CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 99 results for author: <span class="mathjax">Dong, H</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Dong%2C+H">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Dong, H"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Dong%2C+H&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Dong, H"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Dong%2C+H&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Dong%2C+H&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Dong%2C+H&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.16807">arXiv:2411.16807</a> <span> [<a href="https://arxiv.org/pdf/2411.16807">pdf</a>, <a href="https://arxiv.org/format/2411.16807">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> ADAF: An Artificial Intelligence Data Assimilation Framework for Weather Forecasting </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xiang%2C+Y">Yanfei Xiang</a>, <a href="/search/physics?searchtype=author&query=Jin%2C+W">Weixin Jin</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+H">Haiyu Dong</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+M">Mingliang Bai</a>, <a href="/search/physics?searchtype=author&query=Fang%2C+Z">Zuliang Fang</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+P">Pengcheng Zhao</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+H">Hongyu Sun</a>, <a href="/search/physics?searchtype=author&query=Thambiratnam%2C+K">Kit Thambiratnam</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+X">Xiaomeng Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.16807v1-abstract-short" style="display: inline;"> The forecasting skill of numerical weather prediction (NWP) models critically depends on the accurate initial conditions, also known as analysis, provided by data assimilation (DA). Traditional DA methods often face a trade-off between computational cost and accuracy due to complex linear algebra computations and the high dimensionality of the model, especially in nonlinear systems. Moreover, proc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16807v1-abstract-full').style.display = 'inline'; document.getElementById('2411.16807v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.16807v1-abstract-full" style="display: none;"> The forecasting skill of numerical weather prediction (NWP) models critically depends on the accurate initial conditions, also known as analysis, provided by data assimilation (DA). Traditional DA methods often face a trade-off between computational cost and accuracy due to complex linear algebra computations and the high dimensionality of the model, especially in nonlinear systems. Moreover, processing massive data in real-time requires substantial computational resources. To address this, we introduce an artificial intelligence-based data assimilation framework (ADAF) to generate high-quality kilometer-scale analysis. This study is the pioneering work using real-world observations from varied locations and multiple sources to verify the AI method's efficacy in DA, including sparse surface weather observations and satellite imagery. We implemented ADAF for four near-surface variables in the Contiguous United States (CONUS). The results indicate that ADAF surpasses the High Resolution Rapid Refresh Data Assimilation System (HRRRDAS) in accuracy by 16% to 33% for near-surface atmospheric conditions, aligning more closely with actual observations, and can effectively reconstruct extreme events, such as tropical cyclone wind fields. Sensitivity experiments reveal that ADAF can generate high-quality analysis even with low-accuracy backgrounds and extremely sparse surface observations. ADAF can assimilate massive observations within a three-hour window at low computational cost, taking about two seconds on an AMD MI200 graphics processing unit (GPU). ADAF has been shown to be efficient and effective in real-world DA, underscoring its potential role in operational weather forecasting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16807v1-abstract-full').style.display = 'none'; document.getElementById('2411.16807v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13943">arXiv:2411.13943</a> <span> [<a href="https://arxiv.org/pdf/2411.13943">pdf</a>, <a href="https://arxiv.org/format/2411.13943">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Independent Optical Frequency Combs Powered 546 km Field Test of Twin-Field Quantum Key Distribution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhou%2C+L">Lai Zhou</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+J">Jinping Lin</a>, <a href="/search/physics?searchtype=author&query=Ge%2C+C">Chengfang Ge</a>, <a href="/search/physics?searchtype=author&query=Fan%2C+Y">Yuanbin Fan</a>, <a href="/search/physics?searchtype=author&query=Yuan%2C+Z">Zhiliang Yuan</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+H">Hao Dong</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yang Liu</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+D">Di Ma</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+J">Jiu-Peng Chen</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+C">Cong Jiang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xiang-Bin Wang</a>, <a href="/search/physics?searchtype=author&query=You%2C+L">Li-Xing You</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Q">Qiang Zhang</a>, <a href="/search/physics?searchtype=author&query=Pan%2C+J">Jian-Wei Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13943v1-abstract-short" style="display: inline;"> Owing to its repeater-like rate-loss scaling, twin-field quantum key distribution (TF-QKD) has repeatedly exhibited in laboratory its superiority for secure communication over record fiber lengths. Field trials pose a new set of challenges however, which must be addressed before the technology's roll-out into real-world. Here, we verify in field the viability of using independent optical frequency… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13943v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13943v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13943v1-abstract-full" style="display: none;"> Owing to its repeater-like rate-loss scaling, twin-field quantum key distribution (TF-QKD) has repeatedly exhibited in laboratory its superiority for secure communication over record fiber lengths. Field trials pose a new set of challenges however, which must be addressed before the technology's roll-out into real-world. Here, we verify in field the viability of using independent optical frequency combs -- installed at sites separated by a straight-line distance of 300~km -- to achieve a versatile TF-QKD setup that has no need for optical frequency dissemination and thus enables an open and network-friendly fiber configuration. Over 546 and 603 km symmetric links, we record a finite-size secure key rate (SKR) of 0.53~bit/s and an asymptotic SKR of 0.12 bit/s, respectively. Of practical importance, the setup is demonstrated to support 44~km fiber asymmetry in the 452 km link. Our work marks an important step towards incorporation of long-haul fiber links into large quantum networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13943v1-abstract-full').style.display = 'none'; document.getElementById('2411.13943v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in Physical Review Applied</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.02032">arXiv:2411.02032</a> <span> [<a href="https://arxiv.org/pdf/2411.02032">pdf</a>, <a href="https://arxiv.org/format/2411.02032">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Time-multiplexed Reservoir Computing with Quantum-Dot Lasers: Does more complexity lead to better performance? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Dong%2C+H">Huifang Dong</a>, <a href="/search/physics?searchtype=author&query=Jaurigue%2C+L">Lina Jaurigue</a>, <a href="/search/physics?searchtype=author&query=L%C3%BCdge%2C+K">Kathy L眉dge</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.02032v1-abstract-short" style="display: inline;"> Reservoir computing with optical devices offers an energy-efficient approach for time-series forecasting. Quantum dot lasers with feedback are modelled in this paper to explore the extent to which increased complexity in the charge carrier dynamics within the nanostructured semiconductor can enhance the prediction performance. By tuning the scattering interactions, the laser's dynamics and respons… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02032v1-abstract-full').style.display = 'inline'; document.getElementById('2411.02032v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.02032v1-abstract-full" style="display: none;"> Reservoir computing with optical devices offers an energy-efficient approach for time-series forecasting. Quantum dot lasers with feedback are modelled in this paper to explore the extent to which increased complexity in the charge carrier dynamics within the nanostructured semiconductor can enhance the prediction performance. By tuning the scattering interactions, the laser's dynamics and response time can be finely adjusted, allowing for a systematic investigation. It is found that both system response time and task requirements need to be considered to find optimal operation conditions. Further, lasers with pronounced relaxation oscillations outperform those with strongly damped dynamics, even if the underlying charge carrier dynamics is more complex. This demonstrates that optimal reservoir computing performance relies not only on internal complexity but also on the effective utilization of these dynamics through the output sampling process. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02032v1-abstract-full').style.display = 'none'; document.getElementById('2411.02032v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.09371">arXiv:2409.09371</a> <span> [<a href="https://arxiv.org/pdf/2409.09371">pdf</a>, <a href="https://arxiv.org/format/2409.09371">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> WeatherReal: A Benchmark Based on In-Situ Observations for Evaluating Weather Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Jin%2C+W">Weixin Jin</a>, <a href="/search/physics?searchtype=author&query=Weyn%2C+J">Jonathan Weyn</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+P">Pengcheng Zhao</a>, <a href="/search/physics?searchtype=author&query=Xiang%2C+S">Siqi Xiang</a>, <a href="/search/physics?searchtype=author&query=Bian%2C+J">Jiang Bian</a>, <a href="/search/physics?searchtype=author&query=Fang%2C+Z">Zuliang Fang</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+H">Haiyu Dong</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+H">Hongyu Sun</a>, <a href="/search/physics?searchtype=author&query=Thambiratnam%2C+K">Kit Thambiratnam</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Q">Qi Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.09371v1-abstract-short" style="display: inline;"> In recent years, AI-based weather forecasting models have matched or even outperformed numerical weather prediction systems. However, most of these models have been trained and evaluated on reanalysis datasets like ERA5. These datasets, being products of numerical models, often diverge substantially from actual observations in some crucial variables like near-surface temperature, wind, precipitati… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09371v1-abstract-full').style.display = 'inline'; document.getElementById('2409.09371v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.09371v1-abstract-full" style="display: none;"> In recent years, AI-based weather forecasting models have matched or even outperformed numerical weather prediction systems. However, most of these models have been trained and evaluated on reanalysis datasets like ERA5. These datasets, being products of numerical models, often diverge substantially from actual observations in some crucial variables like near-surface temperature, wind, precipitation and clouds - parameters that hold significant public interest. To address this divergence, we introduce WeatherReal, a novel benchmark dataset for weather forecasting, derived from global near-surface in-situ observations. WeatherReal also features a publicly accessible quality control and evaluation framework. This paper details the sources and processing methodologies underlying the dataset, and further illustrates the advantage of in-situ observations in capturing hyper-local and extreme weather through comparative analyses and case studies. Using WeatherReal, we evaluated several data-driven models and compared them with leading numerical models. Our work aims to advance the AI-based weather forecasting research towards a more application-focused and operation-ready approach. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09371v1-abstract-full').style.display = 'none'; document.getElementById('2409.09371v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.02633">arXiv:2409.02633</a> <span> [<a href="https://arxiv.org/pdf/2409.02633">pdf</a>, <a href="https://arxiv.org/format/2409.02633">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Predicting Miscibility in Binary Compounds: A Machine Learning and Genetic Algorithm Study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Feng%2C+C">Chiwen Feng</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+Y">Yanwei Liang</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+J">Jiaying Sun</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+R">Renhai Wang</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+H">Huaijun Sun</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+H">Huafeng Dong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.02633v1-abstract-short" style="display: inline;"> The combination of data science and materials informatics has significantly propelled the advancement of multi-component compound synthesis research. This study employs atomic-level data to predict miscibility in binary compounds using machine learning, demonstrating the feasibility of such predictions. We have integrated experimental data from the Materials Project (MP) database and the Inorganic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02633v1-abstract-full').style.display = 'inline'; document.getElementById('2409.02633v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.02633v1-abstract-full" style="display: none;"> The combination of data science and materials informatics has significantly propelled the advancement of multi-component compound synthesis research. This study employs atomic-level data to predict miscibility in binary compounds using machine learning, demonstrating the feasibility of such predictions. We have integrated experimental data from the Materials Project (MP) database and the Inorganic Crystal Structure Database (ICSD), covering 2,346 binary systems. We applied a random forest classification model to train the constructed dataset and analyze the key factors affecting the miscibility of binary systems and their significance while predicting binary systems with high synthetic potential. By employing advanced genetic algorithms on the Co-Eu system, we discovered three novel thermodynamically stable phases, CoEu8, Co3Eu2, and CoEu. This research offers valuable theoretical insights to guide experimental synthesis endeavors in binary and complex material systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02633v1-abstract-full').style.display = 'none'; document.getElementById('2409.02633v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.00683">arXiv:2409.00683</a> <span> [<a href="https://arxiv.org/pdf/2409.00683">pdf</a>, <a href="https://arxiv.org/format/2409.00683">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Ultrafast manipulations of nanoscale skyrmioniums </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Dong%2C+H">Haiming Dong</a>, <a href="/search/physics?searchtype=author&query=Fu%2C+P">Panpan Fu</a>, <a href="/search/physics?searchtype=author&query=Duan%2C+Y">Yifeng Duan</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+K">Kai Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.00683v1-abstract-short" style="display: inline;"> The advancement of next-generation magnetic devices depends on fast manipulating magnetic microstructures on the nanoscale. A universal method is presented for rapidly and reliably generating, controlling, and driving nano-scale skyrmioniums, through high-throughput micromagnetic simulations. Ultrafast switches are realized between skyrmionium and skyrmion states and rapidly change their polaritie… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.00683v1-abstract-full').style.display = 'inline'; document.getElementById('2409.00683v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.00683v1-abstract-full" style="display: none;"> The advancement of next-generation magnetic devices depends on fast manipulating magnetic microstructures on the nanoscale. A universal method is presented for rapidly and reliably generating, controlling, and driving nano-scale skyrmioniums, through high-throughput micromagnetic simulations. Ultrafast switches are realized between skyrmionium and skyrmion states and rapidly change their polarities in monolayer magnetic nanodiscs by perpendicular magnetic fields. The transition mechanism by alternating magnetic fields differs from that under steady magnetic fields. New skyrmionic textures, such as flower-like and windmill-like skyrmions, are discovered. Moreover, this nanoscale skyrmionium can move rapidly and stably in nanoribbons using weaker spin-polarized currents. Explicit discussions are held regarding the physical mechanisms involved in ultrafast manipulations of skyrmioniums. This work provides further physical insight into the manipulation and applications of topological skyrmionic structures for developing low-power consumption and nanostorage devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.00683v1-abstract-full').style.display = 'none'; document.getElementById('2409.00683v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.13063">arXiv:2405.13063</a> <span> [<a href="https://arxiv.org/pdf/2405.13063">pdf</a>, <a href="https://arxiv.org/format/2405.13063">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> A Foundation Model for the Earth System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Bodnar%2C+C">Cristian Bodnar</a>, <a href="/search/physics?searchtype=author&query=Bruinsma%2C+W+P">Wessel P. Bruinsma</a>, <a href="/search/physics?searchtype=author&query=Lucic%2C+A">Ana Lucic</a>, <a href="/search/physics?searchtype=author&query=Stanley%2C+M">Megan Stanley</a>, <a href="/search/physics?searchtype=author&query=Vaughan%2C+A">Anna Vaughan</a>, <a href="/search/physics?searchtype=author&query=Brandstetter%2C+J">Johannes Brandstetter</a>, <a href="/search/physics?searchtype=author&query=Garvan%2C+P">Patrick Garvan</a>, <a href="/search/physics?searchtype=author&query=Riechert%2C+M">Maik Riechert</a>, <a href="/search/physics?searchtype=author&query=Weyn%2C+J+A">Jonathan A. Weyn</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+H">Haiyu Dong</a>, <a href="/search/physics?searchtype=author&query=Gupta%2C+J+K">Jayesh K. Gupta</a>, <a href="/search/physics?searchtype=author&query=Thambiratnam%2C+K">Kit Thambiratnam</a>, <a href="/search/physics?searchtype=author&query=Archibald%2C+A+T">Alexander T. Archibald</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+C">Chun-Chieh Wu</a>, <a href="/search/physics?searchtype=author&query=Heider%2C+E">Elizabeth Heider</a>, <a href="/search/physics?searchtype=author&query=Welling%2C+M">Max Welling</a>, <a href="/search/physics?searchtype=author&query=Turner%2C+R+E">Richard E. Turner</a>, <a href="/search/physics?searchtype=author&query=Perdikaris%2C+P">Paris Perdikaris</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.13063v3-abstract-short" style="display: inline;"> Reliable forecasts of the Earth system are crucial for human progress and safety from natural disasters. Artificial intelligence offers substantial potential to improve prediction accuracy and computational efficiency in this field, however this remains underexplored in many domains. Here we introduce Aurora, a large-scale foundation model for the Earth system trained on over a million hours of di… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.13063v3-abstract-full').style.display = 'inline'; document.getElementById('2405.13063v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.13063v3-abstract-full" style="display: none;"> Reliable forecasts of the Earth system are crucial for human progress and safety from natural disasters. Artificial intelligence offers substantial potential to improve prediction accuracy and computational efficiency in this field, however this remains underexplored in many domains. Here we introduce Aurora, a large-scale foundation model for the Earth system trained on over a million hours of diverse data. Aurora outperforms operational forecasts for air quality, ocean waves, tropical cyclone tracks, and high-resolution weather forecasting at orders of magnitude smaller computational expense than dedicated existing systems. With the ability to fine-tune Aurora to diverse application domains at only modest computational cost, Aurora represents significant progress in making actionable Earth system predictions accessible to anyone. