CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;29 of 29 results for author: <span class="mathjax">Cuevas, C</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Cuevas%2C+C">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Cuevas, C"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Cuevas%2C+C&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Cuevas, C"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.15727">arXiv:2408.15727</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.15727">pdf</a>, <a href="https://arxiv.org/format/2408.15727">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Deep Reinforcement Learning for Radiative Heat Transfer Optimization Problems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ortiz-Mansilla%2C+E">Eva Ortiz-Mansilla</a>, <a href="/search/physics?searchtype=author&amp;query=Garc%C3%ADa-Esteban%2C+J+J">Juan Jos茅 Garc铆a-Esteban</a>, <a href="/search/physics?searchtype=author&amp;query=Bravo-Abad%2C+J">Jorge Bravo-Abad</a>, <a href="/search/physics?searchtype=author&amp;query=Cuevas%2C+J+C">Juan Carlos Cuevas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.15727v1-abstract-short" style="display: inline;"> Reinforcement learning is a subfield of machine learning that is having a huge impact in the different conventional disciplines, including physical sciences. Here, we show how reinforcement learning methods can be applied to solve optimization problems in the context of radiative heat transfer. We illustrate their use with the optimization of the near-field radiative heat transfer between multilay&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15727v1-abstract-full').style.display = 'inline'; document.getElementById('2408.15727v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.15727v1-abstract-full" style="display: none;"> Reinforcement learning is a subfield of machine learning that is having a huge impact in the different conventional disciplines, including physical sciences. Here, we show how reinforcement learning methods can be applied to solve optimization problems in the context of radiative heat transfer. We illustrate their use with the optimization of the near-field radiative heat transfer between multilayer hyperbolic metamaterials. Specifically, we show how this problem can be formulated in the language of reinforcement learning and tackled with a variety of algorithms. We show that these algorithms allow us to find solutions that outperform those obtained using physical intuition. Overall, our work shows the power and potential of reinforcement learning methods for the investigation of a wide variety of problems in the context of radiative heat transfer and related topics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15727v1-abstract-full').style.display = 'none'; document.getElementById('2408.15727v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.07454">arXiv:2307.07454</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.07454">pdf</a>, <a href="https://arxiv.org/format/2307.07454">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Generative adversarial networks for data-scarce spectral applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Garc%C3%ADa-Esteban%2C+J+J">Juan Jos茅 Garc铆a-Esteban</a>, <a href="/search/physics?searchtype=author&amp;query=Cuevas%2C+J+C">Juan Carlos Cuevas</a>, <a href="/search/physics?searchtype=author&amp;query=Bravo-Abad%2C+J">Jorge Bravo-Abad</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.07454v1-abstract-short" style="display: inline;"> Generative adversarial networks (GANs) are one of the most robust and versatile techniques in the field of generative artificial intelligence. In this work, we report on an application of GANs in the domain of synthetic spectral data generation, offering a solution to the scarcity of data found in various scientific contexts. We demonstrate the proposed approach by applying it to an illustrative p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.07454v1-abstract-full').style.display = 'inline'; document.getElementById('2307.07454v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.07454v1-abstract-full" style="display: none;"> Generative adversarial networks (GANs) are one of the most robust and versatile techniques in the field of generative artificial intelligence. In this work, we report on an application of GANs in the domain of synthetic spectral data generation, offering a solution to the scarcity of data found in various scientific contexts. We demonstrate the proposed approach by applying it to an illustrative problem within the realm of near-field radiative heat transfer involving a multilayered hyperbolic metamaterial. We find that a successful generation of spectral data requires two modifications to conventional GANs: (i) the introduction of Wasserstein GANs (WGANs) to avoid mode collapse, and, (ii) the conditioning of WGANs to obtain accurate labels for the generated data. We show that a simple feed-forward neural network (FFNN), when augmented with data generated by a CWGAN, enhances significantly its performance under conditions of limited data availability, demonstrating the intrinsic value of CWGAN data augmentation beyond simply providing larger datasets. In addition, we show that CWGANs can act as a surrogate model with improved performance in the low-data regime with respect to simple FFNNs. Overall, this work highlights the potential of generative machine learning algorithms in scientific applications beyond image generation and optimization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.07454v1-abstract-full').style.display = 'none'; document.getElementById('2307.07454v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.02580">arXiv:2209.02580</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.02580">pdf</a>, <a href="https://arxiv.org/format/2209.02580">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Design of the ECCE Detector for the Electron Ion Collider </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Adkins%2C+J+K">J. K. Adkins</a>, <a href="/search/physics?searchtype=author&amp;query=Akiba%2C+Y">Y. Akiba</a>, <a href="/search/physics?searchtype=author&amp;query=Albataineh%2C+A">A. Albataineh</a>, <a href="/search/physics?searchtype=author&amp;query=Amaryan%2C+M">M. Amaryan</a>, <a href="/search/physics?searchtype=author&amp;query=Arsene%2C+I+C">I. C. Arsene</a>, <a href="/search/physics?searchtype=author&amp;query=Gayoso%2C+C+A">C. Ayerbe Gayoso</a>, <a href="/search/physics?searchtype=author&amp;query=Bae%2C+J">J. Bae</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+X">X. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Baker%2C+M+D">M. D. Baker</a>, <a href="/search/physics?searchtype=author&amp;query=Bashkanov%2C+M">M. Bashkanov</a>, <a href="/search/physics?searchtype=author&amp;query=Bellwied%2C+R">R. Bellwied</a>, <a href="/search/physics?searchtype=author&amp;query=Benmokhtar%2C+F">F. Benmokhtar</a>, <a href="/search/physics?searchtype=author&amp;query=Berdnikov%2C+V">V. Berdnikov</a>, <a href="/search/physics?searchtype=author&amp;query=Bernauer%2C+J+C">J. C. Bernauer</a>, <a href="/search/physics?searchtype=author&amp;query=Bock%2C+F">F. Bock</a>, <a href="/search/physics?searchtype=author&amp;query=Boeglin%2C+W">W. Boeglin</a>, <a href="/search/physics?searchtype=author&amp;query=Borysova%2C+M">M. Borysova</a>, <a href="/search/physics?searchtype=author&amp;query=Brash%2C+E">E. Brash</a>, <a href="/search/physics?searchtype=author&amp;query=Brindza%2C+P">P. Brindza</a>, <a href="/search/physics?searchtype=author&amp;query=Briscoe%2C+W+J">W. J. Briscoe</a>, <a href="/search/physics?searchtype=author&amp;query=Brooks%2C+M">M. Brooks</a>, <a href="/search/physics?searchtype=author&amp;query=Bueltmann%2C+S">S. Bueltmann</a>, <a href="/search/physics?searchtype=author&amp;query=Bukhari%2C+M+H+S">M. H. S. Bukhari</a>, <a href="/search/physics?searchtype=author&amp;query=Bylinkin%2C+A">A. Bylinkin</a>, <a href="/search/physics?searchtype=author&amp;query=Capobianco%2C+R">R. Capobianco</a> , et al. (259 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.02580v3-abstract-short" style="display: inline;"> The EIC Comprehensive Chromodynamics Experiment (ECCE) detector has been designed to address the full scope of the proposed Electron Ion Collider (EIC) physics program as presented by the National Academy of Science and provide a deeper understanding of the quark-gluon structure of matter. To accomplish this, the ECCE detector offers nearly acceptance and energy coverage along with excellent track&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.02580v3-abstract-full').style.display = 'inline'; document.getElementById('2209.02580v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.02580v3-abstract-full" style="display: none;"> The EIC Comprehensive Chromodynamics Experiment (ECCE) detector has been designed to address the full scope of the proposed Electron Ion Collider (EIC) physics program as presented by the National Academy of Science and provide a deeper understanding of the quark-gluon structure of matter. To accomplish this, the ECCE detector offers nearly acceptance and energy coverage along with excellent tracking and particle identification. The ECCE detector was designed to be built within the budget envelope set out by the EIC project while simultaneously managing cost and schedule risks. This detector concept has been selected to be the basis for the EIC project detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.02580v3-abstract-full').style.display = 'none'; document.getElementById('2209.02580v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 30 figures, 9 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JLAB-PHY-24-4124 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.14575">arXiv:2208.14575</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.14575">pdf</a>, <a href="https://arxiv.org/format/2208.14575">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2023.168238">10.1016/j.nima.2023.168238 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detector Requirements and Simulation Results for the EIC Exclusive, Diffractive and Tagging Physics Program using the ECCE Detector Concept </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bylinkin%2C+A">A. Bylinkin</a>, <a href="/search/physics?searchtype=author&amp;query=Dean%2C+C+T">C. T. Dean</a>, <a href="/search/physics?searchtype=author&amp;query=Fegan%2C+S">S. Fegan</a>, <a href="/search/physics?searchtype=author&amp;query=Gangadharan%2C+D">D. Gangadharan</a>, <a href="/search/physics?searchtype=author&amp;query=Gates%2C+K">K. Gates</a>, <a href="/search/physics?searchtype=author&amp;query=Kay%2C+S+J+D">S. J. D. Kay</a>, <a href="/search/physics?searchtype=author&amp;query=Korover%2C+I">I. Korover</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W+B">W. B. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">X. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Montgomery%2C+R">R. Montgomery</a>, <a href="/search/physics?searchtype=author&amp;query=Nguyen%2C+D">D. Nguyen</a>, <a href="/search/physics?searchtype=author&amp;query=Penman%2C+G">G. Penman</a>, <a href="/search/physics?searchtype=author&amp;query=Pybus%2C+J+R">J. R. Pybus</a>, <a href="/search/physics?searchtype=author&amp;query=Santiesteban%2C+N">N. Santiesteban</a>, <a href="/search/physics?searchtype=author&amp;query=Trotta%2C+R">R. Trotta</a>, <a href="/search/physics?searchtype=author&amp;query=Usman%2C+A">A. Usman</a>, <a href="/search/physics?searchtype=author&amp;query=Baker%2C+M+D">M. D. Baker</a>, <a href="/search/physics?searchtype=author&amp;query=Frantz%2C+J">J. Frantz</a>, <a href="/search/physics?searchtype=author&amp;query=Glazier%2C+D+I">D. I. Glazier</a>, <a href="/search/physics?searchtype=author&amp;query=Higinbotham%2C+D+W">D. W. Higinbotham</a>, <a href="/search/physics?searchtype=author&amp;query=Horn%2C+T">T. Horn</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+J">J. