4 further studies were excluded after full text review – leaving 18 to undergo data extraction. Results: Of 18 studies identified, 9 used an in vivo HH model and 9 a DH model. 5 studies undertook mechanical testing on tissue samples – all uniaxial in nature. Testing strip widths ranged from 1-20mm (median 3mm). Testing speeds varied from 1.5-60mm/minute. Upon histology, the most commonly assessed structural and cellular factors were neovascularization and macrophages, respectively (n=9 each). Structural analysis was mostly qualitative, where cellular analysis was equally likely to be quantitative. 11 studies assessed adhesion formation, of which 8 used one of four scoring systems. 8 studies measured mesh shrinkage. Discussion: In vivo studies assessing mesh for HH and DH repair are uncommon. Within this relatively young field, we encourage surgical and materials testing institutions to discuss its standardisation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hiatus" title="hiatus">hiatus</a>, <a href="https://publications.waset.org/abstracts/search?q=diaphragmatic" title=" diaphragmatic"> diaphragmatic</a>, <a href="https://publications.waset.org/abstracts/search?q=hernia" title=" hernia"> hernia</a>, <a href="https://publications.waset.org/abstracts/search?q=mesh" title=" mesh"> mesh</a>, <a href="https://publications.waset.org/abstracts/search?q=materials%20testing" title=" materials testing"> materials testing</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vivo" title=" in vivo"> in vivo</a> </p> <a href="https://publications.waset.org/abstracts/141777/a-systematic-review-examining-the-experimental-methodology-behind-in-vivo-testing-of-hiatus-hernia-and-diaphragmatic-hernia-mesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141777.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9806</span> Study of the Phenomenon of Collapse and Buckling the Car Body Frame</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Didik%20Sugiyanto">Didik Sugiyanto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conditions that often occur in the framework of a particular vehicle at a car is a collision or collision with another object, an example of such damage is to the frame or chassis for the required design framework that is able to absorb impact energy. Characteristics of the material are influenced by the value of the stiffness of the material that need to be considered in choosing the material properties of the material. To obtain material properties that can be adapted to the experimental conditions tested the tensile and compression testing. In this study focused on the chassis at an angle of 150, 300, and 450. It is based on field studies that vehicle primarily for freight cars have a point of order light between 150 to 450. Research methods include design tools, design framework, procurement of materials and experimental tools, tool-making, the manufacture of the test framework, and the testing process, experiment is testing the power of the press to know the order. From this test obtained the maximum force on the corner of 150 was 569.76 kg at a distance of 16 mm, angle 300 is 370.3 kg at a distance of 15 mm, angle 450 is 391.71 kg at a distance of 28 mm. After reaching the maximum force the order will occur collapse, followed by a decrease in the next distance. It can be concluded that the greatest strain energy occurs at an angle of 150. So it is known that the frame at an angle of 150 produces the best level of security. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buckling" title="buckling">buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=collapse" title=" collapse"> collapse</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20frame" title=" body frame"> body frame</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle" title=" vehicle"> vehicle</a> </p> <a href="https://publications.waset.org/abstracts/22797/study-of-the-phenomenon-of-collapse-and-buckling-the-car-body-frame" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">578</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9805</span> End To End Process to Automate Batch Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nagmani%20Lnu">Nagmani Lnu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Often, Quality Engineering refers to testing the applications that either have a User Interface (UI) or an Application Programming Interface (API). We often find mature test practices, standards, and automation regarding UI or API testing. However, another kind is present in almost all types of industries that deal with data in bulk and often get handled through something called a Batch Application. This is primarily an offline application companies develop to process large data sets that often deal with multiple business rules. The challenge gets more prominent when we try to automate batch testing. This paper describes the approaches taken to test a Batch application from a Financial Industry to test the payment settlement process (a critical use case in all kinds of FinTech companies), resulting in 100% test automation in Test Creation and Test execution. One can follow this approach for any other batch use cases to achieve a higher efficiency in their testing process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=batch%20testing" title="batch testing">batch testing</a>, <a href="https://publications.waset.org/abstracts/search?q=batch%20test%20automation" title=" batch test automation"> batch test automation</a>, <a href="https://publications.waset.org/abstracts/search?q=batch%20test%20strategy" title=" batch test strategy"> batch test strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=payments%20testing" title=" payments testing"> payments testing</a>, <a href="https://publications.waset.org/abstracts/search?q=payments%20settlement%20testing" title=" payments settlement testing"> payments settlement testing</a> </p> <a href="https://publications.waset.org/abstracts/181653/end-to-end-process-to-automate-batch-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181653.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9804</span> Analyzing Software Testing Phase in Agile Project Management: The Case of Jordan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghaleb%20Y.