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.13063v3-abstract-full').style.display = 'none'; document.getElementById('2405.13063v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.18195">arXiv:2404.18195</a> <span> [<a href="https://arxiv.org/pdf/2404.18195">pdf</a>, <a href="https://arxiv.org/format/2404.18195">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Power-Efficiency Constraint for Chemical Motors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhai%2C+R">Ruo-Xun Zhai</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+H">Hui Dong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.18195v3-abstract-short" style="display: inline;"> The mechanical movement driven by chemical gradients provides the primordial energy for biological functions. Its thermodynamic properties remains inclusive, especially for a dynamical change of energy demand in biological systems. In this article, we obtain a constraint relation between the changing output power and the conversion efficiency for a chemically fuelled rotary motor analogous to the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.18195v3-abstract-full').style.display = 'inline'; document.getElementById('2404.18195v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.18195v3-abstract-full" style="display: none;"> The mechanical movement driven by chemical gradients provides the primordial energy for biological functions. Its thermodynamic properties remains inclusive, especially for a dynamical change of energy demand in biological systems. In this article, we obtain a constraint relation between the changing output power and the conversion efficiency for a chemically fuelled rotary motor analogous to the $\mathrm{F}_{0}$-motor of ATPase. We find the efficiency at maximum power is half of the maximum quasi-static efficiency. These findings shall aid in the understanding of natural chemical engines and inspire the manual design and control of chemically fuelled microscale engines. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.18195v3-abstract-full').style.display = 'none'; document.getElementById('2404.18195v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.19427">arXiv:2403.19427</a> <span> [<a href="https://arxiv.org/pdf/2403.19427">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/qute.202400390">10.1002/qute.202400390 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamic Phase Enabled Topological Mode Steering in Composite Su-Schrieffer-Heeger Waveguide Arrays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tang%2C+M">Min Tang</a>, <a href="/search/physics?searchtype=author&query=Pang%2C+C">Chi Pang</a>, <a href="/search/physics?searchtype=author&query=Saggau%2C+C+N">Christian N. Saggau</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+H">Haiyun Dong</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+C+H">Ching Hua Lee</a>, <a href="/search/physics?searchtype=author&query=Thomale%2C+R">Ronny Thomale</a>, <a href="/search/physics?searchtype=author&query=Klembt%2C+S">Sebastian Klembt</a>, <a href="/search/physics?searchtype=author&query=Fulga%2C+I+C">Ion Cosma Fulga</a>, <a href="/search/physics?searchtype=author&query=Brink%2C+J+V+D">Jeroen Van Den Brink</a>, <a href="/search/physics?searchtype=author&query=Vaynzof%2C+Y">Yana Vaynzof</a>, <a href="/search/physics?searchtype=author&query=Schmidt%2C+O+G">Oliver G. Schmidt</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+J">Jiawei Wang</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+L">Libo Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.19427v1-abstract-short" style="display: inline;"> Topological boundary states localize at interfaces whenever the interface implies a change of the associated topological invariant encoded in the geometric phase. The generically present dynamic phase, however, which is energy and time dependent, has been known to be non-universal, and hence not to intertwine with any topological geometric phase. Using the example of topological zero modes in comp… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.19427v1-abstract-full').style.display = 'inline'; document.getElementById('2403.19427v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.19427v1-abstract-full" style="display: none;"> Topological boundary states localize at interfaces whenever the interface implies a change of the associated topological invariant encoded in the geometric phase. The generically present dynamic phase, however, which is energy and time dependent, has been known to be non-universal, and hence not to intertwine with any topological geometric phase. Using the example of topological zero modes in composite Su-Schrieffer-Heeger (c-SSH) waveguide arrays with a central defect, we report on the selective excitation and transition of topological boundary mode based on dynamic phase-steered interferences. Our work thus provides a new knob for the control and manipulation of topological states in composite photonic devices, indicating promising applications where topological modes and their bandwidth can be jointly controlled by the dynamic phase, geometric phase, and wavelength in on-chip topological devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.19427v1-abstract-full').style.display = 'none'; document.getElementById('2403.19427v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Advanced Quantum Technologies (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.16249">arXiv:2401.16249</a> <span> [<a href="https://arxiv.org/pdf/2401.16249">pdf</a>, <a href="https://arxiv.org/format/2401.16249">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0200833">10.1063/5.0200833 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Molecular dynamics simulations of heat transport using machine-learned potentials: A mini review and tutorial on GPUMD with neuroevolution potentials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Dong%2C+H">Haikuan Dong</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yongbo Shi</a>, <a href="/search/physics?searchtype=author&query=Ying%2C+P">Penghua Ying</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+K">Ke Xu</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+T">Ting Liang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yanzhou Wang</a>, <a href="/search/physics?searchtype=author&query=Zeng%2C+Z">Zezhu Zeng</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+X">Xin Wu</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+W">Wenjiang Zhou</a>, <a href="/search/physics?searchtype=author&query=Xiong%2C+S">Shiyun Xiong</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+S">Shunda Chen</a>, <a href="/search/physics?searchtype=author&query=Fan%2C+Z">Zheyong Fan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.16249v2-abstract-short" style="display: inline;"> Molecular dynamics (MD) simulations play an important role in understanding and engineering heat transport properties of complex materials. An essential requirement for reliably predicting heat transport properties is the use of accurate and efficient interatomic potentials. Recently, machine-learned potentials (MLPs) have shown great promise in providing the required accuracy for a broad range of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.16249v2-abstract-full').style.display = 'inline'; document.getElementById('2401.16249v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.16249v2-abstract-full" style="display: none;"> Molecular dynamics (MD) simulations play an important role in understanding and engineering heat transport properties of complex materials. An essential requirement for reliably predicting heat transport properties is the use of accurate and efficient interatomic potentials. Recently, machine-learned potentials (MLPs) have shown great promise in providing the required accuracy for a broad range of materials. In this mini review and tutorial, we delve into the fundamentals of heat transport, explore pertinent MD simulation methods, and survey the applications of MLPs in MD simulations of heat transport. Furthermore, we provide a step-by-step tutorial on developing MLPs for highly efficient and predictive heat transport simulations, utilizing the neuroevolution potentials (NEPs) as implemented in the GPUMD package. Our aim with this mini review and tutorial is to empower researchers with valuable insights into cutting-edge methodologies that can significantly enhance the accuracy and efficiency of MD simulations for heat transport studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.16249v2-abstract-full').style.display = 'none'; document.getElementById('2401.16249v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 9 figures. This paper is part of the special topic, Machine Learning for Thermal Transport</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Appl. Phys. 135, 161101 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.13321">arXiv:2401.13321</a> <span> </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Temperature Compensation Method of Fluxgate Sensor Based on Polynomial Fitting </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yang%2C+R">Ruiping Yang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Huan Liu</a>, <a href="/search/physics?searchtype=author&query=Ge%2C+J">Jian Ge</a>, <a href="/search/physics?searchtype=author&query=Chugo%2C+D">Daisuke Chugo</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+H">Haobin Dong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.13321v2-abstract-short" style="display: inline;"> Fluxgate sensors are widely used in the field of low frequency and weak vector magnetic field measurement because of their good performance, such as high resolution and low power consumption. However, during the long-term continuous observation, the drift errors of the fluxgate sensor will occur due to the variable ambient temperature. This paper proposes a temperature compensation method for flux… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.13321v2-abstract-full').style.display = 'inline'; document.getElementById('2401.13321v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.13321v2-abstract-full" style="display: none;"> Fluxgate sensors are widely used in the field of low frequency and weak vector magnetic field measurement because of their good performance, such as high resolution and low power consumption. However, during the long-term continuous observation, the drift errors of the fluxgate sensor will occur due to the variable ambient temperature. This paper proposes a temperature compensation method for fluxgate sensors based on polynomial fitting. First, a physical model of the temperature & fluxgate sensor was established on the COMSOL Multiphysics simulation platform, and the influence of temperature on the measurement performance of the fluxgate sensor was analyzed. Second, according to the existing temperature-magnetic field data, a temperature compensation model of the fluxgate sensor was constructed. And compared it with other temperature compensation method, the result shows that the proposed temperature compensation method is relatively simple and can better achieve real-time compensation for sensor application scenarios. Finally, to verify the effectiveness of the proposed method, numerous laboratory experiments were implemented. The temperature drift is reduced from more than 500 nT before compensation to about 1 nT. The results show that the proposed method has a good temperature compensation effect on the data measured by the fluxgate sensor within a variable temperature background. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.13321v2-abstract-full').style.display = 'none'; document.getElementById('2401.13321v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">An error occurred in the model section</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.03706">arXiv:2401.03706</a> <span> [<a href="https://arxiv.org/pdf/2401.03706">pdf</a>, <a href="https://arxiv.org/format/2401.03706">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> A First-Principle Approach to X-ray Active Optics: Design and Verification </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Diao%2C+D">Dezhi Diao</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+H">Han Dong</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+F">Fugui Yang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+M">Ming Li</a>, <a href="/search/physics?searchtype=author&query=Sheng%2C+W">Weifan Sheng</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+X">Xiaowei Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.03706v1-abstract-short" style="display: inline;"> This paper presents the first-principle design approach for X-ray active optics, using the simulation-modulation cycle in place of the measurement-modulation feedback loops used in traditional active optics. Hence, the new active optics have the potential to outperform the accuracy of surface-shape metrology instruments. We apply an X-ray mirror with localized thermal elastic deformation to valida… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.03706v1-abstract-full').style.display = 'inline'; document.getElementById('2401.03706v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.03706v1-abstract-full" style="display: none;"> This paper presents the first-principle design approach for X-ray active optics, using the simulation-modulation cycle in place of the measurement-modulation feedback loops used in traditional active optics. Hence, the new active optics have the potential to outperform the accuracy of surface-shape metrology instruments. We apply an X-ray mirror with localized thermal elastic deformation to validate the idea. Both the finite element simulations and surface shape measurements have demonstrated that the active optics modulation accuracy limit can be achieved at the atomic layer level. It is believed that the implementation of the first-principle design strategy has the capacity to revolutionize both the manufacturing processes of X-ray mirrors and the beamline engineering of synchrotron radiation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.03706v1-abstract-full').style.display = 'none'; document.getElementById('2401.03706v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.01731">arXiv:2401.01731</a> <span> [<a href="https://arxiv.org/pdf/2401.01731">pdf</a>, <a href="https://arxiv.org/format/2401.01731">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Extracting double-quantum coherence in two-dimensional electronic spectroscopy under pump-probe geometry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Cai%2C+M">Mao-Rui Cai</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+X">Xue Zhang</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+Z">Zi-Qian Cheng</a>, <a href="/search/physics?searchtype=author&query=Yan%2C+T">Teng-Fei Yan</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+H">Hui Dong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.01731v3-abstract-short" style="display: inline;"> Two-dimensional electronic spectroscopy (2DES) can be implemented with different geometries, e.g., BOXCARS, collinear and pump-probe geometries. The pump-probe geometry has its advantage of overlapping only two beams and reducing phase cycling steps. However, its applications are typically limited to observe the dynamics with single-quantum coherence and population, leaving the challenge to measur… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01731v3-abstract-full').style.display = 'inline'; document.getElementById('2401.01731v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.01731v3-abstract-full" style="display: none;"> Two-dimensional electronic spectroscopy (2DES) can be implemented with different geometries, e.g., BOXCARS, collinear and pump-probe geometries. The pump-probe geometry has its advantage of overlapping only two beams and reducing phase cycling steps. However, its applications are typically limited to observe the dynamics with single-quantum coherence and population, leaving the challenge to measure the dynamics of the double-quantum (2Q) coherence, which reflects the many-body interactions. We propose an experimental technique in 2DES under pump-probe geometry with a designed pulse sequence and the signal processing method to extract 2Q coherence. In the designed pulse sequence with the probe pulse arriving earlier than pump pulses, our measured signal includes the 2Q signal as well as the zero-quantum (0Q) signal. With phase cycling and the data processing using causality enforcement, we extract the 2Q signal. The proposal is demonstrated with the rubidium atoms. And we observe the collective resonances of two-body dipole-dipole interactions of both $D_{1}$ and $D_{2}$ lines. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01731v3-abstract-full').style.display = 'none'; document.getElementById('2401.01731v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.04732">arXiv:2311.04732</a> <span> [<a href="https://arxiv.org/pdf/2311.04732">pdf</a>, <a href="https://arxiv.org/format/2311.04732">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-54554-x">10.1038/s41467-024-54554-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> General-purpose machine-learned potential for 16 elemental metals and their alloys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Song%2C+K">Keke Song</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+R">Rui Zhao</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jiahui Liu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yanzhou Wang</a>, <a href="/search/physics?searchtype=author&query=Lindgren%2C+E">Eric Lindgren</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yong Wang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+S">Shunda Chen</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+K">Ke Xu</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+T">Ting Liang</a>, <a href="/search/physics?searchtype=author&query=Ying%2C+P">Penghua Ying</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+N">Nan Xu</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+Z">Zhiqiang Zhao</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+J">Jiuyang Shi</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+J">Junjie Wang</a>, <a href="/search/physics?searchtype=author&query=Lyu%2C+S">Shuang Lyu</a>, <a href="/search/physics?searchtype=author&query=Zeng%2C+Z">Zezhu Zeng</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+S">Shirong Liang</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+H">Haikuan Dong</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+L">Ligang Sun</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Yue Chen</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Z">Zhuhua Zhang</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+W">Wanlin Guo</a>, <a href="/search/physics?searchtype=author&query=Qian%2C+P">Ping Qian</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+J">Jian Sun</a>, <a href="/search/physics?searchtype=author&query=Erhart%2C+P">Paul Erhart</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.04732v2-abstract-short" style="display: inline;"> Machine-learned potentials (MLPs) have exhibited remarkable accuracy, yet the lack of general-purpose MLPs for a broad spectrum of elements and their alloys limits their applicability. Here, we present a feasible approach for constructing a unified general-purpose MLP for numerous elements, demonstrated through a model (UNEP-v1) for 16 elemental metals and their alloys. To achieve a complete repre… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.04732v2-abstract-full').style.display = 'inline'; document.getElementById('2311.04732v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.04732v2-abstract-full" style="display: none;"> Machine-learned potentials (MLPs) have exhibited remarkable accuracy, yet the lack of general-purpose MLPs for a broad spectrum of elements and their alloys limits their applicability. Here, we present a feasible approach for constructing a unified general-purpose MLP for numerous elements, demonstrated through a model (UNEP-v1) for 16 elemental metals and their alloys. To achieve a complete representation of the chemical space, we show, via principal component analysis and diverse test datasets, that employing one-component and two-component systems suffices. Our unified UNEP-v1 model exhibits superior performance across various physical properties compared to a widely used embedded-atom method potential, while maintaining remarkable efficiency. We demonstrate our approach's effectiveness through reproducing experimentally observed chemical order and stable phases, and large-scale simulations of plasticity and primary radiation damage in MoTaVW alloys. This work represents a significant leap towards a unified general-purpose MLP encompassing the periodic table, with profound implications for materials science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.04732v2-abstract-full').style.display = 'none'; document.getElementById('2311.04732v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text with 17 pages and 8 figures; supplementary with 26 figures and 4 tables; source code and training/test data available</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 15, 10208 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.08782">arXiv:2308.08782</a> <span> [<a href="https://arxiv.org/pdf/2308.08782">pdf</a>, <a href="https://arxiv.org/format/2308.08782">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.153602">10.1103/PhysRevLett.132.153602 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Amplifying Frequency Up-Converted Infrared Signals with a Molecular Optomechanical Cavity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zou%2C+F">Fen Zou</a>, <a href="/search/physics?searchtype=author&query=Du%2C+L">Lei Du</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yong Li</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+H">Hui Dong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.08782v3-abstract-short" style="display: inline;"> Frequency up-conversion, enabled by molecular optomechanical coupling, has recently emerged as a promising approach for converting infrared signals into the visible range through quantum coherent conversion of signals. However, detecting these converted signals poses a significant challenge due to their inherently weak signal intensity. In this work, we propose an amplification mechanism capable o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.08782v3-abstract-full').style.display = 'inline'; document.getElementById('2308.08782v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.08782v3-abstract-full" style="display: none;"> Frequency up-conversion, enabled by molecular optomechanical coupling, has recently emerged as a promising approach for converting infrared signals into the visible range through quantum coherent conversion of signals. However, detecting these converted signals poses a significant challenge due to their inherently weak signal intensity. In this work, we propose an amplification mechanism capable of enhancing the signal intensity by a factor of 1000 or more for the frequency up-converted infrared signal in a molecular optomechanical system. The mechanism takes advantage of the strong coupling enhancement with molecular collective mode and Stokes sideband pump. This work demonstrates a feasible approach for up-converting infrared signals to the visible range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.08782v3-abstract-full').style.display = 'none'; document.getElementById('2308.08782v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 132, 153602 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.01396">arXiv:2308.01396</a> <span> [<a href="https://arxiv.org/pdf/2308.01396">pdf</a>, <a href="https://arxiv.org/format/2308.01396">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Cross-phase modulation in the two dimensional spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Cai%2C+M">Mao-Rui Cai</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+X">Xue Zhang</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+Z">Zi-Qian Cheng</a>, <a href="/search/physics?searchtype=author&query=Yan%2C+T">Teng-Fei Yan</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+H">Hui Dong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.01396v1-abstract-short" style="display: inline;"> Developing from the transient absorption (TA) spectroscopy, the two dimensional (2D) spectroscopy with pump-probe geometry has emerged as a versatile approach for alleviating the difficulty on implementing the 2D spectroscopy with other geometries. However, the presence of cross-phase modulation (XPM) in TA spectroscopy introduces significant spectral distortions, particularly when the pump and pr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.01396v1-abstract-full').style.display = 'inline'; document.getElementById('2308.01396v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.01396v1-abstract-full" style="display: none;"> Developing from the transient absorption (TA) spectroscopy, the two dimensional (2D) spectroscopy with pump-probe geometry has emerged as a versatile approach for alleviating the difficulty on implementing the 2D spectroscopy with other geometries. However, the presence of cross-phase modulation (XPM) in TA spectroscopy introduces significant spectral distortions, particularly when the pump and probe pulses overlap. We demonstrate that this phenomenon is extended to the 2D spectroscopy with pump-probe geometry and the XPM is induced by the interference of the two pump pulse. We present the oscillatory behavior of XPM in the 2D spectrum and its displacement with respect to the waiting time delay through both experimental measurements and numerical simulations. Additionally, we explore the influence of probe pulse chirp on XPM and discover that by compressing the chirp, the impact of XPM on the desired signal can be reduced. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.01396v1-abstract-full').style.display = 'none'; document.getElementById('2308.01396v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.15403">arXiv:2307.15403</a> <span> [<a href="https://arxiv.org/pdf/2307.15403">pdf</a>, <a href="https://arxiv.org/format/2307.15403">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Self-optimization wavelet-learning method for predicting nonlinear thermal conductivity of highly heterogeneous materials with randomly hierarchical configurations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Linghu%2C+J">Jiale Linghu</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+H">Hao Dong</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+W">Weifeng Gao</a>, <a href="/search/physics?searchtype=author&query=Nie%2C+Y">Yufeng Nie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.15403v2-abstract-short" style="display: inline;"> In the present work, we propose a self-optimization wavelet-learning method (SO-W-LM) with high accuracy and efficiency to compute the equivalent nonlinear thermal conductivity of highly heterogeneous materials with randomly hierarchical configurations. The randomly structural heterogeneity, temperature-dependent nonlinearity and material property uncertainty of heterogeneous materials are conside… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15403v2-abstract-full').style.display = 'inline'; document.getElementById('2307.15403v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.15403v2-abstract-full" style="display: none;"> In the present work, we propose a self-optimization wavelet-learning method (SO-W-LM) with high accuracy and efficiency to compute the equivalent nonlinear thermal conductivity of highly heterogeneous materials with randomly hierarchical configurations. The randomly structural heterogeneity, temperature-dependent nonlinearity and material property uncertainty of heterogeneous materials are considered within the proposed self-optimization wavelet-learning framework. Firstly, meso- and micro-structural modeling of random heterogeneous materials are achieved by the proposed computer representation method, whose simulated hierarchical configurations have relatively high volume ratio of material inclusions. Moreover, temperature-dependent nonlinearity and material property uncertainties of random heterogeneous materials are modeled by a polynomial nonlinear model and Weibull probabilistic model, which can closely resemble actual material properties of heterogeneous materials. Secondly, an innovative stochastic three-scale homogenized method (STSHM) is developed to compute the macroscopic nonlinear thermal conductivity of random heterogeneous materials. Background meshing and filling techniques are devised to extract geometry and material features of random heterogeneous materials for establishing material databases. Thirdly, high-dimensional and highly nonlinear material features of material databases are preprocessed and reduced by wavelet decomposition technique. The neural networks are further employed to excavate the predictive models from dimension-reduced low-dimensional data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15403v2-abstract-full').style.display = 'none'; document.getElementById('2307.15403v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.04756">arXiv:2307.04756</a> <span> [<a href="https://arxiv.org/pdf/2307.04756">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> A general approach to improve the bias stability of NMR gyroscope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Dong%2C+H">Haifeng Dong</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+M">Min Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.04756v2-abstract-short" style="display: inline;"> In recent years, progress in improving the bias stability of NMR gyroscopes has been hindered. Taking inspiration from the core idea of rotation modulation in the strapdown inertial navigation system, we propose a general approach to enhancing the bias stability of NMR gyroscopes that does not require consideration of the actual physical sources. The method operates on the fact that the sign of th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.04756v2-abstract-full').style.display = 'inline'; document.getElementById('2307.04756v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.04756v2-abstract-full" style="display: none;"> In recent years, progress in improving the bias stability of NMR gyroscopes has been hindered. Taking inspiration from the core idea of rotation modulation in the strapdown inertial navigation system, we propose a general approach to enhancing the bias stability of NMR gyroscopes that does not require consideration of the actual physical sources. The method operates on the fact that the sign of the bias does not follow that of the sensing direction of the NMR gyroscope, which is much easier to modulate than with other types of gyroscopes. We conducted simulations to validate the method's feasibility. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.04756v2-abstract-full').style.display = 'none'; document.getElementById('2307.04756v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.02916">arXiv:2305.02916</a> <span> [<a href="https://arxiv.org/pdf/2305.02916">pdf</a>, <a href="https://arxiv.org/format/2305.02916">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Enantiodetection via the 2D spectroscopy: extending the methodology to general experimental conditions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Cai%2C+M">Mao-Rui Cai</a>, <a href="/search/physics?searchtype=author&query=Ye%2C+C">Chong Ye</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yong Li</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+H">Hui Dong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.02916v1-abstract-short" style="display: inline;"> Developing effective methods to measure the enantiomeric excess of the chiral mixture is one of the major topics in chiral molecular researches, yet remains challenging. Enantiodetection method via two-dimensional (2D) spectroscopy based on a four level model, containing a cyclic three-level system (CTLS), of chiral molecules was recently proposed and demonstrated, yet with a strict condition of t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.02916v1-abstract-full').style.display = 'inline'; document.getElementById('2305.02916v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.02916v1-abstract-full" style="display: none;"> Developing effective methods to measure the enantiomeric excess of the chiral mixture is one of the major topics in chiral molecular researches, yet remains challenging. Enantiodetection method via two-dimensional (2D) spectroscopy based on a four level model, containing a cyclic three-level system (CTLS), of chiral molecules was recently proposed and demonstrated, yet with a strict condition of the one-photon resonance (where three driving fields are exactly resonantly coupled to the three electric-dipole transitions, respectively) in the CTLS and narrowband probe pulse assumption. Here, we extend the 2D spectroscopy method to more general experimental conditions, with three-photon resonance (where the sum of the two smaller frequencies among the three driving fields equals to the third one) and broadband probe pulse. Our method remains effective on enantiodetection with the help of experimental techniques, such as the chop detection method, which is used to eliminate the influence of the other redundant levels existing in the real system of chiral molecules. Under these more general conditions, the enantiomeric excess of the chiral mixture is estimated by taking an easily available standard sample (usually the racemic mixture) as the reference. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.02916v1-abstract-full').style.display = 'none'; document.getElementById('2305.02916v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.15790">arXiv:2303.15790</a> <span> [<a href="https://arxiv.org/pdf/2303.15790">pdf</a>, <a href="https://arxiv.org/format/2303.15790">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11467-023-1333-z">10.1007/s11467-023-1333-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> STCF Conceptual Design Report: Volume 1 -- Physics & Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Achasov%2C+M">M. Achasov</a>, <a href="/search/physics?searchtype=author&query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/physics?searchtype=author&query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/physics?searchtype=author&query=An%2C+L+P">L. P. An</a>, <a href="/search/physics?searchtype=author&query=An%2C+Q">Q. An</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+X+Z">X. Z. Bai</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+Y">Y. Bai</a>, <a href="/search/physics?searchtype=author&query=Bakina%2C+O">O. Bakina</a>, <a href="/search/physics?searchtype=author&query=Barnyakov%2C+A">A. Barnyakov</a>, <a href="/search/physics?searchtype=author&query=Blinov%2C+V">V. Blinov</a>, <a href="/search/physics?searchtype=author&query=Bobrovnikov%2C+V">V. Bobrovnikov</a>, <a href="/search/physics?searchtype=author&query=Bodrov%2C+D">D. Bodrov</a>, <a href="/search/physics?searchtype=author&query=Bogomyagkov%2C+A">A. Bogomyagkov</a>, <a href="/search/physics?searchtype=author&query=Bondar%2C+A">A. Bondar</a>, <a href="/search/physics?searchtype=author&query=Boyko%2C+I">I. Boyko</a>, <a href="/search/physics?searchtype=author&query=Bu%2C+Z+H">Z. H. Bu</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+F+M">F. M. Cai</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+H">H. Cai</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+J+J">J. J. Cao</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+Q+H">Q. H. Cao</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+Z">Z. Cao</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+Q">Q. Chang</a>, <a href="/search/physics?searchtype=author&query=Chao%2C+K+T">K. T. Chao</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+D+Y">D. Y. Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+H">H. Chen</a> , et al. (413 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.15790v3-abstract-short" style="display: inline;"> The Super $蟿$-Charm facility (STCF) is an electron-positron collider proposed by the Chinese particle physics community. It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of $0.5\times 10^{35}{\rm cm}^{-2}{\rm s}^{-1}$ or higher. The STCF will produce a data sample about a factor of 100 larger than that by the present $蟿$-Charm factory -- the BEPCII,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.15790v3-abstract-full').style.display = 'inline'; document.getElementById('2303.15790v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.15790v3-abstract-full" style="display: none;"> The Super $蟿$-Charm facility (STCF) is an electron-positron collider proposed by the Chinese particle physics community. It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of $0.5\times 10^{35}{\rm cm}^{-2}{\rm s}^{-1}$ or higher. The STCF will produce a data sample about a factor of 100 larger than that by the present $蟿$-Charm factory -- the BEPCII, providing a unique platform for exploring the asymmetry of matter-antimatter (charge-parity violation), in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions, as well as searching for exotic hadrons and physics beyond the Standard Model. The STCF project in China is under development with an extensive R\&D program. This document presents the physics opportunities at the STCF, describes conceptual designs of the STCF detector system, and discusses future plans for detector R\&D and physics case studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.15790v3-abstract-full').style.display = 'none'; document.getElementById('2303.15790v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Front. Phys. 19(1), 14701 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.06228">arXiv:2211.06228</a> <span> [<a href="https://arxiv.org/pdf/2211.06228">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adpr.202300113">10.1002/adpr.202300113 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Symmetry induced selective excitation of topological states in SSH waveguide arrays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tang%2C+M">Min Tang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+J">Jiawei Wang</a>, <a href="/search/physics?searchtype=author&query=Valligatla%2C+S">Sreeramulu Valligatla</a>, <a href="/search/physics?searchtype=author&query=Saggau%2C+C+N">Christian N. Saggau</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+H">Haiyun Dong</a>, <a href="/search/physics?searchtype=author&query=Naz%2C+E+S+G">Ehsan Saei Ghareh Naz</a>, <a href="/search/physics?searchtype=author&query=Klembt%2C+S">Sebastian Klembt</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+C+H">Ching Hua Lee</a>, <a href="/search/physics?searchtype=author&query=Thomale%2C+R">Ronny Thomale</a>, <a href="/search/physics?searchtype=author&query=Brink%2C+J+v+d">Jeroen van den Brink</a>, <a href="/search/physics?searchtype=author&query=Fulga%2C+I+C">Ion Cosma Fulga</a>, <a href="/search/physics?searchtype=author&query=Schmidt%2C+O+G">Oliver G. Schmidt</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+L">Libo Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.06228v2-abstract-short" style="display: inline;"> The investigation of topological state transition in carefully designed photonic lattices is of high interest for fundamental research, as well as for applied studies such as manipulating light flow in on-chip photonic systems. Here, we report on topological phase transition between symmetric topological zero modes (TZM) and antisymmetric TZMs in Su-Schrieffer-Heeger (SSH) mirror symmetric wavegui… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.06228v2-abstract-full').style.display = 'inline'; document.getElementById('2211.06228v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.06228v2-abstract-full" style="display: none;"> The investigation of topological state transition in carefully designed photonic lattices is of high interest for fundamental research, as well as for applied studies such as manipulating light flow in on-chip photonic systems. Here, we report on topological phase transition between symmetric topological zero modes (TZM) and antisymmetric TZMs in Su-Schrieffer-Heeger (SSH) mirror symmetric waveguides. The transition of TZMs is realized by adjusting the coupling ratio between neighboring waveguide pairs, which is enabled by selective modulation of the refractive index in the waveguide gaps. Bi-directional topological transitions between symmetric and antisymmetric TZMs can be achieved with our proposed switching strategy. Selective excitation of topological edge mode is demonstrated owing to the symmetry characteristics of the TZMs. The flexible manipulation of topological states is promising for on-chip light flow control and may spark further investigations on symmetric/antisymmetric TZM transitions in other photonic topological frameworks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.06228v2-abstract-full').style.display = 'none'; document.getElementById('2211.06228v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Advanced Photonics Research 4, 11 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.03982">arXiv:2208.03982</a> <span> [<a href="https://arxiv.org/pdf/2208.03982">pdf</a>, <a href="https://arxiv.org/format/2208.03982">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.ijheatmasstransfer.2023.123943">10.1016/j.ijheatmasstransfer.2023.123943 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anisotropic and high thermal conductivity in monolayer quasi-hexagonal fullerene: A comparative study against bulk phase fullerene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Dong%2C+H">Haikuan Dong</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+C">Chenyang Cao</a>, <a href="/search/physics?searchtype=author&query=Ying%2C+P">Penghua Ying</a>, <a href="/search/physics?searchtype=author&query=Fan%2C+Z">Zheyong Fan</a>, <a href="/search/physics?searchtype=author&query=Qian%2C+P">Ping Qian</a>, <a href="/search/physics?searchtype=author&query=Su%2C+Y">Yanjing Su</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.03982v2-abstract-short" style="display: inline;"> Recently a novel two-dimensional (2D) C$_{60}$ based crystal called quasi-hexagonal-phase fullerene (QHPF) has been fabricated and demonstrated to be a promising candidate for 2D electronic devices [Hou et al. Nature 606, 507-510 (2022)]. We construct an accurate and transferable machine-learned potential to study heat transport and related properties of this material, with a comparison to the fac… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.03982v2-abstract-full').style.display = 'inline'; document.getElementById('2208.03982v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.03982v2-abstract-full" style="display: none;"> Recently a novel two-dimensional (2D) C$_{60}$ based crystal called quasi-hexagonal-phase fullerene (QHPF) has been fabricated and demonstrated to be a promising candidate for 2D electronic devices [Hou et al. Nature 606, 507-510 (2022)]. We construct an accurate and transferable machine-learned potential to study heat transport and related properties of this material, with a comparison to the face-centered-cubic bulk-phase fullerene (BPF). Using the homogeneous nonequilibrium molecular dynamics and the related spectral decomposition methods, we show that the thermal conductivity in QHPF is anisotropic, which is 137(7) W/mK at 300 K in the direction parallel to the cycloaddition bonds and 102(3) W/mK in the perpendicular in-plane direction. By contrast, the thermal conductivity in BPF is isotropic and is only 0.45(5) W/mK. We show that the inter-molecular covalent bonding in QHPF plays a crucial role in enhancing the thermal conductivity in QHPF as compared to that in BPF. The heat transport properties as characterized in this work will be useful for the application of QHPF as novel 2D electronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.03982v2-abstract-full').style.display = 'none'; document.getElementById('2208.03982v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> International Journal of Heat and Mass Transfer, 206, 123943(2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.03452">arXiv:2208.03452</a> <span> [<a href="https://arxiv.org/pdf/2208.03452">pdf</a>, <a href="https://arxiv.org/format/2208.03452">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.ade6219">10.1126/science.ade6219 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coherent control of quantum topological states of light in Fock-state lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Deng%2C+J">Jinfeng Deng</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+H">Hang Dong</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/physics?searchtype=author&query=Yuan%2C+J">Jiale Yuan</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/physics?searchtype=author&query=Jin%2C+F">Feitong Jin</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Hekang Li</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zhen Wang</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+H">Han Cai</a>, <a href="/search/physics?searchtype=author&query=Song%2C+C">Chao Song</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+H">H. Wang</a>, <a href="/search/physics?searchtype=author&query=You%2C+J+Q">J. Q. You</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+D">Da-Wei Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.03452v1-abstract-short" style="display: inline;"> Topological photonics provides a novel platform to explore topological physics beyond traditional electronic materials and stimulates promising applications in topologically protected light transport and lasers. Classical degrees of freedom such as polarizations and wavevectors are routinely used to synthesize topological light modes. Beyond the classical regime, inherent quantum nature of light g… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.03452v1-abstract-full').style.display = 'inline'; document.getElementById('2208.03452v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.03452v1-abstract-full" style="display: none;"> Topological photonics provides a novel platform to explore topological physics beyond traditional electronic materials and stimulates promising applications in topologically protected light transport and lasers. Classical degrees of freedom such as polarizations and wavevectors are routinely used to synthesize topological light modes. Beyond the classical regime, inherent quantum nature of light gives birth to a wealth of fundamentally distinct topological states, which offer topological protection in quantum information processing. Here we implement such experiments on topological states of quantized light in a superconducting circuit, on which three resonators are tunably coupled to a gmon qubit. We construct one and two-dimensional Fock-state lattices where topological transport of zero-energy states, strain induced pseudo-Landau levels, valley Hall effect and Haldane chiral edge currents are demonstrated. Our study extends the topological states of light to the quantum regime, bridges topological phases of condensed matter physics with circuit quantum electrodynamics, and offers a new freedom in controlling the quantum states of multiple resonators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.03452v1-abstract-full').style.display = 'none'; document.getElementById('2208.03452v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 378, 966 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.10857">arXiv:2206.10857</a> <span> [<a href="https://arxiv.org/pdf/2206.10857">pdf</a>, <a href="https://arxiv.org/format/2206.10857">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Nonperturbative approach to the nonlinear photon echo of V-type system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+X">Xue Zhang</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+H">Hui Dong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.10857v1-abstract-short" style="display: inline;"> The analysis of nonlinear spectroscopy, widely used to study the dynamics and structures of condensed-phase matter, typically employs a perturbative approach noticing the weak interaction between the laser and the matter of interest. However, such perturbative approach is no longer applicable once the interaction between the laser and the matter is strong. We adapt the method of quantum dynamical… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.10857v1-abstract-full').style.display = 'inline'; document.getElementById('2206.10857v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.10857v1-abstract-full" style="display: none;"> The analysis of nonlinear spectroscopy, widely used to study the dynamics and structures of condensed-phase matter, typically employs a perturbative approach noticing the weak interaction between the laser and the matter of interest. However, such perturbative approach is no longer applicable once the interaction between the laser and the matter is strong. We adapt the method of quantum dynamical evolution into the calculation of signal and present the response formalism of the nonlinear spectroscopy in a nonperturbative approach. In this new approach, we demonstrate that in addition to the third-order term in the perturbative method, the higher-order terms have essential contributions to the nonlinear signal of the two-pulse and three-pulse photon echo (2PPE and 3PPE). The detailed calculations are demonstrated with the example of a three-level V-type system, which is widely used in the studies of quantum optics. We consider the effect of the environment via a pure dephasing mechanism with both the localized modes of each molecule and the shared modes between molecules. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.10857v1-abstract-full').style.display = 'none'; document.getElementById('2206.10857v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.10046">arXiv:2205.10046</a> <span> [<a href="https://arxiv.org/pdf/2205.10046">pdf</a>, <a href="https://arxiv.org/format/2205.10046">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0106617">10.1063/5.0106617 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> GPUMD: A package for constructing accurate machine-learned potentials and performing highly efficient atomistic simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Fan%2C+Z">Zheyong Fan</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yanzhou Wang</a>, <a href="/search/physics?searchtype=author&query=Ying%2C+P">Penghua Ying</a>, <a href="/search/physics?searchtype=author&query=Song%2C+K">Keke Song</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+J">Junjie Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yong Wang</a>, <a href="/search/physics?searchtype=author&query=Zeng%2C+Z">Zezhu Zeng</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+K">Ke Xu</a>, <a href="/search/physics?searchtype=author&query=Lindgren%2C+E">Eric Lindgren</a>, <a href="/search/physics?searchtype=author&query=Rahm%2C+J+M">J. Magnus Rahm</a>, <a href="/search/physics?searchtype=author&query=Gabourie%2C+A+J">Alexander J. Gabourie</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jiahui Liu</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+H">Haikuan Dong</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+J">Jianyang Wu</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Yue Chen</a>, <a href="/search/physics?searchtype=author&query=Zhong%2C+Z">Zheng Zhong</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+J">Jian Sun</a>, <a href="/search/physics?searchtype=author&query=Erhart%2C+P">Paul Erhart</a>, <a href="/search/physics?searchtype=author&query=Su%2C+Y">Yanjing Su</a>, <a href="/search/physics?searchtype=author&query=Ala-Nissila%2C+T">Tapio Ala-Nissila</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.10046v2-abstract-short" style="display: inline;"> We present our latest advancements of machine-learned potentials (MLPs) based on the neuroevolution potential (NEP) framework introduced in [Fan et al., Phys. Rev. B 104, 104309 (2021)] and their implementation in the open-source package GPUMD. We increase the accuracy of NEP models both by improving the radial functions in the atomic-environment descriptor using a linear combination of Chebyshev… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.10046v2-abstract-full').style.display = 'inline'; document.getElementById('2205.10046v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.10046v2-abstract-full" style="display: none;"> We present our latest advancements of machine-learned potentials (MLPs) based on the neuroevolution potential (NEP) framework introduced in [Fan et al., Phys. Rev. B 104, 104309 (2021)] and their implementation in the open-source package GPUMD. We increase the accuracy of NEP models both by improving the radial functions in the atomic-environment descriptor using a linear combination of Chebyshev basis functions and by extending the angular descriptor with some four-body and five-body contributions as in the atomic cluster expansion approach. We also detail our efficient implementation of the NEP approach in graphics processing units as well as our workflow for the construction of NEP models, and we demonstrate their application in large-scale atomistic simulations. By comparing to state-of-the-art MLPs, we show that the NEP approach not only achieves above-average accuracy but also is far more computationally efficient. These results demonstrate that the GPUMD package is a promising tool for solving challenging problems requiring highly accurate, large-scale atomistic simulations. To enable the construction of MLPs using a minimal training set, we propose an active-learning scheme based on the latent space of a pre-trained NEP model. Finally, we introduce three separate Python packages, GPYUMD, CALORINE, and PYNEP, which enable the integration of GPUMD into Python workflows. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.10046v2-abstract-full').style.display = 'none'; document.getElementById('2205.10046v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 15 figures, code and data available</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Chemical Physics 157, 114801 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.01221">arXiv:2205.01221</a> <span> [<a href="https://arxiv.org/pdf/2205.01221">pdf</a>, <a href="https://arxiv.org/format/2205.01221">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41566-022-01105-9">10.1038/s41566-022-01105-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Resolution of 100 photons and quantum generation of unbiased random numbers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Eaton%2C+M">Miller Eaton</a>, <a href="/search/physics?searchtype=author&query=Hossameldin%2C+A">Amr Hossameldin</a>, <a href="/search/physics?searchtype=author&query=Birrittella%2C+R+J">Richard J. Birrittella</a>, <a href="/search/physics?searchtype=author&query=Alsing%2C+P+M">Paul M. Alsing</a>, <a href="/search/physics?searchtype=author&query=Gerry%2C+C+C">Christopher C. Gerry</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+H">Hai Dong</a>, <a href="/search/physics?searchtype=author&query=Cuevas%2C+C">Chris Cuevas</a>, <a href="/search/physics?searchtype=author&query=Pfister%2C+O">Olivier Pfister</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.01221v2-abstract-short" style="display: inline;"> Macroscopic quantum phenomena, such as observed in superfluids and superconductors, have led to promising technological advancements and some of the most important tests of fundamental physics. At present, quantum detection of light is mostly relegated to the microscale, where avalanche photodiodes are very sensitive to distinguishing single-photon events from vacuum but cannot differentiate betwe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.01221v2-abstract-full').style.display = 'inline'; document.getElementById('2205.01221v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.01221v2-abstract-full" style="display: none;"> Macroscopic quantum phenomena, such as observed in superfluids and superconductors, have led to promising technological advancements and some of the most important tests of fundamental physics. At present, quantum detection of light is mostly relegated to the microscale, where avalanche photodiodes are very sensitive to distinguishing single-photon events from vacuum but cannot differentiate between larger photon-number events. Beyond this, the ability to perform measurements to resolve photon numbers is highly desirable for a variety of quantum information applications including computation, sensing, and cryptography. True photon-number resolving detectors do exist, but they are currently limited to the ability to resolve on the order of 10 photons, which is too small for several quantum state generation methods based on heralded detection. In this work, we extend photon measurement into the mesoscopic regime by implementing a detection scheme based on multiplexing highly quantum-efficient transition-edge sensors to accurately resolve photon numbers between zero and 100. We then demonstrate the use of our system by implementing a quantum random number generator with no inherent bias. This method is based on sampling a coherent state in the photon-number basis and is robust against environmental noise, phase and amplitude fluctuations in the laser, loss and detector inefficiency as well as eavesdropping. Beyond true random number generation, our detection scheme serves as a means to implement quantum measurement and engineering techniques valuable for photonic quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.01221v2-abstract-full').style.display = 'none'; document.getElementById('2205.01221v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.07585">arXiv:2201.07585</a> <span> [<a href="https://arxiv.org/pdf/2201.07585">pdf</a>, <a href="https://arxiv.org/format/2201.07585">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.2c00235">10.1021/acs.nanolett.2c00235 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Relaxation Oscillations of an Exciton-polariton Condensate Driven by Parametric Scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tian%2C+C">Chuan Tian</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+L">Linqi Chen</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yingjun Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+L">Liqing Zhu</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+W">Wenping Hu</a>, <a href="/search/physics?searchtype=author&query=Pan%2C+Y">Yichun Pan</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zheng Wang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+F">Fangxin Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+L">Long Zhang</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+H">Hongxing Dong</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+W">Weihang Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.07585v2-abstract-short" style="display: inline;"> We report observation of coherent oscillations in the relaxation dynamics of an exciton-polariton condensate driven by parametric scattering processes. As a result of the interbranch scattering scheme and the nonlinear polariton-polariton interactions, such parametric scatterings exhibit high scattering efficiency, which leads to fast depletion of the polariton condensate and periodic shut-off of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.07585v2-abstract-full').style.display = 'inline'; document.getElementById('2201.07585v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.07585v2-abstract-full" style="display: none;"> We report observation of coherent oscillations in the relaxation dynamics of an exciton-polariton condensate driven by parametric scattering processes. As a result of the interbranch scattering scheme and the nonlinear polariton-polariton interactions, such parametric scatterings exhibit high scattering efficiency, which leads to fast depletion of the polariton condensate and periodic shut-off of the bosonic stimulation processes, eventually causing relaxation oscillations. Employing polariton-reservoir interactions, the oscillation dynamics in the time domain can be projected onto the energy space. In theory, our simulations using the open-dissipative Gross-Pitaevskii equation are in excellent agreement with experimental observations. Surprisingly, the oscillation patterns are clearly visible in our time-integrated images including many excitation pulses, implying the high stability of the relaxation oscillations driven by polariton parametric scatterings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.07585v2-abstract-full').style.display = 'none'; document.getElementById('2201.07585v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.07597">arXiv:2112.07597</a> <span> [<a href="https://arxiv.org/pdf/2112.07597">pdf</a>, <a href="https://arxiv.org/format/2112.07597">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.129.103201">10.1103/PhysRevLett.129.103201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Enantiodetection of chiral molecules via two-dimensional spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Cai%2C+M">Mao-Rui Cai</a>, <a href="/search/physics?searchtype=author&query=Ye%2C+C">Chong Ye</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+H">Hui Dong</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yong Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.07597v1-abstract-short" style="display: inline;"> Enantiodetection of chiral molecules is important to pharmaceutical drug production, chemical reaction control, and biological function designs. Traditional optical methods of enantiodetection rely on the weak magnetic-dipole or electric-quadrupole interactions, and in turn suffer from the weak signal and low sensitivity. We propose a new optical enantiodetection method to determine the enantiomer… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.07597v1-abstract-full').style.display = 'inline'; document.getElementById('2112.07597v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.07597v1-abstract-full" style="display: none;"> Enantiodetection of chiral molecules is important to pharmaceutical drug production, chemical reaction control, and biological function designs. Traditional optical methods of enantiodetection rely on the weak magnetic-dipole or electric-quadrupole interactions, and in turn suffer from the weak signal and low sensitivity. We propose a new optical enantiodetection method to determine the enantiomeric excess via two-dimensional (2D) spectroscopy of the chiral mixture driven by three electromagnetic fields. The quantities of left- and right- handed chiral molecules are reflected by the intensities of different peaks on the 2D spectrum, separated by the chirality-dependent frequency shifts resulting from the relative strong electric-dipole interactions between the chiral molecules and the driving fields. Thus, the enantiomeric excess can be determined via the intensity ratio of the peaks for the two enantiomers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.07597v1-abstract-full').style.display = 'none'; document.getElementById('2112.07597v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.00946">arXiv:2112.00946</a> <span> [<a href="https://arxiv.org/pdf/2112.00946">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Harvesting the triplet excitons of quasi-two-dimensional perovskite toward highly efficient white light-emitting diodes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yu%2C+Y">Yue Yu</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+C">Chenjing Zhao</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+L">Lin Ma</a>, <a href="/search/physics?searchtype=author&query=Yan%2C+L">Lihe Yan</a>, <a href="/search/physics?searchtype=author&query=Jiao%2C+B">Bo Jiao</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">Jingrui Li</a>, <a href="/search/physics?searchtype=author&query=Xi%2C+J">Jun Xi</a>, <a href="/search/physics?searchtype=author&query=Si%2C+J">Jinhai Si</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yuren Li</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+Y">Yanmin Xu</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+H">Hua Dong</a>, <a href="/search/physics?searchtype=author&query=Dai%2C+J">Jingfei Dai</a>, <a href="/search/physics?searchtype=author&query=Yuan%2C+F">Fang Yuan</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+P">Peichao Zhu</a>, <a href="/search/physics?searchtype=author&query=Jen%2C+A+K+-">Alex K. -Y. Jen</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+Z">Zhaoxin Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.00946v1-abstract-short" style="display: inline;"> Utilization of triplet excitons, which generally emit poorly, is always fundamental to realize highly efficient organic light-emitting diodes (LEDs). While triplet harvest and energy transfer via electron exchange between triplet donor and acceptor are fully understood in doped organic phosphorescence and delayed fluorescence systems, the utilization and energy transfer of triplet excitons in quas… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.00946v1-abstract-full').style.display = 'inline'; document.getElementById('2112.00946v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.00946v1-abstract-full" style="display: none;"> Utilization of triplet excitons, which generally emit poorly, is always fundamental to realize highly efficient organic light-emitting diodes (LEDs). While triplet harvest and energy transfer via electron exchange between triplet donor and acceptor are fully understood in doped organic phosphorescence and delayed fluorescence systems, the utilization and energy transfer of triplet excitons in quasi-two-dimensional (quasi-2D) perovskite are still ambiguous. Here, we use an orange-phosphorescence-emitting ultrathin organic layer to probe triplet behavior in the sky-blue-emitting quasi-2D perovskite. The delicate white LEDs architecture enables a carefully tailored Dexter-like energy-transfer mode that largely rescues the triplet excitons in quasi-2D perovskite. Our white organic-inorganic LEDs achieve maximum forward-viewing external quantum efficiency of 8.6% and luminance over 15000 cd m-2, exhibiting a significant efficiency enhancement versus the corresponding sky-blue perovskite LED (4.6%). The efficient management of energy transfer between excitons in quasi-2D perovskite and Frenkel excitons in organic layer opens the door to fully utilizing excitons for white organic-inorganic LEDs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.00946v1-abstract-full').style.display = 'none'; document.getElementById('2112.00946v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.09954">arXiv:2111.09954</a> <span> [<a href="https://arxiv.org/pdf/2111.09954">pdf</a>, <a href="https://arxiv.org/format/2111.09954">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> MS-nowcasting: Operational Precipitation Nowcasting with Convolutional LSTMs at Microsoft Weather </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Klocek%2C+S">Sylwester Klocek</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+H">Haiyu Dong</a>, <a href="/search/physics?searchtype=author&query=Dixon%2C+M">Matthew Dixon</a>, <a href="/search/physics?searchtype=author&query=Kanengoni%2C+P">Panashe Kanengoni</a>, <a href="/search/physics?searchtype=author&query=Kazmi%2C+N">Najeeb Kazmi</a>, <a href="/search/physics?searchtype=author&query=Luferenko%2C+P">Pete Luferenko</a>, <a href="/search/physics?searchtype=author&query=Lv%2C+Z">Zhongjian Lv</a>, <a href="/search/physics?searchtype=author&query=Sharma%2C+S">Shikhar Sharma</a>, <a href="/search/physics?searchtype=author&query=Weyn%2C+J">Jonathan Weyn</a>, <a href="/search/physics?searchtype=author&query=Xiang%2C+S">Siqi Xiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.09954v2-abstract-short" style="display: inline;"> We present the encoder-forecaster convolutional long short-term memory (LSTM) deep-learning model that powers Microsoft Weather's operational precipitation nowcasting product. This model takes as input a sequence of weather radar mosaics and deterministically predicts future radar reflectivity at lead times up to 6 hours. By stacking a large input receptive field along the feature dimension and co… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.09954v2-abstract-full').style.display = 'inline'; document.getElementById('2111.09954v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.09954v2-abstract-full" style="display: none;"> We present the encoder-forecaster convolutional long short-term memory (LSTM) deep-learning model that powers Microsoft Weather's operational precipitation nowcasting product. This model takes as input a sequence of weather radar mosaics and deterministically predicts future radar reflectivity at lead times up to 6 hours. By stacking a large input receptive field along the feature dimension and conditioning the model's forecaster with predictions from the physics-based High Resolution Rapid Refresh (HRRR) model, we are able to outperform optical flow and HRRR baselines by 20-25% on multiple metrics averaged over all lead times. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.09954v2-abstract-full').style.display = 'none'; document.getElementById('2111.09954v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Minor updates to reflect final submission to NeurIPS workshop</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> NeurIPS 2021 Workshop on Tackling Climate Change with Machine Learning, 2021. https://www.climatechange.ai/papers/neurips2021/19 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.08119">arXiv:2107.08119</a> <span> [<a href="https://arxiv.org/pdf/2107.08119">pdf</a>, <a href="https://arxiv.org/ps/2107.08119">ps</a>, <a href="https://arxiv.org/format/2107.08119">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.104309">10.1103/PhysRevB.104.104309 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neuroevolution machine learning potentials: Combining high accuracy and low cost in atomistic simulations and application to heat transport </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Fan%2C+Z">Zheyong Fan</a>, <a href="/search/physics?searchtype=author&query=Zeng%2C+Z">Zezhu Zeng</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Cunzhi Zhang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yanzhou Wang</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+H">Haikuan Dong</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Yue Chen</a>, <a href="/search/physics?searchtype=author&query=Ala-Nissila%2C+T">Tapio Ala-Nissila</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.08119v2-abstract-short" style="display: inline;"> We develop a neuroevolution-potential (NEP) framework for generating neural network based machine-learning potentials. They are trained using an evolutionary strategy for performing large-scale molecular dynamics (MD) simulations. A descriptor of the atomic environment is constructed based on Chebyshev and Legendre polynomials. The method is implemented in graphic processing units within the open-… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.08119v2-abstract-full').style.display = 'inline'; document.getElementById('2107.08119v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.08119v2-abstract-full" style="display: none;"> We develop a neuroevolution-potential (NEP) framework for generating neural network based machine-learning potentials. They are trained using an evolutionary strategy for performing large-scale molecular dynamics (MD) simulations. A descriptor of the atomic environment is constructed based on Chebyshev and Legendre polynomials. The method is implemented in graphic processing units within the open-source GPUMD package, which can attain a computational speed over $10^7$ atom-step per second using one Nvidia Tesla V100. Furthermore, per-atom heat current is available in NEP, which paves the way for efficient and accurate MD simulations of heat transport in materials with strong phonon anharmonicity or spatial disorder, which usually cannot be accurately treated either with traditional empirical potentials or with perturbative methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.08119v2-abstract-full').style.display = 