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Huber%2C+G">G. Huber</a>, <a href="/search/physics?searchtype=author&amp;query=Reed%2C+R">R. Reed</a>, <a href="/search/physics?searchtype=author&amp;query=Roche%2C+J">J. Roche</a> , et al. (258 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.14575v2-abstract-short" style="display: inline;"> This article presents a collection of simulation studies using the ECCE detector concept in the context of the EIC&#39;s exclusive, diffractive, and tagging physics program, which aims to further explore the rich quark-gluon structure of nucleons and nuclei. To successfully execute the program, ECCE proposed to utilize the detecter system close to the beamline to ensure exclusivity and tag ion beam/fr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.14575v2-abstract-full').style.display = 'inline'; document.getElementById('2208.14575v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.14575v2-abstract-full" style="display: none;"> This article presents a collection of simulation studies using the ECCE detector concept in the context of the EIC&#39;s exclusive, diffractive, and tagging physics program, which aims to further explore the rich quark-gluon structure of nucleons and nuclei. To successfully execute the program, ECCE proposed to utilize the detecter system close to the beamline to ensure exclusivity and tag ion beam/fragments for a particular reaction of interest. Preliminary studies confirmed the proposed technology and design satisfy the requirements. The projected physics impact results are based on the projected detector performance from the simulation at 10 or 100 fb^-1 of integrated luminosity. Additionally, a few insights on the potential 2nd Interaction Region can (IR) were also documented which could serve as a guidepost for the future development of a second EIC detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.14575v2-abstract-full').style.display = 'none'; document.getElementById('2208.14575v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.09171">arXiv:2208.09171</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.09171">pdf</a>, <a href="https://arxiv.org/format/2208.09171">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.195401">10.1103/PhysRevB.106.195401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phononic heat conductance of gold atomic contacts: Coherent versus incoherent transport </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=M%C3%BCller%2C+F">Fabian M眉ller</a>, <a href="/search/physics?searchtype=author&amp;query=Nielaba%2C+P">Peter Nielaba</a>, <a href="/search/physics?searchtype=author&amp;query=Cuevas%2C+J+C">Juan Carlos Cuevas</a>, <a href="/search/physics?searchtype=author&amp;query=Pauly%2C+F">Fabian Pauly</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.09171v2-abstract-short" style="display: inline;"> We present here a theoretical method to determine the phononic contribution to the thermal conductance of nanoscale systems in the phase-coherent regime. Our approach makes use of classical molecular dynamics (MD) simulations to calculate the temperature-dependent dynamical matrix, and the phononic heat conductance is subsequently computed within the Landauer-B眉ttiker formalism with the help of no&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.09171v2-abstract-full').style.display = 'inline'; document.getElementById('2208.09171v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.09171v2-abstract-full" style="display: none;"> We present here a theoretical method to determine the phononic contribution to the thermal conductance of nanoscale systems in the phase-coherent regime. Our approach makes use of classical molecular dynamics (MD) simulations to calculate the temperature-dependent dynamical matrix, and the phononic heat conductance is subsequently computed within the Landauer-B眉ttiker formalism with the help of nonequilibrium Green&#39;s function techniques. Tailored to nanostructures, crucial steps of force constant and heat transport calculations are performed directly in real space. As compared to conventional density functional theory (DFT) approaches, the advantage of our method is two-fold. First, interatomic interactions can be described with the method of choice. Semiempirical potentials may lead to large computational speedups, enabling the study of much larger systems. Second, the method naturally takes into account the temperature dependence of atomic force constants, an aspect that is ignored in typical static DFT-based calculations. We illustrate our method by analyzing the temperature dependence of the phononic thermal conductance of gold (Au) chains with lengths ranging from 1 to 12 atoms. Moreover, in order to evaluate the importance of anharmonic effects in these atomic-scale wires, we compare the phase-coherent approach with nonequilibrium MD (NEMD) simulations. We find that the predictions of the phase-coherent method and the classical NEMD approach largely agree above the Debye temperature for all studied chain lengths, which shows that heat transport is coherent and that our phase-coherent approach is well suited for such nanostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.09171v2-abstract-full').style.display = 'none'; document.getElementById('2208.09171v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 106, 195401 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.10632">arXiv:2207.10632</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.10632">pdf</a>, <a href="https://arxiv.org/format/2207.10632">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Open Heavy Flavor Studies for the ECCE Detector at the Electron Ion Collider </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">X. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Adkins%2C+J+K">J. K. Adkins</a>, <a href="/search/physics?searchtype=author&amp;query=Akiba%2C+Y">Y. Akiba</a>, <a href="/search/physics?searchtype=author&amp;query=Albataineh%2C+A">A. Albataineh</a>, <a href="/search/physics?searchtype=author&amp;query=Amaryan%2C+M">M. Amaryan</a>, <a href="/search/physics?searchtype=author&amp;query=Arsene%2C+I+C">I. C. Arsene</a>, <a href="/search/physics?searchtype=author&amp;query=Gayoso%2C+C+A">C. Ayerbe Gayoso</a>, <a href="/search/physics?searchtype=author&amp;query=Bae%2C+J">J. Bae</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+X">X. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Baker%2C+M+D">M. D. Baker</a>, <a href="/search/physics?searchtype=author&amp;query=Bashkanov%2C+M">M. Bashkanov</a>, <a href="/search/physics?searchtype=author&amp;query=Bellwied%2C+R">R. Bellwied</a>, <a href="/search/physics?searchtype=author&amp;query=Benmokhtar%2C+F">F. Benmokhtar</a>, <a href="/search/physics?searchtype=author&amp;query=Berdnikov%2C+V">V. Berdnikov</a>, <a href="/search/physics?searchtype=author&amp;query=Bernauer%2C+J+C">J. C. Bernauer</a>, <a href="/search/physics?searchtype=author&amp;query=Bock%2C+F">F. Bock</a>, <a href="/search/physics?searchtype=author&amp;query=Boeglin%2C+W">W. Boeglin</a>, <a href="/search/physics?searchtype=author&amp;query=Borysova%2C+M">M. Borysova</a>, <a href="/search/physics?searchtype=author&amp;query=Brash%2C+E">E. Brash</a>, <a href="/search/physics?searchtype=author&amp;query=Brindza%2C+P">P. Brindza</a>, <a href="/search/physics?searchtype=author&amp;query=Briscoe%2C+W+J">W. J. Briscoe</a>, <a href="/search/physics?searchtype=author&amp;query=Brooks%2C+M">M. Brooks</a>, <a href="/search/physics?searchtype=author&amp;query=Bueltmann%2C+S">S. Bueltmann</a>, <a href="/search/physics?searchtype=author&amp;query=Bukhari%2C+M+H+S">M. H. S. Bukhari</a>, <a href="/search/physics?searchtype=author&amp;query=Bylinkin%2C+A">A. Bylinkin</a> , et al. (262 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.10632v2-abstract-short" style="display: inline;"> The ECCE detector has been recommended as the selected reference detector for the future Electron-Ion Collider (EIC). A series of simulation studies have been carried out to validate the physics feasibility of the ECCE detector. In this paper, detailed studies of heavy flavor hadron and jet reconstruction and physics projections with the ECCE detector performance and different magnet options will&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.10632v2-abstract-full').style.display = 'inline'; document.getElementById('2207.10632v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.10632v2-abstract-full" style="display: none;"> The ECCE detector has been recommended as the selected reference detector for the future Electron-Ion Collider (EIC). A series of simulation studies have been carried out to validate the physics feasibility of the ECCE detector. In this paper, detailed studies of heavy flavor hadron and jet reconstruction and physics projections with the ECCE detector performance and different magnet options will be presented. The ECCE detector has enabled precise EIC heavy flavor hadron and jet measurements with a broad kinematic coverage. These proposed heavy flavor measurements will help systematically study the hadronization process in vacuum and nuclear medium especially in the underexplored kinematic region. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.10632v2-abstract-full').style.display = 'none'; document.getElementById('2207.10632v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Open heavy flavor studies with the EIC reference detector design by the ECCE consortium. 11 pages, 11 figures, to be submitted to the Nuclear Instruments and Methods A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LANL report number: LA-UR-22-27181 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.10356">arXiv:2207.10356</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.10356">pdf</a>, <a href="https://arxiv.org/format/2207.10356">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2022.167956">10.1016/j.nima.2022.167956 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exclusive J/$蠄$ Detection and Physics with ECCE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">X. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Adkins%2C+J+K">J. K. Adkins</a>, <a href="/search/physics?searchtype=author&amp;query=Akiba%2C+Y">Y. Akiba</a>, <a href="/search/physics?searchtype=author&amp;query=Albataineh%2C+A">A. Albataineh</a>, <a href="/search/physics?searchtype=author&amp;query=Amaryan%2C+M">M. Amaryan</a>, <a href="/search/physics?searchtype=author&amp;query=Arsene%2C+I+C">I. C. Arsene</a>, <a href="/search/physics?searchtype=author&amp;query=Gayoso%2C+C+A">C. Ayerbe Gayoso</a>, <a href="/search/physics?searchtype=author&amp;query=Bae%2C+J">J. Bae</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+X">X. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Baker%2C+M+D">M. D. Baker</a>, <a href="/search/physics?searchtype=author&amp;query=Bashkanov%2C+M">M. Bashkanov</a>, <a href="/search/physics?searchtype=author&amp;query=Bellwied%2C+R">R. Bellwied</a>, <a href="/search/physics?searchtype=author&amp;query=Benmokhtar%2C+F">F. Benmokhtar</a>, <a href="/search/physics?searchtype=author&amp;query=Berdnikov%2C+V">V. Berdnikov</a>, <a href="/search/physics?searchtype=author&amp;query=Bernauer%2C+J+C">J. C. Bernauer</a>, <a href="/search/physics?searchtype=author&amp;query=Bock%2C+F">F. Bock</a>, <a href="/search/physics?searchtype=author&amp;query=Boeglin%2C+W">W. Boeglin</a>, <a href="/search/physics?searchtype=author&amp;query=Borysova%2C+M">M. Borysova</a>, <a href="/search/physics?searchtype=author&amp;query=Brash%2C+E">E. Brash</a>, <a href="/search/physics?searchtype=author&amp;query=Brindza%2C+P">P. Brindza</a>, <a href="/search/physics?searchtype=author&amp;query=Briscoe%2C+W+J">W. J. Briscoe</a>, <a href="/search/physics?searchtype=author&amp;query=Brooks%2C+M">M. Brooks</a>, <a href="/search/physics?searchtype=author&amp;query=Bueltmann%2C+S">S. Bueltmann</a>, <a href="/search/physics?searchtype=author&amp;query=Bukhari%2C+M+H+S">M. H. S. Bukhari</a>, <a href="/search/physics?searchtype=author&amp;query=Bylinkin%2C+A">A. Bylinkin</a> , et al. (262 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.10356v1-abstract-short" style="display: inline;"> Exclusive heavy quarkonium photoproduction is one of the most popular processes in EIC, which has a large cross section and a simple final state. Due to the gluonic nature of the exchange Pomeron, this process can be related to the gluon distributions in the nucleus. The momentum transfer dependence of this process is sensitive to the interaction sites, which provides a powerful tool to probe the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.10356v1-abstract-full').style.display = 'inline'; document.getElementById('2207.10356v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.10356v1-abstract-full" style="display: none;"> Exclusive heavy quarkonium photoproduction is one of the most popular processes in EIC, which has a large cross section and a simple final state. Due to the gluonic nature of the exchange Pomeron, this process can be related to the gluon distributions in the nucleus. The momentum transfer dependence of this process is sensitive to the interaction sites, which provides a powerful tool to probe the spatial distribution of gluons in the nucleus. Recently the problem of the origin of hadron mass has received lots of attention in determining the anomaly contribution $M_{a}$. The trace anomaly is sensitive to the gluon condensate, and exclusive production of quarkonia such as J/$蠄$ and $违$ can serve as a sensitive probe to constrain it. In this paper, we present the performance of the ECCE detector for exclusive J/$蠄$ detection and the capability of this process to investigate the above physics opportunities with ECCE. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.10356v1-abstract-full').style.display = 'none'; document.getElementById('2207.10356v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 14 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.09437">arXiv:2207.09437</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.09437">pdf</a>, <a href="https://arxiv.org/format/2207.09437">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2023.168464">10.1016/j.nima.2023.168464 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Design and Simulated Performance of Calorimetry Systems for the ECCE Detector at the Electron Ion Collider </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bock%2C+F">F. Bock</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+N">N. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+P+K">P. K. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Santiesteban%2C+N">N. Santiesteban</a>, <a href="/search/physics?searchtype=author&amp;query=Horn%2C+T">T. Horn</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+J">J. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Lajoie%2C+J">J. Lajoie</a>, <a href="/search/physics?searchtype=author&amp;query=Camacho%2C+C+M">C. Munoz Camacho</a>, <a href="/search/physics?searchtype=author&amp;query=Adkins%2C+J+K">J. K. Adkins</a>, <a href="/search/physics?searchtype=author&amp;query=Akiba%2C+Y">Y. Akiba</a>, <a href="/search/physics?searchtype=author&amp;query=Albataineh%2C+A">A. Albataineh</a>, <a href="/search/physics?searchtype=author&amp;query=Amaryan%2C+M">M. Amaryan</a>, <a href="/search/physics?searchtype=author&amp;query=Arsene%2C+I+C">I. C. Arsene</a>, <a href="/search/physics?searchtype=author&amp;query=Gayoso%2C+C+A">C. Ayerbe Gayoso</a>, <a href="/search/physics?searchtype=author&amp;query=Bae%2C+J">J. Bae</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+X">X. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Baker%2C+M+D">M. D. Baker</a>, <a href="/search/physics?searchtype=author&amp;query=Bashkanov%2C+M">M. Bashkanov</a>, <a href="/search/physics?searchtype=author&amp;query=Bellwied%2C+R">R. Bellwied</a>, <a href="/search/physics?searchtype=author&amp;query=Benmokhtar%2C+F">F. Benmokhtar</a>, <a href="/search/physics?searchtype=author&amp;query=Berdnikov%2C+V">V. Berdnikov</a>, <a href="/search/physics?searchtype=author&amp;query=Bernauer%2C+J+C">J. C. Bernauer</a>, <a href="/search/physics?searchtype=author&amp;query=Boeglin%2C+W">W. Boeglin</a>, <a href="/search/physics?searchtype=author&amp;query=Borysova%2C+M">M. Borysova</a>, <a href="/search/physics?searchtype=author&amp;query=Brash%2C+E">E. Brash</a> , et al. (263 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.09437v1-abstract-short" style="display: inline;"> We describe the design and performance the calorimeter systems used in the ECCE detector design to achieve the overall performance specifications cost-effectively with careful consideration of appropriate technical and schedule risks. The calorimeter systems consist of three electromagnetic calorimeters, covering the combined pseudorapdity range from -3.7 to 3.8 and two hadronic calorimeters. Key&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.09437v1-abstract-full').style.display = 'inline'; document.getElementById('2207.09437v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.09437v1-abstract-full" style="display: none;"> We describe the design and performance the calorimeter systems used in the ECCE detector design to achieve the overall performance specifications cost-effectively with careful consideration of appropriate technical and schedule risks. The calorimeter systems consist of three electromagnetic calorimeters, covering the combined pseudorapdity range from -3.7 to 3.8 and two hadronic calorimeters. Key calorimeter performances which include energy and position resolutions, reconstruction efficiency, and particle identification will be presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.09437v1-abstract-full').style.display = 'none'; document.getElementById('2207.09437v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 22 figures, 5 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.14921">arXiv:2206.14921</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.14921">pdf</a>, <a href="https://arxiv.org/format/2206.14921">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.235430">10.1103/PhysRevB.106.235430 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermal discrete dipole approximation for near-field radiative heat transfer in many-body systems with arbitrary nonreciprocal bodies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Moncada-Villa%2C+E">E. Moncada-Villa</a>, <a href="/search/physics?searchtype=author&amp;query=Cuevas%2C+J+C">J. C. Cuevas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.14921v1-abstract-short" style="display: inline;"> The theoretical study of many-body effects in the context of near-field radiative heat transfer (NFRHT) has already led to the prediction of a plethora of thermal radiation phenomena. Special attention has been paid to nonreciprocal systems in which the lack of the Lorentz reciprocity has been shown to give rise to unique physical effects. However, most of the theoretical work in this regard has b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.14921v1-abstract-full').style.display = 'inline'; document.getElementById('2206.14921v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.14921v1-abstract-full" style="display: none;"> The theoretical study of many-body effects in the context of near-field radiative heat transfer (NFRHT) has already led to the prediction of a plethora of thermal radiation phenomena. Special attention has been paid to nonreciprocal systems in which the lack of the Lorentz reciprocity has been shown to give rise to unique physical effects. However, most of the theoretical work in this regard has been carried out with the help of approaches that consider either point-like particles or highly symmetric bodies (such as spheres), which are not easy to realize and explore experimentally. In this work we develop a many-body approach based on the thermal discrete dipole approximation (TDDA) that is able to describe the NFRHT between nonreciprocal objects of arbitrary size and shape. We illustrate the potential and the relevance of this approach with the analysis of two related phenomena, namely the existence of persistent thermal currents and the photon thermal Hall effect, in a system with several magneto-optical bodies. Our many-body TDDA approach paves the way for closing the gap between experiment and theory that is hindering the progress of the topic of NFRHT in many-body systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.14921v1-abstract-full').style.display = 'none'; document.getElementById('2206.14921v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.09185">arXiv:2205.09185</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.09185">pdf</a>, <a href="https://arxiv.org/format/2205.09185">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2022.167748">10.1016/j.nima.2022.167748 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> AI-assisted Optimization of the ECCE Tracking System at the Electron Ion Collider </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Fanelli%2C+C">C. Fanelli</a>, <a href="/search/physics?searchtype=author&amp;query=Papandreou%2C+Z">Z. Papandreou</a>, <a href="/search/physics?searchtype=author&amp;query=Suresh%2C+K">K. Suresh</a>, <a href="/search/physics?searchtype=author&amp;query=Adkins%2C+J+K">J. K. Adkins</a>, <a href="/search/physics?searchtype=author&amp;query=Akiba%2C+Y">Y. Akiba</a>, <a href="/search/physics?searchtype=author&amp;query=Albataineh%2C+A">A. Albataineh</a>, <a href="/search/physics?searchtype=author&amp;query=Amaryan%2C+M">M. Amaryan</a>, <a href="/search/physics?searchtype=author&amp;query=Arsene%2C+I+C">I. C. Arsene</a>, <a href="/search/physics?searchtype=author&amp;query=Gayoso%2C+C+A">C. Ayerbe Gayoso</a>, <a href="/search/physics?searchtype=author&amp;query=Bae%2C+J">J. Bae</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+X">X. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Baker%2C+M+D">M. D. Baker</a>, <a href="/search/physics?searchtype=author&amp;query=Bashkanov%2C+M">M. Bashkanov</a>, <a href="/search/physics?searchtype=author&amp;query=Bellwied%2C+R">R. Bellwied</a>, <a href="/search/physics?searchtype=author&amp;query=Benmokhtar%2C+F">F. Benmokhtar</a>, <a href="/search/physics?searchtype=author&amp;query=Berdnikov%2C+V">V. Berdnikov</a>, <a href="/search/physics?searchtype=author&amp;query=Bernauer%2C+J+C">J. C. Bernauer</a>, <a href="/search/physics?searchtype=author&amp;query=Bock%2C+F">F. Bock</a>, <a href="/search/physics?searchtype=author&amp;query=Boeglin%2C+W">W. Boeglin</a>, <a href="/search/physics?searchtype=author&amp;query=Borysova%2C+M">M. Borysova</a>, <a href="/search/physics?searchtype=author&amp;query=Brash%2C+E">E. Brash</a>, <a href="/search/physics?searchtype=author&amp;query=Brindza%2C+P">P. Brindza</a>, <a href="/search/physics?searchtype=author&amp;query=Briscoe%2C+W+J">W. J. Briscoe</a>, <a href="/search/physics?searchtype=author&amp;query=Brooks%2C+M">M. Brooks</a>, <a href="/search/physics?searchtype=author&amp;query=Bueltmann%2C+S">S. Bueltmann</a> , et al. (258 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.09185v2-abstract-short" style="display: inline;"> The Electron-Ion Collider (EIC) is a cutting-edge accelerator facility that will study the nature of the &#34;glue&#34; that binds the building blocks of the visible matter in the universe. The proposed experiment will be realized at Brookhaven National Laboratory in approximately 10 years from now, with detector design and R&amp;D currently ongoing. Notably, EIC is one of the first large-scale facilities to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.09185v2-abstract-full').style.display = 'inline'; document.getElementById('2205.09185v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.09185v2-abstract-full" style="display: none;"> The Electron-Ion Collider (EIC) is a cutting-edge accelerator facility that will study the nature of the &#34;glue&#34; that binds the building blocks of the visible matter in the universe. The proposed experiment will be realized at Brookhaven National Laboratory in approximately 10 years from now, with detector design and R&amp;D currently ongoing. Notably, EIC is one of the first large-scale facilities to leverage Artificial Intelligence (AI) already starting from the design and R&amp;D phases. The EIC Comprehensive Chromodynamics Experiment (ECCE) is a consortium that proposed a detector design based on a 1.5T solenoid. The EIC detector proposal review concluded that the ECCE design will serve as the reference design for an EIC detector. Herein we describe a comprehensive optimization of the ECCE tracker using AI. The work required a complex parametrization of the simulated detector system. Our approach dealt with an optimization problem in a multidimensional design space driven by multiple objectives that encode the detector performance, while satisfying several mechanical constraints. We describe our strategy and show results obtained for the ECCE tracking system. The AI-assisted design is agnostic to the simulation framework and can be extended to other sub-detectors or to a system of sub-detectors to further optimize the performance of the EIC detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.09185v2-abstract-full').style.display = 'none'; document.getElementById('2205.09185v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 18 figures, 2 appendices, 3 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.08607">arXiv:2205.08607</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.08607">pdf</a>, <a href="https://arxiv.org/format/2205.08607">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2022.167859">10.1016/j.nima.2022.167859 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Scientific Computing Plan for the ECCE Detector at the Electron Ion Collider </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bernauer%2C+J+C">J. C. Bernauer</a>, <a href="/search/physics?searchtype=author&amp;query=Dean%2C+C+T">C. T. Dean</a>, <a href="/search/physics?searchtype=author&amp;query=Fanelli%2C+C">C. Fanelli</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+J">J. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Kauder%2C+K">K. Kauder</a>, <a href="/search/physics?searchtype=author&amp;query=Lawrence%2C+D">D. Lawrence</a>, <a href="/search/physics?searchtype=author&amp;query=Osborn%2C+J+D">J. D. Osborn</a>, <a href="/search/physics?searchtype=author&amp;query=Paus%2C+C">C. Paus</a>, <a href="/search/physics?searchtype=author&amp;query=Adkins%2C+J+K">J. K. Adkins</a>, <a href="/search/physics?searchtype=author&amp;query=Akiba%2C+Y">Y. Akiba</a>, <a href="/search/physics?searchtype=author&amp;query=Albataineh%2C+A">A. Albataineh</a>, <a href="/search/physics?searchtype=author&amp;query=Amaryan%2C+M">M. Amaryan</a>, <a href="/search/physics?searchtype=author&amp;query=Arsene%2C+I+C">I. C. Arsene</a>, <a href="/search/physics?searchtype=author&amp;query=Gayoso%2C+C+A">C. Ayerbe Gayoso</a>, <a href="/search/physics?searchtype=author&amp;query=Bae%2C+J">J. Bae</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+X">X. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Baker%2C+M+D">M. D. Baker</a>, <a href="/search/physics?searchtype=author&amp;query=Bashkanov%2C+M">M. Bashkanov</a>, <a href="/search/physics?searchtype=author&amp;query=Bellwied%2C+R">R. Bellwied</a>, <a href="/search/physics?searchtype=author&amp;query=Benmokhtar%2C+F">F. Benmokhtar</a>, <a href="/search/physics?searchtype=author&amp;query=Berdnikov%2C+V">V. Berdnikov</a>, <a href="/search/physics?searchtype=author&amp;query=Bock%2C+F">F. Bock</a>, <a href="/search/physics?searchtype=author&amp;query=Boeglin%2C+W">W. Boeglin</a>, <a href="/search/physics?searchtype=author&amp;query=Borysova%2C+M">M. Borysova</a>, <a href="/search/physics?searchtype=author&amp;query=Brash%2C+E">E. Brash</a> , et al. (256 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.08607v1-abstract-short" style="display: inline;"> The Electron Ion Collider (EIC) is the next generation of precision QCD facility to be built at Brookhaven National Laboratory in conjunction with Thomas Jefferson National Laboratory. There are a significant number of software and computing challenges that need to be overcome at the EIC. During the EIC detector proposal development period, the ECCE consortium began identifying and addressing thes&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.08607v1-abstract-full').style.display = 'inline'; document.getElementById('2205.08607v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.08607v1-abstract-full" style="display: none;"> The Electron Ion Collider (EIC) is the next generation of precision QCD facility to be built at Brookhaven National Laboratory in conjunction with Thomas Jefferson National Laboratory. There are a significant number of software and computing challenges that need to be overcome at the EIC. During the EIC detector proposal development period, the ECCE consortium began identifying and addressing these challenges in the process of producing a complete detector proposal based upon detailed detector and physics simulations. In this document, the software and computing efforts to produce this proposal are discussed; furthermore, the computing and software model and resources required for the future of ECCE are described. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.08607v1-abstract-full').style.display = 'none'; document.getElementById('2205.08607v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> NIMA 1047, 167859 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.01221">arXiv:2205.01221</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.01221">pdf</a>, <a href="https://arxiv.org/format/2205.01221">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41566-022-01105-9">10.1038/s41566-022-01105-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Resolution of 100 photons and quantum generation of unbiased random numbers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Eaton%2C+M">Miller Eaton</a>, <a href="/search/physics?searchtype=author&amp;query=Hossameldin%2C+A">Amr Hossameldin</a>, <a href="/search/physics?searchtype=author&amp;query=Birrittella%2C+R+J">Richard J. Birrittella</a>, <a href="/search/physics?searchtype=author&amp;query=Alsing%2C+P+M">Paul M. Alsing</a>, <a href="/search/physics?searchtype=author&amp;query=Gerry%2C+C+C">Christopher C. Gerry</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+H">Hai Dong</a>, <a href="/search/physics?searchtype=author&amp;query=Cuevas%2C+C">Chris Cuevas</a>, <a href="/search/physics?searchtype=author&amp;query=Pfister%2C+O">Olivier Pfister</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.01221v2-abstract-short" style="display: inline;"> Macroscopic quantum phenomena, such as observed in superfluids and superconductors, have led to promising technological advancements and some of the most important tests of fundamental physics. At present, quantum detection of light is mostly relegated to the microscale, where avalanche photodiodes are very sensitive to distinguishing single-photon events from vacuum but cannot differentiate betwe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.01221v2-abstract-full').style.display = 'inline'; document.getElementById('2205.01221v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.01221v2-abstract-full" style="display: none;"> Macroscopic quantum phenomena, such as observed in superfluids and superconductors, have led to promising technological advancements and some of the most important tests of fundamental physics. At present, quantum detection of light is mostly relegated to the microscale, where avalanche photodiodes are very sensitive to distinguishing single-photon events from vacuum but cannot differentiate between larger photon-number events. Beyond this, the ability to perform measurements to resolve photon numbers is highly desirable for a variety of quantum information applications including computation, sensing, and cryptography. True photon-number resolving detectors do exist, but they are currently limited to the ability to resolve on the order of 10 photons, which is too small for several quantum state generation methods based on heralded detection. In this work, we extend photon measurement into the mesoscopic regime by implementing a detection scheme based on multiplexing highly quantum-efficient transition-edge sensors to accurately resolve photon numbers between zero and 100. We then demonstrate the use of our system by implementing a quantum random number generator with no inherent bias. This method is based on sampling a coherent state in the photon-number basis and is robust against environmental noise, phase and amplitude fluctuations in the laser, loss and detector inefficiency as well as eavesdropping. Beyond true random number generation, our detection scheme serves as a means to implement quantum measurement and engineering techniques valuable for photonic quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.01221v2-abstract-full').style.display = 'none'; document.getElementById('2205.01221v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.03114">arXiv:2109.03114</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.03114">pdf</a>, <a href="https://arxiv.org/format/2109.03114">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.16.064006">10.1103/PhysRevApplied.16.064006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Deep learning for the modeling and inverse design of radiative heat transfer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Garc%C3%ADa-Esteban%2C+J+J">Juan Jos茅 Garc铆a-Esteban</a>, <a href="/search/physics?searchtype=author&amp;query=Bravo-Abad%2C+J">Jorge Bravo-Abad</a>, <a href="/search/physics?searchtype=author&amp;query=Cuevas%2C+J+C">Juan Carlos Cuevas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.03114v1-abstract-short" style="display: inline;"> Deep learning is having a tremendous impact in many areas of computer science and engineering. Motivated by this success, deep neural networks are attracting an increasing attention in many other disciplines, including physical sciences. In this work, we show that artificial neural networks can be successfully used in the theoretical modeling and analysis of a variety of radiative heat transfer ph&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.03114v1-abstract-full').style.display = 'inline'; document.getElementById('2109.03114v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.03114v1-abstract-full" style="display: none;"> Deep learning is having a tremendous impact in many areas of computer science and engineering. Motivated by this success, deep neural networks are attracting an increasing attention in many other disciplines, including physical sciences. In this work, we show that artificial neural networks can be successfully used in the theoretical modeling and analysis of a variety of radiative heat transfer phenomena and devices. By using a set of custom-designed numerical methods able to efficiently generate the required training datasets, we demonstrate this approach in the context of three very different problems, namely, (i) near-field radiative heat transfer between multilayer systems that form hyperbolic metamaterials, (ii) passive radiate cooling in photonic-crystal slab structures, and (iii) thermal emission of subwavelength objects. Despite their fundamental differences in nature, in all three cases we show that simple neural network architectures trained with datasets of moderate size can be used as fast and accurate surrogates for doing numerical simulations, as well as engines for solving inverse design and optimization in the context of radiative heat transfer. Overall, our work shows that deep learning and artificial neural networks provide a valuable and versatile toolkit for advancing the field of thermal radiation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.03114v1-abstract-full').style.display = 'none'; document.getElementById('2109.03114v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied. 16, 064006 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.05419">arXiv:2103.05419</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.05419">pdf</a>, <a href="https://arxiv.org/format/2103.05419">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysa.2022.122447">10.1016/j.nuclphysa.2022.122447 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Science Requirements and Detector Concepts for the Electron-Ion Collider: EIC Yellow Report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Khalek%2C+R+A">R. Abdul Khalek</a>, <a href="/search/physics?searchtype=author&amp;query=Accardi%2C+A">A. Accardi</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+J">J. Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Adamiak%2C+D">D. Adamiak</a>, <a href="/search/physics?searchtype=author&amp;query=Akers%2C+W">W. Akers</a>, <a href="/search/physics?searchtype=author&amp;query=Albaladejo%2C+M">M. Albaladejo</a>, <a href="/search/physics?searchtype=author&amp;query=Al-bataineh%2C+A">A. Al-bataineh</a>, <a href="/search/physics?searchtype=author&amp;query=Alexeev%2C+M+G">M. G. Alexeev</a>, <a href="/search/physics?searchtype=author&amp;query=Ameli%2C+F">F. Ameli</a>, <a href="/search/physics?searchtype=author&amp;query=Antonioli%2C+P">P. Antonioli</a>, <a href="/search/physics?searchtype=author&amp;query=Armesto%2C+N">N. Armesto</a>, <a href="/search/physics?searchtype=author&amp;query=Armstrong%2C+W+R">W. R. Armstrong</a>, <a href="/search/physics?searchtype=author&amp;query=Arratia%2C+M">M. Arratia</a>, <a href="/search/physics?searchtype=author&amp;query=Arrington%2C+J">J. Arrington</a>, <a href="/search/physics?searchtype=author&amp;query=Asaturyan%2C+A">A. Asaturyan</a>, <a href="/search/physics?searchtype=author&amp;query=Asai%2C+M">M. Asai</a>, <a href="/search/physics?searchtype=author&amp;query=Aschenauer%2C+E+C">E. C. Aschenauer</a>, <a href="/search/physics?searchtype=author&amp;query=Aune%2C+S">S. Aune</a>, <a href="/search/physics?searchtype=author&amp;query=Avagyan%2C+H">H. Avagyan</a>, <a href="/search/physics?searchtype=author&amp;query=Gayoso%2C+C+A">C. Ayerbe Gayoso</a>, <a href="/search/physics?searchtype=author&amp;query=Azmoun%2C+B">B. Azmoun</a>, <a href="/search/physics?searchtype=author&amp;query=Bacchetta%2C+A">A. Bacchetta</a>, <a href="/search/physics?searchtype=author&amp;query=Baker%2C+M+D">M. D. Baker</a>, <a href="/search/physics?searchtype=author&amp;query=Barbosa%2C+F">F. Barbosa</a>, <a href="/search/physics?searchtype=author&amp;query=Barion%2C+L">L. Barion</a> , et al. (390 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.05419v3-abstract-short" style="display: inline;"> This report describes the physics case, the resulting detector requirements, and the evolving detector concepts for the experimental program at the Electron-Ion Collider (EIC). The EIC will be a powerful new high-luminosity facility in the United States with the capability to collide high-energy electron beams with high-energy proton and ion beams, providing access to those regions in the nucleon&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.05419v3-abstract-full').style.display = 'inline'; document.getElementById('2103.05419v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.05419v3-abstract-full" style="display: none;"> This report describes the physics case, the resulting detector requirements, and the evolving detector concepts for the experimental program at the Electron-Ion Collider (EIC). The EIC will be a powerful new high-luminosity facility in the United States with the capability to collide high-energy electron beams with high-energy proton and ion beams, providing access to those regions in the nucleon and nuclei where their structure is dominated by gluons. Moreover, polarized beams in the EIC will give unprecedented access to the spatial and spin structure of the proton, neutron, and light ions. The studies leading to this document were commissioned and organized by the EIC User Group with the objective of advancing the state and detail of the physics program and developing detector concepts that meet the emerging requirements in preparation for the realization of the EIC. The effort aims to provide the basis for further development of concepts for experimental equipment best suited for the science needs, including the importance of two complementary detectors and interaction regions. This report consists of three volumes. Volume I is an executive summary of our findings and developed concepts. In Volume II we describe studies of a wide range of physics measurements and the emerging requirements on detector acceptance and performance. Volume III discusses general-purpose detector concepts and the underlying technologies to meet the physics requirements. These considerations will form the basis for a world-class experimental program that aims to increase our understanding of the fundamental structure of all visible matter <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.05419v3-abstract-full').style.display = 'none'; document.getElementById('2103.05419v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">902 pages, 415 authors, 151 institutions</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> BNL-220990-2021-FORE, JLAB-PHY-21-3198, LA-UR-21-20953 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl. Phys. A 1026 (2022) 122447 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.10026">arXiv:2011.10026</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.10026">pdf</a>, <a href="https://arxiv.org/format/2011.10026">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.15.024036">10.1103/PhysRevApplied.15.024036 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Normal Metal-Superconductor Near-Field Thermal Diodes and Transistors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Moncada-Villa%2C+E">E. Moncada-Villa</a>, <a href="/search/physics?searchtype=author&amp;query=Cuevas%2C+J+C">J. C. Cuevas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.10026v1-abstract-short" style="display: inline;"> In recent years there has been a number of proposals of thermal devices operating in the near-field regime that make use of phase-transition materials. Here, we present a theoretical study of near-field thermal diodes and transistors that combine superconducting materials with normal (non-superconducting) metals. To be precise, we show that a system formed by two parallel plates made of Nb and Au&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.10026v1-abstract-full').style.display = 'inline'; document.getElementById('2011.10026v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.10026v1-abstract-full" style="display: none;"> In recent years there has been a number of proposals of thermal devices operating in the near-field regime that make use of phase-transition materials. Here, we present a theoretical study of near-field thermal diodes and transistors that combine superconducting materials with normal (non-superconducting) metals. To be precise, we show that a system formed by two parallel plates made of Nb and Au can exhibit unprecedented rectification ratios very close to unity at temperatures around Nb superconducting critical temperature and for a wide range of gap size values within the near-field regime. Moreover, we also show that a superconducting Nb layer placed between Au plates can operate as a near-field thermal transistor where the amplification factor can be greatly tuned by varying different parameters such as the temperature and thickness of the Nb layer or the distance between the Nb layer and the Au plates. Overall, our work shows the potential of the use of superconductors for the realization of near-field thermal devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.10026v1-abstract-full').style.display = 'none'; document.getElementById('2011.10026v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 15, 024036 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.02794">arXiv:2010.02794</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.02794">pdf</a>, <a href="https://arxiv.org/format/2010.02794">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.075432">10.1103/PhysRevB.103.075432 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Near-field radiative heat transfer between one-dimensional magneto-photonic crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Moncada-Villa%2C+E">E. Moncada-Villa</a>, <a href="/search/physics?searchtype=author&amp;query=Cuevas%2C+J+C">J. C. Cuevas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.02794v1-abstract-short" style="display: inline;"> We present a theoretical study of the effect of an external dc magnetic field in the near-field radiative heat transfer between two one-dimensional magneto-photonic crystals with unit cells comprising a magneto-optical layer made of n-doped InSb and a dielectric layer. We find that in absence of an external field, and depending on the gap size, the radiative heat transfer between these multilayer&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.02794v1-abstract-full').style.display = 'inline'; document.getElementById('2010.02794v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.02794v1-abstract-full" style="display: none;"> We present a theoretical study of the effect of an external dc magnetic field in the near-field radiative heat transfer between two one-dimensional magneto-photonic crystals with unit cells comprising a magneto-optical layer made of n-doped InSb and a dielectric layer. We find that in absence of an external field, and depending on the gap size, the radiative heat transfer between these multilayer structures can be larger or smaller than that of the case of two InSb infinite plates. On the other hand, when an external magnetic field is applied, the near-field radiative heat transfer is reduced as a consequence of the suppression of hybridized surface polariton waves that are supported for transverse magnetic polarized light. We show that such reduction is exclusively due to the appearance of magnetic-field induced hyperbolic modes, and not to the polarization conversion in this magneto-optical system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.02794v1-abstract-full').style.display = 'none'; document.getElementById('2010.02794v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 075432 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.01120">arXiv:1911.01120</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.01120">pdf</a>, <a href="https://arxiv.org/format/1911.01120">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.085411">10.1103/PhysRevB.101.085411 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic field effects in the near-field radiative heat transfer between planar structures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Moncada-Villa%2C+E">Edwin Moncada-Villa</a>, <a href="/search/physics?searchtype=author&amp;query=Cuevas%2C+J+C">Juan Carlos Cuevas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.01120v1-abstract-short" style="display: inline;"> One of the main challenges in the field of thermal radiation is to actively control the near-field radiative heat transfer (NFRHT) between closely spaced bodies. In this context, the use of an external magnetic field has emerged as a very attractive possibility and a plethora of physical phenomena have been put forward in the last few years. Here, we predict some additional magnetic-field-induced&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.01120v1-abstract-full').style.display = 'inline'; document.getElementById('1911.01120v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.01120v1-abstract-full" style="display: none;"> One of the main challenges in the field of thermal radiation is to actively control the near-field radiative heat transfer (NFRHT) between closely spaced bodies. In this context, the use of an external magnetic field has emerged as a very attractive possibility and a plethora of physical phenomena have been put forward in the last few years. Here, we predict some additional magnetic-field-induced phenomena that can take place in the context of NFRHT between planar layered structures containing magneto-optical (MO) materials (mainly doped semiconductors like InSb). In particular, we predict the possibility of increasing the NFRHT upon applying an external magnetic field in an asymmetric structure consisting of two infinite plates made of InSb and Au. We also study the impact of a magnetic field in the NFRHT between structures containing MO thin films and show that the effect is more drastic than in their bulk counterparts. Finally, we systematically investigate the anisotropic thermal magnetoresistance, i.e., the dependence of the radiative heat conductance on the orientation of an external magnetic field, in the case of two infinite plates made of InSb and show that one can strongly modulate the NFRHT by simply changing the orientation of the magnetic field. All the phenomena predicted in this work can be experimentally tested with existent technology and provide a new insight into the topic of active control of NFRHT. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.01120v1-abstract-full').style.display = 'none'; document.getElementById('1911.01120v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 085411 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.03574">arXiv:1811.03574</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.03574">pdf</a>, <a href="https://arxiv.org/format/1811.03574">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/JOSAB.36.000935">10.1364/JOSAB.36.000935 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic-field controlled anomalous refraction in doped semiconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Moncada-Villa%2C+E">E. Moncada-Villa</a>, <a href="/search/physics?searchtype=author&amp;query=Fern%C3%A1ndez-Dom%C3%ADnguez%2C+A+I">A. I. Fern谩ndez-Dom铆nguez</a>, <a href="/search/physics?searchtype=author&amp;query=Cuevas%2C+J+C">J. C. Cuevas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.03574v1-abstract-short" style="display: inline;"> We predict here that a slab made of a doped semiconductor can exhibit anomalous refraction under the application of a static magnetic field. This anomalous refraction takes place in the far-infrared range and it occurs for any angle of incidence. We show that this effect is due to the fact that a doped semiconductor under a magnetic field can behave, to some extent, as a hyperbolic metamaterial. W&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.03574v1-abstract-full').style.display = 'inline'; document.getElementById('1811.03574v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.03574v1-abstract-full" style="display: none;"> We predict here that a slab made of a doped semiconductor can exhibit anomalous refraction under the application of a static magnetic field. This anomalous refraction takes place in the far-infrared range and it occurs for any angle of incidence. We show that this effect is due to the fact that a doped semiconductor under a magnetic field can behave, to some extent, as a hyperbolic metamaterial. We also show that the occurrence of this anomalous refraction enables a semiconductor slab under a magnetic field to partially focus the electromagnetic radiation. The remarkable thing in our case is that we deal with naturally occurring materials and the anomalous refraction can be tuned at will with an external field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.03574v1-abstract-full').style.display = 'none'; document.getElementById('1811.03574v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.09463">arXiv:1802.09463</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.09463">pdf</a>, <a href="https://arxiv.org/format/1802.09463">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Exploring the limits of super-Planckian far-field radiative heat transfer using 2D materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Fern%C3%A1ndez-Hurtado%2C+V">V铆ctor Fern谩ndez-Hurtado</a>, <a href="/search/physics?searchtype=author&amp;query=Fern%C3%A1ndez-Dom%C3%ADnguez%2C+A+I">Antonio I. Fern谩ndez-Dom铆nguez</a>, <a href="/search/physics?searchtype=author&amp;query=Feist%2C+J">Johannes Feist</a>, <a href="/search/physics?searchtype=author&amp;query=Garc%C3%ADa-Vidal%2C+F+J">Francisco J. Garc铆a-Vidal</a>, <a href="/search/physics?searchtype=author&amp;query=Cuevas%2C+J+C">Juan Carlos Cuevas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.09463v1-abstract-short" style="display: inline;"> Very recently it has been predicted that the far-field radiative heat transfer between two macroscopic systems can largely overcome the limit set by Planck&#39;s law if one of their dimensions becomes much smaller than the thermal wavelength ($位_{\rm Th} \approx 10\, 渭$m at room temperature). To explore the ultimate limit of the far-field violation of Planck&#39;s law, here we present a theoretical study&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.09463v1-abstract-full').style.display = 'inline'; document.getElementById('1802.09463v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.09463v1-abstract-full" style="display: none;"> Very recently it has been predicted that the far-field radiative heat transfer between two macroscopic systems can largely overcome the limit set by Planck&#39;s law if one of their dimensions becomes much smaller than the thermal wavelength ($位_{\rm Th} \approx 10\, 渭$m at room temperature). To explore the ultimate limit of the far-field violation of Planck&#39;s law, here we present a theoretical study of the radiative heat transfer between two-dimensional (2D) materials. We show that the far-field thermal radiation exchanged by two coplanar systems with a one-atom-thick geometrical cross section can be more than 7 orders of magnitude larger than the theoretical limit set by Planck&#39;s law for blackbodies and can be comparable to the heat transfer of two parallel sheets at the same distance. In particular, we illustrate this phenomenon with different materials such as graphene, where the radiation can also be tuned by a external gate, and single-layer black phosphorus. In both cases the far-field radiative heat transfer is dominated by TE-polarized guiding modes and surface plasmons play no role. Our predictions provide a new insight into the thermal radiation exchange mechanisms between 2D materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.09463v1-abstract-full').style.display = 'none'; document.getElementById('1802.09463v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.06978">arXiv:1709.06978</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.06978">pdf</a>, <a href="https://arxiv.org/format/1709.06978">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Anisotropic thermal magnetoresistance for an active control of radiative heat transfer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ekeroth%2C+R+M+A">R. M. Abraham Ekeroth</a>, <a href="/search/physics?searchtype=author&amp;query=Ben-Abdallah%2C+P">Philippe Ben-Abdallah</a>, <a href="/search/physics?searchtype=author&amp;query=Cuevas%2C+J+C">Juan Carlos Cuevas</a>, <a href="/search/physics?searchtype=author&amp;query=Garc%C3%ADa-Mart%C3%ADn%2C+A">Antonio Garc铆a-Mart铆n</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.06978v1-abstract-short" style="display: inline;"> We predict a huge anisotropic thermal magnetoresistance (ATMR) in the near-field radiative heat transfer between magneto-optical particles when the direction of an external magnetic field is changed with respect to the heat current direction. We illustrate this effect with the case of two InSb spherical particles where we find that the ATMR amplitude can reach values of up to 800% for a magnetic f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.06978v1-abstract-full').style.display = 'inline'; document.getElementById('1709.06978v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.06978v1-abstract-full" style="display: none;"> We predict a huge anisotropic thermal magnetoresistance (ATMR) in the near-field radiative heat transfer between magneto-optical particles when the direction of an external magnetic field is changed with respect to the heat current direction. We illustrate this effect with the case of two InSb spherical particles where we find that the ATMR amplitude can reach values of up to 800% for a magnetic field of 5 T, which is many orders of magnitude larger than its spintronic analogue in electronic devices. This thermomagnetic effect could find broad applications in the fields of ultrafast thermal management as well as magnetic and thermal remote sensing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.06978v1-abstract-full').style.display = 'none'; document.getElementById('1709.06978v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.06191">arXiv:1708.06191</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1708.06191">pdf</a>, <a href="https://arxiv.org/format/1708.06191">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.97.045408">10.1103/PhysRevB.97.045408 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Super-Planckian Far-Field Radiative Heat Transfer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Fern%C3%A1ndez-Hurtado%2C+V">V铆ctor Fern谩ndez-Hurtado</a>, <a href="/search/physics?searchtype=author&amp;query=Fern%C3%A1ndez-Dom%C3%ADnguez%2C+A+I">Antonio I. Fern谩ndez-Dom铆nguez</a>, <a href="/search/physics?searchtype=author&amp;query=Feist%2C+J">Johannes Feist</a>, <a href="/search/physics?searchtype=author&amp;query=Garc%C3%ADa-Vidal%2C+F+J">Francisco J. Garc铆a-Vidal</a>, <a href="/search/physics?searchtype=author&amp;query=Cuevas%2C+J+C">Juan Carlos Cuevas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.06191v1-abstract-short" style="display: inline;"> We present a theoretical analysis that demonstrates that the far-field radiative heat transfer between objects with dimensions smaller than the thermal wavelength can overcome the Planckian limit by orders of magnitude. We illustrate this phenomenon with micron-sized structures that can be readily fabricated and tested with existing technology. Our work shows the dramatic failure of the classical&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.06191v1-abstract-full').style.display = 'inline'; document.getElementById('1708.06191v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.06191v1-abstract-full" style="display: none;"> We present a theoretical analysis that demonstrates that the far-field radiative heat transfer between objects with dimensions smaller than the thermal wavelength can overcome the Planckian limit by orders of magnitude. We illustrate this phenomenon with micron-sized structures that can be readily fabricated and tested with existing technology. Our work shows the dramatic failure of the classical theory to predict the far-field radiative heat transfer between micro- and nano-devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.06191v1-abstract-full').style.display = 'none'; document.getElementById('1708.06191v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, supplemental material available upon request</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 97, 045408 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.04273">arXiv:1702.04273</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1702.04273">pdf</a>, <a href="https://arxiv.org/format/1702.04273">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.95.235428">10.1103/PhysRevB.95.235428 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermal discrete dipole approximation for the description of thermal emission and radiative heat transfer of magneto-optical systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ekeroth%2C+R+M+A">R. M. Abraham Ekeroth</a>, <a href="/search/physics?searchtype=author&amp;query=Garc%C3%ADa-Mart%C3%ADn%2C+A">Antonio Garc铆a-Mart铆n</a>, <a href="/search/physics?searchtype=author&amp;query=Cuevas%2C+J+C">Juan Carlos Cuevas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.04273v2-abstract-short" style="display: inline;"> We present here a generalization of the thermal discrete dipole approximation (TDDA) that allows us to describe the near-field radiative heat transfer between finite objects of arbitrary shape that exhibit magneto-optical (MO) activity. We also extend the TDDA approach to describe the thermal emission of a finite object with and without MO activity. Our method is also valid for optically anisotrop&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.04273v2-abstract-full').style.display = 'inline'; document.getElementById('1702.04273v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.04273v2-abstract-full" style="display: none;"> We present here a generalization of the thermal discrete dipole approximation (TDDA) that allows us to describe the near-field radiative heat transfer between finite objects of arbitrary shape that exhibit magneto-optical (MO) activity. We also extend the TDDA approach to describe the thermal emission of a finite object with and without MO activity. Our method is also valid for optically anisotropic materials described by an arbitrary permittivity tensor and we provide simple closed formulas for the basic thermal quantities that considerably simplify the implementation of TDDA method. Moreover, we show that employing our TDDA approach one can rigorously demonstrate Kirchhoff&#39;s radiation law relating the emissivity and absorptivity of an arbitrary MO object. Our work paves the way for the theoretical study of the active control of emission and radiative heat transfer between MO systems of arbitrary size and shape. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.04273v2-abstract-full').style.display = 'none'; document.getElementById('1702.04273v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 95, 235428 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1701.02986">arXiv:1701.02986</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1701.02986">pdf</a>, <a href="https://arxiv.org/format/1701.02986">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.118.203901">10.1103/PhysRevLett.118.203901 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Enhancing Near-Field Radiative Heat Transfer with Si-based Metasurfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Fern%C3%A1ndez-Hurtado%2C+V">V铆ctor Fern谩ndez-Hurtado</a>, <a href="/search/physics?searchtype=author&amp;query=Garcia-Vidal%2C+F+J">Francisco J. Garcia-Vidal</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+S">Shanhui Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Cuevas%2C+J+C">Juan Carlos Cuevas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1701.02986v1-abstract-short" style="display: inline;"> We demonstrate in this work that the use of metasurfaces provides a viable strategy to largely tune and enhance near-field radiative heat transfer between extended structures. In particular, using a rigorous coupled wave analysis, we predict that Si-based metasurfaces featuring two-dimensional periodic arrays of holes can exhibit a room-temperature near-field radiative heat conductance much larger&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.02986v1-abstract-full').style.display = 'inline'; document.getElementById('1701.02986v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1701.02986v1-abstract-full" style="display: none;"> We demonstrate in this work that the use of metasurfaces provides a viable strategy to largely tune and enhance near-field radiative heat transfer between extended structures. In particular, using a rigorous coupled wave analysis, we predict that Si-based metasurfaces featuring two-dimensional periodic arrays of holes can exhibit a room-temperature near-field radiative heat conductance much larger than any unstructured material to date. We show that this enhancement, which takes place in a broad range of separations, relies on the possibility to largely tune the properties of the surface plasmon polaritons that dominate the radiative heat transfer in the near-field regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.02986v1-abstract-full').style.display = 'none'; document.getElementById('1701.02986v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 118, 203901 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.08877">arXiv:1606.08877</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1606.08877">pdf</a>, <a href="https://arxiv.org/ps/1606.08877">ps</a>, <a href="https://arxiv.org/format/1606.08877">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.116.214801">10.1103/PhysRevLett.116.214801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Production of highly-polarized positrons using polarized electrons at MeV energies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Abbott%2C+D">D. Abbott</a>, <a href="/search/physics?searchtype=author&amp;query=Adderley%2C+P">P. Adderley</a>, <a href="/search/physics?searchtype=author&amp;query=Adeyemi%2C+A">A. Adeyemi</a>, <a href="/search/physics?searchtype=author&amp;query=Aguilera%2C+P">P. Aguilera</a>, <a href="/search/physics?searchtype=author&amp;query=Ali%2C+M">M. Ali</a>, <a href="/search/physics?searchtype=author&amp;query=Areti%2C+H">H. Areti</a>, <a href="/search/physics?searchtype=author&amp;query=Baylac%2C+M">M. Baylac</a>, <a href="/search/physics?searchtype=author&amp;query=Benesch%2C+J">J. Benesch</a>, <a href="/search/physics?searchtype=author&amp;query=Bosson%2C+G">G. Bosson</a>, <a href="/search/physics?searchtype=author&amp;query=Cade%2C+B">B. Cade</a>, <a href="/search/physics?searchtype=author&amp;query=Camsonne%2C+A">A. Camsonne</a>, <a href="/search/physics?searchtype=author&amp;query=Cardman%2C+L+S">L. S. Cardman</a>, <a href="/search/physics?searchtype=author&amp;query=Clark%2C+J">J. Clark</a>, <a href="/search/physics?searchtype=author&amp;query=Cole%2C+P">P. Cole</a>, <a href="/search/physics?searchtype=author&amp;query=Covert%2C+S">S. Covert</a>, <a href="/search/physics?searchtype=author&amp;query=Cuevas%2C+C">C. Cuevas</a>, <a href="/search/physics?searchtype=author&amp;query=Dadoun%2C+O">O. Dadoun</a>, <a href="/search/physics?searchtype=author&amp;query=Dale%2C+D">D. Dale</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+H">H. Dong</a>, <a href="/search/physics?searchtype=author&amp;query=Dumas%2C+J">J. Dumas</a>, <a href="/search/physics?searchtype=author&amp;query=Fanchini%2C+E">E. Fanchini</a>, <a href="/search/physics?searchtype=author&amp;query=Forest%2C+T">T. Forest</a>, <a href="/search/physics?searchtype=author&amp;query=Forman%2C+E">E. Forman</a>, <a href="/search/physics?searchtype=author&amp;query=Freyberger%2C+A">A. Freyberger</a>, <a href="/search/physics?searchtype=author&amp;query=Froidefond%2C+E">E. Froidefond</a> , et al. (40 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.08877v1-abstract-short" style="display: inline;"> The Polarized Electrons for Polarized Positrons experiment at the injector of the Continuous Electron Beam Accelerator Facility has demonstrated for the first time the efficient transfer of polarization from electrons to positrons produced by the polarized bremsstrahlung radiation induced by a polarized electron beam in a high-$Z$ target. Positron polarization up to 82\% have been measured for an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.08877v1-abstract-full').style.display = 'inline'; document.getElementById('1606.08877v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.08877v1-abstract-full" style="display: none;"> The Polarized Electrons for Polarized Positrons experiment at the injector of the Continuous Electron Beam Accelerator Facility has demonstrated for the first time the efficient transfer of polarization from electrons to positrons produced by the polarized bremsstrahlung radiation induced by a polarized electron beam in a high-$Z$ target. Positron polarization up to 82\% have been measured for an initial electron beam momentum of 8.19~MeV/$c$, limited only by the electron beam polarization. This technique extends polarized positron capabilities from GeV to MeV electron beams, and opens access to polarized positron beam physics to a wide community. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.08877v1-abstract-full').style.display = 'none'; document.getElementById('1606.08877v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 116 (2016) 214801 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1506.06060">arXiv:1506.06060</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1506.06060">pdf</a>, <a href="https://arxiv.org/format/1506.06060">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.92.125418">10.1103/PhysRevB.92.125418 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic-field control of near-field radiative heat transfer and the realization of highly tunable hyperbolic thermal emitters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Moncada-Villa%2C+E">Edwin Moncada-Villa</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez-Hurtado%2C+V">Victor Fernandez-Hurtado</a>, <a href="/search/physics?searchtype=author&amp;query=Garcia-Vidal%2C+F+J">Francisco J. Garcia-Vidal</a>, <a href="/search/physics?searchtype=author&amp;query=Garcia-Martin%2C+A">Antonio Garcia-Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Cuevas%2C+J+C">Juan Carlos Cuevas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1506.06060v1-abstract-short" style="display: inline;"> We present a comprehensive theoretical study of the magnetic field dependence of the near-field radiative heat transfer (NFRHT) between two parallel plates. We show that when the plates are made of doped semiconductors, the near-field thermal radiation can be severely affected by the application of a static magnetic field. We find that irrespective of its direction, the presence of a magnetic fiel&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.06060v1-abstract-full').style.display = 'inline'; document.getElementById('1506.06060v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1506.06060v1-abstract-full" style="display: none;"> We present a comprehensive theoretical study of the magnetic field dependence of the near-field radiative heat transfer (NFRHT) between two parallel plates. We show that when the plates are made of doped semiconductors, the near-field thermal radiation can be severely affected by the application of a static magnetic field. We find that irrespective of its direction, the presence of a magnetic field reduces the radiative heat conductance, and dramatic reductions up to 700% can be found with fields of about 6 T at room temperature. We show that this striking behavior is due to the fact that the magnetic field radically changes the nature of the NFRHT. The field not only affects the electromagnetic surface waves (both plasmons and phonon polaritons) that normally dominate the near-field radiation in doped semiconductors, but it also induces hyperbolic modes that progressively dominate the heat transfer as the field increases. In particular, we show that when the field is perpendicular to the plates, the semiconductors become ideal hyperbolic near-field emitters. More importantly, by changing the magnetic field, the system can be continuously tuned from a situation where the surface waves dominate the heat transfer to a situation where hyperbolic modes completely govern the near-field thermal radiation. We show that this high tunability can be achieved with accessible magnetic fields and very common materials like n-doped InSb or Si. Our study paves the way for an active control of NFRHT and it opens the possibility to study unique hyperbolic thermal emitters without the need to resort to complicated metamaterials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.06060v1-abstract-full').style.display = 'none'; document.getElementById('1506.06060v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 92, 125418 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1408.5472">arXiv:1408.5472</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1408.5472">pdf</a>, <a href="https://arxiv.org/format/1408.5472">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.90.085120">10.1103/PhysRevB.90.085120 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Extraordinary transverse magneto-optical Kerr effect in a superlens </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Moncada-Villa%2C+E">E. Moncada-Villa</a>, <a href="/search/physics?searchtype=author&amp;query=Garcia-Martin%2C+A">A. Garcia-Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Cuevas%2C+J+C">J. C. Cuevas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1408.5472v1-abstract-short" style="display: inline;"> It has been shown that a slab of a negative index material can behave as a superlens enhancing the imaging resolution beyond the wavelength limit. We show here that if such a slab possesses in addition some magneto-optical activity, it could act as an ideal optical filter and exhibit an extraordinary transverse magneto-optical Kerr effect. Moreover, we show that losses, which spoil the imaging res&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.5472v1-abstract-full').style.display = 'inline'; document.getElementById('1408.5472v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1408.5472v1-abstract-full" style="display: none;"> It has been shown that a slab of a negative index material can behave as a