%20Abbasi">Ghaleb Y. Abbasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Satanay%20Alhiary"> Satanay Alhiary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focused on software testing phase of activities, types, techniques, teams and methods under agile project management (APM) in the Jordanian software industry. The effect of using agile principles and practices on testing process in software development life cycle (SDLC) was analyzed in order to create full view of the agile testing aspects such as phases, levels, types, methods, team and customers. Qualitative and quantitative research methods were utilized to cover earlier literature and collect data via web survey and short interviews in Jordanian software companies. Results indicated that agile testing had positive influence on quality of product, team performance, and customer satisfaction with a rate above 80%. APM is a powerful practice of moving software project forward in current markets with a rate above 51% by early involvement of testing activities in development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agile%20project%20management" title="agile project management">agile project management</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20development%20life%20cycle" title=" software development life cycle"> software development life cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=agile%20methods" title=" agile methods"> agile methods</a>, <a href="https://publications.waset.org/abstracts/search?q=agile%20testing" title=" agile testing"> agile testing</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20testing" title=" software testing"> software testing</a> </p> <a href="https://publications.waset.org/abstracts/60185/analyzing-software-testing-phase-in-agile-project-management-the-case-of-jordan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60185.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9803</span> Experimental Analysis of Composite Timber-Concrete Beam with CFRP Reinforcement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Vlcek">O. Vlcek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper deals with current issues in research of advanced methods to increase reliability of traditional timber structural elements. It analyses the issue of strengthening of bent timber beams, such as ceiling beams in old (historical) buildings with additional concrete slab in combination with externally bonded fibre - reinforced polymer. The paper describes experimental testing of composite timber-concrete beam with FRP reinforcement and compares results with FEM analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=timber-concrete%20composite" title="timber-concrete composite">timber-concrete composite</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening" title=" strengthening"> strengthening</a>, <a href="https://publications.waset.org/abstracts/search?q=fibre-reinforced%20polymer" title=" fibre-reinforced polymer"> fibre-reinforced polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20analysis" title=" experimental analysis"> experimental analysis</a> </p> <a href="https://publications.waset.org/abstracts/15691/experimental-analysis-of-composite-timber-concrete-beam-with-cfrp-reinforcement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15691.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9802</span> Factors Affecting the Readiness in the License Examination Testing of Nursing Students</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suwannee%20Sroisong">Suwannee Sroisong</a>, <a href="https://publications.waset.org/abstracts/search?q=Angkhana%20Ruenkon"> Angkhana Ruenkon</a>, <a href="https://publications.waset.org/abstracts/search?q=Ronnaphop%20Eimtab">Ronnaphop Eimtab </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study was twofold: First, to examine the relationship of the Readiness on the License Examination Testing (RLET) with factors namely achieved motivation, attitude on testing, self-perception, perception in testing among the nursing students at Baromarajonani College of Nursing, Buddhachinaraj, Thailand (BCNB); and secondly, to investigate the factors affecting the RLET of the nursing students. All data were collected from a set of 214 questionnaires of nursing students, second semester and in academic year 2010, at BCNB. As a set of variables in the questionnaire, it consisted of factors of readiness in testing, achieved motivation, attitude on testing, self-perception, and perception in testing. The following statistics were analyzed: frequency, percentage, means, standard deviation, and Stepwise-multiple regression correlation. Research results were as follows: 1) For the relationship among following factors, namely achieved motivation, attitude on testing, self-perception, perception in testing, there were positive correlation coefficients between .324 to .560 at the .05 level of significance; and 2) One crucial factor affecting the RLET of nursing students, namely achieved motivation, was found. The achieved motivation factor could explain the variance or predict the RLET of nursing students at 31.40 percent and at the .05 level of significance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=readiness" title="readiness">readiness</a>, <a href="https://publications.waset.org/abstracts/search?q=nursing" title=" nursing"> nursing</a>, <a href="https://publications.waset.org/abstracts/search?q=license%20examination%20testing" title=" license examination testing"> license examination testing</a>, <a href="https://publications.waset.org/abstracts/search?q=Thailand" title=" Thailand "> Thailand </a> </p> <a href="https://publications.waset.org/abstracts/5065/factors-affecting-the-readiness-in-the-license-examination-testing-of-nursing-students" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5065.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=experimental%20testing&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=experimental%20testing&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=experimental%20testing&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=experimental%20testing&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=experimental%20testing&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=experimental%20testing&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=experimental%20testing&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=experimental%20testing&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=experimental%20testing&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=experimental%20testing&page=327">327</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=experimental%20testing&page=328">328</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=experimental%20testing&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>