'none'; document.getElementById('2107.08119v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 10 figures, 2 tables, code and data available</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 104, 104309 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.15310">arXiv:2106.15310</a> <span> [<a href="https://arxiv.org/pdf/2106.15310">pdf</a>, <a href="https://arxiv.org/ps/2106.15310">ps</a>, <a href="https://arxiv.org/format/2106.15310">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0061364">10.1063/5.0061364 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The sub-millimetre non-uniformity measurement of residual and coil-generated field in the magnetic shield using atomic vapor cell </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+C">Chen Liu</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+H">Haifeng Dong</a>, <a href="/search/physics?searchtype=author&query=Sang%2C+J">Junjun Sang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.15310v2-abstract-short" style="display: inline;"> Magnetic field source localization and imaging happen at different scales. The sensing baseline ranges from meter scale such as magnetic anomaly detection, centimeter scale such as brain field imaging to nanometer scale such as the imaging of magnetic skyrmion and single cell. Here we show how atomic vapor cell can be used to realize a baseline of 109.6 渭m with a magnetic sensitivity of 10pT/sqrt(… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.15310v2-abstract-full').style.display = 'inline'; document.getElementById('2106.15310v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.15310v2-abstract-full" style="display: none;"> Magnetic field source localization and imaging happen at different scales. The sensing baseline ranges from meter scale such as magnetic anomaly detection, centimeter scale such as brain field imaging to nanometer scale such as the imaging of magnetic skyrmion and single cell. Here we show how atomic vapor cell can be used to realize a baseline of 109.6 渭m with a magnetic sensitivity of 10pT/sqrt(Hz)@0.6-100Hz and a dynamic range of 2062-4124nT.We use free induction decay (FID) scheme to suppress low-frequency noise and avoid scale factor variation for different domains due to light non-uniformity. The measurement domains are scanned by digital micro-mirror device (DMD). The currents of 22mA, 30mA, 38mA and 44mA are applied in the coils to generate different fields along the pumping axis which are measured respectively by fitting the FID signals of the probe light. The residual fields of every domain are obtained from the intercept of linearly-fitting of the measurement data corresponding to these four currents. The coil-generated fields are calculated by deducting the residual fields from the total fields. The results demonstrate that the hole of shield affects both the residual and the coil-generated field distribution. The potential impact of field distribution measurement with an outstanding comprehensive properties of spatial resolution, sensitivity and dynamic range is far-reaching. It could lead to capability of 3D magnetography for small stuffs and/or organs in millimeter or even smaller scale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.15310v2-abstract-full').style.display = 'none'; document.getElementById('2106.15310v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 119, 114002 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.08302">arXiv:2105.08302</a> <span> [<a href="https://arxiv.org/pdf/2105.08302">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.1c04800">10.1021/acs.nanolett.1c04800 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Femtosecond dynamics of a polariton bosonic cascade at room temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+F">Fei Chen</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+H">Hang Zhou</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Hui Li</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+S">Song Luo</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+Z">Zheng Sun</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Z">Zhe Zhang</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+F">Fenghao Sun</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+B">Beier Zhou</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+H">Hongxing Dong</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+H">Huailiang Xu</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+H">Hongxing Xu</a>, <a href="/search/physics?searchtype=author&query=Kavokin%2C+A">Alexey Kavokin</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Z">Zhanghai Chen</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+J">Jian Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.08302v1-abstract-short" style="display: inline;"> Whispering gallery modes in a microwire are characterized by a nearly equidistant energy spectrum. In the strong exciton-photon coupling regime, this system represents a bosonic cascade: a ladder of discrete energy levels that sustains stimulated transitions between neighboring steps. In this work, by using femtosecond angle-resolved spectroscopic imaging technique, the ultrafast dynamics of polar… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.08302v1-abstract-full').style.display = 'inline'; document.getElementById('2105.08302v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.08302v1-abstract-full" style="display: none;"> Whispering gallery modes in a microwire are characterized by a nearly equidistant energy spectrum. In the strong exciton-photon coupling regime, this system represents a bosonic cascade: a ladder of discrete energy levels that sustains stimulated transitions between neighboring steps. In this work, by using femtosecond angle-resolved spectroscopic imaging technique, the ultrafast dynamics of polaritons in a bosonic cascade based on a one-dimensional ZnO whispering gallery microcavity is explicitly visualized. Clear ladder-form build-up process from higher to lower energy branches of the polariton condensates are observed, which are well reproduced by modeling using rate equations. Moreover, the polariton parametric scattering dynamics are distinguished on a timescale of hundreds of femtoseconds. Our understanding of the femtosecond condensation and scattering dynamics paves the way towards ultrafast coherent control of polaritons at room temperature, which will make it promising for high-speed all-optical integrated applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.08302v1-abstract-full').style.display = 'none'; document.getElementById('2105.08302v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.14787">arXiv:2012.14787</a> <span> [<a href="https://arxiv.org/pdf/2012.14787">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.fmre.2020.11.003">10.1016/j.fmre.2020.11.003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The uniqueness of the integration factor associated with the exchanged heat in thermodynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ma%2C+Y">Yu-Han Ma</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+H">Hui Dong</a>, <a href="/search/physics?searchtype=author&query=Quan%2C+H+T">H. T. Quan</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+C+P">C. P. Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.14787v1-abstract-short" style="display: inline;"> State functions play important roles in thermodynamics. Different from the process function, such as the exchanged heat $未Q$ and the applied work $未W$, the change of the state function can be expressed as an exact differential. We prove here that, for a generic thermodynamic system, only the inverse of the temperature, namely $1/T$, can serve as the integration factor for the exchanged heat $未Q$.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.14787v1-abstract-full').style.display = 'inline'; document.getElementById('2012.14787v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.14787v1-abstract-full" style="display: none;"> State functions play important roles in thermodynamics. Different from the process function, such as the exchanged heat $未Q$ and the applied work $未W$, the change of the state function can be expressed as an exact differential. We prove here that, for a generic thermodynamic system, only the inverse of the temperature, namely $1/T$, can serve as the integration factor for the exchanged heat $未Q$. The uniqueness of the integration factor invalidates any attempt to define other state functions associated with the exchanged heat, and in turn, reveals the incorrectness of defining the entransy $E_{vh}=C_VT^2 /2$ as a state function by treating $T$ as an integration factor. We further show the errors in the derivation of entransy by treating the heat capacity $C_V$ as a temperature-independent constant. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.14787v1-abstract-full').style.display = 'none'; document.getElementById('2012.14787v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 1 figure, has been accepted by Fundamental Research and will be published soon. Comments are welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Fundamental Research 1, 6 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.12754">arXiv:2011.12754</a> <span> [<a href="https://arxiv.org/pdf/2011.12754">pdf</a>, <a href="https://arxiv.org/format/2011.12754">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> Feature Selection based on Principal Component Analysis for Underwater Source Localization by Deep Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhu%2C+X">Xiaoyu Zhu</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+H">Hefeng Dong</a>, <a href="/search/physics?searchtype=author&query=Rossi%2C+P+S">Pierluigi Salvo Rossi</a>, <a href="/search/physics?searchtype=author&query=Landr%C3%B8%2C+M">Martin Landr酶</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.12754v1-abstract-short" style="display: inline;"> In this paper, we propose an interpretable feature selection method based on principal component analysis (PCA) and principal component regression (PCR), which can extract important features for underwater source localization by only introducing the source location without other prior information. This feature selection method is combined with a two-step framework for underwater source localizatio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.12754v1-abstract-full').style.display = 'inline'; document.getElementById('2011.12754v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.12754v1-abstract-full" style="display: none;"> In this paper, we propose an interpretable feature selection method based on principal component analysis (PCA) and principal component regression (PCR), which can extract important features for underwater source localization by only introducing the source location without other prior information. This feature selection method is combined with a two-step framework for underwater source localization based on the semi-supervised learning scheme. In the framework, the first step utilizes a convolutional autoencoder to extract the latent features from the whole available dataset. The second step performs source localization via an encoder multi-layer perceptron (MLP) trained on a limited labeled portion of the dataset. The proposed approach has been validated on the public dataset SwllEx-96 Event S5. The result shows the framework has appealing accuracy and robustness on the unseen data, especially when the number of data used to train gradually decreases. After feature selection, not only the training stage has a 95\% acceleration but the performance of the framework becomes more robust on the depth and more accurate when the number of labeled data used to train is extremely limited. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.12754v1-abstract-full').style.display = 'none'; document.getElementById('2011.12754v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.10371">arXiv:2011.10371</a> <span> [<a href="https://arxiv.org/pdf/2011.10371">pdf</a>, <a href="https://arxiv.org/ps/2011.10371">ps</a>, <a href="https://arxiv.org/format/2011.10371">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.035417">10.1103/PhysRevB.103.035417 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interpretation of apparent thermal conductivity in finite systems from equilibrium molecular dynamics simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Dong%2C+H">Haikuan Dong</a>, <a href="/search/physics?searchtype=author&query=Xiong%2C+S">Shiyun Xiong</a>, <a href="/search/physics?searchtype=author&query=Fan%2C+Z">Zheyong Fan</a>, <a href="/search/physics?searchtype=author&query=Qian%2C+P">Ping Qian</a>, <a href="/search/physics?searchtype=author&query=Su%2C+Y">Yanjing Su</a>, <a href="/search/physics?searchtype=author&query=Ala-Nissila%2C+T">Tapio Ala-Nissila</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.10371v2-abstract-short" style="display: inline;"> We propose a way to properly interpret the apparent thermal conductivity obtained for finite systems using equilibrium molecular dynamics simulations (EMD) with fixed or open boundary conditions in the transport direction. In such systems the heat current autocorrelation function develops negative values after a correlation time which is proportional to the length of the simulation cell in the tra… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.10371v2-abstract-full').style.display = 'inline'; document.getElementById('2011.10371v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.10371v2-abstract-full" style="display: none;"> We propose a way to properly interpret the apparent thermal conductivity obtained for finite systems using equilibrium molecular dynamics simulations (EMD) with fixed or open boundary conditions in the transport direction. In such systems the heat current autocorrelation function develops negative values after a correlation time which is proportional to the length of the simulation cell in the transport direction. Accordingly, the running thermal conductivity develops a maximum value at the same correlation time and eventually decays to zero. By comparing EMD with nonequilibrium molecular dynamics (NEMD) simulations, we conclude that the maximum thermal conductivity from EMD in a system with domain length 2L is equal to the thermal conductivity from NEMD in a system with domain length L. This facilitates the use of nonperiodic-boundary EMD for thermal transport in finite samples in close correspondence to NEMD. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.10371v2-abstract-full').style.display = 'none'; document.getElementById('2011.10371v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 035417 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.07219">arXiv:2011.07219</a> <span> [<a href="https://arxiv.org/pdf/2011.07219">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/nsr/nwac030">10.1093/nsr/nwac030 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Achromatic metasurfaces with inversely customized dispersion for ultra-broadband acoustic beam engineering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Dong%2C+H">Hao-Wen Dong</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+C">Chen Shen</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+S">Sheng-Dong Zhao</a>, <a href="/search/physics?searchtype=author&query=Qiu%2C+W">Weibao Qiu</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+J">Juan Zhou</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chuanzeng Zhang</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+H">Hairong Zheng</a>, <a href="/search/physics?searchtype=author&query=Cummer%2C+S+A">Steven A. Cummer</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yue-Sheng Wang</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+L">Li Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.07219v2-abstract-short" style="display: inline;"> Metasurfaces, the ultrathin media with extraordinary wavefront modulation ability, have shown versatile potential in manipulating waves. However, existing acoustic metasurfaces are limited by their narrow-band frequency-dependent capability, which severely hinders their real-world applications that usually require customized dispersion. To address this bottlenecking challenge, we report ultra-broa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.07219v2-abstract-full').style.display = 'inline'; document.getElementById('2011.07219v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.07219v2-abstract-full" style="display: none;"> Metasurfaces, the ultrathin media with extraordinary wavefront modulation ability, have shown versatile potential in manipulating waves. However, existing acoustic metasurfaces are limited by their narrow-band frequency-dependent capability, which severely hinders their real-world applications that usually require customized dispersion. To address this bottlenecking challenge, we report ultra-broadband achromatic metasurfaces that are capable of delivering arbitrary and frequency-independent wave properties by bottom-up topology optimization. We successively demonstrate three ultra-broadband functionalities, including acoustic beam steering, focusing and levitation, featuring record-breaking relative bandwidths of 93.3%, 120% and 118.9%, respectively. All metasurface elements show novel asymmetric geometries containing multiple scatters, curved air channels and local cavities. Moreover, we reveal that the inversely designed metasurfaces can support integrated internal resonances, bi-anisotropy and multiple scattering, which collectively form the mechanism underpinning the ultra-broadband customized dispersion. Our study opens new horizons for ultra-broadband high-efficiency achromatic functional devices on demand, with promising extension to the optical and elastic achromatic metamaterials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.07219v2-abstract-full').style.display = 'none'; document.getElementById('2011.07219v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> National Science Review, 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.05679">arXiv:2010.05679</a> <span> [<a href="https://arxiv.org/pdf/2010.05679">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Impermeable Inorganic Walls Sandwiching Photoactive Layer toward Inverted Perovskite Solar and Indoor-Photovoltaic Devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xu%2C+J">Jie Xu</a>, <a href="/search/physics?searchtype=author&query=Xi%2C+J">Jun Xi</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+H">Hua Dong</a>, <a href="/search/physics?searchtype=author&query=Ahn%2C+N">Namyoung Ahn</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+Z">Zonglong Zhu</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+J">Jinbo Chen</a>, <a href="/search/physics?searchtype=author&query=Li%2C+P">Peizhou