superlens enhancing the imaging resolution beyond the wavelength limit. We show here that if such a slab possesses in addition some magneto-optical activity, it could act as an ideal optical filter and exhibit an extraordinary transverse magneto-optical Kerr effect. Moreover, we show that losses, which spoil the imaging resolution of these lenses, are a necessary ingredient to observe this effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.5472v1-abstract-full').style.display = 'none'; document.getElementById('1408.5472v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 90, 085120 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1406.6115">arXiv:1406.6115</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1406.6115">pdf</a>, <a href="https://arxiv.org/format/1406.6115">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2014.12.017">10.1016/j.nima.2014.12.017 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Heavy Photon Search Test Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Battaglieri%2C+M">Marco Battaglieri</a>, <a href="/search/physics?searchtype=author&amp;query=Boyarinov%2C+S">Sergey Boyarinov</a>, <a href="/search/physics?searchtype=author&amp;query=Bueltmann%2C+S">Stephen Bueltmann</a>, <a href="/search/physics?searchtype=author&amp;query=Burkert%2C+V">Volker Burkert</a>, <a href="/search/physics?searchtype=author&amp;query=Celentano%2C+A">Andrea Celentano</a>, <a href="/search/physics?searchtype=author&amp;query=Charles%2C+G">Gabriel Charles</a>, <a href="/search/physics?searchtype=author&amp;query=Cooper%2C+W">William Cooper</a>, <a href="/search/physics?searchtype=author&amp;query=Cuevas%2C+C">Chris Cuevas</a>, <a href="/search/physics?searchtype=author&amp;query=Dashyan%2C+N">Natalia Dashyan</a>, <a href="/search/physics?searchtype=author&amp;query=DeVita%2C+R">Raffaella DeVita</a>, <a href="/search/physics?searchtype=author&amp;query=Desnault%2C+C">Camille Desnault</a>, <a href="/search/physics?searchtype=author&amp;query=Deur%2C+A">Alexandre Deur</a>, <a href="/search/physics?searchtype=author&amp;query=Egiyan%2C+H">Hovanes Egiyan</a>, <a href="/search/physics?searchtype=author&amp;query=Elouadrhiri%2C+L">Latifa Elouadrhiri</a>, <a href="/search/physics?searchtype=author&amp;query=Essig%2C+R">Rouven Essig</a>, <a href="/search/physics?searchtype=author&amp;query=Fadeyev%2C+V">Vitaliy Fadeyev</a>, <a href="/search/physics?searchtype=author&amp;query=Field%2C+C">Clive Field</a>, <a href="/search/physics?searchtype=author&amp;query=Freyberger%2C+A">Arne Freyberger</a>, <a href="/search/physics?searchtype=author&amp;query=Gershtein%2C+Y">Yuri Gershtein</a>, <a href="/search/physics?searchtype=author&amp;query=Gevorgyan%2C+N">Nerses Gevorgyan</a>, <a href="/search/physics?searchtype=author&amp;query=Girod%2C+F">Francois-Xavier Girod</a>, <a href="/search/physics?searchtype=author&amp;query=Graf%2C+N">Norman Graf</a>, <a href="/search/physics?searchtype=author&amp;query=Graham%2C+M">Mathew Graham</a>, <a href="/search/physics?searchtype=author&amp;query=Griffioen%2C+K">Keith Griffioen</a>, <a href="/search/physics?searchtype=author&amp;query=Grillo%2C+A">Alexander Grillo</a> , et al. (39 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1406.6115v3-abstract-short" style="display: inline;"> The Heavy Photon Search (HPS), an experiment to search for a hidden sector photon in fixed target electroproduction, is preparing for installation at the Thomas Jefferson National Accelerator Facility (JLab) in the Fall of 2014. As the first stage of this project, the HPS Test Run apparatus was constructed and operated in 2012 to demonstrate the experiment&#39;s technical feasibility and to confirm th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1406.6115v3-abstract-full').style.display = 'inline'; document.getElementById('1406.6115v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1406.6115v3-abstract-full" style="display: none;"> The Heavy Photon Search (HPS), an experiment to search for a hidden sector photon in fixed target electroproduction, is preparing for installation at the Thomas Jefferson National Accelerator Facility (JLab) in the Fall of 2014. As the first stage of this project, the HPS Test Run apparatus was constructed and operated in 2012 to demonstrate the experiment&#39;s technical feasibility and to confirm that the trigger rates and occupancies are as expected. This paper describes the HPS Test Run apparatus and readout electronics and its performance. In this setting, a heavy photon can be identified as a narrow peak in the e$^+$e$^-$ invariant mass spectrum, above the trident background or as a narrow invariant mass peak with a decay vertex displaced from the production target, so charged particle tracking and vertexing are needed for its detection. In the HPS Test Run, charged particles are measured with a compact forward silicon microstrip tracker inside a dipole magnet. Electromagnetic showers are detected in a PbW0$_{4}$ crystal calorimeter situated behind the magnet, and are used to trigger the experiment and identify electrons and positrons. Both detectors are placed close to the beam line and split top-bottom. This arrangement provides sensitivity to low-mass heavy photons, allows clear passage of the unscattered beam, and avoids the spray of degraded electrons coming from the target. The discrimination between prompt and displaced e$^+$e$^-$ pairs requires the first layer of silicon sensors be placed only 10~cm downstream of the target. The expected signal is small, and the trident background huge, so the experiment requires very large statistics. Accordingly, the HPS Test Run utilizes high-rate readout and data acquisition electronics and a fast trigger to exploit the essentially 100% duty cycle of the CEBAF accelerator at JLab. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1406.6115v3-abstract-full').style.display = 'none'; document.getElementById('1406.6115v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 June, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Revised version to match published version, 16 pages, 18 figures, published in Nuclear Instruments and Methods in Physics Research Section A, editor: Per Hansson Adrian</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> SLAC-PUB-15999 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nuclear Inst. and Methods in Physics Research, A Volume 777, 21 March 2015, Pages 91-101, ISSN 0168-9002 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1207.3697">arXiv:1207.3697</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1207.3697">pdf</a>, <a href="https://arxiv.org/ps/1207.3697">ps</a>, <a href="https://arxiv.org/format/1207.3697">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4742931">10.1063/1.4742931 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Influence of the magnetic field on the plasmonic properties of transparent Ni anti-dot arrays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Melander%2C+E">Emil Melander</a>, <a href="/search/physics?searchtype=author&amp;query=%C3%96stman%2C+E">Erik 脰stman</a>, <a href="/search/physics?searchtype=author&amp;query=Keller%2C+J">Janine Keller</a>, <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+J">Jan Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Papaioannou%2C+E+T">Evangelos Th. Papaioannou</a>, <a href="/search/physics?searchtype=author&amp;query=Kapaklis%2C+V">Vassilios Kapaklis</a>, <a href="/search/physics?searchtype=author&amp;query=Arnalds%2C+U+B">Unnar B. Arnalds</a>, <a href="/search/physics?searchtype=author&amp;query=Caballero%2C+B">B. Caballero</a>, <a href="/search/physics?searchtype=author&amp;query=Garc%C3%ADa-Mart%C3%ADn%2C+A">A. Garc铆a-Mart铆n</a>, <a href="/search/physics?searchtype=author&amp;query=Cuevas%2C+J+C">J. C. Cuevas</a>, <a href="/search/physics?searchtype=author&amp;query=Hj%C3%B6rvarsson%2C+B">Bj枚rgvin Hj枚rvarsson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1207.3697v1-abstract-short" style="display: inline;"> Extraordinary optical transmission is observed due to the excitation of surface plasmon polaritons (SPPs) in 2-Dimensional hexagonal anti-dot patterns of pure Ni thin films, grown on sapphire substrates. A strong enhancement of the polar Kerr rotation is recorded at the surface plasmon related transmission maximum. Angular resolved reflectivity measurements under an applied field, reveal an enhanc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1207.3697v1-abstract-full').style.display = 'inline'; document.getElementById('1207.3697v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1207.3697v1-abstract-full" style="display: none;"> Extraordinary optical transmission is observed due to the excitation of surface plasmon polaritons (SPPs) in 2-Dimensional hexagonal anti-dot patterns of pure Ni thin films, grown on sapphire substrates. A strong enhancement of the polar Kerr rotation is recorded at the surface plasmon related transmission maximum. Angular resolved reflectivity measurements under an applied field, reveal an enhancement and a shift of the normalized reflectivity difference upon reversal of the magnetic saturation (transverse magneto-optical Kerr effect-TMOKE). The change of the TMOKE signal clearly shows the magnetic field modulation of the dispersion relation of SPPs launched in a 2D patterned ferromagnetic Ni film. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1207.3697v1-abstract-full').style.display = 'none'; document.getElementById('1207.3697v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Applied Physics Letters, 101, 063107 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1202.1465">arXiv:1202.1465</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1202.1465">pdf</a>, <a href="https://arxiv.org/ps/1202.1465">ps</a>, <a href="https://arxiv.org/format/1202.1465">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.85.245103">10.1103/PhysRevB.85.245103 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Generalized scattering-matrix approach for magneto-optics in periodically patterned multilayer systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Caballero%2C+B">B. Caballero</a>, <a href="/search/physics?searchtype=author&amp;query=Garcia-Martin%2C+A">A. Garcia-Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Cuevas%2C+J+C">J. C. Cuevas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1202.1465v1-abstract-short" style="display: inline;"> We present here a generalization of the scattering-matrix approach for the description of the propagation of electromagnetic waves in nanostructured magneto-optical systems. Our formalism allows us to describe all the key magneto-optical effects in any configuration in periodically patterned multilayer structures. The method can also be applied to describe periodic multilayer systems comprising ma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1202.1465v1-abstract-full').style.display = 'inline'; document.getElementById('1202.1465v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1202.1465v1-abstract-full" style="display: none;"> We present here a generalization of the scattering-matrix approach for the description of the propagation of electromagnetic waves in nanostructured magneto-optical systems. Our formalism allows us to describe all the key magneto-optical effects in any configuration in periodically patterned multilayer structures. The method can also be applied to describe periodic multilayer systems comprising materials with any type of optical anisotropy. We illustrate the method with the analysis of a recent experiment in which the transverse magneto-optical Kerr effect was measured in a Fe film with a periodic array of subwavelength circular holes. We show, in agreement with the experiments, that the excitation of surface plasmon polaritons in this system leads to a resonant enhancement of the transverse magneto-optical Kerr effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1202.1465v1-abstract-full').style.display = 'none'; document.getElementById('1202.1465v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures, submitted to Physical Review B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 85, 245103 (2012) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10