Li</a>, <a href="/search/physics?searchtype=author&query=zhu%2C+X">Xinyi zhu</a>, <a href="/search/physics?searchtype=author&query=Dai%2C+J">Jinfei Dai</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+Z">Ziyang Hu</a>, <a href="/search/physics?searchtype=author&query=Jiao%2C+B">Bo Jiao</a>, <a href="/search/physics?searchtype=author&query=Hou%2C+X">Xun Hou</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">Jingrui Li</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+Z">Zhaoxin Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.05679v1-abstract-short" style="display: inline;"> Interfaces between the perovskite active layer and the charge-transport layers (CTLs) play a critical role in both efficiency and stability of halide-perovskite photovoltaics. One of the major concerns is that surface defects of perovskite could cause detrimental nonradiative recombination and material degradation. In this work, we addressed this challenging problem by inserting ultrathin alkali-f… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.05679v1-abstract-full').style.display = 'inline'; document.getElementById('2010.05679v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.05679v1-abstract-full" style="display: none;"> Interfaces between the perovskite active layer and the charge-transport layers (CTLs) play a critical role in both efficiency and stability of halide-perovskite photovoltaics. One of the major concerns is that surface defects of perovskite could cause detrimental nonradiative recombination and material degradation. In this work, we addressed this challenging problem by inserting ultrathin alkali-fluoride (AF) films between the tri-cation lead-iodide perovskite layer and both CTLs. This bilateral inorganic walls strategy makes use of both physical-blocking and chemical-anchoring functionalities of the continuous, uniform and compact AF framework: on the one hand, the uniformly distributed alkali-iodine coordination at the perovskite-AF interfaces effectively suppresses the formation of iodine-vacancy defects at the surfaces and grain boundaries of the whole perovskite film, thus reducing the trap-assisted recombination at the perovskite-CTL interfaces and therewith the open-voltage loss; on the other hand, the impermeable AF buffer layers effectively prevent the bidirectional ion migration at the perovskite-CTLs interfaces even under harsh working conditions. As a result, a power-conversion efficiency (PCE) of 22.02% (certified efficiency 20.4%) with low open-voltage deficit (< 0.4V) was achieved for the low-temperature processed inverted planar perovskite solar cells. Exceptional operational stability (500 h, ISOS-L-2) and thermal stability (1000 h, ISOS-D-2) were obtained. Meanwhile, a 35.7% PCE was obtained under dim-light source (1000 lux white LED light) with the optimized device, which is among the best records in perovskite indoor photovoltaics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.05679v1-abstract-full').style.display = 'none'; document.getElementById('2010.05679v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.04748">arXiv:2010.04748</a> <span> [<a href="https://arxiv.org/pdf/2010.04748">pdf</a>, <a href="https://arxiv.org/format/2010.04748">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevFluids.6.073101">10.1103/PhysRevFluids.6.073101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Larger wavelengths suit the hydrodynamics of carangiform swimmers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Khalid%2C+M+S+U">Muhammad Saif Ullah Khalid</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+J">Junshi Wang</a>, <a href="/search/physics?searchtype=author&query=Akhtar%2C+I">Imran Akhtar</a>, <a href="/search/physics?searchtype=author&query=Hemmati%2C+A">Arman Hemmati</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+H">Haibo Dong</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+M">Moubin Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.04748v1-abstract-short" style="display: inline;"> The wavelength of undulatory kinematics of fish is an important parameter to determine their hydrodynamic performance. This study focuses on numerical examination of this feature by reconstructing the real physiological model and kinematics of steadily swimmning Jack Fish. We perform three-dimensional numerical simulations for flows over these models composed of the trunk, and dorsal, anal, and ca… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.04748v1-abstract-full').style.display = 'inline'; document.getElementById('2010.04748v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.04748v1-abstract-full" style="display: none;"> The wavelength of undulatory kinematics of fish is an important parameter to determine their hydrodynamic performance. This study focuses on numerical examination of this feature by reconstructing the real physiological model and kinematics of steadily swimmning Jack Fish. We perform three-dimensional numerical simulations for flows over these models composed of the trunk, and dorsal, anal, and caudal fins. Moreover, we prescribe the carangiform-like motion for its undulation for a range of wavelengths. Undulation with larger wavelengths improves the hydrodynamic performance of the carangiform swimmer in terms of better thrust production by the caudal fin, lower drag production on the trunk, and reduced power consumption by the trunk. This coincides with the formation of stronger posterior body vortices and leading-edge vortices with more circulation on the caudal fin. The real kinematics of Jack Fish surpasses the performance of those with prescribed motion owing to the flexibility of the caudal fin. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.04748v1-abstract-full').style.display = 'none'; document.getElementById('2010.04748v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Fluids 6, 073101 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.01254">arXiv:2010.01254</a> <span> [<a href="https://arxiv.org/pdf/2010.01254">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.optcom.2020.126730">10.1016/j.optcom.2020.126730 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-Temperature Ultra-Broad UV-MIR High-Efficiency Absorber Based on Double Ring-Shaped Titanium Nitride Resonators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Cao%2C+S">Shun Cao</a>, <a href="/search/physics?searchtype=author&query=Jin%2C+Y">Yi Jin</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+H">Hongguang Dong</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+T">Tingbiao Guo</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zhenchao Liu</a>, <a href="/search/physics?searchtype=author&query=He%2C+J">Jinlong He</a>, <a href="/search/physics?searchtype=author&query=He%2C+S">Sailing He</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.01254v1-abstract-short" style="display: inline;"> An ultrabroad absorber based on double-ring-shaped titanium nitride (TiN) nanoresonators, which can work in high temperatures, is proposed and numerically studied. The absorber with some optimal parameters exhibits an averaged absorption of 94.6% in the range of 200 - 4000 nm (from ultraviolet to mid-infrared) and a band from 200 - 3518 nm having an absorption > 90%. We have demonstrated in detail… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.01254v1-abstract-full').style.display = 'inline'; document.getElementById('2010.01254v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.01254v1-abstract-full" style="display: none;"> An ultrabroad absorber based on double-ring-shaped titanium nitride (TiN) nanoresonators, which can work in high temperatures, is proposed and numerically studied. The absorber with some optimal parameters exhibits an averaged absorption of 94.6% in the range of 200 - 4000 nm (from ultraviolet to mid-infrared) and a band from 200 - 3518 nm having an absorption > 90%. We have demonstrated in detail the physical mechanisms of the ultra-broad absorption, including the dielectric lossy property of TiN material itself in shorter wavelengths and plasmonic resonances caused by the metallic property of TiN nano-resonators in longer wavelengths. In addition, the absorber shows polarization independent and wide-angle acceptance. Another absorber with double TiN nano-rings of different heights has flatter and higher absorption efficiency (more than 95% absorption) at 200-2860 nm waveband. These properties make the proposed absorbers based on TiN has great potentials in many applications, such as light trapping, photovoltaics, thermal emitters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.01254v1-abstract-full').style.display = 'none'; document.getElementById('2010.01254v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.06919">arXiv:2009.06919</a> <span> [<a href="https://arxiv.org/pdf/2009.06919">pdf</a>, <a href="https://arxiv.org/format/2009.06919">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Social and Information Networks">cs.SI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Populations and Evolution">q-bio.PE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2632-072X/abde9f">10.1088/2632-072X/abde9f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hierarchical Coarse-grained Approach to the Duration-dependent Spreading Dynamics in Complex Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+J">Jin-Fu Chen</a>, <a href="/search/physics?searchtype=author&query=Du%2C+Y">Yi-Mu Du</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+H">Hui Dong</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+C">Chang-Pu Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.06919v2-abstract-short" style="display: inline;"> Various coarse-grained models have been proposed to study the spreading dynamics in the network. A microscopic theory is needed to connect the spreading dynamics with the individual behaviors. In this letter, we unify the description of different spreading dynamics on complex networks by decomposing the microscopic dynamics into two basic processes, the aging process and the contact process. A mic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.06919v2-abstract-full').style.display = 'inline'; document.getElementById('2009.06919v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.06919v2-abstract-full" style="display: none;"> Various coarse-grained models have been proposed to study the spreading dynamics in the network. A microscopic theory is needed to connect the spreading dynamics with the individual behaviors. In this letter, we unify the description of different spreading dynamics on complex networks by decomposing the microscopic dynamics into two basic processes, the aging process and the contact process. A microscopic dynamical equation is derived to describe the dynamics of individual nodes on the network. The hierarchy of a duration coarse-grained (DCG) approach is obtained to study duration-dependent processes, where the transition rates depend on the duration of an individual node on a state. Applied to the epidemic spreading, such formalism is feasible to reproduce different epidemic models, e.g., the susceptible-infected-recovered and the susceptible-infected-susceptible models, and to associate with the corresponding macroscopic spreading parameters with the microscopic transition rate. The DCG approach enables us to obtain the steady state of the general SIS model with arbitrary duration-dependent recovery and infection rates. The current hierarchical formalism can also be used to describe the spreading of information and public opinions, or to model a reliability theory in networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.06919v2-abstract-full').style.display = 'none'; document.getElementById('2009.06919v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. Complex. 2 02LT01 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.01479">arXiv:2009.01479</a> <span> [<a href="https://arxiv.org/pdf/2009.01479">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Enhancing single photon emission through quasi-bound states in the continuum of monolithic hexagonal boron nitride metasurface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Cao%2C+S">Shun Cao</a>, <a href="/search/physics?searchtype=author&query=Jin%2C+Y">Yi Jin</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+H">Hongguang Dong</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+T">Tingbiao Guo</a>, <a href="/search/physics?searchtype=author&query=He%2C+J">Jinlong He</a>, <a href="/search/physics?searchtype=author&query=He%2C+S">Sailing He</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.01479v1-abstract-short" style="display: inline;"> A patterned structure of monolithic hexagonal boron nitride (hBN) on a glass substrate, which can enhance the emission of the embedded single photon emitters (SPEs), is useful for onchip single-photon sources of high-quality. Here, we design and demonstrate a monolithic hBN metasurface with quasi-bound states in the continuum mode at emission wavelength with ultrahigh Q values to enhance fluoresce… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.01479v1-abstract-full').style.display = 'inline'; document.getElementById('2009.01479v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.01479v1-abstract-full" style="display: none;"> A patterned structure of monolithic hexagonal boron nitride (hBN) on a glass substrate, which can enhance the emission of the embedded single photon emitters (SPEs), is useful for onchip single-photon sources of high-quality. Here, we design and demonstrate a monolithic hBN metasurface with quasi-bound states in the continuum mode at emission wavelength with ultrahigh Q values to enhance fluorescence emission of SPEs in hBN. Because of ultrahigh electric field enhancement inside the proposed hBN metasurface, an ultrahigh Purcell factor (3.3*10^4) is achieved. In addition, the Purcell factor can also be strongly enhanced in most part of the hBN structure, which makes the hBN metasurface suitable for e.g. monolithic quantum photonics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.01479v1-abstract-full').style.display = 'none'; document.getElementById('2009.01479v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.09893">arXiv:2007.09893</a> <span> [<a href="https://arxiv.org/pdf/2007.09893">pdf</a>, <a href="https://arxiv.org/format/2007.09893">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0063450">10.1063/5.0063450 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Modular Magneto-Inductive Sensor for Low Vector Magnetic Field Measurements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+H">Huan Liu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xiaobin Wang</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+C">Changfeng Zhao</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zehua Wang</a>, <a href="/search/physics?searchtype=author&query=Jian%2C+G">Ge Jian</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+H">Haobin Dong</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zheng Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.09893v2-abstract-short" style="display: inline;"> The low magnetic field measurement has been utilized since ancient times in order to find economic resources, to detect magnetic anomalies, etc. In this case, the vector magnetic survey can simultaneously obtain the modulus and direction information of the magnetic field, which can contribute to obtaining more precise information and characteristics of magnetic field resources. This paper is conce… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.09893v2-abstract-full').style.display = 'inline'; document.getElementById('2007.09893v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.09893v2-abstract-full" style="display: none;"> The low magnetic field measurement has been utilized since ancient times in order to find economic resources, to detect magnetic anomalies, etc. In this case, the vector magnetic survey can simultaneously obtain the modulus and direction information of the magnetic field, which can contribute to obtaining more precise information and characteristics of magnetic field resources. This paper is concerned with the possibility of vector magnetic field measurement with a magneto-inductive (MI) magnetic sensor. To evaluate the capability of the MI sensor, a test platform is set up and its performance including the noise floor, the resolution, the sensitivity, etc., are comprehensively characterized. Further, a comparative geomagnetic observation and magnetic anomaly detection among the proposed MI sensor, a high-precision Overhauser sensor, and a commonly used and accepted commercial MI sensor are conducted. The experimental results identify the capability of the proposed MI sensor in weak magnetic detection. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.09893v2-abstract-full').style.display = 'none'; document.getElementById('2007.09893v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">2 columns, 7 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.05198">arXiv:2007.05198</a> <span> [<a href="https://arxiv.org/pdf/2007.05198">pdf</a>, <a href="https://arxiv.org/format/2007.05198">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> An overview of sensing platform-technological aspects for vector magnetic measurement: a case study of the application in different scenarios </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+H">Huan Liu</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+H">Haobin Dong</a>, <a href="/search/physics?searchtype=author&query=Ge%2C+J">Jian Ge</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zheng Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.05198v2-abstract-short" style="display: inline;"> Magnetic sensing platform techniques have been used in many years in an attempt to better evaluate the likelihood of recoverable hydrocarbon reservoirs by determining the depth and pattern of sedimentary rock formations containing magnetic minerals, such as magnetite. Utilizing airplanes, large-area magnetic surveys have been conducted to estimate, for example, the depth of igneous rock and the th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.05198v2-abstract-full').style.display = 'inline'; document.getElementById('2007.05198v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.05198v2-abstract-full" style="display: none;"> Magnetic sensing platform techniques have been used in many years in an attempt to better evaluate the likelihood of recoverable hydrocarbon reservoirs by determining the depth and pattern of sedimentary rock formations containing magnetic minerals, such as magnetite. Utilizing airplanes, large-area magnetic surveys have been conducted to estimate, for example, the depth of igneous rock and the thickness of sedimentary rock formations. In this case, the vector magnetic survey method can simultaneously obtain the modulus and direction information of the Earth's magnetic field, which can effectively reduce the multiplicity on data inversion, contribute to the quantitative interpretation of the magnetic body and obtain more precise information and characteristics of magnetic field resource, so as to improve the detection resolution and positioning accuracy of the underground target body. This paper presents a state-of-the-art review of the application situations, the technical features, and the development of the vector magnetic sensing platform-technical aspects for different application scenarios, i.e., ground, wells, marine, airborne, and satellites, respectively. The potential of multi-survey sensing platform technique fusion for magnetic field detection is also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.05198v2-abstract-full').style.display = 'none'; document.getElementById('2007.05198v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">2 columns, 16 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.08589">arXiv:2005.08589</a> <span> [<a href="https://arxiv.org/pdf/2005.08589">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Modal Decompositions of the Kinematics of Crevalle Jack and the Fluid-Caudal Fin Interaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Khalid%2C+M+S+U">Muhammad Saif Ullah Khalid</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+J">Junshi Wang</a>, <a href="/search/physics?searchtype=author&query=Akhtar%2C+I">Imran Akhtar</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+H">Haibo Dong</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+M">Moubin Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.08589v1-abstract-short" style="display: inline;"> To understand the governing mechanisms of bio-inspired swimming has always been challenging due to intense interactions between the flexible bodies of natural aquatic species and water around them. In this paper, we employ advanced modal decomposition techniques; proper orthogonal decomposition and dynamic mode decomposition, to extract energetically strongest spatio-temporal orthonormal component… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.08589v1-abstract-full').style.display = 'inline'; document.getElementById('2005.08589v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.08589v1-abstract-full" style="display: none;"> To understand the governing mechanisms of bio-inspired swimming has always been challenging due to intense interactions between the flexible bodies of natural aquatic species and water around them. In this paper, we employ advanced modal decomposition techniques; proper orthogonal decomposition and dynamic mode decomposition, to extract energetically strongest spatio-temporal orthonormal components of complex kinematics of a Crevalle Jack (Caranx hippos) fish. Then, we present a computational framework for handling fluid-structure interaction related problems in order to investigate their contributions towards the overall dynamics of highly nonlinear systems. We find that the undulating motion of this fish can be described by only two standing-wave like spatially orthonormal modes. Constructing the data set from our numerical simulations for flows over the membranous caudal fin of the Jack fish, our modal analyses reveal that only the first few modes receive energy from both the fluid and structure, but the contribution of fluid in the higher modes is minimal. For the viscous and transitional flow conditions considered here, both spatially and temporally orthonormal modes show strikingly similar coherent flow structures. Our investigations are expected to assist in developing data-driven reduced-dimensional mathematical models to examine the dynamics of bio-inspired swimming robots and develop new and effective control strategies to bring their performance closer to real fish species. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.08589v1-abstract-full').style.display = 'none'; document.getElementById('2005.08589v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.09646">arXiv:1912.09646</a> <span> [<a href="https://arxiv.org/pdf/1912.09646">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevFluids.5.063104">10.1103/PhysRevFluids.5.063104 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Flow Transitions and Mapping for Undulating Swimmers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Khalid%2C+M+S+U">Muhammad Saif Ullah Khalid</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+J">Junshi Wang</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+H">Haibo Dong</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+M">Moubin Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.09646v1-abstract-short" style="display: inline;"> Natural swimmers usually perform undulations to propel themselves and perform a range of maneuvers. These include various biological species ranging from micro-sized organisms to large-sized fishes that undulate at typical kinematic patterns. In this paper, we consider anguilliform and carangiform swimming modes to perform numerical simulations using an immersed-boundary methods based computationa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.09646v1-abstract-full').style.display = 'inline'; document.getElementById('1912.09646v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.09646v1-abstract-full" style="display: none;"> Natural swimmers usually perform undulations to propel themselves and perform a range of maneuvers. These include various biological species ranging from micro-sized organisms to large-sized fishes that undulate at typical kinematic patterns. In this paper, we consider anguilliform and carangiform swimming modes to perform numerical simulations using an immersed-boundary methods based computational solver at various Reynolds number regimes. We carry out thorough studies using wavelength and Strouhal frequency as the governing parameters for the hydrodynamic performance of undulating swimmers. Our analysis shows that the anguilliform kinematics achieves better hydrodynamic efficiency for viscous flow regime, whereas for flows with higher Reynolds number, the wavelength of the wavy motion dictates which kinematics will outperform the other. We find that the constructive interference between vortices produced at anterior parts of the bodies and co-rotating vortices present at the posterior parts plays an important role in reversing the direction of Benard-von Karman vortex street. Since most of the thrust producing conditions appear to cause wake deflection; a critical factor responsible for degrading the hydrodynamic efficiency of a swimmer, we discuss the underlying mechanics that would trigger this phenomenon. We demonstrate that the choice of kinematic and flow conditions may be restricted for the natural swimmers due to their morphological structures, but our findings provide a guideline on their selection for bio-inspired underwater vehicles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.09646v1-abstract-full').style.display = 'none'; document.getElementById('1912.09646v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Fluids 5, 063104 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.13434">arXiv:1910.13434</a> <span> [<a href="https://arxiv.org/pdf/1910.13434">pdf</a>, <a href="https://arxiv.org/format/1910.13434">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.125.210601">10.1103/PhysRevLett.125.210601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental validation of the $1/蟿$ -scaling entropy generation in finite-time thermodynamics with dry air </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ma%2C+Y">Yu-Han Ma</a>, <a href="/search/physics?searchtype=author&query=Zhai%2C+R">Ruo-Xun Zhai</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+C">Chang-Pu Sun</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+H">Hui Dong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.13434v3-abstract-short" style="display: inline;"> The second law of thermodynamics can be described as the non-decreasing of the entropy in the irreversible thermodynamic process. Such phenomenon can be quantitatively evaluated with the irreversible entropy generation (IEG), which was recently found to follow a $1/蟿$ scaling for the system under a long contact time $蟿$ with the thermal bath. This scaling, predicted in many finite-time thermodynam… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.13434v3-abstract-full').style.display = 'inline'; document.getElementById('1910.13434v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.13434v3-abstract-full" style="display: none;"> The second law of thermodynamics can be described as the non-decreasing of the entropy in the irreversible thermodynamic process. Such phenomenon can be quantitatively evaluated with the irreversible entropy generation (IEG), which was recently found to follow a $1/蟿$ scaling for the system under a long contact time $蟿$ with the thermal bath. This scaling, predicted in many finite-time thermodynamic models, is of great potential in the optimization of heat engines, yet remains lack of direct experimental validation. In this letter, we design an experimental apparatus to test such scaling by compressing dry air in a temperature-controlled water bath. More importantly, we quantitatively verify the optimized control protocol to reduce the IEG. Such optimization shall bring new insight to the practical design of heat engine cycles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.13434v3-abstract-full').style.display = 'none'; document.getElementById('1910.13434v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures for the main text. Supplementary Materials file is added and typos in Fig. 2 are corrected. Comments are welcome [yhma@csrc.ac.cn]</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 125, 210601 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.13468">arXiv:1907.13468</a> <span> [<a href="https://arxiv.org/pdf/1907.13468">pdf</a>, <a href="https://arxiv.org/format/1907.13468">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.124.013601">10.1103/PhysRevLett.124.013601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Generation and controllable switching of superradiant and subradiant states in a 10-qubit superconducting circuit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zhen Wang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Hekang Li</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+W">Wei Feng</a>, <a href="/search/physics?searchtype=author&query=Song%2C+X">Xiaohui Song</a>, <a href="/search/physics?searchtype=author&query=Song%2C+C">Chao Song</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+W">Wuxin Liu</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Q">Qiujiang Guo</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+H">Hang Dong</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+D">Dongning Zheng</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+H">H. Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+D">Da-Wei Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.13468v1-abstract-short" style="display: inline;"> Superradiance and subradiance concerning enhanced and inhibited collective radiation of an ensemble of atoms have been a central topic in quantum optics. However, precise generation and control of these states remain challenging. Here we deterministically generate up to 10-qubit superradiant and 8-qubit subradiant states, each containing a single excitation, in a superconducting quantum circuit wi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.13468v1-abstract-full').style.display = 'inline'; document.getElementById('1907.13468v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.13468v1-abstract-full" style="display: none;"> Superradiance and subradiance concerning enhanced and inhibited collective radiation of an ensemble of atoms have been a central topic in quantum optics. However, precise generation and control of these states remain challenging. Here we deterministically generate up to 10-qubit superradiant and 8-qubit subradiant states, each containing a single excitation, in a superconducting quantum circuit with multiple qubits interconnected by a cavity resonator. The $\sqrt{N}$-scaling enhancement of the coupling strength between the superradiant states and the cavity is validated. By applying appropriate phase gate on each qubit, we are able to switch the single collective excitation between superradiant and subradiant states. While the subradiant states containing a single excitation are forbidden from emitting photons, we demonstrate that they can still absorb photons from the resonator. However, for even number of qubits, a singlet state with half of the qubits being excited can neither emit nor absorb photons, which is verified with 4 qubits. This study is a step forward in coherent control of collective radiation and has promising applications in quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.13468v1-abstract-full').style.display = 'none'; document.getElementById('1907.13468v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 124, 013601 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.12101">arXiv:1907.12101</a> <span> [<a href="https://arxiv.org/pdf/1907.12101">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jmps.2020.103889">10.1016/j.jmps.2020.103889 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Robust 3D multi-polar acoustic metamaterials with broadband double negativity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Dong%2C+H">Hao-Wen Dong</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+S">Sheng-Dong Zhao</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yue-Sheng Wang</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+L">Li Cheng</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chuanzeng Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.12101v1-abstract-short" style="display: inline;"> Acoustic negative-index metamaterials show promise in achieving superlensing for diagnostic medical imaging. In spite of the recent progress made in this field, most metamaterials suffer from deficiencies such as low spatial symmetry, sophisticated labyrinth topologies and narrow-band features, which make them difficult to be utilized for symmetric subwavelength imaging applications. Here, we prop… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.12101v1-abstract-full').style.display = 'inline'; document.getElementById('1907.12101v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.12101v1-abstract-full" style="display: none;"> Acoustic negative-index metamaterials show promise in achieving superlensing for diagnostic medical imaging. In spite of the recent progress made in this field, most metamaterials suffer from deficiencies such as low spatial symmetry, sophisticated labyrinth topologies and narrow-band features, which make them difficult to be utilized for symmetric subwavelength imaging applications. Here, we propose a category of robust multi-cavity metamaterials and reveal their common double-negative mechanism enabled by multi-polar (dipole, quadrupole and octupole) resonances in both two-dimensional (2D) and three-dimensional (3D) scenarios. In particular, we discover explicit relationships governing the double-negative frequency bounds from equivalent circuit analogy. Moreover, broadband single-source and double-source subwavelength imaging is realized and verified by 2D and 3D superlens. More importantly, the analogical 3D superlens can ensure the subwavelength imaging in all directions. The proposed multi-polar resonance-enabled robust metamaterials and design methodology open horizons for easier manipulation of subwavelength waves and realization of practical 3D metamaterial devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.12101v1-abstract-full').style.display = 'none'; document.getElementById('1907.12101v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of the Mechanics and Physics of Solids,2020 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.08552">arXiv:1904.08552</a> <span> [<a href="https://arxiv.org/pdf/1904.08552">pdf</a>, <a href="https://arxiv.org/ps/1904.08552">ps</a>, <a href="https://arxiv.org/format/1904.08552">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5099156">10.1063/1.5099156 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin image of an atomic vapor cell with a resolution smaller than the diffusion crosstalk free distance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Dong%2C+H">Haifeng Dong</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+J">Jingling Chen</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">Jimin Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+C">Chen Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+A">Anxian Li</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+N">Nan Zhao</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+F">Fenzhuo Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.08552v1-abstract-short" style="display: inline;"> The diffusion crosstalk free distance is an important parameter for spin images in atomic vapor cells and is also regarded as a limit on the spatial resolution. However, by modulating the pumping light both spatially and temporally using a digital micromirror device, a spin image of a vapor cell has been obtained with a distinguishable stripe width of 13.7~$渭$m, which is much smaller than the corr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.08552v1-abstract-full').style.display = 'inline'; document.getElementById('1904.08552v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.08552v1-abstract-full" style="display: none;"> The diffusion crosstalk free distance is an important parameter for spin images in atomic vapor cells and is also regarded as a limit on the spatial resolution. However, by modulating the pumping light both spatially and temporally using a digital micromirror device, a spin image of a vapor cell has been obtained with a distinguishable stripe width of 13.7~$渭$m, which is much smaller than the corresponding diffusion crosstalk free distance of $\sim$138~$渭$m. The fundamental limit on the spatial resolution as determined by diffusion and the uncertainty principle is analyzed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.08552v1-abstract-full').style.display = 'none'; document.getElementById('1904.08552v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Applied Physics, vol. 125, pp. 243904, 2019 </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Dong%2C+H&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Dong%2C+H&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Dong%2C+H&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>